ACPI: video: Add backlight=native DMI quirk for Apple iMac12,1 and iMac12,2
[platform/kernel/linux-starfive.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49                 blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51                 struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53                          struct io_comp_batch *iob, unsigned int flags);
54
55 /*
56  * Check if any of the ctx, dispatch list or elevator
57  * have pending work in this hardware queue.
58  */
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
60 {
61         return !list_empty_careful(&hctx->dispatch) ||
62                 sbitmap_any_bit_set(&hctx->ctx_map) ||
63                         blk_mq_sched_has_work(hctx);
64 }
65
66 /*
67  * Mark this ctx as having pending work in this hardware queue
68  */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70                                      struct blk_mq_ctx *ctx)
71 {
72         const int bit = ctx->index_hw[hctx->type];
73
74         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75                 sbitmap_set_bit(&hctx->ctx_map, bit);
76 }
77
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79                                       struct blk_mq_ctx *ctx)
80 {
81         const int bit = ctx->index_hw[hctx->type];
82
83         sbitmap_clear_bit(&hctx->ctx_map, bit);
84 }
85
86 struct mq_inflight {
87         struct block_device *part;
88         unsigned int inflight[2];
89 };
90
91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
92 {
93         struct mq_inflight *mi = priv;
94
95         if (rq->part && blk_do_io_stat(rq) &&
96             (!mi->part->bd_partno || rq->part == mi->part) &&
97             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98                 mi->inflight[rq_data_dir(rq)]++;
99
100         return true;
101 }
102
103 unsigned int blk_mq_in_flight(struct request_queue *q,
104                 struct block_device *part)
105 {
106         struct mq_inflight mi = { .part = part };
107
108         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
109
110         return mi.inflight[0] + mi.inflight[1];
111 }
112
113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114                 unsigned int inflight[2])
115 {
116         struct mq_inflight mi = { .part = part };
117
118         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119         inflight[0] = mi.inflight[0];
120         inflight[1] = mi.inflight[1];
121 }
122
123 void blk_freeze_queue_start(struct request_queue *q)
124 {
125         mutex_lock(&q->mq_freeze_lock);
126         if (++q->mq_freeze_depth == 1) {
127                 percpu_ref_kill(&q->q_usage_counter);
128                 mutex_unlock(&q->mq_freeze_lock);
129                 if (queue_is_mq(q))
130                         blk_mq_run_hw_queues(q, false);
131         } else {
132                 mutex_unlock(&q->mq_freeze_lock);
133         }
134 }
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
136
137 void blk_mq_freeze_queue_wait(struct request_queue *q)
138 {
139         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
142
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144                                      unsigned long timeout)
145 {
146         return wait_event_timeout(q->mq_freeze_wq,
147                                         percpu_ref_is_zero(&q->q_usage_counter),
148                                         timeout);
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151
152 /*
153  * Guarantee no request is in use, so we can change any data structure of
154  * the queue afterward.
155  */
156 void blk_freeze_queue(struct request_queue *q)
157 {
158         /*
159          * In the !blk_mq case we are only calling this to kill the
160          * q_usage_counter, otherwise this increases the freeze depth
161          * and waits for it to return to zero.  For this reason there is
162          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163          * exported to drivers as the only user for unfreeze is blk_mq.
164          */
165         blk_freeze_queue_start(q);
166         blk_mq_freeze_queue_wait(q);
167 }
168
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171         /*
172          * ...just an alias to keep freeze and unfreeze actions balanced
173          * in the blk_mq_* namespace
174          */
175         blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178
179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
180 {
181         mutex_lock(&q->mq_freeze_lock);
182         if (force_atomic)
183                 q->q_usage_counter.data->force_atomic = true;
184         q->mq_freeze_depth--;
185         WARN_ON_ONCE(q->mq_freeze_depth < 0);
186         if (!q->mq_freeze_depth) {
187                 percpu_ref_resurrect(&q->q_usage_counter);
188                 wake_up_all(&q->mq_freeze_wq);
189         }
190         mutex_unlock(&q->mq_freeze_lock);
191 }
192
193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195         __blk_mq_unfreeze_queue(q, false);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198
199 /*
200  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201  * mpt3sas driver such that this function can be removed.
202  */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205         unsigned long flags;
206
207         spin_lock_irqsave(&q->queue_lock, flags);
208         if (!q->quiesce_depth++)
209                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210         spin_unlock_irqrestore(&q->queue_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216  * @set: tag_set to wait on
217  *
218  * Note: it is driver's responsibility for making sure that quiesce has
219  * been started on or more of the request_queues of the tag_set.  This
220  * function only waits for the quiesce on those request_queues that had
221  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
222  */
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
224 {
225         if (set->flags & BLK_MQ_F_BLOCKING)
226                 synchronize_srcu(set->srcu);
227         else
228                 synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231
232 /**
233  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234  * @q: request queue.
235  *
236  * Note: this function does not prevent that the struct request end_io()
237  * callback function is invoked. Once this function is returned, we make
238  * sure no dispatch can happen until the queue is unquiesced via
239  * blk_mq_unquiesce_queue().
240  */
241 void blk_mq_quiesce_queue(struct request_queue *q)
242 {
243         blk_mq_quiesce_queue_nowait(q);
244         /* nothing to wait for non-mq queues */
245         if (queue_is_mq(q))
246                 blk_mq_wait_quiesce_done(q->tag_set);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259         unsigned long flags;
260         bool run_queue = false;
261
262         spin_lock_irqsave(&q->queue_lock, flags);
263         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264                 ;
265         } else if (!--q->quiesce_depth) {
266                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267                 run_queue = true;
268         }
269         spin_unlock_irqrestore(&q->queue_lock, flags);
270
271         /* dispatch requests which are inserted during quiescing */
272         if (run_queue)
273                 blk_mq_run_hw_queues(q, true);
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278 {
279         struct request_queue *q;
280
281         mutex_lock(&set->tag_list_lock);
282         list_for_each_entry(q, &set->tag_list, tag_set_list) {
283                 if (!blk_queue_skip_tagset_quiesce(q))
284                         blk_mq_quiesce_queue_nowait(q);
285         }
286         blk_mq_wait_quiesce_done(set);
287         mutex_unlock(&set->tag_list_lock);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
290
291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
292 {
293         struct request_queue *q;
294
295         mutex_lock(&set->tag_list_lock);
296         list_for_each_entry(q, &set->tag_list, tag_set_list) {
297                 if (!blk_queue_skip_tagset_quiesce(q))
298                         blk_mq_unquiesce_queue(q);
299         }
300         mutex_unlock(&set->tag_list_lock);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
303
304 void blk_mq_wake_waiters(struct request_queue *q)
305 {
306         struct blk_mq_hw_ctx *hctx;
307         unsigned long i;
308
309         queue_for_each_hw_ctx(q, hctx, i)
310                 if (blk_mq_hw_queue_mapped(hctx))
311                         blk_mq_tag_wakeup_all(hctx->tags, true);
312 }
313
314 void blk_rq_init(struct request_queue *q, struct request *rq)
315 {
316         memset(rq, 0, sizeof(*rq));
317
318         INIT_LIST_HEAD(&rq->queuelist);
319         rq->q = q;
320         rq->__sector = (sector_t) -1;
321         INIT_HLIST_NODE(&rq->hash);
322         RB_CLEAR_NODE(&rq->rb_node);
323         rq->tag = BLK_MQ_NO_TAG;
324         rq->internal_tag = BLK_MQ_NO_TAG;
325         rq->start_time_ns = ktime_get_ns();
326         rq->part = NULL;
327         blk_crypto_rq_set_defaults(rq);
328 }
329 EXPORT_SYMBOL(blk_rq_init);
330
331 /* Set start and alloc time when the allocated request is actually used */
332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
333 {
334         if (blk_mq_need_time_stamp(rq))
335                 rq->start_time_ns = ktime_get_ns();
336         else
337                 rq->start_time_ns = 0;
338
339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
340         if (blk_queue_rq_alloc_time(rq->q))
341                 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
342         else
343                 rq->alloc_time_ns = 0;
344 #endif
345 }
346
347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
348                 struct blk_mq_tags *tags, unsigned int tag)
349 {
350         struct blk_mq_ctx *ctx = data->ctx;
351         struct blk_mq_hw_ctx *hctx = data->hctx;
352         struct request_queue *q = data->q;
353         struct request *rq = tags->static_rqs[tag];
354
355         rq->q = q;
356         rq->mq_ctx = ctx;
357         rq->mq_hctx = hctx;
358         rq->cmd_flags = data->cmd_flags;
359
360         if (data->flags & BLK_MQ_REQ_PM)
361                 data->rq_flags |= RQF_PM;
362         if (blk_queue_io_stat(q))
363                 data->rq_flags |= RQF_IO_STAT;
364         rq->rq_flags = data->rq_flags;
365
366         if (data->rq_flags & RQF_SCHED_TAGS) {
367                 rq->tag = BLK_MQ_NO_TAG;
368                 rq->internal_tag = tag;
369         } else {
370                 rq->tag = tag;
371                 rq->internal_tag = BLK_MQ_NO_TAG;
372         }
373         rq->timeout = 0;
374
375         rq->part = NULL;
376         rq->io_start_time_ns = 0;
377         rq->stats_sectors = 0;
378         rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380         rq->nr_integrity_segments = 0;
381 #endif
382         rq->end_io = NULL;
383         rq->end_io_data = NULL;
384
385         blk_crypto_rq_set_defaults(rq);
386         INIT_LIST_HEAD(&rq->queuelist);
387         /* tag was already set */
388         WRITE_ONCE(rq->deadline, 0);
389         req_ref_set(rq, 1);
390
391         if (rq->rq_flags & RQF_USE_SCHED) {
392                 struct elevator_queue *e = data->q->elevator;
393
394                 INIT_HLIST_NODE(&rq->hash);
395                 RB_CLEAR_NODE(&rq->rb_node);
396
397                 if (e->type->ops.prepare_request)
398                         e->type->ops.prepare_request(rq);
399         }
400
401         return rq;
402 }
403
404 static inline struct request *
405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
406 {
407         unsigned int tag, tag_offset;
408         struct blk_mq_tags *tags;
409         struct request *rq;
410         unsigned long tag_mask;
411         int i, nr = 0;
412
413         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
414         if (unlikely(!tag_mask))
415                 return NULL;
416
417         tags = blk_mq_tags_from_data(data);
418         for (i = 0; tag_mask; i++) {
419                 if (!(tag_mask & (1UL << i)))
420                         continue;
421                 tag = tag_offset + i;
422                 prefetch(tags->static_rqs[tag]);
423                 tag_mask &= ~(1UL << i);
424                 rq = blk_mq_rq_ctx_init(data, tags, tag);
425                 rq_list_add(data->cached_rq, rq);
426                 nr++;
427         }
428         /* caller already holds a reference, add for remainder */
429         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
430         data->nr_tags -= nr;
431
432         return rq_list_pop(data->cached_rq);
433 }
434
435 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
436 {
437         struct request_queue *q = data->q;
438         u64 alloc_time_ns = 0;
439         struct request *rq;
440         unsigned int tag;
441
442         /* alloc_time includes depth and tag waits */
443         if (blk_queue_rq_alloc_time(q))
444                 alloc_time_ns = ktime_get_ns();
445
446         if (data->cmd_flags & REQ_NOWAIT)
447                 data->flags |= BLK_MQ_REQ_NOWAIT;
448
449         if (q->elevator) {
450                 /*
451                  * All requests use scheduler tags when an I/O scheduler is
452                  * enabled for the queue.
453                  */
454                 data->rq_flags |= RQF_SCHED_TAGS;
455
456                 /*
457                  * Flush/passthrough requests are special and go directly to the
458                  * dispatch list.
459                  */
460                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
461                     !blk_op_is_passthrough(data->cmd_flags)) {
462                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
463
464                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
465
466                         data->rq_flags |= RQF_USE_SCHED;
467                         if (ops->limit_depth)
468                                 ops->limit_depth(data->cmd_flags, data);
469                 }
470         }
471
472 retry:
473         data->ctx = blk_mq_get_ctx(q);
474         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
475         if (!(data->rq_flags & RQF_SCHED_TAGS))
476                 blk_mq_tag_busy(data->hctx);
477
478         if (data->flags & BLK_MQ_REQ_RESERVED)
479                 data->rq_flags |= RQF_RESV;
480
481         /*
482          * Try batched alloc if we want more than 1 tag.
483          */
484         if (data->nr_tags > 1) {
485                 rq = __blk_mq_alloc_requests_batch(data);
486                 if (rq) {
487                         blk_mq_rq_time_init(rq, alloc_time_ns);
488                         return rq;
489                 }
490                 data->nr_tags = 1;
491         }
492
493         /*
494          * Waiting allocations only fail because of an inactive hctx.  In that
495          * case just retry the hctx assignment and tag allocation as CPU hotplug
496          * should have migrated us to an online CPU by now.
497          */
498         tag = blk_mq_get_tag(data);
499         if (tag == BLK_MQ_NO_TAG) {
500                 if (data->flags & BLK_MQ_REQ_NOWAIT)
501                         return NULL;
502                 /*
503                  * Give up the CPU and sleep for a random short time to
504                  * ensure that thread using a realtime scheduling class
505                  * are migrated off the CPU, and thus off the hctx that
506                  * is going away.
507                  */
508                 msleep(3);
509                 goto retry;
510         }
511
512         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
513         blk_mq_rq_time_init(rq, alloc_time_ns);
514         return rq;
515 }
516
517 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
518                                             struct blk_plug *plug,
519                                             blk_opf_t opf,
520                                             blk_mq_req_flags_t flags)
521 {
522         struct blk_mq_alloc_data data = {
523                 .q              = q,
524                 .flags          = flags,
525                 .cmd_flags      = opf,
526                 .nr_tags        = plug->nr_ios,
527                 .cached_rq      = &plug->cached_rq,
528         };
529         struct request *rq;
530
531         if (blk_queue_enter(q, flags))
532                 return NULL;
533
534         plug->nr_ios = 1;
535
536         rq = __blk_mq_alloc_requests(&data);
537         if (unlikely(!rq))
538                 blk_queue_exit(q);
539         return rq;
540 }
541
542 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
543                                                    blk_opf_t opf,
544                                                    blk_mq_req_flags_t flags)
545 {
546         struct blk_plug *plug = current->plug;
547         struct request *rq;
548
549         if (!plug)
550                 return NULL;
551
552         if (rq_list_empty(plug->cached_rq)) {
553                 if (plug->nr_ios == 1)
554                         return NULL;
555                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
556                 if (!rq)
557                         return NULL;
558         } else {
559                 rq = rq_list_peek(&plug->cached_rq);
560                 if (!rq || rq->q != q)
561                         return NULL;
562
563                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
564                         return NULL;
565                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
566                         return NULL;
567
568                 plug->cached_rq = rq_list_next(rq);
569                 blk_mq_rq_time_init(rq, 0);
570         }
571
572         rq->cmd_flags = opf;
573         INIT_LIST_HEAD(&rq->queuelist);
574         return rq;
575 }
576
577 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
578                 blk_mq_req_flags_t flags)
579 {
580         struct request *rq;
581
582         rq = blk_mq_alloc_cached_request(q, opf, flags);
583         if (!rq) {
584                 struct blk_mq_alloc_data data = {
585                         .q              = q,
586                         .flags          = flags,
587                         .cmd_flags      = opf,
588                         .nr_tags        = 1,
589                 };
590                 int ret;
591
592                 ret = blk_queue_enter(q, flags);
593                 if (ret)
594                         return ERR_PTR(ret);
595
596                 rq = __blk_mq_alloc_requests(&data);
597                 if (!rq)
598                         goto out_queue_exit;
599         }
600         rq->__data_len = 0;
601         rq->__sector = (sector_t) -1;
602         rq->bio = rq->biotail = NULL;
603         return rq;
604 out_queue_exit:
605         blk_queue_exit(q);
606         return ERR_PTR(-EWOULDBLOCK);
607 }
608 EXPORT_SYMBOL(blk_mq_alloc_request);
609
610 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
611         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
612 {
613         struct blk_mq_alloc_data data = {
614                 .q              = q,
615                 .flags          = flags,
616                 .cmd_flags      = opf,
617                 .nr_tags        = 1,
618         };
619         u64 alloc_time_ns = 0;
620         struct request *rq;
621         unsigned int cpu;
622         unsigned int tag;
623         int ret;
624
625         /* alloc_time includes depth and tag waits */
626         if (blk_queue_rq_alloc_time(q))
627                 alloc_time_ns = ktime_get_ns();
628
629         /*
630          * If the tag allocator sleeps we could get an allocation for a
631          * different hardware context.  No need to complicate the low level
632          * allocator for this for the rare use case of a command tied to
633          * a specific queue.
634          */
635         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
636             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
637                 return ERR_PTR(-EINVAL);
638
639         if (hctx_idx >= q->nr_hw_queues)
640                 return ERR_PTR(-EIO);
641
642         ret = blk_queue_enter(q, flags);
643         if (ret)
644                 return ERR_PTR(ret);
645
646         /*
647          * Check if the hardware context is actually mapped to anything.
648          * If not tell the caller that it should skip this queue.
649          */
650         ret = -EXDEV;
651         data.hctx = xa_load(&q->hctx_table, hctx_idx);
652         if (!blk_mq_hw_queue_mapped(data.hctx))
653                 goto out_queue_exit;
654         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
655         if (cpu >= nr_cpu_ids)
656                 goto out_queue_exit;
657         data.ctx = __blk_mq_get_ctx(q, cpu);
658
659         if (q->elevator)
660                 data.rq_flags |= RQF_SCHED_TAGS;
661         else
662                 blk_mq_tag_busy(data.hctx);
663
664         if (flags & BLK_MQ_REQ_RESERVED)
665                 data.rq_flags |= RQF_RESV;
666
667         ret = -EWOULDBLOCK;
668         tag = blk_mq_get_tag(&data);
669         if (tag == BLK_MQ_NO_TAG)
670                 goto out_queue_exit;
671         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
672         blk_mq_rq_time_init(rq, alloc_time_ns);
673         rq->__data_len = 0;
674         rq->__sector = (sector_t) -1;
675         rq->bio = rq->biotail = NULL;
676         return rq;
677
678 out_queue_exit:
679         blk_queue_exit(q);
680         return ERR_PTR(ret);
681 }
682 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
683
684 static void __blk_mq_free_request(struct request *rq)
685 {
686         struct request_queue *q = rq->q;
687         struct blk_mq_ctx *ctx = rq->mq_ctx;
688         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
689         const int sched_tag = rq->internal_tag;
690
691         blk_crypto_free_request(rq);
692         blk_pm_mark_last_busy(rq);
693         rq->mq_hctx = NULL;
694
695         if (rq->rq_flags & RQF_MQ_INFLIGHT)
696                 __blk_mq_dec_active_requests(hctx);
697
698         if (rq->tag != BLK_MQ_NO_TAG)
699                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
700         if (sched_tag != BLK_MQ_NO_TAG)
701                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
702         blk_mq_sched_restart(hctx);
703         blk_queue_exit(q);
704 }
705
706 void blk_mq_free_request(struct request *rq)
707 {
708         struct request_queue *q = rq->q;
709
710         if ((rq->rq_flags & RQF_USE_SCHED) &&
711             q->elevator->type->ops.finish_request)
712                 q->elevator->type->ops.finish_request(rq);
713
714         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
715                 laptop_io_completion(q->disk->bdi);
716
717         rq_qos_done(q, rq);
718
719         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
720         if (req_ref_put_and_test(rq))
721                 __blk_mq_free_request(rq);
722 }
723 EXPORT_SYMBOL_GPL(blk_mq_free_request);
724
725 void blk_mq_free_plug_rqs(struct blk_plug *plug)
726 {
727         struct request *rq;
728
729         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
730                 blk_mq_free_request(rq);
731 }
732
733 void blk_dump_rq_flags(struct request *rq, char *msg)
734 {
735         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
736                 rq->q->disk ? rq->q->disk->disk_name : "?",
737                 (__force unsigned long long) rq->cmd_flags);
738
739         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
740                (unsigned long long)blk_rq_pos(rq),
741                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
742         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
743                rq->bio, rq->biotail, blk_rq_bytes(rq));
744 }
745 EXPORT_SYMBOL(blk_dump_rq_flags);
746
747 static void req_bio_endio(struct request *rq, struct bio *bio,
748                           unsigned int nbytes, blk_status_t error)
749 {
750         if (unlikely(error)) {
751                 bio->bi_status = error;
752         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
753                 /*
754                  * Partial zone append completions cannot be supported as the
755                  * BIO fragments may end up not being written sequentially.
756                  */
757                 if (bio->bi_iter.bi_size != nbytes)
758                         bio->bi_status = BLK_STS_IOERR;
759                 else
760                         bio->bi_iter.bi_sector = rq->__sector;
761         }
762
763         bio_advance(bio, nbytes);
764
765         if (unlikely(rq->rq_flags & RQF_QUIET))
766                 bio_set_flag(bio, BIO_QUIET);
767         /* don't actually finish bio if it's part of flush sequence */
768         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
769                 bio_endio(bio);
770 }
771
772 static void blk_account_io_completion(struct request *req, unsigned int bytes)
773 {
774         if (req->part && blk_do_io_stat(req)) {
775                 const int sgrp = op_stat_group(req_op(req));
776
777                 part_stat_lock();
778                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
779                 part_stat_unlock();
780         }
781 }
782
783 static void blk_print_req_error(struct request *req, blk_status_t status)
784 {
785         printk_ratelimited(KERN_ERR
786                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
787                 "phys_seg %u prio class %u\n",
788                 blk_status_to_str(status),
789                 req->q->disk ? req->q->disk->disk_name : "?",
790                 blk_rq_pos(req), (__force u32)req_op(req),
791                 blk_op_str(req_op(req)),
792                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
793                 req->nr_phys_segments,
794                 IOPRIO_PRIO_CLASS(req->ioprio));
795 }
796
797 /*
798  * Fully end IO on a request. Does not support partial completions, or
799  * errors.
800  */
801 static void blk_complete_request(struct request *req)
802 {
803         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
804         int total_bytes = blk_rq_bytes(req);
805         struct bio *bio = req->bio;
806
807         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
808
809         if (!bio)
810                 return;
811
812 #ifdef CONFIG_BLK_DEV_INTEGRITY
813         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
814                 req->q->integrity.profile->complete_fn(req, total_bytes);
815 #endif
816
817         /*
818          * Upper layers may call blk_crypto_evict_key() anytime after the last
819          * bio_endio().  Therefore, the keyslot must be released before that.
820          */
821         blk_crypto_rq_put_keyslot(req);
822
823         blk_account_io_completion(req, total_bytes);
824
825         do {
826                 struct bio *next = bio->bi_next;
827
828                 /* Completion has already been traced */
829                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
830
831                 if (req_op(req) == REQ_OP_ZONE_APPEND)
832                         bio->bi_iter.bi_sector = req->__sector;
833
834                 if (!is_flush)
835                         bio_endio(bio);
836                 bio = next;
837         } while (bio);
838
839         /*
840          * Reset counters so that the request stacking driver
841          * can find how many bytes remain in the request
842          * later.
843          */
844         if (!req->end_io) {
845                 req->bio = NULL;
846                 req->__data_len = 0;
847         }
848 }
849
850 /**
851  * blk_update_request - Complete multiple bytes without completing the request
852  * @req:      the request being processed
853  * @error:    block status code
854  * @nr_bytes: number of bytes to complete for @req
855  *
856  * Description:
857  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
858  *     the request structure even if @req doesn't have leftover.
859  *     If @req has leftover, sets it up for the next range of segments.
860  *
861  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
862  *     %false return from this function.
863  *
864  * Note:
865  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
866  *      except in the consistency check at the end of this function.
867  *
868  * Return:
869  *     %false - this request doesn't have any more data
870  *     %true  - this request has more data
871  **/
872 bool blk_update_request(struct request *req, blk_status_t error,
873                 unsigned int nr_bytes)
874 {
875         int total_bytes;
876
877         trace_block_rq_complete(req, error, nr_bytes);
878
879         if (!req->bio)
880                 return false;
881
882 #ifdef CONFIG_BLK_DEV_INTEGRITY
883         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
884             error == BLK_STS_OK)
885                 req->q->integrity.profile->complete_fn(req, nr_bytes);
886 #endif
887
888         /*
889          * Upper layers may call blk_crypto_evict_key() anytime after the last
890          * bio_endio().  Therefore, the keyslot must be released before that.
891          */
892         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
893                 __blk_crypto_rq_put_keyslot(req);
894
895         if (unlikely(error && !blk_rq_is_passthrough(req) &&
896                      !(req->rq_flags & RQF_QUIET)) &&
897                      !test_bit(GD_DEAD, &req->q->disk->state)) {
898                 blk_print_req_error(req, error);
899                 trace_block_rq_error(req, error, nr_bytes);
900         }
901
902         blk_account_io_completion(req, nr_bytes);
903
904         total_bytes = 0;
905         while (req->bio) {
906                 struct bio *bio = req->bio;
907                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
908
909                 if (bio_bytes == bio->bi_iter.bi_size)
910                         req->bio = bio->bi_next;
911
912                 /* Completion has already been traced */
913                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
914                 req_bio_endio(req, bio, bio_bytes, error);
915
916                 total_bytes += bio_bytes;
917                 nr_bytes -= bio_bytes;
918
919                 if (!nr_bytes)
920                         break;
921         }
922
923         /*
924          * completely done
925          */
926         if (!req->bio) {
927                 /*
928                  * Reset counters so that the request stacking driver
929                  * can find how many bytes remain in the request
930                  * later.
931                  */
932                 req->__data_len = 0;
933                 return false;
934         }
935
936         req->__data_len -= total_bytes;
937
938         /* update sector only for requests with clear definition of sector */
939         if (!blk_rq_is_passthrough(req))
940                 req->__sector += total_bytes >> 9;
941
942         /* mixed attributes always follow the first bio */
943         if (req->rq_flags & RQF_MIXED_MERGE) {
944                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
945                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
946         }
947
948         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
949                 /*
950                  * If total number of sectors is less than the first segment
951                  * size, something has gone terribly wrong.
952                  */
953                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
954                         blk_dump_rq_flags(req, "request botched");
955                         req->__data_len = blk_rq_cur_bytes(req);
956                 }
957
958                 /* recalculate the number of segments */
959                 req->nr_phys_segments = blk_recalc_rq_segments(req);
960         }
961
962         return true;
963 }
964 EXPORT_SYMBOL_GPL(blk_update_request);
965
966 static inline void blk_account_io_done(struct request *req, u64 now)
967 {
968         trace_block_io_done(req);
969
970         /*
971          * Account IO completion.  flush_rq isn't accounted as a
972          * normal IO on queueing nor completion.  Accounting the
973          * containing request is enough.
974          */
975         if (blk_do_io_stat(req) && req->part &&
976             !(req->rq_flags & RQF_FLUSH_SEQ)) {
977                 const int sgrp = op_stat_group(req_op(req));
978
979                 part_stat_lock();
980                 update_io_ticks(req->part, jiffies, true);
981                 part_stat_inc(req->part, ios[sgrp]);
982                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
983                 part_stat_unlock();
984         }
985 }
986
987 static inline void blk_account_io_start(struct request *req)
988 {
989         trace_block_io_start(req);
990
991         if (blk_do_io_stat(req)) {
992                 /*
993                  * All non-passthrough requests are created from a bio with one
994                  * exception: when a flush command that is part of a flush sequence
995                  * generated by the state machine in blk-flush.c is cloned onto the
996                  * lower device by dm-multipath we can get here without a bio.
997                  */
998                 if (req->bio)
999                         req->part = req->bio->bi_bdev;
1000                 else
1001                         req->part = req->q->disk->part0;
1002
1003                 part_stat_lock();
1004                 update_io_ticks(req->part, jiffies, false);
1005                 part_stat_unlock();
1006         }
1007 }
1008
1009 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1010 {
1011         if (rq->rq_flags & RQF_STATS)
1012                 blk_stat_add(rq, now);
1013
1014         blk_mq_sched_completed_request(rq, now);
1015         blk_account_io_done(rq, now);
1016 }
1017
1018 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1019 {
1020         if (blk_mq_need_time_stamp(rq))
1021                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1022
1023         if (rq->end_io) {
1024                 rq_qos_done(rq->q, rq);
1025                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1026                         blk_mq_free_request(rq);
1027         } else {
1028                 blk_mq_free_request(rq);
1029         }
1030 }
1031 EXPORT_SYMBOL(__blk_mq_end_request);
1032
1033 void blk_mq_end_request(struct request *rq, blk_status_t error)
1034 {
1035         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1036                 BUG();
1037         __blk_mq_end_request(rq, error);
1038 }
1039 EXPORT_SYMBOL(blk_mq_end_request);
1040
1041 #define TAG_COMP_BATCH          32
1042
1043 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1044                                           int *tag_array, int nr_tags)
1045 {
1046         struct request_queue *q = hctx->queue;
1047
1048         /*
1049          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1050          * update hctx->nr_active in batch
1051          */
1052         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1053                 __blk_mq_sub_active_requests(hctx, nr_tags);
1054
1055         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1056         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1057 }
1058
1059 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1060 {
1061         int tags[TAG_COMP_BATCH], nr_tags = 0;
1062         struct blk_mq_hw_ctx *cur_hctx = NULL;
1063         struct request *rq;
1064         u64 now = 0;
1065
1066         if (iob->need_ts)
1067                 now = ktime_get_ns();
1068
1069         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1070                 prefetch(rq->bio);
1071                 prefetch(rq->rq_next);
1072
1073                 blk_complete_request(rq);
1074                 if (iob->need_ts)
1075                         __blk_mq_end_request_acct(rq, now);
1076
1077                 rq_qos_done(rq->q, rq);
1078
1079                 /*
1080                  * If end_io handler returns NONE, then it still has
1081                  * ownership of the request.
1082                  */
1083                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1084                         continue;
1085
1086                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1087                 if (!req_ref_put_and_test(rq))
1088                         continue;
1089
1090                 blk_crypto_free_request(rq);
1091                 blk_pm_mark_last_busy(rq);
1092
1093                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1094                         if (cur_hctx)
1095                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1096                         nr_tags = 0;
1097                         cur_hctx = rq->mq_hctx;
1098                 }
1099                 tags[nr_tags++] = rq->tag;
1100         }
1101
1102         if (nr_tags)
1103                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1104 }
1105 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1106
1107 static void blk_complete_reqs(struct llist_head *list)
1108 {
1109         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1110         struct request *rq, *next;
1111
1112         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1113                 rq->q->mq_ops->complete(rq);
1114 }
1115
1116 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1117 {
1118         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1119 }
1120
1121 static int blk_softirq_cpu_dead(unsigned int cpu)
1122 {
1123         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1124         return 0;
1125 }
1126
1127 static void __blk_mq_complete_request_remote(void *data)
1128 {
1129         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1130 }
1131
1132 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1133 {
1134         int cpu = raw_smp_processor_id();
1135
1136         if (!IS_ENABLED(CONFIG_SMP) ||
1137             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1138                 return false;
1139         /*
1140          * With force threaded interrupts enabled, raising softirq from an SMP
1141          * function call will always result in waking the ksoftirqd thread.
1142          * This is probably worse than completing the request on a different
1143          * cache domain.
1144          */
1145         if (force_irqthreads())
1146                 return false;
1147
1148         /* same CPU or cache domain?  Complete locally */
1149         if (cpu == rq->mq_ctx->cpu ||
1150             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1151              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1152                 return false;
1153
1154         /* don't try to IPI to an offline CPU */
1155         return cpu_online(rq->mq_ctx->cpu);
1156 }
1157
1158 static void blk_mq_complete_send_ipi(struct request *rq)
1159 {
1160         struct llist_head *list;
1161         unsigned int cpu;
1162
1163         cpu = rq->mq_ctx->cpu;
1164         list = &per_cpu(blk_cpu_done, cpu);
1165         if (llist_add(&rq->ipi_list, list)) {
1166                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1167                 smp_call_function_single_async(cpu, &rq->csd);
1168         }
1169 }
1170
1171 static void blk_mq_raise_softirq(struct request *rq)
1172 {
1173         struct llist_head *list;
1174
1175         preempt_disable();
1176         list = this_cpu_ptr(&blk_cpu_done);
1177         if (llist_add(&rq->ipi_list, list))
1178                 raise_softirq(BLOCK_SOFTIRQ);
1179         preempt_enable();
1180 }
1181
1182 bool blk_mq_complete_request_remote(struct request *rq)
1183 {
1184         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1185
1186         /*
1187          * For request which hctx has only one ctx mapping,
1188          * or a polled request, always complete locally,
1189          * it's pointless to redirect the completion.
1190          */
1191         if ((rq->mq_hctx->nr_ctx == 1 &&
1192              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1193              rq->cmd_flags & REQ_POLLED)
1194                 return false;
1195
1196         if (blk_mq_complete_need_ipi(rq)) {
1197                 blk_mq_complete_send_ipi(rq);
1198                 return true;
1199         }
1200
1201         if (rq->q->nr_hw_queues == 1) {
1202                 blk_mq_raise_softirq(rq);
1203                 return true;
1204         }
1205         return false;
1206 }
1207 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1208
1209 /**
1210  * blk_mq_complete_request - end I/O on a request
1211  * @rq:         the request being processed
1212  *
1213  * Description:
1214  *      Complete a request by scheduling the ->complete_rq operation.
1215  **/
1216 void blk_mq_complete_request(struct request *rq)
1217 {
1218         if (!blk_mq_complete_request_remote(rq))
1219                 rq->q->mq_ops->complete(rq);
1220 }
1221 EXPORT_SYMBOL(blk_mq_complete_request);
1222
1223 /**
1224  * blk_mq_start_request - Start processing a request
1225  * @rq: Pointer to request to be started
1226  *
1227  * Function used by device drivers to notify the block layer that a request
1228  * is going to be processed now, so blk layer can do proper initializations
1229  * such as starting the timeout timer.
1230  */
1231 void blk_mq_start_request(struct request *rq)
1232 {
1233         struct request_queue *q = rq->q;
1234
1235         trace_block_rq_issue(rq);
1236
1237         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1238                 rq->io_start_time_ns = ktime_get_ns();
1239                 rq->stats_sectors = blk_rq_sectors(rq);
1240                 rq->rq_flags |= RQF_STATS;
1241                 rq_qos_issue(q, rq);
1242         }
1243
1244         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1245
1246         blk_add_timer(rq);
1247         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1248
1249 #ifdef CONFIG_BLK_DEV_INTEGRITY
1250         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1251                 q->integrity.profile->prepare_fn(rq);
1252 #endif
1253         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1254                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1255 }
1256 EXPORT_SYMBOL(blk_mq_start_request);
1257
1258 /*
1259  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1260  * queues. This is important for md arrays to benefit from merging
1261  * requests.
1262  */
1263 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1264 {
1265         if (plug->multiple_queues)
1266                 return BLK_MAX_REQUEST_COUNT * 2;
1267         return BLK_MAX_REQUEST_COUNT;
1268 }
1269
1270 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1271 {
1272         struct request *last = rq_list_peek(&plug->mq_list);
1273
1274         if (!plug->rq_count) {
1275                 trace_block_plug(rq->q);
1276         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1277                    (!blk_queue_nomerges(rq->q) &&
1278                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1279                 blk_mq_flush_plug_list(plug, false);
1280                 last = NULL;
1281                 trace_block_plug(rq->q);
1282         }
1283
1284         if (!plug->multiple_queues && last && last->q != rq->q)
1285                 plug->multiple_queues = true;
1286         /*
1287          * Any request allocated from sched tags can't be issued to
1288          * ->queue_rqs() directly
1289          */
1290         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1291                 plug->has_elevator = true;
1292         rq->rq_next = NULL;
1293         rq_list_add(&plug->mq_list, rq);
1294         plug->rq_count++;
1295 }
1296
1297 /**
1298  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1299  * @rq:         request to insert
1300  * @at_head:    insert request at head or tail of queue
1301  *
1302  * Description:
1303  *    Insert a fully prepared request at the back of the I/O scheduler queue
1304  *    for execution.  Don't wait for completion.
1305  *
1306  * Note:
1307  *    This function will invoke @done directly if the queue is dead.
1308  */
1309 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1310 {
1311         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1312
1313         WARN_ON(irqs_disabled());
1314         WARN_ON(!blk_rq_is_passthrough(rq));
1315
1316         blk_account_io_start(rq);
1317
1318         /*
1319          * As plugging can be enabled for passthrough requests on a zoned
1320          * device, directly accessing the plug instead of using blk_mq_plug()
1321          * should not have any consequences.
1322          */
1323         if (current->plug && !at_head) {
1324                 blk_add_rq_to_plug(current->plug, rq);
1325                 return;
1326         }
1327
1328         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1329         blk_mq_run_hw_queue(hctx, false);
1330 }
1331 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1332
1333 struct blk_rq_wait {
1334         struct completion done;
1335         blk_status_t ret;
1336 };
1337
1338 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1339 {
1340         struct blk_rq_wait *wait = rq->end_io_data;
1341
1342         wait->ret = ret;
1343         complete(&wait->done);
1344         return RQ_END_IO_NONE;
1345 }
1346
1347 bool blk_rq_is_poll(struct request *rq)
1348 {
1349         if (!rq->mq_hctx)
1350                 return false;
1351         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1352                 return false;
1353         return true;
1354 }
1355 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1356
1357 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1358 {
1359         do {
1360                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1361                 cond_resched();
1362         } while (!completion_done(wait));
1363 }
1364
1365 /**
1366  * blk_execute_rq - insert a request into queue for execution
1367  * @rq:         request to insert
1368  * @at_head:    insert request at head or tail of queue
1369  *
1370  * Description:
1371  *    Insert a fully prepared request at the back of the I/O scheduler queue
1372  *    for execution and wait for completion.
1373  * Return: The blk_status_t result provided to blk_mq_end_request().
1374  */
1375 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1376 {
1377         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1378         struct blk_rq_wait wait = {
1379                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1380         };
1381
1382         WARN_ON(irqs_disabled());
1383         WARN_ON(!blk_rq_is_passthrough(rq));
1384
1385         rq->end_io_data = &wait;
1386         rq->end_io = blk_end_sync_rq;
1387
1388         blk_account_io_start(rq);
1389         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1390         blk_mq_run_hw_queue(hctx, false);
1391
1392         if (blk_rq_is_poll(rq)) {
1393                 blk_rq_poll_completion(rq, &wait.done);
1394         } else {
1395                 /*
1396                  * Prevent hang_check timer from firing at us during very long
1397                  * I/O
1398                  */
1399                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1400
1401                 if (hang_check)
1402                         while (!wait_for_completion_io_timeout(&wait.done,
1403                                         hang_check * (HZ/2)))
1404                                 ;
1405                 else
1406                         wait_for_completion_io(&wait.done);
1407         }
1408
1409         return wait.ret;
1410 }
1411 EXPORT_SYMBOL(blk_execute_rq);
1412
1413 static void __blk_mq_requeue_request(struct request *rq)
1414 {
1415         struct request_queue *q = rq->q;
1416
1417         blk_mq_put_driver_tag(rq);
1418
1419         trace_block_rq_requeue(rq);
1420         rq_qos_requeue(q, rq);
1421
1422         if (blk_mq_request_started(rq)) {
1423                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1424                 rq->rq_flags &= ~RQF_TIMED_OUT;
1425         }
1426 }
1427
1428 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1429 {
1430         struct request_queue *q = rq->q;
1431         unsigned long flags;
1432
1433         __blk_mq_requeue_request(rq);
1434
1435         /* this request will be re-inserted to io scheduler queue */
1436         blk_mq_sched_requeue_request(rq);
1437
1438         spin_lock_irqsave(&q->requeue_lock, flags);
1439         list_add_tail(&rq->queuelist, &q->requeue_list);
1440         spin_unlock_irqrestore(&q->requeue_lock, flags);
1441
1442         if (kick_requeue_list)
1443                 blk_mq_kick_requeue_list(q);
1444 }
1445 EXPORT_SYMBOL(blk_mq_requeue_request);
1446
1447 static void blk_mq_requeue_work(struct work_struct *work)
1448 {
1449         struct request_queue *q =
1450                 container_of(work, struct request_queue, requeue_work.work);
1451         LIST_HEAD(rq_list);
1452         LIST_HEAD(flush_list);
1453         struct request *rq;
1454
1455         spin_lock_irq(&q->requeue_lock);
1456         list_splice_init(&q->requeue_list, &rq_list);
1457         list_splice_init(&q->flush_list, &flush_list);
1458         spin_unlock_irq(&q->requeue_lock);
1459
1460         while (!list_empty(&rq_list)) {
1461                 rq = list_entry(rq_list.next, struct request, queuelist);
1462                 /*
1463                  * If RQF_DONTPREP ist set, the request has been started by the
1464                  * driver already and might have driver-specific data allocated
1465                  * already.  Insert it into the hctx dispatch list to avoid
1466                  * block layer merges for the request.
1467                  */
1468                 if (rq->rq_flags & RQF_DONTPREP) {
1469                         list_del_init(&rq->queuelist);
1470                         blk_mq_request_bypass_insert(rq, 0);
1471                 } else {
1472                         list_del_init(&rq->queuelist);
1473                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1474                 }
1475         }
1476
1477         while (!list_empty(&flush_list)) {
1478                 rq = list_entry(flush_list.next, struct request, queuelist);
1479                 list_del_init(&rq->queuelist);
1480                 blk_mq_insert_request(rq, 0);
1481         }
1482
1483         blk_mq_run_hw_queues(q, false);
1484 }
1485
1486 void blk_mq_kick_requeue_list(struct request_queue *q)
1487 {
1488         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1489 }
1490 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1491
1492 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1493                                     unsigned long msecs)
1494 {
1495         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1496                                     msecs_to_jiffies(msecs));
1497 }
1498 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1499
1500 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1501 {
1502         /*
1503          * If we find a request that isn't idle we know the queue is busy
1504          * as it's checked in the iter.
1505          * Return false to stop the iteration.
1506          */
1507         if (blk_mq_request_started(rq)) {
1508                 bool *busy = priv;
1509
1510                 *busy = true;
1511                 return false;
1512         }
1513
1514         return true;
1515 }
1516
1517 bool blk_mq_queue_inflight(struct request_queue *q)
1518 {
1519         bool busy = false;
1520
1521         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1522         return busy;
1523 }
1524 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1525
1526 static void blk_mq_rq_timed_out(struct request *req)
1527 {
1528         req->rq_flags |= RQF_TIMED_OUT;
1529         if (req->q->mq_ops->timeout) {
1530                 enum blk_eh_timer_return ret;
1531
1532                 ret = req->q->mq_ops->timeout(req);
1533                 if (ret == BLK_EH_DONE)
1534                         return;
1535                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1536         }
1537
1538         blk_add_timer(req);
1539 }
1540
1541 struct blk_expired_data {
1542         bool has_timedout_rq;
1543         unsigned long next;
1544         unsigned long timeout_start;
1545 };
1546
1547 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1548 {
1549         unsigned long deadline;
1550
1551         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1552                 return false;
1553         if (rq->rq_flags & RQF_TIMED_OUT)
1554                 return false;
1555
1556         deadline = READ_ONCE(rq->deadline);
1557         if (time_after_eq(expired->timeout_start, deadline))
1558                 return true;
1559
1560         if (expired->next == 0)
1561                 expired->next = deadline;
1562         else if (time_after(expired->next, deadline))
1563                 expired->next = deadline;
1564         return false;
1565 }
1566
1567 void blk_mq_put_rq_ref(struct request *rq)
1568 {
1569         if (is_flush_rq(rq)) {
1570                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1571                         blk_mq_free_request(rq);
1572         } else if (req_ref_put_and_test(rq)) {
1573                 __blk_mq_free_request(rq);
1574         }
1575 }
1576
1577 static bool blk_mq_check_expired(struct request *rq, void *priv)
1578 {
1579         struct blk_expired_data *expired = priv;
1580
1581         /*
1582          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1583          * be reallocated underneath the timeout handler's processing, then
1584          * the expire check is reliable. If the request is not expired, then
1585          * it was completed and reallocated as a new request after returning
1586          * from blk_mq_check_expired().
1587          */
1588         if (blk_mq_req_expired(rq, expired)) {
1589                 expired->has_timedout_rq = true;
1590                 return false;
1591         }
1592         return true;
1593 }
1594
1595 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1596 {
1597         struct blk_expired_data *expired = priv;
1598
1599         if (blk_mq_req_expired(rq, expired))
1600                 blk_mq_rq_timed_out(rq);
1601         return true;
1602 }
1603
1604 static void blk_mq_timeout_work(struct work_struct *work)
1605 {
1606         struct request_queue *q =
1607                 container_of(work, struct request_queue, timeout_work);
1608         struct blk_expired_data expired = {
1609                 .timeout_start = jiffies,
1610         };
1611         struct blk_mq_hw_ctx *hctx;
1612         unsigned long i;
1613
1614         /* A deadlock might occur if a request is stuck requiring a
1615          * timeout at the same time a queue freeze is waiting
1616          * completion, since the timeout code would not be able to
1617          * acquire the queue reference here.
1618          *
1619          * That's why we don't use blk_queue_enter here; instead, we use
1620          * percpu_ref_tryget directly, because we need to be able to
1621          * obtain a reference even in the short window between the queue
1622          * starting to freeze, by dropping the first reference in
1623          * blk_freeze_queue_start, and the moment the last request is
1624          * consumed, marked by the instant q_usage_counter reaches
1625          * zero.
1626          */
1627         if (!percpu_ref_tryget(&q->q_usage_counter))
1628                 return;
1629
1630         /* check if there is any timed-out request */
1631         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1632         if (expired.has_timedout_rq) {
1633                 /*
1634                  * Before walking tags, we must ensure any submit started
1635                  * before the current time has finished. Since the submit
1636                  * uses srcu or rcu, wait for a synchronization point to
1637                  * ensure all running submits have finished
1638                  */
1639                 blk_mq_wait_quiesce_done(q->tag_set);
1640
1641                 expired.next = 0;
1642                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1643         }
1644
1645         if (expired.next != 0) {
1646                 mod_timer(&q->timeout, expired.next);
1647         } else {
1648                 /*
1649                  * Request timeouts are handled as a forward rolling timer. If
1650                  * we end up here it means that no requests are pending and
1651                  * also that no request has been pending for a while. Mark
1652                  * each hctx as idle.
1653                  */
1654                 queue_for_each_hw_ctx(q, hctx, i) {
1655                         /* the hctx may be unmapped, so check it here */
1656                         if (blk_mq_hw_queue_mapped(hctx))
1657                                 blk_mq_tag_idle(hctx);
1658                 }
1659         }
1660         blk_queue_exit(q);
1661 }
1662
1663 struct flush_busy_ctx_data {
1664         struct blk_mq_hw_ctx *hctx;
1665         struct list_head *list;
1666 };
1667
1668 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1669 {
1670         struct flush_busy_ctx_data *flush_data = data;
1671         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1672         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1673         enum hctx_type type = hctx->type;
1674
1675         spin_lock(&ctx->lock);
1676         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1677         sbitmap_clear_bit(sb, bitnr);
1678         spin_unlock(&ctx->lock);
1679         return true;
1680 }
1681
1682 /*
1683  * Process software queues that have been marked busy, splicing them
1684  * to the for-dispatch
1685  */
1686 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1687 {
1688         struct flush_busy_ctx_data data = {
1689                 .hctx = hctx,
1690                 .list = list,
1691         };
1692
1693         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1694 }
1695 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1696
1697 struct dispatch_rq_data {
1698         struct blk_mq_hw_ctx *hctx;
1699         struct request *rq;
1700 };
1701
1702 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1703                 void *data)
1704 {
1705         struct dispatch_rq_data *dispatch_data = data;
1706         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1707         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1708         enum hctx_type type = hctx->type;
1709
1710         spin_lock(&ctx->lock);
1711         if (!list_empty(&ctx->rq_lists[type])) {
1712                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1713                 list_del_init(&dispatch_data->rq->queuelist);
1714                 if (list_empty(&ctx->rq_lists[type]))
1715                         sbitmap_clear_bit(sb, bitnr);
1716         }
1717         spin_unlock(&ctx->lock);
1718
1719         return !dispatch_data->rq;
1720 }
1721
1722 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1723                                         struct blk_mq_ctx *start)
1724 {
1725         unsigned off = start ? start->index_hw[hctx->type] : 0;
1726         struct dispatch_rq_data data = {
1727                 .hctx = hctx,
1728                 .rq   = NULL,
1729         };
1730
1731         __sbitmap_for_each_set(&hctx->ctx_map, off,
1732                                dispatch_rq_from_ctx, &data);
1733
1734         return data.rq;
1735 }
1736
1737 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1738 {
1739         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1740         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1741         int tag;
1742
1743         blk_mq_tag_busy(rq->mq_hctx);
1744
1745         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1746                 bt = &rq->mq_hctx->tags->breserved_tags;
1747                 tag_offset = 0;
1748         } else {
1749                 if (!hctx_may_queue(rq->mq_hctx, bt))
1750                         return false;
1751         }
1752
1753         tag = __sbitmap_queue_get(bt);
1754         if (tag == BLK_MQ_NO_TAG)
1755                 return false;
1756
1757         rq->tag = tag + tag_offset;
1758         return true;
1759 }
1760
1761 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1762 {
1763         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1764                 return false;
1765
1766         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1767                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1768                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1769                 __blk_mq_inc_active_requests(hctx);
1770         }
1771         hctx->tags->rqs[rq->tag] = rq;
1772         return true;
1773 }
1774
1775 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1776                                 int flags, void *key)
1777 {
1778         struct blk_mq_hw_ctx *hctx;
1779
1780         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1781
1782         spin_lock(&hctx->dispatch_wait_lock);
1783         if (!list_empty(&wait->entry)) {
1784                 struct sbitmap_queue *sbq;
1785
1786                 list_del_init(&wait->entry);
1787                 sbq = &hctx->tags->bitmap_tags;
1788                 atomic_dec(&sbq->ws_active);
1789         }
1790         spin_unlock(&hctx->dispatch_wait_lock);
1791
1792         blk_mq_run_hw_queue(hctx, true);
1793         return 1;
1794 }
1795
1796 /*
1797  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1798  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1799  * restart. For both cases, take care to check the condition again after
1800  * marking us as waiting.
1801  */
1802 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1803                                  struct request *rq)
1804 {
1805         struct sbitmap_queue *sbq;
1806         struct wait_queue_head *wq;
1807         wait_queue_entry_t *wait;
1808         bool ret;
1809
1810         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1811             !(blk_mq_is_shared_tags(hctx->flags))) {
1812                 blk_mq_sched_mark_restart_hctx(hctx);
1813
1814                 /*
1815                  * It's possible that a tag was freed in the window between the
1816                  * allocation failure and adding the hardware queue to the wait
1817                  * queue.
1818                  *
1819                  * Don't clear RESTART here, someone else could have set it.
1820                  * At most this will cost an extra queue run.
1821                  */
1822                 return blk_mq_get_driver_tag(rq);
1823         }
1824
1825         wait = &hctx->dispatch_wait;
1826         if (!list_empty_careful(&wait->entry))
1827                 return false;
1828
1829         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1830                 sbq = &hctx->tags->breserved_tags;
1831         else
1832                 sbq = &hctx->tags->bitmap_tags;
1833         wq = &bt_wait_ptr(sbq, hctx)->wait;
1834
1835         spin_lock_irq(&wq->lock);
1836         spin_lock(&hctx->dispatch_wait_lock);
1837         if (!list_empty(&wait->entry)) {
1838                 spin_unlock(&hctx->dispatch_wait_lock);
1839                 spin_unlock_irq(&wq->lock);
1840                 return false;
1841         }
1842
1843         atomic_inc(&sbq->ws_active);
1844         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1845         __add_wait_queue(wq, wait);
1846
1847         /*
1848          * It's possible that a tag was freed in the window between the
1849          * allocation failure and adding the hardware queue to the wait
1850          * queue.
1851          */
1852         ret = blk_mq_get_driver_tag(rq);
1853         if (!ret) {
1854                 spin_unlock(&hctx->dispatch_wait_lock);
1855                 spin_unlock_irq(&wq->lock);
1856                 return false;
1857         }
1858
1859         /*
1860          * We got a tag, remove ourselves from the wait queue to ensure
1861          * someone else gets the wakeup.
1862          */
1863         list_del_init(&wait->entry);
1864         atomic_dec(&sbq->ws_active);
1865         spin_unlock(&hctx->dispatch_wait_lock);
1866         spin_unlock_irq(&wq->lock);
1867
1868         return true;
1869 }
1870
1871 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1872 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1873 /*
1874  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1875  * - EWMA is one simple way to compute running average value
1876  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1877  * - take 4 as factor for avoiding to get too small(0) result, and this
1878  *   factor doesn't matter because EWMA decreases exponentially
1879  */
1880 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1881 {
1882         unsigned int ewma;
1883
1884         ewma = hctx->dispatch_busy;
1885
1886         if (!ewma && !busy)
1887                 return;
1888
1889         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1890         if (busy)
1891                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1892         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1893
1894         hctx->dispatch_busy = ewma;
1895 }
1896
1897 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1898
1899 static void blk_mq_handle_dev_resource(struct request *rq,
1900                                        struct list_head *list)
1901 {
1902         list_add(&rq->queuelist, list);
1903         __blk_mq_requeue_request(rq);
1904 }
1905
1906 static void blk_mq_handle_zone_resource(struct request *rq,
1907                                         struct list_head *zone_list)
1908 {
1909         /*
1910          * If we end up here it is because we cannot dispatch a request to a
1911          * specific zone due to LLD level zone-write locking or other zone
1912          * related resource not being available. In this case, set the request
1913          * aside in zone_list for retrying it later.
1914          */
1915         list_add(&rq->queuelist, zone_list);
1916         __blk_mq_requeue_request(rq);
1917 }
1918
1919 enum prep_dispatch {
1920         PREP_DISPATCH_OK,
1921         PREP_DISPATCH_NO_TAG,
1922         PREP_DISPATCH_NO_BUDGET,
1923 };
1924
1925 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1926                                                   bool need_budget)
1927 {
1928         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1929         int budget_token = -1;
1930
1931         if (need_budget) {
1932                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1933                 if (budget_token < 0) {
1934                         blk_mq_put_driver_tag(rq);
1935                         return PREP_DISPATCH_NO_BUDGET;
1936                 }
1937                 blk_mq_set_rq_budget_token(rq, budget_token);
1938         }
1939
1940         if (!blk_mq_get_driver_tag(rq)) {
1941                 /*
1942                  * The initial allocation attempt failed, so we need to
1943                  * rerun the hardware queue when a tag is freed. The
1944                  * waitqueue takes care of that. If the queue is run
1945                  * before we add this entry back on the dispatch list,
1946                  * we'll re-run it below.
1947                  */
1948                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1949                         /*
1950                          * All budgets not got from this function will be put
1951                          * together during handling partial dispatch
1952                          */
1953                         if (need_budget)
1954                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1955                         return PREP_DISPATCH_NO_TAG;
1956                 }
1957         }
1958
1959         return PREP_DISPATCH_OK;
1960 }
1961
1962 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1963 static void blk_mq_release_budgets(struct request_queue *q,
1964                 struct list_head *list)
1965 {
1966         struct request *rq;
1967
1968         list_for_each_entry(rq, list, queuelist) {
1969                 int budget_token = blk_mq_get_rq_budget_token(rq);
1970
1971                 if (budget_token >= 0)
1972                         blk_mq_put_dispatch_budget(q, budget_token);
1973         }
1974 }
1975
1976 /*
1977  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1978  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1979  * details)
1980  * Attention, we should explicitly call this in unusual cases:
1981  *  1) did not queue everything initially scheduled to queue
1982  *  2) the last attempt to queue a request failed
1983  */
1984 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1985                               bool from_schedule)
1986 {
1987         if (hctx->queue->mq_ops->commit_rqs && queued) {
1988                 trace_block_unplug(hctx->queue, queued, !from_schedule);
1989                 hctx->queue->mq_ops->commit_rqs(hctx);
1990         }
1991 }
1992
1993 /*
1994  * Returns true if we did some work AND can potentially do more.
1995  */
1996 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1997                              unsigned int nr_budgets)
1998 {
1999         enum prep_dispatch prep;
2000         struct request_queue *q = hctx->queue;
2001         struct request *rq;
2002         int queued;
2003         blk_status_t ret = BLK_STS_OK;
2004         LIST_HEAD(zone_list);
2005         bool needs_resource = false;
2006
2007         if (list_empty(list))
2008                 return false;
2009
2010         /*
2011          * Now process all the entries, sending them to the driver.
2012          */
2013         queued = 0;
2014         do {
2015                 struct blk_mq_queue_data bd;
2016
2017                 rq = list_first_entry(list, struct request, queuelist);
2018
2019                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2020                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2021                 if (prep != PREP_DISPATCH_OK)
2022                         break;
2023
2024                 list_del_init(&rq->queuelist);
2025
2026                 bd.rq = rq;
2027                 bd.last = list_empty(list);
2028
2029                 /*
2030                  * once the request is queued to lld, no need to cover the
2031                  * budget any more
2032                  */
2033                 if (nr_budgets)
2034                         nr_budgets--;
2035                 ret = q->mq_ops->queue_rq(hctx, &bd);
2036                 switch (ret) {
2037                 case BLK_STS_OK:
2038                         queued++;
2039                         break;
2040                 case BLK_STS_RESOURCE:
2041                         needs_resource = true;
2042                         fallthrough;
2043                 case BLK_STS_DEV_RESOURCE:
2044                         blk_mq_handle_dev_resource(rq, list);
2045                         goto out;
2046                 case BLK_STS_ZONE_RESOURCE:
2047                         /*
2048                          * Move the request to zone_list and keep going through
2049                          * the dispatch list to find more requests the drive can
2050                          * accept.
2051                          */
2052                         blk_mq_handle_zone_resource(rq, &zone_list);
2053                         needs_resource = true;
2054                         break;
2055                 default:
2056                         blk_mq_end_request(rq, ret);
2057                 }
2058         } while (!list_empty(list));
2059 out:
2060         if (!list_empty(&zone_list))
2061                 list_splice_tail_init(&zone_list, list);
2062
2063         /* If we didn't flush the entire list, we could have told the driver
2064          * there was more coming, but that turned out to be a lie.
2065          */
2066         if (!list_empty(list) || ret != BLK_STS_OK)
2067                 blk_mq_commit_rqs(hctx, queued, false);
2068
2069         /*
2070          * Any items that need requeuing? Stuff them into hctx->dispatch,
2071          * that is where we will continue on next queue run.
2072          */
2073         if (!list_empty(list)) {
2074                 bool needs_restart;
2075                 /* For non-shared tags, the RESTART check will suffice */
2076                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2077                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2078                         blk_mq_is_shared_tags(hctx->flags));
2079
2080                 if (nr_budgets)
2081                         blk_mq_release_budgets(q, list);
2082
2083                 spin_lock(&hctx->lock);
2084                 list_splice_tail_init(list, &hctx->dispatch);
2085                 spin_unlock(&hctx->lock);
2086
2087                 /*
2088                  * Order adding requests to hctx->dispatch and checking
2089                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2090                  * in blk_mq_sched_restart(). Avoid restart code path to
2091                  * miss the new added requests to hctx->dispatch, meantime
2092                  * SCHED_RESTART is observed here.
2093                  */
2094                 smp_mb();
2095
2096                 /*
2097                  * If SCHED_RESTART was set by the caller of this function and
2098                  * it is no longer set that means that it was cleared by another
2099                  * thread and hence that a queue rerun is needed.
2100                  *
2101                  * If 'no_tag' is set, that means that we failed getting
2102                  * a driver tag with an I/O scheduler attached. If our dispatch
2103                  * waitqueue is no longer active, ensure that we run the queue
2104                  * AFTER adding our entries back to the list.
2105                  *
2106                  * If no I/O scheduler has been configured it is possible that
2107                  * the hardware queue got stopped and restarted before requests
2108                  * were pushed back onto the dispatch list. Rerun the queue to
2109                  * avoid starvation. Notes:
2110                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2111                  *   been stopped before rerunning a queue.
2112                  * - Some but not all block drivers stop a queue before
2113                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2114                  *   and dm-rq.
2115                  *
2116                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2117                  * bit is set, run queue after a delay to avoid IO stalls
2118                  * that could otherwise occur if the queue is idle.  We'll do
2119                  * similar if we couldn't get budget or couldn't lock a zone
2120                  * and SCHED_RESTART is set.
2121                  */
2122                 needs_restart = blk_mq_sched_needs_restart(hctx);
2123                 if (prep == PREP_DISPATCH_NO_BUDGET)
2124                         needs_resource = true;
2125                 if (!needs_restart ||
2126                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2127                         blk_mq_run_hw_queue(hctx, true);
2128                 else if (needs_resource)
2129                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2130
2131                 blk_mq_update_dispatch_busy(hctx, true);
2132                 return false;
2133         }
2134
2135         blk_mq_update_dispatch_busy(hctx, false);
2136         return true;
2137 }
2138
2139 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2140 {
2141         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2142
2143         if (cpu >= nr_cpu_ids)
2144                 cpu = cpumask_first(hctx->cpumask);
2145         return cpu;
2146 }
2147
2148 /*
2149  * It'd be great if the workqueue API had a way to pass
2150  * in a mask and had some smarts for more clever placement.
2151  * For now we just round-robin here, switching for every
2152  * BLK_MQ_CPU_WORK_BATCH queued items.
2153  */
2154 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2155 {
2156         bool tried = false;
2157         int next_cpu = hctx->next_cpu;
2158
2159         if (hctx->queue->nr_hw_queues == 1)
2160                 return WORK_CPU_UNBOUND;
2161
2162         if (--hctx->next_cpu_batch <= 0) {
2163 select_cpu:
2164                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2165                                 cpu_online_mask);
2166                 if (next_cpu >= nr_cpu_ids)
2167                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2168                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2169         }
2170
2171         /*
2172          * Do unbound schedule if we can't find a online CPU for this hctx,
2173          * and it should only happen in the path of handling CPU DEAD.
2174          */
2175         if (!cpu_online(next_cpu)) {
2176                 if (!tried) {
2177                         tried = true;
2178                         goto select_cpu;
2179                 }
2180
2181                 /*
2182                  * Make sure to re-select CPU next time once after CPUs
2183                  * in hctx->cpumask become online again.
2184                  */
2185                 hctx->next_cpu = next_cpu;
2186                 hctx->next_cpu_batch = 1;
2187                 return WORK_CPU_UNBOUND;
2188         }
2189
2190         hctx->next_cpu = next_cpu;
2191         return next_cpu;
2192 }
2193
2194 /**
2195  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2196  * @hctx: Pointer to the hardware queue to run.
2197  * @msecs: Milliseconds of delay to wait before running the queue.
2198  *
2199  * Run a hardware queue asynchronously with a delay of @msecs.
2200  */
2201 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2202 {
2203         if (unlikely(blk_mq_hctx_stopped(hctx)))
2204                 return;
2205         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2206                                     msecs_to_jiffies(msecs));
2207 }
2208 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2209
2210 /**
2211  * blk_mq_run_hw_queue - Start to run a hardware queue.
2212  * @hctx: Pointer to the hardware queue to run.
2213  * @async: If we want to run the queue asynchronously.
2214  *
2215  * Check if the request queue is not in a quiesced state and if there are
2216  * pending requests to be sent. If this is true, run the queue to send requests
2217  * to hardware.
2218  */
2219 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2220 {
2221         bool need_run;
2222
2223         /*
2224          * We can't run the queue inline with interrupts disabled.
2225          */
2226         WARN_ON_ONCE(!async && in_interrupt());
2227
2228         /*
2229          * When queue is quiesced, we may be switching io scheduler, or
2230          * updating nr_hw_queues, or other things, and we can't run queue
2231          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2232          *
2233          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2234          * quiesced.
2235          */
2236         __blk_mq_run_dispatch_ops(hctx->queue, false,
2237                 need_run = !blk_queue_quiesced(hctx->queue) &&
2238                 blk_mq_hctx_has_pending(hctx));
2239
2240         if (!need_run)
2241                 return;
2242
2243         if (async || (hctx->flags & BLK_MQ_F_BLOCKING) ||
2244             !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2245                 blk_mq_delay_run_hw_queue(hctx, 0);
2246                 return;
2247         }
2248
2249         blk_mq_run_dispatch_ops(hctx->queue,
2250                                 blk_mq_sched_dispatch_requests(hctx));
2251 }
2252 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2253
2254 /*
2255  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2256  * scheduler.
2257  */
2258 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2259 {
2260         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2261         /*
2262          * If the IO scheduler does not respect hardware queues when
2263          * dispatching, we just don't bother with multiple HW queues and
2264          * dispatch from hctx for the current CPU since running multiple queues
2265          * just causes lock contention inside the scheduler and pointless cache
2266          * bouncing.
2267          */
2268         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2269
2270         if (!blk_mq_hctx_stopped(hctx))
2271                 return hctx;
2272         return NULL;
2273 }
2274
2275 /**
2276  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2277  * @q: Pointer to the request queue to run.
2278  * @async: If we want to run the queue asynchronously.
2279  */
2280 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2281 {
2282         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2283         unsigned long i;
2284
2285         sq_hctx = NULL;
2286         if (blk_queue_sq_sched(q))
2287                 sq_hctx = blk_mq_get_sq_hctx(q);
2288         queue_for_each_hw_ctx(q, hctx, i) {
2289                 if (blk_mq_hctx_stopped(hctx))
2290                         continue;
2291                 /*
2292                  * Dispatch from this hctx either if there's no hctx preferred
2293                  * by IO scheduler or if it has requests that bypass the
2294                  * scheduler.
2295                  */
2296                 if (!sq_hctx || sq_hctx == hctx ||
2297                     !list_empty_careful(&hctx->dispatch))
2298                         blk_mq_run_hw_queue(hctx, async);
2299         }
2300 }
2301 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2302
2303 /**
2304  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2305  * @q: Pointer to the request queue to run.
2306  * @msecs: Milliseconds of delay to wait before running the queues.
2307  */
2308 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2309 {
2310         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2311         unsigned long i;
2312
2313         sq_hctx = NULL;
2314         if (blk_queue_sq_sched(q))
2315                 sq_hctx = blk_mq_get_sq_hctx(q);
2316         queue_for_each_hw_ctx(q, hctx, i) {
2317                 if (blk_mq_hctx_stopped(hctx))
2318                         continue;
2319                 /*
2320                  * If there is already a run_work pending, leave the
2321                  * pending delay untouched. Otherwise, a hctx can stall
2322                  * if another hctx is re-delaying the other's work
2323                  * before the work executes.
2324                  */
2325                 if (delayed_work_pending(&hctx->run_work))
2326                         continue;
2327                 /*
2328                  * Dispatch from this hctx either if there's no hctx preferred
2329                  * by IO scheduler or if it has requests that bypass the
2330                  * scheduler.
2331                  */
2332                 if (!sq_hctx || sq_hctx == hctx ||
2333                     !list_empty_careful(&hctx->dispatch))
2334                         blk_mq_delay_run_hw_queue(hctx, msecs);
2335         }
2336 }
2337 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2338
2339 /*
2340  * This function is often used for pausing .queue_rq() by driver when
2341  * there isn't enough resource or some conditions aren't satisfied, and
2342  * BLK_STS_RESOURCE is usually returned.
2343  *
2344  * We do not guarantee that dispatch can be drained or blocked
2345  * after blk_mq_stop_hw_queue() returns. Please use
2346  * blk_mq_quiesce_queue() for that requirement.
2347  */
2348 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2349 {
2350         cancel_delayed_work(&hctx->run_work);
2351
2352         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2353 }
2354 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2355
2356 /*
2357  * This function is often used for pausing .queue_rq() by driver when
2358  * there isn't enough resource or some conditions aren't satisfied, and
2359  * BLK_STS_RESOURCE is usually returned.
2360  *
2361  * We do not guarantee that dispatch can be drained or blocked
2362  * after blk_mq_stop_hw_queues() returns. Please use
2363  * blk_mq_quiesce_queue() for that requirement.
2364  */
2365 void blk_mq_stop_hw_queues(struct request_queue *q)
2366 {
2367         struct blk_mq_hw_ctx *hctx;
2368         unsigned long i;
2369
2370         queue_for_each_hw_ctx(q, hctx, i)
2371                 blk_mq_stop_hw_queue(hctx);
2372 }
2373 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2374
2375 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2376 {
2377         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2378
2379         blk_mq_run_hw_queue(hctx, false);
2380 }
2381 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2382
2383 void blk_mq_start_hw_queues(struct request_queue *q)
2384 {
2385         struct blk_mq_hw_ctx *hctx;
2386         unsigned long i;
2387
2388         queue_for_each_hw_ctx(q, hctx, i)
2389                 blk_mq_start_hw_queue(hctx);
2390 }
2391 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2392
2393 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2394 {
2395         if (!blk_mq_hctx_stopped(hctx))
2396                 return;
2397
2398         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2399         blk_mq_run_hw_queue(hctx, async);
2400 }
2401 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2402
2403 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2404 {
2405         struct blk_mq_hw_ctx *hctx;
2406         unsigned long i;
2407
2408         queue_for_each_hw_ctx(q, hctx, i)
2409                 blk_mq_start_stopped_hw_queue(hctx, async);
2410 }
2411 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2412
2413 static void blk_mq_run_work_fn(struct work_struct *work)
2414 {
2415         struct blk_mq_hw_ctx *hctx =
2416                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2417
2418         blk_mq_run_dispatch_ops(hctx->queue,
2419                                 blk_mq_sched_dispatch_requests(hctx));
2420 }
2421
2422 /**
2423  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2424  * @rq: Pointer to request to be inserted.
2425  * @flags: BLK_MQ_INSERT_*
2426  *
2427  * Should only be used carefully, when the caller knows we want to
2428  * bypass a potential IO scheduler on the target device.
2429  */
2430 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2431 {
2432         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2433
2434         spin_lock(&hctx->lock);
2435         if (flags & BLK_MQ_INSERT_AT_HEAD)
2436                 list_add(&rq->queuelist, &hctx->dispatch);
2437         else
2438                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2439         spin_unlock(&hctx->lock);
2440 }
2441
2442 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2443                 struct blk_mq_ctx *ctx, struct list_head *list,
2444                 bool run_queue_async)
2445 {
2446         struct request *rq;
2447         enum hctx_type type = hctx->type;
2448
2449         /*
2450          * Try to issue requests directly if the hw queue isn't busy to save an
2451          * extra enqueue & dequeue to the sw queue.
2452          */
2453         if (!hctx->dispatch_busy && !run_queue_async) {
2454                 blk_mq_run_dispatch_ops(hctx->queue,
2455                         blk_mq_try_issue_list_directly(hctx, list));
2456                 if (list_empty(list))
2457                         goto out;
2458         }
2459
2460         /*
2461          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2462          * offline now
2463          */
2464         list_for_each_entry(rq, list, queuelist) {
2465                 BUG_ON(rq->mq_ctx != ctx);
2466                 trace_block_rq_insert(rq);
2467         }
2468
2469         spin_lock(&ctx->lock);
2470         list_splice_tail_init(list, &ctx->rq_lists[type]);
2471         blk_mq_hctx_mark_pending(hctx, ctx);
2472         spin_unlock(&ctx->lock);
2473 out:
2474         blk_mq_run_hw_queue(hctx, run_queue_async);
2475 }
2476
2477 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2478 {
2479         struct request_queue *q = rq->q;
2480         struct blk_mq_ctx *ctx = rq->mq_ctx;
2481         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2482
2483         if (blk_rq_is_passthrough(rq)) {
2484                 /*
2485                  * Passthrough request have to be added to hctx->dispatch
2486                  * directly.  The device may be in a situation where it can't
2487                  * handle FS request, and always returns BLK_STS_RESOURCE for
2488                  * them, which gets them added to hctx->dispatch.
2489                  *
2490                  * If a passthrough request is required to unblock the queues,
2491                  * and it is added to the scheduler queue, there is no chance to
2492                  * dispatch it given we prioritize requests in hctx->dispatch.
2493                  */
2494                 blk_mq_request_bypass_insert(rq, flags);
2495         } else if (req_op(rq) == REQ_OP_FLUSH) {
2496                 /*
2497                  * Firstly normal IO request is inserted to scheduler queue or
2498                  * sw queue, meantime we add flush request to dispatch queue(
2499                  * hctx->dispatch) directly and there is at most one in-flight
2500                  * flush request for each hw queue, so it doesn't matter to add
2501                  * flush request to tail or front of the dispatch queue.
2502                  *
2503                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2504                  * command, and queueing it will fail when there is any
2505                  * in-flight normal IO request(NCQ command). When adding flush
2506                  * rq to the front of hctx->dispatch, it is easier to introduce
2507                  * extra time to flush rq's latency because of S_SCHED_RESTART
2508                  * compared with adding to the tail of dispatch queue, then
2509                  * chance of flush merge is increased, and less flush requests
2510                  * will be issued to controller. It is observed that ~10% time
2511                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2512                  * drive when adding flush rq to the front of hctx->dispatch.
2513                  *
2514                  * Simply queue flush rq to the front of hctx->dispatch so that
2515                  * intensive flush workloads can benefit in case of NCQ HW.
2516                  */
2517                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2518         } else if (q->elevator) {
2519                 LIST_HEAD(list);
2520
2521                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2522
2523                 list_add(&rq->queuelist, &list);
2524                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2525         } else {
2526                 trace_block_rq_insert(rq);
2527
2528                 spin_lock(&ctx->lock);
2529                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2530                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2531                 else
2532                         list_add_tail(&rq->queuelist,
2533                                       &ctx->rq_lists[hctx->type]);
2534                 blk_mq_hctx_mark_pending(hctx, ctx);
2535                 spin_unlock(&ctx->lock);
2536         }
2537 }
2538
2539 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2540                 unsigned int nr_segs)
2541 {
2542         int err;
2543
2544         if (bio->bi_opf & REQ_RAHEAD)
2545                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2546
2547         rq->__sector = bio->bi_iter.bi_sector;
2548         blk_rq_bio_prep(rq, bio, nr_segs);
2549
2550         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2551         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2552         WARN_ON_ONCE(err);
2553
2554         blk_account_io_start(rq);
2555 }
2556
2557 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2558                                             struct request *rq, bool last)
2559 {
2560         struct request_queue *q = rq->q;
2561         struct blk_mq_queue_data bd = {
2562                 .rq = rq,
2563                 .last = last,
2564         };
2565         blk_status_t ret;
2566
2567         /*
2568          * For OK queue, we are done. For error, caller may kill it.
2569          * Any other error (busy), just add it to our list as we
2570          * previously would have done.
2571          */
2572         ret = q->mq_ops->queue_rq(hctx, &bd);
2573         switch (ret) {
2574         case BLK_STS_OK:
2575                 blk_mq_update_dispatch_busy(hctx, false);
2576                 break;
2577         case BLK_STS_RESOURCE:
2578         case BLK_STS_DEV_RESOURCE:
2579                 blk_mq_update_dispatch_busy(hctx, true);
2580                 __blk_mq_requeue_request(rq);
2581                 break;
2582         default:
2583                 blk_mq_update_dispatch_busy(hctx, false);
2584                 break;
2585         }
2586
2587         return ret;
2588 }
2589
2590 static bool blk_mq_get_budget_and_tag(struct request *rq)
2591 {
2592         int budget_token;
2593
2594         budget_token = blk_mq_get_dispatch_budget(rq->q);
2595         if (budget_token < 0)
2596                 return false;
2597         blk_mq_set_rq_budget_token(rq, budget_token);
2598         if (!blk_mq_get_driver_tag(rq)) {
2599                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2600                 return false;
2601         }
2602         return true;
2603 }
2604
2605 /**
2606  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2607  * @hctx: Pointer of the associated hardware queue.
2608  * @rq: Pointer to request to be sent.
2609  *
2610  * If the device has enough resources to accept a new request now, send the
2611  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2612  * we can try send it another time in the future. Requests inserted at this
2613  * queue have higher priority.
2614  */
2615 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2616                 struct request *rq)
2617 {
2618         blk_status_t ret;
2619
2620         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2621                 blk_mq_insert_request(rq, 0);
2622                 return;
2623         }
2624
2625         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2626                 blk_mq_insert_request(rq, 0);
2627                 blk_mq_run_hw_queue(hctx, false);
2628                 return;
2629         }
2630
2631         ret = __blk_mq_issue_directly(hctx, rq, true);
2632         switch (ret) {
2633         case BLK_STS_OK:
2634                 break;
2635         case BLK_STS_RESOURCE:
2636         case BLK_STS_DEV_RESOURCE:
2637                 blk_mq_request_bypass_insert(rq, 0);
2638                 blk_mq_run_hw_queue(hctx, false);
2639                 break;
2640         default:
2641                 blk_mq_end_request(rq, ret);
2642                 break;
2643         }
2644 }
2645
2646 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2647 {
2648         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2649
2650         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2651                 blk_mq_insert_request(rq, 0);
2652                 return BLK_STS_OK;
2653         }
2654
2655         if (!blk_mq_get_budget_and_tag(rq))
2656                 return BLK_STS_RESOURCE;
2657         return __blk_mq_issue_directly(hctx, rq, last);
2658 }
2659
2660 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2661 {
2662         struct blk_mq_hw_ctx *hctx = NULL;
2663         struct request *rq;
2664         int queued = 0;
2665         blk_status_t ret = BLK_STS_OK;
2666
2667         while ((rq = rq_list_pop(&plug->mq_list))) {
2668                 bool last = rq_list_empty(plug->mq_list);
2669
2670                 if (hctx != rq->mq_hctx) {
2671                         if (hctx) {
2672                                 blk_mq_commit_rqs(hctx, queued, false);
2673                                 queued = 0;
2674                         }
2675                         hctx = rq->mq_hctx;
2676                 }
2677
2678                 ret = blk_mq_request_issue_directly(rq, last);
2679                 switch (ret) {
2680                 case BLK_STS_OK:
2681                         queued++;
2682                         break;
2683                 case BLK_STS_RESOURCE:
2684                 case BLK_STS_DEV_RESOURCE:
2685                         blk_mq_request_bypass_insert(rq, 0);
2686                         blk_mq_run_hw_queue(hctx, false);
2687                         goto out;
2688                 default:
2689                         blk_mq_end_request(rq, ret);
2690                         break;
2691                 }
2692         }
2693
2694 out:
2695         if (ret != BLK_STS_OK)
2696                 blk_mq_commit_rqs(hctx, queued, false);
2697 }
2698
2699 static void __blk_mq_flush_plug_list(struct request_queue *q,
2700                                      struct blk_plug *plug)
2701 {
2702         if (blk_queue_quiesced(q))
2703                 return;
2704         q->mq_ops->queue_rqs(&plug->mq_list);
2705 }
2706
2707 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2708 {
2709         struct blk_mq_hw_ctx *this_hctx = NULL;
2710         struct blk_mq_ctx *this_ctx = NULL;
2711         struct request *requeue_list = NULL;
2712         struct request **requeue_lastp = &requeue_list;
2713         unsigned int depth = 0;
2714         bool is_passthrough = false;
2715         LIST_HEAD(list);
2716
2717         do {
2718                 struct request *rq = rq_list_pop(&plug->mq_list);
2719
2720                 if (!this_hctx) {
2721                         this_hctx = rq->mq_hctx;
2722                         this_ctx = rq->mq_ctx;
2723                         is_passthrough = blk_rq_is_passthrough(rq);
2724                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2725                            is_passthrough != blk_rq_is_passthrough(rq)) {
2726                         rq_list_add_tail(&requeue_lastp, rq);
2727                         continue;
2728                 }
2729                 list_add(&rq->queuelist, &list);
2730                 depth++;
2731         } while (!rq_list_empty(plug->mq_list));
2732
2733         plug->mq_list = requeue_list;
2734         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2735
2736         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2737         /* passthrough requests should never be issued to the I/O scheduler */
2738         if (is_passthrough) {
2739                 spin_lock(&this_hctx->lock);
2740                 list_splice_tail_init(&list, &this_hctx->dispatch);
2741                 spin_unlock(&this_hctx->lock);
2742                 blk_mq_run_hw_queue(this_hctx, from_sched);
2743         } else if (this_hctx->queue->elevator) {
2744                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2745                                 &list, 0);
2746                 blk_mq_run_hw_queue(this_hctx, from_sched);
2747         } else {
2748                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2749         }
2750         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2751 }
2752
2753 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2754 {
2755         struct request *rq;
2756
2757         if (rq_list_empty(plug->mq_list))
2758                 return;
2759         plug->rq_count = 0;
2760
2761         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2762                 struct request_queue *q;
2763
2764                 rq = rq_list_peek(&plug->mq_list);
2765                 q = rq->q;
2766
2767                 /*
2768                  * Peek first request and see if we have a ->queue_rqs() hook.
2769                  * If we do, we can dispatch the whole plug list in one go. We
2770                  * already know at this point that all requests belong to the
2771                  * same queue, caller must ensure that's the case.
2772                  *
2773                  * Since we pass off the full list to the driver at this point,
2774                  * we do not increment the active request count for the queue.
2775                  * Bypass shared tags for now because of that.
2776                  */
2777                 if (q->mq_ops->queue_rqs &&
2778                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2779                         blk_mq_run_dispatch_ops(q,
2780                                 __blk_mq_flush_plug_list(q, plug));
2781                         if (rq_list_empty(plug->mq_list))
2782                                 return;
2783                 }
2784
2785                 blk_mq_run_dispatch_ops(q,
2786                                 blk_mq_plug_issue_direct(plug));
2787                 if (rq_list_empty(plug->mq_list))
2788                         return;
2789         }
2790
2791         do {
2792                 blk_mq_dispatch_plug_list(plug, from_schedule);
2793         } while (!rq_list_empty(plug->mq_list));
2794 }
2795
2796 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2797                 struct list_head *list)
2798 {
2799         int queued = 0;
2800         blk_status_t ret = BLK_STS_OK;
2801
2802         while (!list_empty(list)) {
2803                 struct request *rq = list_first_entry(list, struct request,
2804                                 queuelist);
2805
2806                 list_del_init(&rq->queuelist);
2807                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2808                 switch (ret) {
2809                 case BLK_STS_OK:
2810                         queued++;
2811                         break;
2812                 case BLK_STS_RESOURCE:
2813                 case BLK_STS_DEV_RESOURCE:
2814                         blk_mq_request_bypass_insert(rq, 0);
2815                         if (list_empty(list))
2816                                 blk_mq_run_hw_queue(hctx, false);
2817                         goto out;
2818                 default:
2819                         blk_mq_end_request(rq, ret);
2820                         break;
2821                 }
2822         }
2823
2824 out:
2825         if (ret != BLK_STS_OK)
2826                 blk_mq_commit_rqs(hctx, queued, false);
2827 }
2828
2829 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2830                                      struct bio *bio, unsigned int nr_segs)
2831 {
2832         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2833                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2834                         return true;
2835                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2836                         return true;
2837         }
2838         return false;
2839 }
2840
2841 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2842                                                struct blk_plug *plug,
2843                                                struct bio *bio,
2844                                                unsigned int nsegs)
2845 {
2846         struct blk_mq_alloc_data data = {
2847                 .q              = q,
2848                 .nr_tags        = 1,
2849                 .cmd_flags      = bio->bi_opf,
2850         };
2851         struct request *rq;
2852
2853         if (unlikely(bio_queue_enter(bio)))
2854                 return NULL;
2855
2856         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2857                 goto queue_exit;
2858
2859         rq_qos_throttle(q, bio);
2860
2861         if (plug) {
2862                 data.nr_tags = plug->nr_ios;
2863                 plug->nr_ios = 1;
2864                 data.cached_rq = &plug->cached_rq;
2865         }
2866
2867         rq = __blk_mq_alloc_requests(&data);
2868         if (rq)
2869                 return rq;
2870         rq_qos_cleanup(q, bio);
2871         if (bio->bi_opf & REQ_NOWAIT)
2872                 bio_wouldblock_error(bio);
2873 queue_exit:
2874         blk_queue_exit(q);
2875         return NULL;
2876 }
2877
2878 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2879                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2880 {
2881         struct request *rq;
2882         enum hctx_type type, hctx_type;
2883
2884         if (!plug)
2885                 return NULL;
2886         rq = rq_list_peek(&plug->cached_rq);
2887         if (!rq || rq->q != q)
2888                 return NULL;
2889
2890         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2891                 *bio = NULL;
2892                 return NULL;
2893         }
2894
2895         type = blk_mq_get_hctx_type((*bio)->bi_opf);
2896         hctx_type = rq->mq_hctx->type;
2897         if (type != hctx_type &&
2898             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2899                 return NULL;
2900         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2901                 return NULL;
2902
2903         /*
2904          * If any qos ->throttle() end up blocking, we will have flushed the
2905          * plug and hence killed the cached_rq list as well. Pop this entry
2906          * before we throttle.
2907          */
2908         plug->cached_rq = rq_list_next(rq);
2909         rq_qos_throttle(q, *bio);
2910
2911         blk_mq_rq_time_init(rq, 0);
2912         rq->cmd_flags = (*bio)->bi_opf;
2913         INIT_LIST_HEAD(&rq->queuelist);
2914         return rq;
2915 }
2916
2917 static void bio_set_ioprio(struct bio *bio)
2918 {
2919         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2920         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2921                 bio->bi_ioprio = get_current_ioprio();
2922         blkcg_set_ioprio(bio);
2923 }
2924
2925 /**
2926  * blk_mq_submit_bio - Create and send a request to block device.
2927  * @bio: Bio pointer.
2928  *
2929  * Builds up a request structure from @q and @bio and send to the device. The
2930  * request may not be queued directly to hardware if:
2931  * * This request can be merged with another one
2932  * * We want to place request at plug queue for possible future merging
2933  * * There is an IO scheduler active at this queue
2934  *
2935  * It will not queue the request if there is an error with the bio, or at the
2936  * request creation.
2937  */
2938 void blk_mq_submit_bio(struct bio *bio)
2939 {
2940         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2941         struct blk_plug *plug = blk_mq_plug(bio);
2942         const int is_sync = op_is_sync(bio->bi_opf);
2943         struct blk_mq_hw_ctx *hctx;
2944         struct request *rq;
2945         unsigned int nr_segs = 1;
2946         blk_status_t ret;
2947
2948         bio = blk_queue_bounce(bio, q);
2949         if (bio_may_exceed_limits(bio, &q->limits)) {
2950                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2951                 if (!bio)
2952                         return;
2953         }
2954
2955         if (!bio_integrity_prep(bio))
2956                 return;
2957
2958         bio_set_ioprio(bio);
2959
2960         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2961         if (!rq) {
2962                 if (!bio)
2963                         return;
2964                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2965                 if (unlikely(!rq))
2966                         return;
2967         }
2968
2969         trace_block_getrq(bio);
2970
2971         rq_qos_track(q, rq, bio);
2972
2973         blk_mq_bio_to_request(rq, bio, nr_segs);
2974
2975         ret = blk_crypto_rq_get_keyslot(rq);
2976         if (ret != BLK_STS_OK) {
2977                 bio->bi_status = ret;
2978                 bio_endio(bio);
2979                 blk_mq_free_request(rq);
2980                 return;
2981         }
2982
2983         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
2984                 return;
2985
2986         if (plug) {
2987                 blk_add_rq_to_plug(plug, rq);
2988                 return;
2989         }
2990
2991         hctx = rq->mq_hctx;
2992         if ((rq->rq_flags & RQF_USE_SCHED) ||
2993             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
2994                 blk_mq_insert_request(rq, 0);
2995                 blk_mq_run_hw_queue(hctx, true);
2996         } else {
2997                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
2998         }
2999 }
3000
3001 #ifdef CONFIG_BLK_MQ_STACKING
3002 /**
3003  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3004  * @rq: the request being queued
3005  */
3006 blk_status_t blk_insert_cloned_request(struct request *rq)
3007 {
3008         struct request_queue *q = rq->q;
3009         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3010         unsigned int max_segments = blk_rq_get_max_segments(rq);
3011         blk_status_t ret;
3012
3013         if (blk_rq_sectors(rq) > max_sectors) {
3014                 /*
3015                  * SCSI device does not have a good way to return if
3016                  * Write Same/Zero is actually supported. If a device rejects
3017                  * a non-read/write command (discard, write same,etc.) the
3018                  * low-level device driver will set the relevant queue limit to
3019                  * 0 to prevent blk-lib from issuing more of the offending
3020                  * operations. Commands queued prior to the queue limit being
3021                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3022                  * errors being propagated to upper layers.
3023                  */
3024                 if (max_sectors == 0)
3025                         return BLK_STS_NOTSUPP;
3026
3027                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3028                         __func__, blk_rq_sectors(rq), max_sectors);
3029                 return BLK_STS_IOERR;
3030         }
3031
3032         /*
3033          * The queue settings related to segment counting may differ from the
3034          * original queue.
3035          */
3036         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3037         if (rq->nr_phys_segments > max_segments) {
3038                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3039                         __func__, rq->nr_phys_segments, max_segments);
3040                 return BLK_STS_IOERR;
3041         }
3042
3043         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3044                 return BLK_STS_IOERR;
3045
3046         ret = blk_crypto_rq_get_keyslot(rq);
3047         if (ret != BLK_STS_OK)
3048                 return ret;
3049
3050         blk_account_io_start(rq);
3051
3052         /*
3053          * Since we have a scheduler attached on the top device,
3054          * bypass a potential scheduler on the bottom device for
3055          * insert.
3056          */
3057         blk_mq_run_dispatch_ops(q,
3058                         ret = blk_mq_request_issue_directly(rq, true));
3059         if (ret)
3060                 blk_account_io_done(rq, ktime_get_ns());
3061         return ret;
3062 }
3063 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3064
3065 /**
3066  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3067  * @rq: the clone request to be cleaned up
3068  *
3069  * Description:
3070  *     Free all bios in @rq for a cloned request.
3071  */
3072 void blk_rq_unprep_clone(struct request *rq)
3073 {
3074         struct bio *bio;
3075
3076         while ((bio = rq->bio) != NULL) {
3077                 rq->bio = bio->bi_next;
3078
3079                 bio_put(bio);
3080         }
3081 }
3082 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3083
3084 /**
3085  * blk_rq_prep_clone - Helper function to setup clone request
3086  * @rq: the request to be setup
3087  * @rq_src: original request to be cloned
3088  * @bs: bio_set that bios for clone are allocated from
3089  * @gfp_mask: memory allocation mask for bio
3090  * @bio_ctr: setup function to be called for each clone bio.
3091  *           Returns %0 for success, non %0 for failure.
3092  * @data: private data to be passed to @bio_ctr
3093  *
3094  * Description:
3095  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3096  *     Also, pages which the original bios are pointing to are not copied
3097  *     and the cloned bios just point same pages.
3098  *     So cloned bios must be completed before original bios, which means
3099  *     the caller must complete @rq before @rq_src.
3100  */
3101 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3102                       struct bio_set *bs, gfp_t gfp_mask,
3103                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3104                       void *data)
3105 {
3106         struct bio *bio, *bio_src;
3107
3108         if (!bs)
3109                 bs = &fs_bio_set;
3110
3111         __rq_for_each_bio(bio_src, rq_src) {
3112                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3113                                       bs);
3114                 if (!bio)
3115                         goto free_and_out;
3116
3117                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3118                         goto free_and_out;
3119
3120                 if (rq->bio) {
3121                         rq->biotail->bi_next = bio;
3122                         rq->biotail = bio;
3123                 } else {
3124                         rq->bio = rq->biotail = bio;
3125                 }
3126                 bio = NULL;
3127         }
3128
3129         /* Copy attributes of the original request to the clone request. */
3130         rq->__sector = blk_rq_pos(rq_src);
3131         rq->__data_len = blk_rq_bytes(rq_src);
3132         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3133                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3134                 rq->special_vec = rq_src->special_vec;
3135         }
3136         rq->nr_phys_segments = rq_src->nr_phys_segments;
3137         rq->ioprio = rq_src->ioprio;
3138
3139         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3140                 goto free_and_out;
3141
3142         return 0;
3143
3144 free_and_out:
3145         if (bio)
3146                 bio_put(bio);
3147         blk_rq_unprep_clone(rq);
3148
3149         return -ENOMEM;
3150 }
3151 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3152 #endif /* CONFIG_BLK_MQ_STACKING */
3153
3154 /*
3155  * Steal bios from a request and add them to a bio list.
3156  * The request must not have been partially completed before.
3157  */
3158 void blk_steal_bios(struct bio_list *list, struct request *rq)
3159 {
3160         if (rq->bio) {
3161                 if (list->tail)
3162                         list->tail->bi_next = rq->bio;
3163                 else
3164                         list->head = rq->bio;
3165                 list->tail = rq->biotail;
3166
3167                 rq->bio = NULL;
3168                 rq->biotail = NULL;
3169         }
3170
3171         rq->__data_len = 0;
3172 }
3173 EXPORT_SYMBOL_GPL(blk_steal_bios);
3174
3175 static size_t order_to_size(unsigned int order)
3176 {
3177         return (size_t)PAGE_SIZE << order;
3178 }
3179
3180 /* called before freeing request pool in @tags */
3181 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3182                                     struct blk_mq_tags *tags)
3183 {
3184         struct page *page;
3185         unsigned long flags;
3186
3187         /*
3188          * There is no need to clear mapping if driver tags is not initialized
3189          * or the mapping belongs to the driver tags.
3190          */
3191         if (!drv_tags || drv_tags == tags)
3192                 return;
3193
3194         list_for_each_entry(page, &tags->page_list, lru) {
3195                 unsigned long start = (unsigned long)page_address(page);
3196                 unsigned long end = start + order_to_size(page->private);
3197                 int i;
3198
3199                 for (i = 0; i < drv_tags->nr_tags; i++) {
3200                         struct request *rq = drv_tags->rqs[i];
3201                         unsigned long rq_addr = (unsigned long)rq;
3202
3203                         if (rq_addr >= start && rq_addr < end) {
3204                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3205                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3206                         }
3207                 }
3208         }
3209
3210         /*
3211          * Wait until all pending iteration is done.
3212          *
3213          * Request reference is cleared and it is guaranteed to be observed
3214          * after the ->lock is released.
3215          */
3216         spin_lock_irqsave(&drv_tags->lock, flags);
3217         spin_unlock_irqrestore(&drv_tags->lock, flags);
3218 }
3219
3220 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3221                      unsigned int hctx_idx)
3222 {
3223         struct blk_mq_tags *drv_tags;
3224         struct page *page;
3225
3226         if (list_empty(&tags->page_list))
3227                 return;
3228
3229         if (blk_mq_is_shared_tags(set->flags))
3230                 drv_tags = set->shared_tags;
3231         else
3232                 drv_tags = set->tags[hctx_idx];
3233
3234         if (tags->static_rqs && set->ops->exit_request) {
3235                 int i;
3236
3237                 for (i = 0; i < tags->nr_tags; i++) {
3238                         struct request *rq = tags->static_rqs[i];
3239
3240                         if (!rq)
3241                                 continue;
3242                         set->ops->exit_request(set, rq, hctx_idx);
3243                         tags->static_rqs[i] = NULL;
3244                 }
3245         }
3246
3247         blk_mq_clear_rq_mapping(drv_tags, tags);
3248
3249         while (!list_empty(&tags->page_list)) {
3250                 page = list_first_entry(&tags->page_list, struct page, lru);
3251                 list_del_init(&page->lru);
3252                 /*
3253                  * Remove kmemleak object previously allocated in
3254                  * blk_mq_alloc_rqs().
3255                  */
3256                 kmemleak_free(page_address(page));
3257                 __free_pages(page, page->private);
3258         }
3259 }
3260
3261 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3262 {
3263         kfree(tags->rqs);
3264         tags->rqs = NULL;
3265         kfree(tags->static_rqs);
3266         tags->static_rqs = NULL;
3267
3268         blk_mq_free_tags(tags);
3269 }
3270
3271 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3272                 unsigned int hctx_idx)
3273 {
3274         int i;
3275
3276         for (i = 0; i < set->nr_maps; i++) {
3277                 unsigned int start = set->map[i].queue_offset;
3278                 unsigned int end = start + set->map[i].nr_queues;
3279
3280                 if (hctx_idx >= start && hctx_idx < end)
3281                         break;
3282         }
3283
3284         if (i >= set->nr_maps)
3285                 i = HCTX_TYPE_DEFAULT;
3286
3287         return i;
3288 }
3289
3290 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3291                 unsigned int hctx_idx)
3292 {
3293         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3294
3295         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3296 }
3297
3298 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3299                                                unsigned int hctx_idx,
3300                                                unsigned int nr_tags,
3301                                                unsigned int reserved_tags)
3302 {
3303         int node = blk_mq_get_hctx_node(set, hctx_idx);
3304         struct blk_mq_tags *tags;
3305
3306         if (node == NUMA_NO_NODE)
3307                 node = set->numa_node;
3308
3309         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3310                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3311         if (!tags)
3312                 return NULL;
3313
3314         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3315                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3316                                  node);
3317         if (!tags->rqs)
3318                 goto err_free_tags;
3319
3320         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3321                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3322                                         node);
3323         if (!tags->static_rqs)
3324                 goto err_free_rqs;
3325
3326         return tags;
3327
3328 err_free_rqs:
3329         kfree(tags->rqs);
3330 err_free_tags:
3331         blk_mq_free_tags(tags);
3332         return NULL;
3333 }
3334
3335 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3336                                unsigned int hctx_idx, int node)
3337 {
3338         int ret;
3339
3340         if (set->ops->init_request) {
3341                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3342                 if (ret)
3343                         return ret;
3344         }
3345
3346         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3347         return 0;
3348 }
3349
3350 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3351                             struct blk_mq_tags *tags,
3352                             unsigned int hctx_idx, unsigned int depth)
3353 {
3354         unsigned int i, j, entries_per_page, max_order = 4;
3355         int node = blk_mq_get_hctx_node(set, hctx_idx);
3356         size_t rq_size, left;
3357
3358         if (node == NUMA_NO_NODE)
3359                 node = set->numa_node;
3360
3361         INIT_LIST_HEAD(&tags->page_list);
3362
3363         /*
3364          * rq_size is the size of the request plus driver payload, rounded
3365          * to the cacheline size
3366          */
3367         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3368                                 cache_line_size());
3369         left = rq_size * depth;
3370
3371         for (i = 0; i < depth; ) {
3372                 int this_order = max_order;
3373                 struct page *page;
3374                 int to_do;
3375                 void *p;
3376
3377                 while (this_order && left < order_to_size(this_order - 1))
3378                         this_order--;
3379
3380                 do {
3381                         page = alloc_pages_node(node,
3382                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3383                                 this_order);
3384                         if (page)
3385                                 break;
3386                         if (!this_order--)
3387                                 break;
3388                         if (order_to_size(this_order) < rq_size)
3389                                 break;
3390                 } while (1);
3391
3392                 if (!page)
3393                         goto fail;
3394
3395                 page->private = this_order;
3396                 list_add_tail(&page->lru, &tags->page_list);
3397
3398                 p = page_address(page);
3399                 /*
3400                  * Allow kmemleak to scan these pages as they contain pointers
3401                  * to additional allocations like via ops->init_request().
3402                  */
3403                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3404                 entries_per_page = order_to_size(this_order) / rq_size;
3405                 to_do = min(entries_per_page, depth - i);
3406                 left -= to_do * rq_size;
3407                 for (j = 0; j < to_do; j++) {
3408                         struct request *rq = p;
3409
3410                         tags->static_rqs[i] = rq;
3411                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3412                                 tags->static_rqs[i] = NULL;
3413                                 goto fail;
3414                         }
3415
3416                         p += rq_size;
3417                         i++;
3418                 }
3419         }
3420         return 0;
3421
3422 fail:
3423         blk_mq_free_rqs(set, tags, hctx_idx);
3424         return -ENOMEM;
3425 }
3426
3427 struct rq_iter_data {
3428         struct blk_mq_hw_ctx *hctx;
3429         bool has_rq;
3430 };
3431
3432 static bool blk_mq_has_request(struct request *rq, void *data)
3433 {
3434         struct rq_iter_data *iter_data = data;
3435
3436         if (rq->mq_hctx != iter_data->hctx)
3437                 return true;
3438         iter_data->has_rq = true;
3439         return false;
3440 }
3441
3442 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3443 {
3444         struct blk_mq_tags *tags = hctx->sched_tags ?
3445                         hctx->sched_tags : hctx->tags;
3446         struct rq_iter_data data = {
3447                 .hctx   = hctx,
3448         };
3449
3450         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3451         return data.has_rq;
3452 }
3453
3454 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3455                 struct blk_mq_hw_ctx *hctx)
3456 {
3457         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3458                 return false;
3459         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3460                 return false;
3461         return true;
3462 }
3463
3464 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3465 {
3466         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3467                         struct blk_mq_hw_ctx, cpuhp_online);
3468
3469         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3470             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3471                 return 0;
3472
3473         /*
3474          * Prevent new request from being allocated on the current hctx.
3475          *
3476          * The smp_mb__after_atomic() Pairs with the implied barrier in
3477          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3478          * seen once we return from the tag allocator.
3479          */
3480         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3481         smp_mb__after_atomic();
3482
3483         /*
3484          * Try to grab a reference to the queue and wait for any outstanding
3485          * requests.  If we could not grab a reference the queue has been
3486          * frozen and there are no requests.
3487          */
3488         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3489                 while (blk_mq_hctx_has_requests(hctx))
3490                         msleep(5);
3491                 percpu_ref_put(&hctx->queue->q_usage_counter);
3492         }
3493
3494         return 0;
3495 }
3496
3497 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3498 {
3499         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3500                         struct blk_mq_hw_ctx, cpuhp_online);
3501
3502         if (cpumask_test_cpu(cpu, hctx->cpumask))
3503                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3504         return 0;
3505 }
3506
3507 /*
3508  * 'cpu' is going away. splice any existing rq_list entries from this
3509  * software queue to the hw queue dispatch list, and ensure that it
3510  * gets run.
3511  */
3512 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3513 {
3514         struct blk_mq_hw_ctx *hctx;
3515         struct blk_mq_ctx *ctx;
3516         LIST_HEAD(tmp);
3517         enum hctx_type type;
3518
3519         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3520         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3521                 return 0;
3522
3523         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3524         type = hctx->type;
3525
3526         spin_lock(&ctx->lock);
3527         if (!list_empty(&ctx->rq_lists[type])) {
3528                 list_splice_init(&ctx->rq_lists[type], &tmp);
3529                 blk_mq_hctx_clear_pending(hctx, ctx);
3530         }
3531         spin_unlock(&ctx->lock);
3532
3533         if (list_empty(&tmp))
3534                 return 0;
3535
3536         spin_lock(&hctx->lock);
3537         list_splice_tail_init(&tmp, &hctx->dispatch);
3538         spin_unlock(&hctx->lock);
3539
3540         blk_mq_run_hw_queue(hctx, true);
3541         return 0;
3542 }
3543
3544 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3545 {
3546         if (!(hctx->flags & BLK_MQ_F_STACKING))
3547                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3548                                                     &hctx->cpuhp_online);
3549         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3550                                             &hctx->cpuhp_dead);
3551 }
3552
3553 /*
3554  * Before freeing hw queue, clearing the flush request reference in
3555  * tags->rqs[] for avoiding potential UAF.
3556  */
3557 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3558                 unsigned int queue_depth, struct request *flush_rq)
3559 {
3560         int i;
3561         unsigned long flags;
3562
3563         /* The hw queue may not be mapped yet */
3564         if (!tags)
3565                 return;
3566
3567         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3568
3569         for (i = 0; i < queue_depth; i++)
3570                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3571
3572         /*
3573          * Wait until all pending iteration is done.
3574          *
3575          * Request reference is cleared and it is guaranteed to be observed
3576          * after the ->lock is released.
3577          */
3578         spin_lock_irqsave(&tags->lock, flags);
3579         spin_unlock_irqrestore(&tags->lock, flags);
3580 }
3581
3582 /* hctx->ctxs will be freed in queue's release handler */
3583 static void blk_mq_exit_hctx(struct request_queue *q,
3584                 struct blk_mq_tag_set *set,
3585                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3586 {
3587         struct request *flush_rq = hctx->fq->flush_rq;
3588
3589         if (blk_mq_hw_queue_mapped(hctx))
3590                 blk_mq_tag_idle(hctx);
3591
3592         if (blk_queue_init_done(q))
3593                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3594                                 set->queue_depth, flush_rq);
3595         if (set->ops->exit_request)
3596                 set->ops->exit_request(set, flush_rq, hctx_idx);
3597
3598         if (set->ops->exit_hctx)
3599                 set->ops->exit_hctx(hctx, hctx_idx);
3600
3601         blk_mq_remove_cpuhp(hctx);
3602
3603         xa_erase(&q->hctx_table, hctx_idx);
3604
3605         spin_lock(&q->unused_hctx_lock);
3606         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3607         spin_unlock(&q->unused_hctx_lock);
3608 }
3609
3610 static void blk_mq_exit_hw_queues(struct request_queue *q,
3611                 struct blk_mq_tag_set *set, int nr_queue)
3612 {
3613         struct blk_mq_hw_ctx *hctx;
3614         unsigned long i;
3615
3616         queue_for_each_hw_ctx(q, hctx, i) {
3617                 if (i == nr_queue)
3618                         break;
3619                 blk_mq_exit_hctx(q, set, hctx, i);
3620         }
3621 }
3622
3623 static int blk_mq_init_hctx(struct request_queue *q,
3624                 struct blk_mq_tag_set *set,
3625                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3626 {
3627         hctx->queue_num = hctx_idx;
3628
3629         if (!(hctx->flags & BLK_MQ_F_STACKING))
3630                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3631                                 &hctx->cpuhp_online);
3632         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3633
3634         hctx->tags = set->tags[hctx_idx];
3635
3636         if (set->ops->init_hctx &&
3637             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3638                 goto unregister_cpu_notifier;
3639
3640         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3641                                 hctx->numa_node))
3642                 goto exit_hctx;
3643
3644         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3645                 goto exit_flush_rq;
3646
3647         return 0;
3648
3649  exit_flush_rq:
3650         if (set->ops->exit_request)
3651                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3652  exit_hctx:
3653         if (set->ops->exit_hctx)
3654                 set->ops->exit_hctx(hctx, hctx_idx);
3655  unregister_cpu_notifier:
3656         blk_mq_remove_cpuhp(hctx);
3657         return -1;
3658 }
3659
3660 static struct blk_mq_hw_ctx *
3661 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3662                 int node)
3663 {
3664         struct blk_mq_hw_ctx *hctx;
3665         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3666
3667         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3668         if (!hctx)
3669                 goto fail_alloc_hctx;
3670
3671         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3672                 goto free_hctx;
3673
3674         atomic_set(&hctx->nr_active, 0);
3675         if (node == NUMA_NO_NODE)
3676                 node = set->numa_node;
3677         hctx->numa_node = node;
3678
3679         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3680         spin_lock_init(&hctx->lock);
3681         INIT_LIST_HEAD(&hctx->dispatch);
3682         hctx->queue = q;
3683         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3684
3685         INIT_LIST_HEAD(&hctx->hctx_list);
3686
3687         /*
3688          * Allocate space for all possible cpus to avoid allocation at
3689          * runtime
3690          */
3691         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3692                         gfp, node);
3693         if (!hctx->ctxs)
3694                 goto free_cpumask;
3695
3696         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3697                                 gfp, node, false, false))
3698                 goto free_ctxs;
3699         hctx->nr_ctx = 0;
3700
3701         spin_lock_init(&hctx->dispatch_wait_lock);
3702         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3703         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3704
3705         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3706         if (!hctx->fq)
3707                 goto free_bitmap;
3708
3709         blk_mq_hctx_kobj_init(hctx);
3710
3711         return hctx;
3712
3713  free_bitmap:
3714         sbitmap_free(&hctx->ctx_map);
3715  free_ctxs:
3716         kfree(hctx->ctxs);
3717  free_cpumask:
3718         free_cpumask_var(hctx->cpumask);
3719  free_hctx:
3720         kfree(hctx);
3721  fail_alloc_hctx:
3722         return NULL;
3723 }
3724
3725 static void blk_mq_init_cpu_queues(struct request_queue *q,
3726                                    unsigned int nr_hw_queues)
3727 {
3728         struct blk_mq_tag_set *set = q->tag_set;
3729         unsigned int i, j;
3730
3731         for_each_possible_cpu(i) {
3732                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3733                 struct blk_mq_hw_ctx *hctx;
3734                 int k;
3735
3736                 __ctx->cpu = i;
3737                 spin_lock_init(&__ctx->lock);
3738                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3739                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3740
3741                 __ctx->queue = q;
3742
3743                 /*
3744                  * Set local node, IFF we have more than one hw queue. If
3745                  * not, we remain on the home node of the device
3746                  */
3747                 for (j = 0; j < set->nr_maps; j++) {
3748                         hctx = blk_mq_map_queue_type(q, j, i);
3749                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3750                                 hctx->numa_node = cpu_to_node(i);
3751                 }
3752         }
3753 }
3754
3755 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3756                                              unsigned int hctx_idx,
3757                                              unsigned int depth)
3758 {
3759         struct blk_mq_tags *tags;
3760         int ret;
3761
3762         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3763         if (!tags)
3764                 return NULL;
3765
3766         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3767         if (ret) {
3768                 blk_mq_free_rq_map(tags);
3769                 return NULL;
3770         }
3771
3772         return tags;
3773 }
3774
3775 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3776                                        int hctx_idx)
3777 {
3778         if (blk_mq_is_shared_tags(set->flags)) {
3779                 set->tags[hctx_idx] = set->shared_tags;
3780
3781                 return true;
3782         }
3783
3784         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3785                                                        set->queue_depth);
3786
3787         return set->tags[hctx_idx];
3788 }
3789
3790 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3791                              struct blk_mq_tags *tags,
3792                              unsigned int hctx_idx)
3793 {
3794         if (tags) {
3795                 blk_mq_free_rqs(set, tags, hctx_idx);
3796                 blk_mq_free_rq_map(tags);
3797         }
3798 }
3799
3800 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3801                                       unsigned int hctx_idx)
3802 {
3803         if (!blk_mq_is_shared_tags(set->flags))
3804                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3805
3806         set->tags[hctx_idx] = NULL;
3807 }
3808
3809 static void blk_mq_map_swqueue(struct request_queue *q)
3810 {
3811         unsigned int j, hctx_idx;
3812         unsigned long i;
3813         struct blk_mq_hw_ctx *hctx;
3814         struct blk_mq_ctx *ctx;
3815         struct blk_mq_tag_set *set = q->tag_set;
3816
3817         queue_for_each_hw_ctx(q, hctx, i) {
3818                 cpumask_clear(hctx->cpumask);
3819                 hctx->nr_ctx = 0;
3820                 hctx->dispatch_from = NULL;
3821         }
3822
3823         /*
3824          * Map software to hardware queues.
3825          *
3826          * If the cpu isn't present, the cpu is mapped to first hctx.
3827          */
3828         for_each_possible_cpu(i) {
3829
3830                 ctx = per_cpu_ptr(q->queue_ctx, i);
3831                 for (j = 0; j < set->nr_maps; j++) {
3832                         if (!set->map[j].nr_queues) {
3833                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3834                                                 HCTX_TYPE_DEFAULT, i);
3835                                 continue;
3836                         }
3837                         hctx_idx = set->map[j].mq_map[i];
3838                         /* unmapped hw queue can be remapped after CPU topo changed */
3839                         if (!set->tags[hctx_idx] &&
3840                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3841                                 /*
3842                                  * If tags initialization fail for some hctx,
3843                                  * that hctx won't be brought online.  In this
3844                                  * case, remap the current ctx to hctx[0] which
3845                                  * is guaranteed to always have tags allocated
3846                                  */
3847                                 set->map[j].mq_map[i] = 0;
3848                         }
3849
3850                         hctx = blk_mq_map_queue_type(q, j, i);
3851                         ctx->hctxs[j] = hctx;
3852                         /*
3853                          * If the CPU is already set in the mask, then we've
3854                          * mapped this one already. This can happen if
3855                          * devices share queues across queue maps.
3856                          */
3857                         if (cpumask_test_cpu(i, hctx->cpumask))
3858                                 continue;
3859
3860                         cpumask_set_cpu(i, hctx->cpumask);
3861                         hctx->type = j;
3862                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3863                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3864
3865                         /*
3866                          * If the nr_ctx type overflows, we have exceeded the
3867                          * amount of sw queues we can support.
3868                          */
3869                         BUG_ON(!hctx->nr_ctx);
3870                 }
3871
3872                 for (; j < HCTX_MAX_TYPES; j++)
3873                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3874                                         HCTX_TYPE_DEFAULT, i);
3875         }
3876
3877         queue_for_each_hw_ctx(q, hctx, i) {
3878                 /*
3879                  * If no software queues are mapped to this hardware queue,
3880                  * disable it and free the request entries.
3881                  */
3882                 if (!hctx->nr_ctx) {
3883                         /* Never unmap queue 0.  We need it as a
3884                          * fallback in case of a new remap fails
3885                          * allocation
3886                          */
3887                         if (i)
3888                                 __blk_mq_free_map_and_rqs(set, i);
3889
3890                         hctx->tags = NULL;
3891                         continue;
3892                 }
3893
3894                 hctx->tags = set->tags[i];
3895                 WARN_ON(!hctx->tags);
3896
3897                 /*
3898                  * Set the map size to the number of mapped software queues.
3899                  * This is more accurate and more efficient than looping
3900                  * over all possibly mapped software queues.
3901                  */
3902                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3903
3904                 /*
3905                  * Initialize batch roundrobin counts
3906                  */
3907                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3908                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3909         }
3910 }
3911
3912 /*
3913  * Caller needs to ensure that we're either frozen/quiesced, or that
3914  * the queue isn't live yet.
3915  */
3916 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3917 {
3918         struct blk_mq_hw_ctx *hctx;
3919         unsigned long i;
3920
3921         queue_for_each_hw_ctx(q, hctx, i) {
3922                 if (shared) {
3923                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3924                 } else {
3925                         blk_mq_tag_idle(hctx);
3926                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3927                 }
3928         }
3929 }
3930
3931 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3932                                          bool shared)
3933 {
3934         struct request_queue *q;
3935
3936         lockdep_assert_held(&set->tag_list_lock);
3937
3938         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3939                 blk_mq_freeze_queue(q);
3940                 queue_set_hctx_shared(q, shared);
3941                 blk_mq_unfreeze_queue(q);
3942         }
3943 }
3944
3945 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3946 {
3947         struct blk_mq_tag_set *set = q->tag_set;
3948
3949         mutex_lock(&set->tag_list_lock);
3950         list_del(&q->tag_set_list);
3951         if (list_is_singular(&set->tag_list)) {
3952                 /* just transitioned to unshared */
3953                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3954                 /* update existing queue */
3955                 blk_mq_update_tag_set_shared(set, false);
3956         }
3957         mutex_unlock(&set->tag_list_lock);
3958         INIT_LIST_HEAD(&q->tag_set_list);
3959 }
3960
3961 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3962                                      struct request_queue *q)
3963 {
3964         mutex_lock(&set->tag_list_lock);
3965
3966         /*
3967          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3968          */
3969         if (!list_empty(&set->tag_list) &&
3970             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3971                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3972                 /* update existing queue */
3973                 blk_mq_update_tag_set_shared(set, true);
3974         }
3975         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3976                 queue_set_hctx_shared(q, true);
3977         list_add_tail(&q->tag_set_list, &set->tag_list);
3978
3979         mutex_unlock(&set->tag_list_lock);
3980 }
3981
3982 /* All allocations will be freed in release handler of q->mq_kobj */
3983 static int blk_mq_alloc_ctxs(struct request_queue *q)
3984 {
3985         struct blk_mq_ctxs *ctxs;
3986         int cpu;
3987
3988         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3989         if (!ctxs)
3990                 return -ENOMEM;
3991
3992         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3993         if (!ctxs->queue_ctx)
3994                 goto fail;
3995
3996         for_each_possible_cpu(cpu) {
3997                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3998                 ctx->ctxs = ctxs;
3999         }
4000
4001         q->mq_kobj = &ctxs->kobj;
4002         q->queue_ctx = ctxs->queue_ctx;
4003
4004         return 0;
4005  fail:
4006         kfree(ctxs);
4007         return -ENOMEM;
4008 }
4009
4010 /*
4011  * It is the actual release handler for mq, but we do it from
4012  * request queue's release handler for avoiding use-after-free
4013  * and headache because q->mq_kobj shouldn't have been introduced,
4014  * but we can't group ctx/kctx kobj without it.
4015  */
4016 void blk_mq_release(struct request_queue *q)
4017 {
4018         struct blk_mq_hw_ctx *hctx, *next;
4019         unsigned long i;
4020
4021         queue_for_each_hw_ctx(q, hctx, i)
4022                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4023
4024         /* all hctx are in .unused_hctx_list now */
4025         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4026                 list_del_init(&hctx->hctx_list);
4027                 kobject_put(&hctx->kobj);
4028         }
4029
4030         xa_destroy(&q->hctx_table);
4031
4032         /*
4033          * release .mq_kobj and sw queue's kobject now because
4034          * both share lifetime with request queue.
4035          */
4036         blk_mq_sysfs_deinit(q);
4037 }
4038
4039 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4040                 void *queuedata)
4041 {
4042         struct request_queue *q;
4043         int ret;
4044
4045         q = blk_alloc_queue(set->numa_node);
4046         if (!q)
4047                 return ERR_PTR(-ENOMEM);
4048         q->queuedata = queuedata;
4049         ret = blk_mq_init_allocated_queue(set, q);
4050         if (ret) {
4051                 blk_put_queue(q);
4052                 return ERR_PTR(ret);
4053         }
4054         return q;
4055 }
4056
4057 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4058 {
4059         return blk_mq_init_queue_data(set, NULL);
4060 }
4061 EXPORT_SYMBOL(blk_mq_init_queue);
4062
4063 /**
4064  * blk_mq_destroy_queue - shutdown a request queue
4065  * @q: request queue to shutdown
4066  *
4067  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4068  * requests will be failed with -ENODEV. The caller is responsible for dropping
4069  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4070  *
4071  * Context: can sleep
4072  */
4073 void blk_mq_destroy_queue(struct request_queue *q)
4074 {
4075         WARN_ON_ONCE(!queue_is_mq(q));
4076         WARN_ON_ONCE(blk_queue_registered(q));
4077
4078         might_sleep();
4079
4080         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4081         blk_queue_start_drain(q);
4082         blk_mq_freeze_queue_wait(q);
4083
4084         blk_sync_queue(q);
4085         blk_mq_cancel_work_sync(q);
4086         blk_mq_exit_queue(q);
4087 }
4088 EXPORT_SYMBOL(blk_mq_destroy_queue);
4089
4090 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4091                 struct lock_class_key *lkclass)
4092 {
4093         struct request_queue *q;
4094         struct gendisk *disk;
4095
4096         q = blk_mq_init_queue_data(set, queuedata);
4097         if (IS_ERR(q))
4098                 return ERR_CAST(q);
4099
4100         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4101         if (!disk) {
4102                 blk_mq_destroy_queue(q);
4103                 blk_put_queue(q);
4104                 return ERR_PTR(-ENOMEM);
4105         }
4106         set_bit(GD_OWNS_QUEUE, &disk->state);
4107         return disk;
4108 }
4109 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4110
4111 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4112                 struct lock_class_key *lkclass)
4113 {
4114         struct gendisk *disk;
4115
4116         if (!blk_get_queue(q))
4117                 return NULL;
4118         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4119         if (!disk)
4120                 blk_put_queue(q);
4121         return disk;
4122 }
4123 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4124
4125 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4126                 struct blk_mq_tag_set *set, struct request_queue *q,
4127                 int hctx_idx, int node)
4128 {
4129         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4130
4131         /* reuse dead hctx first */
4132         spin_lock(&q->unused_hctx_lock);
4133         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4134                 if (tmp->numa_node == node) {
4135                         hctx = tmp;
4136                         break;
4137                 }
4138         }
4139         if (hctx)
4140                 list_del_init(&hctx->hctx_list);
4141         spin_unlock(&q->unused_hctx_lock);
4142
4143         if (!hctx)
4144                 hctx = blk_mq_alloc_hctx(q, set, node);
4145         if (!hctx)
4146                 goto fail;
4147
4148         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4149                 goto free_hctx;
4150
4151         return hctx;
4152
4153  free_hctx:
4154         kobject_put(&hctx->kobj);
4155  fail:
4156         return NULL;
4157 }
4158
4159 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4160                                                 struct request_queue *q)
4161 {
4162         struct blk_mq_hw_ctx *hctx;
4163         unsigned long i, j;
4164
4165         /* protect against switching io scheduler  */
4166         mutex_lock(&q->sysfs_lock);
4167         for (i = 0; i < set->nr_hw_queues; i++) {
4168                 int old_node;
4169                 int node = blk_mq_get_hctx_node(set, i);
4170                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4171
4172                 if (old_hctx) {
4173                         old_node = old_hctx->numa_node;
4174                         blk_mq_exit_hctx(q, set, old_hctx, i);
4175                 }
4176
4177                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4178                         if (!old_hctx)
4179                                 break;
4180                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4181                                         node, old_node);
4182                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4183                         WARN_ON_ONCE(!hctx);
4184                 }
4185         }
4186         /*
4187          * Increasing nr_hw_queues fails. Free the newly allocated
4188          * hctxs and keep the previous q->nr_hw_queues.
4189          */
4190         if (i != set->nr_hw_queues) {
4191                 j = q->nr_hw_queues;
4192         } else {
4193                 j = i;
4194                 q->nr_hw_queues = set->nr_hw_queues;
4195         }
4196
4197         xa_for_each_start(&q->hctx_table, j, hctx, j)
4198                 blk_mq_exit_hctx(q, set, hctx, j);
4199         mutex_unlock(&q->sysfs_lock);
4200 }
4201
4202 static void blk_mq_update_poll_flag(struct request_queue *q)
4203 {
4204         struct blk_mq_tag_set *set = q->tag_set;
4205
4206         if (set->nr_maps > HCTX_TYPE_POLL &&
4207             set->map[HCTX_TYPE_POLL].nr_queues)
4208                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4209         else
4210                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4211 }
4212
4213 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4214                 struct request_queue *q)
4215 {
4216         /* mark the queue as mq asap */
4217         q->mq_ops = set->ops;
4218
4219         if (blk_mq_alloc_ctxs(q))
4220                 goto err_exit;
4221
4222         /* init q->mq_kobj and sw queues' kobjects */
4223         blk_mq_sysfs_init(q);
4224
4225         INIT_LIST_HEAD(&q->unused_hctx_list);
4226         spin_lock_init(&q->unused_hctx_lock);
4227
4228         xa_init(&q->hctx_table);
4229
4230         blk_mq_realloc_hw_ctxs(set, q);
4231         if (!q->nr_hw_queues)
4232                 goto err_hctxs;
4233
4234         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4235         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4236
4237         q->tag_set = set;
4238
4239         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4240         blk_mq_update_poll_flag(q);
4241
4242         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4243         INIT_LIST_HEAD(&q->flush_list);
4244         INIT_LIST_HEAD(&q->requeue_list);
4245         spin_lock_init(&q->requeue_lock);
4246
4247         q->nr_requests = set->queue_depth;
4248
4249         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4250         blk_mq_add_queue_tag_set(set, q);
4251         blk_mq_map_swqueue(q);
4252         return 0;
4253
4254 err_hctxs:
4255         blk_mq_release(q);
4256 err_exit:
4257         q->mq_ops = NULL;
4258         return -ENOMEM;
4259 }
4260 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4261
4262 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4263 void blk_mq_exit_queue(struct request_queue *q)
4264 {
4265         struct blk_mq_tag_set *set = q->tag_set;
4266
4267         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4268         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4269         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4270         blk_mq_del_queue_tag_set(q);
4271 }
4272
4273 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4274 {
4275         int i;
4276
4277         if (blk_mq_is_shared_tags(set->flags)) {
4278                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4279                                                 BLK_MQ_NO_HCTX_IDX,
4280                                                 set->queue_depth);
4281                 if (!set->shared_tags)
4282                         return -ENOMEM;
4283         }
4284
4285         for (i = 0; i < set->nr_hw_queues; i++) {
4286                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4287                         goto out_unwind;
4288                 cond_resched();
4289         }
4290
4291         return 0;
4292
4293 out_unwind:
4294         while (--i >= 0)
4295                 __blk_mq_free_map_and_rqs(set, i);
4296
4297         if (blk_mq_is_shared_tags(set->flags)) {
4298                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4299                                         BLK_MQ_NO_HCTX_IDX);
4300         }
4301
4302         return -ENOMEM;
4303 }
4304
4305 /*
4306  * Allocate the request maps associated with this tag_set. Note that this
4307  * may reduce the depth asked for, if memory is tight. set->queue_depth
4308  * will be updated to reflect the allocated depth.
4309  */
4310 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4311 {
4312         unsigned int depth;
4313         int err;
4314
4315         depth = set->queue_depth;
4316         do {
4317                 err = __blk_mq_alloc_rq_maps(set);
4318                 if (!err)
4319                         break;
4320
4321                 set->queue_depth >>= 1;
4322                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4323                         err = -ENOMEM;
4324                         break;
4325                 }
4326         } while (set->queue_depth);
4327
4328         if (!set->queue_depth || err) {
4329                 pr_err("blk-mq: failed to allocate request map\n");
4330                 return -ENOMEM;
4331         }
4332
4333         if (depth != set->queue_depth)
4334                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4335                                                 depth, set->queue_depth);
4336
4337         return 0;
4338 }
4339
4340 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4341 {
4342         /*
4343          * blk_mq_map_queues() and multiple .map_queues() implementations
4344          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4345          * number of hardware queues.
4346          */
4347         if (set->nr_maps == 1)
4348                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4349
4350         if (set->ops->map_queues && !is_kdump_kernel()) {
4351                 int i;
4352
4353                 /*
4354                  * transport .map_queues is usually done in the following
4355                  * way:
4356                  *
4357                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4358                  *      mask = get_cpu_mask(queue)
4359                  *      for_each_cpu(cpu, mask)
4360                  *              set->map[x].mq_map[cpu] = queue;
4361                  * }
4362                  *
4363                  * When we need to remap, the table has to be cleared for
4364                  * killing stale mapping since one CPU may not be mapped
4365                  * to any hw queue.
4366                  */
4367                 for (i = 0; i < set->nr_maps; i++)
4368                         blk_mq_clear_mq_map(&set->map[i]);
4369
4370                 set->ops->map_queues(set);
4371         } else {
4372                 BUG_ON(set->nr_maps > 1);
4373                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4374         }
4375 }
4376
4377 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4378                                        int new_nr_hw_queues)
4379 {
4380         struct blk_mq_tags **new_tags;
4381
4382         if (set->nr_hw_queues >= new_nr_hw_queues)
4383                 goto done;
4384
4385         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4386                                 GFP_KERNEL, set->numa_node);
4387         if (!new_tags)
4388                 return -ENOMEM;
4389
4390         if (set->tags)
4391                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4392                        sizeof(*set->tags));
4393         kfree(set->tags);
4394         set->tags = new_tags;
4395 done:
4396         set->nr_hw_queues = new_nr_hw_queues;
4397         return 0;
4398 }
4399
4400 /*
4401  * Alloc a tag set to be associated with one or more request queues.
4402  * May fail with EINVAL for various error conditions. May adjust the
4403  * requested depth down, if it's too large. In that case, the set
4404  * value will be stored in set->queue_depth.
4405  */
4406 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4407 {
4408         int i, ret;
4409
4410         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4411
4412         if (!set->nr_hw_queues)
4413                 return -EINVAL;
4414         if (!set->queue_depth)
4415                 return -EINVAL;
4416         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4417                 return -EINVAL;
4418
4419         if (!set->ops->queue_rq)
4420                 return -EINVAL;
4421
4422         if (!set->ops->get_budget ^ !set->ops->put_budget)
4423                 return -EINVAL;
4424
4425         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4426                 pr_info("blk-mq: reduced tag depth to %u\n",
4427                         BLK_MQ_MAX_DEPTH);
4428                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4429         }
4430
4431         if (!set->nr_maps)
4432                 set->nr_maps = 1;
4433         else if (set->nr_maps > HCTX_MAX_TYPES)
4434                 return -EINVAL;
4435
4436         /*
4437          * If a crashdump is active, then we are potentially in a very
4438          * memory constrained environment. Limit us to 1 queue and
4439          * 64 tags to prevent using too much memory.
4440          */
4441         if (is_kdump_kernel()) {
4442                 set->nr_hw_queues = 1;
4443                 set->nr_maps = 1;
4444                 set->queue_depth = min(64U, set->queue_depth);
4445         }
4446         /*
4447          * There is no use for more h/w queues than cpus if we just have
4448          * a single map
4449          */
4450         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4451                 set->nr_hw_queues = nr_cpu_ids;
4452
4453         if (set->flags & BLK_MQ_F_BLOCKING) {
4454                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4455                 if (!set->srcu)
4456                         return -ENOMEM;
4457                 ret = init_srcu_struct(set->srcu);
4458                 if (ret)
4459                         goto out_free_srcu;
4460         }
4461
4462         ret = -ENOMEM;
4463         set->tags = kcalloc_node(set->nr_hw_queues,
4464                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4465                                  set->numa_node);
4466         if (!set->tags)
4467                 goto out_cleanup_srcu;
4468
4469         for (i = 0; i < set->nr_maps; i++) {
4470                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4471                                                   sizeof(set->map[i].mq_map[0]),
4472                                                   GFP_KERNEL, set->numa_node);
4473                 if (!set->map[i].mq_map)
4474                         goto out_free_mq_map;
4475                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4476         }
4477
4478         blk_mq_update_queue_map(set);
4479
4480         ret = blk_mq_alloc_set_map_and_rqs(set);
4481         if (ret)
4482                 goto out_free_mq_map;
4483
4484         mutex_init(&set->tag_list_lock);
4485         INIT_LIST_HEAD(&set->tag_list);
4486
4487         return 0;
4488
4489 out_free_mq_map:
4490         for (i = 0; i < set->nr_maps; i++) {
4491                 kfree(set->map[i].mq_map);
4492                 set->map[i].mq_map = NULL;
4493         }
4494         kfree(set->tags);
4495         set->tags = NULL;
4496 out_cleanup_srcu:
4497         if (set->flags & BLK_MQ_F_BLOCKING)
4498                 cleanup_srcu_struct(set->srcu);
4499 out_free_srcu:
4500         if (set->flags & BLK_MQ_F_BLOCKING)
4501                 kfree(set->srcu);
4502         return ret;
4503 }
4504 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4505
4506 /* allocate and initialize a tagset for a simple single-queue device */
4507 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4508                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4509                 unsigned int set_flags)
4510 {
4511         memset(set, 0, sizeof(*set));
4512         set->ops = ops;
4513         set->nr_hw_queues = 1;
4514         set->nr_maps = 1;
4515         set->queue_depth = queue_depth;
4516         set->numa_node = NUMA_NO_NODE;
4517         set->flags = set_flags;
4518         return blk_mq_alloc_tag_set(set);
4519 }
4520 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4521
4522 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4523 {
4524         int i, j;
4525
4526         for (i = 0; i < set->nr_hw_queues; i++)
4527                 __blk_mq_free_map_and_rqs(set, i);
4528
4529         if (blk_mq_is_shared_tags(set->flags)) {
4530                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4531                                         BLK_MQ_NO_HCTX_IDX);
4532         }
4533
4534         for (j = 0; j < set->nr_maps; j++) {
4535                 kfree(set->map[j].mq_map);
4536                 set->map[j].mq_map = NULL;
4537         }
4538
4539         kfree(set->tags);
4540         set->tags = NULL;
4541         if (set->flags & BLK_MQ_F_BLOCKING) {
4542                 cleanup_srcu_struct(set->srcu);
4543                 kfree(set->srcu);
4544         }
4545 }
4546 EXPORT_SYMBOL(blk_mq_free_tag_set);
4547
4548 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4549 {
4550         struct blk_mq_tag_set *set = q->tag_set;
4551         struct blk_mq_hw_ctx *hctx;
4552         int ret;
4553         unsigned long i;
4554
4555         if (!set)
4556                 return -EINVAL;
4557
4558         if (q->nr_requests == nr)
4559                 return 0;
4560
4561         blk_mq_freeze_queue(q);
4562         blk_mq_quiesce_queue(q);
4563
4564         ret = 0;
4565         queue_for_each_hw_ctx(q, hctx, i) {
4566                 if (!hctx->tags)
4567                         continue;
4568                 /*
4569                  * If we're using an MQ scheduler, just update the scheduler
4570                  * queue depth. This is similar to what the old code would do.
4571                  */
4572                 if (hctx->sched_tags) {
4573                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4574                                                       nr, true);
4575                 } else {
4576                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4577                                                       false);
4578                 }
4579                 if (ret)
4580                         break;
4581                 if (q->elevator && q->elevator->type->ops.depth_updated)
4582                         q->elevator->type->ops.depth_updated(hctx);
4583         }
4584         if (!ret) {
4585                 q->nr_requests = nr;
4586                 if (blk_mq_is_shared_tags(set->flags)) {
4587                         if (q->elevator)
4588                                 blk_mq_tag_update_sched_shared_tags(q);
4589                         else
4590                                 blk_mq_tag_resize_shared_tags(set, nr);
4591                 }
4592         }
4593
4594         blk_mq_unquiesce_queue(q);
4595         blk_mq_unfreeze_queue(q);
4596
4597         return ret;
4598 }
4599
4600 /*
4601  * request_queue and elevator_type pair.
4602  * It is just used by __blk_mq_update_nr_hw_queues to cache
4603  * the elevator_type associated with a request_queue.
4604  */
4605 struct blk_mq_qe_pair {
4606         struct list_head node;
4607         struct request_queue *q;
4608         struct elevator_type *type;
4609 };
4610
4611 /*
4612  * Cache the elevator_type in qe pair list and switch the
4613  * io scheduler to 'none'
4614  */
4615 static bool blk_mq_elv_switch_none(struct list_head *head,
4616                 struct request_queue *q)
4617 {
4618         struct blk_mq_qe_pair *qe;
4619
4620         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4621         if (!qe)
4622                 return false;
4623
4624         /* q->elevator needs protection from ->sysfs_lock */
4625         mutex_lock(&q->sysfs_lock);
4626
4627         /* the check has to be done with holding sysfs_lock */
4628         if (!q->elevator) {
4629                 kfree(qe);
4630                 goto unlock;
4631         }
4632
4633         INIT_LIST_HEAD(&qe->node);
4634         qe->q = q;
4635         qe->type = q->elevator->type;
4636         /* keep a reference to the elevator module as we'll switch back */
4637         __elevator_get(qe->type);
4638         list_add(&qe->node, head);
4639         elevator_disable(q);
4640 unlock:
4641         mutex_unlock(&q->sysfs_lock);
4642
4643         return true;
4644 }
4645
4646 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4647                                                 struct request_queue *q)
4648 {
4649         struct blk_mq_qe_pair *qe;
4650
4651         list_for_each_entry(qe, head, node)
4652                 if (qe->q == q)
4653                         return qe;
4654
4655         return NULL;
4656 }
4657
4658 static void blk_mq_elv_switch_back(struct list_head *head,
4659                                   struct request_queue *q)
4660 {
4661         struct blk_mq_qe_pair *qe;
4662         struct elevator_type *t;
4663
4664         qe = blk_lookup_qe_pair(head, q);
4665         if (!qe)
4666                 return;
4667         t = qe->type;
4668         list_del(&qe->node);
4669         kfree(qe);
4670
4671         mutex_lock(&q->sysfs_lock);
4672         elevator_switch(q, t);
4673         /* drop the reference acquired in blk_mq_elv_switch_none */
4674         elevator_put(t);
4675         mutex_unlock(&q->sysfs_lock);
4676 }
4677
4678 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4679                                                         int nr_hw_queues)
4680 {
4681         struct request_queue *q;
4682         LIST_HEAD(head);
4683         int prev_nr_hw_queues;
4684
4685         lockdep_assert_held(&set->tag_list_lock);
4686
4687         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4688                 nr_hw_queues = nr_cpu_ids;
4689         if (nr_hw_queues < 1)
4690                 return;
4691         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4692                 return;
4693
4694         list_for_each_entry(q, &set->tag_list, tag_set_list)
4695                 blk_mq_freeze_queue(q);
4696         /*
4697          * Switch IO scheduler to 'none', cleaning up the data associated
4698          * with the previous scheduler. We will switch back once we are done
4699          * updating the new sw to hw queue mappings.
4700          */
4701         list_for_each_entry(q, &set->tag_list, tag_set_list)
4702                 if (!blk_mq_elv_switch_none(&head, q))
4703                         goto switch_back;
4704
4705         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4706                 blk_mq_debugfs_unregister_hctxs(q);
4707                 blk_mq_sysfs_unregister_hctxs(q);
4708         }
4709
4710         prev_nr_hw_queues = set->nr_hw_queues;
4711         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4712                 goto reregister;
4713
4714 fallback:
4715         blk_mq_update_queue_map(set);
4716         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4717                 blk_mq_realloc_hw_ctxs(set, q);
4718                 blk_mq_update_poll_flag(q);
4719                 if (q->nr_hw_queues != set->nr_hw_queues) {
4720                         int i = prev_nr_hw_queues;
4721
4722                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4723                                         nr_hw_queues, prev_nr_hw_queues);
4724                         for (; i < set->nr_hw_queues; i++)
4725                                 __blk_mq_free_map_and_rqs(set, i);
4726
4727                         set->nr_hw_queues = prev_nr_hw_queues;
4728                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4729                         goto fallback;
4730                 }
4731                 blk_mq_map_swqueue(q);
4732         }
4733
4734 reregister:
4735         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4736                 blk_mq_sysfs_register_hctxs(q);
4737                 blk_mq_debugfs_register_hctxs(q);
4738         }
4739
4740 switch_back:
4741         list_for_each_entry(q, &set->tag_list, tag_set_list)
4742                 blk_mq_elv_switch_back(&head, q);
4743
4744         list_for_each_entry(q, &set->tag_list, tag_set_list)
4745                 blk_mq_unfreeze_queue(q);
4746 }
4747
4748 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4749 {
4750         mutex_lock(&set->tag_list_lock);
4751         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4752         mutex_unlock(&set->tag_list_lock);
4753 }
4754 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4755
4756 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4757                          struct io_comp_batch *iob, unsigned int flags)
4758 {
4759         long state = get_current_state();
4760         int ret;
4761
4762         do {
4763                 ret = q->mq_ops->poll(hctx, iob);
4764                 if (ret > 0) {
4765                         __set_current_state(TASK_RUNNING);
4766                         return ret;
4767                 }
4768
4769                 if (signal_pending_state(state, current))
4770                         __set_current_state(TASK_RUNNING);
4771                 if (task_is_running(current))
4772                         return 1;
4773
4774                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4775                         break;
4776                 cpu_relax();
4777         } while (!need_resched());
4778
4779         __set_current_state(TASK_RUNNING);
4780         return 0;
4781 }
4782
4783 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4784                 struct io_comp_batch *iob, unsigned int flags)
4785 {
4786         struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4787
4788         return blk_hctx_poll(q, hctx, iob, flags);
4789 }
4790
4791 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4792                 unsigned int poll_flags)
4793 {
4794         struct request_queue *q = rq->q;
4795         int ret;
4796
4797         if (!blk_rq_is_poll(rq))
4798                 return 0;
4799         if (!percpu_ref_tryget(&q->q_usage_counter))
4800                 return 0;
4801
4802         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4803         blk_queue_exit(q);
4804
4805         return ret;
4806 }
4807 EXPORT_SYMBOL_GPL(blk_rq_poll);
4808
4809 unsigned int blk_mq_rq_cpu(struct request *rq)
4810 {
4811         return rq->mq_ctx->cpu;
4812 }
4813 EXPORT_SYMBOL(blk_mq_rq_cpu);
4814
4815 void blk_mq_cancel_work_sync(struct request_queue *q)
4816 {
4817         struct blk_mq_hw_ctx *hctx;
4818         unsigned long i;
4819
4820         cancel_delayed_work_sync(&q->requeue_work);
4821
4822         queue_for_each_hw_ctx(q, hctx, i)
4823                 cancel_delayed_work_sync(&hctx->run_work);
4824 }
4825
4826 static int __init blk_mq_init(void)
4827 {
4828         int i;
4829
4830         for_each_possible_cpu(i)
4831                 init_llist_head(&per_cpu(blk_cpu_done, i));
4832         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4833
4834         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4835                                   "block/softirq:dead", NULL,
4836                                   blk_softirq_cpu_dead);
4837         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4838                                 blk_mq_hctx_notify_dead);
4839         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4840                                 blk_mq_hctx_notify_online,
4841                                 blk_mq_hctx_notify_offline);
4842         return 0;
4843 }
4844 subsys_initcall(blk_mq_init);