blk-mq: move blk_mq_get_driver_tag into blk-mq.c
[platform/kernel/linux-starfive.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51         int ddir, sectors, bucket;
52
53         ddir = rq_data_dir(rq);
54         sectors = blk_rq_stats_sectors(rq);
55
56         bucket = ddir + 2 * ilog2(sectors);
57
58         if (bucket < 0)
59                 return -1;
60         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63         return bucket;
64 }
65
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72         return !list_empty_careful(&hctx->dispatch) ||
73                 sbitmap_any_bit_set(&hctx->ctx_map) ||
74                         blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81                                      struct blk_mq_ctx *ctx)
82 {
83         const int bit = ctx->index_hw[hctx->type];
84
85         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86                 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90                                       struct blk_mq_ctx *ctx)
91 {
92         const int bit = ctx->index_hw[hctx->type];
93
94         sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98         struct hd_struct *part;
99         unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103                                   struct request *rq, void *priv,
104                                   bool reserved)
105 {
106         struct mq_inflight *mi = priv;
107
108         if (rq->part == mi->part)
109                 mi->inflight[rq_data_dir(rq)]++;
110
111         return true;
112 }
113
114 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
115 {
116         struct mq_inflight mi = { .part = part };
117
118         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119
120         return mi.inflight[0] + mi.inflight[1];
121 }
122
123 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
124                          unsigned int inflight[2])
125 {
126         struct mq_inflight mi = { .part = part };
127
128         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
129         inflight[0] = mi.inflight[0];
130         inflight[1] = mi.inflight[1];
131 }
132
133 void blk_freeze_queue_start(struct request_queue *q)
134 {
135         mutex_lock(&q->mq_freeze_lock);
136         if (++q->mq_freeze_depth == 1) {
137                 percpu_ref_kill(&q->q_usage_counter);
138                 mutex_unlock(&q->mq_freeze_lock);
139                 if (queue_is_mq(q))
140                         blk_mq_run_hw_queues(q, false);
141         } else {
142                 mutex_unlock(&q->mq_freeze_lock);
143         }
144 }
145 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
146
147 void blk_mq_freeze_queue_wait(struct request_queue *q)
148 {
149         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
152
153 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
154                                      unsigned long timeout)
155 {
156         return wait_event_timeout(q->mq_freeze_wq,
157                                         percpu_ref_is_zero(&q->q_usage_counter),
158                                         timeout);
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
161
162 /*
163  * Guarantee no request is in use, so we can change any data structure of
164  * the queue afterward.
165  */
166 void blk_freeze_queue(struct request_queue *q)
167 {
168         /*
169          * In the !blk_mq case we are only calling this to kill the
170          * q_usage_counter, otherwise this increases the freeze depth
171          * and waits for it to return to zero.  For this reason there is
172          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
173          * exported to drivers as the only user for unfreeze is blk_mq.
174          */
175         blk_freeze_queue_start(q);
176         blk_mq_freeze_queue_wait(q);
177 }
178
179 void blk_mq_freeze_queue(struct request_queue *q)
180 {
181         /*
182          * ...just an alias to keep freeze and unfreeze actions balanced
183          * in the blk_mq_* namespace
184          */
185         blk_freeze_queue(q);
186 }
187 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
188
189 void blk_mq_unfreeze_queue(struct request_queue *q)
190 {
191         mutex_lock(&q->mq_freeze_lock);
192         q->mq_freeze_depth--;
193         WARN_ON_ONCE(q->mq_freeze_depth < 0);
194         if (!q->mq_freeze_depth) {
195                 percpu_ref_resurrect(&q->q_usage_counter);
196                 wake_up_all(&q->mq_freeze_wq);
197         }
198         mutex_unlock(&q->mq_freeze_lock);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
201
202 /*
203  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
204  * mpt3sas driver such that this function can be removed.
205  */
206 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
207 {
208         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
209 }
210 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
211
212 /**
213  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
214  * @q: request queue.
215  *
216  * Note: this function does not prevent that the struct request end_io()
217  * callback function is invoked. Once this function is returned, we make
218  * sure no dispatch can happen until the queue is unquiesced via
219  * blk_mq_unquiesce_queue().
220  */
221 void blk_mq_quiesce_queue(struct request_queue *q)
222 {
223         struct blk_mq_hw_ctx *hctx;
224         unsigned int i;
225         bool rcu = false;
226
227         blk_mq_quiesce_queue_nowait(q);
228
229         queue_for_each_hw_ctx(q, hctx, i) {
230                 if (hctx->flags & BLK_MQ_F_BLOCKING)
231                         synchronize_srcu(hctx->srcu);
232                 else
233                         rcu = true;
234         }
235         if (rcu)
236                 synchronize_rcu();
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
239
240 /*
241  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
242  * @q: request queue.
243  *
244  * This function recovers queue into the state before quiescing
245  * which is done by blk_mq_quiesce_queue.
246  */
247 void blk_mq_unquiesce_queue(struct request_queue *q)
248 {
249         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
250
251         /* dispatch requests which are inserted during quiescing */
252         blk_mq_run_hw_queues(q, true);
253 }
254 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
255
256 void blk_mq_wake_waiters(struct request_queue *q)
257 {
258         struct blk_mq_hw_ctx *hctx;
259         unsigned int i;
260
261         queue_for_each_hw_ctx(q, hctx, i)
262                 if (blk_mq_hw_queue_mapped(hctx))
263                         blk_mq_tag_wakeup_all(hctx->tags, true);
264 }
265
266 /*
267  * Only need start/end time stamping if we have iostat or
268  * blk stats enabled, or using an IO scheduler.
269  */
270 static inline bool blk_mq_need_time_stamp(struct request *rq)
271 {
272         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
273 }
274
275 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
276                 unsigned int tag, u64 alloc_time_ns)
277 {
278         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
279         struct request *rq = tags->static_rqs[tag];
280         req_flags_t rq_flags = 0;
281
282         if (data->q->elevator) {
283                 rq->tag = BLK_MQ_NO_TAG;
284                 rq->internal_tag = tag;
285         } else {
286                 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
287                         rq_flags = RQF_MQ_INFLIGHT;
288                         atomic_inc(&data->hctx->nr_active);
289                 }
290                 rq->tag = tag;
291                 rq->internal_tag = BLK_MQ_NO_TAG;
292                 data->hctx->tags->rqs[rq->tag] = rq;
293         }
294
295         /* csd/requeue_work/fifo_time is initialized before use */
296         rq->q = data->q;
297         rq->mq_ctx = data->ctx;
298         rq->mq_hctx = data->hctx;
299         rq->rq_flags = rq_flags;
300         rq->cmd_flags = data->cmd_flags;
301         if (data->flags & BLK_MQ_REQ_PREEMPT)
302                 rq->rq_flags |= RQF_PREEMPT;
303         if (blk_queue_io_stat(data->q))
304                 rq->rq_flags |= RQF_IO_STAT;
305         INIT_LIST_HEAD(&rq->queuelist);
306         INIT_HLIST_NODE(&rq->hash);
307         RB_CLEAR_NODE(&rq->rb_node);
308         rq->rq_disk = NULL;
309         rq->part = NULL;
310 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
311         rq->alloc_time_ns = alloc_time_ns;
312 #endif
313         if (blk_mq_need_time_stamp(rq))
314                 rq->start_time_ns = ktime_get_ns();
315         else
316                 rq->start_time_ns = 0;
317         rq->io_start_time_ns = 0;
318         rq->stats_sectors = 0;
319         rq->nr_phys_segments = 0;
320 #if defined(CONFIG_BLK_DEV_INTEGRITY)
321         rq->nr_integrity_segments = 0;
322 #endif
323         blk_crypto_rq_set_defaults(rq);
324         /* tag was already set */
325         WRITE_ONCE(rq->deadline, 0);
326
327         rq->timeout = 0;
328
329         rq->end_io = NULL;
330         rq->end_io_data = NULL;
331
332         data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
333         refcount_set(&rq->ref, 1);
334
335         if (!op_is_flush(data->cmd_flags)) {
336                 struct elevator_queue *e = data->q->elevator;
337
338                 rq->elv.icq = NULL;
339                 if (e && e->type->ops.prepare_request) {
340                         if (e->type->icq_cache)
341                                 blk_mq_sched_assign_ioc(rq);
342
343                         e->type->ops.prepare_request(rq);
344                         rq->rq_flags |= RQF_ELVPRIV;
345                 }
346         }
347
348         data->hctx->queued++;
349         return rq;
350 }
351
352 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
353 {
354         struct request_queue *q = data->q;
355         struct elevator_queue *e = q->elevator;
356         u64 alloc_time_ns = 0;
357         unsigned int tag;
358
359         /* alloc_time includes depth and tag waits */
360         if (blk_queue_rq_alloc_time(q))
361                 alloc_time_ns = ktime_get_ns();
362
363         if (data->cmd_flags & REQ_NOWAIT)
364                 data->flags |= BLK_MQ_REQ_NOWAIT;
365
366         if (e) {
367                 /*
368                  * Flush requests are special and go directly to the
369                  * dispatch list. Don't include reserved tags in the
370                  * limiting, as it isn't useful.
371                  */
372                 if (!op_is_flush(data->cmd_flags) &&
373                     e->type->ops.limit_depth &&
374                     !(data->flags & BLK_MQ_REQ_RESERVED))
375                         e->type->ops.limit_depth(data->cmd_flags, data);
376         }
377
378 retry:
379         data->ctx = blk_mq_get_ctx(q);
380         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
381         if (!e)
382                 blk_mq_tag_busy(data->hctx);
383
384         /*
385          * Waiting allocations only fail because of an inactive hctx.  In that
386          * case just retry the hctx assignment and tag allocation as CPU hotplug
387          * should have migrated us to an online CPU by now.
388          */
389         tag = blk_mq_get_tag(data);
390         if (tag == BLK_MQ_NO_TAG) {
391                 if (data->flags & BLK_MQ_REQ_NOWAIT)
392                         return NULL;
393
394                 /*
395                  * Give up the CPU and sleep for a random short time to ensure
396                  * that thread using a realtime scheduling class are migrated
397                  * off the the CPU, and thus off the hctx that is going away.
398                  */
399                 msleep(3);
400                 goto retry;
401         }
402         return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
403 }
404
405 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
406                 blk_mq_req_flags_t flags)
407 {
408         struct blk_mq_alloc_data data = {
409                 .q              = q,
410                 .flags          = flags,
411                 .cmd_flags      = op,
412         };
413         struct request *rq;
414         int ret;
415
416         ret = blk_queue_enter(q, flags);
417         if (ret)
418                 return ERR_PTR(ret);
419
420         rq = __blk_mq_alloc_request(&data);
421         if (!rq)
422                 goto out_queue_exit;
423         rq->__data_len = 0;
424         rq->__sector = (sector_t) -1;
425         rq->bio = rq->biotail = NULL;
426         return rq;
427 out_queue_exit:
428         blk_queue_exit(q);
429         return ERR_PTR(-EWOULDBLOCK);
430 }
431 EXPORT_SYMBOL(blk_mq_alloc_request);
432
433 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
434         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
435 {
436         struct blk_mq_alloc_data data = {
437                 .q              = q,
438                 .flags          = flags,
439                 .cmd_flags      = op,
440         };
441         u64 alloc_time_ns = 0;
442         unsigned int cpu;
443         unsigned int tag;
444         int ret;
445
446         /* alloc_time includes depth and tag waits */
447         if (blk_queue_rq_alloc_time(q))
448                 alloc_time_ns = ktime_get_ns();
449
450         /*
451          * If the tag allocator sleeps we could get an allocation for a
452          * different hardware context.  No need to complicate the low level
453          * allocator for this for the rare use case of a command tied to
454          * a specific queue.
455          */
456         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
457                 return ERR_PTR(-EINVAL);
458
459         if (hctx_idx >= q->nr_hw_queues)
460                 return ERR_PTR(-EIO);
461
462         ret = blk_queue_enter(q, flags);
463         if (ret)
464                 return ERR_PTR(ret);
465
466         /*
467          * Check if the hardware context is actually mapped to anything.
468          * If not tell the caller that it should skip this queue.
469          */
470         ret = -EXDEV;
471         data.hctx = q->queue_hw_ctx[hctx_idx];
472         if (!blk_mq_hw_queue_mapped(data.hctx))
473                 goto out_queue_exit;
474         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
475         data.ctx = __blk_mq_get_ctx(q, cpu);
476
477         if (!q->elevator)
478                 blk_mq_tag_busy(data.hctx);
479
480         ret = -EWOULDBLOCK;
481         tag = blk_mq_get_tag(&data);
482         if (tag == BLK_MQ_NO_TAG)
483                 goto out_queue_exit;
484         return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
485
486 out_queue_exit:
487         blk_queue_exit(q);
488         return ERR_PTR(ret);
489 }
490 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
491
492 static void __blk_mq_free_request(struct request *rq)
493 {
494         struct request_queue *q = rq->q;
495         struct blk_mq_ctx *ctx = rq->mq_ctx;
496         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
497         const int sched_tag = rq->internal_tag;
498
499         blk_crypto_free_request(rq);
500         blk_pm_mark_last_busy(rq);
501         rq->mq_hctx = NULL;
502         if (rq->tag != BLK_MQ_NO_TAG)
503                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
504         if (sched_tag != BLK_MQ_NO_TAG)
505                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
506         blk_mq_sched_restart(hctx);
507         blk_queue_exit(q);
508 }
509
510 void blk_mq_free_request(struct request *rq)
511 {
512         struct request_queue *q = rq->q;
513         struct elevator_queue *e = q->elevator;
514         struct blk_mq_ctx *ctx = rq->mq_ctx;
515         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
516
517         if (rq->rq_flags & RQF_ELVPRIV) {
518                 if (e && e->type->ops.finish_request)
519                         e->type->ops.finish_request(rq);
520                 if (rq->elv.icq) {
521                         put_io_context(rq->elv.icq->ioc);
522                         rq->elv.icq = NULL;
523                 }
524         }
525
526         ctx->rq_completed[rq_is_sync(rq)]++;
527         if (rq->rq_flags & RQF_MQ_INFLIGHT)
528                 atomic_dec(&hctx->nr_active);
529
530         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
531                 laptop_io_completion(q->backing_dev_info);
532
533         rq_qos_done(q, rq);
534
535         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
536         if (refcount_dec_and_test(&rq->ref))
537                 __blk_mq_free_request(rq);
538 }
539 EXPORT_SYMBOL_GPL(blk_mq_free_request);
540
541 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
542 {
543         u64 now = 0;
544
545         if (blk_mq_need_time_stamp(rq))
546                 now = ktime_get_ns();
547
548         if (rq->rq_flags & RQF_STATS) {
549                 blk_mq_poll_stats_start(rq->q);
550                 blk_stat_add(rq, now);
551         }
552
553         if (rq->internal_tag != BLK_MQ_NO_TAG)
554                 blk_mq_sched_completed_request(rq, now);
555
556         blk_account_io_done(rq, now);
557
558         if (rq->end_io) {
559                 rq_qos_done(rq->q, rq);
560                 rq->end_io(rq, error);
561         } else {
562                 blk_mq_free_request(rq);
563         }
564 }
565 EXPORT_SYMBOL(__blk_mq_end_request);
566
567 void blk_mq_end_request(struct request *rq, blk_status_t error)
568 {
569         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
570                 BUG();
571         __blk_mq_end_request(rq, error);
572 }
573 EXPORT_SYMBOL(blk_mq_end_request);
574
575 /*
576  * Softirq action handler - move entries to local list and loop over them
577  * while passing them to the queue registered handler.
578  */
579 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
580 {
581         struct list_head *cpu_list, local_list;
582
583         local_irq_disable();
584         cpu_list = this_cpu_ptr(&blk_cpu_done);
585         list_replace_init(cpu_list, &local_list);
586         local_irq_enable();
587
588         while (!list_empty(&local_list)) {
589                 struct request *rq;
590
591                 rq = list_entry(local_list.next, struct request, ipi_list);
592                 list_del_init(&rq->ipi_list);
593                 rq->q->mq_ops->complete(rq);
594         }
595 }
596
597 static void blk_mq_trigger_softirq(struct request *rq)
598 {
599         struct list_head *list;
600         unsigned long flags;
601
602         local_irq_save(flags);
603         list = this_cpu_ptr(&blk_cpu_done);
604         list_add_tail(&rq->ipi_list, list);
605
606         /*
607          * If the list only contains our just added request, signal a raise of
608          * the softirq.  If there are already entries there, someone already
609          * raised the irq but it hasn't run yet.
610          */
611         if (list->next == &rq->ipi_list)
612                 raise_softirq_irqoff(BLOCK_SOFTIRQ);
613         local_irq_restore(flags);
614 }
615
616 static int blk_softirq_cpu_dead(unsigned int cpu)
617 {
618         /*
619          * If a CPU goes away, splice its entries to the current CPU
620          * and trigger a run of the softirq
621          */
622         local_irq_disable();
623         list_splice_init(&per_cpu(blk_cpu_done, cpu),
624                          this_cpu_ptr(&blk_cpu_done));
625         raise_softirq_irqoff(BLOCK_SOFTIRQ);
626         local_irq_enable();
627
628         return 0;
629 }
630
631
632 static void __blk_mq_complete_request_remote(void *data)
633 {
634         struct request *rq = data;
635
636         /*
637          * For most of single queue controllers, there is only one irq vector
638          * for handling I/O completion, and the only irq's affinity is set
639          * to all possible CPUs.  On most of ARCHs, this affinity means the irq
640          * is handled on one specific CPU.
641          *
642          * So complete I/O requests in softirq context in case of single queue
643          * devices to avoid degrading I/O performance due to irqsoff latency.
644          */
645         if (rq->q->nr_hw_queues == 1)
646                 blk_mq_trigger_softirq(rq);
647         else
648                 rq->q->mq_ops->complete(rq);
649 }
650
651 static inline bool blk_mq_complete_need_ipi(struct request *rq)
652 {
653         int cpu = raw_smp_processor_id();
654
655         if (!IS_ENABLED(CONFIG_SMP) ||
656             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
657                 return false;
658
659         /* same CPU or cache domain?  Complete locally */
660         if (cpu == rq->mq_ctx->cpu ||
661             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
662              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
663                 return false;
664
665         /* don't try to IPI to an offline CPU */
666         return cpu_online(rq->mq_ctx->cpu);
667 }
668
669 bool blk_mq_complete_request_remote(struct request *rq)
670 {
671         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
672
673         blk_mq_put_driver_tag(rq);
674
675         /*
676          * For a polled request, always complete locallly, it's pointless
677          * to redirect the completion.
678          */
679         if (rq->cmd_flags & REQ_HIPRI)
680                 return false;
681
682         if (blk_mq_complete_need_ipi(rq)) {
683                 rq->csd.func = __blk_mq_complete_request_remote;
684                 rq->csd.info = rq;
685                 rq->csd.flags = 0;
686                 smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
687         } else {
688                 if (rq->q->nr_hw_queues > 1)
689                         return false;
690                 blk_mq_trigger_softirq(rq);
691         }
692
693         return true;
694 }
695 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
696
697 /**
698  * blk_mq_complete_request - end I/O on a request
699  * @rq:         the request being processed
700  *
701  * Description:
702  *      Complete a request by scheduling the ->complete_rq operation.
703  **/
704 void blk_mq_complete_request(struct request *rq)
705 {
706         if (!blk_mq_complete_request_remote(rq))
707                 rq->q->mq_ops->complete(rq);
708 }
709 EXPORT_SYMBOL(blk_mq_complete_request);
710
711 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
712         __releases(hctx->srcu)
713 {
714         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
715                 rcu_read_unlock();
716         else
717                 srcu_read_unlock(hctx->srcu, srcu_idx);
718 }
719
720 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
721         __acquires(hctx->srcu)
722 {
723         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
724                 /* shut up gcc false positive */
725                 *srcu_idx = 0;
726                 rcu_read_lock();
727         } else
728                 *srcu_idx = srcu_read_lock(hctx->srcu);
729 }
730
731 /**
732  * blk_mq_start_request - Start processing a request
733  * @rq: Pointer to request to be started
734  *
735  * Function used by device drivers to notify the block layer that a request
736  * is going to be processed now, so blk layer can do proper initializations
737  * such as starting the timeout timer.
738  */
739 void blk_mq_start_request(struct request *rq)
740 {
741         struct request_queue *q = rq->q;
742
743         trace_block_rq_issue(q, rq);
744
745         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
746                 rq->io_start_time_ns = ktime_get_ns();
747                 rq->stats_sectors = blk_rq_sectors(rq);
748                 rq->rq_flags |= RQF_STATS;
749                 rq_qos_issue(q, rq);
750         }
751
752         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
753
754         blk_add_timer(rq);
755         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
756
757 #ifdef CONFIG_BLK_DEV_INTEGRITY
758         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
759                 q->integrity.profile->prepare_fn(rq);
760 #endif
761 }
762 EXPORT_SYMBOL(blk_mq_start_request);
763
764 static void __blk_mq_requeue_request(struct request *rq)
765 {
766         struct request_queue *q = rq->q;
767
768         blk_mq_put_driver_tag(rq);
769
770         trace_block_rq_requeue(q, rq);
771         rq_qos_requeue(q, rq);
772
773         if (blk_mq_request_started(rq)) {
774                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
775                 rq->rq_flags &= ~RQF_TIMED_OUT;
776         }
777 }
778
779 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
780 {
781         __blk_mq_requeue_request(rq);
782
783         /* this request will be re-inserted to io scheduler queue */
784         blk_mq_sched_requeue_request(rq);
785
786         BUG_ON(!list_empty(&rq->queuelist));
787         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
788 }
789 EXPORT_SYMBOL(blk_mq_requeue_request);
790
791 static void blk_mq_requeue_work(struct work_struct *work)
792 {
793         struct request_queue *q =
794                 container_of(work, struct request_queue, requeue_work.work);
795         LIST_HEAD(rq_list);
796         struct request *rq, *next;
797
798         spin_lock_irq(&q->requeue_lock);
799         list_splice_init(&q->requeue_list, &rq_list);
800         spin_unlock_irq(&q->requeue_lock);
801
802         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
803                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
804                         continue;
805
806                 rq->rq_flags &= ~RQF_SOFTBARRIER;
807                 list_del_init(&rq->queuelist);
808                 /*
809                  * If RQF_DONTPREP, rq has contained some driver specific
810                  * data, so insert it to hctx dispatch list to avoid any
811                  * merge.
812                  */
813                 if (rq->rq_flags & RQF_DONTPREP)
814                         blk_mq_request_bypass_insert(rq, false, false);
815                 else
816                         blk_mq_sched_insert_request(rq, true, false, false);
817         }
818
819         while (!list_empty(&rq_list)) {
820                 rq = list_entry(rq_list.next, struct request, queuelist);
821                 list_del_init(&rq->queuelist);
822                 blk_mq_sched_insert_request(rq, false, false, false);
823         }
824
825         blk_mq_run_hw_queues(q, false);
826 }
827
828 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
829                                 bool kick_requeue_list)
830 {
831         struct request_queue *q = rq->q;
832         unsigned long flags;
833
834         /*
835          * We abuse this flag that is otherwise used by the I/O scheduler to
836          * request head insertion from the workqueue.
837          */
838         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
839
840         spin_lock_irqsave(&q->requeue_lock, flags);
841         if (at_head) {
842                 rq->rq_flags |= RQF_SOFTBARRIER;
843                 list_add(&rq->queuelist, &q->requeue_list);
844         } else {
845                 list_add_tail(&rq->queuelist, &q->requeue_list);
846         }
847         spin_unlock_irqrestore(&q->requeue_lock, flags);
848
849         if (kick_requeue_list)
850                 blk_mq_kick_requeue_list(q);
851 }
852
853 void blk_mq_kick_requeue_list(struct request_queue *q)
854 {
855         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
856 }
857 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
858
859 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
860                                     unsigned long msecs)
861 {
862         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
863                                     msecs_to_jiffies(msecs));
864 }
865 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
866
867 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
868 {
869         if (tag < tags->nr_tags) {
870                 prefetch(tags->rqs[tag]);
871                 return tags->rqs[tag];
872         }
873
874         return NULL;
875 }
876 EXPORT_SYMBOL(blk_mq_tag_to_rq);
877
878 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
879                                void *priv, bool reserved)
880 {
881         /*
882          * If we find a request that is inflight and the queue matches,
883          * we know the queue is busy. Return false to stop the iteration.
884          */
885         if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
886                 bool *busy = priv;
887
888                 *busy = true;
889                 return false;
890         }
891
892         return true;
893 }
894
895 bool blk_mq_queue_inflight(struct request_queue *q)
896 {
897         bool busy = false;
898
899         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
900         return busy;
901 }
902 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
903
904 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
905 {
906         req->rq_flags |= RQF_TIMED_OUT;
907         if (req->q->mq_ops->timeout) {
908                 enum blk_eh_timer_return ret;
909
910                 ret = req->q->mq_ops->timeout(req, reserved);
911                 if (ret == BLK_EH_DONE)
912                         return;
913                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
914         }
915
916         blk_add_timer(req);
917 }
918
919 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
920 {
921         unsigned long deadline;
922
923         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
924                 return false;
925         if (rq->rq_flags & RQF_TIMED_OUT)
926                 return false;
927
928         deadline = READ_ONCE(rq->deadline);
929         if (time_after_eq(jiffies, deadline))
930                 return true;
931
932         if (*next == 0)
933                 *next = deadline;
934         else if (time_after(*next, deadline))
935                 *next = deadline;
936         return false;
937 }
938
939 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
940                 struct request *rq, void *priv, bool reserved)
941 {
942         unsigned long *next = priv;
943
944         /*
945          * Just do a quick check if it is expired before locking the request in
946          * so we're not unnecessarilly synchronizing across CPUs.
947          */
948         if (!blk_mq_req_expired(rq, next))
949                 return true;
950
951         /*
952          * We have reason to believe the request may be expired. Take a
953          * reference on the request to lock this request lifetime into its
954          * currently allocated context to prevent it from being reallocated in
955          * the event the completion by-passes this timeout handler.
956          *
957          * If the reference was already released, then the driver beat the
958          * timeout handler to posting a natural completion.
959          */
960         if (!refcount_inc_not_zero(&rq->ref))
961                 return true;
962
963         /*
964          * The request is now locked and cannot be reallocated underneath the
965          * timeout handler's processing. Re-verify this exact request is truly
966          * expired; if it is not expired, then the request was completed and
967          * reallocated as a new request.
968          */
969         if (blk_mq_req_expired(rq, next))
970                 blk_mq_rq_timed_out(rq, reserved);
971
972         if (is_flush_rq(rq, hctx))
973                 rq->end_io(rq, 0);
974         else if (refcount_dec_and_test(&rq->ref))
975                 __blk_mq_free_request(rq);
976
977         return true;
978 }
979
980 static void blk_mq_timeout_work(struct work_struct *work)
981 {
982         struct request_queue *q =
983                 container_of(work, struct request_queue, timeout_work);
984         unsigned long next = 0;
985         struct blk_mq_hw_ctx *hctx;
986         int i;
987
988         /* A deadlock might occur if a request is stuck requiring a
989          * timeout at the same time a queue freeze is waiting
990          * completion, since the timeout code would not be able to
991          * acquire the queue reference here.
992          *
993          * That's why we don't use blk_queue_enter here; instead, we use
994          * percpu_ref_tryget directly, because we need to be able to
995          * obtain a reference even in the short window between the queue
996          * starting to freeze, by dropping the first reference in
997          * blk_freeze_queue_start, and the moment the last request is
998          * consumed, marked by the instant q_usage_counter reaches
999          * zero.
1000          */
1001         if (!percpu_ref_tryget(&q->q_usage_counter))
1002                 return;
1003
1004         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1005
1006         if (next != 0) {
1007                 mod_timer(&q->timeout, next);
1008         } else {
1009                 /*
1010                  * Request timeouts are handled as a forward rolling timer. If
1011                  * we end up here it means that no requests are pending and
1012                  * also that no request has been pending for a while. Mark
1013                  * each hctx as idle.
1014                  */
1015                 queue_for_each_hw_ctx(q, hctx, i) {
1016                         /* the hctx may be unmapped, so check it here */
1017                         if (blk_mq_hw_queue_mapped(hctx))
1018                                 blk_mq_tag_idle(hctx);
1019                 }
1020         }
1021         blk_queue_exit(q);
1022 }
1023
1024 struct flush_busy_ctx_data {
1025         struct blk_mq_hw_ctx *hctx;
1026         struct list_head *list;
1027 };
1028
1029 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1030 {
1031         struct flush_busy_ctx_data *flush_data = data;
1032         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1033         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1034         enum hctx_type type = hctx->type;
1035
1036         spin_lock(&ctx->lock);
1037         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1038         sbitmap_clear_bit(sb, bitnr);
1039         spin_unlock(&ctx->lock);
1040         return true;
1041 }
1042
1043 /*
1044  * Process software queues that have been marked busy, splicing them
1045  * to the for-dispatch
1046  */
1047 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1048 {
1049         struct flush_busy_ctx_data data = {
1050                 .hctx = hctx,
1051                 .list = list,
1052         };
1053
1054         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1055 }
1056 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1057
1058 struct dispatch_rq_data {
1059         struct blk_mq_hw_ctx *hctx;
1060         struct request *rq;
1061 };
1062
1063 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1064                 void *data)
1065 {
1066         struct dispatch_rq_data *dispatch_data = data;
1067         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1068         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1069         enum hctx_type type = hctx->type;
1070
1071         spin_lock(&ctx->lock);
1072         if (!list_empty(&ctx->rq_lists[type])) {
1073                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1074                 list_del_init(&dispatch_data->rq->queuelist);
1075                 if (list_empty(&ctx->rq_lists[type]))
1076                         sbitmap_clear_bit(sb, bitnr);
1077         }
1078         spin_unlock(&ctx->lock);
1079
1080         return !dispatch_data->rq;
1081 }
1082
1083 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1084                                         struct blk_mq_ctx *start)
1085 {
1086         unsigned off = start ? start->index_hw[hctx->type] : 0;
1087         struct dispatch_rq_data data = {
1088                 .hctx = hctx,
1089                 .rq   = NULL,
1090         };
1091
1092         __sbitmap_for_each_set(&hctx->ctx_map, off,
1093                                dispatch_rq_from_ctx, &data);
1094
1095         return data.rq;
1096 }
1097
1098 static inline unsigned int queued_to_index(unsigned int queued)
1099 {
1100         if (!queued)
1101                 return 0;
1102
1103         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1104 }
1105
1106 static bool __blk_mq_get_driver_tag(struct request *rq)
1107 {
1108         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1109         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1110         bool shared = blk_mq_tag_busy(rq->mq_hctx);
1111         int tag;
1112
1113         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1114                 bt = &rq->mq_hctx->tags->breserved_tags;
1115                 tag_offset = 0;
1116         }
1117
1118         if (!hctx_may_queue(rq->mq_hctx, bt))
1119                 return false;
1120         tag = __sbitmap_queue_get(bt);
1121         if (tag == BLK_MQ_NO_TAG)
1122                 return false;
1123
1124         rq->tag = tag + tag_offset;
1125         if (shared) {
1126                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1127                 atomic_inc(&rq->mq_hctx->nr_active);
1128         }
1129         rq->mq_hctx->tags->rqs[rq->tag] = rq;
1130         return true;
1131 }
1132
1133 static bool blk_mq_get_driver_tag(struct request *rq)
1134 {
1135         if (rq->tag != BLK_MQ_NO_TAG)
1136                 return true;
1137         return __blk_mq_get_driver_tag(rq);
1138 }
1139
1140 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1141                                 int flags, void *key)
1142 {
1143         struct blk_mq_hw_ctx *hctx;
1144
1145         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1146
1147         spin_lock(&hctx->dispatch_wait_lock);
1148         if (!list_empty(&wait->entry)) {
1149                 struct sbitmap_queue *sbq;
1150
1151                 list_del_init(&wait->entry);
1152                 sbq = &hctx->tags->bitmap_tags;
1153                 atomic_dec(&sbq->ws_active);
1154         }
1155         spin_unlock(&hctx->dispatch_wait_lock);
1156
1157         blk_mq_run_hw_queue(hctx, true);
1158         return 1;
1159 }
1160
1161 /*
1162  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1163  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1164  * restart. For both cases, take care to check the condition again after
1165  * marking us as waiting.
1166  */
1167 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1168                                  struct request *rq)
1169 {
1170         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1171         struct wait_queue_head *wq;
1172         wait_queue_entry_t *wait;
1173         bool ret;
1174
1175         if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1176                 blk_mq_sched_mark_restart_hctx(hctx);
1177
1178                 /*
1179                  * It's possible that a tag was freed in the window between the
1180                  * allocation failure and adding the hardware queue to the wait
1181                  * queue.
1182                  *
1183                  * Don't clear RESTART here, someone else could have set it.
1184                  * At most this will cost an extra queue run.
1185                  */
1186                 return blk_mq_get_driver_tag(rq);
1187         }
1188
1189         wait = &hctx->dispatch_wait;
1190         if (!list_empty_careful(&wait->entry))
1191                 return false;
1192
1193         wq = &bt_wait_ptr(sbq, hctx)->wait;
1194
1195         spin_lock_irq(&wq->lock);
1196         spin_lock(&hctx->dispatch_wait_lock);
1197         if (!list_empty(&wait->entry)) {
1198                 spin_unlock(&hctx->dispatch_wait_lock);
1199                 spin_unlock_irq(&wq->lock);
1200                 return false;
1201         }
1202
1203         atomic_inc(&sbq->ws_active);
1204         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1205         __add_wait_queue(wq, wait);
1206
1207         /*
1208          * It's possible that a tag was freed in the window between the
1209          * allocation failure and adding the hardware queue to the wait
1210          * queue.
1211          */
1212         ret = blk_mq_get_driver_tag(rq);
1213         if (!ret) {
1214                 spin_unlock(&hctx->dispatch_wait_lock);
1215                 spin_unlock_irq(&wq->lock);
1216                 return false;
1217         }
1218
1219         /*
1220          * We got a tag, remove ourselves from the wait queue to ensure
1221          * someone else gets the wakeup.
1222          */
1223         list_del_init(&wait->entry);
1224         atomic_dec(&sbq->ws_active);
1225         spin_unlock(&hctx->dispatch_wait_lock);
1226         spin_unlock_irq(&wq->lock);
1227
1228         return true;
1229 }
1230
1231 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1232 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1233 /*
1234  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1235  * - EWMA is one simple way to compute running average value
1236  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1237  * - take 4 as factor for avoiding to get too small(0) result, and this
1238  *   factor doesn't matter because EWMA decreases exponentially
1239  */
1240 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1241 {
1242         unsigned int ewma;
1243
1244         if (hctx->queue->elevator)
1245                 return;
1246
1247         ewma = hctx->dispatch_busy;
1248
1249         if (!ewma && !busy)
1250                 return;
1251
1252         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1253         if (busy)
1254                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1255         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1256
1257         hctx->dispatch_busy = ewma;
1258 }
1259
1260 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1261
1262 static void blk_mq_handle_dev_resource(struct request *rq,
1263                                        struct list_head *list)
1264 {
1265         struct request *next =
1266                 list_first_entry_or_null(list, struct request, queuelist);
1267
1268         /*
1269          * If an I/O scheduler has been configured and we got a driver tag for
1270          * the next request already, free it.
1271          */
1272         if (next)
1273                 blk_mq_put_driver_tag(next);
1274
1275         list_add(&rq->queuelist, list);
1276         __blk_mq_requeue_request(rq);
1277 }
1278
1279 static void blk_mq_handle_zone_resource(struct request *rq,
1280                                         struct list_head *zone_list)
1281 {
1282         /*
1283          * If we end up here it is because we cannot dispatch a request to a
1284          * specific zone due to LLD level zone-write locking or other zone
1285          * related resource not being available. In this case, set the request
1286          * aside in zone_list for retrying it later.
1287          */
1288         list_add(&rq->queuelist, zone_list);
1289         __blk_mq_requeue_request(rq);
1290 }
1291
1292 enum prep_dispatch {
1293         PREP_DISPATCH_OK,
1294         PREP_DISPATCH_NO_TAG,
1295         PREP_DISPATCH_NO_BUDGET,
1296 };
1297
1298 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1299                                                   bool need_budget)
1300 {
1301         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1302
1303         if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1304                 blk_mq_put_driver_tag(rq);
1305                 return PREP_DISPATCH_NO_BUDGET;
1306         }
1307
1308         if (!blk_mq_get_driver_tag(rq)) {
1309                 /*
1310                  * The initial allocation attempt failed, so we need to
1311                  * rerun the hardware queue when a tag is freed. The
1312                  * waitqueue takes care of that. If the queue is run
1313                  * before we add this entry back on the dispatch list,
1314                  * we'll re-run it below.
1315                  */
1316                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1317                         /*
1318                          * All budgets not got from this function will be put
1319                          * together during handling partial dispatch
1320                          */
1321                         if (need_budget)
1322                                 blk_mq_put_dispatch_budget(rq->q);
1323                         return PREP_DISPATCH_NO_TAG;
1324                 }
1325         }
1326
1327         return PREP_DISPATCH_OK;
1328 }
1329
1330 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1331 static void blk_mq_release_budgets(struct request_queue *q,
1332                 unsigned int nr_budgets)
1333 {
1334         int i;
1335
1336         for (i = 0; i < nr_budgets; i++)
1337                 blk_mq_put_dispatch_budget(q);
1338 }
1339
1340 /*
1341  * Returns true if we did some work AND can potentially do more.
1342  */
1343 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1344                              unsigned int nr_budgets)
1345 {
1346         enum prep_dispatch prep;
1347         struct request_queue *q = hctx->queue;
1348         struct request *rq, *nxt;
1349         int errors, queued;
1350         blk_status_t ret = BLK_STS_OK;
1351         LIST_HEAD(zone_list);
1352
1353         if (list_empty(list))
1354                 return false;
1355
1356         /*
1357          * Now process all the entries, sending them to the driver.
1358          */
1359         errors = queued = 0;
1360         do {
1361                 struct blk_mq_queue_data bd;
1362
1363                 rq = list_first_entry(list, struct request, queuelist);
1364
1365                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1366                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1367                 if (prep != PREP_DISPATCH_OK)
1368                         break;
1369
1370                 list_del_init(&rq->queuelist);
1371
1372                 bd.rq = rq;
1373
1374                 /*
1375                  * Flag last if we have no more requests, or if we have more
1376                  * but can't assign a driver tag to it.
1377                  */
1378                 if (list_empty(list))
1379                         bd.last = true;
1380                 else {
1381                         nxt = list_first_entry(list, struct request, queuelist);
1382                         bd.last = !blk_mq_get_driver_tag(nxt);
1383                 }
1384
1385                 /*
1386                  * once the request is queued to lld, no need to cover the
1387                  * budget any more
1388                  */
1389                 if (nr_budgets)
1390                         nr_budgets--;
1391                 ret = q->mq_ops->queue_rq(hctx, &bd);
1392                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1393                         blk_mq_handle_dev_resource(rq, list);
1394                         break;
1395                 } else if (ret == BLK_STS_ZONE_RESOURCE) {
1396                         /*
1397                          * Move the request to zone_list and keep going through
1398                          * the dispatch list to find more requests the drive can
1399                          * accept.
1400                          */
1401                         blk_mq_handle_zone_resource(rq, &zone_list);
1402                         if (list_empty(list))
1403                                 break;
1404                         continue;
1405                 }
1406
1407                 if (unlikely(ret != BLK_STS_OK)) {
1408                         errors++;
1409                         blk_mq_end_request(rq, BLK_STS_IOERR);
1410                         continue;
1411                 }
1412
1413                 queued++;
1414         } while (!list_empty(list));
1415
1416         if (!list_empty(&zone_list))
1417                 list_splice_tail_init(&zone_list, list);
1418
1419         hctx->dispatched[queued_to_index(queued)]++;
1420
1421         /*
1422          * Any items that need requeuing? Stuff them into hctx->dispatch,
1423          * that is where we will continue on next queue run.
1424          */
1425         if (!list_empty(list)) {
1426                 bool needs_restart;
1427                 /* For non-shared tags, the RESTART check will suffice */
1428                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1429                         (hctx->flags & BLK_MQ_F_TAG_SHARED);
1430                 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1431
1432                 blk_mq_release_budgets(q, nr_budgets);
1433
1434                 /*
1435                  * If we didn't flush the entire list, we could have told
1436                  * the driver there was more coming, but that turned out to
1437                  * be a lie.
1438                  */
1439                 if (q->mq_ops->commit_rqs && queued)
1440                         q->mq_ops->commit_rqs(hctx);
1441
1442                 spin_lock(&hctx->lock);
1443                 list_splice_tail_init(list, &hctx->dispatch);
1444                 spin_unlock(&hctx->lock);
1445
1446                 /*
1447                  * If SCHED_RESTART was set by the caller of this function and
1448                  * it is no longer set that means that it was cleared by another
1449                  * thread and hence that a queue rerun is needed.
1450                  *
1451                  * If 'no_tag' is set, that means that we failed getting
1452                  * a driver tag with an I/O scheduler attached. If our dispatch
1453                  * waitqueue is no longer active, ensure that we run the queue
1454                  * AFTER adding our entries back to the list.
1455                  *
1456                  * If no I/O scheduler has been configured it is possible that
1457                  * the hardware queue got stopped and restarted before requests
1458                  * were pushed back onto the dispatch list. Rerun the queue to
1459                  * avoid starvation. Notes:
1460                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1461                  *   been stopped before rerunning a queue.
1462                  * - Some but not all block drivers stop a queue before
1463                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1464                  *   and dm-rq.
1465                  *
1466                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1467                  * bit is set, run queue after a delay to avoid IO stalls
1468                  * that could otherwise occur if the queue is idle.  We'll do
1469                  * similar if we couldn't get budget and SCHED_RESTART is set.
1470                  */
1471                 needs_restart = blk_mq_sched_needs_restart(hctx);
1472                 if (!needs_restart ||
1473                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1474                         blk_mq_run_hw_queue(hctx, true);
1475                 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1476                                            no_budget_avail))
1477                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1478
1479                 blk_mq_update_dispatch_busy(hctx, true);
1480                 return false;
1481         } else
1482                 blk_mq_update_dispatch_busy(hctx, false);
1483
1484         return (queued + errors) != 0;
1485 }
1486
1487 /**
1488  * __blk_mq_run_hw_queue - Run a hardware queue.
1489  * @hctx: Pointer to the hardware queue to run.
1490  *
1491  * Send pending requests to the hardware.
1492  */
1493 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1494 {
1495         int srcu_idx;
1496
1497         /*
1498          * We should be running this queue from one of the CPUs that
1499          * are mapped to it.
1500          *
1501          * There are at least two related races now between setting
1502          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1503          * __blk_mq_run_hw_queue():
1504          *
1505          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1506          *   but later it becomes online, then this warning is harmless
1507          *   at all
1508          *
1509          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1510          *   but later it becomes offline, then the warning can't be
1511          *   triggered, and we depend on blk-mq timeout handler to
1512          *   handle dispatched requests to this hctx
1513          */
1514         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1515                 cpu_online(hctx->next_cpu)) {
1516                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1517                         raw_smp_processor_id(),
1518                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1519                 dump_stack();
1520         }
1521
1522         /*
1523          * We can't run the queue inline with ints disabled. Ensure that
1524          * we catch bad users of this early.
1525          */
1526         WARN_ON_ONCE(in_interrupt());
1527
1528         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1529
1530         hctx_lock(hctx, &srcu_idx);
1531         blk_mq_sched_dispatch_requests(hctx);
1532         hctx_unlock(hctx, srcu_idx);
1533 }
1534
1535 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1536 {
1537         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1538
1539         if (cpu >= nr_cpu_ids)
1540                 cpu = cpumask_first(hctx->cpumask);
1541         return cpu;
1542 }
1543
1544 /*
1545  * It'd be great if the workqueue API had a way to pass
1546  * in a mask and had some smarts for more clever placement.
1547  * For now we just round-robin here, switching for every
1548  * BLK_MQ_CPU_WORK_BATCH queued items.
1549  */
1550 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1551 {
1552         bool tried = false;
1553         int next_cpu = hctx->next_cpu;
1554
1555         if (hctx->queue->nr_hw_queues == 1)
1556                 return WORK_CPU_UNBOUND;
1557
1558         if (--hctx->next_cpu_batch <= 0) {
1559 select_cpu:
1560                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1561                                 cpu_online_mask);
1562                 if (next_cpu >= nr_cpu_ids)
1563                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1564                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1565         }
1566
1567         /*
1568          * Do unbound schedule if we can't find a online CPU for this hctx,
1569          * and it should only happen in the path of handling CPU DEAD.
1570          */
1571         if (!cpu_online(next_cpu)) {
1572                 if (!tried) {
1573                         tried = true;
1574                         goto select_cpu;
1575                 }
1576
1577                 /*
1578                  * Make sure to re-select CPU next time once after CPUs
1579                  * in hctx->cpumask become online again.
1580                  */
1581                 hctx->next_cpu = next_cpu;
1582                 hctx->next_cpu_batch = 1;
1583                 return WORK_CPU_UNBOUND;
1584         }
1585
1586         hctx->next_cpu = next_cpu;
1587         return next_cpu;
1588 }
1589
1590 /**
1591  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1592  * @hctx: Pointer to the hardware queue to run.
1593  * @async: If we want to run the queue asynchronously.
1594  * @msecs: Microseconds of delay to wait before running the queue.
1595  *
1596  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1597  * with a delay of @msecs.
1598  */
1599 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1600                                         unsigned long msecs)
1601 {
1602         if (unlikely(blk_mq_hctx_stopped(hctx)))
1603                 return;
1604
1605         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1606                 int cpu = get_cpu();
1607                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1608                         __blk_mq_run_hw_queue(hctx);
1609                         put_cpu();
1610                         return;
1611                 }
1612
1613                 put_cpu();
1614         }
1615
1616         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1617                                     msecs_to_jiffies(msecs));
1618 }
1619
1620 /**
1621  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1622  * @hctx: Pointer to the hardware queue to run.
1623  * @msecs: Microseconds of delay to wait before running the queue.
1624  *
1625  * Run a hardware queue asynchronously with a delay of @msecs.
1626  */
1627 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1628 {
1629         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1630 }
1631 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1632
1633 /**
1634  * blk_mq_run_hw_queue - Start to run a hardware queue.
1635  * @hctx: Pointer to the hardware queue to run.
1636  * @async: If we want to run the queue asynchronously.
1637  *
1638  * Check if the request queue is not in a quiesced state and if there are
1639  * pending requests to be sent. If this is true, run the queue to send requests
1640  * to hardware.
1641  */
1642 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1643 {
1644         int srcu_idx;
1645         bool need_run;
1646
1647         /*
1648          * When queue is quiesced, we may be switching io scheduler, or
1649          * updating nr_hw_queues, or other things, and we can't run queue
1650          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1651          *
1652          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1653          * quiesced.
1654          */
1655         hctx_lock(hctx, &srcu_idx);
1656         need_run = !blk_queue_quiesced(hctx->queue) &&
1657                 blk_mq_hctx_has_pending(hctx);
1658         hctx_unlock(hctx, srcu_idx);
1659
1660         if (need_run)
1661                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1662 }
1663 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1664
1665 /**
1666  * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1667  * @q: Pointer to the request queue to run.
1668  * @async: If we want to run the queue asynchronously.
1669  */
1670 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1671 {
1672         struct blk_mq_hw_ctx *hctx;
1673         int i;
1674
1675         queue_for_each_hw_ctx(q, hctx, i) {
1676                 if (blk_mq_hctx_stopped(hctx))
1677                         continue;
1678
1679                 blk_mq_run_hw_queue(hctx, async);
1680         }
1681 }
1682 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1683
1684 /**
1685  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1686  * @q: Pointer to the request queue to run.
1687  * @msecs: Microseconds of delay to wait before running the queues.
1688  */
1689 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1690 {
1691         struct blk_mq_hw_ctx *hctx;
1692         int i;
1693
1694         queue_for_each_hw_ctx(q, hctx, i) {
1695                 if (blk_mq_hctx_stopped(hctx))
1696                         continue;
1697
1698                 blk_mq_delay_run_hw_queue(hctx, msecs);
1699         }
1700 }
1701 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1702
1703 /**
1704  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1705  * @q: request queue.
1706  *
1707  * The caller is responsible for serializing this function against
1708  * blk_mq_{start,stop}_hw_queue().
1709  */
1710 bool blk_mq_queue_stopped(struct request_queue *q)
1711 {
1712         struct blk_mq_hw_ctx *hctx;
1713         int i;
1714
1715         queue_for_each_hw_ctx(q, hctx, i)
1716                 if (blk_mq_hctx_stopped(hctx))
1717                         return true;
1718
1719         return false;
1720 }
1721 EXPORT_SYMBOL(blk_mq_queue_stopped);
1722
1723 /*
1724  * This function is often used for pausing .queue_rq() by driver when
1725  * there isn't enough resource or some conditions aren't satisfied, and
1726  * BLK_STS_RESOURCE is usually returned.
1727  *
1728  * We do not guarantee that dispatch can be drained or blocked
1729  * after blk_mq_stop_hw_queue() returns. Please use
1730  * blk_mq_quiesce_queue() for that requirement.
1731  */
1732 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1733 {
1734         cancel_delayed_work(&hctx->run_work);
1735
1736         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1737 }
1738 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1739
1740 /*
1741  * This function is often used for pausing .queue_rq() by driver when
1742  * there isn't enough resource or some conditions aren't satisfied, and
1743  * BLK_STS_RESOURCE is usually returned.
1744  *
1745  * We do not guarantee that dispatch can be drained or blocked
1746  * after blk_mq_stop_hw_queues() returns. Please use
1747  * blk_mq_quiesce_queue() for that requirement.
1748  */
1749 void blk_mq_stop_hw_queues(struct request_queue *q)
1750 {
1751         struct blk_mq_hw_ctx *hctx;
1752         int i;
1753
1754         queue_for_each_hw_ctx(q, hctx, i)
1755                 blk_mq_stop_hw_queue(hctx);
1756 }
1757 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1758
1759 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1760 {
1761         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1762
1763         blk_mq_run_hw_queue(hctx, false);
1764 }
1765 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1766
1767 void blk_mq_start_hw_queues(struct request_queue *q)
1768 {
1769         struct blk_mq_hw_ctx *hctx;
1770         int i;
1771
1772         queue_for_each_hw_ctx(q, hctx, i)
1773                 blk_mq_start_hw_queue(hctx);
1774 }
1775 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1776
1777 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1778 {
1779         if (!blk_mq_hctx_stopped(hctx))
1780                 return;
1781
1782         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1783         blk_mq_run_hw_queue(hctx, async);
1784 }
1785 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1786
1787 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1788 {
1789         struct blk_mq_hw_ctx *hctx;
1790         int i;
1791
1792         queue_for_each_hw_ctx(q, hctx, i)
1793                 blk_mq_start_stopped_hw_queue(hctx, async);
1794 }
1795 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1796
1797 static void blk_mq_run_work_fn(struct work_struct *work)
1798 {
1799         struct blk_mq_hw_ctx *hctx;
1800
1801         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1802
1803         /*
1804          * If we are stopped, don't run the queue.
1805          */
1806         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1807                 return;
1808
1809         __blk_mq_run_hw_queue(hctx);
1810 }
1811
1812 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1813                                             struct request *rq,
1814                                             bool at_head)
1815 {
1816         struct blk_mq_ctx *ctx = rq->mq_ctx;
1817         enum hctx_type type = hctx->type;
1818
1819         lockdep_assert_held(&ctx->lock);
1820
1821         trace_block_rq_insert(hctx->queue, rq);
1822
1823         if (at_head)
1824                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1825         else
1826                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1827 }
1828
1829 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1830                              bool at_head)
1831 {
1832         struct blk_mq_ctx *ctx = rq->mq_ctx;
1833
1834         lockdep_assert_held(&ctx->lock);
1835
1836         __blk_mq_insert_req_list(hctx, rq, at_head);
1837         blk_mq_hctx_mark_pending(hctx, ctx);
1838 }
1839
1840 /**
1841  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1842  * @rq: Pointer to request to be inserted.
1843  * @run_queue: If we should run the hardware queue after inserting the request.
1844  *
1845  * Should only be used carefully, when the caller knows we want to
1846  * bypass a potential IO scheduler on the target device.
1847  */
1848 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1849                                   bool run_queue)
1850 {
1851         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1852
1853         spin_lock(&hctx->lock);
1854         if (at_head)
1855                 list_add(&rq->queuelist, &hctx->dispatch);
1856         else
1857                 list_add_tail(&rq->queuelist, &hctx->dispatch);
1858         spin_unlock(&hctx->lock);
1859
1860         if (run_queue)
1861                 blk_mq_run_hw_queue(hctx, false);
1862 }
1863
1864 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1865                             struct list_head *list)
1866
1867 {
1868         struct request *rq;
1869         enum hctx_type type = hctx->type;
1870
1871         /*
1872          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1873          * offline now
1874          */
1875         list_for_each_entry(rq, list, queuelist) {
1876                 BUG_ON(rq->mq_ctx != ctx);
1877                 trace_block_rq_insert(hctx->queue, rq);
1878         }
1879
1880         spin_lock(&ctx->lock);
1881         list_splice_tail_init(list, &ctx->rq_lists[type]);
1882         blk_mq_hctx_mark_pending(hctx, ctx);
1883         spin_unlock(&ctx->lock);
1884 }
1885
1886 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1887 {
1888         struct request *rqa = container_of(a, struct request, queuelist);
1889         struct request *rqb = container_of(b, struct request, queuelist);
1890
1891         if (rqa->mq_ctx != rqb->mq_ctx)
1892                 return rqa->mq_ctx > rqb->mq_ctx;
1893         if (rqa->mq_hctx != rqb->mq_hctx)
1894                 return rqa->mq_hctx > rqb->mq_hctx;
1895
1896         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1897 }
1898
1899 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1900 {
1901         LIST_HEAD(list);
1902
1903         if (list_empty(&plug->mq_list))
1904                 return;
1905         list_splice_init(&plug->mq_list, &list);
1906
1907         if (plug->rq_count > 2 && plug->multiple_queues)
1908                 list_sort(NULL, &list, plug_rq_cmp);
1909
1910         plug->rq_count = 0;
1911
1912         do {
1913                 struct list_head rq_list;
1914                 struct request *rq, *head_rq = list_entry_rq(list.next);
1915                 struct list_head *pos = &head_rq->queuelist; /* skip first */
1916                 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1917                 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1918                 unsigned int depth = 1;
1919
1920                 list_for_each_continue(pos, &list) {
1921                         rq = list_entry_rq(pos);
1922                         BUG_ON(!rq->q);
1923                         if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1924                                 break;
1925                         depth++;
1926                 }
1927
1928                 list_cut_before(&rq_list, &list, pos);
1929                 trace_block_unplug(head_rq->q, depth, !from_schedule);
1930                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1931                                                 from_schedule);
1932         } while(!list_empty(&list));
1933 }
1934
1935 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1936                 unsigned int nr_segs)
1937 {
1938         if (bio->bi_opf & REQ_RAHEAD)
1939                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1940
1941         rq->__sector = bio->bi_iter.bi_sector;
1942         rq->write_hint = bio->bi_write_hint;
1943         blk_rq_bio_prep(rq, bio, nr_segs);
1944         blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1945
1946         blk_account_io_start(rq);
1947 }
1948
1949 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1950                                             struct request *rq,
1951                                             blk_qc_t *cookie, bool last)
1952 {
1953         struct request_queue *q = rq->q;
1954         struct blk_mq_queue_data bd = {
1955                 .rq = rq,
1956                 .last = last,
1957         };
1958         blk_qc_t new_cookie;
1959         blk_status_t ret;
1960
1961         new_cookie = request_to_qc_t(hctx, rq);
1962
1963         /*
1964          * For OK queue, we are done. For error, caller may kill it.
1965          * Any other error (busy), just add it to our list as we
1966          * previously would have done.
1967          */
1968         ret = q->mq_ops->queue_rq(hctx, &bd);
1969         switch (ret) {
1970         case BLK_STS_OK:
1971                 blk_mq_update_dispatch_busy(hctx, false);
1972                 *cookie = new_cookie;
1973                 break;
1974         case BLK_STS_RESOURCE:
1975         case BLK_STS_DEV_RESOURCE:
1976                 blk_mq_update_dispatch_busy(hctx, true);
1977                 __blk_mq_requeue_request(rq);
1978                 break;
1979         default:
1980                 blk_mq_update_dispatch_busy(hctx, false);
1981                 *cookie = BLK_QC_T_NONE;
1982                 break;
1983         }
1984
1985         return ret;
1986 }
1987
1988 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1989                                                 struct request *rq,
1990                                                 blk_qc_t *cookie,
1991                                                 bool bypass_insert, bool last)
1992 {
1993         struct request_queue *q = rq->q;
1994         bool run_queue = true;
1995
1996         /*
1997          * RCU or SRCU read lock is needed before checking quiesced flag.
1998          *
1999          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2000          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2001          * and avoid driver to try to dispatch again.
2002          */
2003         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2004                 run_queue = false;
2005                 bypass_insert = false;
2006                 goto insert;
2007         }
2008
2009         if (q->elevator && !bypass_insert)
2010                 goto insert;
2011
2012         if (!blk_mq_get_dispatch_budget(q))
2013                 goto insert;
2014
2015         if (!blk_mq_get_driver_tag(rq)) {
2016                 blk_mq_put_dispatch_budget(q);
2017                 goto insert;
2018         }
2019
2020         return __blk_mq_issue_directly(hctx, rq, cookie, last);
2021 insert:
2022         if (bypass_insert)
2023                 return BLK_STS_RESOURCE;
2024
2025         blk_mq_request_bypass_insert(rq, false, run_queue);
2026         return BLK_STS_OK;
2027 }
2028
2029 /**
2030  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2031  * @hctx: Pointer of the associated hardware queue.
2032  * @rq: Pointer to request to be sent.
2033  * @cookie: Request queue cookie.
2034  *
2035  * If the device has enough resources to accept a new request now, send the
2036  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2037  * we can try send it another time in the future. Requests inserted at this
2038  * queue have higher priority.
2039  */
2040 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2041                 struct request *rq, blk_qc_t *cookie)
2042 {
2043         blk_status_t ret;
2044         int srcu_idx;
2045
2046         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2047
2048         hctx_lock(hctx, &srcu_idx);
2049
2050         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2051         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2052                 blk_mq_request_bypass_insert(rq, false, true);
2053         else if (ret != BLK_STS_OK)
2054                 blk_mq_end_request(rq, ret);
2055
2056         hctx_unlock(hctx, srcu_idx);
2057 }
2058
2059 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2060 {
2061         blk_status_t ret;
2062         int srcu_idx;
2063         blk_qc_t unused_cookie;
2064         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2065
2066         hctx_lock(hctx, &srcu_idx);
2067         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2068         hctx_unlock(hctx, srcu_idx);
2069
2070         return ret;
2071 }
2072
2073 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2074                 struct list_head *list)
2075 {
2076         int queued = 0;
2077
2078         while (!list_empty(list)) {
2079                 blk_status_t ret;
2080                 struct request *rq = list_first_entry(list, struct request,
2081                                 queuelist);
2082
2083                 list_del_init(&rq->queuelist);
2084                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2085                 if (ret != BLK_STS_OK) {
2086                         if (ret == BLK_STS_RESOURCE ||
2087                                         ret == BLK_STS_DEV_RESOURCE) {
2088                                 blk_mq_request_bypass_insert(rq, false,
2089                                                         list_empty(list));
2090                                 break;
2091                         }
2092                         blk_mq_end_request(rq, ret);
2093                 } else
2094                         queued++;
2095         }
2096
2097         /*
2098          * If we didn't flush the entire list, we could have told
2099          * the driver there was more coming, but that turned out to
2100          * be a lie.
2101          */
2102         if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
2103                 hctx->queue->mq_ops->commit_rqs(hctx);
2104 }
2105
2106 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2107 {
2108         list_add_tail(&rq->queuelist, &plug->mq_list);
2109         plug->rq_count++;
2110         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2111                 struct request *tmp;
2112
2113                 tmp = list_first_entry(&plug->mq_list, struct request,
2114                                                 queuelist);
2115                 if (tmp->q != rq->q)
2116                         plug->multiple_queues = true;
2117         }
2118 }
2119
2120 /**
2121  * blk_mq_make_request - Create and send a request to block device.
2122  * @q: Request queue pointer.
2123  * @bio: Bio pointer.
2124  *
2125  * Builds up a request structure from @q and @bio and send to the device. The
2126  * request may not be queued directly to hardware if:
2127  * * This request can be merged with another one
2128  * * We want to place request at plug queue for possible future merging
2129  * * There is an IO scheduler active at this queue
2130  *
2131  * It will not queue the request if there is an error with the bio, or at the
2132  * request creation.
2133  *
2134  * Returns: Request queue cookie.
2135  */
2136 blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
2137 {
2138         const int is_sync = op_is_sync(bio->bi_opf);
2139         const int is_flush_fua = op_is_flush(bio->bi_opf);
2140         struct blk_mq_alloc_data data = {
2141                 .q              = q,
2142         };
2143         struct request *rq;
2144         struct blk_plug *plug;
2145         struct request *same_queue_rq = NULL;
2146         unsigned int nr_segs;
2147         blk_qc_t cookie;
2148         blk_status_t ret;
2149
2150         blk_queue_bounce(q, &bio);
2151         __blk_queue_split(q, &bio, &nr_segs);
2152
2153         if (!bio_integrity_prep(bio))
2154                 goto queue_exit;
2155
2156         if (!is_flush_fua && !blk_queue_nomerges(q) &&
2157             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2158                 goto queue_exit;
2159
2160         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2161                 goto queue_exit;
2162
2163         rq_qos_throttle(q, bio);
2164
2165         data.cmd_flags = bio->bi_opf;
2166         rq = __blk_mq_alloc_request(&data);
2167         if (unlikely(!rq)) {
2168                 rq_qos_cleanup(q, bio);
2169                 if (bio->bi_opf & REQ_NOWAIT)
2170                         bio_wouldblock_error(bio);
2171                 goto queue_exit;
2172         }
2173
2174         trace_block_getrq(q, bio, bio->bi_opf);
2175
2176         rq_qos_track(q, rq, bio);
2177
2178         cookie = request_to_qc_t(data.hctx, rq);
2179
2180         blk_mq_bio_to_request(rq, bio, nr_segs);
2181
2182         ret = blk_crypto_init_request(rq);
2183         if (ret != BLK_STS_OK) {
2184                 bio->bi_status = ret;
2185                 bio_endio(bio);
2186                 blk_mq_free_request(rq);
2187                 return BLK_QC_T_NONE;
2188         }
2189
2190         plug = blk_mq_plug(q, bio);
2191         if (unlikely(is_flush_fua)) {
2192                 /* Bypass scheduler for flush requests */
2193                 blk_insert_flush(rq);
2194                 blk_mq_run_hw_queue(data.hctx, true);
2195         } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2196                                 !blk_queue_nonrot(q))) {
2197                 /*
2198                  * Use plugging if we have a ->commit_rqs() hook as well, as
2199                  * we know the driver uses bd->last in a smart fashion.
2200                  *
2201                  * Use normal plugging if this disk is slow HDD, as sequential
2202                  * IO may benefit a lot from plug merging.
2203                  */
2204                 unsigned int request_count = plug->rq_count;
2205                 struct request *last = NULL;
2206
2207                 if (!request_count)
2208                         trace_block_plug(q);
2209                 else
2210                         last = list_entry_rq(plug->mq_list.prev);
2211
2212                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2213                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2214                         blk_flush_plug_list(plug, false);
2215                         trace_block_plug(q);
2216                 }
2217
2218                 blk_add_rq_to_plug(plug, rq);
2219         } else if (q->elevator) {
2220                 /* Insert the request at the IO scheduler queue */
2221                 blk_mq_sched_insert_request(rq, false, true, true);
2222         } else if (plug && !blk_queue_nomerges(q)) {
2223                 /*
2224                  * We do limited plugging. If the bio can be merged, do that.
2225                  * Otherwise the existing request in the plug list will be
2226                  * issued. So the plug list will have one request at most
2227                  * The plug list might get flushed before this. If that happens,
2228                  * the plug list is empty, and same_queue_rq is invalid.
2229                  */
2230                 if (list_empty(&plug->mq_list))
2231                         same_queue_rq = NULL;
2232                 if (same_queue_rq) {
2233                         list_del_init(&same_queue_rq->queuelist);
2234                         plug->rq_count--;
2235                 }
2236                 blk_add_rq_to_plug(plug, rq);
2237                 trace_block_plug(q);
2238
2239                 if (same_queue_rq) {
2240                         data.hctx = same_queue_rq->mq_hctx;
2241                         trace_block_unplug(q, 1, true);
2242                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2243                                         &cookie);
2244                 }
2245         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2246                         !data.hctx->dispatch_busy) {
2247                 /*
2248                  * There is no scheduler and we can try to send directly
2249                  * to the hardware.
2250                  */
2251                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2252         } else {
2253                 /* Default case. */
2254                 blk_mq_sched_insert_request(rq, false, true, true);
2255         }
2256
2257         return cookie;
2258 queue_exit:
2259         blk_queue_exit(q);
2260         return BLK_QC_T_NONE;
2261 }
2262 EXPORT_SYMBOL_GPL(blk_mq_make_request); /* only for request based dm */
2263
2264 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2265                      unsigned int hctx_idx)
2266 {
2267         struct page *page;
2268
2269         if (tags->rqs && set->ops->exit_request) {
2270                 int i;
2271
2272                 for (i = 0; i < tags->nr_tags; i++) {
2273                         struct request *rq = tags->static_rqs[i];
2274
2275                         if (!rq)
2276                                 continue;
2277                         set->ops->exit_request(set, rq, hctx_idx);
2278                         tags->static_rqs[i] = NULL;
2279                 }
2280         }
2281
2282         while (!list_empty(&tags->page_list)) {
2283                 page = list_first_entry(&tags->page_list, struct page, lru);
2284                 list_del_init(&page->lru);
2285                 /*
2286                  * Remove kmemleak object previously allocated in
2287                  * blk_mq_alloc_rqs().
2288                  */
2289                 kmemleak_free(page_address(page));
2290                 __free_pages(page, page->private);
2291         }
2292 }
2293
2294 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2295 {
2296         kfree(tags->rqs);
2297         tags->rqs = NULL;
2298         kfree(tags->static_rqs);
2299         tags->static_rqs = NULL;
2300
2301         blk_mq_free_tags(tags);
2302 }
2303
2304 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2305                                         unsigned int hctx_idx,
2306                                         unsigned int nr_tags,
2307                                         unsigned int reserved_tags)
2308 {
2309         struct blk_mq_tags *tags;
2310         int node;
2311
2312         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2313         if (node == NUMA_NO_NODE)
2314                 node = set->numa_node;
2315
2316         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2317                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2318         if (!tags)
2319                 return NULL;
2320
2321         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2322                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2323                                  node);
2324         if (!tags->rqs) {
2325                 blk_mq_free_tags(tags);
2326                 return NULL;
2327         }
2328
2329         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2330                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2331                                         node);
2332         if (!tags->static_rqs) {
2333                 kfree(tags->rqs);
2334                 blk_mq_free_tags(tags);
2335                 return NULL;
2336         }
2337
2338         return tags;
2339 }
2340
2341 static size_t order_to_size(unsigned int order)
2342 {
2343         return (size_t)PAGE_SIZE << order;
2344 }
2345
2346 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2347                                unsigned int hctx_idx, int node)
2348 {
2349         int ret;
2350
2351         if (set->ops->init_request) {
2352                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2353                 if (ret)
2354                         return ret;
2355         }
2356
2357         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2358         return 0;
2359 }
2360
2361 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2362                      unsigned int hctx_idx, unsigned int depth)
2363 {
2364         unsigned int i, j, entries_per_page, max_order = 4;
2365         size_t rq_size, left;
2366         int node;
2367
2368         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2369         if (node == NUMA_NO_NODE)
2370                 node = set->numa_node;
2371
2372         INIT_LIST_HEAD(&tags->page_list);
2373
2374         /*
2375          * rq_size is the size of the request plus driver payload, rounded
2376          * to the cacheline size
2377          */
2378         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2379                                 cache_line_size());
2380         left = rq_size * depth;
2381
2382         for (i = 0; i < depth; ) {
2383                 int this_order = max_order;
2384                 struct page *page;
2385                 int to_do;
2386                 void *p;
2387
2388                 while (this_order && left < order_to_size(this_order - 1))
2389                         this_order--;
2390
2391                 do {
2392                         page = alloc_pages_node(node,
2393                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2394                                 this_order);
2395                         if (page)
2396                                 break;
2397                         if (!this_order--)
2398                                 break;
2399                         if (order_to_size(this_order) < rq_size)
2400                                 break;
2401                 } while (1);
2402
2403                 if (!page)
2404                         goto fail;
2405
2406                 page->private = this_order;
2407                 list_add_tail(&page->lru, &tags->page_list);
2408
2409                 p = page_address(page);
2410                 /*
2411                  * Allow kmemleak to scan these pages as they contain pointers
2412                  * to additional allocations like via ops->init_request().
2413                  */
2414                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2415                 entries_per_page = order_to_size(this_order) / rq_size;
2416                 to_do = min(entries_per_page, depth - i);
2417                 left -= to_do * rq_size;
2418                 for (j = 0; j < to_do; j++) {
2419                         struct request *rq = p;
2420
2421                         tags->static_rqs[i] = rq;
2422                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2423                                 tags->static_rqs[i] = NULL;
2424                                 goto fail;
2425                         }
2426
2427                         p += rq_size;
2428                         i++;
2429                 }
2430         }
2431         return 0;
2432
2433 fail:
2434         blk_mq_free_rqs(set, tags, hctx_idx);
2435         return -ENOMEM;
2436 }
2437
2438 struct rq_iter_data {
2439         struct blk_mq_hw_ctx *hctx;
2440         bool has_rq;
2441 };
2442
2443 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2444 {
2445         struct rq_iter_data *iter_data = data;
2446
2447         if (rq->mq_hctx != iter_data->hctx)
2448                 return true;
2449         iter_data->has_rq = true;
2450         return false;
2451 }
2452
2453 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2454 {
2455         struct blk_mq_tags *tags = hctx->sched_tags ?
2456                         hctx->sched_tags : hctx->tags;
2457         struct rq_iter_data data = {
2458                 .hctx   = hctx,
2459         };
2460
2461         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2462         return data.has_rq;
2463 }
2464
2465 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2466                 struct blk_mq_hw_ctx *hctx)
2467 {
2468         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2469                 return false;
2470         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2471                 return false;
2472         return true;
2473 }
2474
2475 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2476 {
2477         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2478                         struct blk_mq_hw_ctx, cpuhp_online);
2479
2480         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2481             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2482                 return 0;
2483
2484         /*
2485          * Prevent new request from being allocated on the current hctx.
2486          *
2487          * The smp_mb__after_atomic() Pairs with the implied barrier in
2488          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2489          * seen once we return from the tag allocator.
2490          */
2491         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2492         smp_mb__after_atomic();
2493
2494         /*
2495          * Try to grab a reference to the queue and wait for any outstanding
2496          * requests.  If we could not grab a reference the queue has been
2497          * frozen and there are no requests.
2498          */
2499         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2500                 while (blk_mq_hctx_has_requests(hctx))
2501                         msleep(5);
2502                 percpu_ref_put(&hctx->queue->q_usage_counter);
2503         }
2504
2505         return 0;
2506 }
2507
2508 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2509 {
2510         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2511                         struct blk_mq_hw_ctx, cpuhp_online);
2512
2513         if (cpumask_test_cpu(cpu, hctx->cpumask))
2514                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2515         return 0;
2516 }
2517
2518 /*
2519  * 'cpu' is going away. splice any existing rq_list entries from this
2520  * software queue to the hw queue dispatch list, and ensure that it
2521  * gets run.
2522  */
2523 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2524 {
2525         struct blk_mq_hw_ctx *hctx;
2526         struct blk_mq_ctx *ctx;
2527         LIST_HEAD(tmp);
2528         enum hctx_type type;
2529
2530         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2531         if (!cpumask_test_cpu(cpu, hctx->cpumask))
2532                 return 0;
2533
2534         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2535         type = hctx->type;
2536
2537         spin_lock(&ctx->lock);
2538         if (!list_empty(&ctx->rq_lists[type])) {
2539                 list_splice_init(&ctx->rq_lists[type], &tmp);
2540                 blk_mq_hctx_clear_pending(hctx, ctx);
2541         }
2542         spin_unlock(&ctx->lock);
2543
2544         if (list_empty(&tmp))
2545                 return 0;
2546
2547         spin_lock(&hctx->lock);
2548         list_splice_tail_init(&tmp, &hctx->dispatch);
2549         spin_unlock(&hctx->lock);
2550
2551         blk_mq_run_hw_queue(hctx, true);
2552         return 0;
2553 }
2554
2555 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2556 {
2557         if (!(hctx->flags & BLK_MQ_F_STACKING))
2558                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2559                                                     &hctx->cpuhp_online);
2560         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2561                                             &hctx->cpuhp_dead);
2562 }
2563
2564 /* hctx->ctxs will be freed in queue's release handler */
2565 static void blk_mq_exit_hctx(struct request_queue *q,
2566                 struct blk_mq_tag_set *set,
2567                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2568 {
2569         if (blk_mq_hw_queue_mapped(hctx))
2570                 blk_mq_tag_idle(hctx);
2571
2572         if (set->ops->exit_request)
2573                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2574
2575         if (set->ops->exit_hctx)
2576                 set->ops->exit_hctx(hctx, hctx_idx);
2577
2578         blk_mq_remove_cpuhp(hctx);
2579
2580         spin_lock(&q->unused_hctx_lock);
2581         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2582         spin_unlock(&q->unused_hctx_lock);
2583 }
2584
2585 static void blk_mq_exit_hw_queues(struct request_queue *q,
2586                 struct blk_mq_tag_set *set, int nr_queue)
2587 {
2588         struct blk_mq_hw_ctx *hctx;
2589         unsigned int i;
2590
2591         queue_for_each_hw_ctx(q, hctx, i) {
2592                 if (i == nr_queue)
2593                         break;
2594                 blk_mq_debugfs_unregister_hctx(hctx);
2595                 blk_mq_exit_hctx(q, set, hctx, i);
2596         }
2597 }
2598
2599 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2600 {
2601         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2602
2603         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2604                            __alignof__(struct blk_mq_hw_ctx)) !=
2605                      sizeof(struct blk_mq_hw_ctx));
2606
2607         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2608                 hw_ctx_size += sizeof(struct srcu_struct);
2609
2610         return hw_ctx_size;
2611 }
2612
2613 static int blk_mq_init_hctx(struct request_queue *q,
2614                 struct blk_mq_tag_set *set,
2615                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2616 {
2617         hctx->queue_num = hctx_idx;
2618
2619         if (!(hctx->flags & BLK_MQ_F_STACKING))
2620                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2621                                 &hctx->cpuhp_online);
2622         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2623
2624         hctx->tags = set->tags[hctx_idx];
2625
2626         if (set->ops->init_hctx &&
2627             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2628                 goto unregister_cpu_notifier;
2629
2630         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2631                                 hctx->numa_node))
2632                 goto exit_hctx;
2633         return 0;
2634
2635  exit_hctx:
2636         if (set->ops->exit_hctx)
2637                 set->ops->exit_hctx(hctx, hctx_idx);
2638  unregister_cpu_notifier:
2639         blk_mq_remove_cpuhp(hctx);
2640         return -1;
2641 }
2642
2643 static struct blk_mq_hw_ctx *
2644 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2645                 int node)
2646 {
2647         struct blk_mq_hw_ctx *hctx;
2648         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2649
2650         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2651         if (!hctx)
2652                 goto fail_alloc_hctx;
2653
2654         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2655                 goto free_hctx;
2656
2657         atomic_set(&hctx->nr_active, 0);
2658         if (node == NUMA_NO_NODE)
2659                 node = set->numa_node;
2660         hctx->numa_node = node;
2661
2662         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2663         spin_lock_init(&hctx->lock);
2664         INIT_LIST_HEAD(&hctx->dispatch);
2665         hctx->queue = q;
2666         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2667
2668         INIT_LIST_HEAD(&hctx->hctx_list);
2669
2670         /*
2671          * Allocate space for all possible cpus to avoid allocation at
2672          * runtime
2673          */
2674         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2675                         gfp, node);
2676         if (!hctx->ctxs)
2677                 goto free_cpumask;
2678
2679         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2680                                 gfp, node))
2681                 goto free_ctxs;
2682         hctx->nr_ctx = 0;
2683
2684         spin_lock_init(&hctx->dispatch_wait_lock);
2685         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2686         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2687
2688         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2689         if (!hctx->fq)
2690                 goto free_bitmap;
2691
2692         if (hctx->flags & BLK_MQ_F_BLOCKING)
2693                 init_srcu_struct(hctx->srcu);
2694         blk_mq_hctx_kobj_init(hctx);
2695
2696         return hctx;
2697
2698  free_bitmap:
2699         sbitmap_free(&hctx->ctx_map);
2700  free_ctxs:
2701         kfree(hctx->ctxs);
2702  free_cpumask:
2703         free_cpumask_var(hctx->cpumask);
2704  free_hctx:
2705         kfree(hctx);
2706  fail_alloc_hctx:
2707         return NULL;
2708 }
2709
2710 static void blk_mq_init_cpu_queues(struct request_queue *q,
2711                                    unsigned int nr_hw_queues)
2712 {
2713         struct blk_mq_tag_set *set = q->tag_set;
2714         unsigned int i, j;
2715
2716         for_each_possible_cpu(i) {
2717                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2718                 struct blk_mq_hw_ctx *hctx;
2719                 int k;
2720
2721                 __ctx->cpu = i;
2722                 spin_lock_init(&__ctx->lock);
2723                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2724                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2725
2726                 __ctx->queue = q;
2727
2728                 /*
2729                  * Set local node, IFF we have more than one hw queue. If
2730                  * not, we remain on the home node of the device
2731                  */
2732                 for (j = 0; j < set->nr_maps; j++) {
2733                         hctx = blk_mq_map_queue_type(q, j, i);
2734                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2735                                 hctx->numa_node = local_memory_node(cpu_to_node(i));
2736                 }
2737         }
2738 }
2739
2740 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2741                                         int hctx_idx)
2742 {
2743         int ret = 0;
2744
2745         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2746                                         set->queue_depth, set->reserved_tags);
2747         if (!set->tags[hctx_idx])
2748                 return false;
2749
2750         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2751                                 set->queue_depth);
2752         if (!ret)
2753                 return true;
2754
2755         blk_mq_free_rq_map(set->tags[hctx_idx]);
2756         set->tags[hctx_idx] = NULL;
2757         return false;
2758 }
2759
2760 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2761                                          unsigned int hctx_idx)
2762 {
2763         if (set->tags && set->tags[hctx_idx]) {
2764                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2765                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2766                 set->tags[hctx_idx] = NULL;
2767         }
2768 }
2769
2770 static void blk_mq_map_swqueue(struct request_queue *q)
2771 {
2772         unsigned int i, j, hctx_idx;
2773         struct blk_mq_hw_ctx *hctx;
2774         struct blk_mq_ctx *ctx;
2775         struct blk_mq_tag_set *set = q->tag_set;
2776
2777         queue_for_each_hw_ctx(q, hctx, i) {
2778                 cpumask_clear(hctx->cpumask);
2779                 hctx->nr_ctx = 0;
2780                 hctx->dispatch_from = NULL;
2781         }
2782
2783         /*
2784          * Map software to hardware queues.
2785          *
2786          * If the cpu isn't present, the cpu is mapped to first hctx.
2787          */
2788         for_each_possible_cpu(i) {
2789
2790                 ctx = per_cpu_ptr(q->queue_ctx, i);
2791                 for (j = 0; j < set->nr_maps; j++) {
2792                         if (!set->map[j].nr_queues) {
2793                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2794                                                 HCTX_TYPE_DEFAULT, i);
2795                                 continue;
2796                         }
2797                         hctx_idx = set->map[j].mq_map[i];
2798                         /* unmapped hw queue can be remapped after CPU topo changed */
2799                         if (!set->tags[hctx_idx] &&
2800                             !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2801                                 /*
2802                                  * If tags initialization fail for some hctx,
2803                                  * that hctx won't be brought online.  In this
2804                                  * case, remap the current ctx to hctx[0] which
2805                                  * is guaranteed to always have tags allocated
2806                                  */
2807                                 set->map[j].mq_map[i] = 0;
2808                         }
2809
2810                         hctx = blk_mq_map_queue_type(q, j, i);
2811                         ctx->hctxs[j] = hctx;
2812                         /*
2813                          * If the CPU is already set in the mask, then we've
2814                          * mapped this one already. This can happen if
2815                          * devices share queues across queue maps.
2816                          */
2817                         if (cpumask_test_cpu(i, hctx->cpumask))
2818                                 continue;
2819
2820                         cpumask_set_cpu(i, hctx->cpumask);
2821                         hctx->type = j;
2822                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2823                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2824
2825                         /*
2826                          * If the nr_ctx type overflows, we have exceeded the
2827                          * amount of sw queues we can support.
2828                          */
2829                         BUG_ON(!hctx->nr_ctx);
2830                 }
2831
2832                 for (; j < HCTX_MAX_TYPES; j++)
2833                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2834                                         HCTX_TYPE_DEFAULT, i);
2835         }
2836
2837         queue_for_each_hw_ctx(q, hctx, i) {
2838                 /*
2839                  * If no software queues are mapped to this hardware queue,
2840                  * disable it and free the request entries.
2841                  */
2842                 if (!hctx->nr_ctx) {
2843                         /* Never unmap queue 0.  We need it as a
2844                          * fallback in case of a new remap fails
2845                          * allocation
2846                          */
2847                         if (i && set->tags[i])
2848                                 blk_mq_free_map_and_requests(set, i);
2849
2850                         hctx->tags = NULL;
2851                         continue;
2852                 }
2853
2854                 hctx->tags = set->tags[i];
2855                 WARN_ON(!hctx->tags);
2856
2857                 /*
2858                  * Set the map size to the number of mapped software queues.
2859                  * This is more accurate and more efficient than looping
2860                  * over all possibly mapped software queues.
2861                  */
2862                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2863
2864                 /*
2865                  * Initialize batch roundrobin counts
2866                  */
2867                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2868                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2869         }
2870 }
2871
2872 /*
2873  * Caller needs to ensure that we're either frozen/quiesced, or that
2874  * the queue isn't live yet.
2875  */
2876 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2877 {
2878         struct blk_mq_hw_ctx *hctx;
2879         int i;
2880
2881         queue_for_each_hw_ctx(q, hctx, i) {
2882                 if (shared)
2883                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2884                 else
2885                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2886         }
2887 }
2888
2889 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2890                                         bool shared)
2891 {
2892         struct request_queue *q;
2893
2894         lockdep_assert_held(&set->tag_list_lock);
2895
2896         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2897                 blk_mq_freeze_queue(q);
2898                 queue_set_hctx_shared(q, shared);
2899                 blk_mq_unfreeze_queue(q);
2900         }
2901 }
2902
2903 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2904 {
2905         struct blk_mq_tag_set *set = q->tag_set;
2906
2907         mutex_lock(&set->tag_list_lock);
2908         list_del_rcu(&q->tag_set_list);
2909         if (list_is_singular(&set->tag_list)) {
2910                 /* just transitioned to unshared */
2911                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2912                 /* update existing queue */
2913                 blk_mq_update_tag_set_depth(set, false);
2914         }
2915         mutex_unlock(&set->tag_list_lock);
2916         INIT_LIST_HEAD(&q->tag_set_list);
2917 }
2918
2919 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2920                                      struct request_queue *q)
2921 {
2922         mutex_lock(&set->tag_list_lock);
2923
2924         /*
2925          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2926          */
2927         if (!list_empty(&set->tag_list) &&
2928             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2929                 set->flags |= BLK_MQ_F_TAG_SHARED;
2930                 /* update existing queue */
2931                 blk_mq_update_tag_set_depth(set, true);
2932         }
2933         if (set->flags & BLK_MQ_F_TAG_SHARED)
2934                 queue_set_hctx_shared(q, true);
2935         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2936
2937         mutex_unlock(&set->tag_list_lock);
2938 }
2939
2940 /* All allocations will be freed in release handler of q->mq_kobj */
2941 static int blk_mq_alloc_ctxs(struct request_queue *q)
2942 {
2943         struct blk_mq_ctxs *ctxs;
2944         int cpu;
2945
2946         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2947         if (!ctxs)
2948                 return -ENOMEM;
2949
2950         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2951         if (!ctxs->queue_ctx)
2952                 goto fail;
2953
2954         for_each_possible_cpu(cpu) {
2955                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2956                 ctx->ctxs = ctxs;
2957         }
2958
2959         q->mq_kobj = &ctxs->kobj;
2960         q->queue_ctx = ctxs->queue_ctx;
2961
2962         return 0;
2963  fail:
2964         kfree(ctxs);
2965         return -ENOMEM;
2966 }
2967
2968 /*
2969  * It is the actual release handler for mq, but we do it from
2970  * request queue's release handler for avoiding use-after-free
2971  * and headache because q->mq_kobj shouldn't have been introduced,
2972  * but we can't group ctx/kctx kobj without it.
2973  */
2974 void blk_mq_release(struct request_queue *q)
2975 {
2976         struct blk_mq_hw_ctx *hctx, *next;
2977         int i;
2978
2979         queue_for_each_hw_ctx(q, hctx, i)
2980                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2981
2982         /* all hctx are in .unused_hctx_list now */
2983         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2984                 list_del_init(&hctx->hctx_list);
2985                 kobject_put(&hctx->kobj);
2986         }
2987
2988         kfree(q->queue_hw_ctx);
2989
2990         /*
2991          * release .mq_kobj and sw queue's kobject now because
2992          * both share lifetime with request queue.
2993          */
2994         blk_mq_sysfs_deinit(q);
2995 }
2996
2997 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
2998                 void *queuedata)
2999 {
3000         struct request_queue *uninit_q, *q;
3001
3002         uninit_q = __blk_alloc_queue(set->numa_node);
3003         if (!uninit_q)
3004                 return ERR_PTR(-ENOMEM);
3005         uninit_q->queuedata = queuedata;
3006
3007         /*
3008          * Initialize the queue without an elevator. device_add_disk() will do
3009          * the initialization.
3010          */
3011         q = blk_mq_init_allocated_queue(set, uninit_q, false);
3012         if (IS_ERR(q))
3013                 blk_cleanup_queue(uninit_q);
3014
3015         return q;
3016 }
3017 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3018
3019 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3020 {
3021         return blk_mq_init_queue_data(set, NULL);
3022 }
3023 EXPORT_SYMBOL(blk_mq_init_queue);
3024
3025 /*
3026  * Helper for setting up a queue with mq ops, given queue depth, and
3027  * the passed in mq ops flags.
3028  */
3029 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3030                                            const struct blk_mq_ops *ops,
3031                                            unsigned int queue_depth,
3032                                            unsigned int set_flags)
3033 {
3034         struct request_queue *q;
3035         int ret;
3036
3037         memset(set, 0, sizeof(*set));
3038         set->ops = ops;
3039         set->nr_hw_queues = 1;
3040         set->nr_maps = 1;
3041         set->queue_depth = queue_depth;
3042         set->numa_node = NUMA_NO_NODE;
3043         set->flags = set_flags;
3044
3045         ret = blk_mq_alloc_tag_set(set);
3046         if (ret)
3047                 return ERR_PTR(ret);
3048
3049         q = blk_mq_init_queue(set);
3050         if (IS_ERR(q)) {
3051                 blk_mq_free_tag_set(set);
3052                 return q;
3053         }
3054
3055         return q;
3056 }
3057 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3058
3059 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3060                 struct blk_mq_tag_set *set, struct request_queue *q,
3061                 int hctx_idx, int node)
3062 {
3063         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3064
3065         /* reuse dead hctx first */
3066         spin_lock(&q->unused_hctx_lock);
3067         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3068                 if (tmp->numa_node == node) {
3069                         hctx = tmp;
3070                         break;
3071                 }
3072         }
3073         if (hctx)
3074                 list_del_init(&hctx->hctx_list);
3075         spin_unlock(&q->unused_hctx_lock);
3076
3077         if (!hctx)
3078                 hctx = blk_mq_alloc_hctx(q, set, node);
3079         if (!hctx)
3080                 goto fail;
3081
3082         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3083                 goto free_hctx;
3084
3085         return hctx;
3086
3087  free_hctx:
3088         kobject_put(&hctx->kobj);
3089  fail:
3090         return NULL;
3091 }
3092
3093 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3094                                                 struct request_queue *q)
3095 {
3096         int i, j, end;
3097         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3098
3099         if (q->nr_hw_queues < set->nr_hw_queues) {
3100                 struct blk_mq_hw_ctx **new_hctxs;
3101
3102                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3103                                        sizeof(*new_hctxs), GFP_KERNEL,
3104                                        set->numa_node);
3105                 if (!new_hctxs)
3106                         return;
3107                 if (hctxs)
3108                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3109                                sizeof(*hctxs));
3110                 q->queue_hw_ctx = new_hctxs;
3111                 kfree(hctxs);
3112                 hctxs = new_hctxs;
3113         }
3114
3115         /* protect against switching io scheduler  */
3116         mutex_lock(&q->sysfs_lock);
3117         for (i = 0; i < set->nr_hw_queues; i++) {
3118                 int node;
3119                 struct blk_mq_hw_ctx *hctx;
3120
3121                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3122                 /*
3123                  * If the hw queue has been mapped to another numa node,
3124                  * we need to realloc the hctx. If allocation fails, fallback
3125                  * to use the previous one.
3126                  */
3127                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3128                         continue;
3129
3130                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3131                 if (hctx) {
3132                         if (hctxs[i])
3133                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3134                         hctxs[i] = hctx;
3135                 } else {
3136                         if (hctxs[i])
3137                                 pr_warn("Allocate new hctx on node %d fails,\
3138                                                 fallback to previous one on node %d\n",
3139                                                 node, hctxs[i]->numa_node);
3140                         else
3141                                 break;
3142                 }
3143         }
3144         /*
3145          * Increasing nr_hw_queues fails. Free the newly allocated
3146          * hctxs and keep the previous q->nr_hw_queues.
3147          */
3148         if (i != set->nr_hw_queues) {
3149                 j = q->nr_hw_queues;
3150                 end = i;
3151         } else {
3152                 j = i;
3153                 end = q->nr_hw_queues;
3154                 q->nr_hw_queues = set->nr_hw_queues;
3155         }
3156
3157         for (; j < end; j++) {
3158                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3159
3160                 if (hctx) {
3161                         if (hctx->tags)
3162                                 blk_mq_free_map_and_requests(set, j);
3163                         blk_mq_exit_hctx(q, set, hctx, j);
3164                         hctxs[j] = NULL;
3165                 }
3166         }
3167         mutex_unlock(&q->sysfs_lock);
3168 }
3169
3170 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3171                                                   struct request_queue *q,
3172                                                   bool elevator_init)
3173 {
3174         /* mark the queue as mq asap */
3175         q->mq_ops = set->ops;
3176
3177         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3178                                              blk_mq_poll_stats_bkt,
3179                                              BLK_MQ_POLL_STATS_BKTS, q);
3180         if (!q->poll_cb)
3181                 goto err_exit;
3182
3183         if (blk_mq_alloc_ctxs(q))
3184                 goto err_poll;
3185
3186         /* init q->mq_kobj and sw queues' kobjects */
3187         blk_mq_sysfs_init(q);
3188
3189         INIT_LIST_HEAD(&q->unused_hctx_list);
3190         spin_lock_init(&q->unused_hctx_lock);
3191
3192         blk_mq_realloc_hw_ctxs(set, q);
3193         if (!q->nr_hw_queues)
3194                 goto err_hctxs;
3195
3196         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3197         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3198
3199         q->tag_set = set;
3200
3201         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3202         if (set->nr_maps > HCTX_TYPE_POLL &&
3203             set->map[HCTX_TYPE_POLL].nr_queues)
3204                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3205
3206         q->sg_reserved_size = INT_MAX;
3207
3208         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3209         INIT_LIST_HEAD(&q->requeue_list);
3210         spin_lock_init(&q->requeue_lock);
3211
3212         q->nr_requests = set->queue_depth;
3213
3214         /*
3215          * Default to classic polling
3216          */
3217         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3218
3219         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3220         blk_mq_add_queue_tag_set(set, q);
3221         blk_mq_map_swqueue(q);
3222
3223         if (elevator_init)
3224                 elevator_init_mq(q);
3225
3226         return q;
3227
3228 err_hctxs:
3229         kfree(q->queue_hw_ctx);
3230         q->nr_hw_queues = 0;
3231         blk_mq_sysfs_deinit(q);
3232 err_poll:
3233         blk_stat_free_callback(q->poll_cb);
3234         q->poll_cb = NULL;
3235 err_exit:
3236         q->mq_ops = NULL;
3237         return ERR_PTR(-ENOMEM);
3238 }
3239 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3240
3241 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3242 void blk_mq_exit_queue(struct request_queue *q)
3243 {
3244         struct blk_mq_tag_set   *set = q->tag_set;
3245
3246         blk_mq_del_queue_tag_set(q);
3247         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3248 }
3249
3250 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3251 {
3252         int i;
3253
3254         for (i = 0; i < set->nr_hw_queues; i++)
3255                 if (!__blk_mq_alloc_map_and_request(set, i))
3256                         goto out_unwind;
3257
3258         return 0;
3259
3260 out_unwind:
3261         while (--i >= 0)
3262                 blk_mq_free_map_and_requests(set, i);
3263
3264         return -ENOMEM;
3265 }
3266
3267 /*
3268  * Allocate the request maps associated with this tag_set. Note that this
3269  * may reduce the depth asked for, if memory is tight. set->queue_depth
3270  * will be updated to reflect the allocated depth.
3271  */
3272 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3273 {
3274         unsigned int depth;
3275         int err;
3276
3277         depth = set->queue_depth;
3278         do {
3279                 err = __blk_mq_alloc_rq_maps(set);
3280                 if (!err)
3281                         break;
3282
3283                 set->queue_depth >>= 1;
3284                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3285                         err = -ENOMEM;
3286                         break;
3287                 }
3288         } while (set->queue_depth);
3289
3290         if (!set->queue_depth || err) {
3291                 pr_err("blk-mq: failed to allocate request map\n");
3292                 return -ENOMEM;
3293         }
3294
3295         if (depth != set->queue_depth)
3296                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3297                                                 depth, set->queue_depth);
3298
3299         return 0;
3300 }
3301
3302 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3303 {
3304         /*
3305          * blk_mq_map_queues() and multiple .map_queues() implementations
3306          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3307          * number of hardware queues.
3308          */
3309         if (set->nr_maps == 1)
3310                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3311
3312         if (set->ops->map_queues && !is_kdump_kernel()) {
3313                 int i;
3314
3315                 /*
3316                  * transport .map_queues is usually done in the following
3317                  * way:
3318                  *
3319                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3320                  *      mask = get_cpu_mask(queue)
3321                  *      for_each_cpu(cpu, mask)
3322                  *              set->map[x].mq_map[cpu] = queue;
3323                  * }
3324                  *
3325                  * When we need to remap, the table has to be cleared for
3326                  * killing stale mapping since one CPU may not be mapped
3327                  * to any hw queue.
3328                  */
3329                 for (i = 0; i < set->nr_maps; i++)
3330                         blk_mq_clear_mq_map(&set->map[i]);
3331
3332                 return set->ops->map_queues(set);
3333         } else {
3334                 BUG_ON(set->nr_maps > 1);
3335                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3336         }
3337 }
3338
3339 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3340                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3341 {
3342         struct blk_mq_tags **new_tags;
3343
3344         if (cur_nr_hw_queues >= new_nr_hw_queues)
3345                 return 0;
3346
3347         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3348                                 GFP_KERNEL, set->numa_node);
3349         if (!new_tags)
3350                 return -ENOMEM;
3351
3352         if (set->tags)
3353                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3354                        sizeof(*set->tags));
3355         kfree(set->tags);
3356         set->tags = new_tags;
3357         set->nr_hw_queues = new_nr_hw_queues;
3358
3359         return 0;
3360 }
3361
3362 /*
3363  * Alloc a tag set to be associated with one or more request queues.
3364  * May fail with EINVAL for various error conditions. May adjust the
3365  * requested depth down, if it's too large. In that case, the set
3366  * value will be stored in set->queue_depth.
3367  */
3368 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3369 {
3370         int i, ret;
3371
3372         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3373
3374         if (!set->nr_hw_queues)
3375                 return -EINVAL;
3376         if (!set->queue_depth)
3377                 return -EINVAL;
3378         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3379                 return -EINVAL;
3380
3381         if (!set->ops->queue_rq)
3382                 return -EINVAL;
3383
3384         if (!set->ops->get_budget ^ !set->ops->put_budget)
3385                 return -EINVAL;
3386
3387         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3388                 pr_info("blk-mq: reduced tag depth to %u\n",
3389                         BLK_MQ_MAX_DEPTH);
3390                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3391         }
3392
3393         if (!set->nr_maps)
3394                 set->nr_maps = 1;
3395         else if (set->nr_maps > HCTX_MAX_TYPES)
3396                 return -EINVAL;
3397
3398         /*
3399          * If a crashdump is active, then we are potentially in a very
3400          * memory constrained environment. Limit us to 1 queue and
3401          * 64 tags to prevent using too much memory.
3402          */
3403         if (is_kdump_kernel()) {
3404                 set->nr_hw_queues = 1;
3405                 set->nr_maps = 1;
3406                 set->queue_depth = min(64U, set->queue_depth);
3407         }
3408         /*
3409          * There is no use for more h/w queues than cpus if we just have
3410          * a single map
3411          */
3412         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3413                 set->nr_hw_queues = nr_cpu_ids;
3414
3415         if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3416                 return -ENOMEM;
3417
3418         ret = -ENOMEM;
3419         for (i = 0; i < set->nr_maps; i++) {
3420                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3421                                                   sizeof(set->map[i].mq_map[0]),
3422                                                   GFP_KERNEL, set->numa_node);
3423                 if (!set->map[i].mq_map)
3424                         goto out_free_mq_map;
3425                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3426         }
3427
3428         ret = blk_mq_update_queue_map(set);
3429         if (ret)
3430                 goto out_free_mq_map;
3431
3432         ret = blk_mq_alloc_map_and_requests(set);
3433         if (ret)
3434                 goto out_free_mq_map;
3435
3436         mutex_init(&set->tag_list_lock);
3437         INIT_LIST_HEAD(&set->tag_list);
3438
3439         return 0;
3440
3441 out_free_mq_map:
3442         for (i = 0; i < set->nr_maps; i++) {
3443                 kfree(set->map[i].mq_map);
3444                 set->map[i].mq_map = NULL;
3445         }
3446         kfree(set->tags);
3447         set->tags = NULL;
3448         return ret;
3449 }
3450 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3451
3452 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3453 {
3454         int i, j;
3455
3456         for (i = 0; i < set->nr_hw_queues; i++)
3457                 blk_mq_free_map_and_requests(set, i);
3458
3459         for (j = 0; j < set->nr_maps; j++) {
3460                 kfree(set->map[j].mq_map);
3461                 set->map[j].mq_map = NULL;
3462         }
3463
3464         kfree(set->tags);
3465         set->tags = NULL;
3466 }
3467 EXPORT_SYMBOL(blk_mq_free_tag_set);
3468
3469 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3470 {
3471         struct blk_mq_tag_set *set = q->tag_set;
3472         struct blk_mq_hw_ctx *hctx;
3473         int i, ret;
3474
3475         if (!set)
3476                 return -EINVAL;
3477
3478         if (q->nr_requests == nr)
3479                 return 0;
3480
3481         blk_mq_freeze_queue(q);
3482         blk_mq_quiesce_queue(q);
3483
3484         ret = 0;
3485         queue_for_each_hw_ctx(q, hctx, i) {
3486                 if (!hctx->tags)
3487                         continue;
3488                 /*
3489                  * If we're using an MQ scheduler, just update the scheduler
3490                  * queue depth. This is similar to what the old code would do.
3491                  */
3492                 if (!hctx->sched_tags) {
3493                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3494                                                         false);
3495                 } else {
3496                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3497                                                         nr, true);
3498                 }
3499                 if (ret)
3500                         break;
3501                 if (q->elevator && q->elevator->type->ops.depth_updated)
3502                         q->elevator->type->ops.depth_updated(hctx);
3503         }
3504
3505         if (!ret)
3506                 q->nr_requests = nr;
3507
3508         blk_mq_unquiesce_queue(q);
3509         blk_mq_unfreeze_queue(q);
3510
3511         return ret;
3512 }
3513
3514 /*
3515  * request_queue and elevator_type pair.
3516  * It is just used by __blk_mq_update_nr_hw_queues to cache
3517  * the elevator_type associated with a request_queue.
3518  */
3519 struct blk_mq_qe_pair {
3520         struct list_head node;
3521         struct request_queue *q;
3522         struct elevator_type *type;
3523 };
3524
3525 /*
3526  * Cache the elevator_type in qe pair list and switch the
3527  * io scheduler to 'none'
3528  */
3529 static bool blk_mq_elv_switch_none(struct list_head *head,
3530                 struct request_queue *q)
3531 {
3532         struct blk_mq_qe_pair *qe;
3533
3534         if (!q->elevator)
3535                 return true;
3536
3537         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3538         if (!qe)
3539                 return false;
3540
3541         INIT_LIST_HEAD(&qe->node);
3542         qe->q = q;
3543         qe->type = q->elevator->type;
3544         list_add(&qe->node, head);
3545
3546         mutex_lock(&q->sysfs_lock);
3547         /*
3548          * After elevator_switch_mq, the previous elevator_queue will be
3549          * released by elevator_release. The reference of the io scheduler
3550          * module get by elevator_get will also be put. So we need to get
3551          * a reference of the io scheduler module here to prevent it to be
3552          * removed.
3553          */
3554         __module_get(qe->type->elevator_owner);
3555         elevator_switch_mq(q, NULL);
3556         mutex_unlock(&q->sysfs_lock);
3557
3558         return true;
3559 }
3560
3561 static void blk_mq_elv_switch_back(struct list_head *head,
3562                 struct request_queue *q)
3563 {
3564         struct blk_mq_qe_pair *qe;
3565         struct elevator_type *t = NULL;
3566
3567         list_for_each_entry(qe, head, node)
3568                 if (qe->q == q) {
3569                         t = qe->type;
3570                         break;
3571                 }
3572
3573         if (!t)
3574                 return;
3575
3576         list_del(&qe->node);
3577         kfree(qe);
3578
3579         mutex_lock(&q->sysfs_lock);
3580         elevator_switch_mq(q, t);
3581         mutex_unlock(&q->sysfs_lock);
3582 }
3583
3584 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3585                                                         int nr_hw_queues)
3586 {
3587         struct request_queue *q;
3588         LIST_HEAD(head);
3589         int prev_nr_hw_queues;
3590
3591         lockdep_assert_held(&set->tag_list_lock);
3592
3593         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3594                 nr_hw_queues = nr_cpu_ids;
3595         if (nr_hw_queues < 1)
3596                 return;
3597         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3598                 return;
3599
3600         list_for_each_entry(q, &set->tag_list, tag_set_list)
3601                 blk_mq_freeze_queue(q);
3602         /*
3603          * Switch IO scheduler to 'none', cleaning up the data associated
3604          * with the previous scheduler. We will switch back once we are done
3605          * updating the new sw to hw queue mappings.
3606          */
3607         list_for_each_entry(q, &set->tag_list, tag_set_list)
3608                 if (!blk_mq_elv_switch_none(&head, q))
3609                         goto switch_back;
3610
3611         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3612                 blk_mq_debugfs_unregister_hctxs(q);
3613                 blk_mq_sysfs_unregister(q);
3614         }
3615
3616         prev_nr_hw_queues = set->nr_hw_queues;
3617         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3618             0)
3619                 goto reregister;
3620
3621         set->nr_hw_queues = nr_hw_queues;
3622 fallback:
3623         blk_mq_update_queue_map(set);
3624         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3625                 blk_mq_realloc_hw_ctxs(set, q);
3626                 if (q->nr_hw_queues != set->nr_hw_queues) {
3627                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3628                                         nr_hw_queues, prev_nr_hw_queues);
3629                         set->nr_hw_queues = prev_nr_hw_queues;
3630                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3631                         goto fallback;
3632                 }
3633                 blk_mq_map_swqueue(q);
3634         }
3635
3636 reregister:
3637         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3638                 blk_mq_sysfs_register(q);
3639                 blk_mq_debugfs_register_hctxs(q);
3640         }
3641
3642 switch_back:
3643         list_for_each_entry(q, &set->tag_list, tag_set_list)
3644                 blk_mq_elv_switch_back(&head, q);
3645
3646         list_for_each_entry(q, &set->tag_list, tag_set_list)
3647                 blk_mq_unfreeze_queue(q);
3648 }
3649
3650 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3651 {
3652         mutex_lock(&set->tag_list_lock);
3653         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3654         mutex_unlock(&set->tag_list_lock);
3655 }
3656 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3657
3658 /* Enable polling stats and return whether they were already enabled. */
3659 static bool blk_poll_stats_enable(struct request_queue *q)
3660 {
3661         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3662             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3663                 return true;
3664         blk_stat_add_callback(q, q->poll_cb);
3665         return false;
3666 }
3667
3668 static void blk_mq_poll_stats_start(struct request_queue *q)
3669 {
3670         /*
3671          * We don't arm the callback if polling stats are not enabled or the
3672          * callback is already active.
3673          */
3674         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3675             blk_stat_is_active(q->poll_cb))
3676                 return;
3677
3678         blk_stat_activate_msecs(q->poll_cb, 100);
3679 }
3680
3681 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3682 {
3683         struct request_queue *q = cb->data;
3684         int bucket;
3685
3686         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3687                 if (cb->stat[bucket].nr_samples)
3688                         q->poll_stat[bucket] = cb->stat[bucket];
3689         }
3690 }
3691
3692 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3693                                        struct request *rq)
3694 {
3695         unsigned long ret = 0;
3696         int bucket;
3697
3698         /*
3699          * If stats collection isn't on, don't sleep but turn it on for
3700          * future users
3701          */
3702         if (!blk_poll_stats_enable(q))
3703                 return 0;
3704
3705         /*
3706          * As an optimistic guess, use half of the mean service time
3707          * for this type of request. We can (and should) make this smarter.
3708          * For instance, if the completion latencies are tight, we can
3709          * get closer than just half the mean. This is especially
3710          * important on devices where the completion latencies are longer
3711          * than ~10 usec. We do use the stats for the relevant IO size
3712          * if available which does lead to better estimates.
3713          */
3714         bucket = blk_mq_poll_stats_bkt(rq);
3715         if (bucket < 0)
3716                 return ret;
3717
3718         if (q->poll_stat[bucket].nr_samples)
3719                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3720
3721         return ret;
3722 }
3723
3724 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3725                                      struct request *rq)
3726 {
3727         struct hrtimer_sleeper hs;
3728         enum hrtimer_mode mode;
3729         unsigned int nsecs;
3730         ktime_t kt;
3731
3732         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3733                 return false;
3734
3735         /*
3736          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3737          *
3738          *  0:  use half of prev avg
3739          * >0:  use this specific value
3740          */
3741         if (q->poll_nsec > 0)
3742                 nsecs = q->poll_nsec;
3743         else
3744                 nsecs = blk_mq_poll_nsecs(q, rq);
3745
3746         if (!nsecs)
3747                 return false;
3748
3749         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3750
3751         /*
3752          * This will be replaced with the stats tracking code, using
3753          * 'avg_completion_time / 2' as the pre-sleep target.
3754          */
3755         kt = nsecs;
3756
3757         mode = HRTIMER_MODE_REL;
3758         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3759         hrtimer_set_expires(&hs.timer, kt);
3760
3761         do {
3762                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3763                         break;
3764                 set_current_state(TASK_UNINTERRUPTIBLE);
3765                 hrtimer_sleeper_start_expires(&hs, mode);
3766                 if (hs.task)
3767                         io_schedule();
3768                 hrtimer_cancel(&hs.timer);
3769                 mode = HRTIMER_MODE_ABS;
3770         } while (hs.task && !signal_pending(current));
3771
3772         __set_current_state(TASK_RUNNING);
3773         destroy_hrtimer_on_stack(&hs.timer);
3774         return true;
3775 }
3776
3777 static bool blk_mq_poll_hybrid(struct request_queue *q,
3778                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3779 {
3780         struct request *rq;
3781
3782         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3783                 return false;
3784
3785         if (!blk_qc_t_is_internal(cookie))
3786                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3787         else {
3788                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3789                 /*
3790                  * With scheduling, if the request has completed, we'll
3791                  * get a NULL return here, as we clear the sched tag when
3792                  * that happens. The request still remains valid, like always,
3793                  * so we should be safe with just the NULL check.
3794                  */
3795                 if (!rq)
3796                         return false;
3797         }
3798
3799         return blk_mq_poll_hybrid_sleep(q, rq);
3800 }
3801
3802 /**
3803  * blk_poll - poll for IO completions
3804  * @q:  the queue
3805  * @cookie: cookie passed back at IO submission time
3806  * @spin: whether to spin for completions
3807  *
3808  * Description:
3809  *    Poll for completions on the passed in queue. Returns number of
3810  *    completed entries found. If @spin is true, then blk_poll will continue
3811  *    looping until at least one completion is found, unless the task is
3812  *    otherwise marked running (or we need to reschedule).
3813  */
3814 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3815 {
3816         struct blk_mq_hw_ctx *hctx;
3817         long state;
3818
3819         if (!blk_qc_t_valid(cookie) ||
3820             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3821                 return 0;
3822
3823         if (current->plug)
3824                 blk_flush_plug_list(current->plug, false);
3825
3826         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3827
3828         /*
3829          * If we sleep, have the caller restart the poll loop to reset
3830          * the state. Like for the other success return cases, the
3831          * caller is responsible for checking if the IO completed. If
3832          * the IO isn't complete, we'll get called again and will go
3833          * straight to the busy poll loop.
3834          */
3835         if (blk_mq_poll_hybrid(q, hctx, cookie))
3836                 return 1;
3837
3838         hctx->poll_considered++;
3839
3840         state = current->state;
3841         do {
3842                 int ret;
3843
3844                 hctx->poll_invoked++;
3845
3846                 ret = q->mq_ops->poll(hctx);
3847                 if (ret > 0) {
3848                         hctx->poll_success++;
3849                         __set_current_state(TASK_RUNNING);
3850                         return ret;
3851                 }
3852
3853                 if (signal_pending_state(state, current))
3854                         __set_current_state(TASK_RUNNING);
3855
3856                 if (current->state == TASK_RUNNING)
3857                         return 1;
3858                 if (ret < 0 || !spin)
3859                         break;
3860                 cpu_relax();
3861         } while (!need_resched());
3862
3863         __set_current_state(TASK_RUNNING);
3864         return 0;
3865 }
3866 EXPORT_SYMBOL_GPL(blk_poll);
3867
3868 unsigned int blk_mq_rq_cpu(struct request *rq)
3869 {
3870         return rq->mq_ctx->cpu;
3871 }
3872 EXPORT_SYMBOL(blk_mq_rq_cpu);
3873
3874 static int __init blk_mq_init(void)
3875 {
3876         int i;
3877
3878         for_each_possible_cpu(i)
3879                 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3880         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3881
3882         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3883                                   "block/softirq:dead", NULL,
3884                                   blk_softirq_cpu_dead);
3885         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3886                                 blk_mq_hctx_notify_dead);
3887         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3888                                 blk_mq_hctx_notify_online,
3889                                 blk_mq_hctx_notify_offline);
3890         return 0;
3891 }
3892 subsys_initcall(blk_mq_init);