Merge remote-tracking branch 'drm/drm-next' into drm-misc-next
[platform/kernel/linux-starfive.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54         int ddir, sectors, bucket;
55
56         ddir = rq_data_dir(rq);
57         sectors = blk_rq_stats_sectors(rq);
58
59         bucket = ddir + 2 * ilog2(sectors);
60
61         if (bucket < 0)
62                 return -1;
63         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65
66         return bucket;
67 }
68
69 #define BLK_QC_T_SHIFT          16
70 #define BLK_QC_T_INTERNAL       (1U << 31)
71
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73                 blk_qc_t qc)
74 {
75         return xa_load(&q->hctx_table,
76                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80                 blk_qc_t qc)
81 {
82         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83
84         if (qc & BLK_QC_T_INTERNAL)
85                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86         return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92                 (rq->tag != -1 ?
93                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102         return !list_empty_careful(&hctx->dispatch) ||
103                 sbitmap_any_bit_set(&hctx->ctx_map) ||
104                         blk_mq_sched_has_work(hctx);
105 }
106
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111                                      struct blk_mq_ctx *ctx)
112 {
113         const int bit = ctx->index_hw[hctx->type];
114
115         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116                 sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120                                       struct blk_mq_ctx *ctx)
121 {
122         const int bit = ctx->index_hw[hctx->type];
123
124         sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126
127 struct mq_inflight {
128         struct block_device *part;
129         unsigned int inflight[2];
130 };
131
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @set: tag_set to wait on
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started on or more of the request_queues of the tag_set.  This
261  * function only waits for the quiesce on those request_queues that had
262  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
263  */
264 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
265 {
266         if (set->flags & BLK_MQ_F_BLOCKING)
267                 synchronize_srcu(set->srcu);
268         else
269                 synchronize_rcu();
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
272
273 /**
274  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
275  * @q: request queue.
276  *
277  * Note: this function does not prevent that the struct request end_io()
278  * callback function is invoked. Once this function is returned, we make
279  * sure no dispatch can happen until the queue is unquiesced via
280  * blk_mq_unquiesce_queue().
281  */
282 void blk_mq_quiesce_queue(struct request_queue *q)
283 {
284         blk_mq_quiesce_queue_nowait(q);
285         /* nothing to wait for non-mq queues */
286         if (queue_is_mq(q))
287                 blk_mq_wait_quiesce_done(q->tag_set);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
290
291 /*
292  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
293  * @q: request queue.
294  *
295  * This function recovers queue into the state before quiescing
296  * which is done by blk_mq_quiesce_queue.
297  */
298 void blk_mq_unquiesce_queue(struct request_queue *q)
299 {
300         unsigned long flags;
301         bool run_queue = false;
302
303         spin_lock_irqsave(&q->queue_lock, flags);
304         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
305                 ;
306         } else if (!--q->quiesce_depth) {
307                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
308                 run_queue = true;
309         }
310         spin_unlock_irqrestore(&q->queue_lock, flags);
311
312         /* dispatch requests which are inserted during quiescing */
313         if (run_queue)
314                 blk_mq_run_hw_queues(q, true);
315 }
316 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
317
318 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
319 {
320         struct request_queue *q;
321
322         mutex_lock(&set->tag_list_lock);
323         list_for_each_entry(q, &set->tag_list, tag_set_list) {
324                 if (!blk_queue_skip_tagset_quiesce(q))
325                         blk_mq_quiesce_queue_nowait(q);
326         }
327         blk_mq_wait_quiesce_done(set);
328         mutex_unlock(&set->tag_list_lock);
329 }
330 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
331
332 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
333 {
334         struct request_queue *q;
335
336         mutex_lock(&set->tag_list_lock);
337         list_for_each_entry(q, &set->tag_list, tag_set_list) {
338                 if (!blk_queue_skip_tagset_quiesce(q))
339                         blk_mq_unquiesce_queue(q);
340         }
341         mutex_unlock(&set->tag_list_lock);
342 }
343 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
344
345 void blk_mq_wake_waiters(struct request_queue *q)
346 {
347         struct blk_mq_hw_ctx *hctx;
348         unsigned long i;
349
350         queue_for_each_hw_ctx(q, hctx, i)
351                 if (blk_mq_hw_queue_mapped(hctx))
352                         blk_mq_tag_wakeup_all(hctx->tags, true);
353 }
354
355 void blk_rq_init(struct request_queue *q, struct request *rq)
356 {
357         memset(rq, 0, sizeof(*rq));
358
359         INIT_LIST_HEAD(&rq->queuelist);
360         rq->q = q;
361         rq->__sector = (sector_t) -1;
362         INIT_HLIST_NODE(&rq->hash);
363         RB_CLEAR_NODE(&rq->rb_node);
364         rq->tag = BLK_MQ_NO_TAG;
365         rq->internal_tag = BLK_MQ_NO_TAG;
366         rq->start_time_ns = ktime_get_ns();
367         rq->part = NULL;
368         blk_crypto_rq_set_defaults(rq);
369 }
370 EXPORT_SYMBOL(blk_rq_init);
371
372 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
373                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
374 {
375         struct blk_mq_ctx *ctx = data->ctx;
376         struct blk_mq_hw_ctx *hctx = data->hctx;
377         struct request_queue *q = data->q;
378         struct request *rq = tags->static_rqs[tag];
379
380         rq->q = q;
381         rq->mq_ctx = ctx;
382         rq->mq_hctx = hctx;
383         rq->cmd_flags = data->cmd_flags;
384
385         if (data->flags & BLK_MQ_REQ_PM)
386                 data->rq_flags |= RQF_PM;
387         if (blk_queue_io_stat(q))
388                 data->rq_flags |= RQF_IO_STAT;
389         rq->rq_flags = data->rq_flags;
390
391         if (!(data->rq_flags & RQF_ELV)) {
392                 rq->tag = tag;
393                 rq->internal_tag = BLK_MQ_NO_TAG;
394         } else {
395                 rq->tag = BLK_MQ_NO_TAG;
396                 rq->internal_tag = tag;
397         }
398         rq->timeout = 0;
399
400         if (blk_mq_need_time_stamp(rq))
401                 rq->start_time_ns = ktime_get_ns();
402         else
403                 rq->start_time_ns = 0;
404         rq->part = NULL;
405 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
406         rq->alloc_time_ns = alloc_time_ns;
407 #endif
408         rq->io_start_time_ns = 0;
409         rq->stats_sectors = 0;
410         rq->nr_phys_segments = 0;
411 #if defined(CONFIG_BLK_DEV_INTEGRITY)
412         rq->nr_integrity_segments = 0;
413 #endif
414         rq->end_io = NULL;
415         rq->end_io_data = NULL;
416
417         blk_crypto_rq_set_defaults(rq);
418         INIT_LIST_HEAD(&rq->queuelist);
419         /* tag was already set */
420         WRITE_ONCE(rq->deadline, 0);
421         req_ref_set(rq, 1);
422
423         if (rq->rq_flags & RQF_ELV) {
424                 struct elevator_queue *e = data->q->elevator;
425
426                 INIT_HLIST_NODE(&rq->hash);
427                 RB_CLEAR_NODE(&rq->rb_node);
428
429                 if (!op_is_flush(data->cmd_flags) &&
430                     e->type->ops.prepare_request) {
431                         e->type->ops.prepare_request(rq);
432                         rq->rq_flags |= RQF_ELVPRIV;
433                 }
434         }
435
436         return rq;
437 }
438
439 static inline struct request *
440 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
441                 u64 alloc_time_ns)
442 {
443         unsigned int tag, tag_offset;
444         struct blk_mq_tags *tags;
445         struct request *rq;
446         unsigned long tag_mask;
447         int i, nr = 0;
448
449         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
450         if (unlikely(!tag_mask))
451                 return NULL;
452
453         tags = blk_mq_tags_from_data(data);
454         for (i = 0; tag_mask; i++) {
455                 if (!(tag_mask & (1UL << i)))
456                         continue;
457                 tag = tag_offset + i;
458                 prefetch(tags->static_rqs[tag]);
459                 tag_mask &= ~(1UL << i);
460                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
461                 rq_list_add(data->cached_rq, rq);
462                 nr++;
463         }
464         /* caller already holds a reference, add for remainder */
465         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
466         data->nr_tags -= nr;
467
468         return rq_list_pop(data->cached_rq);
469 }
470
471 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
472 {
473         struct request_queue *q = data->q;
474         u64 alloc_time_ns = 0;
475         struct request *rq;
476         unsigned int tag;
477
478         /* alloc_time includes depth and tag waits */
479         if (blk_queue_rq_alloc_time(q))
480                 alloc_time_ns = ktime_get_ns();
481
482         if (data->cmd_flags & REQ_NOWAIT)
483                 data->flags |= BLK_MQ_REQ_NOWAIT;
484
485         if (q->elevator) {
486                 struct elevator_queue *e = q->elevator;
487
488                 data->rq_flags |= RQF_ELV;
489
490                 /*
491                  * Flush/passthrough requests are special and go directly to the
492                  * dispatch list. Don't include reserved tags in the
493                  * limiting, as it isn't useful.
494                  */
495                 if (!op_is_flush(data->cmd_flags) &&
496                     !blk_op_is_passthrough(data->cmd_flags) &&
497                     e->type->ops.limit_depth &&
498                     !(data->flags & BLK_MQ_REQ_RESERVED))
499                         e->type->ops.limit_depth(data->cmd_flags, data);
500         }
501
502 retry:
503         data->ctx = blk_mq_get_ctx(q);
504         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
505         if (!(data->rq_flags & RQF_ELV))
506                 blk_mq_tag_busy(data->hctx);
507
508         if (data->flags & BLK_MQ_REQ_RESERVED)
509                 data->rq_flags |= RQF_RESV;
510
511         /*
512          * Try batched alloc if we want more than 1 tag.
513          */
514         if (data->nr_tags > 1) {
515                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
516                 if (rq)
517                         return rq;
518                 data->nr_tags = 1;
519         }
520
521         /*
522          * Waiting allocations only fail because of an inactive hctx.  In that
523          * case just retry the hctx assignment and tag allocation as CPU hotplug
524          * should have migrated us to an online CPU by now.
525          */
526         tag = blk_mq_get_tag(data);
527         if (tag == BLK_MQ_NO_TAG) {
528                 if (data->flags & BLK_MQ_REQ_NOWAIT)
529                         return NULL;
530                 /*
531                  * Give up the CPU and sleep for a random short time to
532                  * ensure that thread using a realtime scheduling class
533                  * are migrated off the CPU, and thus off the hctx that
534                  * is going away.
535                  */
536                 msleep(3);
537                 goto retry;
538         }
539
540         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
541                                         alloc_time_ns);
542 }
543
544 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
545                                             struct blk_plug *plug,
546                                             blk_opf_t opf,
547                                             blk_mq_req_flags_t flags)
548 {
549         struct blk_mq_alloc_data data = {
550                 .q              = q,
551                 .flags          = flags,
552                 .cmd_flags      = opf,
553                 .nr_tags        = plug->nr_ios,
554                 .cached_rq      = &plug->cached_rq,
555         };
556         struct request *rq;
557
558         if (blk_queue_enter(q, flags))
559                 return NULL;
560
561         plug->nr_ios = 1;
562
563         rq = __blk_mq_alloc_requests(&data);
564         if (unlikely(!rq))
565                 blk_queue_exit(q);
566         return rq;
567 }
568
569 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
570                                                    blk_opf_t opf,
571                                                    blk_mq_req_flags_t flags)
572 {
573         struct blk_plug *plug = current->plug;
574         struct request *rq;
575
576         if (!plug)
577                 return NULL;
578
579         if (rq_list_empty(plug->cached_rq)) {
580                 if (plug->nr_ios == 1)
581                         return NULL;
582                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
583                 if (!rq)
584                         return NULL;
585         } else {
586                 rq = rq_list_peek(&plug->cached_rq);
587                 if (!rq || rq->q != q)
588                         return NULL;
589
590                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
591                         return NULL;
592                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
593                         return NULL;
594
595                 plug->cached_rq = rq_list_next(rq);
596         }
597
598         rq->cmd_flags = opf;
599         INIT_LIST_HEAD(&rq->queuelist);
600         return rq;
601 }
602
603 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
604                 blk_mq_req_flags_t flags)
605 {
606         struct request *rq;
607
608         rq = blk_mq_alloc_cached_request(q, opf, flags);
609         if (!rq) {
610                 struct blk_mq_alloc_data data = {
611                         .q              = q,
612                         .flags          = flags,
613                         .cmd_flags      = opf,
614                         .nr_tags        = 1,
615                 };
616                 int ret;
617
618                 ret = blk_queue_enter(q, flags);
619                 if (ret)
620                         return ERR_PTR(ret);
621
622                 rq = __blk_mq_alloc_requests(&data);
623                 if (!rq)
624                         goto out_queue_exit;
625         }
626         rq->__data_len = 0;
627         rq->__sector = (sector_t) -1;
628         rq->bio = rq->biotail = NULL;
629         return rq;
630 out_queue_exit:
631         blk_queue_exit(q);
632         return ERR_PTR(-EWOULDBLOCK);
633 }
634 EXPORT_SYMBOL(blk_mq_alloc_request);
635
636 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
637         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
638 {
639         struct blk_mq_alloc_data data = {
640                 .q              = q,
641                 .flags          = flags,
642                 .cmd_flags      = opf,
643                 .nr_tags        = 1,
644         };
645         u64 alloc_time_ns = 0;
646         struct request *rq;
647         unsigned int cpu;
648         unsigned int tag;
649         int ret;
650
651         /* alloc_time includes depth and tag waits */
652         if (blk_queue_rq_alloc_time(q))
653                 alloc_time_ns = ktime_get_ns();
654
655         /*
656          * If the tag allocator sleeps we could get an allocation for a
657          * different hardware context.  No need to complicate the low level
658          * allocator for this for the rare use case of a command tied to
659          * a specific queue.
660          */
661         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
662             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
663                 return ERR_PTR(-EINVAL);
664
665         if (hctx_idx >= q->nr_hw_queues)
666                 return ERR_PTR(-EIO);
667
668         ret = blk_queue_enter(q, flags);
669         if (ret)
670                 return ERR_PTR(ret);
671
672         /*
673          * Check if the hardware context is actually mapped to anything.
674          * If not tell the caller that it should skip this queue.
675          */
676         ret = -EXDEV;
677         data.hctx = xa_load(&q->hctx_table, hctx_idx);
678         if (!blk_mq_hw_queue_mapped(data.hctx))
679                 goto out_queue_exit;
680         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
681         if (cpu >= nr_cpu_ids)
682                 goto out_queue_exit;
683         data.ctx = __blk_mq_get_ctx(q, cpu);
684
685         if (!q->elevator)
686                 blk_mq_tag_busy(data.hctx);
687         else
688                 data.rq_flags |= RQF_ELV;
689
690         if (flags & BLK_MQ_REQ_RESERVED)
691                 data.rq_flags |= RQF_RESV;
692
693         ret = -EWOULDBLOCK;
694         tag = blk_mq_get_tag(&data);
695         if (tag == BLK_MQ_NO_TAG)
696                 goto out_queue_exit;
697         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
698                                         alloc_time_ns);
699         rq->__data_len = 0;
700         rq->__sector = (sector_t) -1;
701         rq->bio = rq->biotail = NULL;
702         return rq;
703
704 out_queue_exit:
705         blk_queue_exit(q);
706         return ERR_PTR(ret);
707 }
708 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
709
710 static void __blk_mq_free_request(struct request *rq)
711 {
712         struct request_queue *q = rq->q;
713         struct blk_mq_ctx *ctx = rq->mq_ctx;
714         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
715         const int sched_tag = rq->internal_tag;
716
717         blk_crypto_free_request(rq);
718         blk_pm_mark_last_busy(rq);
719         rq->mq_hctx = NULL;
720         if (rq->tag != BLK_MQ_NO_TAG)
721                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
722         if (sched_tag != BLK_MQ_NO_TAG)
723                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
724         blk_mq_sched_restart(hctx);
725         blk_queue_exit(q);
726 }
727
728 void blk_mq_free_request(struct request *rq)
729 {
730         struct request_queue *q = rq->q;
731         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
732
733         if ((rq->rq_flags & RQF_ELVPRIV) &&
734             q->elevator->type->ops.finish_request)
735                 q->elevator->type->ops.finish_request(rq);
736
737         if (rq->rq_flags & RQF_MQ_INFLIGHT)
738                 __blk_mq_dec_active_requests(hctx);
739
740         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
741                 laptop_io_completion(q->disk->bdi);
742
743         rq_qos_done(q, rq);
744
745         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
746         if (req_ref_put_and_test(rq))
747                 __blk_mq_free_request(rq);
748 }
749 EXPORT_SYMBOL_GPL(blk_mq_free_request);
750
751 void blk_mq_free_plug_rqs(struct blk_plug *plug)
752 {
753         struct request *rq;
754
755         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
756                 blk_mq_free_request(rq);
757 }
758
759 void blk_dump_rq_flags(struct request *rq, char *msg)
760 {
761         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
762                 rq->q->disk ? rq->q->disk->disk_name : "?",
763                 (__force unsigned long long) rq->cmd_flags);
764
765         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
766                (unsigned long long)blk_rq_pos(rq),
767                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
768         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
769                rq->bio, rq->biotail, blk_rq_bytes(rq));
770 }
771 EXPORT_SYMBOL(blk_dump_rq_flags);
772
773 static void req_bio_endio(struct request *rq, struct bio *bio,
774                           unsigned int nbytes, blk_status_t error)
775 {
776         if (unlikely(error)) {
777                 bio->bi_status = error;
778         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
779                 /*
780                  * Partial zone append completions cannot be supported as the
781                  * BIO fragments may end up not being written sequentially.
782                  */
783                 if (bio->bi_iter.bi_size != nbytes)
784                         bio->bi_status = BLK_STS_IOERR;
785                 else
786                         bio->bi_iter.bi_sector = rq->__sector;
787         }
788
789         bio_advance(bio, nbytes);
790
791         if (unlikely(rq->rq_flags & RQF_QUIET))
792                 bio_set_flag(bio, BIO_QUIET);
793         /* don't actually finish bio if it's part of flush sequence */
794         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
795                 bio_endio(bio);
796 }
797
798 static void blk_account_io_completion(struct request *req, unsigned int bytes)
799 {
800         if (req->part && blk_do_io_stat(req)) {
801                 const int sgrp = op_stat_group(req_op(req));
802
803                 part_stat_lock();
804                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
805                 part_stat_unlock();
806         }
807 }
808
809 static void blk_print_req_error(struct request *req, blk_status_t status)
810 {
811         printk_ratelimited(KERN_ERR
812                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
813                 "phys_seg %u prio class %u\n",
814                 blk_status_to_str(status),
815                 req->q->disk ? req->q->disk->disk_name : "?",
816                 blk_rq_pos(req), (__force u32)req_op(req),
817                 blk_op_str(req_op(req)),
818                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
819                 req->nr_phys_segments,
820                 IOPRIO_PRIO_CLASS(req->ioprio));
821 }
822
823 /*
824  * Fully end IO on a request. Does not support partial completions, or
825  * errors.
826  */
827 static void blk_complete_request(struct request *req)
828 {
829         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
830         int total_bytes = blk_rq_bytes(req);
831         struct bio *bio = req->bio;
832
833         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
834
835         if (!bio)
836                 return;
837
838 #ifdef CONFIG_BLK_DEV_INTEGRITY
839         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
840                 req->q->integrity.profile->complete_fn(req, total_bytes);
841 #endif
842
843         blk_account_io_completion(req, total_bytes);
844
845         do {
846                 struct bio *next = bio->bi_next;
847
848                 /* Completion has already been traced */
849                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
850
851                 if (req_op(req) == REQ_OP_ZONE_APPEND)
852                         bio->bi_iter.bi_sector = req->__sector;
853
854                 if (!is_flush)
855                         bio_endio(bio);
856                 bio = next;
857         } while (bio);
858
859         /*
860          * Reset counters so that the request stacking driver
861          * can find how many bytes remain in the request
862          * later.
863          */
864         if (!req->end_io) {
865                 req->bio = NULL;
866                 req->__data_len = 0;
867         }
868 }
869
870 /**
871  * blk_update_request - Complete multiple bytes without completing the request
872  * @req:      the request being processed
873  * @error:    block status code
874  * @nr_bytes: number of bytes to complete for @req
875  *
876  * Description:
877  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
878  *     the request structure even if @req doesn't have leftover.
879  *     If @req has leftover, sets it up for the next range of segments.
880  *
881  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
882  *     %false return from this function.
883  *
884  * Note:
885  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
886  *      except in the consistency check at the end of this function.
887  *
888  * Return:
889  *     %false - this request doesn't have any more data
890  *     %true  - this request has more data
891  **/
892 bool blk_update_request(struct request *req, blk_status_t error,
893                 unsigned int nr_bytes)
894 {
895         int total_bytes;
896
897         trace_block_rq_complete(req, error, nr_bytes);
898
899         if (!req->bio)
900                 return false;
901
902 #ifdef CONFIG_BLK_DEV_INTEGRITY
903         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
904             error == BLK_STS_OK)
905                 req->q->integrity.profile->complete_fn(req, nr_bytes);
906 #endif
907
908         if (unlikely(error && !blk_rq_is_passthrough(req) &&
909                      !(req->rq_flags & RQF_QUIET)) &&
910                      !test_bit(GD_DEAD, &req->q->disk->state)) {
911                 blk_print_req_error(req, error);
912                 trace_block_rq_error(req, error, nr_bytes);
913         }
914
915         blk_account_io_completion(req, nr_bytes);
916
917         total_bytes = 0;
918         while (req->bio) {
919                 struct bio *bio = req->bio;
920                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
921
922                 if (bio_bytes == bio->bi_iter.bi_size)
923                         req->bio = bio->bi_next;
924
925                 /* Completion has already been traced */
926                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
927                 req_bio_endio(req, bio, bio_bytes, error);
928
929                 total_bytes += bio_bytes;
930                 nr_bytes -= bio_bytes;
931
932                 if (!nr_bytes)
933                         break;
934         }
935
936         /*
937          * completely done
938          */
939         if (!req->bio) {
940                 /*
941                  * Reset counters so that the request stacking driver
942                  * can find how many bytes remain in the request
943                  * later.
944                  */
945                 req->__data_len = 0;
946                 return false;
947         }
948
949         req->__data_len -= total_bytes;
950
951         /* update sector only for requests with clear definition of sector */
952         if (!blk_rq_is_passthrough(req))
953                 req->__sector += total_bytes >> 9;
954
955         /* mixed attributes always follow the first bio */
956         if (req->rq_flags & RQF_MIXED_MERGE) {
957                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
958                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
959         }
960
961         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
962                 /*
963                  * If total number of sectors is less than the first segment
964                  * size, something has gone terribly wrong.
965                  */
966                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
967                         blk_dump_rq_flags(req, "request botched");
968                         req->__data_len = blk_rq_cur_bytes(req);
969                 }
970
971                 /* recalculate the number of segments */
972                 req->nr_phys_segments = blk_recalc_rq_segments(req);
973         }
974
975         return true;
976 }
977 EXPORT_SYMBOL_GPL(blk_update_request);
978
979 static void __blk_account_io_done(struct request *req, u64 now)
980 {
981         const int sgrp = op_stat_group(req_op(req));
982
983         part_stat_lock();
984         update_io_ticks(req->part, jiffies, true);
985         part_stat_inc(req->part, ios[sgrp]);
986         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
987         part_stat_unlock();
988 }
989
990 static inline void blk_account_io_done(struct request *req, u64 now)
991 {
992         /*
993          * Account IO completion.  flush_rq isn't accounted as a
994          * normal IO on queueing nor completion.  Accounting the
995          * containing request is enough.
996          */
997         if (blk_do_io_stat(req) && req->part &&
998             !(req->rq_flags & RQF_FLUSH_SEQ))
999                 __blk_account_io_done(req, now);
1000 }
1001
1002 static void __blk_account_io_start(struct request *rq)
1003 {
1004         /*
1005          * All non-passthrough requests are created from a bio with one
1006          * exception: when a flush command that is part of a flush sequence
1007          * generated by the state machine in blk-flush.c is cloned onto the
1008          * lower device by dm-multipath we can get here without a bio.
1009          */
1010         if (rq->bio)
1011                 rq->part = rq->bio->bi_bdev;
1012         else
1013                 rq->part = rq->q->disk->part0;
1014
1015         part_stat_lock();
1016         update_io_ticks(rq->part, jiffies, false);
1017         part_stat_unlock();
1018 }
1019
1020 static inline void blk_account_io_start(struct request *req)
1021 {
1022         if (blk_do_io_stat(req))
1023                 __blk_account_io_start(req);
1024 }
1025
1026 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1027 {
1028         if (rq->rq_flags & RQF_STATS) {
1029                 blk_mq_poll_stats_start(rq->q);
1030                 blk_stat_add(rq, now);
1031         }
1032
1033         blk_mq_sched_completed_request(rq, now);
1034         blk_account_io_done(rq, now);
1035 }
1036
1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1038 {
1039         if (blk_mq_need_time_stamp(rq))
1040                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1041
1042         if (rq->end_io) {
1043                 rq_qos_done(rq->q, rq);
1044                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1045                         blk_mq_free_request(rq);
1046         } else {
1047                 blk_mq_free_request(rq);
1048         }
1049 }
1050 EXPORT_SYMBOL(__blk_mq_end_request);
1051
1052 void blk_mq_end_request(struct request *rq, blk_status_t error)
1053 {
1054         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1055                 BUG();
1056         __blk_mq_end_request(rq, error);
1057 }
1058 EXPORT_SYMBOL(blk_mq_end_request);
1059
1060 #define TAG_COMP_BATCH          32
1061
1062 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1063                                           int *tag_array, int nr_tags)
1064 {
1065         struct request_queue *q = hctx->queue;
1066
1067         /*
1068          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1069          * update hctx->nr_active in batch
1070          */
1071         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1072                 __blk_mq_sub_active_requests(hctx, nr_tags);
1073
1074         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1075         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1076 }
1077
1078 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1079 {
1080         int tags[TAG_COMP_BATCH], nr_tags = 0;
1081         struct blk_mq_hw_ctx *cur_hctx = NULL;
1082         struct request *rq;
1083         u64 now = 0;
1084
1085         if (iob->need_ts)
1086                 now = ktime_get_ns();
1087
1088         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1089                 prefetch(rq->bio);
1090                 prefetch(rq->rq_next);
1091
1092                 blk_complete_request(rq);
1093                 if (iob->need_ts)
1094                         __blk_mq_end_request_acct(rq, now);
1095
1096                 rq_qos_done(rq->q, rq);
1097
1098                 /*
1099                  * If end_io handler returns NONE, then it still has
1100                  * ownership of the request.
1101                  */
1102                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1103                         continue;
1104
1105                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1106                 if (!req_ref_put_and_test(rq))
1107                         continue;
1108
1109                 blk_crypto_free_request(rq);
1110                 blk_pm_mark_last_busy(rq);
1111
1112                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1113                         if (cur_hctx)
1114                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1115                         nr_tags = 0;
1116                         cur_hctx = rq->mq_hctx;
1117                 }
1118                 tags[nr_tags++] = rq->tag;
1119         }
1120
1121         if (nr_tags)
1122                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1123 }
1124 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1125
1126 static void blk_complete_reqs(struct llist_head *list)
1127 {
1128         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1129         struct request *rq, *next;
1130
1131         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1132                 rq->q->mq_ops->complete(rq);
1133 }
1134
1135 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1136 {
1137         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1138 }
1139
1140 static int blk_softirq_cpu_dead(unsigned int cpu)
1141 {
1142         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1143         return 0;
1144 }
1145
1146 static void __blk_mq_complete_request_remote(void *data)
1147 {
1148         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1149 }
1150
1151 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1152 {
1153         int cpu = raw_smp_processor_id();
1154
1155         if (!IS_ENABLED(CONFIG_SMP) ||
1156             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1157                 return false;
1158         /*
1159          * With force threaded interrupts enabled, raising softirq from an SMP
1160          * function call will always result in waking the ksoftirqd thread.
1161          * This is probably worse than completing the request on a different
1162          * cache domain.
1163          */
1164         if (force_irqthreads())
1165                 return false;
1166
1167         /* same CPU or cache domain?  Complete locally */
1168         if (cpu == rq->mq_ctx->cpu ||
1169             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1170              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1171                 return false;
1172
1173         /* don't try to IPI to an offline CPU */
1174         return cpu_online(rq->mq_ctx->cpu);
1175 }
1176
1177 static void blk_mq_complete_send_ipi(struct request *rq)
1178 {
1179         struct llist_head *list;
1180         unsigned int cpu;
1181
1182         cpu = rq->mq_ctx->cpu;
1183         list = &per_cpu(blk_cpu_done, cpu);
1184         if (llist_add(&rq->ipi_list, list)) {
1185                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1186                 smp_call_function_single_async(cpu, &rq->csd);
1187         }
1188 }
1189
1190 static void blk_mq_raise_softirq(struct request *rq)
1191 {
1192         struct llist_head *list;
1193
1194         preempt_disable();
1195         list = this_cpu_ptr(&blk_cpu_done);
1196         if (llist_add(&rq->ipi_list, list))
1197                 raise_softirq(BLOCK_SOFTIRQ);
1198         preempt_enable();
1199 }
1200
1201 bool blk_mq_complete_request_remote(struct request *rq)
1202 {
1203         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1204
1205         /*
1206          * For request which hctx has only one ctx mapping,
1207          * or a polled request, always complete locally,
1208          * it's pointless to redirect the completion.
1209          */
1210         if (rq->mq_hctx->nr_ctx == 1 ||
1211                 rq->cmd_flags & REQ_POLLED)
1212                 return false;
1213
1214         if (blk_mq_complete_need_ipi(rq)) {
1215                 blk_mq_complete_send_ipi(rq);
1216                 return true;
1217         }
1218
1219         if (rq->q->nr_hw_queues == 1) {
1220                 blk_mq_raise_softirq(rq);
1221                 return true;
1222         }
1223         return false;
1224 }
1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1226
1227 /**
1228  * blk_mq_complete_request - end I/O on a request
1229  * @rq:         the request being processed
1230  *
1231  * Description:
1232  *      Complete a request by scheduling the ->complete_rq operation.
1233  **/
1234 void blk_mq_complete_request(struct request *rq)
1235 {
1236         if (!blk_mq_complete_request_remote(rq))
1237                 rq->q->mq_ops->complete(rq);
1238 }
1239 EXPORT_SYMBOL(blk_mq_complete_request);
1240
1241 /**
1242  * blk_mq_start_request - Start processing a request
1243  * @rq: Pointer to request to be started
1244  *
1245  * Function used by device drivers to notify the block layer that a request
1246  * is going to be processed now, so blk layer can do proper initializations
1247  * such as starting the timeout timer.
1248  */
1249 void blk_mq_start_request(struct request *rq)
1250 {
1251         struct request_queue *q = rq->q;
1252
1253         trace_block_rq_issue(rq);
1254
1255         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1256                 rq->io_start_time_ns = ktime_get_ns();
1257                 rq->stats_sectors = blk_rq_sectors(rq);
1258                 rq->rq_flags |= RQF_STATS;
1259                 rq_qos_issue(q, rq);
1260         }
1261
1262         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1263
1264         blk_add_timer(rq);
1265         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1266
1267 #ifdef CONFIG_BLK_DEV_INTEGRITY
1268         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1269                 q->integrity.profile->prepare_fn(rq);
1270 #endif
1271         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1272                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1273 }
1274 EXPORT_SYMBOL(blk_mq_start_request);
1275
1276 /*
1277  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1278  * queues. This is important for md arrays to benefit from merging
1279  * requests.
1280  */
1281 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1282 {
1283         if (plug->multiple_queues)
1284                 return BLK_MAX_REQUEST_COUNT * 2;
1285         return BLK_MAX_REQUEST_COUNT;
1286 }
1287
1288 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1289 {
1290         struct request *last = rq_list_peek(&plug->mq_list);
1291
1292         if (!plug->rq_count) {
1293                 trace_block_plug(rq->q);
1294         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1295                    (!blk_queue_nomerges(rq->q) &&
1296                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1297                 blk_mq_flush_plug_list(plug, false);
1298                 last = NULL;
1299                 trace_block_plug(rq->q);
1300         }
1301
1302         if (!plug->multiple_queues && last && last->q != rq->q)
1303                 plug->multiple_queues = true;
1304         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1305                 plug->has_elevator = true;
1306         rq->rq_next = NULL;
1307         rq_list_add(&plug->mq_list, rq);
1308         plug->rq_count++;
1309 }
1310
1311 /**
1312  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1313  * @rq:         request to insert
1314  * @at_head:    insert request at head or tail of queue
1315  *
1316  * Description:
1317  *    Insert a fully prepared request at the back of the I/O scheduler queue
1318  *    for execution.  Don't wait for completion.
1319  *
1320  * Note:
1321  *    This function will invoke @done directly if the queue is dead.
1322  */
1323 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1324 {
1325         WARN_ON(irqs_disabled());
1326         WARN_ON(!blk_rq_is_passthrough(rq));
1327
1328         blk_account_io_start(rq);
1329
1330         /*
1331          * As plugging can be enabled for passthrough requests on a zoned
1332          * device, directly accessing the plug instead of using blk_mq_plug()
1333          * should not have any consequences.
1334          */
1335         if (current->plug)
1336                 blk_add_rq_to_plug(current->plug, rq);
1337         else
1338                 blk_mq_sched_insert_request(rq, at_head, true, false);
1339 }
1340 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1341
1342 struct blk_rq_wait {
1343         struct completion done;
1344         blk_status_t ret;
1345 };
1346
1347 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1348 {
1349         struct blk_rq_wait *wait = rq->end_io_data;
1350
1351         wait->ret = ret;
1352         complete(&wait->done);
1353         return RQ_END_IO_NONE;
1354 }
1355
1356 bool blk_rq_is_poll(struct request *rq)
1357 {
1358         if (!rq->mq_hctx)
1359                 return false;
1360         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1361                 return false;
1362         if (WARN_ON_ONCE(!rq->bio))
1363                 return false;
1364         return true;
1365 }
1366 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1367
1368 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1369 {
1370         do {
1371                 bio_poll(rq->bio, NULL, 0);
1372                 cond_resched();
1373         } while (!completion_done(wait));
1374 }
1375
1376 /**
1377  * blk_execute_rq - insert a request into queue for execution
1378  * @rq:         request to insert
1379  * @at_head:    insert request at head or tail of queue
1380  *
1381  * Description:
1382  *    Insert a fully prepared request at the back of the I/O scheduler queue
1383  *    for execution and wait for completion.
1384  * Return: The blk_status_t result provided to blk_mq_end_request().
1385  */
1386 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1387 {
1388         struct blk_rq_wait wait = {
1389                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1390         };
1391
1392         WARN_ON(irqs_disabled());
1393         WARN_ON(!blk_rq_is_passthrough(rq));
1394
1395         rq->end_io_data = &wait;
1396         rq->end_io = blk_end_sync_rq;
1397
1398         blk_account_io_start(rq);
1399         blk_mq_sched_insert_request(rq, at_head, true, false);
1400
1401         if (blk_rq_is_poll(rq)) {
1402                 blk_rq_poll_completion(rq, &wait.done);
1403         } else {
1404                 /*
1405                  * Prevent hang_check timer from firing at us during very long
1406                  * I/O
1407                  */
1408                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1409
1410                 if (hang_check)
1411                         while (!wait_for_completion_io_timeout(&wait.done,
1412                                         hang_check * (HZ/2)))
1413                                 ;
1414                 else
1415                         wait_for_completion_io(&wait.done);
1416         }
1417
1418         return wait.ret;
1419 }
1420 EXPORT_SYMBOL(blk_execute_rq);
1421
1422 static void __blk_mq_requeue_request(struct request *rq)
1423 {
1424         struct request_queue *q = rq->q;
1425
1426         blk_mq_put_driver_tag(rq);
1427
1428         trace_block_rq_requeue(rq);
1429         rq_qos_requeue(q, rq);
1430
1431         if (blk_mq_request_started(rq)) {
1432                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1433                 rq->rq_flags &= ~RQF_TIMED_OUT;
1434         }
1435 }
1436
1437 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1438 {
1439         __blk_mq_requeue_request(rq);
1440
1441         /* this request will be re-inserted to io scheduler queue */
1442         blk_mq_sched_requeue_request(rq);
1443
1444         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1445 }
1446 EXPORT_SYMBOL(blk_mq_requeue_request);
1447
1448 static void blk_mq_requeue_work(struct work_struct *work)
1449 {
1450         struct request_queue *q =
1451                 container_of(work, struct request_queue, requeue_work.work);
1452         LIST_HEAD(rq_list);
1453         struct request *rq, *next;
1454
1455         spin_lock_irq(&q->requeue_lock);
1456         list_splice_init(&q->requeue_list, &rq_list);
1457         spin_unlock_irq(&q->requeue_lock);
1458
1459         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1460                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1461                         continue;
1462
1463                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1464                 list_del_init(&rq->queuelist);
1465                 /*
1466                  * If RQF_DONTPREP, rq has contained some driver specific
1467                  * data, so insert it to hctx dispatch list to avoid any
1468                  * merge.
1469                  */
1470                 if (rq->rq_flags & RQF_DONTPREP)
1471                         blk_mq_request_bypass_insert(rq, false, false);
1472                 else
1473                         blk_mq_sched_insert_request(rq, true, false, false);
1474         }
1475
1476         while (!list_empty(&rq_list)) {
1477                 rq = list_entry(rq_list.next, struct request, queuelist);
1478                 list_del_init(&rq->queuelist);
1479                 blk_mq_sched_insert_request(rq, false, false, false);
1480         }
1481
1482         blk_mq_run_hw_queues(q, false);
1483 }
1484
1485 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1486                                 bool kick_requeue_list)
1487 {
1488         struct request_queue *q = rq->q;
1489         unsigned long flags;
1490
1491         /*
1492          * We abuse this flag that is otherwise used by the I/O scheduler to
1493          * request head insertion from the workqueue.
1494          */
1495         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1496
1497         spin_lock_irqsave(&q->requeue_lock, flags);
1498         if (at_head) {
1499                 rq->rq_flags |= RQF_SOFTBARRIER;
1500                 list_add(&rq->queuelist, &q->requeue_list);
1501         } else {
1502                 list_add_tail(&rq->queuelist, &q->requeue_list);
1503         }
1504         spin_unlock_irqrestore(&q->requeue_lock, flags);
1505
1506         if (kick_requeue_list)
1507                 blk_mq_kick_requeue_list(q);
1508 }
1509
1510 void blk_mq_kick_requeue_list(struct request_queue *q)
1511 {
1512         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1513 }
1514 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1515
1516 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1517                                     unsigned long msecs)
1518 {
1519         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1520                                     msecs_to_jiffies(msecs));
1521 }
1522 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1523
1524 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1525 {
1526         /*
1527          * If we find a request that isn't idle we know the queue is busy
1528          * as it's checked in the iter.
1529          * Return false to stop the iteration.
1530          */
1531         if (blk_mq_request_started(rq)) {
1532                 bool *busy = priv;
1533
1534                 *busy = true;
1535                 return false;
1536         }
1537
1538         return true;
1539 }
1540
1541 bool blk_mq_queue_inflight(struct request_queue *q)
1542 {
1543         bool busy = false;
1544
1545         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1546         return busy;
1547 }
1548 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1549
1550 static void blk_mq_rq_timed_out(struct request *req)
1551 {
1552         req->rq_flags |= RQF_TIMED_OUT;
1553         if (req->q->mq_ops->timeout) {
1554                 enum blk_eh_timer_return ret;
1555
1556                 ret = req->q->mq_ops->timeout(req);
1557                 if (ret == BLK_EH_DONE)
1558                         return;
1559                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1560         }
1561
1562         blk_add_timer(req);
1563 }
1564
1565 struct blk_expired_data {
1566         bool has_timedout_rq;
1567         unsigned long next;
1568         unsigned long timeout_start;
1569 };
1570
1571 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1572 {
1573         unsigned long deadline;
1574
1575         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1576                 return false;
1577         if (rq->rq_flags & RQF_TIMED_OUT)
1578                 return false;
1579
1580         deadline = READ_ONCE(rq->deadline);
1581         if (time_after_eq(expired->timeout_start, deadline))
1582                 return true;
1583
1584         if (expired->next == 0)
1585                 expired->next = deadline;
1586         else if (time_after(expired->next, deadline))
1587                 expired->next = deadline;
1588         return false;
1589 }
1590
1591 void blk_mq_put_rq_ref(struct request *rq)
1592 {
1593         if (is_flush_rq(rq)) {
1594                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1595                         blk_mq_free_request(rq);
1596         } else if (req_ref_put_and_test(rq)) {
1597                 __blk_mq_free_request(rq);
1598         }
1599 }
1600
1601 static bool blk_mq_check_expired(struct request *rq, void *priv)
1602 {
1603         struct blk_expired_data *expired = priv;
1604
1605         /*
1606          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1607          * be reallocated underneath the timeout handler's processing, then
1608          * the expire check is reliable. If the request is not expired, then
1609          * it was completed and reallocated as a new request after returning
1610          * from blk_mq_check_expired().
1611          */
1612         if (blk_mq_req_expired(rq, expired)) {
1613                 expired->has_timedout_rq = true;
1614                 return false;
1615         }
1616         return true;
1617 }
1618
1619 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1620 {
1621         struct blk_expired_data *expired = priv;
1622
1623         if (blk_mq_req_expired(rq, expired))
1624                 blk_mq_rq_timed_out(rq);
1625         return true;
1626 }
1627
1628 static void blk_mq_timeout_work(struct work_struct *work)
1629 {
1630         struct request_queue *q =
1631                 container_of(work, struct request_queue, timeout_work);
1632         struct blk_expired_data expired = {
1633                 .timeout_start = jiffies,
1634         };
1635         struct blk_mq_hw_ctx *hctx;
1636         unsigned long i;
1637
1638         /* A deadlock might occur if a request is stuck requiring a
1639          * timeout at the same time a queue freeze is waiting
1640          * completion, since the timeout code would not be able to
1641          * acquire the queue reference here.
1642          *
1643          * That's why we don't use blk_queue_enter here; instead, we use
1644          * percpu_ref_tryget directly, because we need to be able to
1645          * obtain a reference even in the short window between the queue
1646          * starting to freeze, by dropping the first reference in
1647          * blk_freeze_queue_start, and the moment the last request is
1648          * consumed, marked by the instant q_usage_counter reaches
1649          * zero.
1650          */
1651         if (!percpu_ref_tryget(&q->q_usage_counter))
1652                 return;
1653
1654         /* check if there is any timed-out request */
1655         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1656         if (expired.has_timedout_rq) {
1657                 /*
1658                  * Before walking tags, we must ensure any submit started
1659                  * before the current time has finished. Since the submit
1660                  * uses srcu or rcu, wait for a synchronization point to
1661                  * ensure all running submits have finished
1662                  */
1663                 blk_mq_wait_quiesce_done(q->tag_set);
1664
1665                 expired.next = 0;
1666                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1667         }
1668
1669         if (expired.next != 0) {
1670                 mod_timer(&q->timeout, expired.next);
1671         } else {
1672                 /*
1673                  * Request timeouts are handled as a forward rolling timer. If
1674                  * we end up here it means that no requests are pending and
1675                  * also that no request has been pending for a while. Mark
1676                  * each hctx as idle.
1677                  */
1678                 queue_for_each_hw_ctx(q, hctx, i) {
1679                         /* the hctx may be unmapped, so check it here */
1680                         if (blk_mq_hw_queue_mapped(hctx))
1681                                 blk_mq_tag_idle(hctx);
1682                 }
1683         }
1684         blk_queue_exit(q);
1685 }
1686
1687 struct flush_busy_ctx_data {
1688         struct blk_mq_hw_ctx *hctx;
1689         struct list_head *list;
1690 };
1691
1692 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1693 {
1694         struct flush_busy_ctx_data *flush_data = data;
1695         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1696         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1697         enum hctx_type type = hctx->type;
1698
1699         spin_lock(&ctx->lock);
1700         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1701         sbitmap_clear_bit(sb, bitnr);
1702         spin_unlock(&ctx->lock);
1703         return true;
1704 }
1705
1706 /*
1707  * Process software queues that have been marked busy, splicing them
1708  * to the for-dispatch
1709  */
1710 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1711 {
1712         struct flush_busy_ctx_data data = {
1713                 .hctx = hctx,
1714                 .list = list,
1715         };
1716
1717         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1718 }
1719 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1720
1721 struct dispatch_rq_data {
1722         struct blk_mq_hw_ctx *hctx;
1723         struct request *rq;
1724 };
1725
1726 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1727                 void *data)
1728 {
1729         struct dispatch_rq_data *dispatch_data = data;
1730         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1731         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1732         enum hctx_type type = hctx->type;
1733
1734         spin_lock(&ctx->lock);
1735         if (!list_empty(&ctx->rq_lists[type])) {
1736                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1737                 list_del_init(&dispatch_data->rq->queuelist);
1738                 if (list_empty(&ctx->rq_lists[type]))
1739                         sbitmap_clear_bit(sb, bitnr);
1740         }
1741         spin_unlock(&ctx->lock);
1742
1743         return !dispatch_data->rq;
1744 }
1745
1746 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1747                                         struct blk_mq_ctx *start)
1748 {
1749         unsigned off = start ? start->index_hw[hctx->type] : 0;
1750         struct dispatch_rq_data data = {
1751                 .hctx = hctx,
1752                 .rq   = NULL,
1753         };
1754
1755         __sbitmap_for_each_set(&hctx->ctx_map, off,
1756                                dispatch_rq_from_ctx, &data);
1757
1758         return data.rq;
1759 }
1760
1761 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1762 {
1763         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1764         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1765         int tag;
1766
1767         blk_mq_tag_busy(rq->mq_hctx);
1768
1769         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1770                 bt = &rq->mq_hctx->tags->breserved_tags;
1771                 tag_offset = 0;
1772         } else {
1773                 if (!hctx_may_queue(rq->mq_hctx, bt))
1774                         return false;
1775         }
1776
1777         tag = __sbitmap_queue_get(bt);
1778         if (tag == BLK_MQ_NO_TAG)
1779                 return false;
1780
1781         rq->tag = tag + tag_offset;
1782         return true;
1783 }
1784
1785 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1786 {
1787         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1788                 return false;
1789
1790         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1791                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1792                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1793                 __blk_mq_inc_active_requests(hctx);
1794         }
1795         hctx->tags->rqs[rq->tag] = rq;
1796         return true;
1797 }
1798
1799 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1800                                 int flags, void *key)
1801 {
1802         struct blk_mq_hw_ctx *hctx;
1803
1804         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1805
1806         spin_lock(&hctx->dispatch_wait_lock);
1807         if (!list_empty(&wait->entry)) {
1808                 struct sbitmap_queue *sbq;
1809
1810                 list_del_init(&wait->entry);
1811                 sbq = &hctx->tags->bitmap_tags;
1812                 atomic_dec(&sbq->ws_active);
1813         }
1814         spin_unlock(&hctx->dispatch_wait_lock);
1815
1816         blk_mq_run_hw_queue(hctx, true);
1817         return 1;
1818 }
1819
1820 /*
1821  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1822  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1823  * restart. For both cases, take care to check the condition again after
1824  * marking us as waiting.
1825  */
1826 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1827                                  struct request *rq)
1828 {
1829         struct sbitmap_queue *sbq;
1830         struct wait_queue_head *wq;
1831         wait_queue_entry_t *wait;
1832         bool ret;
1833
1834         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1835             !(blk_mq_is_shared_tags(hctx->flags))) {
1836                 blk_mq_sched_mark_restart_hctx(hctx);
1837
1838                 /*
1839                  * It's possible that a tag was freed in the window between the
1840                  * allocation failure and adding the hardware queue to the wait
1841                  * queue.
1842                  *
1843                  * Don't clear RESTART here, someone else could have set it.
1844                  * At most this will cost an extra queue run.
1845                  */
1846                 return blk_mq_get_driver_tag(rq);
1847         }
1848
1849         wait = &hctx->dispatch_wait;
1850         if (!list_empty_careful(&wait->entry))
1851                 return false;
1852
1853         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1854                 sbq = &hctx->tags->breserved_tags;
1855         else
1856                 sbq = &hctx->tags->bitmap_tags;
1857         wq = &bt_wait_ptr(sbq, hctx)->wait;
1858
1859         spin_lock_irq(&wq->lock);
1860         spin_lock(&hctx->dispatch_wait_lock);
1861         if (!list_empty(&wait->entry)) {
1862                 spin_unlock(&hctx->dispatch_wait_lock);
1863                 spin_unlock_irq(&wq->lock);
1864                 return false;
1865         }
1866
1867         atomic_inc(&sbq->ws_active);
1868         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1869         __add_wait_queue(wq, wait);
1870
1871         /*
1872          * It's possible that a tag was freed in the window between the
1873          * allocation failure and adding the hardware queue to the wait
1874          * queue.
1875          */
1876         ret = blk_mq_get_driver_tag(rq);
1877         if (!ret) {
1878                 spin_unlock(&hctx->dispatch_wait_lock);
1879                 spin_unlock_irq(&wq->lock);
1880                 return false;
1881         }
1882
1883         /*
1884          * We got a tag, remove ourselves from the wait queue to ensure
1885          * someone else gets the wakeup.
1886          */
1887         list_del_init(&wait->entry);
1888         atomic_dec(&sbq->ws_active);
1889         spin_unlock(&hctx->dispatch_wait_lock);
1890         spin_unlock_irq(&wq->lock);
1891
1892         return true;
1893 }
1894
1895 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1896 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1897 /*
1898  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1899  * - EWMA is one simple way to compute running average value
1900  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1901  * - take 4 as factor for avoiding to get too small(0) result, and this
1902  *   factor doesn't matter because EWMA decreases exponentially
1903  */
1904 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1905 {
1906         unsigned int ewma;
1907
1908         ewma = hctx->dispatch_busy;
1909
1910         if (!ewma && !busy)
1911                 return;
1912
1913         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1914         if (busy)
1915                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1916         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1917
1918         hctx->dispatch_busy = ewma;
1919 }
1920
1921 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1922
1923 static void blk_mq_handle_dev_resource(struct request *rq,
1924                                        struct list_head *list)
1925 {
1926         list_add(&rq->queuelist, list);
1927         __blk_mq_requeue_request(rq);
1928 }
1929
1930 static void blk_mq_handle_zone_resource(struct request *rq,
1931                                         struct list_head *zone_list)
1932 {
1933         /*
1934          * If we end up here it is because we cannot dispatch a request to a
1935          * specific zone due to LLD level zone-write locking or other zone
1936          * related resource not being available. In this case, set the request
1937          * aside in zone_list for retrying it later.
1938          */
1939         list_add(&rq->queuelist, zone_list);
1940         __blk_mq_requeue_request(rq);
1941 }
1942
1943 enum prep_dispatch {
1944         PREP_DISPATCH_OK,
1945         PREP_DISPATCH_NO_TAG,
1946         PREP_DISPATCH_NO_BUDGET,
1947 };
1948
1949 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1950                                                   bool need_budget)
1951 {
1952         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1953         int budget_token = -1;
1954
1955         if (need_budget) {
1956                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1957                 if (budget_token < 0) {
1958                         blk_mq_put_driver_tag(rq);
1959                         return PREP_DISPATCH_NO_BUDGET;
1960                 }
1961                 blk_mq_set_rq_budget_token(rq, budget_token);
1962         }
1963
1964         if (!blk_mq_get_driver_tag(rq)) {
1965                 /*
1966                  * The initial allocation attempt failed, so we need to
1967                  * rerun the hardware queue when a tag is freed. The
1968                  * waitqueue takes care of that. If the queue is run
1969                  * before we add this entry back on the dispatch list,
1970                  * we'll re-run it below.
1971                  */
1972                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1973                         /*
1974                          * All budgets not got from this function will be put
1975                          * together during handling partial dispatch
1976                          */
1977                         if (need_budget)
1978                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1979                         return PREP_DISPATCH_NO_TAG;
1980                 }
1981         }
1982
1983         return PREP_DISPATCH_OK;
1984 }
1985
1986 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1987 static void blk_mq_release_budgets(struct request_queue *q,
1988                 struct list_head *list)
1989 {
1990         struct request *rq;
1991
1992         list_for_each_entry(rq, list, queuelist) {
1993                 int budget_token = blk_mq_get_rq_budget_token(rq);
1994
1995                 if (budget_token >= 0)
1996                         blk_mq_put_dispatch_budget(q, budget_token);
1997         }
1998 }
1999
2000 /*
2001  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2002  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2003  * details)
2004  * Attention, we should explicitly call this in unusual cases:
2005  *  1) did not queue everything initially scheduled to queue
2006  *  2) the last attempt to queue a request failed
2007  */
2008 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2009                               bool from_schedule)
2010 {
2011         if (hctx->queue->mq_ops->commit_rqs && queued) {
2012                 trace_block_unplug(hctx->queue, queued, !from_schedule);
2013                 hctx->queue->mq_ops->commit_rqs(hctx);
2014         }
2015 }
2016
2017 /*
2018  * Returns true if we did some work AND can potentially do more.
2019  */
2020 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2021                              unsigned int nr_budgets)
2022 {
2023         enum prep_dispatch prep;
2024         struct request_queue *q = hctx->queue;
2025         struct request *rq;
2026         int queued;
2027         blk_status_t ret = BLK_STS_OK;
2028         LIST_HEAD(zone_list);
2029         bool needs_resource = false;
2030
2031         if (list_empty(list))
2032                 return false;
2033
2034         /*
2035          * Now process all the entries, sending them to the driver.
2036          */
2037         queued = 0;
2038         do {
2039                 struct blk_mq_queue_data bd;
2040
2041                 rq = list_first_entry(list, struct request, queuelist);
2042
2043                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2044                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2045                 if (prep != PREP_DISPATCH_OK)
2046                         break;
2047
2048                 list_del_init(&rq->queuelist);
2049
2050                 bd.rq = rq;
2051                 bd.last = list_empty(list);
2052
2053                 /*
2054                  * once the request is queued to lld, no need to cover the
2055                  * budget any more
2056                  */
2057                 if (nr_budgets)
2058                         nr_budgets--;
2059                 ret = q->mq_ops->queue_rq(hctx, &bd);
2060                 switch (ret) {
2061                 case BLK_STS_OK:
2062                         queued++;
2063                         break;
2064                 case BLK_STS_RESOURCE:
2065                         needs_resource = true;
2066                         fallthrough;
2067                 case BLK_STS_DEV_RESOURCE:
2068                         blk_mq_handle_dev_resource(rq, list);
2069                         goto out;
2070                 case BLK_STS_ZONE_RESOURCE:
2071                         /*
2072                          * Move the request to zone_list and keep going through
2073                          * the dispatch list to find more requests the drive can
2074                          * accept.
2075                          */
2076                         blk_mq_handle_zone_resource(rq, &zone_list);
2077                         needs_resource = true;
2078                         break;
2079                 default:
2080                         blk_mq_end_request(rq, ret);
2081                 }
2082         } while (!list_empty(list));
2083 out:
2084         if (!list_empty(&zone_list))
2085                 list_splice_tail_init(&zone_list, list);
2086
2087         /* If we didn't flush the entire list, we could have told the driver
2088          * there was more coming, but that turned out to be a lie.
2089          */
2090         if (!list_empty(list) || ret != BLK_STS_OK)
2091                 blk_mq_commit_rqs(hctx, queued, false);
2092
2093         /*
2094          * Any items that need requeuing? Stuff them into hctx->dispatch,
2095          * that is where we will continue on next queue run.
2096          */
2097         if (!list_empty(list)) {
2098                 bool needs_restart;
2099                 /* For non-shared tags, the RESTART check will suffice */
2100                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2101                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2102                         blk_mq_is_shared_tags(hctx->flags));
2103
2104                 if (nr_budgets)
2105                         blk_mq_release_budgets(q, list);
2106
2107                 spin_lock(&hctx->lock);
2108                 list_splice_tail_init(list, &hctx->dispatch);
2109                 spin_unlock(&hctx->lock);
2110
2111                 /*
2112                  * Order adding requests to hctx->dispatch and checking
2113                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2114                  * in blk_mq_sched_restart(). Avoid restart code path to
2115                  * miss the new added requests to hctx->dispatch, meantime
2116                  * SCHED_RESTART is observed here.
2117                  */
2118                 smp_mb();
2119
2120                 /*
2121                  * If SCHED_RESTART was set by the caller of this function and
2122                  * it is no longer set that means that it was cleared by another
2123                  * thread and hence that a queue rerun is needed.
2124                  *
2125                  * If 'no_tag' is set, that means that we failed getting
2126                  * a driver tag with an I/O scheduler attached. If our dispatch
2127                  * waitqueue is no longer active, ensure that we run the queue
2128                  * AFTER adding our entries back to the list.
2129                  *
2130                  * If no I/O scheduler has been configured it is possible that
2131                  * the hardware queue got stopped and restarted before requests
2132                  * were pushed back onto the dispatch list. Rerun the queue to
2133                  * avoid starvation. Notes:
2134                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2135                  *   been stopped before rerunning a queue.
2136                  * - Some but not all block drivers stop a queue before
2137                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2138                  *   and dm-rq.
2139                  *
2140                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2141                  * bit is set, run queue after a delay to avoid IO stalls
2142                  * that could otherwise occur if the queue is idle.  We'll do
2143                  * similar if we couldn't get budget or couldn't lock a zone
2144                  * and SCHED_RESTART is set.
2145                  */
2146                 needs_restart = blk_mq_sched_needs_restart(hctx);
2147                 if (prep == PREP_DISPATCH_NO_BUDGET)
2148                         needs_resource = true;
2149                 if (!needs_restart ||
2150                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2151                         blk_mq_run_hw_queue(hctx, true);
2152                 else if (needs_resource)
2153                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2154
2155                 blk_mq_update_dispatch_busy(hctx, true);
2156                 return false;
2157         }
2158
2159         blk_mq_update_dispatch_busy(hctx, false);
2160         return true;
2161 }
2162
2163 /**
2164  * __blk_mq_run_hw_queue - Run a hardware queue.
2165  * @hctx: Pointer to the hardware queue to run.
2166  *
2167  * Send pending requests to the hardware.
2168  */
2169 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2170 {
2171         /*
2172          * We can't run the queue inline with ints disabled. Ensure that
2173          * we catch bad users of this early.
2174          */
2175         WARN_ON_ONCE(in_interrupt());
2176
2177         blk_mq_run_dispatch_ops(hctx->queue,
2178                         blk_mq_sched_dispatch_requests(hctx));
2179 }
2180
2181 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2182 {
2183         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2184
2185         if (cpu >= nr_cpu_ids)
2186                 cpu = cpumask_first(hctx->cpumask);
2187         return cpu;
2188 }
2189
2190 /*
2191  * It'd be great if the workqueue API had a way to pass
2192  * in a mask and had some smarts for more clever placement.
2193  * For now we just round-robin here, switching for every
2194  * BLK_MQ_CPU_WORK_BATCH queued items.
2195  */
2196 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2197 {
2198         bool tried = false;
2199         int next_cpu = hctx->next_cpu;
2200
2201         if (hctx->queue->nr_hw_queues == 1)
2202                 return WORK_CPU_UNBOUND;
2203
2204         if (--hctx->next_cpu_batch <= 0) {
2205 select_cpu:
2206                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2207                                 cpu_online_mask);
2208                 if (next_cpu >= nr_cpu_ids)
2209                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2210                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2211         }
2212
2213         /*
2214          * Do unbound schedule if we can't find a online CPU for this hctx,
2215          * and it should only happen in the path of handling CPU DEAD.
2216          */
2217         if (!cpu_online(next_cpu)) {
2218                 if (!tried) {
2219                         tried = true;
2220                         goto select_cpu;
2221                 }
2222
2223                 /*
2224                  * Make sure to re-select CPU next time once after CPUs
2225                  * in hctx->cpumask become online again.
2226                  */
2227                 hctx->next_cpu = next_cpu;
2228                 hctx->next_cpu_batch = 1;
2229                 return WORK_CPU_UNBOUND;
2230         }
2231
2232         hctx->next_cpu = next_cpu;
2233         return next_cpu;
2234 }
2235
2236 /**
2237  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2238  * @hctx: Pointer to the hardware queue to run.
2239  * @async: If we want to run the queue asynchronously.
2240  * @msecs: Milliseconds of delay to wait before running the queue.
2241  *
2242  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2243  * with a delay of @msecs.
2244  */
2245 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2246                                         unsigned long msecs)
2247 {
2248         if (unlikely(blk_mq_hctx_stopped(hctx)))
2249                 return;
2250
2251         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2252                 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2253                         __blk_mq_run_hw_queue(hctx);
2254                         return;
2255                 }
2256         }
2257
2258         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2259                                     msecs_to_jiffies(msecs));
2260 }
2261
2262 /**
2263  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2264  * @hctx: Pointer to the hardware queue to run.
2265  * @msecs: Milliseconds of delay to wait before running the queue.
2266  *
2267  * Run a hardware queue asynchronously with a delay of @msecs.
2268  */
2269 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2270 {
2271         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2272 }
2273 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2274
2275 /**
2276  * blk_mq_run_hw_queue - Start to run a hardware queue.
2277  * @hctx: Pointer to the hardware queue to run.
2278  * @async: If we want to run the queue asynchronously.
2279  *
2280  * Check if the request queue is not in a quiesced state and if there are
2281  * pending requests to be sent. If this is true, run the queue to send requests
2282  * to hardware.
2283  */
2284 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2285 {
2286         bool need_run;
2287
2288         /*
2289          * When queue is quiesced, we may be switching io scheduler, or
2290          * updating nr_hw_queues, or other things, and we can't run queue
2291          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2292          *
2293          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2294          * quiesced.
2295          */
2296         __blk_mq_run_dispatch_ops(hctx->queue, false,
2297                 need_run = !blk_queue_quiesced(hctx->queue) &&
2298                 blk_mq_hctx_has_pending(hctx));
2299
2300         if (need_run)
2301                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2302 }
2303 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2304
2305 /*
2306  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2307  * scheduler.
2308  */
2309 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2310 {
2311         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2312         /*
2313          * If the IO scheduler does not respect hardware queues when
2314          * dispatching, we just don't bother with multiple HW queues and
2315          * dispatch from hctx for the current CPU since running multiple queues
2316          * just causes lock contention inside the scheduler and pointless cache
2317          * bouncing.
2318          */
2319         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2320
2321         if (!blk_mq_hctx_stopped(hctx))
2322                 return hctx;
2323         return NULL;
2324 }
2325
2326 /**
2327  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2328  * @q: Pointer to the request queue to run.
2329  * @async: If we want to run the queue asynchronously.
2330  */
2331 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2332 {
2333         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2334         unsigned long i;
2335
2336         sq_hctx = NULL;
2337         if (blk_queue_sq_sched(q))
2338                 sq_hctx = blk_mq_get_sq_hctx(q);
2339         queue_for_each_hw_ctx(q, hctx, i) {
2340                 if (blk_mq_hctx_stopped(hctx))
2341                         continue;
2342                 /*
2343                  * Dispatch from this hctx either if there's no hctx preferred
2344                  * by IO scheduler or if it has requests that bypass the
2345                  * scheduler.
2346                  */
2347                 if (!sq_hctx || sq_hctx == hctx ||
2348                     !list_empty_careful(&hctx->dispatch))
2349                         blk_mq_run_hw_queue(hctx, async);
2350         }
2351 }
2352 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2353
2354 /**
2355  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2356  * @q: Pointer to the request queue to run.
2357  * @msecs: Milliseconds of delay to wait before running the queues.
2358  */
2359 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2360 {
2361         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2362         unsigned long i;
2363
2364         sq_hctx = NULL;
2365         if (blk_queue_sq_sched(q))
2366                 sq_hctx = blk_mq_get_sq_hctx(q);
2367         queue_for_each_hw_ctx(q, hctx, i) {
2368                 if (blk_mq_hctx_stopped(hctx))
2369                         continue;
2370                 /*
2371                  * If there is already a run_work pending, leave the
2372                  * pending delay untouched. Otherwise, a hctx can stall
2373                  * if another hctx is re-delaying the other's work
2374                  * before the work executes.
2375                  */
2376                 if (delayed_work_pending(&hctx->run_work))
2377                         continue;
2378                 /*
2379                  * Dispatch from this hctx either if there's no hctx preferred
2380                  * by IO scheduler or if it has requests that bypass the
2381                  * scheduler.
2382                  */
2383                 if (!sq_hctx || sq_hctx == hctx ||
2384                     !list_empty_careful(&hctx->dispatch))
2385                         blk_mq_delay_run_hw_queue(hctx, msecs);
2386         }
2387 }
2388 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2389
2390 /*
2391  * This function is often used for pausing .queue_rq() by driver when
2392  * there isn't enough resource or some conditions aren't satisfied, and
2393  * BLK_STS_RESOURCE is usually returned.
2394  *
2395  * We do not guarantee that dispatch can be drained or blocked
2396  * after blk_mq_stop_hw_queue() returns. Please use
2397  * blk_mq_quiesce_queue() for that requirement.
2398  */
2399 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2400 {
2401         cancel_delayed_work(&hctx->run_work);
2402
2403         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2404 }
2405 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2406
2407 /*
2408  * This function is often used for pausing .queue_rq() by driver when
2409  * there isn't enough resource or some conditions aren't satisfied, and
2410  * BLK_STS_RESOURCE is usually returned.
2411  *
2412  * We do not guarantee that dispatch can be drained or blocked
2413  * after blk_mq_stop_hw_queues() returns. Please use
2414  * blk_mq_quiesce_queue() for that requirement.
2415  */
2416 void blk_mq_stop_hw_queues(struct request_queue *q)
2417 {
2418         struct blk_mq_hw_ctx *hctx;
2419         unsigned long i;
2420
2421         queue_for_each_hw_ctx(q, hctx, i)
2422                 blk_mq_stop_hw_queue(hctx);
2423 }
2424 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2425
2426 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2427 {
2428         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2429
2430         blk_mq_run_hw_queue(hctx, false);
2431 }
2432 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2433
2434 void blk_mq_start_hw_queues(struct request_queue *q)
2435 {
2436         struct blk_mq_hw_ctx *hctx;
2437         unsigned long i;
2438
2439         queue_for_each_hw_ctx(q, hctx, i)
2440                 blk_mq_start_hw_queue(hctx);
2441 }
2442 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2443
2444 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2445 {
2446         if (!blk_mq_hctx_stopped(hctx))
2447                 return;
2448
2449         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2450         blk_mq_run_hw_queue(hctx, async);
2451 }
2452 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2453
2454 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2455 {
2456         struct blk_mq_hw_ctx *hctx;
2457         unsigned long i;
2458
2459         queue_for_each_hw_ctx(q, hctx, i)
2460                 blk_mq_start_stopped_hw_queue(hctx, async);
2461 }
2462 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2463
2464 static void blk_mq_run_work_fn(struct work_struct *work)
2465 {
2466         struct blk_mq_hw_ctx *hctx;
2467
2468         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2469
2470         /*
2471          * If we are stopped, don't run the queue.
2472          */
2473         if (blk_mq_hctx_stopped(hctx))
2474                 return;
2475
2476         __blk_mq_run_hw_queue(hctx);
2477 }
2478
2479 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2480                                             struct request *rq,
2481                                             bool at_head)
2482 {
2483         struct blk_mq_ctx *ctx = rq->mq_ctx;
2484         enum hctx_type type = hctx->type;
2485
2486         lockdep_assert_held(&ctx->lock);
2487
2488         trace_block_rq_insert(rq);
2489
2490         if (at_head)
2491                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2492         else
2493                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2494 }
2495
2496 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2497                              bool at_head)
2498 {
2499         struct blk_mq_ctx *ctx = rq->mq_ctx;
2500
2501         lockdep_assert_held(&ctx->lock);
2502
2503         __blk_mq_insert_req_list(hctx, rq, at_head);
2504         blk_mq_hctx_mark_pending(hctx, ctx);
2505 }
2506
2507 /**
2508  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2509  * @rq: Pointer to request to be inserted.
2510  * @at_head: true if the request should be inserted at the head of the list.
2511  * @run_queue: If we should run the hardware queue after inserting the request.
2512  *
2513  * Should only be used carefully, when the caller knows we want to
2514  * bypass a potential IO scheduler on the target device.
2515  */
2516 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2517                                   bool run_queue)
2518 {
2519         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2520
2521         spin_lock(&hctx->lock);
2522         if (at_head)
2523                 list_add(&rq->queuelist, &hctx->dispatch);
2524         else
2525                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2526         spin_unlock(&hctx->lock);
2527
2528         if (run_queue)
2529                 blk_mq_run_hw_queue(hctx, false);
2530 }
2531
2532 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2533                             struct list_head *list)
2534
2535 {
2536         struct request *rq;
2537         enum hctx_type type = hctx->type;
2538
2539         /*
2540          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2541          * offline now
2542          */
2543         list_for_each_entry(rq, list, queuelist) {
2544                 BUG_ON(rq->mq_ctx != ctx);
2545                 trace_block_rq_insert(rq);
2546         }
2547
2548         spin_lock(&ctx->lock);
2549         list_splice_tail_init(list, &ctx->rq_lists[type]);
2550         blk_mq_hctx_mark_pending(hctx, ctx);
2551         spin_unlock(&ctx->lock);
2552 }
2553
2554 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2555                 unsigned int nr_segs)
2556 {
2557         int err;
2558
2559         if (bio->bi_opf & REQ_RAHEAD)
2560                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2561
2562         rq->__sector = bio->bi_iter.bi_sector;
2563         blk_rq_bio_prep(rq, bio, nr_segs);
2564
2565         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2566         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2567         WARN_ON_ONCE(err);
2568
2569         blk_account_io_start(rq);
2570 }
2571
2572 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2573                                             struct request *rq, bool last)
2574 {
2575         struct request_queue *q = rq->q;
2576         struct blk_mq_queue_data bd = {
2577                 .rq = rq,
2578                 .last = last,
2579         };
2580         blk_status_t ret;
2581
2582         /*
2583          * For OK queue, we are done. For error, caller may kill it.
2584          * Any other error (busy), just add it to our list as we
2585          * previously would have done.
2586          */
2587         ret = q->mq_ops->queue_rq(hctx, &bd);
2588         switch (ret) {
2589         case BLK_STS_OK:
2590                 blk_mq_update_dispatch_busy(hctx, false);
2591                 break;
2592         case BLK_STS_RESOURCE:
2593         case BLK_STS_DEV_RESOURCE:
2594                 blk_mq_update_dispatch_busy(hctx, true);
2595                 __blk_mq_requeue_request(rq);
2596                 break;
2597         default:
2598                 blk_mq_update_dispatch_busy(hctx, false);
2599                 break;
2600         }
2601
2602         return ret;
2603 }
2604
2605 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2606                                                 struct request *rq,
2607                                                 bool bypass_insert, bool last)
2608 {
2609         struct request_queue *q = rq->q;
2610         bool run_queue = true;
2611         int budget_token;
2612
2613         /*
2614          * RCU or SRCU read lock is needed before checking quiesced flag.
2615          *
2616          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2617          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2618          * and avoid driver to try to dispatch again.
2619          */
2620         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2621                 run_queue = false;
2622                 bypass_insert = false;
2623                 goto insert;
2624         }
2625
2626         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2627                 goto insert;
2628
2629         budget_token = blk_mq_get_dispatch_budget(q);
2630         if (budget_token < 0)
2631                 goto insert;
2632
2633         blk_mq_set_rq_budget_token(rq, budget_token);
2634
2635         if (!blk_mq_get_driver_tag(rq)) {
2636                 blk_mq_put_dispatch_budget(q, budget_token);
2637                 goto insert;
2638         }
2639
2640         return __blk_mq_issue_directly(hctx, rq, last);
2641 insert:
2642         if (bypass_insert)
2643                 return BLK_STS_RESOURCE;
2644
2645         blk_mq_sched_insert_request(rq, false, run_queue, false);
2646
2647         return BLK_STS_OK;
2648 }
2649
2650 /**
2651  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2652  * @hctx: Pointer of the associated hardware queue.
2653  * @rq: Pointer to request to be sent.
2654  *
2655  * If the device has enough resources to accept a new request now, send the
2656  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2657  * we can try send it another time in the future. Requests inserted at this
2658  * queue have higher priority.
2659  */
2660 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2661                 struct request *rq)
2662 {
2663         blk_status_t ret =
2664                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2665
2666         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2667                 blk_mq_request_bypass_insert(rq, false, true);
2668         else if (ret != BLK_STS_OK)
2669                 blk_mq_end_request(rq, ret);
2670 }
2671
2672 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2673 {
2674         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2675 }
2676
2677 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2678 {
2679         struct blk_mq_hw_ctx *hctx = NULL;
2680         struct request *rq;
2681         int queued = 0;
2682         blk_status_t ret = BLK_STS_OK;
2683
2684         while ((rq = rq_list_pop(&plug->mq_list))) {
2685                 bool last = rq_list_empty(plug->mq_list);
2686
2687                 if (hctx != rq->mq_hctx) {
2688                         if (hctx) {
2689                                 blk_mq_commit_rqs(hctx, queued, false);
2690                                 queued = 0;
2691                         }
2692                         hctx = rq->mq_hctx;
2693                 }
2694
2695                 ret = blk_mq_request_issue_directly(rq, last);
2696                 switch (ret) {
2697                 case BLK_STS_OK:
2698                         queued++;
2699                         break;
2700                 case BLK_STS_RESOURCE:
2701                 case BLK_STS_DEV_RESOURCE:
2702                         blk_mq_request_bypass_insert(rq, false, true);
2703                         goto out;
2704                 default:
2705                         blk_mq_end_request(rq, ret);
2706                         break;
2707                 }
2708         }
2709
2710 out:
2711         if (ret != BLK_STS_OK)
2712                 blk_mq_commit_rqs(hctx, queued, false);
2713 }
2714
2715 static void __blk_mq_flush_plug_list(struct request_queue *q,
2716                                      struct blk_plug *plug)
2717 {
2718         if (blk_queue_quiesced(q))
2719                 return;
2720         q->mq_ops->queue_rqs(&plug->mq_list);
2721 }
2722
2723 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2724 {
2725         struct blk_mq_hw_ctx *this_hctx = NULL;
2726         struct blk_mq_ctx *this_ctx = NULL;
2727         struct request *requeue_list = NULL;
2728         struct request **requeue_lastp = &requeue_list;
2729         unsigned int depth = 0;
2730         LIST_HEAD(list);
2731
2732         do {
2733                 struct request *rq = rq_list_pop(&plug->mq_list);
2734
2735                 if (!this_hctx) {
2736                         this_hctx = rq->mq_hctx;
2737                         this_ctx = rq->mq_ctx;
2738                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2739                         rq_list_add_tail(&requeue_lastp, rq);
2740                         continue;
2741                 }
2742                 list_add(&rq->queuelist, &list);
2743                 depth++;
2744         } while (!rq_list_empty(plug->mq_list));
2745
2746         plug->mq_list = requeue_list;
2747         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2748         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2749 }
2750
2751 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2752 {
2753         struct request *rq;
2754
2755         if (rq_list_empty(plug->mq_list))
2756                 return;
2757         plug->rq_count = 0;
2758
2759         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2760                 struct request_queue *q;
2761
2762                 rq = rq_list_peek(&plug->mq_list);
2763                 q = rq->q;
2764
2765                 /*
2766                  * Peek first request and see if we have a ->queue_rqs() hook.
2767                  * If we do, we can dispatch the whole plug list in one go. We
2768                  * already know at this point that all requests belong to the
2769                  * same queue, caller must ensure that's the case.
2770                  *
2771                  * Since we pass off the full list to the driver at this point,
2772                  * we do not increment the active request count for the queue.
2773                  * Bypass shared tags for now because of that.
2774                  */
2775                 if (q->mq_ops->queue_rqs &&
2776                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2777                         blk_mq_run_dispatch_ops(q,
2778                                 __blk_mq_flush_plug_list(q, plug));
2779                         if (rq_list_empty(plug->mq_list))
2780                                 return;
2781                 }
2782
2783                 blk_mq_run_dispatch_ops(q,
2784                                 blk_mq_plug_issue_direct(plug));
2785                 if (rq_list_empty(plug->mq_list))
2786                         return;
2787         }
2788
2789         do {
2790                 blk_mq_dispatch_plug_list(plug, from_schedule);
2791         } while (!rq_list_empty(plug->mq_list));
2792 }
2793
2794 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2795                 struct list_head *list)
2796 {
2797         int queued = 0;
2798         blk_status_t ret = BLK_STS_OK;
2799
2800         while (!list_empty(list)) {
2801                 struct request *rq = list_first_entry(list, struct request,
2802                                 queuelist);
2803
2804                 list_del_init(&rq->queuelist);
2805                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2806                 switch (ret) {
2807                 case BLK_STS_OK:
2808                         queued++;
2809                         break;
2810                 case BLK_STS_RESOURCE:
2811                 case BLK_STS_DEV_RESOURCE:
2812                         blk_mq_request_bypass_insert(rq, false,
2813                                                      list_empty(list));
2814                         goto out;
2815                 default:
2816                         blk_mq_end_request(rq, ret);
2817                         break;
2818                 }
2819         }
2820
2821 out:
2822         if (ret != BLK_STS_OK)
2823                 blk_mq_commit_rqs(hctx, queued, false);
2824 }
2825
2826 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2827                                      struct bio *bio, unsigned int nr_segs)
2828 {
2829         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2830                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2831                         return true;
2832                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2833                         return true;
2834         }
2835         return false;
2836 }
2837
2838 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2839                                                struct blk_plug *plug,
2840                                                struct bio *bio,
2841                                                unsigned int nsegs)
2842 {
2843         struct blk_mq_alloc_data data = {
2844                 .q              = q,
2845                 .nr_tags        = 1,
2846                 .cmd_flags      = bio->bi_opf,
2847         };
2848         struct request *rq;
2849
2850         if (unlikely(bio_queue_enter(bio)))
2851                 return NULL;
2852
2853         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2854                 goto queue_exit;
2855
2856         rq_qos_throttle(q, bio);
2857
2858         if (plug) {
2859                 data.nr_tags = plug->nr_ios;
2860                 plug->nr_ios = 1;
2861                 data.cached_rq = &plug->cached_rq;
2862         }
2863
2864         rq = __blk_mq_alloc_requests(&data);
2865         if (rq)
2866                 return rq;
2867         rq_qos_cleanup(q, bio);
2868         if (bio->bi_opf & REQ_NOWAIT)
2869                 bio_wouldblock_error(bio);
2870 queue_exit:
2871         blk_queue_exit(q);
2872         return NULL;
2873 }
2874
2875 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2876                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2877 {
2878         struct request *rq;
2879         enum hctx_type type, hctx_type;
2880
2881         if (!plug)
2882                 return NULL;
2883
2884         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2885                 *bio = NULL;
2886                 return NULL;
2887         }
2888
2889         rq = rq_list_peek(&plug->cached_rq);
2890         if (!rq || rq->q != q)
2891                 return NULL;
2892
2893         type = blk_mq_get_hctx_type((*bio)->bi_opf);
2894         hctx_type = rq->mq_hctx->type;
2895         if (type != hctx_type &&
2896             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2897                 return NULL;
2898         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2899                 return NULL;
2900
2901         /*
2902          * If any qos ->throttle() end up blocking, we will have flushed the
2903          * plug and hence killed the cached_rq list as well. Pop this entry
2904          * before we throttle.
2905          */
2906         plug->cached_rq = rq_list_next(rq);
2907         rq_qos_throttle(q, *bio);
2908
2909         rq->cmd_flags = (*bio)->bi_opf;
2910         INIT_LIST_HEAD(&rq->queuelist);
2911         return rq;
2912 }
2913
2914 static void bio_set_ioprio(struct bio *bio)
2915 {
2916         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2917         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2918                 bio->bi_ioprio = get_current_ioprio();
2919         blkcg_set_ioprio(bio);
2920 }
2921
2922 /**
2923  * blk_mq_submit_bio - Create and send a request to block device.
2924  * @bio: Bio pointer.
2925  *
2926  * Builds up a request structure from @q and @bio and send to the device. The
2927  * request may not be queued directly to hardware if:
2928  * * This request can be merged with another one
2929  * * We want to place request at plug queue for possible future merging
2930  * * There is an IO scheduler active at this queue
2931  *
2932  * It will not queue the request if there is an error with the bio, or at the
2933  * request creation.
2934  */
2935 void blk_mq_submit_bio(struct bio *bio)
2936 {
2937         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2938         struct blk_plug *plug = blk_mq_plug(bio);
2939         const int is_sync = op_is_sync(bio->bi_opf);
2940         struct request *rq;
2941         unsigned int nr_segs = 1;
2942         blk_status_t ret;
2943
2944         bio = blk_queue_bounce(bio, q);
2945         if (bio_may_exceed_limits(bio, &q->limits)) {
2946                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2947                 if (!bio)
2948                         return;
2949         }
2950
2951         if (!bio_integrity_prep(bio))
2952                 return;
2953
2954         bio_set_ioprio(bio);
2955
2956         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2957         if (!rq) {
2958                 if (!bio)
2959                         return;
2960                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2961                 if (unlikely(!rq))
2962                         return;
2963         }
2964
2965         trace_block_getrq(bio);
2966
2967         rq_qos_track(q, rq, bio);
2968
2969         blk_mq_bio_to_request(rq, bio, nr_segs);
2970
2971         ret = blk_crypto_init_request(rq);
2972         if (ret != BLK_STS_OK) {
2973                 bio->bi_status = ret;
2974                 bio_endio(bio);
2975                 blk_mq_free_request(rq);
2976                 return;
2977         }
2978
2979         if (op_is_flush(bio->bi_opf)) {
2980                 blk_insert_flush(rq);
2981                 return;
2982         }
2983
2984         if (plug)
2985                 blk_add_rq_to_plug(plug, rq);
2986         else if ((rq->rq_flags & RQF_ELV) ||
2987                  (rq->mq_hctx->dispatch_busy &&
2988                   (q->nr_hw_queues == 1 || !is_sync)))
2989                 blk_mq_sched_insert_request(rq, false, true, true);
2990         else
2991                 blk_mq_run_dispatch_ops(rq->q,
2992                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2993 }
2994
2995 #ifdef CONFIG_BLK_MQ_STACKING
2996 /**
2997  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2998  * @rq: the request being queued
2999  */
3000 blk_status_t blk_insert_cloned_request(struct request *rq)
3001 {
3002         struct request_queue *q = rq->q;
3003         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3004         unsigned int max_segments = blk_rq_get_max_segments(rq);
3005         blk_status_t ret;
3006
3007         if (blk_rq_sectors(rq) > max_sectors) {
3008                 /*
3009                  * SCSI device does not have a good way to return if
3010                  * Write Same/Zero is actually supported. If a device rejects
3011                  * a non-read/write command (discard, write same,etc.) the
3012                  * low-level device driver will set the relevant queue limit to
3013                  * 0 to prevent blk-lib from issuing more of the offending
3014                  * operations. Commands queued prior to the queue limit being
3015                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3016                  * errors being propagated to upper layers.
3017                  */
3018                 if (max_sectors == 0)
3019                         return BLK_STS_NOTSUPP;
3020
3021                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3022                         __func__, blk_rq_sectors(rq), max_sectors);
3023                 return BLK_STS_IOERR;
3024         }
3025
3026         /*
3027          * The queue settings related to segment counting may differ from the
3028          * original queue.
3029          */
3030         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3031         if (rq->nr_phys_segments > max_segments) {
3032                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3033                         __func__, rq->nr_phys_segments, max_segments);
3034                 return BLK_STS_IOERR;
3035         }
3036
3037         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3038                 return BLK_STS_IOERR;
3039
3040         if (blk_crypto_insert_cloned_request(rq))
3041                 return BLK_STS_IOERR;
3042
3043         blk_account_io_start(rq);
3044
3045         /*
3046          * Since we have a scheduler attached on the top device,
3047          * bypass a potential scheduler on the bottom device for
3048          * insert.
3049          */
3050         blk_mq_run_dispatch_ops(q,
3051                         ret = blk_mq_request_issue_directly(rq, true));
3052         if (ret)
3053                 blk_account_io_done(rq, ktime_get_ns());
3054         return ret;
3055 }
3056 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3057
3058 /**
3059  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3060  * @rq: the clone request to be cleaned up
3061  *
3062  * Description:
3063  *     Free all bios in @rq for a cloned request.
3064  */
3065 void blk_rq_unprep_clone(struct request *rq)
3066 {
3067         struct bio *bio;
3068
3069         while ((bio = rq->bio) != NULL) {
3070                 rq->bio = bio->bi_next;
3071
3072                 bio_put(bio);
3073         }
3074 }
3075 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3076
3077 /**
3078  * blk_rq_prep_clone - Helper function to setup clone request
3079  * @rq: the request to be setup
3080  * @rq_src: original request to be cloned
3081  * @bs: bio_set that bios for clone are allocated from
3082  * @gfp_mask: memory allocation mask for bio
3083  * @bio_ctr: setup function to be called for each clone bio.
3084  *           Returns %0 for success, non %0 for failure.
3085  * @data: private data to be passed to @bio_ctr
3086  *
3087  * Description:
3088  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3089  *     Also, pages which the original bios are pointing to are not copied
3090  *     and the cloned bios just point same pages.
3091  *     So cloned bios must be completed before original bios, which means
3092  *     the caller must complete @rq before @rq_src.
3093  */
3094 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3095                       struct bio_set *bs, gfp_t gfp_mask,
3096                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3097                       void *data)
3098 {
3099         struct bio *bio, *bio_src;
3100
3101         if (!bs)
3102                 bs = &fs_bio_set;
3103
3104         __rq_for_each_bio(bio_src, rq_src) {
3105                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3106                                       bs);
3107                 if (!bio)
3108                         goto free_and_out;
3109
3110                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3111                         goto free_and_out;
3112
3113                 if (rq->bio) {
3114                         rq->biotail->bi_next = bio;
3115                         rq->biotail = bio;
3116                 } else {
3117                         rq->bio = rq->biotail = bio;
3118                 }
3119                 bio = NULL;
3120         }
3121
3122         /* Copy attributes of the original request to the clone request. */
3123         rq->__sector = blk_rq_pos(rq_src);
3124         rq->__data_len = blk_rq_bytes(rq_src);
3125         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3126                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3127                 rq->special_vec = rq_src->special_vec;
3128         }
3129         rq->nr_phys_segments = rq_src->nr_phys_segments;
3130         rq->ioprio = rq_src->ioprio;
3131
3132         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3133                 goto free_and_out;
3134
3135         return 0;
3136
3137 free_and_out:
3138         if (bio)
3139                 bio_put(bio);
3140         blk_rq_unprep_clone(rq);
3141
3142         return -ENOMEM;
3143 }
3144 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3145 #endif /* CONFIG_BLK_MQ_STACKING */
3146
3147 /*
3148  * Steal bios from a request and add them to a bio list.
3149  * The request must not have been partially completed before.
3150  */
3151 void blk_steal_bios(struct bio_list *list, struct request *rq)
3152 {
3153         if (rq->bio) {
3154                 if (list->tail)
3155                         list->tail->bi_next = rq->bio;
3156                 else
3157                         list->head = rq->bio;
3158                 list->tail = rq->biotail;
3159
3160                 rq->bio = NULL;
3161                 rq->biotail = NULL;
3162         }
3163
3164         rq->__data_len = 0;
3165 }
3166 EXPORT_SYMBOL_GPL(blk_steal_bios);
3167
3168 static size_t order_to_size(unsigned int order)
3169 {
3170         return (size_t)PAGE_SIZE << order;
3171 }
3172
3173 /* called before freeing request pool in @tags */
3174 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3175                                     struct blk_mq_tags *tags)
3176 {
3177         struct page *page;
3178         unsigned long flags;
3179
3180         /*
3181          * There is no need to clear mapping if driver tags is not initialized
3182          * or the mapping belongs to the driver tags.
3183          */
3184         if (!drv_tags || drv_tags == tags)
3185                 return;
3186
3187         list_for_each_entry(page, &tags->page_list, lru) {
3188                 unsigned long start = (unsigned long)page_address(page);
3189                 unsigned long end = start + order_to_size(page->private);
3190                 int i;
3191
3192                 for (i = 0; i < drv_tags->nr_tags; i++) {
3193                         struct request *rq = drv_tags->rqs[i];
3194                         unsigned long rq_addr = (unsigned long)rq;
3195
3196                         if (rq_addr >= start && rq_addr < end) {
3197                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3198                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3199                         }
3200                 }
3201         }
3202
3203         /*
3204          * Wait until all pending iteration is done.
3205          *
3206          * Request reference is cleared and it is guaranteed to be observed
3207          * after the ->lock is released.
3208          */
3209         spin_lock_irqsave(&drv_tags->lock, flags);
3210         spin_unlock_irqrestore(&drv_tags->lock, flags);
3211 }
3212
3213 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3214                      unsigned int hctx_idx)
3215 {
3216         struct blk_mq_tags *drv_tags;
3217         struct page *page;
3218
3219         if (list_empty(&tags->page_list))
3220                 return;
3221
3222         if (blk_mq_is_shared_tags(set->flags))
3223                 drv_tags = set->shared_tags;
3224         else
3225                 drv_tags = set->tags[hctx_idx];
3226
3227         if (tags->static_rqs && set->ops->exit_request) {
3228                 int i;
3229
3230                 for (i = 0; i < tags->nr_tags; i++) {
3231                         struct request *rq = tags->static_rqs[i];
3232
3233                         if (!rq)
3234                                 continue;
3235                         set->ops->exit_request(set, rq, hctx_idx);
3236                         tags->static_rqs[i] = NULL;
3237                 }
3238         }
3239
3240         blk_mq_clear_rq_mapping(drv_tags, tags);
3241
3242         while (!list_empty(&tags->page_list)) {
3243                 page = list_first_entry(&tags->page_list, struct page, lru);
3244                 list_del_init(&page->lru);
3245                 /*
3246                  * Remove kmemleak object previously allocated in
3247                  * blk_mq_alloc_rqs().
3248                  */
3249                 kmemleak_free(page_address(page));
3250                 __free_pages(page, page->private);
3251         }
3252 }
3253
3254 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3255 {
3256         kfree(tags->rqs);
3257         tags->rqs = NULL;
3258         kfree(tags->static_rqs);
3259         tags->static_rqs = NULL;
3260
3261         blk_mq_free_tags(tags);
3262 }
3263
3264 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3265                 unsigned int hctx_idx)
3266 {
3267         int i;
3268
3269         for (i = 0; i < set->nr_maps; i++) {
3270                 unsigned int start = set->map[i].queue_offset;
3271                 unsigned int end = start + set->map[i].nr_queues;
3272
3273                 if (hctx_idx >= start && hctx_idx < end)
3274                         break;
3275         }
3276
3277         if (i >= set->nr_maps)
3278                 i = HCTX_TYPE_DEFAULT;
3279
3280         return i;
3281 }
3282
3283 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3284                 unsigned int hctx_idx)
3285 {
3286         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3287
3288         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3289 }
3290
3291 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3292                                                unsigned int hctx_idx,
3293                                                unsigned int nr_tags,
3294                                                unsigned int reserved_tags)
3295 {
3296         int node = blk_mq_get_hctx_node(set, hctx_idx);
3297         struct blk_mq_tags *tags;
3298
3299         if (node == NUMA_NO_NODE)
3300                 node = set->numa_node;
3301
3302         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3303                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3304         if (!tags)
3305                 return NULL;
3306
3307         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3308                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3309                                  node);
3310         if (!tags->rqs)
3311                 goto err_free_tags;
3312
3313         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3314                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3315                                         node);
3316         if (!tags->static_rqs)
3317                 goto err_free_rqs;
3318
3319         return tags;
3320
3321 err_free_rqs:
3322         kfree(tags->rqs);
3323 err_free_tags:
3324         blk_mq_free_tags(tags);
3325         return NULL;
3326 }
3327
3328 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3329                                unsigned int hctx_idx, int node)
3330 {
3331         int ret;
3332
3333         if (set->ops->init_request) {
3334                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3335                 if (ret)
3336                         return ret;
3337         }
3338
3339         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3340         return 0;
3341 }
3342
3343 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3344                             struct blk_mq_tags *tags,
3345                             unsigned int hctx_idx, unsigned int depth)
3346 {
3347         unsigned int i, j, entries_per_page, max_order = 4;
3348         int node = blk_mq_get_hctx_node(set, hctx_idx);
3349         size_t rq_size, left;
3350
3351         if (node == NUMA_NO_NODE)
3352                 node = set->numa_node;
3353
3354         INIT_LIST_HEAD(&tags->page_list);
3355
3356         /*
3357          * rq_size is the size of the request plus driver payload, rounded
3358          * to the cacheline size
3359          */
3360         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3361                                 cache_line_size());
3362         left = rq_size * depth;
3363
3364         for (i = 0; i < depth; ) {
3365                 int this_order = max_order;
3366                 struct page *page;
3367                 int to_do;
3368                 void *p;
3369
3370                 while (this_order && left < order_to_size(this_order - 1))
3371                         this_order--;
3372
3373                 do {
3374                         page = alloc_pages_node(node,
3375                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3376                                 this_order);
3377                         if (page)
3378                                 break;
3379                         if (!this_order--)
3380                                 break;
3381                         if (order_to_size(this_order) < rq_size)
3382                                 break;
3383                 } while (1);
3384
3385                 if (!page)
3386                         goto fail;
3387
3388                 page->private = this_order;
3389                 list_add_tail(&page->lru, &tags->page_list);
3390
3391                 p = page_address(page);
3392                 /*
3393                  * Allow kmemleak to scan these pages as they contain pointers
3394                  * to additional allocations like via ops->init_request().
3395                  */
3396                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3397                 entries_per_page = order_to_size(this_order) / rq_size;
3398                 to_do = min(entries_per_page, depth - i);
3399                 left -= to_do * rq_size;
3400                 for (j = 0; j < to_do; j++) {
3401                         struct request *rq = p;
3402
3403                         tags->static_rqs[i] = rq;
3404                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3405                                 tags->static_rqs[i] = NULL;
3406                                 goto fail;
3407                         }
3408
3409                         p += rq_size;
3410                         i++;
3411                 }
3412         }
3413         return 0;
3414
3415 fail:
3416         blk_mq_free_rqs(set, tags, hctx_idx);
3417         return -ENOMEM;
3418 }
3419
3420 struct rq_iter_data {
3421         struct blk_mq_hw_ctx *hctx;
3422         bool has_rq;
3423 };
3424
3425 static bool blk_mq_has_request(struct request *rq, void *data)
3426 {
3427         struct rq_iter_data *iter_data = data;
3428
3429         if (rq->mq_hctx != iter_data->hctx)
3430                 return true;
3431         iter_data->has_rq = true;
3432         return false;
3433 }
3434
3435 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3436 {
3437         struct blk_mq_tags *tags = hctx->sched_tags ?
3438                         hctx->sched_tags : hctx->tags;
3439         struct rq_iter_data data = {
3440                 .hctx   = hctx,
3441         };
3442
3443         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3444         return data.has_rq;
3445 }
3446
3447 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3448                 struct blk_mq_hw_ctx *hctx)
3449 {
3450         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3451                 return false;
3452         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3453                 return false;
3454         return true;
3455 }
3456
3457 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3458 {
3459         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3460                         struct blk_mq_hw_ctx, cpuhp_online);
3461
3462         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3463             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3464                 return 0;
3465
3466         /*
3467          * Prevent new request from being allocated on the current hctx.
3468          *
3469          * The smp_mb__after_atomic() Pairs with the implied barrier in
3470          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3471          * seen once we return from the tag allocator.
3472          */
3473         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3474         smp_mb__after_atomic();
3475
3476         /*
3477          * Try to grab a reference to the queue and wait for any outstanding
3478          * requests.  If we could not grab a reference the queue has been
3479          * frozen and there are no requests.
3480          */
3481         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3482                 while (blk_mq_hctx_has_requests(hctx))
3483                         msleep(5);
3484                 percpu_ref_put(&hctx->queue->q_usage_counter);
3485         }
3486
3487         return 0;
3488 }
3489
3490 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3491 {
3492         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3493                         struct blk_mq_hw_ctx, cpuhp_online);
3494
3495         if (cpumask_test_cpu(cpu, hctx->cpumask))
3496                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3497         return 0;
3498 }
3499
3500 /*
3501  * 'cpu' is going away. splice any existing rq_list entries from this
3502  * software queue to the hw queue dispatch list, and ensure that it
3503  * gets run.
3504  */
3505 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3506 {
3507         struct blk_mq_hw_ctx *hctx;
3508         struct blk_mq_ctx *ctx;
3509         LIST_HEAD(tmp);
3510         enum hctx_type type;
3511
3512         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3513         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3514                 return 0;
3515
3516         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3517         type = hctx->type;
3518
3519         spin_lock(&ctx->lock);
3520         if (!list_empty(&ctx->rq_lists[type])) {
3521                 list_splice_init(&ctx->rq_lists[type], &tmp);
3522                 blk_mq_hctx_clear_pending(hctx, ctx);
3523         }
3524         spin_unlock(&ctx->lock);
3525
3526         if (list_empty(&tmp))
3527                 return 0;
3528
3529         spin_lock(&hctx->lock);
3530         list_splice_tail_init(&tmp, &hctx->dispatch);
3531         spin_unlock(&hctx->lock);
3532
3533         blk_mq_run_hw_queue(hctx, true);
3534         return 0;
3535 }
3536
3537 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3538 {
3539         if (!(hctx->flags & BLK_MQ_F_STACKING))
3540                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3541                                                     &hctx->cpuhp_online);
3542         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3543                                             &hctx->cpuhp_dead);
3544 }
3545
3546 /*
3547  * Before freeing hw queue, clearing the flush request reference in
3548  * tags->rqs[] for avoiding potential UAF.
3549  */
3550 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3551                 unsigned int queue_depth, struct request *flush_rq)
3552 {
3553         int i;
3554         unsigned long flags;
3555
3556         /* The hw queue may not be mapped yet */
3557         if (!tags)
3558                 return;
3559
3560         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3561
3562         for (i = 0; i < queue_depth; i++)
3563                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3564
3565         /*
3566          * Wait until all pending iteration is done.
3567          *
3568          * Request reference is cleared and it is guaranteed to be observed
3569          * after the ->lock is released.
3570          */
3571         spin_lock_irqsave(&tags->lock, flags);
3572         spin_unlock_irqrestore(&tags->lock, flags);
3573 }
3574
3575 /* hctx->ctxs will be freed in queue's release handler */
3576 static void blk_mq_exit_hctx(struct request_queue *q,
3577                 struct blk_mq_tag_set *set,
3578                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3579 {
3580         struct request *flush_rq = hctx->fq->flush_rq;
3581
3582         if (blk_mq_hw_queue_mapped(hctx))
3583                 blk_mq_tag_idle(hctx);
3584
3585         if (blk_queue_init_done(q))
3586                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3587                                 set->queue_depth, flush_rq);
3588         if (set->ops->exit_request)
3589                 set->ops->exit_request(set, flush_rq, hctx_idx);
3590
3591         if (set->ops->exit_hctx)
3592                 set->ops->exit_hctx(hctx, hctx_idx);
3593
3594         blk_mq_remove_cpuhp(hctx);
3595
3596         xa_erase(&q->hctx_table, hctx_idx);
3597
3598         spin_lock(&q->unused_hctx_lock);
3599         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3600         spin_unlock(&q->unused_hctx_lock);
3601 }
3602
3603 static void blk_mq_exit_hw_queues(struct request_queue *q,
3604                 struct blk_mq_tag_set *set, int nr_queue)
3605 {
3606         struct blk_mq_hw_ctx *hctx;
3607         unsigned long i;
3608
3609         queue_for_each_hw_ctx(q, hctx, i) {
3610                 if (i == nr_queue)
3611                         break;
3612                 blk_mq_exit_hctx(q, set, hctx, i);
3613         }
3614 }
3615
3616 static int blk_mq_init_hctx(struct request_queue *q,
3617                 struct blk_mq_tag_set *set,
3618                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3619 {
3620         hctx->queue_num = hctx_idx;
3621
3622         if (!(hctx->flags & BLK_MQ_F_STACKING))
3623                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3624                                 &hctx->cpuhp_online);
3625         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3626
3627         hctx->tags = set->tags[hctx_idx];
3628
3629         if (set->ops->init_hctx &&
3630             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3631                 goto unregister_cpu_notifier;
3632
3633         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3634                                 hctx->numa_node))
3635                 goto exit_hctx;
3636
3637         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3638                 goto exit_flush_rq;
3639
3640         return 0;
3641
3642  exit_flush_rq:
3643         if (set->ops->exit_request)
3644                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3645  exit_hctx:
3646         if (set->ops->exit_hctx)
3647                 set->ops->exit_hctx(hctx, hctx_idx);
3648  unregister_cpu_notifier:
3649         blk_mq_remove_cpuhp(hctx);
3650         return -1;
3651 }
3652
3653 static struct blk_mq_hw_ctx *
3654 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3655                 int node)
3656 {
3657         struct blk_mq_hw_ctx *hctx;
3658         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3659
3660         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3661         if (!hctx)
3662                 goto fail_alloc_hctx;
3663
3664         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3665                 goto free_hctx;
3666
3667         atomic_set(&hctx->nr_active, 0);
3668         if (node == NUMA_NO_NODE)
3669                 node = set->numa_node;
3670         hctx->numa_node = node;
3671
3672         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3673         spin_lock_init(&hctx->lock);
3674         INIT_LIST_HEAD(&hctx->dispatch);
3675         hctx->queue = q;
3676         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3677
3678         INIT_LIST_HEAD(&hctx->hctx_list);
3679
3680         /*
3681          * Allocate space for all possible cpus to avoid allocation at
3682          * runtime
3683          */
3684         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3685                         gfp, node);
3686         if (!hctx->ctxs)
3687                 goto free_cpumask;
3688
3689         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3690                                 gfp, node, false, false))
3691                 goto free_ctxs;
3692         hctx->nr_ctx = 0;
3693
3694         spin_lock_init(&hctx->dispatch_wait_lock);
3695         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3696         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3697
3698         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3699         if (!hctx->fq)
3700                 goto free_bitmap;
3701
3702         blk_mq_hctx_kobj_init(hctx);
3703
3704         return hctx;
3705
3706  free_bitmap:
3707         sbitmap_free(&hctx->ctx_map);
3708  free_ctxs:
3709         kfree(hctx->ctxs);
3710  free_cpumask:
3711         free_cpumask_var(hctx->cpumask);
3712  free_hctx:
3713         kfree(hctx);
3714  fail_alloc_hctx:
3715         return NULL;
3716 }
3717
3718 static void blk_mq_init_cpu_queues(struct request_queue *q,
3719                                    unsigned int nr_hw_queues)
3720 {
3721         struct blk_mq_tag_set *set = q->tag_set;
3722         unsigned int i, j;
3723
3724         for_each_possible_cpu(i) {
3725                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3726                 struct blk_mq_hw_ctx *hctx;
3727                 int k;
3728
3729                 __ctx->cpu = i;
3730                 spin_lock_init(&__ctx->lock);
3731                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3732                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3733
3734                 __ctx->queue = q;
3735
3736                 /*
3737                  * Set local node, IFF we have more than one hw queue. If
3738                  * not, we remain on the home node of the device
3739                  */
3740                 for (j = 0; j < set->nr_maps; j++) {
3741                         hctx = blk_mq_map_queue_type(q, j, i);
3742                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3743                                 hctx->numa_node = cpu_to_node(i);
3744                 }
3745         }
3746 }
3747
3748 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3749                                              unsigned int hctx_idx,
3750                                              unsigned int depth)
3751 {
3752         struct blk_mq_tags *tags;
3753         int ret;
3754
3755         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3756         if (!tags)
3757                 return NULL;
3758
3759         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3760         if (ret) {
3761                 blk_mq_free_rq_map(tags);
3762                 return NULL;
3763         }
3764
3765         return tags;
3766 }
3767
3768 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3769                                        int hctx_idx)
3770 {
3771         if (blk_mq_is_shared_tags(set->flags)) {
3772                 set->tags[hctx_idx] = set->shared_tags;
3773
3774                 return true;
3775         }
3776
3777         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3778                                                        set->queue_depth);
3779
3780         return set->tags[hctx_idx];
3781 }
3782
3783 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3784                              struct blk_mq_tags *tags,
3785                              unsigned int hctx_idx)
3786 {
3787         if (tags) {
3788                 blk_mq_free_rqs(set, tags, hctx_idx);
3789                 blk_mq_free_rq_map(tags);
3790         }
3791 }
3792
3793 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3794                                       unsigned int hctx_idx)
3795 {
3796         if (!blk_mq_is_shared_tags(set->flags))
3797                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3798
3799         set->tags[hctx_idx] = NULL;
3800 }
3801
3802 static void blk_mq_map_swqueue(struct request_queue *q)
3803 {
3804         unsigned int j, hctx_idx;
3805         unsigned long i;
3806         struct blk_mq_hw_ctx *hctx;
3807         struct blk_mq_ctx *ctx;
3808         struct blk_mq_tag_set *set = q->tag_set;
3809
3810         queue_for_each_hw_ctx(q, hctx, i) {
3811                 cpumask_clear(hctx->cpumask);
3812                 hctx->nr_ctx = 0;
3813                 hctx->dispatch_from = NULL;
3814         }
3815
3816         /*
3817          * Map software to hardware queues.
3818          *
3819          * If the cpu isn't present, the cpu is mapped to first hctx.
3820          */
3821         for_each_possible_cpu(i) {
3822
3823                 ctx = per_cpu_ptr(q->queue_ctx, i);
3824                 for (j = 0; j < set->nr_maps; j++) {
3825                         if (!set->map[j].nr_queues) {
3826                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3827                                                 HCTX_TYPE_DEFAULT, i);
3828                                 continue;
3829                         }
3830                         hctx_idx = set->map[j].mq_map[i];
3831                         /* unmapped hw queue can be remapped after CPU topo changed */
3832                         if (!set->tags[hctx_idx] &&
3833                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3834                                 /*
3835                                  * If tags initialization fail for some hctx,
3836                                  * that hctx won't be brought online.  In this
3837                                  * case, remap the current ctx to hctx[0] which
3838                                  * is guaranteed to always have tags allocated
3839                                  */
3840                                 set->map[j].mq_map[i] = 0;
3841                         }
3842
3843                         hctx = blk_mq_map_queue_type(q, j, i);
3844                         ctx->hctxs[j] = hctx;
3845                         /*
3846                          * If the CPU is already set in the mask, then we've
3847                          * mapped this one already. This can happen if
3848                          * devices share queues across queue maps.
3849                          */
3850                         if (cpumask_test_cpu(i, hctx->cpumask))
3851                                 continue;
3852
3853                         cpumask_set_cpu(i, hctx->cpumask);
3854                         hctx->type = j;
3855                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3856                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3857
3858                         /*
3859                          * If the nr_ctx type overflows, we have exceeded the
3860                          * amount of sw queues we can support.
3861                          */
3862                         BUG_ON(!hctx->nr_ctx);
3863                 }
3864
3865                 for (; j < HCTX_MAX_TYPES; j++)
3866                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3867                                         HCTX_TYPE_DEFAULT, i);
3868         }
3869
3870         queue_for_each_hw_ctx(q, hctx, i) {
3871                 /*
3872                  * If no software queues are mapped to this hardware queue,
3873                  * disable it and free the request entries.
3874                  */
3875                 if (!hctx->nr_ctx) {
3876                         /* Never unmap queue 0.  We need it as a
3877                          * fallback in case of a new remap fails
3878                          * allocation
3879                          */
3880                         if (i)
3881                                 __blk_mq_free_map_and_rqs(set, i);
3882
3883                         hctx->tags = NULL;
3884                         continue;
3885                 }
3886
3887                 hctx->tags = set->tags[i];
3888                 WARN_ON(!hctx->tags);
3889
3890                 /*
3891                  * Set the map size to the number of mapped software queues.
3892                  * This is more accurate and more efficient than looping
3893                  * over all possibly mapped software queues.
3894                  */
3895                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3896
3897                 /*
3898                  * Initialize batch roundrobin counts
3899                  */
3900                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3901                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3902         }
3903 }
3904
3905 /*
3906  * Caller needs to ensure that we're either frozen/quiesced, or that
3907  * the queue isn't live yet.
3908  */
3909 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3910 {
3911         struct blk_mq_hw_ctx *hctx;
3912         unsigned long i;
3913
3914         queue_for_each_hw_ctx(q, hctx, i) {
3915                 if (shared) {
3916                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3917                 } else {
3918                         blk_mq_tag_idle(hctx);
3919                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3920                 }
3921         }
3922 }
3923
3924 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3925                                          bool shared)
3926 {
3927         struct request_queue *q;
3928
3929         lockdep_assert_held(&set->tag_list_lock);
3930
3931         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3932                 blk_mq_freeze_queue(q);
3933                 queue_set_hctx_shared(q, shared);
3934                 blk_mq_unfreeze_queue(q);
3935         }
3936 }
3937
3938 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3939 {
3940         struct blk_mq_tag_set *set = q->tag_set;
3941
3942         mutex_lock(&set->tag_list_lock);
3943         list_del(&q->tag_set_list);
3944         if (list_is_singular(&set->tag_list)) {
3945                 /* just transitioned to unshared */
3946                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3947                 /* update existing queue */
3948                 blk_mq_update_tag_set_shared(set, false);
3949         }
3950         mutex_unlock(&set->tag_list_lock);
3951         INIT_LIST_HEAD(&q->tag_set_list);
3952 }
3953
3954 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3955                                      struct request_queue *q)
3956 {
3957         mutex_lock(&set->tag_list_lock);
3958
3959         /*
3960          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3961          */
3962         if (!list_empty(&set->tag_list) &&
3963             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3964                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3965                 /* update existing queue */
3966                 blk_mq_update_tag_set_shared(set, true);
3967         }
3968         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3969                 queue_set_hctx_shared(q, true);
3970         list_add_tail(&q->tag_set_list, &set->tag_list);
3971
3972         mutex_unlock(&set->tag_list_lock);
3973 }
3974
3975 /* All allocations will be freed in release handler of q->mq_kobj */
3976 static int blk_mq_alloc_ctxs(struct request_queue *q)
3977 {
3978         struct blk_mq_ctxs *ctxs;
3979         int cpu;
3980
3981         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3982         if (!ctxs)
3983                 return -ENOMEM;
3984
3985         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3986         if (!ctxs->queue_ctx)
3987                 goto fail;
3988
3989         for_each_possible_cpu(cpu) {
3990                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3991                 ctx->ctxs = ctxs;
3992         }
3993
3994         q->mq_kobj = &ctxs->kobj;
3995         q->queue_ctx = ctxs->queue_ctx;
3996
3997         return 0;
3998  fail:
3999         kfree(ctxs);
4000         return -ENOMEM;
4001 }
4002
4003 /*
4004  * It is the actual release handler for mq, but we do it from
4005  * request queue's release handler for avoiding use-after-free
4006  * and headache because q->mq_kobj shouldn't have been introduced,
4007  * but we can't group ctx/kctx kobj without it.
4008  */
4009 void blk_mq_release(struct request_queue *q)
4010 {
4011         struct blk_mq_hw_ctx *hctx, *next;
4012         unsigned long i;
4013
4014         queue_for_each_hw_ctx(q, hctx, i)
4015                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4016
4017         /* all hctx are in .unused_hctx_list now */
4018         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4019                 list_del_init(&hctx->hctx_list);
4020                 kobject_put(&hctx->kobj);
4021         }
4022
4023         xa_destroy(&q->hctx_table);
4024
4025         /*
4026          * release .mq_kobj and sw queue's kobject now because
4027          * both share lifetime with request queue.
4028          */
4029         blk_mq_sysfs_deinit(q);
4030 }
4031
4032 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4033                 void *queuedata)
4034 {
4035         struct request_queue *q;
4036         int ret;
4037
4038         q = blk_alloc_queue(set->numa_node);
4039         if (!q)
4040                 return ERR_PTR(-ENOMEM);
4041         q->queuedata = queuedata;
4042         ret = blk_mq_init_allocated_queue(set, q);
4043         if (ret) {
4044                 blk_put_queue(q);
4045                 return ERR_PTR(ret);
4046         }
4047         return q;
4048 }
4049
4050 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4051 {
4052         return blk_mq_init_queue_data(set, NULL);
4053 }
4054 EXPORT_SYMBOL(blk_mq_init_queue);
4055
4056 /**
4057  * blk_mq_destroy_queue - shutdown a request queue
4058  * @q: request queue to shutdown
4059  *
4060  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4061  * requests will be failed with -ENODEV. The caller is responsible for dropping
4062  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4063  *
4064  * Context: can sleep
4065  */
4066 void blk_mq_destroy_queue(struct request_queue *q)
4067 {
4068         WARN_ON_ONCE(!queue_is_mq(q));
4069         WARN_ON_ONCE(blk_queue_registered(q));
4070
4071         might_sleep();
4072
4073         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4074         blk_queue_start_drain(q);
4075         blk_mq_freeze_queue_wait(q);
4076
4077         blk_sync_queue(q);
4078         blk_mq_cancel_work_sync(q);
4079         blk_mq_exit_queue(q);
4080 }
4081 EXPORT_SYMBOL(blk_mq_destroy_queue);
4082
4083 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4084                 struct lock_class_key *lkclass)
4085 {
4086         struct request_queue *q;
4087         struct gendisk *disk;
4088
4089         q = blk_mq_init_queue_data(set, queuedata);
4090         if (IS_ERR(q))
4091                 return ERR_CAST(q);
4092
4093         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4094         if (!disk) {
4095                 blk_mq_destroy_queue(q);
4096                 blk_put_queue(q);
4097                 return ERR_PTR(-ENOMEM);
4098         }
4099         set_bit(GD_OWNS_QUEUE, &disk->state);
4100         return disk;
4101 }
4102 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4103
4104 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4105                 struct lock_class_key *lkclass)
4106 {
4107         struct gendisk *disk;
4108
4109         if (!blk_get_queue(q))
4110                 return NULL;
4111         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4112         if (!disk)
4113                 blk_put_queue(q);
4114         return disk;
4115 }
4116 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4117
4118 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4119                 struct blk_mq_tag_set *set, struct request_queue *q,
4120                 int hctx_idx, int node)
4121 {
4122         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4123
4124         /* reuse dead hctx first */
4125         spin_lock(&q->unused_hctx_lock);
4126         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4127                 if (tmp->numa_node == node) {
4128                         hctx = tmp;
4129                         break;
4130                 }
4131         }
4132         if (hctx)
4133                 list_del_init(&hctx->hctx_list);
4134         spin_unlock(&q->unused_hctx_lock);
4135
4136         if (!hctx)
4137                 hctx = blk_mq_alloc_hctx(q, set, node);
4138         if (!hctx)
4139                 goto fail;
4140
4141         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4142                 goto free_hctx;
4143
4144         return hctx;
4145
4146  free_hctx:
4147         kobject_put(&hctx->kobj);
4148  fail:
4149         return NULL;
4150 }
4151
4152 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4153                                                 struct request_queue *q)
4154 {
4155         struct blk_mq_hw_ctx *hctx;
4156         unsigned long i, j;
4157
4158         /* protect against switching io scheduler  */
4159         mutex_lock(&q->sysfs_lock);
4160         for (i = 0; i < set->nr_hw_queues; i++) {
4161                 int old_node;
4162                 int node = blk_mq_get_hctx_node(set, i);
4163                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4164
4165                 if (old_hctx) {
4166                         old_node = old_hctx->numa_node;
4167                         blk_mq_exit_hctx(q, set, old_hctx, i);
4168                 }
4169
4170                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4171                         if (!old_hctx)
4172                                 break;
4173                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4174                                         node, old_node);
4175                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4176                         WARN_ON_ONCE(!hctx);
4177                 }
4178         }
4179         /*
4180          * Increasing nr_hw_queues fails. Free the newly allocated
4181          * hctxs and keep the previous q->nr_hw_queues.
4182          */
4183         if (i != set->nr_hw_queues) {
4184                 j = q->nr_hw_queues;
4185         } else {
4186                 j = i;
4187                 q->nr_hw_queues = set->nr_hw_queues;
4188         }
4189
4190         xa_for_each_start(&q->hctx_table, j, hctx, j)
4191                 blk_mq_exit_hctx(q, set, hctx, j);
4192         mutex_unlock(&q->sysfs_lock);
4193 }
4194
4195 static void blk_mq_update_poll_flag(struct request_queue *q)
4196 {
4197         struct blk_mq_tag_set *set = q->tag_set;
4198
4199         if (set->nr_maps > HCTX_TYPE_POLL &&
4200             set->map[HCTX_TYPE_POLL].nr_queues)
4201                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4202         else
4203                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4204 }
4205
4206 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4207                 struct request_queue *q)
4208 {
4209         /* mark the queue as mq asap */
4210         q->mq_ops = set->ops;
4211
4212         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4213                                              blk_mq_poll_stats_bkt,
4214                                              BLK_MQ_POLL_STATS_BKTS, q);
4215         if (!q->poll_cb)
4216                 goto err_exit;
4217
4218         if (blk_mq_alloc_ctxs(q))
4219                 goto err_poll;
4220
4221         /* init q->mq_kobj and sw queues' kobjects */
4222         blk_mq_sysfs_init(q);
4223
4224         INIT_LIST_HEAD(&q->unused_hctx_list);
4225         spin_lock_init(&q->unused_hctx_lock);
4226
4227         xa_init(&q->hctx_table);
4228
4229         blk_mq_realloc_hw_ctxs(set, q);
4230         if (!q->nr_hw_queues)
4231                 goto err_hctxs;
4232
4233         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4234         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4235
4236         q->tag_set = set;
4237
4238         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4239         blk_mq_update_poll_flag(q);
4240
4241         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4242         INIT_LIST_HEAD(&q->requeue_list);
4243         spin_lock_init(&q->requeue_lock);
4244
4245         q->nr_requests = set->queue_depth;
4246
4247         /*
4248          * Default to classic polling
4249          */
4250         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4251
4252         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4253         blk_mq_add_queue_tag_set(set, q);
4254         blk_mq_map_swqueue(q);
4255         return 0;
4256
4257 err_hctxs:
4258         blk_mq_release(q);
4259 err_poll:
4260         blk_stat_free_callback(q->poll_cb);
4261         q->poll_cb = NULL;
4262 err_exit:
4263         q->mq_ops = NULL;
4264         return -ENOMEM;
4265 }
4266 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4267
4268 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4269 void blk_mq_exit_queue(struct request_queue *q)
4270 {
4271         struct blk_mq_tag_set *set = q->tag_set;
4272
4273         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4274         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4275         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4276         blk_mq_del_queue_tag_set(q);
4277 }
4278
4279 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4280 {
4281         int i;
4282
4283         if (blk_mq_is_shared_tags(set->flags)) {
4284                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4285                                                 BLK_MQ_NO_HCTX_IDX,
4286                                                 set->queue_depth);
4287                 if (!set->shared_tags)
4288                         return -ENOMEM;
4289         }
4290
4291         for (i = 0; i < set->nr_hw_queues; i++) {
4292                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4293                         goto out_unwind;
4294                 cond_resched();
4295         }
4296
4297         return 0;
4298
4299 out_unwind:
4300         while (--i >= 0)
4301                 __blk_mq_free_map_and_rqs(set, i);
4302
4303         if (blk_mq_is_shared_tags(set->flags)) {
4304                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4305                                         BLK_MQ_NO_HCTX_IDX);
4306         }
4307
4308         return -ENOMEM;
4309 }
4310
4311 /*
4312  * Allocate the request maps associated with this tag_set. Note that this
4313  * may reduce the depth asked for, if memory is tight. set->queue_depth
4314  * will be updated to reflect the allocated depth.
4315  */
4316 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4317 {
4318         unsigned int depth;
4319         int err;
4320
4321         depth = set->queue_depth;
4322         do {
4323                 err = __blk_mq_alloc_rq_maps(set);
4324                 if (!err)
4325                         break;
4326
4327                 set->queue_depth >>= 1;
4328                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4329                         err = -ENOMEM;
4330                         break;
4331                 }
4332         } while (set->queue_depth);
4333
4334         if (!set->queue_depth || err) {
4335                 pr_err("blk-mq: failed to allocate request map\n");
4336                 return -ENOMEM;
4337         }
4338
4339         if (depth != set->queue_depth)
4340                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4341                                                 depth, set->queue_depth);
4342
4343         return 0;
4344 }
4345
4346 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4347 {
4348         /*
4349          * blk_mq_map_queues() and multiple .map_queues() implementations
4350          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4351          * number of hardware queues.
4352          */
4353         if (set->nr_maps == 1)
4354                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4355
4356         if (set->ops->map_queues && !is_kdump_kernel()) {
4357                 int i;
4358
4359                 /*
4360                  * transport .map_queues is usually done in the following
4361                  * way:
4362                  *
4363                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4364                  *      mask = get_cpu_mask(queue)
4365                  *      for_each_cpu(cpu, mask)
4366                  *              set->map[x].mq_map[cpu] = queue;
4367                  * }
4368                  *
4369                  * When we need to remap, the table has to be cleared for
4370                  * killing stale mapping since one CPU may not be mapped
4371                  * to any hw queue.
4372                  */
4373                 for (i = 0; i < set->nr_maps; i++)
4374                         blk_mq_clear_mq_map(&set->map[i]);
4375
4376                 set->ops->map_queues(set);
4377         } else {
4378                 BUG_ON(set->nr_maps > 1);
4379                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4380         }
4381 }
4382
4383 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4384                                        int new_nr_hw_queues)
4385 {
4386         struct blk_mq_tags **new_tags;
4387
4388         if (set->nr_hw_queues >= new_nr_hw_queues)
4389                 goto done;
4390
4391         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4392                                 GFP_KERNEL, set->numa_node);
4393         if (!new_tags)
4394                 return -ENOMEM;
4395
4396         if (set->tags)
4397                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4398                        sizeof(*set->tags));
4399         kfree(set->tags);
4400         set->tags = new_tags;
4401 done:
4402         set->nr_hw_queues = new_nr_hw_queues;
4403         return 0;
4404 }
4405
4406 /*
4407  * Alloc a tag set to be associated with one or more request queues.
4408  * May fail with EINVAL for various error conditions. May adjust the
4409  * requested depth down, if it's too large. In that case, the set
4410  * value will be stored in set->queue_depth.
4411  */
4412 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4413 {
4414         int i, ret;
4415
4416         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4417
4418         if (!set->nr_hw_queues)
4419                 return -EINVAL;
4420         if (!set->queue_depth)
4421                 return -EINVAL;
4422         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4423                 return -EINVAL;
4424
4425         if (!set->ops->queue_rq)
4426                 return -EINVAL;
4427
4428         if (!set->ops->get_budget ^ !set->ops->put_budget)
4429                 return -EINVAL;
4430
4431         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4432                 pr_info("blk-mq: reduced tag depth to %u\n",
4433                         BLK_MQ_MAX_DEPTH);
4434                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4435         }
4436
4437         if (!set->nr_maps)
4438                 set->nr_maps = 1;
4439         else if (set->nr_maps > HCTX_MAX_TYPES)
4440                 return -EINVAL;
4441
4442         /*
4443          * If a crashdump is active, then we are potentially in a very
4444          * memory constrained environment. Limit us to 1 queue and
4445          * 64 tags to prevent using too much memory.
4446          */
4447         if (is_kdump_kernel()) {
4448                 set->nr_hw_queues = 1;
4449                 set->nr_maps = 1;
4450                 set->queue_depth = min(64U, set->queue_depth);
4451         }
4452         /*
4453          * There is no use for more h/w queues than cpus if we just have
4454          * a single map
4455          */
4456         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4457                 set->nr_hw_queues = nr_cpu_ids;
4458
4459         if (set->flags & BLK_MQ_F_BLOCKING) {
4460                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4461                 if (!set->srcu)
4462                         return -ENOMEM;
4463                 ret = init_srcu_struct(set->srcu);
4464                 if (ret)
4465                         goto out_free_srcu;
4466         }
4467
4468         ret = -ENOMEM;
4469         set->tags = kcalloc_node(set->nr_hw_queues,
4470                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4471                                  set->numa_node);
4472         if (!set->tags)
4473                 goto out_cleanup_srcu;
4474
4475         for (i = 0; i < set->nr_maps; i++) {
4476                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4477                                                   sizeof(set->map[i].mq_map[0]),
4478                                                   GFP_KERNEL, set->numa_node);
4479                 if (!set->map[i].mq_map)
4480                         goto out_free_mq_map;
4481                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4482         }
4483
4484         blk_mq_update_queue_map(set);
4485
4486         ret = blk_mq_alloc_set_map_and_rqs(set);
4487         if (ret)
4488                 goto out_free_mq_map;
4489
4490         mutex_init(&set->tag_list_lock);
4491         INIT_LIST_HEAD(&set->tag_list);
4492
4493         return 0;
4494
4495 out_free_mq_map:
4496         for (i = 0; i < set->nr_maps; i++) {
4497                 kfree(set->map[i].mq_map);
4498                 set->map[i].mq_map = NULL;
4499         }
4500         kfree(set->tags);
4501         set->tags = NULL;
4502 out_cleanup_srcu:
4503         if (set->flags & BLK_MQ_F_BLOCKING)
4504                 cleanup_srcu_struct(set->srcu);
4505 out_free_srcu:
4506         if (set->flags & BLK_MQ_F_BLOCKING)
4507                 kfree(set->srcu);
4508         return ret;
4509 }
4510 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4511
4512 /* allocate and initialize a tagset for a simple single-queue device */
4513 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4514                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4515                 unsigned int set_flags)
4516 {
4517         memset(set, 0, sizeof(*set));
4518         set->ops = ops;
4519         set->nr_hw_queues = 1;
4520         set->nr_maps = 1;
4521         set->queue_depth = queue_depth;
4522         set->numa_node = NUMA_NO_NODE;
4523         set->flags = set_flags;
4524         return blk_mq_alloc_tag_set(set);
4525 }
4526 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4527
4528 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4529 {
4530         int i, j;
4531
4532         for (i = 0; i < set->nr_hw_queues; i++)
4533                 __blk_mq_free_map_and_rqs(set, i);
4534
4535         if (blk_mq_is_shared_tags(set->flags)) {
4536                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4537                                         BLK_MQ_NO_HCTX_IDX);
4538         }
4539
4540         for (j = 0; j < set->nr_maps; j++) {
4541                 kfree(set->map[j].mq_map);
4542                 set->map[j].mq_map = NULL;
4543         }
4544
4545         kfree(set->tags);
4546         set->tags = NULL;
4547         if (set->flags & BLK_MQ_F_BLOCKING) {
4548                 cleanup_srcu_struct(set->srcu);
4549                 kfree(set->srcu);
4550         }
4551 }
4552 EXPORT_SYMBOL(blk_mq_free_tag_set);
4553
4554 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4555 {
4556         struct blk_mq_tag_set *set = q->tag_set;
4557         struct blk_mq_hw_ctx *hctx;
4558         int ret;
4559         unsigned long i;
4560
4561         if (!set)
4562                 return -EINVAL;
4563
4564         if (q->nr_requests == nr)
4565                 return 0;
4566
4567         blk_mq_freeze_queue(q);
4568         blk_mq_quiesce_queue(q);
4569
4570         ret = 0;
4571         queue_for_each_hw_ctx(q, hctx, i) {
4572                 if (!hctx->tags)
4573                         continue;
4574                 /*
4575                  * If we're using an MQ scheduler, just update the scheduler
4576                  * queue depth. This is similar to what the old code would do.
4577                  */
4578                 if (hctx->sched_tags) {
4579                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4580                                                       nr, true);
4581                 } else {
4582                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4583                                                       false);
4584                 }
4585                 if (ret)
4586                         break;
4587                 if (q->elevator && q->elevator->type->ops.depth_updated)
4588                         q->elevator->type->ops.depth_updated(hctx);
4589         }
4590         if (!ret) {
4591                 q->nr_requests = nr;
4592                 if (blk_mq_is_shared_tags(set->flags)) {
4593                         if (q->elevator)
4594                                 blk_mq_tag_update_sched_shared_tags(q);
4595                         else
4596                                 blk_mq_tag_resize_shared_tags(set, nr);
4597                 }
4598         }
4599
4600         blk_mq_unquiesce_queue(q);
4601         blk_mq_unfreeze_queue(q);
4602
4603         return ret;
4604 }
4605
4606 /*
4607  * request_queue and elevator_type pair.
4608  * It is just used by __blk_mq_update_nr_hw_queues to cache
4609  * the elevator_type associated with a request_queue.
4610  */
4611 struct blk_mq_qe_pair {
4612         struct list_head node;
4613         struct request_queue *q;
4614         struct elevator_type *type;
4615 };
4616
4617 /*
4618  * Cache the elevator_type in qe pair list and switch the
4619  * io scheduler to 'none'
4620  */
4621 static bool blk_mq_elv_switch_none(struct list_head *head,
4622                 struct request_queue *q)
4623 {
4624         struct blk_mq_qe_pair *qe;
4625
4626         if (!q->elevator)
4627                 return true;
4628
4629         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4630         if (!qe)
4631                 return false;
4632
4633         /* q->elevator needs protection from ->sysfs_lock */
4634         mutex_lock(&q->sysfs_lock);
4635
4636         INIT_LIST_HEAD(&qe->node);
4637         qe->q = q;
4638         qe->type = q->elevator->type;
4639         /* keep a reference to the elevator module as we'll switch back */
4640         __elevator_get(qe->type);
4641         list_add(&qe->node, head);
4642         elevator_disable(q);
4643         mutex_unlock(&q->sysfs_lock);
4644
4645         return true;
4646 }
4647
4648 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4649                                                 struct request_queue *q)
4650 {
4651         struct blk_mq_qe_pair *qe;
4652
4653         list_for_each_entry(qe, head, node)
4654                 if (qe->q == q)
4655                         return qe;
4656
4657         return NULL;
4658 }
4659
4660 static void blk_mq_elv_switch_back(struct list_head *head,
4661                                   struct request_queue *q)
4662 {
4663         struct blk_mq_qe_pair *qe;
4664         struct elevator_type *t;
4665
4666         qe = blk_lookup_qe_pair(head, q);
4667         if (!qe)
4668                 return;
4669         t = qe->type;
4670         list_del(&qe->node);
4671         kfree(qe);
4672
4673         mutex_lock(&q->sysfs_lock);
4674         elevator_switch(q, t);
4675         /* drop the reference acquired in blk_mq_elv_switch_none */
4676         elevator_put(t);
4677         mutex_unlock(&q->sysfs_lock);
4678 }
4679
4680 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4681                                                         int nr_hw_queues)
4682 {
4683         struct request_queue *q;
4684         LIST_HEAD(head);
4685         int prev_nr_hw_queues;
4686
4687         lockdep_assert_held(&set->tag_list_lock);
4688
4689         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4690                 nr_hw_queues = nr_cpu_ids;
4691         if (nr_hw_queues < 1)
4692                 return;
4693         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4694                 return;
4695
4696         list_for_each_entry(q, &set->tag_list, tag_set_list)
4697                 blk_mq_freeze_queue(q);
4698         /*
4699          * Switch IO scheduler to 'none', cleaning up the data associated
4700          * with the previous scheduler. We will switch back once we are done
4701          * updating the new sw to hw queue mappings.
4702          */
4703         list_for_each_entry(q, &set->tag_list, tag_set_list)
4704                 if (!blk_mq_elv_switch_none(&head, q))
4705                         goto switch_back;
4706
4707         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4708                 blk_mq_debugfs_unregister_hctxs(q);
4709                 blk_mq_sysfs_unregister_hctxs(q);
4710         }
4711
4712         prev_nr_hw_queues = set->nr_hw_queues;
4713         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4714                 goto reregister;
4715
4716 fallback:
4717         blk_mq_update_queue_map(set);
4718         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4719                 blk_mq_realloc_hw_ctxs(set, q);
4720                 blk_mq_update_poll_flag(q);
4721                 if (q->nr_hw_queues != set->nr_hw_queues) {
4722                         int i = prev_nr_hw_queues;
4723
4724                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4725                                         nr_hw_queues, prev_nr_hw_queues);
4726                         for (; i < set->nr_hw_queues; i++)
4727                                 __blk_mq_free_map_and_rqs(set, i);
4728
4729                         set->nr_hw_queues = prev_nr_hw_queues;
4730                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4731                         goto fallback;
4732                 }
4733                 blk_mq_map_swqueue(q);
4734         }
4735
4736 reregister:
4737         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4738                 blk_mq_sysfs_register_hctxs(q);
4739                 blk_mq_debugfs_register_hctxs(q);
4740         }
4741
4742 switch_back:
4743         list_for_each_entry(q, &set->tag_list, tag_set_list)
4744                 blk_mq_elv_switch_back(&head, q);
4745
4746         list_for_each_entry(q, &set->tag_list, tag_set_list)
4747                 blk_mq_unfreeze_queue(q);
4748 }
4749
4750 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4751 {
4752         mutex_lock(&set->tag_list_lock);
4753         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4754         mutex_unlock(&set->tag_list_lock);
4755 }
4756 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4757
4758 /* Enable polling stats and return whether they were already enabled. */
4759 static bool blk_poll_stats_enable(struct request_queue *q)
4760 {
4761         if (q->poll_stat)
4762                 return true;
4763
4764         return blk_stats_alloc_enable(q);
4765 }
4766
4767 static void blk_mq_poll_stats_start(struct request_queue *q)
4768 {
4769         /*
4770          * We don't arm the callback if polling stats are not enabled or the
4771          * callback is already active.
4772          */
4773         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4774                 return;
4775
4776         blk_stat_activate_msecs(q->poll_cb, 100);
4777 }
4778
4779 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4780 {
4781         struct request_queue *q = cb->data;
4782         int bucket;
4783
4784         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4785                 if (cb->stat[bucket].nr_samples)
4786                         q->poll_stat[bucket] = cb->stat[bucket];
4787         }
4788 }
4789
4790 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4791                                        struct request *rq)
4792 {
4793         unsigned long ret = 0;
4794         int bucket;
4795
4796         /*
4797          * If stats collection isn't on, don't sleep but turn it on for
4798          * future users
4799          */
4800         if (!blk_poll_stats_enable(q))
4801                 return 0;
4802
4803         /*
4804          * As an optimistic guess, use half of the mean service time
4805          * for this type of request. We can (and should) make this smarter.
4806          * For instance, if the completion latencies are tight, we can
4807          * get closer than just half the mean. This is especially
4808          * important on devices where the completion latencies are longer
4809          * than ~10 usec. We do use the stats for the relevant IO size
4810          * if available which does lead to better estimates.
4811          */
4812         bucket = blk_mq_poll_stats_bkt(rq);
4813         if (bucket < 0)
4814                 return ret;
4815
4816         if (q->poll_stat[bucket].nr_samples)
4817                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4818
4819         return ret;
4820 }
4821
4822 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4823 {
4824         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4825         struct request *rq = blk_qc_to_rq(hctx, qc);
4826         struct hrtimer_sleeper hs;
4827         enum hrtimer_mode mode;
4828         unsigned int nsecs;
4829         ktime_t kt;
4830
4831         /*
4832          * If a request has completed on queue that uses an I/O scheduler, we
4833          * won't get back a request from blk_qc_to_rq.
4834          */
4835         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4836                 return false;
4837
4838         /*
4839          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4840          *
4841          *  0:  use half of prev avg
4842          * >0:  use this specific value
4843          */
4844         if (q->poll_nsec > 0)
4845                 nsecs = q->poll_nsec;
4846         else
4847                 nsecs = blk_mq_poll_nsecs(q, rq);
4848
4849         if (!nsecs)
4850                 return false;
4851
4852         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4853
4854         /*
4855          * This will be replaced with the stats tracking code, using
4856          * 'avg_completion_time / 2' as the pre-sleep target.
4857          */
4858         kt = nsecs;
4859
4860         mode = HRTIMER_MODE_REL;
4861         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4862         hrtimer_set_expires(&hs.timer, kt);
4863
4864         do {
4865                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4866                         break;
4867                 set_current_state(TASK_UNINTERRUPTIBLE);
4868                 hrtimer_sleeper_start_expires(&hs, mode);
4869                 if (hs.task)
4870                         io_schedule();
4871                 hrtimer_cancel(&hs.timer);
4872                 mode = HRTIMER_MODE_ABS;
4873         } while (hs.task && !signal_pending(current));
4874
4875         __set_current_state(TASK_RUNNING);
4876         destroy_hrtimer_on_stack(&hs.timer);
4877
4878         /*
4879          * If we sleep, have the caller restart the poll loop to reset the
4880          * state.  Like for the other success return cases, the caller is
4881          * responsible for checking if the IO completed.  If the IO isn't
4882          * complete, we'll get called again and will go straight to the busy
4883          * poll loop.
4884          */
4885         return true;
4886 }
4887
4888 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4889                                struct io_comp_batch *iob, unsigned int flags)
4890 {
4891         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4892         long state = get_current_state();
4893         int ret;
4894
4895         do {
4896                 ret = q->mq_ops->poll(hctx, iob);
4897                 if (ret > 0) {
4898                         __set_current_state(TASK_RUNNING);
4899                         return ret;
4900                 }
4901
4902                 if (signal_pending_state(state, current))
4903                         __set_current_state(TASK_RUNNING);
4904                 if (task_is_running(current))
4905                         return 1;
4906
4907                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4908                         break;
4909                 cpu_relax();
4910         } while (!need_resched());
4911
4912         __set_current_state(TASK_RUNNING);
4913         return 0;
4914 }
4915
4916 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4917                 unsigned int flags)
4918 {
4919         if (!(flags & BLK_POLL_NOSLEEP) &&
4920             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4921                 if (blk_mq_poll_hybrid(q, cookie))
4922                         return 1;
4923         }
4924         return blk_mq_poll_classic(q, cookie, iob, flags);
4925 }
4926
4927 unsigned int blk_mq_rq_cpu(struct request *rq)
4928 {
4929         return rq->mq_ctx->cpu;
4930 }
4931 EXPORT_SYMBOL(blk_mq_rq_cpu);
4932
4933 void blk_mq_cancel_work_sync(struct request_queue *q)
4934 {
4935         struct blk_mq_hw_ctx *hctx;
4936         unsigned long i;
4937
4938         cancel_delayed_work_sync(&q->requeue_work);
4939
4940         queue_for_each_hw_ctx(q, hctx, i)
4941                 cancel_delayed_work_sync(&hctx->run_work);
4942 }
4943
4944 static int __init blk_mq_init(void)
4945 {
4946         int i;
4947
4948         for_each_possible_cpu(i)
4949                 init_llist_head(&per_cpu(blk_cpu_done, i));
4950         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4951
4952         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4953                                   "block/softirq:dead", NULL,
4954                                   blk_softirq_cpu_dead);
4955         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4956                                 blk_mq_hctx_notify_dead);
4957         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4958                                 blk_mq_hctx_notify_online,
4959                                 blk_mq_hctx_notify_offline);
4960         return 0;
4961 }
4962 subsys_initcall(blk_mq_init);