Merge tag 'gpio-updates-for-v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54         int ddir, sectors, bucket;
55
56         ddir = rq_data_dir(rq);
57         sectors = blk_rq_stats_sectors(rq);
58
59         bucket = ddir + 2 * ilog2(sectors);
60
61         if (bucket < 0)
62                 return -1;
63         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65
66         return bucket;
67 }
68
69 #define BLK_QC_T_SHIFT          16
70 #define BLK_QC_T_INTERNAL       (1U << 31)
71
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73                 blk_qc_t qc)
74 {
75         return xa_load(&q->hctx_table,
76                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80                 blk_qc_t qc)
81 {
82         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83
84         if (qc & BLK_QC_T_INTERNAL)
85                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86         return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92                 (rq->tag != -1 ?
93                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102         return !list_empty_careful(&hctx->dispatch) ||
103                 sbitmap_any_bit_set(&hctx->ctx_map) ||
104                         blk_mq_sched_has_work(hctx);
105 }
106
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111                                      struct blk_mq_ctx *ctx)
112 {
113         const int bit = ctx->index_hw[hctx->type];
114
115         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116                 sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120                                       struct blk_mq_ctx *ctx)
121 {
122         const int bit = ctx->index_hw[hctx->type];
123
124         sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126
127 struct mq_inflight {
128         struct block_device *part;
129         unsigned int inflight[2];
130 };
131
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @set: tag_set to wait on
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started on or more of the request_queues of the tag_set.  This
261  * function only waits for the quiesce on those request_queues that had
262  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
263  */
264 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
265 {
266         if (set->flags & BLK_MQ_F_BLOCKING)
267                 synchronize_srcu(set->srcu);
268         else
269                 synchronize_rcu();
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
272
273 /**
274  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
275  * @q: request queue.
276  *
277  * Note: this function does not prevent that the struct request end_io()
278  * callback function is invoked. Once this function is returned, we make
279  * sure no dispatch can happen until the queue is unquiesced via
280  * blk_mq_unquiesce_queue().
281  */
282 void blk_mq_quiesce_queue(struct request_queue *q)
283 {
284         blk_mq_quiesce_queue_nowait(q);
285         /* nothing to wait for non-mq queues */
286         if (queue_is_mq(q))
287                 blk_mq_wait_quiesce_done(q->tag_set);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
290
291 /*
292  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
293  * @q: request queue.
294  *
295  * This function recovers queue into the state before quiescing
296  * which is done by blk_mq_quiesce_queue.
297  */
298 void blk_mq_unquiesce_queue(struct request_queue *q)
299 {
300         unsigned long flags;
301         bool run_queue = false;
302
303         spin_lock_irqsave(&q->queue_lock, flags);
304         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
305                 ;
306         } else if (!--q->quiesce_depth) {
307                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
308                 run_queue = true;
309         }
310         spin_unlock_irqrestore(&q->queue_lock, flags);
311
312         /* dispatch requests which are inserted during quiescing */
313         if (run_queue)
314                 blk_mq_run_hw_queues(q, true);
315 }
316 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
317
318 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
319 {
320         struct request_queue *q;
321
322         mutex_lock(&set->tag_list_lock);
323         list_for_each_entry(q, &set->tag_list, tag_set_list) {
324                 if (!blk_queue_skip_tagset_quiesce(q))
325                         blk_mq_quiesce_queue_nowait(q);
326         }
327         blk_mq_wait_quiesce_done(set);
328         mutex_unlock(&set->tag_list_lock);
329 }
330 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
331
332 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
333 {
334         struct request_queue *q;
335
336         mutex_lock(&set->tag_list_lock);
337         list_for_each_entry(q, &set->tag_list, tag_set_list) {
338                 if (!blk_queue_skip_tagset_quiesce(q))
339                         blk_mq_unquiesce_queue(q);
340         }
341         mutex_unlock(&set->tag_list_lock);
342 }
343 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
344
345 void blk_mq_wake_waiters(struct request_queue *q)
346 {
347         struct blk_mq_hw_ctx *hctx;
348         unsigned long i;
349
350         queue_for_each_hw_ctx(q, hctx, i)
351                 if (blk_mq_hw_queue_mapped(hctx))
352                         blk_mq_tag_wakeup_all(hctx->tags, true);
353 }
354
355 void blk_rq_init(struct request_queue *q, struct request *rq)
356 {
357         memset(rq, 0, sizeof(*rq));
358
359         INIT_LIST_HEAD(&rq->queuelist);
360         rq->q = q;
361         rq->__sector = (sector_t) -1;
362         INIT_HLIST_NODE(&rq->hash);
363         RB_CLEAR_NODE(&rq->rb_node);
364         rq->tag = BLK_MQ_NO_TAG;
365         rq->internal_tag = BLK_MQ_NO_TAG;
366         rq->start_time_ns = ktime_get_ns();
367         rq->part = NULL;
368         blk_crypto_rq_set_defaults(rq);
369 }
370 EXPORT_SYMBOL(blk_rq_init);
371
372 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
373                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
374 {
375         struct blk_mq_ctx *ctx = data->ctx;
376         struct blk_mq_hw_ctx *hctx = data->hctx;
377         struct request_queue *q = data->q;
378         struct request *rq = tags->static_rqs[tag];
379
380         rq->q = q;
381         rq->mq_ctx = ctx;
382         rq->mq_hctx = hctx;
383         rq->cmd_flags = data->cmd_flags;
384
385         if (data->flags & BLK_MQ_REQ_PM)
386                 data->rq_flags |= RQF_PM;
387         if (blk_queue_io_stat(q))
388                 data->rq_flags |= RQF_IO_STAT;
389         rq->rq_flags = data->rq_flags;
390
391         if (!(data->rq_flags & RQF_ELV)) {
392                 rq->tag = tag;
393                 rq->internal_tag = BLK_MQ_NO_TAG;
394         } else {
395                 rq->tag = BLK_MQ_NO_TAG;
396                 rq->internal_tag = tag;
397         }
398         rq->timeout = 0;
399
400         if (blk_mq_need_time_stamp(rq))
401                 rq->start_time_ns = ktime_get_ns();
402         else
403                 rq->start_time_ns = 0;
404         rq->part = NULL;
405 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
406         rq->alloc_time_ns = alloc_time_ns;
407 #endif
408         rq->io_start_time_ns = 0;
409         rq->stats_sectors = 0;
410         rq->nr_phys_segments = 0;
411 #if defined(CONFIG_BLK_DEV_INTEGRITY)
412         rq->nr_integrity_segments = 0;
413 #endif
414         rq->end_io = NULL;
415         rq->end_io_data = NULL;
416
417         blk_crypto_rq_set_defaults(rq);
418         INIT_LIST_HEAD(&rq->queuelist);
419         /* tag was already set */
420         WRITE_ONCE(rq->deadline, 0);
421         req_ref_set(rq, 1);
422
423         if (rq->rq_flags & RQF_ELV) {
424                 struct elevator_queue *e = data->q->elevator;
425
426                 INIT_HLIST_NODE(&rq->hash);
427                 RB_CLEAR_NODE(&rq->rb_node);
428
429                 if (!op_is_flush(data->cmd_flags) &&
430                     e->type->ops.prepare_request) {
431                         e->type->ops.prepare_request(rq);
432                         rq->rq_flags |= RQF_ELVPRIV;
433                 }
434         }
435
436         return rq;
437 }
438
439 static inline struct request *
440 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
441                 u64 alloc_time_ns)
442 {
443         unsigned int tag, tag_offset;
444         struct blk_mq_tags *tags;
445         struct request *rq;
446         unsigned long tag_mask;
447         int i, nr = 0;
448
449         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
450         if (unlikely(!tag_mask))
451                 return NULL;
452
453         tags = blk_mq_tags_from_data(data);
454         for (i = 0; tag_mask; i++) {
455                 if (!(tag_mask & (1UL << i)))
456                         continue;
457                 tag = tag_offset + i;
458                 prefetch(tags->static_rqs[tag]);
459                 tag_mask &= ~(1UL << i);
460                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
461                 rq_list_add(data->cached_rq, rq);
462                 nr++;
463         }
464         /* caller already holds a reference, add for remainder */
465         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
466         data->nr_tags -= nr;
467
468         return rq_list_pop(data->cached_rq);
469 }
470
471 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
472 {
473         struct request_queue *q = data->q;
474         u64 alloc_time_ns = 0;
475         struct request *rq;
476         unsigned int tag;
477
478         /* alloc_time includes depth and tag waits */
479         if (blk_queue_rq_alloc_time(q))
480                 alloc_time_ns = ktime_get_ns();
481
482         if (data->cmd_flags & REQ_NOWAIT)
483                 data->flags |= BLK_MQ_REQ_NOWAIT;
484
485         if (q->elevator) {
486                 struct elevator_queue *e = q->elevator;
487
488                 data->rq_flags |= RQF_ELV;
489
490                 /*
491                  * Flush/passthrough requests are special and go directly to the
492                  * dispatch list. Don't include reserved tags in the
493                  * limiting, as it isn't useful.
494                  */
495                 if (!op_is_flush(data->cmd_flags) &&
496                     !blk_op_is_passthrough(data->cmd_flags) &&
497                     e->type->ops.limit_depth &&
498                     !(data->flags & BLK_MQ_REQ_RESERVED))
499                         e->type->ops.limit_depth(data->cmd_flags, data);
500         }
501
502 retry:
503         data->ctx = blk_mq_get_ctx(q);
504         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
505         if (!(data->rq_flags & RQF_ELV))
506                 blk_mq_tag_busy(data->hctx);
507
508         if (data->flags & BLK_MQ_REQ_RESERVED)
509                 data->rq_flags |= RQF_RESV;
510
511         /*
512          * Try batched alloc if we want more than 1 tag.
513          */
514         if (data->nr_tags > 1) {
515                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
516                 if (rq)
517                         return rq;
518                 data->nr_tags = 1;
519         }
520
521         /*
522          * Waiting allocations only fail because of an inactive hctx.  In that
523          * case just retry the hctx assignment and tag allocation as CPU hotplug
524          * should have migrated us to an online CPU by now.
525          */
526         tag = blk_mq_get_tag(data);
527         if (tag == BLK_MQ_NO_TAG) {
528                 if (data->flags & BLK_MQ_REQ_NOWAIT)
529                         return NULL;
530                 /*
531                  * Give up the CPU and sleep for a random short time to
532                  * ensure that thread using a realtime scheduling class
533                  * are migrated off the CPU, and thus off the hctx that
534                  * is going away.
535                  */
536                 msleep(3);
537                 goto retry;
538         }
539
540         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
541                                         alloc_time_ns);
542 }
543
544 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
545                                             struct blk_plug *plug,
546                                             blk_opf_t opf,
547                                             blk_mq_req_flags_t flags)
548 {
549         struct blk_mq_alloc_data data = {
550                 .q              = q,
551                 .flags          = flags,
552                 .cmd_flags      = opf,
553                 .nr_tags        = plug->nr_ios,
554                 .cached_rq      = &plug->cached_rq,
555         };
556         struct request *rq;
557
558         if (blk_queue_enter(q, flags))
559                 return NULL;
560
561         plug->nr_ios = 1;
562
563         rq = __blk_mq_alloc_requests(&data);
564         if (unlikely(!rq))
565                 blk_queue_exit(q);
566         return rq;
567 }
568
569 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
570                                                    blk_opf_t opf,
571                                                    blk_mq_req_flags_t flags)
572 {
573         struct blk_plug *plug = current->plug;
574         struct request *rq;
575
576         if (!plug)
577                 return NULL;
578
579         if (rq_list_empty(plug->cached_rq)) {
580                 if (plug->nr_ios == 1)
581                         return NULL;
582                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
583                 if (!rq)
584                         return NULL;
585         } else {
586                 rq = rq_list_peek(&plug->cached_rq);
587                 if (!rq || rq->q != q)
588                         return NULL;
589
590                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
591                         return NULL;
592                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
593                         return NULL;
594
595                 plug->cached_rq = rq_list_next(rq);
596         }
597
598         rq->cmd_flags = opf;
599         INIT_LIST_HEAD(&rq->queuelist);
600         return rq;
601 }
602
603 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
604                 blk_mq_req_flags_t flags)
605 {
606         struct request *rq;
607
608         rq = blk_mq_alloc_cached_request(q, opf, flags);
609         if (!rq) {
610                 struct blk_mq_alloc_data data = {
611                         .q              = q,
612                         .flags          = flags,
613                         .cmd_flags      = opf,
614                         .nr_tags        = 1,
615                 };
616                 int ret;
617
618                 ret = blk_queue_enter(q, flags);
619                 if (ret)
620                         return ERR_PTR(ret);
621
622                 rq = __blk_mq_alloc_requests(&data);
623                 if (!rq)
624                         goto out_queue_exit;
625         }
626         rq->__data_len = 0;
627         rq->__sector = (sector_t) -1;
628         rq->bio = rq->biotail = NULL;
629         return rq;
630 out_queue_exit:
631         blk_queue_exit(q);
632         return ERR_PTR(-EWOULDBLOCK);
633 }
634 EXPORT_SYMBOL(blk_mq_alloc_request);
635
636 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
637         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
638 {
639         struct blk_mq_alloc_data data = {
640                 .q              = q,
641                 .flags          = flags,
642                 .cmd_flags      = opf,
643                 .nr_tags        = 1,
644         };
645         u64 alloc_time_ns = 0;
646         struct request *rq;
647         unsigned int cpu;
648         unsigned int tag;
649         int ret;
650
651         /* alloc_time includes depth and tag waits */
652         if (blk_queue_rq_alloc_time(q))
653                 alloc_time_ns = ktime_get_ns();
654
655         /*
656          * If the tag allocator sleeps we could get an allocation for a
657          * different hardware context.  No need to complicate the low level
658          * allocator for this for the rare use case of a command tied to
659          * a specific queue.
660          */
661         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
662             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
663                 return ERR_PTR(-EINVAL);
664
665         if (hctx_idx >= q->nr_hw_queues)
666                 return ERR_PTR(-EIO);
667
668         ret = blk_queue_enter(q, flags);
669         if (ret)
670                 return ERR_PTR(ret);
671
672         /*
673          * Check if the hardware context is actually mapped to anything.
674          * If not tell the caller that it should skip this queue.
675          */
676         ret = -EXDEV;
677         data.hctx = xa_load(&q->hctx_table, hctx_idx);
678         if (!blk_mq_hw_queue_mapped(data.hctx))
679                 goto out_queue_exit;
680         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
681         if (cpu >= nr_cpu_ids)
682                 goto out_queue_exit;
683         data.ctx = __blk_mq_get_ctx(q, cpu);
684
685         if (!q->elevator)
686                 blk_mq_tag_busy(data.hctx);
687         else
688                 data.rq_flags |= RQF_ELV;
689
690         if (flags & BLK_MQ_REQ_RESERVED)
691                 data.rq_flags |= RQF_RESV;
692
693         ret = -EWOULDBLOCK;
694         tag = blk_mq_get_tag(&data);
695         if (tag == BLK_MQ_NO_TAG)
696                 goto out_queue_exit;
697         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
698                                         alloc_time_ns);
699         rq->__data_len = 0;
700         rq->__sector = (sector_t) -1;
701         rq->bio = rq->biotail = NULL;
702         return rq;
703
704 out_queue_exit:
705         blk_queue_exit(q);
706         return ERR_PTR(ret);
707 }
708 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
709
710 static void __blk_mq_free_request(struct request *rq)
711 {
712         struct request_queue *q = rq->q;
713         struct blk_mq_ctx *ctx = rq->mq_ctx;
714         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
715         const int sched_tag = rq->internal_tag;
716
717         blk_crypto_free_request(rq);
718         blk_pm_mark_last_busy(rq);
719         rq->mq_hctx = NULL;
720         if (rq->tag != BLK_MQ_NO_TAG)
721                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
722         if (sched_tag != BLK_MQ_NO_TAG)
723                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
724         blk_mq_sched_restart(hctx);
725         blk_queue_exit(q);
726 }
727
728 void blk_mq_free_request(struct request *rq)
729 {
730         struct request_queue *q = rq->q;
731         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
732
733         if ((rq->rq_flags & RQF_ELVPRIV) &&
734             q->elevator->type->ops.finish_request)
735                 q->elevator->type->ops.finish_request(rq);
736
737         if (rq->rq_flags & RQF_MQ_INFLIGHT)
738                 __blk_mq_dec_active_requests(hctx);
739
740         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
741                 laptop_io_completion(q->disk->bdi);
742
743         rq_qos_done(q, rq);
744
745         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
746         if (req_ref_put_and_test(rq))
747                 __blk_mq_free_request(rq);
748 }
749 EXPORT_SYMBOL_GPL(blk_mq_free_request);
750
751 void blk_mq_free_plug_rqs(struct blk_plug *plug)
752 {
753         struct request *rq;
754
755         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
756                 blk_mq_free_request(rq);
757 }
758
759 void blk_dump_rq_flags(struct request *rq, char *msg)
760 {
761         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
762                 rq->q->disk ? rq->q->disk->disk_name : "?",
763                 (__force unsigned long long) rq->cmd_flags);
764
765         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
766                (unsigned long long)blk_rq_pos(rq),
767                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
768         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
769                rq->bio, rq->biotail, blk_rq_bytes(rq));
770 }
771 EXPORT_SYMBOL(blk_dump_rq_flags);
772
773 static void req_bio_endio(struct request *rq, struct bio *bio,
774                           unsigned int nbytes, blk_status_t error)
775 {
776         if (unlikely(error)) {
777                 bio->bi_status = error;
778         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
779                 /*
780                  * Partial zone append completions cannot be supported as the
781                  * BIO fragments may end up not being written sequentially.
782                  */
783                 if (bio->bi_iter.bi_size != nbytes)
784                         bio->bi_status = BLK_STS_IOERR;
785                 else
786                         bio->bi_iter.bi_sector = rq->__sector;
787         }
788
789         bio_advance(bio, nbytes);
790
791         if (unlikely(rq->rq_flags & RQF_QUIET))
792                 bio_set_flag(bio, BIO_QUIET);
793         /* don't actually finish bio if it's part of flush sequence */
794         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
795                 bio_endio(bio);
796 }
797
798 static void blk_account_io_completion(struct request *req, unsigned int bytes)
799 {
800         if (req->part && blk_do_io_stat(req)) {
801                 const int sgrp = op_stat_group(req_op(req));
802
803                 part_stat_lock();
804                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
805                 part_stat_unlock();
806         }
807 }
808
809 static void blk_print_req_error(struct request *req, blk_status_t status)
810 {
811         printk_ratelimited(KERN_ERR
812                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
813                 "phys_seg %u prio class %u\n",
814                 blk_status_to_str(status),
815                 req->q->disk ? req->q->disk->disk_name : "?",
816                 blk_rq_pos(req), (__force u32)req_op(req),
817                 blk_op_str(req_op(req)),
818                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
819                 req->nr_phys_segments,
820                 IOPRIO_PRIO_CLASS(req->ioprio));
821 }
822
823 /*
824  * Fully end IO on a request. Does not support partial completions, or
825  * errors.
826  */
827 static void blk_complete_request(struct request *req)
828 {
829         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
830         int total_bytes = blk_rq_bytes(req);
831         struct bio *bio = req->bio;
832
833         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
834
835         if (!bio)
836                 return;
837
838 #ifdef CONFIG_BLK_DEV_INTEGRITY
839         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
840                 req->q->integrity.profile->complete_fn(req, total_bytes);
841 #endif
842
843         blk_account_io_completion(req, total_bytes);
844
845         do {
846                 struct bio *next = bio->bi_next;
847
848                 /* Completion has already been traced */
849                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
850
851                 if (req_op(req) == REQ_OP_ZONE_APPEND)
852                         bio->bi_iter.bi_sector = req->__sector;
853
854                 if (!is_flush)
855                         bio_endio(bio);
856                 bio = next;
857         } while (bio);
858
859         /*
860          * Reset counters so that the request stacking driver
861          * can find how many bytes remain in the request
862          * later.
863          */
864         if (!req->end_io) {
865                 req->bio = NULL;
866                 req->__data_len = 0;
867         }
868 }
869
870 /**
871  * blk_update_request - Complete multiple bytes without completing the request
872  * @req:      the request being processed
873  * @error:    block status code
874  * @nr_bytes: number of bytes to complete for @req
875  *
876  * Description:
877  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
878  *     the request structure even if @req doesn't have leftover.
879  *     If @req has leftover, sets it up for the next range of segments.
880  *
881  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
882  *     %false return from this function.
883  *
884  * Note:
885  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
886  *      except in the consistency check at the end of this function.
887  *
888  * Return:
889  *     %false - this request doesn't have any more data
890  *     %true  - this request has more data
891  **/
892 bool blk_update_request(struct request *req, blk_status_t error,
893                 unsigned int nr_bytes)
894 {
895         int total_bytes;
896
897         trace_block_rq_complete(req, error, nr_bytes);
898
899         if (!req->bio)
900                 return false;
901
902 #ifdef CONFIG_BLK_DEV_INTEGRITY
903         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
904             error == BLK_STS_OK)
905                 req->q->integrity.profile->complete_fn(req, nr_bytes);
906 #endif
907
908         if (unlikely(error && !blk_rq_is_passthrough(req) &&
909                      !(req->rq_flags & RQF_QUIET)) &&
910                      !test_bit(GD_DEAD, &req->q->disk->state)) {
911                 blk_print_req_error(req, error);
912                 trace_block_rq_error(req, error, nr_bytes);
913         }
914
915         blk_account_io_completion(req, nr_bytes);
916
917         total_bytes = 0;
918         while (req->bio) {
919                 struct bio *bio = req->bio;
920                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
921
922                 if (bio_bytes == bio->bi_iter.bi_size)
923                         req->bio = bio->bi_next;
924
925                 /* Completion has already been traced */
926                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
927                 req_bio_endio(req, bio, bio_bytes, error);
928
929                 total_bytes += bio_bytes;
930                 nr_bytes -= bio_bytes;
931
932                 if (!nr_bytes)
933                         break;
934         }
935
936         /*
937          * completely done
938          */
939         if (!req->bio) {
940                 /*
941                  * Reset counters so that the request stacking driver
942                  * can find how many bytes remain in the request
943                  * later.
944                  */
945                 req->__data_len = 0;
946                 return false;
947         }
948
949         req->__data_len -= total_bytes;
950
951         /* update sector only for requests with clear definition of sector */
952         if (!blk_rq_is_passthrough(req))
953                 req->__sector += total_bytes >> 9;
954
955         /* mixed attributes always follow the first bio */
956         if (req->rq_flags & RQF_MIXED_MERGE) {
957                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
958                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
959         }
960
961         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
962                 /*
963                  * If total number of sectors is less than the first segment
964                  * size, something has gone terribly wrong.
965                  */
966                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
967                         blk_dump_rq_flags(req, "request botched");
968                         req->__data_len = blk_rq_cur_bytes(req);
969                 }
970
971                 /* recalculate the number of segments */
972                 req->nr_phys_segments = blk_recalc_rq_segments(req);
973         }
974
975         return true;
976 }
977 EXPORT_SYMBOL_GPL(blk_update_request);
978
979 static void __blk_account_io_done(struct request *req, u64 now)
980 {
981         const int sgrp = op_stat_group(req_op(req));
982
983         part_stat_lock();
984         update_io_ticks(req->part, jiffies, true);
985         part_stat_inc(req->part, ios[sgrp]);
986         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
987         part_stat_unlock();
988 }
989
990 static inline void blk_account_io_done(struct request *req, u64 now)
991 {
992         /*
993          * Account IO completion.  flush_rq isn't accounted as a
994          * normal IO on queueing nor completion.  Accounting the
995          * containing request is enough.
996          */
997         if (blk_do_io_stat(req) && req->part &&
998             !(req->rq_flags & RQF_FLUSH_SEQ))
999                 __blk_account_io_done(req, now);
1000 }
1001
1002 static void __blk_account_io_start(struct request *rq)
1003 {
1004         /*
1005          * All non-passthrough requests are created from a bio with one
1006          * exception: when a flush command that is part of a flush sequence
1007          * generated by the state machine in blk-flush.c is cloned onto the
1008          * lower device by dm-multipath we can get here without a bio.
1009          */
1010         if (rq->bio)
1011                 rq->part = rq->bio->bi_bdev;
1012         else
1013                 rq->part = rq->q->disk->part0;
1014
1015         part_stat_lock();
1016         update_io_ticks(rq->part, jiffies, false);
1017         part_stat_unlock();
1018 }
1019
1020 static inline void blk_account_io_start(struct request *req)
1021 {
1022         if (blk_do_io_stat(req))
1023                 __blk_account_io_start(req);
1024 }
1025
1026 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1027 {
1028         if (rq->rq_flags & RQF_STATS) {
1029                 blk_mq_poll_stats_start(rq->q);
1030                 blk_stat_add(rq, now);
1031         }
1032
1033         blk_mq_sched_completed_request(rq, now);
1034         blk_account_io_done(rq, now);
1035 }
1036
1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1038 {
1039         if (blk_mq_need_time_stamp(rq))
1040                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1041
1042         if (rq->end_io) {
1043                 rq_qos_done(rq->q, rq);
1044                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1045                         blk_mq_free_request(rq);
1046         } else {
1047                 blk_mq_free_request(rq);
1048         }
1049 }
1050 EXPORT_SYMBOL(__blk_mq_end_request);
1051
1052 void blk_mq_end_request(struct request *rq, blk_status_t error)
1053 {
1054         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1055                 BUG();
1056         __blk_mq_end_request(rq, error);
1057 }
1058 EXPORT_SYMBOL(blk_mq_end_request);
1059
1060 #define TAG_COMP_BATCH          32
1061
1062 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1063                                           int *tag_array, int nr_tags)
1064 {
1065         struct request_queue *q = hctx->queue;
1066
1067         /*
1068          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1069          * update hctx->nr_active in batch
1070          */
1071         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1072                 __blk_mq_sub_active_requests(hctx, nr_tags);
1073
1074         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1075         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1076 }
1077
1078 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1079 {
1080         int tags[TAG_COMP_BATCH], nr_tags = 0;
1081         struct blk_mq_hw_ctx *cur_hctx = NULL;
1082         struct request *rq;
1083         u64 now = 0;
1084
1085         if (iob->need_ts)
1086                 now = ktime_get_ns();
1087
1088         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1089                 prefetch(rq->bio);
1090                 prefetch(rq->rq_next);
1091
1092                 blk_complete_request(rq);
1093                 if (iob->need_ts)
1094                         __blk_mq_end_request_acct(rq, now);
1095
1096                 rq_qos_done(rq->q, rq);
1097
1098                 /*
1099                  * If end_io handler returns NONE, then it still has
1100                  * ownership of the request.
1101                  */
1102                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1103                         continue;
1104
1105                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1106                 if (!req_ref_put_and_test(rq))
1107                         continue;
1108
1109                 blk_crypto_free_request(rq);
1110                 blk_pm_mark_last_busy(rq);
1111
1112                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1113                         if (cur_hctx)
1114                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1115                         nr_tags = 0;
1116                         cur_hctx = rq->mq_hctx;
1117                 }
1118                 tags[nr_tags++] = rq->tag;
1119         }
1120
1121         if (nr_tags)
1122                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1123 }
1124 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1125
1126 static void blk_complete_reqs(struct llist_head *list)
1127 {
1128         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1129         struct request *rq, *next;
1130
1131         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1132                 rq->q->mq_ops->complete(rq);
1133 }
1134
1135 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1136 {
1137         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1138 }
1139
1140 static int blk_softirq_cpu_dead(unsigned int cpu)
1141 {
1142         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1143         return 0;
1144 }
1145
1146 static void __blk_mq_complete_request_remote(void *data)
1147 {
1148         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1149 }
1150
1151 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1152 {
1153         int cpu = raw_smp_processor_id();
1154
1155         if (!IS_ENABLED(CONFIG_SMP) ||
1156             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1157                 return false;
1158         /*
1159          * With force threaded interrupts enabled, raising softirq from an SMP
1160          * function call will always result in waking the ksoftirqd thread.
1161          * This is probably worse than completing the request on a different
1162          * cache domain.
1163          */
1164         if (force_irqthreads())
1165                 return false;
1166
1167         /* same CPU or cache domain?  Complete locally */
1168         if (cpu == rq->mq_ctx->cpu ||
1169             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1170              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1171                 return false;
1172
1173         /* don't try to IPI to an offline CPU */
1174         return cpu_online(rq->mq_ctx->cpu);
1175 }
1176
1177 static void blk_mq_complete_send_ipi(struct request *rq)
1178 {
1179         struct llist_head *list;
1180         unsigned int cpu;
1181
1182         cpu = rq->mq_ctx->cpu;
1183         list = &per_cpu(blk_cpu_done, cpu);
1184         if (llist_add(&rq->ipi_list, list)) {
1185                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1186                 smp_call_function_single_async(cpu, &rq->csd);
1187         }
1188 }
1189
1190 static void blk_mq_raise_softirq(struct request *rq)
1191 {
1192         struct llist_head *list;
1193
1194         preempt_disable();
1195         list = this_cpu_ptr(&blk_cpu_done);
1196         if (llist_add(&rq->ipi_list, list))
1197                 raise_softirq(BLOCK_SOFTIRQ);
1198         preempt_enable();
1199 }
1200
1201 bool blk_mq_complete_request_remote(struct request *rq)
1202 {
1203         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1204
1205         /*
1206          * For request which hctx has only one ctx mapping,
1207          * or a polled request, always complete locally,
1208          * it's pointless to redirect the completion.
1209          */
1210         if (rq->mq_hctx->nr_ctx == 1 ||
1211                 rq->cmd_flags & REQ_POLLED)
1212                 return false;
1213
1214         if (blk_mq_complete_need_ipi(rq)) {
1215                 blk_mq_complete_send_ipi(rq);
1216                 return true;
1217         }
1218
1219         if (rq->q->nr_hw_queues == 1) {
1220                 blk_mq_raise_softirq(rq);
1221                 return true;
1222         }
1223         return false;
1224 }
1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1226
1227 /**
1228  * blk_mq_complete_request - end I/O on a request
1229  * @rq:         the request being processed
1230  *
1231  * Description:
1232  *      Complete a request by scheduling the ->complete_rq operation.
1233  **/
1234 void blk_mq_complete_request(struct request *rq)
1235 {
1236         if (!blk_mq_complete_request_remote(rq))
1237                 rq->q->mq_ops->complete(rq);
1238 }
1239 EXPORT_SYMBOL(blk_mq_complete_request);
1240
1241 /**
1242  * blk_mq_start_request - Start processing a request
1243  * @rq: Pointer to request to be started
1244  *
1245  * Function used by device drivers to notify the block layer that a request
1246  * is going to be processed now, so blk layer can do proper initializations
1247  * such as starting the timeout timer.
1248  */
1249 void blk_mq_start_request(struct request *rq)
1250 {
1251         struct request_queue *q = rq->q;
1252
1253         trace_block_rq_issue(rq);
1254
1255         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1256                 rq->io_start_time_ns = ktime_get_ns();
1257                 rq->stats_sectors = blk_rq_sectors(rq);
1258                 rq->rq_flags |= RQF_STATS;
1259                 rq_qos_issue(q, rq);
1260         }
1261
1262         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1263
1264         blk_add_timer(rq);
1265         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1266
1267 #ifdef CONFIG_BLK_DEV_INTEGRITY
1268         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1269                 q->integrity.profile->prepare_fn(rq);
1270 #endif
1271         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1272                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1273 }
1274 EXPORT_SYMBOL(blk_mq_start_request);
1275
1276 /*
1277  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1278  * queues. This is important for md arrays to benefit from merging
1279  * requests.
1280  */
1281 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1282 {
1283         if (plug->multiple_queues)
1284                 return BLK_MAX_REQUEST_COUNT * 2;
1285         return BLK_MAX_REQUEST_COUNT;
1286 }
1287
1288 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1289 {
1290         struct request *last = rq_list_peek(&plug->mq_list);
1291
1292         if (!plug->rq_count) {
1293                 trace_block_plug(rq->q);
1294         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1295                    (!blk_queue_nomerges(rq->q) &&
1296                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1297                 blk_mq_flush_plug_list(plug, false);
1298                 last = NULL;
1299                 trace_block_plug(rq->q);
1300         }
1301
1302         if (!plug->multiple_queues && last && last->q != rq->q)
1303                 plug->multiple_queues = true;
1304         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1305                 plug->has_elevator = true;
1306         rq->rq_next = NULL;
1307         rq_list_add(&plug->mq_list, rq);
1308         plug->rq_count++;
1309 }
1310
1311 /**
1312  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1313  * @rq:         request to insert
1314  * @at_head:    insert request at head or tail of queue
1315  *
1316  * Description:
1317  *    Insert a fully prepared request at the back of the I/O scheduler queue
1318  *    for execution.  Don't wait for completion.
1319  *
1320  * Note:
1321  *    This function will invoke @done directly if the queue is dead.
1322  */
1323 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1324 {
1325         WARN_ON(irqs_disabled());
1326         WARN_ON(!blk_rq_is_passthrough(rq));
1327
1328         blk_account_io_start(rq);
1329
1330         /*
1331          * As plugging can be enabled for passthrough requests on a zoned
1332          * device, directly accessing the plug instead of using blk_mq_plug()
1333          * should not have any consequences.
1334          */
1335         if (current->plug)
1336                 blk_add_rq_to_plug(current->plug, rq);
1337         else
1338                 blk_mq_sched_insert_request(rq, at_head, true, false);
1339 }
1340 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1341
1342 struct blk_rq_wait {
1343         struct completion done;
1344         blk_status_t ret;
1345 };
1346
1347 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1348 {
1349         struct blk_rq_wait *wait = rq->end_io_data;
1350
1351         wait->ret = ret;
1352         complete(&wait->done);
1353         return RQ_END_IO_NONE;
1354 }
1355
1356 bool blk_rq_is_poll(struct request *rq)
1357 {
1358         if (!rq->mq_hctx)
1359                 return false;
1360         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1361                 return false;
1362         if (WARN_ON_ONCE(!rq->bio))
1363                 return false;
1364         return true;
1365 }
1366 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1367
1368 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1369 {
1370         do {
1371                 bio_poll(rq->bio, NULL, 0);
1372                 cond_resched();
1373         } while (!completion_done(wait));
1374 }
1375
1376 /**
1377  * blk_execute_rq - insert a request into queue for execution
1378  * @rq:         request to insert
1379  * @at_head:    insert request at head or tail of queue
1380  *
1381  * Description:
1382  *    Insert a fully prepared request at the back of the I/O scheduler queue
1383  *    for execution and wait for completion.
1384  * Return: The blk_status_t result provided to blk_mq_end_request().
1385  */
1386 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1387 {
1388         struct blk_rq_wait wait = {
1389                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1390         };
1391
1392         WARN_ON(irqs_disabled());
1393         WARN_ON(!blk_rq_is_passthrough(rq));
1394
1395         rq->end_io_data = &wait;
1396         rq->end_io = blk_end_sync_rq;
1397
1398         blk_account_io_start(rq);
1399         blk_mq_sched_insert_request(rq, at_head, true, false);
1400
1401         if (blk_rq_is_poll(rq)) {
1402                 blk_rq_poll_completion(rq, &wait.done);
1403         } else {
1404                 /*
1405                  * Prevent hang_check timer from firing at us during very long
1406                  * I/O
1407                  */
1408                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1409
1410                 if (hang_check)
1411                         while (!wait_for_completion_io_timeout(&wait.done,
1412                                         hang_check * (HZ/2)))
1413                                 ;
1414                 else
1415                         wait_for_completion_io(&wait.done);
1416         }
1417
1418         return wait.ret;
1419 }
1420 EXPORT_SYMBOL(blk_execute_rq);
1421
1422 static void __blk_mq_requeue_request(struct request *rq)
1423 {
1424         struct request_queue *q = rq->q;
1425
1426         blk_mq_put_driver_tag(rq);
1427
1428         trace_block_rq_requeue(rq);
1429         rq_qos_requeue(q, rq);
1430
1431         if (blk_mq_request_started(rq)) {
1432                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1433                 rq->rq_flags &= ~RQF_TIMED_OUT;
1434         }
1435 }
1436
1437 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1438 {
1439         __blk_mq_requeue_request(rq);
1440
1441         /* this request will be re-inserted to io scheduler queue */
1442         blk_mq_sched_requeue_request(rq);
1443
1444         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1445 }
1446 EXPORT_SYMBOL(blk_mq_requeue_request);
1447
1448 static void blk_mq_requeue_work(struct work_struct *work)
1449 {
1450         struct request_queue *q =
1451                 container_of(work, struct request_queue, requeue_work.work);
1452         LIST_HEAD(rq_list);
1453         struct request *rq, *next;
1454
1455         spin_lock_irq(&q->requeue_lock);
1456         list_splice_init(&q->requeue_list, &rq_list);
1457         spin_unlock_irq(&q->requeue_lock);
1458
1459         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1460                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1461                         continue;
1462
1463                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1464                 list_del_init(&rq->queuelist);
1465                 /*
1466                  * If RQF_DONTPREP, rq has contained some driver specific
1467                  * data, so insert it to hctx dispatch list to avoid any
1468                  * merge.
1469                  */
1470                 if (rq->rq_flags & RQF_DONTPREP)
1471                         blk_mq_request_bypass_insert(rq, false, false);
1472                 else
1473                         blk_mq_sched_insert_request(rq, true, false, false);
1474         }
1475
1476         while (!list_empty(&rq_list)) {
1477                 rq = list_entry(rq_list.next, struct request, queuelist);
1478                 list_del_init(&rq->queuelist);
1479                 blk_mq_sched_insert_request(rq, false, false, false);
1480         }
1481
1482         blk_mq_run_hw_queues(q, false);
1483 }
1484
1485 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1486                                 bool kick_requeue_list)
1487 {
1488         struct request_queue *q = rq->q;
1489         unsigned long flags;
1490
1491         /*
1492          * We abuse this flag that is otherwise used by the I/O scheduler to
1493          * request head insertion from the workqueue.
1494          */
1495         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1496
1497         spin_lock_irqsave(&q->requeue_lock, flags);
1498         if (at_head) {
1499                 rq->rq_flags |= RQF_SOFTBARRIER;
1500                 list_add(&rq->queuelist, &q->requeue_list);
1501         } else {
1502                 list_add_tail(&rq->queuelist, &q->requeue_list);
1503         }
1504         spin_unlock_irqrestore(&q->requeue_lock, flags);
1505
1506         if (kick_requeue_list)
1507                 blk_mq_kick_requeue_list(q);
1508 }
1509
1510 void blk_mq_kick_requeue_list(struct request_queue *q)
1511 {
1512         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1513 }
1514 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1515
1516 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1517                                     unsigned long msecs)
1518 {
1519         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1520                                     msecs_to_jiffies(msecs));
1521 }
1522 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1523
1524 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1525 {
1526         /*
1527          * If we find a request that isn't idle we know the queue is busy
1528          * as it's checked in the iter.
1529          * Return false to stop the iteration.
1530          */
1531         if (blk_mq_request_started(rq)) {
1532                 bool *busy = priv;
1533
1534                 *busy = true;
1535                 return false;
1536         }
1537
1538         return true;
1539 }
1540
1541 bool blk_mq_queue_inflight(struct request_queue *q)
1542 {
1543         bool busy = false;
1544
1545         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1546         return busy;
1547 }
1548 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1549
1550 static void blk_mq_rq_timed_out(struct request *req)
1551 {
1552         req->rq_flags |= RQF_TIMED_OUT;
1553         if (req->q->mq_ops->timeout) {
1554                 enum blk_eh_timer_return ret;
1555
1556                 ret = req->q->mq_ops->timeout(req);
1557                 if (ret == BLK_EH_DONE)
1558                         return;
1559                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1560         }
1561
1562         blk_add_timer(req);
1563 }
1564
1565 struct blk_expired_data {
1566         bool has_timedout_rq;
1567         unsigned long next;
1568         unsigned long timeout_start;
1569 };
1570
1571 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1572 {
1573         unsigned long deadline;
1574
1575         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1576                 return false;
1577         if (rq->rq_flags & RQF_TIMED_OUT)
1578                 return false;
1579
1580         deadline = READ_ONCE(rq->deadline);
1581         if (time_after_eq(expired->timeout_start, deadline))
1582                 return true;
1583
1584         if (expired->next == 0)
1585                 expired->next = deadline;
1586         else if (time_after(expired->next, deadline))
1587                 expired->next = deadline;
1588         return false;
1589 }
1590
1591 void blk_mq_put_rq_ref(struct request *rq)
1592 {
1593         if (is_flush_rq(rq)) {
1594                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1595                         blk_mq_free_request(rq);
1596         } else if (req_ref_put_and_test(rq)) {
1597                 __blk_mq_free_request(rq);
1598         }
1599 }
1600
1601 static bool blk_mq_check_expired(struct request *rq, void *priv)
1602 {
1603         struct blk_expired_data *expired = priv;
1604
1605         /*
1606          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1607          * be reallocated underneath the timeout handler's processing, then
1608          * the expire check is reliable. If the request is not expired, then
1609          * it was completed and reallocated as a new request after returning
1610          * from blk_mq_check_expired().
1611          */
1612         if (blk_mq_req_expired(rq, expired)) {
1613                 expired->has_timedout_rq = true;
1614                 return false;
1615         }
1616         return true;
1617 }
1618
1619 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1620 {
1621         struct blk_expired_data *expired = priv;
1622
1623         if (blk_mq_req_expired(rq, expired))
1624                 blk_mq_rq_timed_out(rq);
1625         return true;
1626 }
1627
1628 static void blk_mq_timeout_work(struct work_struct *work)
1629 {
1630         struct request_queue *q =
1631                 container_of(work, struct request_queue, timeout_work);
1632         struct blk_expired_data expired = {
1633                 .timeout_start = jiffies,
1634         };
1635         struct blk_mq_hw_ctx *hctx;
1636         unsigned long i;
1637
1638         /* A deadlock might occur if a request is stuck requiring a
1639          * timeout at the same time a queue freeze is waiting
1640          * completion, since the timeout code would not be able to
1641          * acquire the queue reference here.
1642          *
1643          * That's why we don't use blk_queue_enter here; instead, we use
1644          * percpu_ref_tryget directly, because we need to be able to
1645          * obtain a reference even in the short window between the queue
1646          * starting to freeze, by dropping the first reference in
1647          * blk_freeze_queue_start, and the moment the last request is
1648          * consumed, marked by the instant q_usage_counter reaches
1649          * zero.
1650          */
1651         if (!percpu_ref_tryget(&q->q_usage_counter))
1652                 return;
1653
1654         /* check if there is any timed-out request */
1655         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1656         if (expired.has_timedout_rq) {
1657                 /*
1658                  * Before walking tags, we must ensure any submit started
1659                  * before the current time has finished. Since the submit
1660                  * uses srcu or rcu, wait for a synchronization point to
1661                  * ensure all running submits have finished
1662                  */
1663                 blk_mq_wait_quiesce_done(q->tag_set);
1664
1665                 expired.next = 0;
1666                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1667         }
1668
1669         if (expired.next != 0) {
1670                 mod_timer(&q->timeout, expired.next);
1671         } else {
1672                 /*
1673                  * Request timeouts are handled as a forward rolling timer. If
1674                  * we end up here it means that no requests are pending and
1675                  * also that no request has been pending for a while. Mark
1676                  * each hctx as idle.
1677                  */
1678                 queue_for_each_hw_ctx(q, hctx, i) {
1679                         /* the hctx may be unmapped, so check it here */
1680                         if (blk_mq_hw_queue_mapped(hctx))
1681                                 blk_mq_tag_idle(hctx);
1682                 }
1683         }
1684         blk_queue_exit(q);
1685 }
1686
1687 struct flush_busy_ctx_data {
1688         struct blk_mq_hw_ctx *hctx;
1689         struct list_head *list;
1690 };
1691
1692 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1693 {
1694         struct flush_busy_ctx_data *flush_data = data;
1695         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1696         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1697         enum hctx_type type = hctx->type;
1698
1699         spin_lock(&ctx->lock);
1700         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1701         sbitmap_clear_bit(sb, bitnr);
1702         spin_unlock(&ctx->lock);
1703         return true;
1704 }
1705
1706 /*
1707  * Process software queues that have been marked busy, splicing them
1708  * to the for-dispatch
1709  */
1710 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1711 {
1712         struct flush_busy_ctx_data data = {
1713                 .hctx = hctx,
1714                 .list = list,
1715         };
1716
1717         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1718 }
1719 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1720
1721 struct dispatch_rq_data {
1722         struct blk_mq_hw_ctx *hctx;
1723         struct request *rq;
1724 };
1725
1726 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1727                 void *data)
1728 {
1729         struct dispatch_rq_data *dispatch_data = data;
1730         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1731         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1732         enum hctx_type type = hctx->type;
1733
1734         spin_lock(&ctx->lock);
1735         if (!list_empty(&ctx->rq_lists[type])) {
1736                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1737                 list_del_init(&dispatch_data->rq->queuelist);
1738                 if (list_empty(&ctx->rq_lists[type]))
1739                         sbitmap_clear_bit(sb, bitnr);
1740         }
1741         spin_unlock(&ctx->lock);
1742
1743         return !dispatch_data->rq;
1744 }
1745
1746 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1747                                         struct blk_mq_ctx *start)
1748 {
1749         unsigned off = start ? start->index_hw[hctx->type] : 0;
1750         struct dispatch_rq_data data = {
1751                 .hctx = hctx,
1752                 .rq   = NULL,
1753         };
1754
1755         __sbitmap_for_each_set(&hctx->ctx_map, off,
1756                                dispatch_rq_from_ctx, &data);
1757
1758         return data.rq;
1759 }
1760
1761 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1762 {
1763         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1764         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1765         int tag;
1766
1767         blk_mq_tag_busy(rq->mq_hctx);
1768
1769         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1770                 bt = &rq->mq_hctx->tags->breserved_tags;
1771                 tag_offset = 0;
1772         } else {
1773                 if (!hctx_may_queue(rq->mq_hctx, bt))
1774                         return false;
1775         }
1776
1777         tag = __sbitmap_queue_get(bt);
1778         if (tag == BLK_MQ_NO_TAG)
1779                 return false;
1780
1781         rq->tag = tag + tag_offset;
1782         return true;
1783 }
1784
1785 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1786 {
1787         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1788                 return false;
1789
1790         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1791                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1792                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1793                 __blk_mq_inc_active_requests(hctx);
1794         }
1795         hctx->tags->rqs[rq->tag] = rq;
1796         return true;
1797 }
1798
1799 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1800                                 int flags, void *key)
1801 {
1802         struct blk_mq_hw_ctx *hctx;
1803
1804         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1805
1806         spin_lock(&hctx->dispatch_wait_lock);
1807         if (!list_empty(&wait->entry)) {
1808                 struct sbitmap_queue *sbq;
1809
1810                 list_del_init(&wait->entry);
1811                 sbq = &hctx->tags->bitmap_tags;
1812                 atomic_dec(&sbq->ws_active);
1813         }
1814         spin_unlock(&hctx->dispatch_wait_lock);
1815
1816         blk_mq_run_hw_queue(hctx, true);
1817         return 1;
1818 }
1819
1820 /*
1821  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1822  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1823  * restart. For both cases, take care to check the condition again after
1824  * marking us as waiting.
1825  */
1826 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1827                                  struct request *rq)
1828 {
1829         struct sbitmap_queue *sbq;
1830         struct wait_queue_head *wq;
1831         wait_queue_entry_t *wait;
1832         bool ret;
1833
1834         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1835             !(blk_mq_is_shared_tags(hctx->flags))) {
1836                 blk_mq_sched_mark_restart_hctx(hctx);
1837
1838                 /*
1839                  * It's possible that a tag was freed in the window between the
1840                  * allocation failure and adding the hardware queue to the wait
1841                  * queue.
1842                  *
1843                  * Don't clear RESTART here, someone else could have set it.
1844                  * At most this will cost an extra queue run.
1845                  */
1846                 return blk_mq_get_driver_tag(rq);
1847         }
1848
1849         wait = &hctx->dispatch_wait;
1850         if (!list_empty_careful(&wait->entry))
1851                 return false;
1852
1853         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1854                 sbq = &hctx->tags->breserved_tags;
1855         else
1856                 sbq = &hctx->tags->bitmap_tags;
1857         wq = &bt_wait_ptr(sbq, hctx)->wait;
1858
1859         spin_lock_irq(&wq->lock);
1860         spin_lock(&hctx->dispatch_wait_lock);
1861         if (!list_empty(&wait->entry)) {
1862                 spin_unlock(&hctx->dispatch_wait_lock);
1863                 spin_unlock_irq(&wq->lock);
1864                 return false;
1865         }
1866
1867         atomic_inc(&sbq->ws_active);
1868         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1869         __add_wait_queue(wq, wait);
1870
1871         /*
1872          * It's possible that a tag was freed in the window between the
1873          * allocation failure and adding the hardware queue to the wait
1874          * queue.
1875          */
1876         ret = blk_mq_get_driver_tag(rq);
1877         if (!ret) {
1878                 spin_unlock(&hctx->dispatch_wait_lock);
1879                 spin_unlock_irq(&wq->lock);
1880                 return false;
1881         }
1882
1883         /*
1884          * We got a tag, remove ourselves from the wait queue to ensure
1885          * someone else gets the wakeup.
1886          */
1887         list_del_init(&wait->entry);
1888         atomic_dec(&sbq->ws_active);
1889         spin_unlock(&hctx->dispatch_wait_lock);
1890         spin_unlock_irq(&wq->lock);
1891
1892         return true;
1893 }
1894
1895 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1896 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1897 /*
1898  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1899  * - EWMA is one simple way to compute running average value
1900  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1901  * - take 4 as factor for avoiding to get too small(0) result, and this
1902  *   factor doesn't matter because EWMA decreases exponentially
1903  */
1904 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1905 {
1906         unsigned int ewma;
1907
1908         ewma = hctx->dispatch_busy;
1909
1910         if (!ewma && !busy)
1911                 return;
1912
1913         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1914         if (busy)
1915                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1916         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1917
1918         hctx->dispatch_busy = ewma;
1919 }
1920
1921 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1922
1923 static void blk_mq_handle_dev_resource(struct request *rq,
1924                                        struct list_head *list)
1925 {
1926         list_add(&rq->queuelist, list);
1927         __blk_mq_requeue_request(rq);
1928 }
1929
1930 static void blk_mq_handle_zone_resource(struct request *rq,
1931                                         struct list_head *zone_list)
1932 {
1933         /*
1934          * If we end up here it is because we cannot dispatch a request to a
1935          * specific zone due to LLD level zone-write locking or other zone
1936          * related resource not being available. In this case, set the request
1937          * aside in zone_list for retrying it later.
1938          */
1939         list_add(&rq->queuelist, zone_list);
1940         __blk_mq_requeue_request(rq);
1941 }
1942
1943 enum prep_dispatch {
1944         PREP_DISPATCH_OK,
1945         PREP_DISPATCH_NO_TAG,
1946         PREP_DISPATCH_NO_BUDGET,
1947 };
1948
1949 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1950                                                   bool need_budget)
1951 {
1952         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1953         int budget_token = -1;
1954
1955         if (need_budget) {
1956                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1957                 if (budget_token < 0) {
1958                         blk_mq_put_driver_tag(rq);
1959                         return PREP_DISPATCH_NO_BUDGET;
1960                 }
1961                 blk_mq_set_rq_budget_token(rq, budget_token);
1962         }
1963
1964         if (!blk_mq_get_driver_tag(rq)) {
1965                 /*
1966                  * The initial allocation attempt failed, so we need to
1967                  * rerun the hardware queue when a tag is freed. The
1968                  * waitqueue takes care of that. If the queue is run
1969                  * before we add this entry back on the dispatch list,
1970                  * we'll re-run it below.
1971                  */
1972                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1973                         /*
1974                          * All budgets not got from this function will be put
1975                          * together during handling partial dispatch
1976                          */
1977                         if (need_budget)
1978                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1979                         return PREP_DISPATCH_NO_TAG;
1980                 }
1981         }
1982
1983         return PREP_DISPATCH_OK;
1984 }
1985
1986 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1987 static void blk_mq_release_budgets(struct request_queue *q,
1988                 struct list_head *list)
1989 {
1990         struct request *rq;
1991
1992         list_for_each_entry(rq, list, queuelist) {
1993                 int budget_token = blk_mq_get_rq_budget_token(rq);
1994
1995                 if (budget_token >= 0)
1996                         blk_mq_put_dispatch_budget(q, budget_token);
1997         }
1998 }
1999
2000 /*
2001  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2002  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2003  * details)
2004  * Attention, we should explicitly call this in unusual cases:
2005  *  1) did not queue everything initially scheduled to queue
2006  *  2) the last attempt to queue a request failed
2007  */
2008 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2009                               bool from_schedule)
2010 {
2011         if (hctx->queue->mq_ops->commit_rqs && queued) {
2012                 trace_block_unplug(hctx->queue, queued, !from_schedule);
2013                 hctx->queue->mq_ops->commit_rqs(hctx);
2014         }
2015 }
2016
2017 /*
2018  * Returns true if we did some work AND can potentially do more.
2019  */
2020 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2021                              unsigned int nr_budgets)
2022 {
2023         enum prep_dispatch prep;
2024         struct request_queue *q = hctx->queue;
2025         struct request *rq;
2026         int queued;
2027         blk_status_t ret = BLK_STS_OK;
2028         LIST_HEAD(zone_list);
2029         bool needs_resource = false;
2030
2031         if (list_empty(list))
2032                 return false;
2033
2034         /*
2035          * Now process all the entries, sending them to the driver.
2036          */
2037         queued = 0;
2038         do {
2039                 struct blk_mq_queue_data bd;
2040
2041                 rq = list_first_entry(list, struct request, queuelist);
2042
2043                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2044                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2045                 if (prep != PREP_DISPATCH_OK)
2046                         break;
2047
2048                 list_del_init(&rq->queuelist);
2049
2050                 bd.rq = rq;
2051                 bd.last = list_empty(list);
2052
2053                 /*
2054                  * once the request is queued to lld, no need to cover the
2055                  * budget any more
2056                  */
2057                 if (nr_budgets)
2058                         nr_budgets--;
2059                 ret = q->mq_ops->queue_rq(hctx, &bd);
2060                 switch (ret) {
2061                 case BLK_STS_OK:
2062                         queued++;
2063                         break;
2064                 case BLK_STS_RESOURCE:
2065                         needs_resource = true;
2066                         fallthrough;
2067                 case BLK_STS_DEV_RESOURCE:
2068                         blk_mq_handle_dev_resource(rq, list);
2069                         goto out;
2070                 case BLK_STS_ZONE_RESOURCE:
2071                         /*
2072                          * Move the request to zone_list and keep going through
2073                          * the dispatch list to find more requests the drive can
2074                          * accept.
2075                          */
2076                         blk_mq_handle_zone_resource(rq, &zone_list);
2077                         needs_resource = true;
2078                         break;
2079                 default:
2080                         blk_mq_end_request(rq, ret);
2081                 }
2082         } while (!list_empty(list));
2083 out:
2084         if (!list_empty(&zone_list))
2085                 list_splice_tail_init(&zone_list, list);
2086
2087         /* If we didn't flush the entire list, we could have told the driver
2088          * there was more coming, but that turned out to be a lie.
2089          */
2090         if (!list_empty(list) || ret != BLK_STS_OK)
2091                 blk_mq_commit_rqs(hctx, queued, false);
2092
2093         /*
2094          * Any items that need requeuing? Stuff them into hctx->dispatch,
2095          * that is where we will continue on next queue run.
2096          */
2097         if (!list_empty(list)) {
2098                 bool needs_restart;
2099                 /* For non-shared tags, the RESTART check will suffice */
2100                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2101                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2102                         blk_mq_is_shared_tags(hctx->flags));
2103
2104                 if (nr_budgets)
2105                         blk_mq_release_budgets(q, list);
2106
2107                 spin_lock(&hctx->lock);
2108                 list_splice_tail_init(list, &hctx->dispatch);
2109                 spin_unlock(&hctx->lock);
2110
2111                 /*
2112                  * Order adding requests to hctx->dispatch and checking
2113                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2114                  * in blk_mq_sched_restart(). Avoid restart code path to
2115                  * miss the new added requests to hctx->dispatch, meantime
2116                  * SCHED_RESTART is observed here.
2117                  */
2118                 smp_mb();
2119
2120                 /*
2121                  * If SCHED_RESTART was set by the caller of this function and
2122                  * it is no longer set that means that it was cleared by another
2123                  * thread and hence that a queue rerun is needed.
2124                  *
2125                  * If 'no_tag' is set, that means that we failed getting
2126                  * a driver tag with an I/O scheduler attached. If our dispatch
2127                  * waitqueue is no longer active, ensure that we run the queue
2128                  * AFTER adding our entries back to the list.
2129                  *
2130                  * If no I/O scheduler has been configured it is possible that
2131                  * the hardware queue got stopped and restarted before requests
2132                  * were pushed back onto the dispatch list. Rerun the queue to
2133                  * avoid starvation. Notes:
2134                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2135                  *   been stopped before rerunning a queue.
2136                  * - Some but not all block drivers stop a queue before
2137                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2138                  *   and dm-rq.
2139                  *
2140                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2141                  * bit is set, run queue after a delay to avoid IO stalls
2142                  * that could otherwise occur if the queue is idle.  We'll do
2143                  * similar if we couldn't get budget or couldn't lock a zone
2144                  * and SCHED_RESTART is set.
2145                  */
2146                 needs_restart = blk_mq_sched_needs_restart(hctx);
2147                 if (prep == PREP_DISPATCH_NO_BUDGET)
2148                         needs_resource = true;
2149                 if (!needs_restart ||
2150                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2151                         blk_mq_run_hw_queue(hctx, true);
2152                 else if (needs_resource)
2153                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2154
2155                 blk_mq_update_dispatch_busy(hctx, true);
2156                 return false;
2157         }
2158
2159         blk_mq_update_dispatch_busy(hctx, false);
2160         return true;
2161 }
2162
2163 /**
2164  * __blk_mq_run_hw_queue - Run a hardware queue.
2165  * @hctx: Pointer to the hardware queue to run.
2166  *
2167  * Send pending requests to the hardware.
2168  */
2169 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2170 {
2171         /*
2172          * We can't run the queue inline with ints disabled. Ensure that
2173          * we catch bad users of this early.
2174          */
2175         WARN_ON_ONCE(in_interrupt());
2176
2177         blk_mq_run_dispatch_ops(hctx->queue,
2178                         blk_mq_sched_dispatch_requests(hctx));
2179 }
2180
2181 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2182 {
2183         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2184
2185         if (cpu >= nr_cpu_ids)
2186                 cpu = cpumask_first(hctx->cpumask);
2187         return cpu;
2188 }
2189
2190 /*
2191  * It'd be great if the workqueue API had a way to pass
2192  * in a mask and had some smarts for more clever placement.
2193  * For now we just round-robin here, switching for every
2194  * BLK_MQ_CPU_WORK_BATCH queued items.
2195  */
2196 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2197 {
2198         bool tried = false;
2199         int next_cpu = hctx->next_cpu;
2200
2201         if (hctx->queue->nr_hw_queues == 1)
2202                 return WORK_CPU_UNBOUND;
2203
2204         if (--hctx->next_cpu_batch <= 0) {
2205 select_cpu:
2206                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2207                                 cpu_online_mask);
2208                 if (next_cpu >= nr_cpu_ids)
2209                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2210                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2211         }
2212
2213         /*
2214          * Do unbound schedule if we can't find a online CPU for this hctx,
2215          * and it should only happen in the path of handling CPU DEAD.
2216          */
2217         if (!cpu_online(next_cpu)) {
2218                 if (!tried) {
2219                         tried = true;
2220                         goto select_cpu;
2221                 }
2222
2223                 /*
2224                  * Make sure to re-select CPU next time once after CPUs
2225                  * in hctx->cpumask become online again.
2226                  */
2227                 hctx->next_cpu = next_cpu;
2228                 hctx->next_cpu_batch = 1;
2229                 return WORK_CPU_UNBOUND;
2230         }
2231
2232         hctx->next_cpu = next_cpu;
2233         return next_cpu;
2234 }
2235
2236 /**
2237  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2238  * @hctx: Pointer to the hardware queue to run.
2239  * @async: If we want to run the queue asynchronously.
2240  * @msecs: Milliseconds of delay to wait before running the queue.
2241  *
2242  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2243  * with a delay of @msecs.
2244  */
2245 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2246                                         unsigned long msecs)
2247 {
2248         if (unlikely(blk_mq_hctx_stopped(hctx)))
2249                 return;
2250
2251         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2252                 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2253                         __blk_mq_run_hw_queue(hctx);
2254                         return;
2255                 }
2256         }
2257
2258         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2259                                     msecs_to_jiffies(msecs));
2260 }
2261
2262 /**
2263  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2264  * @hctx: Pointer to the hardware queue to run.
2265  * @msecs: Milliseconds of delay to wait before running the queue.
2266  *
2267  * Run a hardware queue asynchronously with a delay of @msecs.
2268  */
2269 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2270 {
2271         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2272 }
2273 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2274
2275 /**
2276  * blk_mq_run_hw_queue - Start to run a hardware queue.
2277  * @hctx: Pointer to the hardware queue to run.
2278  * @async: If we want to run the queue asynchronously.
2279  *
2280  * Check if the request queue is not in a quiesced state and if there are
2281  * pending requests to be sent. If this is true, run the queue to send requests
2282  * to hardware.
2283  */
2284 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2285 {
2286         bool need_run;
2287
2288         /*
2289          * When queue is quiesced, we may be switching io scheduler, or
2290          * updating nr_hw_queues, or other things, and we can't run queue
2291          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2292          *
2293          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2294          * quiesced.
2295          */
2296         __blk_mq_run_dispatch_ops(hctx->queue, false,
2297                 need_run = !blk_queue_quiesced(hctx->queue) &&
2298                 blk_mq_hctx_has_pending(hctx));
2299
2300         if (need_run)
2301                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2302 }
2303 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2304
2305 /*
2306  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2307  * scheduler.
2308  */
2309 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2310 {
2311         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2312         /*
2313          * If the IO scheduler does not respect hardware queues when
2314          * dispatching, we just don't bother with multiple HW queues and
2315          * dispatch from hctx for the current CPU since running multiple queues
2316          * just causes lock contention inside the scheduler and pointless cache
2317          * bouncing.
2318          */
2319         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2320
2321         if (!blk_mq_hctx_stopped(hctx))
2322                 return hctx;
2323         return NULL;
2324 }
2325
2326 /**
2327  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2328  * @q: Pointer to the request queue to run.
2329  * @async: If we want to run the queue asynchronously.
2330  */
2331 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2332 {
2333         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2334         unsigned long i;
2335
2336         sq_hctx = NULL;
2337         if (blk_queue_sq_sched(q))
2338                 sq_hctx = blk_mq_get_sq_hctx(q);
2339         queue_for_each_hw_ctx(q, hctx, i) {
2340                 if (blk_mq_hctx_stopped(hctx))
2341                         continue;
2342                 /*
2343                  * Dispatch from this hctx either if there's no hctx preferred
2344                  * by IO scheduler or if it has requests that bypass the
2345                  * scheduler.
2346                  */
2347                 if (!sq_hctx || sq_hctx == hctx ||
2348                     !list_empty_careful(&hctx->dispatch))
2349                         blk_mq_run_hw_queue(hctx, async);
2350         }
2351 }
2352 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2353
2354 /**
2355  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2356  * @q: Pointer to the request queue to run.
2357  * @msecs: Milliseconds of delay to wait before running the queues.
2358  */
2359 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2360 {
2361         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2362         unsigned long i;
2363
2364         sq_hctx = NULL;
2365         if (blk_queue_sq_sched(q))
2366                 sq_hctx = blk_mq_get_sq_hctx(q);
2367         queue_for_each_hw_ctx(q, hctx, i) {
2368                 if (blk_mq_hctx_stopped(hctx))
2369                         continue;
2370                 /*
2371                  * If there is already a run_work pending, leave the
2372                  * pending delay untouched. Otherwise, a hctx can stall
2373                  * if another hctx is re-delaying the other's work
2374                  * before the work executes.
2375                  */
2376                 if (delayed_work_pending(&hctx->run_work))
2377                         continue;
2378                 /*
2379                  * Dispatch from this hctx either if there's no hctx preferred
2380                  * by IO scheduler or if it has requests that bypass the
2381                  * scheduler.
2382                  */
2383                 if (!sq_hctx || sq_hctx == hctx ||
2384                     !list_empty_careful(&hctx->dispatch))
2385                         blk_mq_delay_run_hw_queue(hctx, msecs);
2386         }
2387 }
2388 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2389
2390 /*
2391  * This function is often used for pausing .queue_rq() by driver when
2392  * there isn't enough resource or some conditions aren't satisfied, and
2393  * BLK_STS_RESOURCE is usually returned.
2394  *
2395  * We do not guarantee that dispatch can be drained or blocked
2396  * after blk_mq_stop_hw_queue() returns. Please use
2397  * blk_mq_quiesce_queue() for that requirement.
2398  */
2399 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2400 {
2401         cancel_delayed_work(&hctx->run_work);
2402
2403         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2404 }
2405 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2406
2407 /*
2408  * This function is often used for pausing .queue_rq() by driver when
2409  * there isn't enough resource or some conditions aren't satisfied, and
2410  * BLK_STS_RESOURCE is usually returned.
2411  *
2412  * We do not guarantee that dispatch can be drained or blocked
2413  * after blk_mq_stop_hw_queues() returns. Please use
2414  * blk_mq_quiesce_queue() for that requirement.
2415  */
2416 void blk_mq_stop_hw_queues(struct request_queue *q)
2417 {
2418         struct blk_mq_hw_ctx *hctx;
2419         unsigned long i;
2420
2421         queue_for_each_hw_ctx(q, hctx, i)
2422                 blk_mq_stop_hw_queue(hctx);
2423 }
2424 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2425
2426 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2427 {
2428         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2429
2430         blk_mq_run_hw_queue(hctx, false);
2431 }
2432 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2433
2434 void blk_mq_start_hw_queues(struct request_queue *q)
2435 {
2436         struct blk_mq_hw_ctx *hctx;
2437         unsigned long i;
2438
2439         queue_for_each_hw_ctx(q, hctx, i)
2440                 blk_mq_start_hw_queue(hctx);
2441 }
2442 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2443
2444 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2445 {
2446         if (!blk_mq_hctx_stopped(hctx))
2447                 return;
2448
2449         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2450         blk_mq_run_hw_queue(hctx, async);
2451 }
2452 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2453
2454 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2455 {
2456         struct blk_mq_hw_ctx *hctx;
2457         unsigned long i;
2458
2459         queue_for_each_hw_ctx(q, hctx, i)
2460                 blk_mq_start_stopped_hw_queue(hctx, async);
2461 }
2462 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2463
2464 static void blk_mq_run_work_fn(struct work_struct *work)
2465 {
2466         struct blk_mq_hw_ctx *hctx;
2467
2468         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2469
2470         /*
2471          * If we are stopped, don't run the queue.
2472          */
2473         if (blk_mq_hctx_stopped(hctx))
2474                 return;
2475
2476         __blk_mq_run_hw_queue(hctx);
2477 }
2478
2479 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2480                                             struct request *rq,
2481                                             bool at_head)
2482 {
2483         struct blk_mq_ctx *ctx = rq->mq_ctx;
2484         enum hctx_type type = hctx->type;
2485
2486         lockdep_assert_held(&ctx->lock);
2487
2488         trace_block_rq_insert(rq);
2489
2490         if (at_head)
2491                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2492         else
2493                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2494 }
2495
2496 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2497                              bool at_head)
2498 {
2499         struct blk_mq_ctx *ctx = rq->mq_ctx;
2500
2501         lockdep_assert_held(&ctx->lock);
2502
2503         __blk_mq_insert_req_list(hctx, rq, at_head);
2504         blk_mq_hctx_mark_pending(hctx, ctx);
2505 }
2506
2507 /**
2508  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2509  * @rq: Pointer to request to be inserted.
2510  * @at_head: true if the request should be inserted at the head of the list.
2511  * @run_queue: If we should run the hardware queue after inserting the request.
2512  *
2513  * Should only be used carefully, when the caller knows we want to
2514  * bypass a potential IO scheduler on the target device.
2515  */
2516 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2517                                   bool run_queue)
2518 {
2519         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2520
2521         spin_lock(&hctx->lock);
2522         if (at_head)
2523                 list_add(&rq->queuelist, &hctx->dispatch);
2524         else
2525                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2526         spin_unlock(&hctx->lock);
2527
2528         if (run_queue)
2529                 blk_mq_run_hw_queue(hctx, false);
2530 }
2531
2532 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2533                             struct list_head *list)
2534
2535 {
2536         struct request *rq;
2537         enum hctx_type type = hctx->type;
2538
2539         /*
2540          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2541          * offline now
2542          */
2543         list_for_each_entry(rq, list, queuelist) {
2544                 BUG_ON(rq->mq_ctx != ctx);
2545                 trace_block_rq_insert(rq);
2546         }
2547
2548         spin_lock(&ctx->lock);
2549         list_splice_tail_init(list, &ctx->rq_lists[type]);
2550         blk_mq_hctx_mark_pending(hctx, ctx);
2551         spin_unlock(&ctx->lock);
2552 }
2553
2554 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2555                 unsigned int nr_segs)
2556 {
2557         int err;
2558
2559         if (bio->bi_opf & REQ_RAHEAD)
2560                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2561
2562         rq->__sector = bio->bi_iter.bi_sector;
2563         blk_rq_bio_prep(rq, bio, nr_segs);
2564
2565         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2566         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2567         WARN_ON_ONCE(err);
2568
2569         blk_account_io_start(rq);
2570 }
2571
2572 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2573                                             struct request *rq, bool last)
2574 {
2575         struct request_queue *q = rq->q;
2576         struct blk_mq_queue_data bd = {
2577                 .rq = rq,
2578                 .last = last,
2579         };
2580         blk_status_t ret;
2581
2582         /*
2583          * For OK queue, we are done. For error, caller may kill it.
2584          * Any other error (busy), just add it to our list as we
2585          * previously would have done.
2586          */
2587         ret = q->mq_ops->queue_rq(hctx, &bd);
2588         switch (ret) {
2589         case BLK_STS_OK:
2590                 blk_mq_update_dispatch_busy(hctx, false);
2591                 break;
2592         case BLK_STS_RESOURCE:
2593         case BLK_STS_DEV_RESOURCE:
2594                 blk_mq_update_dispatch_busy(hctx, true);
2595                 __blk_mq_requeue_request(rq);
2596                 break;
2597         default:
2598                 blk_mq_update_dispatch_busy(hctx, false);
2599                 break;
2600         }
2601
2602         return ret;
2603 }
2604
2605 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2606                                                 struct request *rq,
2607                                                 bool bypass_insert, bool last)
2608 {
2609         struct request_queue *q = rq->q;
2610         bool run_queue = true;
2611         int budget_token;
2612
2613         /*
2614          * RCU or SRCU read lock is needed before checking quiesced flag.
2615          *
2616          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2617          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2618          * and avoid driver to try to dispatch again.
2619          */
2620         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2621                 run_queue = false;
2622                 bypass_insert = false;
2623                 goto insert;
2624         }
2625
2626         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2627                 goto insert;
2628
2629         budget_token = blk_mq_get_dispatch_budget(q);
2630         if (budget_token < 0)
2631                 goto insert;
2632
2633         blk_mq_set_rq_budget_token(rq, budget_token);
2634
2635         if (!blk_mq_get_driver_tag(rq)) {
2636                 blk_mq_put_dispatch_budget(q, budget_token);
2637                 goto insert;
2638         }
2639
2640         return __blk_mq_issue_directly(hctx, rq, last);
2641 insert:
2642         if (bypass_insert)
2643                 return BLK_STS_RESOURCE;
2644
2645         blk_mq_sched_insert_request(rq, false, run_queue, false);
2646
2647         return BLK_STS_OK;
2648 }
2649
2650 /**
2651  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2652  * @hctx: Pointer of the associated hardware queue.
2653  * @rq: Pointer to request to be sent.
2654  *
2655  * If the device has enough resources to accept a new request now, send the
2656  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2657  * we can try send it another time in the future. Requests inserted at this
2658  * queue have higher priority.
2659  */
2660 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2661                 struct request *rq)
2662 {
2663         blk_status_t ret =
2664                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2665
2666         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2667                 blk_mq_request_bypass_insert(rq, false, true);
2668         else if (ret != BLK_STS_OK)
2669                 blk_mq_end_request(rq, ret);
2670 }
2671
2672 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2673 {
2674         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2675 }
2676
2677 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2678 {
2679         struct blk_mq_hw_ctx *hctx = NULL;
2680         struct request *rq;
2681         int queued = 0;
2682         blk_status_t ret = BLK_STS_OK;
2683
2684         while ((rq = rq_list_pop(&plug->mq_list))) {
2685                 bool last = rq_list_empty(plug->mq_list);
2686
2687                 if (hctx != rq->mq_hctx) {
2688                         if (hctx) {
2689                                 blk_mq_commit_rqs(hctx, queued, false);
2690                                 queued = 0;
2691                         }
2692                         hctx = rq->mq_hctx;
2693                 }
2694
2695                 ret = blk_mq_request_issue_directly(rq, last);
2696                 switch (ret) {
2697                 case BLK_STS_OK:
2698                         queued++;
2699                         break;
2700                 case BLK_STS_RESOURCE:
2701                 case BLK_STS_DEV_RESOURCE:
2702                         blk_mq_request_bypass_insert(rq, false, true);
2703                         goto out;
2704                 default:
2705                         blk_mq_end_request(rq, ret);
2706                         break;
2707                 }
2708         }
2709
2710 out:
2711         if (ret != BLK_STS_OK)
2712                 blk_mq_commit_rqs(hctx, queued, false);
2713 }
2714
2715 static void __blk_mq_flush_plug_list(struct request_queue *q,
2716                                      struct blk_plug *plug)
2717 {
2718         if (blk_queue_quiesced(q))
2719                 return;
2720         q->mq_ops->queue_rqs(&plug->mq_list);
2721 }
2722
2723 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2724 {
2725         struct blk_mq_hw_ctx *this_hctx = NULL;
2726         struct blk_mq_ctx *this_ctx = NULL;
2727         struct request *requeue_list = NULL;
2728         unsigned int depth = 0;
2729         LIST_HEAD(list);
2730
2731         do {
2732                 struct request *rq = rq_list_pop(&plug->mq_list);
2733
2734                 if (!this_hctx) {
2735                         this_hctx = rq->mq_hctx;
2736                         this_ctx = rq->mq_ctx;
2737                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2738                         rq_list_add(&requeue_list, rq);
2739                         continue;
2740                 }
2741                 list_add_tail(&rq->queuelist, &list);
2742                 depth++;
2743         } while (!rq_list_empty(plug->mq_list));
2744
2745         plug->mq_list = requeue_list;
2746         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2747         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2748 }
2749
2750 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2751 {
2752         struct request *rq;
2753
2754         if (rq_list_empty(plug->mq_list))
2755                 return;
2756         plug->rq_count = 0;
2757
2758         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2759                 struct request_queue *q;
2760
2761                 rq = rq_list_peek(&plug->mq_list);
2762                 q = rq->q;
2763
2764                 /*
2765                  * Peek first request and see if we have a ->queue_rqs() hook.
2766                  * If we do, we can dispatch the whole plug list in one go. We
2767                  * already know at this point that all requests belong to the
2768                  * same queue, caller must ensure that's the case.
2769                  *
2770                  * Since we pass off the full list to the driver at this point,
2771                  * we do not increment the active request count for the queue.
2772                  * Bypass shared tags for now because of that.
2773                  */
2774                 if (q->mq_ops->queue_rqs &&
2775                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2776                         blk_mq_run_dispatch_ops(q,
2777                                 __blk_mq_flush_plug_list(q, plug));
2778                         if (rq_list_empty(plug->mq_list))
2779                                 return;
2780                 }
2781
2782                 blk_mq_run_dispatch_ops(q,
2783                                 blk_mq_plug_issue_direct(plug));
2784                 if (rq_list_empty(plug->mq_list))
2785                         return;
2786         }
2787
2788         do {
2789                 blk_mq_dispatch_plug_list(plug, from_schedule);
2790         } while (!rq_list_empty(plug->mq_list));
2791 }
2792
2793 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2794                 struct list_head *list)
2795 {
2796         int queued = 0;
2797         blk_status_t ret = BLK_STS_OK;
2798
2799         while (!list_empty(list)) {
2800                 struct request *rq = list_first_entry(list, struct request,
2801                                 queuelist);
2802
2803                 list_del_init(&rq->queuelist);
2804                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2805                 switch (ret) {
2806                 case BLK_STS_OK:
2807                         queued++;
2808                         break;
2809                 case BLK_STS_RESOURCE:
2810                 case BLK_STS_DEV_RESOURCE:
2811                         blk_mq_request_bypass_insert(rq, false,
2812                                                      list_empty(list));
2813                         goto out;
2814                 default:
2815                         blk_mq_end_request(rq, ret);
2816                         break;
2817                 }
2818         }
2819
2820 out:
2821         if (ret != BLK_STS_OK)
2822                 blk_mq_commit_rqs(hctx, queued, false);
2823 }
2824
2825 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2826                                      struct bio *bio, unsigned int nr_segs)
2827 {
2828         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2829                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2830                         return true;
2831                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2832                         return true;
2833         }
2834         return false;
2835 }
2836
2837 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2838                                                struct blk_plug *plug,
2839                                                struct bio *bio,
2840                                                unsigned int nsegs)
2841 {
2842         struct blk_mq_alloc_data data = {
2843                 .q              = q,
2844                 .nr_tags        = 1,
2845                 .cmd_flags      = bio->bi_opf,
2846         };
2847         struct request *rq;
2848
2849         if (unlikely(bio_queue_enter(bio)))
2850                 return NULL;
2851
2852         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2853                 goto queue_exit;
2854
2855         rq_qos_throttle(q, bio);
2856
2857         if (plug) {
2858                 data.nr_tags = plug->nr_ios;
2859                 plug->nr_ios = 1;
2860                 data.cached_rq = &plug->cached_rq;
2861         }
2862
2863         rq = __blk_mq_alloc_requests(&data);
2864         if (rq)
2865                 return rq;
2866         rq_qos_cleanup(q, bio);
2867         if (bio->bi_opf & REQ_NOWAIT)
2868                 bio_wouldblock_error(bio);
2869 queue_exit:
2870         blk_queue_exit(q);
2871         return NULL;
2872 }
2873
2874 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2875                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2876 {
2877         struct request *rq;
2878         enum hctx_type type, hctx_type;
2879
2880         if (!plug)
2881                 return NULL;
2882
2883         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2884                 *bio = NULL;
2885                 return NULL;
2886         }
2887
2888         rq = rq_list_peek(&plug->cached_rq);
2889         if (!rq || rq->q != q)
2890                 return NULL;
2891
2892         type = blk_mq_get_hctx_type((*bio)->bi_opf);
2893         hctx_type = rq->mq_hctx->type;
2894         if (type != hctx_type &&
2895             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2896                 return NULL;
2897         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2898                 return NULL;
2899
2900         /*
2901          * If any qos ->throttle() end up blocking, we will have flushed the
2902          * plug and hence killed the cached_rq list as well. Pop this entry
2903          * before we throttle.
2904          */
2905         plug->cached_rq = rq_list_next(rq);
2906         rq_qos_throttle(q, *bio);
2907
2908         rq->cmd_flags = (*bio)->bi_opf;
2909         INIT_LIST_HEAD(&rq->queuelist);
2910         return rq;
2911 }
2912
2913 static void bio_set_ioprio(struct bio *bio)
2914 {
2915         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2916         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2917                 bio->bi_ioprio = get_current_ioprio();
2918         blkcg_set_ioprio(bio);
2919 }
2920
2921 /**
2922  * blk_mq_submit_bio - Create and send a request to block device.
2923  * @bio: Bio pointer.
2924  *
2925  * Builds up a request structure from @q and @bio and send to the device. The
2926  * request may not be queued directly to hardware if:
2927  * * This request can be merged with another one
2928  * * We want to place request at plug queue for possible future merging
2929  * * There is an IO scheduler active at this queue
2930  *
2931  * It will not queue the request if there is an error with the bio, or at the
2932  * request creation.
2933  */
2934 void blk_mq_submit_bio(struct bio *bio)
2935 {
2936         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2937         struct blk_plug *plug = blk_mq_plug(bio);
2938         const int is_sync = op_is_sync(bio->bi_opf);
2939         struct request *rq;
2940         unsigned int nr_segs = 1;
2941         blk_status_t ret;
2942
2943         bio = blk_queue_bounce(bio, q);
2944         if (bio_may_exceed_limits(bio, &q->limits)) {
2945                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2946                 if (!bio)
2947                         return;
2948         }
2949
2950         if (!bio_integrity_prep(bio))
2951                 return;
2952
2953         bio_set_ioprio(bio);
2954
2955         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2956         if (!rq) {
2957                 if (!bio)
2958                         return;
2959                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2960                 if (unlikely(!rq))
2961                         return;
2962         }
2963
2964         trace_block_getrq(bio);
2965
2966         rq_qos_track(q, rq, bio);
2967
2968         blk_mq_bio_to_request(rq, bio, nr_segs);
2969
2970         ret = blk_crypto_init_request(rq);
2971         if (ret != BLK_STS_OK) {
2972                 bio->bi_status = ret;
2973                 bio_endio(bio);
2974                 blk_mq_free_request(rq);
2975                 return;
2976         }
2977
2978         if (op_is_flush(bio->bi_opf)) {
2979                 blk_insert_flush(rq);
2980                 return;
2981         }
2982
2983         if (plug)
2984                 blk_add_rq_to_plug(plug, rq);
2985         else if ((rq->rq_flags & RQF_ELV) ||
2986                  (rq->mq_hctx->dispatch_busy &&
2987                   (q->nr_hw_queues == 1 || !is_sync)))
2988                 blk_mq_sched_insert_request(rq, false, true, true);
2989         else
2990                 blk_mq_run_dispatch_ops(rq->q,
2991                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2992 }
2993
2994 #ifdef CONFIG_BLK_MQ_STACKING
2995 /**
2996  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2997  * @rq: the request being queued
2998  */
2999 blk_status_t blk_insert_cloned_request(struct request *rq)
3000 {
3001         struct request_queue *q = rq->q;
3002         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3003         blk_status_t ret;
3004
3005         if (blk_rq_sectors(rq) > max_sectors) {
3006                 /*
3007                  * SCSI device does not have a good way to return if
3008                  * Write Same/Zero is actually supported. If a device rejects
3009                  * a non-read/write command (discard, write same,etc.) the
3010                  * low-level device driver will set the relevant queue limit to
3011                  * 0 to prevent blk-lib from issuing more of the offending
3012                  * operations. Commands queued prior to the queue limit being
3013                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3014                  * errors being propagated to upper layers.
3015                  */
3016                 if (max_sectors == 0)
3017                         return BLK_STS_NOTSUPP;
3018
3019                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3020                         __func__, blk_rq_sectors(rq), max_sectors);
3021                 return BLK_STS_IOERR;
3022         }
3023
3024         /*
3025          * The queue settings related to segment counting may differ from the
3026          * original queue.
3027          */
3028         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3029         if (rq->nr_phys_segments > queue_max_segments(q)) {
3030                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
3031                         __func__, rq->nr_phys_segments, queue_max_segments(q));
3032                 return BLK_STS_IOERR;
3033         }
3034
3035         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3036                 return BLK_STS_IOERR;
3037
3038         if (blk_crypto_insert_cloned_request(rq))
3039                 return BLK_STS_IOERR;
3040
3041         blk_account_io_start(rq);
3042
3043         /*
3044          * Since we have a scheduler attached on the top device,
3045          * bypass a potential scheduler on the bottom device for
3046          * insert.
3047          */
3048         blk_mq_run_dispatch_ops(q,
3049                         ret = blk_mq_request_issue_directly(rq, true));
3050         if (ret)
3051                 blk_account_io_done(rq, ktime_get_ns());
3052         return ret;
3053 }
3054 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3055
3056 /**
3057  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3058  * @rq: the clone request to be cleaned up
3059  *
3060  * Description:
3061  *     Free all bios in @rq for a cloned request.
3062  */
3063 void blk_rq_unprep_clone(struct request *rq)
3064 {
3065         struct bio *bio;
3066
3067         while ((bio = rq->bio) != NULL) {
3068                 rq->bio = bio->bi_next;
3069
3070                 bio_put(bio);
3071         }
3072 }
3073 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3074
3075 /**
3076  * blk_rq_prep_clone - Helper function to setup clone request
3077  * @rq: the request to be setup
3078  * @rq_src: original request to be cloned
3079  * @bs: bio_set that bios for clone are allocated from
3080  * @gfp_mask: memory allocation mask for bio
3081  * @bio_ctr: setup function to be called for each clone bio.
3082  *           Returns %0 for success, non %0 for failure.
3083  * @data: private data to be passed to @bio_ctr
3084  *
3085  * Description:
3086  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3087  *     Also, pages which the original bios are pointing to are not copied
3088  *     and the cloned bios just point same pages.
3089  *     So cloned bios must be completed before original bios, which means
3090  *     the caller must complete @rq before @rq_src.
3091  */
3092 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3093                       struct bio_set *bs, gfp_t gfp_mask,
3094                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3095                       void *data)
3096 {
3097         struct bio *bio, *bio_src;
3098
3099         if (!bs)
3100                 bs = &fs_bio_set;
3101
3102         __rq_for_each_bio(bio_src, rq_src) {
3103                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3104                                       bs);
3105                 if (!bio)
3106                         goto free_and_out;
3107
3108                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3109                         goto free_and_out;
3110
3111                 if (rq->bio) {
3112                         rq->biotail->bi_next = bio;
3113                         rq->biotail = bio;
3114                 } else {
3115                         rq->bio = rq->biotail = bio;
3116                 }
3117                 bio = NULL;
3118         }
3119
3120         /* Copy attributes of the original request to the clone request. */
3121         rq->__sector = blk_rq_pos(rq_src);
3122         rq->__data_len = blk_rq_bytes(rq_src);
3123         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3124                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3125                 rq->special_vec = rq_src->special_vec;
3126         }
3127         rq->nr_phys_segments = rq_src->nr_phys_segments;
3128         rq->ioprio = rq_src->ioprio;
3129
3130         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3131                 goto free_and_out;
3132
3133         return 0;
3134
3135 free_and_out:
3136         if (bio)
3137                 bio_put(bio);
3138         blk_rq_unprep_clone(rq);
3139
3140         return -ENOMEM;
3141 }
3142 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3143 #endif /* CONFIG_BLK_MQ_STACKING */
3144
3145 /*
3146  * Steal bios from a request and add them to a bio list.
3147  * The request must not have been partially completed before.
3148  */
3149 void blk_steal_bios(struct bio_list *list, struct request *rq)
3150 {
3151         if (rq->bio) {
3152                 if (list->tail)
3153                         list->tail->bi_next = rq->bio;
3154                 else
3155                         list->head = rq->bio;
3156                 list->tail = rq->biotail;
3157
3158                 rq->bio = NULL;
3159                 rq->biotail = NULL;
3160         }
3161
3162         rq->__data_len = 0;
3163 }
3164 EXPORT_SYMBOL_GPL(blk_steal_bios);
3165
3166 static size_t order_to_size(unsigned int order)
3167 {
3168         return (size_t)PAGE_SIZE << order;
3169 }
3170
3171 /* called before freeing request pool in @tags */
3172 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3173                                     struct blk_mq_tags *tags)
3174 {
3175         struct page *page;
3176         unsigned long flags;
3177
3178         /*
3179          * There is no need to clear mapping if driver tags is not initialized
3180          * or the mapping belongs to the driver tags.
3181          */
3182         if (!drv_tags || drv_tags == tags)
3183                 return;
3184
3185         list_for_each_entry(page, &tags->page_list, lru) {
3186                 unsigned long start = (unsigned long)page_address(page);
3187                 unsigned long end = start + order_to_size(page->private);
3188                 int i;
3189
3190                 for (i = 0; i < drv_tags->nr_tags; i++) {
3191                         struct request *rq = drv_tags->rqs[i];
3192                         unsigned long rq_addr = (unsigned long)rq;
3193
3194                         if (rq_addr >= start && rq_addr < end) {
3195                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3196                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3197                         }
3198                 }
3199         }
3200
3201         /*
3202          * Wait until all pending iteration is done.
3203          *
3204          * Request reference is cleared and it is guaranteed to be observed
3205          * after the ->lock is released.
3206          */
3207         spin_lock_irqsave(&drv_tags->lock, flags);
3208         spin_unlock_irqrestore(&drv_tags->lock, flags);
3209 }
3210
3211 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3212                      unsigned int hctx_idx)
3213 {
3214         struct blk_mq_tags *drv_tags;
3215         struct page *page;
3216
3217         if (list_empty(&tags->page_list))
3218                 return;
3219
3220         if (blk_mq_is_shared_tags(set->flags))
3221                 drv_tags = set->shared_tags;
3222         else
3223                 drv_tags = set->tags[hctx_idx];
3224
3225         if (tags->static_rqs && set->ops->exit_request) {
3226                 int i;
3227
3228                 for (i = 0; i < tags->nr_tags; i++) {
3229                         struct request *rq = tags->static_rqs[i];
3230
3231                         if (!rq)
3232                                 continue;
3233                         set->ops->exit_request(set, rq, hctx_idx);
3234                         tags->static_rqs[i] = NULL;
3235                 }
3236         }
3237
3238         blk_mq_clear_rq_mapping(drv_tags, tags);
3239
3240         while (!list_empty(&tags->page_list)) {
3241                 page = list_first_entry(&tags->page_list, struct page, lru);
3242                 list_del_init(&page->lru);
3243                 /*
3244                  * Remove kmemleak object previously allocated in
3245                  * blk_mq_alloc_rqs().
3246                  */
3247                 kmemleak_free(page_address(page));
3248                 __free_pages(page, page->private);
3249         }
3250 }
3251
3252 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3253 {
3254         kfree(tags->rqs);
3255         tags->rqs = NULL;
3256         kfree(tags->static_rqs);
3257         tags->static_rqs = NULL;
3258
3259         blk_mq_free_tags(tags);
3260 }
3261
3262 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3263                 unsigned int hctx_idx)
3264 {
3265         int i;
3266
3267         for (i = 0; i < set->nr_maps; i++) {
3268                 unsigned int start = set->map[i].queue_offset;
3269                 unsigned int end = start + set->map[i].nr_queues;
3270
3271                 if (hctx_idx >= start && hctx_idx < end)
3272                         break;
3273         }
3274
3275         if (i >= set->nr_maps)
3276                 i = HCTX_TYPE_DEFAULT;
3277
3278         return i;
3279 }
3280
3281 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3282                 unsigned int hctx_idx)
3283 {
3284         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3285
3286         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3287 }
3288
3289 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3290                                                unsigned int hctx_idx,
3291                                                unsigned int nr_tags,
3292                                                unsigned int reserved_tags)
3293 {
3294         int node = blk_mq_get_hctx_node(set, hctx_idx);
3295         struct blk_mq_tags *tags;
3296
3297         if (node == NUMA_NO_NODE)
3298                 node = set->numa_node;
3299
3300         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3301                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3302         if (!tags)
3303                 return NULL;
3304
3305         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3306                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3307                                  node);
3308         if (!tags->rqs)
3309                 goto err_free_tags;
3310
3311         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3312                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3313                                         node);
3314         if (!tags->static_rqs)
3315                 goto err_free_rqs;
3316
3317         return tags;
3318
3319 err_free_rqs:
3320         kfree(tags->rqs);
3321 err_free_tags:
3322         blk_mq_free_tags(tags);
3323         return NULL;
3324 }
3325
3326 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3327                                unsigned int hctx_idx, int node)
3328 {
3329         int ret;
3330
3331         if (set->ops->init_request) {
3332                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3333                 if (ret)
3334                         return ret;
3335         }
3336
3337         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3338         return 0;
3339 }
3340
3341 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3342                             struct blk_mq_tags *tags,
3343                             unsigned int hctx_idx, unsigned int depth)
3344 {
3345         unsigned int i, j, entries_per_page, max_order = 4;
3346         int node = blk_mq_get_hctx_node(set, hctx_idx);
3347         size_t rq_size, left;
3348
3349         if (node == NUMA_NO_NODE)
3350                 node = set->numa_node;
3351
3352         INIT_LIST_HEAD(&tags->page_list);
3353
3354         /*
3355          * rq_size is the size of the request plus driver payload, rounded
3356          * to the cacheline size
3357          */
3358         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3359                                 cache_line_size());
3360         left = rq_size * depth;
3361
3362         for (i = 0; i < depth; ) {
3363                 int this_order = max_order;
3364                 struct page *page;
3365                 int to_do;
3366                 void *p;
3367
3368                 while (this_order && left < order_to_size(this_order - 1))
3369                         this_order--;
3370
3371                 do {
3372                         page = alloc_pages_node(node,
3373                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3374                                 this_order);
3375                         if (page)
3376                                 break;
3377                         if (!this_order--)
3378                                 break;
3379                         if (order_to_size(this_order) < rq_size)
3380                                 break;
3381                 } while (1);
3382
3383                 if (!page)
3384                         goto fail;
3385
3386                 page->private = this_order;
3387                 list_add_tail(&page->lru, &tags->page_list);
3388
3389                 p = page_address(page);
3390                 /*
3391                  * Allow kmemleak to scan these pages as they contain pointers
3392                  * to additional allocations like via ops->init_request().
3393                  */
3394                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3395                 entries_per_page = order_to_size(this_order) / rq_size;
3396                 to_do = min(entries_per_page, depth - i);
3397                 left -= to_do * rq_size;
3398                 for (j = 0; j < to_do; j++) {
3399                         struct request *rq = p;
3400
3401                         tags->static_rqs[i] = rq;
3402                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3403                                 tags->static_rqs[i] = NULL;
3404                                 goto fail;
3405                         }
3406
3407                         p += rq_size;
3408                         i++;
3409                 }
3410         }
3411         return 0;
3412
3413 fail:
3414         blk_mq_free_rqs(set, tags, hctx_idx);
3415         return -ENOMEM;
3416 }
3417
3418 struct rq_iter_data {
3419         struct blk_mq_hw_ctx *hctx;
3420         bool has_rq;
3421 };
3422
3423 static bool blk_mq_has_request(struct request *rq, void *data)
3424 {
3425         struct rq_iter_data *iter_data = data;
3426
3427         if (rq->mq_hctx != iter_data->hctx)
3428                 return true;
3429         iter_data->has_rq = true;
3430         return false;
3431 }
3432
3433 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3434 {
3435         struct blk_mq_tags *tags = hctx->sched_tags ?
3436                         hctx->sched_tags : hctx->tags;
3437         struct rq_iter_data data = {
3438                 .hctx   = hctx,
3439         };
3440
3441         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3442         return data.has_rq;
3443 }
3444
3445 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3446                 struct blk_mq_hw_ctx *hctx)
3447 {
3448         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3449                 return false;
3450         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3451                 return false;
3452         return true;
3453 }
3454
3455 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3456 {
3457         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3458                         struct blk_mq_hw_ctx, cpuhp_online);
3459
3460         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3461             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3462                 return 0;
3463
3464         /*
3465          * Prevent new request from being allocated on the current hctx.
3466          *
3467          * The smp_mb__after_atomic() Pairs with the implied barrier in
3468          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3469          * seen once we return from the tag allocator.
3470          */
3471         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3472         smp_mb__after_atomic();
3473
3474         /*
3475          * Try to grab a reference to the queue and wait for any outstanding
3476          * requests.  If we could not grab a reference the queue has been
3477          * frozen and there are no requests.
3478          */
3479         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3480                 while (blk_mq_hctx_has_requests(hctx))
3481                         msleep(5);
3482                 percpu_ref_put(&hctx->queue->q_usage_counter);
3483         }
3484
3485         return 0;
3486 }
3487
3488 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3489 {
3490         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3491                         struct blk_mq_hw_ctx, cpuhp_online);
3492
3493         if (cpumask_test_cpu(cpu, hctx->cpumask))
3494                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3495         return 0;
3496 }
3497
3498 /*
3499  * 'cpu' is going away. splice any existing rq_list entries from this
3500  * software queue to the hw queue dispatch list, and ensure that it
3501  * gets run.
3502  */
3503 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3504 {
3505         struct blk_mq_hw_ctx *hctx;
3506         struct blk_mq_ctx *ctx;
3507         LIST_HEAD(tmp);
3508         enum hctx_type type;
3509
3510         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3511         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3512                 return 0;
3513
3514         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3515         type = hctx->type;
3516
3517         spin_lock(&ctx->lock);
3518         if (!list_empty(&ctx->rq_lists[type])) {
3519                 list_splice_init(&ctx->rq_lists[type], &tmp);
3520                 blk_mq_hctx_clear_pending(hctx, ctx);
3521         }
3522         spin_unlock(&ctx->lock);
3523
3524         if (list_empty(&tmp))
3525                 return 0;
3526
3527         spin_lock(&hctx->lock);
3528         list_splice_tail_init(&tmp, &hctx->dispatch);
3529         spin_unlock(&hctx->lock);
3530
3531         blk_mq_run_hw_queue(hctx, true);
3532         return 0;
3533 }
3534
3535 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3536 {
3537         if (!(hctx->flags & BLK_MQ_F_STACKING))
3538                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3539                                                     &hctx->cpuhp_online);
3540         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3541                                             &hctx->cpuhp_dead);
3542 }
3543
3544 /*
3545  * Before freeing hw queue, clearing the flush request reference in
3546  * tags->rqs[] for avoiding potential UAF.
3547  */
3548 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3549                 unsigned int queue_depth, struct request *flush_rq)
3550 {
3551         int i;
3552         unsigned long flags;
3553
3554         /* The hw queue may not be mapped yet */
3555         if (!tags)
3556                 return;
3557
3558         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3559
3560         for (i = 0; i < queue_depth; i++)
3561                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3562
3563         /*
3564          * Wait until all pending iteration is done.
3565          *
3566          * Request reference is cleared and it is guaranteed to be observed
3567          * after the ->lock is released.
3568          */
3569         spin_lock_irqsave(&tags->lock, flags);
3570         spin_unlock_irqrestore(&tags->lock, flags);
3571 }
3572
3573 /* hctx->ctxs will be freed in queue's release handler */
3574 static void blk_mq_exit_hctx(struct request_queue *q,
3575                 struct blk_mq_tag_set *set,
3576                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3577 {
3578         struct request *flush_rq = hctx->fq->flush_rq;
3579
3580         if (blk_mq_hw_queue_mapped(hctx))
3581                 blk_mq_tag_idle(hctx);
3582
3583         if (blk_queue_init_done(q))
3584                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3585                                 set->queue_depth, flush_rq);
3586         if (set->ops->exit_request)
3587                 set->ops->exit_request(set, flush_rq, hctx_idx);
3588
3589         if (set->ops->exit_hctx)
3590                 set->ops->exit_hctx(hctx, hctx_idx);
3591
3592         blk_mq_remove_cpuhp(hctx);
3593
3594         xa_erase(&q->hctx_table, hctx_idx);
3595
3596         spin_lock(&q->unused_hctx_lock);
3597         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3598         spin_unlock(&q->unused_hctx_lock);
3599 }
3600
3601 static void blk_mq_exit_hw_queues(struct request_queue *q,
3602                 struct blk_mq_tag_set *set, int nr_queue)
3603 {
3604         struct blk_mq_hw_ctx *hctx;
3605         unsigned long i;
3606
3607         queue_for_each_hw_ctx(q, hctx, i) {
3608                 if (i == nr_queue)
3609                         break;
3610                 blk_mq_exit_hctx(q, set, hctx, i);
3611         }
3612 }
3613
3614 static int blk_mq_init_hctx(struct request_queue *q,
3615                 struct blk_mq_tag_set *set,
3616                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3617 {
3618         hctx->queue_num = hctx_idx;
3619
3620         if (!(hctx->flags & BLK_MQ_F_STACKING))
3621                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3622                                 &hctx->cpuhp_online);
3623         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3624
3625         hctx->tags = set->tags[hctx_idx];
3626
3627         if (set->ops->init_hctx &&
3628             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3629                 goto unregister_cpu_notifier;
3630
3631         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3632                                 hctx->numa_node))
3633                 goto exit_hctx;
3634
3635         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3636                 goto exit_flush_rq;
3637
3638         return 0;
3639
3640  exit_flush_rq:
3641         if (set->ops->exit_request)
3642                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3643  exit_hctx:
3644         if (set->ops->exit_hctx)
3645                 set->ops->exit_hctx(hctx, hctx_idx);
3646  unregister_cpu_notifier:
3647         blk_mq_remove_cpuhp(hctx);
3648         return -1;
3649 }
3650
3651 static struct blk_mq_hw_ctx *
3652 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3653                 int node)
3654 {
3655         struct blk_mq_hw_ctx *hctx;
3656         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3657
3658         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3659         if (!hctx)
3660                 goto fail_alloc_hctx;
3661
3662         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3663                 goto free_hctx;
3664
3665         atomic_set(&hctx->nr_active, 0);
3666         if (node == NUMA_NO_NODE)
3667                 node = set->numa_node;
3668         hctx->numa_node = node;
3669
3670         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3671         spin_lock_init(&hctx->lock);
3672         INIT_LIST_HEAD(&hctx->dispatch);
3673         hctx->queue = q;
3674         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3675
3676         INIT_LIST_HEAD(&hctx->hctx_list);
3677
3678         /*
3679          * Allocate space for all possible cpus to avoid allocation at
3680          * runtime
3681          */
3682         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3683                         gfp, node);
3684         if (!hctx->ctxs)
3685                 goto free_cpumask;
3686
3687         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3688                                 gfp, node, false, false))
3689                 goto free_ctxs;
3690         hctx->nr_ctx = 0;
3691
3692         spin_lock_init(&hctx->dispatch_wait_lock);
3693         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3694         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3695
3696         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3697         if (!hctx->fq)
3698                 goto free_bitmap;
3699
3700         blk_mq_hctx_kobj_init(hctx);
3701
3702         return hctx;
3703
3704  free_bitmap:
3705         sbitmap_free(&hctx->ctx_map);
3706  free_ctxs:
3707         kfree(hctx->ctxs);
3708  free_cpumask:
3709         free_cpumask_var(hctx->cpumask);
3710  free_hctx:
3711         kfree(hctx);
3712  fail_alloc_hctx:
3713         return NULL;
3714 }
3715
3716 static void blk_mq_init_cpu_queues(struct request_queue *q,
3717                                    unsigned int nr_hw_queues)
3718 {
3719         struct blk_mq_tag_set *set = q->tag_set;
3720         unsigned int i, j;
3721
3722         for_each_possible_cpu(i) {
3723                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3724                 struct blk_mq_hw_ctx *hctx;
3725                 int k;
3726
3727                 __ctx->cpu = i;
3728                 spin_lock_init(&__ctx->lock);
3729                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3730                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3731
3732                 __ctx->queue = q;
3733
3734                 /*
3735                  * Set local node, IFF we have more than one hw queue. If
3736                  * not, we remain on the home node of the device
3737                  */
3738                 for (j = 0; j < set->nr_maps; j++) {
3739                         hctx = blk_mq_map_queue_type(q, j, i);
3740                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3741                                 hctx->numa_node = cpu_to_node(i);
3742                 }
3743         }
3744 }
3745
3746 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3747                                              unsigned int hctx_idx,
3748                                              unsigned int depth)
3749 {
3750         struct blk_mq_tags *tags;
3751         int ret;
3752
3753         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3754         if (!tags)
3755                 return NULL;
3756
3757         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3758         if (ret) {
3759                 blk_mq_free_rq_map(tags);
3760                 return NULL;
3761         }
3762
3763         return tags;
3764 }
3765
3766 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3767                                        int hctx_idx)
3768 {
3769         if (blk_mq_is_shared_tags(set->flags)) {
3770                 set->tags[hctx_idx] = set->shared_tags;
3771
3772                 return true;
3773         }
3774
3775         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3776                                                        set->queue_depth);
3777
3778         return set->tags[hctx_idx];
3779 }
3780
3781 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3782                              struct blk_mq_tags *tags,
3783                              unsigned int hctx_idx)
3784 {
3785         if (tags) {
3786                 blk_mq_free_rqs(set, tags, hctx_idx);
3787                 blk_mq_free_rq_map(tags);
3788         }
3789 }
3790
3791 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3792                                       unsigned int hctx_idx)
3793 {
3794         if (!blk_mq_is_shared_tags(set->flags))
3795                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3796
3797         set->tags[hctx_idx] = NULL;
3798 }
3799
3800 static void blk_mq_map_swqueue(struct request_queue *q)
3801 {
3802         unsigned int j, hctx_idx;
3803         unsigned long i;
3804         struct blk_mq_hw_ctx *hctx;
3805         struct blk_mq_ctx *ctx;
3806         struct blk_mq_tag_set *set = q->tag_set;
3807
3808         queue_for_each_hw_ctx(q, hctx, i) {
3809                 cpumask_clear(hctx->cpumask);
3810                 hctx->nr_ctx = 0;
3811                 hctx->dispatch_from = NULL;
3812         }
3813
3814         /*
3815          * Map software to hardware queues.
3816          *
3817          * If the cpu isn't present, the cpu is mapped to first hctx.
3818          */
3819         for_each_possible_cpu(i) {
3820
3821                 ctx = per_cpu_ptr(q->queue_ctx, i);
3822                 for (j = 0; j < set->nr_maps; j++) {
3823                         if (!set->map[j].nr_queues) {
3824                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3825                                                 HCTX_TYPE_DEFAULT, i);
3826                                 continue;
3827                         }
3828                         hctx_idx = set->map[j].mq_map[i];
3829                         /* unmapped hw queue can be remapped after CPU topo changed */
3830                         if (!set->tags[hctx_idx] &&
3831                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3832                                 /*
3833                                  * If tags initialization fail for some hctx,
3834                                  * that hctx won't be brought online.  In this
3835                                  * case, remap the current ctx to hctx[0] which
3836                                  * is guaranteed to always have tags allocated
3837                                  */
3838                                 set->map[j].mq_map[i] = 0;
3839                         }
3840
3841                         hctx = blk_mq_map_queue_type(q, j, i);
3842                         ctx->hctxs[j] = hctx;
3843                         /*
3844                          * If the CPU is already set in the mask, then we've
3845                          * mapped this one already. This can happen if
3846                          * devices share queues across queue maps.
3847                          */
3848                         if (cpumask_test_cpu(i, hctx->cpumask))
3849                                 continue;
3850
3851                         cpumask_set_cpu(i, hctx->cpumask);
3852                         hctx->type = j;
3853                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3854                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3855
3856                         /*
3857                          * If the nr_ctx type overflows, we have exceeded the
3858                          * amount of sw queues we can support.
3859                          */
3860                         BUG_ON(!hctx->nr_ctx);
3861                 }
3862
3863                 for (; j < HCTX_MAX_TYPES; j++)
3864                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3865                                         HCTX_TYPE_DEFAULT, i);
3866         }
3867
3868         queue_for_each_hw_ctx(q, hctx, i) {
3869                 /*
3870                  * If no software queues are mapped to this hardware queue,
3871                  * disable it and free the request entries.
3872                  */
3873                 if (!hctx->nr_ctx) {
3874                         /* Never unmap queue 0.  We need it as a
3875                          * fallback in case of a new remap fails
3876                          * allocation
3877                          */
3878                         if (i)
3879                                 __blk_mq_free_map_and_rqs(set, i);
3880
3881                         hctx->tags = NULL;
3882                         continue;
3883                 }
3884
3885                 hctx->tags = set->tags[i];
3886                 WARN_ON(!hctx->tags);
3887
3888                 /*
3889                  * Set the map size to the number of mapped software queues.
3890                  * This is more accurate and more efficient than looping
3891                  * over all possibly mapped software queues.
3892                  */
3893                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3894
3895                 /*
3896                  * Initialize batch roundrobin counts
3897                  */
3898                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3899                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3900         }
3901 }
3902
3903 /*
3904  * Caller needs to ensure that we're either frozen/quiesced, or that
3905  * the queue isn't live yet.
3906  */
3907 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3908 {
3909         struct blk_mq_hw_ctx *hctx;
3910         unsigned long i;
3911
3912         queue_for_each_hw_ctx(q, hctx, i) {
3913                 if (shared) {
3914                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3915                 } else {
3916                         blk_mq_tag_idle(hctx);
3917                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3918                 }
3919         }
3920 }
3921
3922 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3923                                          bool shared)
3924 {
3925         struct request_queue *q;
3926
3927         lockdep_assert_held(&set->tag_list_lock);
3928
3929         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3930                 blk_mq_freeze_queue(q);
3931                 queue_set_hctx_shared(q, shared);
3932                 blk_mq_unfreeze_queue(q);
3933         }
3934 }
3935
3936 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3937 {
3938         struct blk_mq_tag_set *set = q->tag_set;
3939
3940         mutex_lock(&set->tag_list_lock);
3941         list_del(&q->tag_set_list);
3942         if (list_is_singular(&set->tag_list)) {
3943                 /* just transitioned to unshared */
3944                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3945                 /* update existing queue */
3946                 blk_mq_update_tag_set_shared(set, false);
3947         }
3948         mutex_unlock(&set->tag_list_lock);
3949         INIT_LIST_HEAD(&q->tag_set_list);
3950 }
3951
3952 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3953                                      struct request_queue *q)
3954 {
3955         mutex_lock(&set->tag_list_lock);
3956
3957         /*
3958          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3959          */
3960         if (!list_empty(&set->tag_list) &&
3961             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3962                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3963                 /* update existing queue */
3964                 blk_mq_update_tag_set_shared(set, true);
3965         }
3966         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3967                 queue_set_hctx_shared(q, true);
3968         list_add_tail(&q->tag_set_list, &set->tag_list);
3969
3970         mutex_unlock(&set->tag_list_lock);
3971 }
3972
3973 /* All allocations will be freed in release handler of q->mq_kobj */
3974 static int blk_mq_alloc_ctxs(struct request_queue *q)
3975 {
3976         struct blk_mq_ctxs *ctxs;
3977         int cpu;
3978
3979         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3980         if (!ctxs)
3981                 return -ENOMEM;
3982
3983         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3984         if (!ctxs->queue_ctx)
3985                 goto fail;
3986
3987         for_each_possible_cpu(cpu) {
3988                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3989                 ctx->ctxs = ctxs;
3990         }
3991
3992         q->mq_kobj = &ctxs->kobj;
3993         q->queue_ctx = ctxs->queue_ctx;
3994
3995         return 0;
3996  fail:
3997         kfree(ctxs);
3998         return -ENOMEM;
3999 }
4000
4001 /*
4002  * It is the actual release handler for mq, but we do it from
4003  * request queue's release handler for avoiding use-after-free
4004  * and headache because q->mq_kobj shouldn't have been introduced,
4005  * but we can't group ctx/kctx kobj without it.
4006  */
4007 void blk_mq_release(struct request_queue *q)
4008 {
4009         struct blk_mq_hw_ctx *hctx, *next;
4010         unsigned long i;
4011
4012         queue_for_each_hw_ctx(q, hctx, i)
4013                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4014
4015         /* all hctx are in .unused_hctx_list now */
4016         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4017                 list_del_init(&hctx->hctx_list);
4018                 kobject_put(&hctx->kobj);
4019         }
4020
4021         xa_destroy(&q->hctx_table);
4022
4023         /*
4024          * release .mq_kobj and sw queue's kobject now because
4025          * both share lifetime with request queue.
4026          */
4027         blk_mq_sysfs_deinit(q);
4028 }
4029
4030 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4031                 void *queuedata)
4032 {
4033         struct request_queue *q;
4034         int ret;
4035
4036         q = blk_alloc_queue(set->numa_node);
4037         if (!q)
4038                 return ERR_PTR(-ENOMEM);
4039         q->queuedata = queuedata;
4040         ret = blk_mq_init_allocated_queue(set, q);
4041         if (ret) {
4042                 blk_put_queue(q);
4043                 return ERR_PTR(ret);
4044         }
4045         return q;
4046 }
4047
4048 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4049 {
4050         return blk_mq_init_queue_data(set, NULL);
4051 }
4052 EXPORT_SYMBOL(blk_mq_init_queue);
4053
4054 /**
4055  * blk_mq_destroy_queue - shutdown a request queue
4056  * @q: request queue to shutdown
4057  *
4058  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4059  * requests will be failed with -ENODEV. The caller is responsible for dropping
4060  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4061  *
4062  * Context: can sleep
4063  */
4064 void blk_mq_destroy_queue(struct request_queue *q)
4065 {
4066         WARN_ON_ONCE(!queue_is_mq(q));
4067         WARN_ON_ONCE(blk_queue_registered(q));
4068
4069         might_sleep();
4070
4071         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4072         blk_queue_start_drain(q);
4073         blk_mq_freeze_queue_wait(q);
4074
4075         blk_sync_queue(q);
4076         blk_mq_cancel_work_sync(q);
4077         blk_mq_exit_queue(q);
4078 }
4079 EXPORT_SYMBOL(blk_mq_destroy_queue);
4080
4081 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4082                 struct lock_class_key *lkclass)
4083 {
4084         struct request_queue *q;
4085         struct gendisk *disk;
4086
4087         q = blk_mq_init_queue_data(set, queuedata);
4088         if (IS_ERR(q))
4089                 return ERR_CAST(q);
4090
4091         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4092         if (!disk) {
4093                 blk_mq_destroy_queue(q);
4094                 blk_put_queue(q);
4095                 return ERR_PTR(-ENOMEM);
4096         }
4097         set_bit(GD_OWNS_QUEUE, &disk->state);
4098         return disk;
4099 }
4100 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4101
4102 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4103                 struct lock_class_key *lkclass)
4104 {
4105         struct gendisk *disk;
4106
4107         if (!blk_get_queue(q))
4108                 return NULL;
4109         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4110         if (!disk)
4111                 blk_put_queue(q);
4112         return disk;
4113 }
4114 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4115
4116 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4117                 struct blk_mq_tag_set *set, struct request_queue *q,
4118                 int hctx_idx, int node)
4119 {
4120         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4121
4122         /* reuse dead hctx first */
4123         spin_lock(&q->unused_hctx_lock);
4124         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4125                 if (tmp->numa_node == node) {
4126                         hctx = tmp;
4127                         break;
4128                 }
4129         }
4130         if (hctx)
4131                 list_del_init(&hctx->hctx_list);
4132         spin_unlock(&q->unused_hctx_lock);
4133
4134         if (!hctx)
4135                 hctx = blk_mq_alloc_hctx(q, set, node);
4136         if (!hctx)
4137                 goto fail;
4138
4139         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4140                 goto free_hctx;
4141
4142         return hctx;
4143
4144  free_hctx:
4145         kobject_put(&hctx->kobj);
4146  fail:
4147         return NULL;
4148 }
4149
4150 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4151                                                 struct request_queue *q)
4152 {
4153         struct blk_mq_hw_ctx *hctx;
4154         unsigned long i, j;
4155
4156         /* protect against switching io scheduler  */
4157         mutex_lock(&q->sysfs_lock);
4158         for (i = 0; i < set->nr_hw_queues; i++) {
4159                 int old_node;
4160                 int node = blk_mq_get_hctx_node(set, i);
4161                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4162
4163                 if (old_hctx) {
4164                         old_node = old_hctx->numa_node;
4165                         blk_mq_exit_hctx(q, set, old_hctx, i);
4166                 }
4167
4168                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4169                         if (!old_hctx)
4170                                 break;
4171                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4172                                         node, old_node);
4173                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4174                         WARN_ON_ONCE(!hctx);
4175                 }
4176         }
4177         /*
4178          * Increasing nr_hw_queues fails. Free the newly allocated
4179          * hctxs and keep the previous q->nr_hw_queues.
4180          */
4181         if (i != set->nr_hw_queues) {
4182                 j = q->nr_hw_queues;
4183         } else {
4184                 j = i;
4185                 q->nr_hw_queues = set->nr_hw_queues;
4186         }
4187
4188         xa_for_each_start(&q->hctx_table, j, hctx, j)
4189                 blk_mq_exit_hctx(q, set, hctx, j);
4190         mutex_unlock(&q->sysfs_lock);
4191 }
4192
4193 static void blk_mq_update_poll_flag(struct request_queue *q)
4194 {
4195         struct blk_mq_tag_set *set = q->tag_set;
4196
4197         if (set->nr_maps > HCTX_TYPE_POLL &&
4198             set->map[HCTX_TYPE_POLL].nr_queues)
4199                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4200         else
4201                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4202 }
4203
4204 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4205                 struct request_queue *q)
4206 {
4207         /* mark the queue as mq asap */
4208         q->mq_ops = set->ops;
4209
4210         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4211                                              blk_mq_poll_stats_bkt,
4212                                              BLK_MQ_POLL_STATS_BKTS, q);
4213         if (!q->poll_cb)
4214                 goto err_exit;
4215
4216         if (blk_mq_alloc_ctxs(q))
4217                 goto err_poll;
4218
4219         /* init q->mq_kobj and sw queues' kobjects */
4220         blk_mq_sysfs_init(q);
4221
4222         INIT_LIST_HEAD(&q->unused_hctx_list);
4223         spin_lock_init(&q->unused_hctx_lock);
4224
4225         xa_init(&q->hctx_table);
4226
4227         blk_mq_realloc_hw_ctxs(set, q);
4228         if (!q->nr_hw_queues)
4229                 goto err_hctxs;
4230
4231         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4232         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4233
4234         q->tag_set = set;
4235
4236         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4237         blk_mq_update_poll_flag(q);
4238
4239         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4240         INIT_LIST_HEAD(&q->requeue_list);
4241         spin_lock_init(&q->requeue_lock);
4242
4243         q->nr_requests = set->queue_depth;
4244
4245         /*
4246          * Default to classic polling
4247          */
4248         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4249
4250         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4251         blk_mq_add_queue_tag_set(set, q);
4252         blk_mq_map_swqueue(q);
4253         return 0;
4254
4255 err_hctxs:
4256         blk_mq_release(q);
4257 err_poll:
4258         blk_stat_free_callback(q->poll_cb);
4259         q->poll_cb = NULL;
4260 err_exit:
4261         q->mq_ops = NULL;
4262         return -ENOMEM;
4263 }
4264 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4265
4266 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4267 void blk_mq_exit_queue(struct request_queue *q)
4268 {
4269         struct blk_mq_tag_set *set = q->tag_set;
4270
4271         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4272         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4273         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4274         blk_mq_del_queue_tag_set(q);
4275 }
4276
4277 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4278 {
4279         int i;
4280
4281         if (blk_mq_is_shared_tags(set->flags)) {
4282                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4283                                                 BLK_MQ_NO_HCTX_IDX,
4284                                                 set->queue_depth);
4285                 if (!set->shared_tags)
4286                         return -ENOMEM;
4287         }
4288
4289         for (i = 0; i < set->nr_hw_queues; i++) {
4290                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4291                         goto out_unwind;
4292                 cond_resched();
4293         }
4294
4295         return 0;
4296
4297 out_unwind:
4298         while (--i >= 0)
4299                 __blk_mq_free_map_and_rqs(set, i);
4300
4301         if (blk_mq_is_shared_tags(set->flags)) {
4302                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4303                                         BLK_MQ_NO_HCTX_IDX);
4304         }
4305
4306         return -ENOMEM;
4307 }
4308
4309 /*
4310  * Allocate the request maps associated with this tag_set. Note that this
4311  * may reduce the depth asked for, if memory is tight. set->queue_depth
4312  * will be updated to reflect the allocated depth.
4313  */
4314 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4315 {
4316         unsigned int depth;
4317         int err;
4318
4319         depth = set->queue_depth;
4320         do {
4321                 err = __blk_mq_alloc_rq_maps(set);
4322                 if (!err)
4323                         break;
4324
4325                 set->queue_depth >>= 1;
4326                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4327                         err = -ENOMEM;
4328                         break;
4329                 }
4330         } while (set->queue_depth);
4331
4332         if (!set->queue_depth || err) {
4333                 pr_err("blk-mq: failed to allocate request map\n");
4334                 return -ENOMEM;
4335         }
4336
4337         if (depth != set->queue_depth)
4338                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4339                                                 depth, set->queue_depth);
4340
4341         return 0;
4342 }
4343
4344 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4345 {
4346         /*
4347          * blk_mq_map_queues() and multiple .map_queues() implementations
4348          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4349          * number of hardware queues.
4350          */
4351         if (set->nr_maps == 1)
4352                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4353
4354         if (set->ops->map_queues && !is_kdump_kernel()) {
4355                 int i;
4356
4357                 /*
4358                  * transport .map_queues is usually done in the following
4359                  * way:
4360                  *
4361                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4362                  *      mask = get_cpu_mask(queue)
4363                  *      for_each_cpu(cpu, mask)
4364                  *              set->map[x].mq_map[cpu] = queue;
4365                  * }
4366                  *
4367                  * When we need to remap, the table has to be cleared for
4368                  * killing stale mapping since one CPU may not be mapped
4369                  * to any hw queue.
4370                  */
4371                 for (i = 0; i < set->nr_maps; i++)
4372                         blk_mq_clear_mq_map(&set->map[i]);
4373
4374                 set->ops->map_queues(set);
4375         } else {
4376                 BUG_ON(set->nr_maps > 1);
4377                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4378         }
4379 }
4380
4381 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4382                                        int new_nr_hw_queues)
4383 {
4384         struct blk_mq_tags **new_tags;
4385
4386         if (set->nr_hw_queues >= new_nr_hw_queues)
4387                 goto done;
4388
4389         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4390                                 GFP_KERNEL, set->numa_node);
4391         if (!new_tags)
4392                 return -ENOMEM;
4393
4394         if (set->tags)
4395                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4396                        sizeof(*set->tags));
4397         kfree(set->tags);
4398         set->tags = new_tags;
4399 done:
4400         set->nr_hw_queues = new_nr_hw_queues;
4401         return 0;
4402 }
4403
4404 /*
4405  * Alloc a tag set to be associated with one or more request queues.
4406  * May fail with EINVAL for various error conditions. May adjust the
4407  * requested depth down, if it's too large. In that case, the set
4408  * value will be stored in set->queue_depth.
4409  */
4410 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4411 {
4412         int i, ret;
4413
4414         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4415
4416         if (!set->nr_hw_queues)
4417                 return -EINVAL;
4418         if (!set->queue_depth)
4419                 return -EINVAL;
4420         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4421                 return -EINVAL;
4422
4423         if (!set->ops->queue_rq)
4424                 return -EINVAL;
4425
4426         if (!set->ops->get_budget ^ !set->ops->put_budget)
4427                 return -EINVAL;
4428
4429         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4430                 pr_info("blk-mq: reduced tag depth to %u\n",
4431                         BLK_MQ_MAX_DEPTH);
4432                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4433         }
4434
4435         if (!set->nr_maps)
4436                 set->nr_maps = 1;
4437         else if (set->nr_maps > HCTX_MAX_TYPES)
4438                 return -EINVAL;
4439
4440         /*
4441          * If a crashdump is active, then we are potentially in a very
4442          * memory constrained environment. Limit us to 1 queue and
4443          * 64 tags to prevent using too much memory.
4444          */
4445         if (is_kdump_kernel()) {
4446                 set->nr_hw_queues = 1;
4447                 set->nr_maps = 1;
4448                 set->queue_depth = min(64U, set->queue_depth);
4449         }
4450         /*
4451          * There is no use for more h/w queues than cpus if we just have
4452          * a single map
4453          */
4454         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4455                 set->nr_hw_queues = nr_cpu_ids;
4456
4457         if (set->flags & BLK_MQ_F_BLOCKING) {
4458                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4459                 if (!set->srcu)
4460                         return -ENOMEM;
4461                 ret = init_srcu_struct(set->srcu);
4462                 if (ret)
4463                         goto out_free_srcu;
4464         }
4465
4466         ret = -ENOMEM;
4467         set->tags = kcalloc_node(set->nr_hw_queues,
4468                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4469                                  set->numa_node);
4470         if (!set->tags)
4471                 goto out_cleanup_srcu;
4472
4473         for (i = 0; i < set->nr_maps; i++) {
4474                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4475                                                   sizeof(set->map[i].mq_map[0]),
4476                                                   GFP_KERNEL, set->numa_node);
4477                 if (!set->map[i].mq_map)
4478                         goto out_free_mq_map;
4479                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4480         }
4481
4482         blk_mq_update_queue_map(set);
4483
4484         ret = blk_mq_alloc_set_map_and_rqs(set);
4485         if (ret)
4486                 goto out_free_mq_map;
4487
4488         mutex_init(&set->tag_list_lock);
4489         INIT_LIST_HEAD(&set->tag_list);
4490
4491         return 0;
4492
4493 out_free_mq_map:
4494         for (i = 0; i < set->nr_maps; i++) {
4495                 kfree(set->map[i].mq_map);
4496                 set->map[i].mq_map = NULL;
4497         }
4498         kfree(set->tags);
4499         set->tags = NULL;
4500 out_cleanup_srcu:
4501         if (set->flags & BLK_MQ_F_BLOCKING)
4502                 cleanup_srcu_struct(set->srcu);
4503 out_free_srcu:
4504         if (set->flags & BLK_MQ_F_BLOCKING)
4505                 kfree(set->srcu);
4506         return ret;
4507 }
4508 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4509
4510 /* allocate and initialize a tagset for a simple single-queue device */
4511 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4512                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4513                 unsigned int set_flags)
4514 {
4515         memset(set, 0, sizeof(*set));
4516         set->ops = ops;
4517         set->nr_hw_queues = 1;
4518         set->nr_maps = 1;
4519         set->queue_depth = queue_depth;
4520         set->numa_node = NUMA_NO_NODE;
4521         set->flags = set_flags;
4522         return blk_mq_alloc_tag_set(set);
4523 }
4524 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4525
4526 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4527 {
4528         int i, j;
4529
4530         for (i = 0; i < set->nr_hw_queues; i++)
4531                 __blk_mq_free_map_and_rqs(set, i);
4532
4533         if (blk_mq_is_shared_tags(set->flags)) {
4534                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4535                                         BLK_MQ_NO_HCTX_IDX);
4536         }
4537
4538         for (j = 0; j < set->nr_maps; j++) {
4539                 kfree(set->map[j].mq_map);
4540                 set->map[j].mq_map = NULL;
4541         }
4542
4543         kfree(set->tags);
4544         set->tags = NULL;
4545         if (set->flags & BLK_MQ_F_BLOCKING) {
4546                 cleanup_srcu_struct(set->srcu);
4547                 kfree(set->srcu);
4548         }
4549 }
4550 EXPORT_SYMBOL(blk_mq_free_tag_set);
4551
4552 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4553 {
4554         struct blk_mq_tag_set *set = q->tag_set;
4555         struct blk_mq_hw_ctx *hctx;
4556         int ret;
4557         unsigned long i;
4558
4559         if (!set)
4560                 return -EINVAL;
4561
4562         if (q->nr_requests == nr)
4563                 return 0;
4564
4565         blk_mq_freeze_queue(q);
4566         blk_mq_quiesce_queue(q);
4567
4568         ret = 0;
4569         queue_for_each_hw_ctx(q, hctx, i) {
4570                 if (!hctx->tags)
4571                         continue;
4572                 /*
4573                  * If we're using an MQ scheduler, just update the scheduler
4574                  * queue depth. This is similar to what the old code would do.
4575                  */
4576                 if (hctx->sched_tags) {
4577                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4578                                                       nr, true);
4579                 } else {
4580                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4581                                                       false);
4582                 }
4583                 if (ret)
4584                         break;
4585                 if (q->elevator && q->elevator->type->ops.depth_updated)
4586                         q->elevator->type->ops.depth_updated(hctx);
4587         }
4588         if (!ret) {
4589                 q->nr_requests = nr;
4590                 if (blk_mq_is_shared_tags(set->flags)) {
4591                         if (q->elevator)
4592                                 blk_mq_tag_update_sched_shared_tags(q);
4593                         else
4594                                 blk_mq_tag_resize_shared_tags(set, nr);
4595                 }
4596         }
4597
4598         blk_mq_unquiesce_queue(q);
4599         blk_mq_unfreeze_queue(q);
4600
4601         return ret;
4602 }
4603
4604 /*
4605  * request_queue and elevator_type pair.
4606  * It is just used by __blk_mq_update_nr_hw_queues to cache
4607  * the elevator_type associated with a request_queue.
4608  */
4609 struct blk_mq_qe_pair {
4610         struct list_head node;
4611         struct request_queue *q;
4612         struct elevator_type *type;
4613 };
4614
4615 /*
4616  * Cache the elevator_type in qe pair list and switch the
4617  * io scheduler to 'none'
4618  */
4619 static bool blk_mq_elv_switch_none(struct list_head *head,
4620                 struct request_queue *q)
4621 {
4622         struct blk_mq_qe_pair *qe;
4623
4624         if (!q->elevator)
4625                 return true;
4626
4627         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4628         if (!qe)
4629                 return false;
4630
4631         /* q->elevator needs protection from ->sysfs_lock */
4632         mutex_lock(&q->sysfs_lock);
4633
4634         INIT_LIST_HEAD(&qe->node);
4635         qe->q = q;
4636         qe->type = q->elevator->type;
4637         /* keep a reference to the elevator module as we'll switch back */
4638         __elevator_get(qe->type);
4639         list_add(&qe->node, head);
4640         elevator_disable(q);
4641         mutex_unlock(&q->sysfs_lock);
4642
4643         return true;
4644 }
4645
4646 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4647                                                 struct request_queue *q)
4648 {
4649         struct blk_mq_qe_pair *qe;
4650
4651         list_for_each_entry(qe, head, node)
4652                 if (qe->q == q)
4653                         return qe;
4654
4655         return NULL;
4656 }
4657
4658 static void blk_mq_elv_switch_back(struct list_head *head,
4659                                   struct request_queue *q)
4660 {
4661         struct blk_mq_qe_pair *qe;
4662         struct elevator_type *t;
4663
4664         qe = blk_lookup_qe_pair(head, q);
4665         if (!qe)
4666                 return;
4667         t = qe->type;
4668         list_del(&qe->node);
4669         kfree(qe);
4670
4671         mutex_lock(&q->sysfs_lock);
4672         elevator_switch(q, t);
4673         /* drop the reference acquired in blk_mq_elv_switch_none */
4674         elevator_put(t);
4675         mutex_unlock(&q->sysfs_lock);
4676 }
4677
4678 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4679                                                         int nr_hw_queues)
4680 {
4681         struct request_queue *q;
4682         LIST_HEAD(head);
4683         int prev_nr_hw_queues;
4684
4685         lockdep_assert_held(&set->tag_list_lock);
4686
4687         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4688                 nr_hw_queues = nr_cpu_ids;
4689         if (nr_hw_queues < 1)
4690                 return;
4691         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4692                 return;
4693
4694         list_for_each_entry(q, &set->tag_list, tag_set_list)
4695                 blk_mq_freeze_queue(q);
4696         /*
4697          * Switch IO scheduler to 'none', cleaning up the data associated
4698          * with the previous scheduler. We will switch back once we are done
4699          * updating the new sw to hw queue mappings.
4700          */
4701         list_for_each_entry(q, &set->tag_list, tag_set_list)
4702                 if (!blk_mq_elv_switch_none(&head, q))
4703                         goto switch_back;
4704
4705         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4706                 blk_mq_debugfs_unregister_hctxs(q);
4707                 blk_mq_sysfs_unregister_hctxs(q);
4708         }
4709
4710         prev_nr_hw_queues = set->nr_hw_queues;
4711         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4712                 goto reregister;
4713
4714 fallback:
4715         blk_mq_update_queue_map(set);
4716         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4717                 blk_mq_realloc_hw_ctxs(set, q);
4718                 blk_mq_update_poll_flag(q);
4719                 if (q->nr_hw_queues != set->nr_hw_queues) {
4720                         int i = prev_nr_hw_queues;
4721
4722                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4723                                         nr_hw_queues, prev_nr_hw_queues);
4724                         for (; i < set->nr_hw_queues; i++)
4725                                 __blk_mq_free_map_and_rqs(set, i);
4726
4727                         set->nr_hw_queues = prev_nr_hw_queues;
4728                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4729                         goto fallback;
4730                 }
4731                 blk_mq_map_swqueue(q);
4732         }
4733
4734 reregister:
4735         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4736                 blk_mq_sysfs_register_hctxs(q);
4737                 blk_mq_debugfs_register_hctxs(q);
4738         }
4739
4740 switch_back:
4741         list_for_each_entry(q, &set->tag_list, tag_set_list)
4742                 blk_mq_elv_switch_back(&head, q);
4743
4744         list_for_each_entry(q, &set->tag_list, tag_set_list)
4745                 blk_mq_unfreeze_queue(q);
4746 }
4747
4748 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4749 {
4750         mutex_lock(&set->tag_list_lock);
4751         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4752         mutex_unlock(&set->tag_list_lock);
4753 }
4754 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4755
4756 /* Enable polling stats and return whether they were already enabled. */
4757 static bool blk_poll_stats_enable(struct request_queue *q)
4758 {
4759         if (q->poll_stat)
4760                 return true;
4761
4762         return blk_stats_alloc_enable(q);
4763 }
4764
4765 static void blk_mq_poll_stats_start(struct request_queue *q)
4766 {
4767         /*
4768          * We don't arm the callback if polling stats are not enabled or the
4769          * callback is already active.
4770          */
4771         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4772                 return;
4773
4774         blk_stat_activate_msecs(q->poll_cb, 100);
4775 }
4776
4777 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4778 {
4779         struct request_queue *q = cb->data;
4780         int bucket;
4781
4782         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4783                 if (cb->stat[bucket].nr_samples)
4784                         q->poll_stat[bucket] = cb->stat[bucket];
4785         }
4786 }
4787
4788 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4789                                        struct request *rq)
4790 {
4791         unsigned long ret = 0;
4792         int bucket;
4793
4794         /*
4795          * If stats collection isn't on, don't sleep but turn it on for
4796          * future users
4797          */
4798         if (!blk_poll_stats_enable(q))
4799                 return 0;
4800
4801         /*
4802          * As an optimistic guess, use half of the mean service time
4803          * for this type of request. We can (and should) make this smarter.
4804          * For instance, if the completion latencies are tight, we can
4805          * get closer than just half the mean. This is especially
4806          * important on devices where the completion latencies are longer
4807          * than ~10 usec. We do use the stats for the relevant IO size
4808          * if available which does lead to better estimates.
4809          */
4810         bucket = blk_mq_poll_stats_bkt(rq);
4811         if (bucket < 0)
4812                 return ret;
4813
4814         if (q->poll_stat[bucket].nr_samples)
4815                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4816
4817         return ret;
4818 }
4819
4820 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4821 {
4822         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4823         struct request *rq = blk_qc_to_rq(hctx, qc);
4824         struct hrtimer_sleeper hs;
4825         enum hrtimer_mode mode;
4826         unsigned int nsecs;
4827         ktime_t kt;
4828
4829         /*
4830          * If a request has completed on queue that uses an I/O scheduler, we
4831          * won't get back a request from blk_qc_to_rq.
4832          */
4833         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4834                 return false;
4835
4836         /*
4837          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4838          *
4839          *  0:  use half of prev avg
4840          * >0:  use this specific value
4841          */
4842         if (q->poll_nsec > 0)
4843                 nsecs = q->poll_nsec;
4844         else
4845                 nsecs = blk_mq_poll_nsecs(q, rq);
4846
4847         if (!nsecs)
4848                 return false;
4849
4850         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4851
4852         /*
4853          * This will be replaced with the stats tracking code, using
4854          * 'avg_completion_time / 2' as the pre-sleep target.
4855          */
4856         kt = nsecs;
4857
4858         mode = HRTIMER_MODE_REL;
4859         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4860         hrtimer_set_expires(&hs.timer, kt);
4861
4862         do {
4863                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4864                         break;
4865                 set_current_state(TASK_UNINTERRUPTIBLE);
4866                 hrtimer_sleeper_start_expires(&hs, mode);
4867                 if (hs.task)
4868                         io_schedule();
4869                 hrtimer_cancel(&hs.timer);
4870                 mode = HRTIMER_MODE_ABS;
4871         } while (hs.task && !signal_pending(current));
4872
4873         __set_current_state(TASK_RUNNING);
4874         destroy_hrtimer_on_stack(&hs.timer);
4875
4876         /*
4877          * If we sleep, have the caller restart the poll loop to reset the
4878          * state.  Like for the other success return cases, the caller is
4879          * responsible for checking if the IO completed.  If the IO isn't
4880          * complete, we'll get called again and will go straight to the busy
4881          * poll loop.
4882          */
4883         return true;
4884 }
4885
4886 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4887                                struct io_comp_batch *iob, unsigned int flags)
4888 {
4889         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4890         long state = get_current_state();
4891         int ret;
4892
4893         do {
4894                 ret = q->mq_ops->poll(hctx, iob);
4895                 if (ret > 0) {
4896                         __set_current_state(TASK_RUNNING);
4897                         return ret;
4898                 }
4899
4900                 if (signal_pending_state(state, current))
4901                         __set_current_state(TASK_RUNNING);
4902                 if (task_is_running(current))
4903                         return 1;
4904
4905                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4906                         break;
4907                 cpu_relax();
4908         } while (!need_resched());
4909
4910         __set_current_state(TASK_RUNNING);
4911         return 0;
4912 }
4913
4914 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4915                 unsigned int flags)
4916 {
4917         if (!(flags & BLK_POLL_NOSLEEP) &&
4918             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4919                 if (blk_mq_poll_hybrid(q, cookie))
4920                         return 1;
4921         }
4922         return blk_mq_poll_classic(q, cookie, iob, flags);
4923 }
4924
4925 unsigned int blk_mq_rq_cpu(struct request *rq)
4926 {
4927         return rq->mq_ctx->cpu;
4928 }
4929 EXPORT_SYMBOL(blk_mq_rq_cpu);
4930
4931 void blk_mq_cancel_work_sync(struct request_queue *q)
4932 {
4933         struct blk_mq_hw_ctx *hctx;
4934         unsigned long i;
4935
4936         cancel_delayed_work_sync(&q->requeue_work);
4937
4938         queue_for_each_hw_ctx(q, hctx, i)
4939                 cancel_delayed_work_sync(&hctx->run_work);
4940 }
4941
4942 static int __init blk_mq_init(void)
4943 {
4944         int i;
4945
4946         for_each_possible_cpu(i)
4947                 init_llist_head(&per_cpu(blk_cpu_done, i));
4948         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4949
4950         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4951                                   "block/softirq:dead", NULL,
4952                                   blk_softirq_cpu_dead);
4953         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4954                                 blk_mq_hctx_notify_dead);
4955         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4956                                 blk_mq_hctx_notify_online,
4957                                 blk_mq_hctx_notify_offline);
4958         return 0;
4959 }
4960 subsys_initcall(blk_mq_init);