Merge tag 'fbdev-for-6.2-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[platform/kernel/linux-rpi.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54         int ddir, sectors, bucket;
55
56         ddir = rq_data_dir(rq);
57         sectors = blk_rq_stats_sectors(rq);
58
59         bucket = ddir + 2 * ilog2(sectors);
60
61         if (bucket < 0)
62                 return -1;
63         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65
66         return bucket;
67 }
68
69 #define BLK_QC_T_SHIFT          16
70 #define BLK_QC_T_INTERNAL       (1U << 31)
71
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73                 blk_qc_t qc)
74 {
75         return xa_load(&q->hctx_table,
76                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80                 blk_qc_t qc)
81 {
82         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83
84         if (qc & BLK_QC_T_INTERNAL)
85                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86         return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92                 (rq->tag != -1 ?
93                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102         return !list_empty_careful(&hctx->dispatch) ||
103                 sbitmap_any_bit_set(&hctx->ctx_map) ||
104                         blk_mq_sched_has_work(hctx);
105 }
106
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111                                      struct blk_mq_ctx *ctx)
112 {
113         const int bit = ctx->index_hw[hctx->type];
114
115         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116                 sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120                                       struct blk_mq_ctx *ctx)
121 {
122         const int bit = ctx->index_hw[hctx->type];
123
124         sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126
127 struct mq_inflight {
128         struct block_device *part;
129         unsigned int inflight[2];
130 };
131
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @set: tag_set to wait on
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started on or more of the request_queues of the tag_set.  This
261  * function only waits for the quiesce on those request_queues that had
262  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
263  */
264 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
265 {
266         if (set->flags & BLK_MQ_F_BLOCKING)
267                 synchronize_srcu(set->srcu);
268         else
269                 synchronize_rcu();
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
272
273 /**
274  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
275  * @q: request queue.
276  *
277  * Note: this function does not prevent that the struct request end_io()
278  * callback function is invoked. Once this function is returned, we make
279  * sure no dispatch can happen until the queue is unquiesced via
280  * blk_mq_unquiesce_queue().
281  */
282 void blk_mq_quiesce_queue(struct request_queue *q)
283 {
284         blk_mq_quiesce_queue_nowait(q);
285         /* nothing to wait for non-mq queues */
286         if (queue_is_mq(q))
287                 blk_mq_wait_quiesce_done(q->tag_set);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
290
291 /*
292  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
293  * @q: request queue.
294  *
295  * This function recovers queue into the state before quiescing
296  * which is done by blk_mq_quiesce_queue.
297  */
298 void blk_mq_unquiesce_queue(struct request_queue *q)
299 {
300         unsigned long flags;
301         bool run_queue = false;
302
303         spin_lock_irqsave(&q->queue_lock, flags);
304         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
305                 ;
306         } else if (!--q->quiesce_depth) {
307                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
308                 run_queue = true;
309         }
310         spin_unlock_irqrestore(&q->queue_lock, flags);
311
312         /* dispatch requests which are inserted during quiescing */
313         if (run_queue)
314                 blk_mq_run_hw_queues(q, true);
315 }
316 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
317
318 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
319 {
320         struct request_queue *q;
321
322         mutex_lock(&set->tag_list_lock);
323         list_for_each_entry(q, &set->tag_list, tag_set_list) {
324                 if (!blk_queue_skip_tagset_quiesce(q))
325                         blk_mq_quiesce_queue_nowait(q);
326         }
327         blk_mq_wait_quiesce_done(set);
328         mutex_unlock(&set->tag_list_lock);
329 }
330 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
331
332 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
333 {
334         struct request_queue *q;
335
336         mutex_lock(&set->tag_list_lock);
337         list_for_each_entry(q, &set->tag_list, tag_set_list) {
338                 if (!blk_queue_skip_tagset_quiesce(q))
339                         blk_mq_unquiesce_queue(q);
340         }
341         mutex_unlock(&set->tag_list_lock);
342 }
343 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
344
345 void blk_mq_wake_waiters(struct request_queue *q)
346 {
347         struct blk_mq_hw_ctx *hctx;
348         unsigned long i;
349
350         queue_for_each_hw_ctx(q, hctx, i)
351                 if (blk_mq_hw_queue_mapped(hctx))
352                         blk_mq_tag_wakeup_all(hctx->tags, true);
353 }
354
355 void blk_rq_init(struct request_queue *q, struct request *rq)
356 {
357         memset(rq, 0, sizeof(*rq));
358
359         INIT_LIST_HEAD(&rq->queuelist);
360         rq->q = q;
361         rq->__sector = (sector_t) -1;
362         INIT_HLIST_NODE(&rq->hash);
363         RB_CLEAR_NODE(&rq->rb_node);
364         rq->tag = BLK_MQ_NO_TAG;
365         rq->internal_tag = BLK_MQ_NO_TAG;
366         rq->start_time_ns = ktime_get_ns();
367         rq->part = NULL;
368         blk_crypto_rq_set_defaults(rq);
369 }
370 EXPORT_SYMBOL(blk_rq_init);
371
372 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
373                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
374 {
375         struct blk_mq_ctx *ctx = data->ctx;
376         struct blk_mq_hw_ctx *hctx = data->hctx;
377         struct request_queue *q = data->q;
378         struct request *rq = tags->static_rqs[tag];
379
380         rq->q = q;
381         rq->mq_ctx = ctx;
382         rq->mq_hctx = hctx;
383         rq->cmd_flags = data->cmd_flags;
384
385         if (data->flags & BLK_MQ_REQ_PM)
386                 data->rq_flags |= RQF_PM;
387         if (blk_queue_io_stat(q))
388                 data->rq_flags |= RQF_IO_STAT;
389         rq->rq_flags = data->rq_flags;
390
391         if (!(data->rq_flags & RQF_ELV)) {
392                 rq->tag = tag;
393                 rq->internal_tag = BLK_MQ_NO_TAG;
394         } else {
395                 rq->tag = BLK_MQ_NO_TAG;
396                 rq->internal_tag = tag;
397         }
398         rq->timeout = 0;
399
400         if (blk_mq_need_time_stamp(rq))
401                 rq->start_time_ns = ktime_get_ns();
402         else
403                 rq->start_time_ns = 0;
404         rq->part = NULL;
405 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
406         rq->alloc_time_ns = alloc_time_ns;
407 #endif
408         rq->io_start_time_ns = 0;
409         rq->stats_sectors = 0;
410         rq->nr_phys_segments = 0;
411 #if defined(CONFIG_BLK_DEV_INTEGRITY)
412         rq->nr_integrity_segments = 0;
413 #endif
414         rq->end_io = NULL;
415         rq->end_io_data = NULL;
416
417         blk_crypto_rq_set_defaults(rq);
418         INIT_LIST_HEAD(&rq->queuelist);
419         /* tag was already set */
420         WRITE_ONCE(rq->deadline, 0);
421         req_ref_set(rq, 1);
422
423         if (rq->rq_flags & RQF_ELV) {
424                 struct elevator_queue *e = data->q->elevator;
425
426                 INIT_HLIST_NODE(&rq->hash);
427                 RB_CLEAR_NODE(&rq->rb_node);
428
429                 if (!op_is_flush(data->cmd_flags) &&
430                     e->type->ops.prepare_request) {
431                         e->type->ops.prepare_request(rq);
432                         rq->rq_flags |= RQF_ELVPRIV;
433                 }
434         }
435
436         return rq;
437 }
438
439 static inline struct request *
440 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
441                 u64 alloc_time_ns)
442 {
443         unsigned int tag, tag_offset;
444         struct blk_mq_tags *tags;
445         struct request *rq;
446         unsigned long tag_mask;
447         int i, nr = 0;
448
449         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
450         if (unlikely(!tag_mask))
451                 return NULL;
452
453         tags = blk_mq_tags_from_data(data);
454         for (i = 0; tag_mask; i++) {
455                 if (!(tag_mask & (1UL << i)))
456                         continue;
457                 tag = tag_offset + i;
458                 prefetch(tags->static_rqs[tag]);
459                 tag_mask &= ~(1UL << i);
460                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
461                 rq_list_add(data->cached_rq, rq);
462                 nr++;
463         }
464         /* caller already holds a reference, add for remainder */
465         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
466         data->nr_tags -= nr;
467
468         return rq_list_pop(data->cached_rq);
469 }
470
471 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
472 {
473         struct request_queue *q = data->q;
474         u64 alloc_time_ns = 0;
475         struct request *rq;
476         unsigned int tag;
477
478         /* alloc_time includes depth and tag waits */
479         if (blk_queue_rq_alloc_time(q))
480                 alloc_time_ns = ktime_get_ns();
481
482         if (data->cmd_flags & REQ_NOWAIT)
483                 data->flags |= BLK_MQ_REQ_NOWAIT;
484
485         if (q->elevator) {
486                 struct elevator_queue *e = q->elevator;
487
488                 data->rq_flags |= RQF_ELV;
489
490                 /*
491                  * Flush/passthrough requests are special and go directly to the
492                  * dispatch list. Don't include reserved tags in the
493                  * limiting, as it isn't useful.
494                  */
495                 if (!op_is_flush(data->cmd_flags) &&
496                     !blk_op_is_passthrough(data->cmd_flags) &&
497                     e->type->ops.limit_depth &&
498                     !(data->flags & BLK_MQ_REQ_RESERVED))
499                         e->type->ops.limit_depth(data->cmd_flags, data);
500         }
501
502 retry:
503         data->ctx = blk_mq_get_ctx(q);
504         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
505         if (!(data->rq_flags & RQF_ELV))
506                 blk_mq_tag_busy(data->hctx);
507
508         if (data->flags & BLK_MQ_REQ_RESERVED)
509                 data->rq_flags |= RQF_RESV;
510
511         /*
512          * Try batched alloc if we want more than 1 tag.
513          */
514         if (data->nr_tags > 1) {
515                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
516                 if (rq)
517                         return rq;
518                 data->nr_tags = 1;
519         }
520
521         /*
522          * Waiting allocations only fail because of an inactive hctx.  In that
523          * case just retry the hctx assignment and tag allocation as CPU hotplug
524          * should have migrated us to an online CPU by now.
525          */
526         tag = blk_mq_get_tag(data);
527         if (tag == BLK_MQ_NO_TAG) {
528                 if (data->flags & BLK_MQ_REQ_NOWAIT)
529                         return NULL;
530                 /*
531                  * Give up the CPU and sleep for a random short time to
532                  * ensure that thread using a realtime scheduling class
533                  * are migrated off the CPU, and thus off the hctx that
534                  * is going away.
535                  */
536                 msleep(3);
537                 goto retry;
538         }
539
540         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
541                                         alloc_time_ns);
542 }
543
544 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
545                                             struct blk_plug *plug,
546                                             blk_opf_t opf,
547                                             blk_mq_req_flags_t flags)
548 {
549         struct blk_mq_alloc_data data = {
550                 .q              = q,
551                 .flags          = flags,
552                 .cmd_flags      = opf,
553                 .nr_tags        = plug->nr_ios,
554                 .cached_rq      = &plug->cached_rq,
555         };
556         struct request *rq;
557
558         if (blk_queue_enter(q, flags))
559                 return NULL;
560
561         plug->nr_ios = 1;
562
563         rq = __blk_mq_alloc_requests(&data);
564         if (unlikely(!rq))
565                 blk_queue_exit(q);
566         return rq;
567 }
568
569 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
570                                                    blk_opf_t opf,
571                                                    blk_mq_req_flags_t flags)
572 {
573         struct blk_plug *plug = current->plug;
574         struct request *rq;
575
576         if (!plug)
577                 return NULL;
578
579         if (rq_list_empty(plug->cached_rq)) {
580                 if (plug->nr_ios == 1)
581                         return NULL;
582                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
583                 if (!rq)
584                         return NULL;
585         } else {
586                 rq = rq_list_peek(&plug->cached_rq);
587                 if (!rq || rq->q != q)
588                         return NULL;
589
590                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
591                         return NULL;
592                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
593                         return NULL;
594
595                 plug->cached_rq = rq_list_next(rq);
596         }
597
598         rq->cmd_flags = opf;
599         INIT_LIST_HEAD(&rq->queuelist);
600         return rq;
601 }
602
603 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
604                 blk_mq_req_flags_t flags)
605 {
606         struct request *rq;
607
608         rq = blk_mq_alloc_cached_request(q, opf, flags);
609         if (!rq) {
610                 struct blk_mq_alloc_data data = {
611                         .q              = q,
612                         .flags          = flags,
613                         .cmd_flags      = opf,
614                         .nr_tags        = 1,
615                 };
616                 int ret;
617
618                 ret = blk_queue_enter(q, flags);
619                 if (ret)
620                         return ERR_PTR(ret);
621
622                 rq = __blk_mq_alloc_requests(&data);
623                 if (!rq)
624                         goto out_queue_exit;
625         }
626         rq->__data_len = 0;
627         rq->__sector = (sector_t) -1;
628         rq->bio = rq->biotail = NULL;
629         return rq;
630 out_queue_exit:
631         blk_queue_exit(q);
632         return ERR_PTR(-EWOULDBLOCK);
633 }
634 EXPORT_SYMBOL(blk_mq_alloc_request);
635
636 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
637         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
638 {
639         struct blk_mq_alloc_data data = {
640                 .q              = q,
641                 .flags          = flags,
642                 .cmd_flags      = opf,
643                 .nr_tags        = 1,
644         };
645         u64 alloc_time_ns = 0;
646         struct request *rq;
647         unsigned int cpu;
648         unsigned int tag;
649         int ret;
650
651         /* alloc_time includes depth and tag waits */
652         if (blk_queue_rq_alloc_time(q))
653                 alloc_time_ns = ktime_get_ns();
654
655         /*
656          * If the tag allocator sleeps we could get an allocation for a
657          * different hardware context.  No need to complicate the low level
658          * allocator for this for the rare use case of a command tied to
659          * a specific queue.
660          */
661         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
662                 return ERR_PTR(-EINVAL);
663
664         if (hctx_idx >= q->nr_hw_queues)
665                 return ERR_PTR(-EIO);
666
667         ret = blk_queue_enter(q, flags);
668         if (ret)
669                 return ERR_PTR(ret);
670
671         /*
672          * Check if the hardware context is actually mapped to anything.
673          * If not tell the caller that it should skip this queue.
674          */
675         ret = -EXDEV;
676         data.hctx = xa_load(&q->hctx_table, hctx_idx);
677         if (!blk_mq_hw_queue_mapped(data.hctx))
678                 goto out_queue_exit;
679         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
680         if (cpu >= nr_cpu_ids)
681                 goto out_queue_exit;
682         data.ctx = __blk_mq_get_ctx(q, cpu);
683
684         if (!q->elevator)
685                 blk_mq_tag_busy(data.hctx);
686         else
687                 data.rq_flags |= RQF_ELV;
688
689         if (flags & BLK_MQ_REQ_RESERVED)
690                 data.rq_flags |= RQF_RESV;
691
692         ret = -EWOULDBLOCK;
693         tag = blk_mq_get_tag(&data);
694         if (tag == BLK_MQ_NO_TAG)
695                 goto out_queue_exit;
696         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
697                                         alloc_time_ns);
698         rq->__data_len = 0;
699         rq->__sector = (sector_t) -1;
700         rq->bio = rq->biotail = NULL;
701         return rq;
702
703 out_queue_exit:
704         blk_queue_exit(q);
705         return ERR_PTR(ret);
706 }
707 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
708
709 static void __blk_mq_free_request(struct request *rq)
710 {
711         struct request_queue *q = rq->q;
712         struct blk_mq_ctx *ctx = rq->mq_ctx;
713         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
714         const int sched_tag = rq->internal_tag;
715
716         blk_crypto_free_request(rq);
717         blk_pm_mark_last_busy(rq);
718         rq->mq_hctx = NULL;
719         if (rq->tag != BLK_MQ_NO_TAG)
720                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
721         if (sched_tag != BLK_MQ_NO_TAG)
722                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
723         blk_mq_sched_restart(hctx);
724         blk_queue_exit(q);
725 }
726
727 void blk_mq_free_request(struct request *rq)
728 {
729         struct request_queue *q = rq->q;
730         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
731
732         if ((rq->rq_flags & RQF_ELVPRIV) &&
733             q->elevator->type->ops.finish_request)
734                 q->elevator->type->ops.finish_request(rq);
735
736         if (rq->rq_flags & RQF_MQ_INFLIGHT)
737                 __blk_mq_dec_active_requests(hctx);
738
739         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
740                 laptop_io_completion(q->disk->bdi);
741
742         rq_qos_done(q, rq);
743
744         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
745         if (req_ref_put_and_test(rq))
746                 __blk_mq_free_request(rq);
747 }
748 EXPORT_SYMBOL_GPL(blk_mq_free_request);
749
750 void blk_mq_free_plug_rqs(struct blk_plug *plug)
751 {
752         struct request *rq;
753
754         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
755                 blk_mq_free_request(rq);
756 }
757
758 void blk_dump_rq_flags(struct request *rq, char *msg)
759 {
760         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
761                 rq->q->disk ? rq->q->disk->disk_name : "?",
762                 (__force unsigned long long) rq->cmd_flags);
763
764         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
765                (unsigned long long)blk_rq_pos(rq),
766                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
767         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
768                rq->bio, rq->biotail, blk_rq_bytes(rq));
769 }
770 EXPORT_SYMBOL(blk_dump_rq_flags);
771
772 static void req_bio_endio(struct request *rq, struct bio *bio,
773                           unsigned int nbytes, blk_status_t error)
774 {
775         if (unlikely(error)) {
776                 bio->bi_status = error;
777         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
778                 /*
779                  * Partial zone append completions cannot be supported as the
780                  * BIO fragments may end up not being written sequentially.
781                  */
782                 if (bio->bi_iter.bi_size != nbytes)
783                         bio->bi_status = BLK_STS_IOERR;
784                 else
785                         bio->bi_iter.bi_sector = rq->__sector;
786         }
787
788         bio_advance(bio, nbytes);
789
790         if (unlikely(rq->rq_flags & RQF_QUIET))
791                 bio_set_flag(bio, BIO_QUIET);
792         /* don't actually finish bio if it's part of flush sequence */
793         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
794                 bio_endio(bio);
795 }
796
797 static void blk_account_io_completion(struct request *req, unsigned int bytes)
798 {
799         if (req->part && blk_do_io_stat(req)) {
800                 const int sgrp = op_stat_group(req_op(req));
801
802                 part_stat_lock();
803                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
804                 part_stat_unlock();
805         }
806 }
807
808 static void blk_print_req_error(struct request *req, blk_status_t status)
809 {
810         printk_ratelimited(KERN_ERR
811                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
812                 "phys_seg %u prio class %u\n",
813                 blk_status_to_str(status),
814                 req->q->disk ? req->q->disk->disk_name : "?",
815                 blk_rq_pos(req), (__force u32)req_op(req),
816                 blk_op_str(req_op(req)),
817                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
818                 req->nr_phys_segments,
819                 IOPRIO_PRIO_CLASS(req->ioprio));
820 }
821
822 /*
823  * Fully end IO on a request. Does not support partial completions, or
824  * errors.
825  */
826 static void blk_complete_request(struct request *req)
827 {
828         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
829         int total_bytes = blk_rq_bytes(req);
830         struct bio *bio = req->bio;
831
832         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
833
834         if (!bio)
835                 return;
836
837 #ifdef CONFIG_BLK_DEV_INTEGRITY
838         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
839                 req->q->integrity.profile->complete_fn(req, total_bytes);
840 #endif
841
842         blk_account_io_completion(req, total_bytes);
843
844         do {
845                 struct bio *next = bio->bi_next;
846
847                 /* Completion has already been traced */
848                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
849
850                 if (req_op(req) == REQ_OP_ZONE_APPEND)
851                         bio->bi_iter.bi_sector = req->__sector;
852
853                 if (!is_flush)
854                         bio_endio(bio);
855                 bio = next;
856         } while (bio);
857
858         /*
859          * Reset counters so that the request stacking driver
860          * can find how many bytes remain in the request
861          * later.
862          */
863         if (!req->end_io) {
864                 req->bio = NULL;
865                 req->__data_len = 0;
866         }
867 }
868
869 /**
870  * blk_update_request - Complete multiple bytes without completing the request
871  * @req:      the request being processed
872  * @error:    block status code
873  * @nr_bytes: number of bytes to complete for @req
874  *
875  * Description:
876  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
877  *     the request structure even if @req doesn't have leftover.
878  *     If @req has leftover, sets it up for the next range of segments.
879  *
880  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
881  *     %false return from this function.
882  *
883  * Note:
884  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
885  *      except in the consistency check at the end of this function.
886  *
887  * Return:
888  *     %false - this request doesn't have any more data
889  *     %true  - this request has more data
890  **/
891 bool blk_update_request(struct request *req, blk_status_t error,
892                 unsigned int nr_bytes)
893 {
894         int total_bytes;
895
896         trace_block_rq_complete(req, error, nr_bytes);
897
898         if (!req->bio)
899                 return false;
900
901 #ifdef CONFIG_BLK_DEV_INTEGRITY
902         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
903             error == BLK_STS_OK)
904                 req->q->integrity.profile->complete_fn(req, nr_bytes);
905 #endif
906
907         if (unlikely(error && !blk_rq_is_passthrough(req) &&
908                      !(req->rq_flags & RQF_QUIET)) &&
909                      !test_bit(GD_DEAD, &req->q->disk->state)) {
910                 blk_print_req_error(req, error);
911                 trace_block_rq_error(req, error, nr_bytes);
912         }
913
914         blk_account_io_completion(req, nr_bytes);
915
916         total_bytes = 0;
917         while (req->bio) {
918                 struct bio *bio = req->bio;
919                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
920
921                 if (bio_bytes == bio->bi_iter.bi_size)
922                         req->bio = bio->bi_next;
923
924                 /* Completion has already been traced */
925                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
926                 req_bio_endio(req, bio, bio_bytes, error);
927
928                 total_bytes += bio_bytes;
929                 nr_bytes -= bio_bytes;
930
931                 if (!nr_bytes)
932                         break;
933         }
934
935         /*
936          * completely done
937          */
938         if (!req->bio) {
939                 /*
940                  * Reset counters so that the request stacking driver
941                  * can find how many bytes remain in the request
942                  * later.
943                  */
944                 req->__data_len = 0;
945                 return false;
946         }
947
948         req->__data_len -= total_bytes;
949
950         /* update sector only for requests with clear definition of sector */
951         if (!blk_rq_is_passthrough(req))
952                 req->__sector += total_bytes >> 9;
953
954         /* mixed attributes always follow the first bio */
955         if (req->rq_flags & RQF_MIXED_MERGE) {
956                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
957                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
958         }
959
960         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
961                 /*
962                  * If total number of sectors is less than the first segment
963                  * size, something has gone terribly wrong.
964                  */
965                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
966                         blk_dump_rq_flags(req, "request botched");
967                         req->__data_len = blk_rq_cur_bytes(req);
968                 }
969
970                 /* recalculate the number of segments */
971                 req->nr_phys_segments = blk_recalc_rq_segments(req);
972         }
973
974         return true;
975 }
976 EXPORT_SYMBOL_GPL(blk_update_request);
977
978 static void __blk_account_io_done(struct request *req, u64 now)
979 {
980         const int sgrp = op_stat_group(req_op(req));
981
982         part_stat_lock();
983         update_io_ticks(req->part, jiffies, true);
984         part_stat_inc(req->part, ios[sgrp]);
985         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
986         part_stat_unlock();
987 }
988
989 static inline void blk_account_io_done(struct request *req, u64 now)
990 {
991         /*
992          * Account IO completion.  flush_rq isn't accounted as a
993          * normal IO on queueing nor completion.  Accounting the
994          * containing request is enough.
995          */
996         if (blk_do_io_stat(req) && req->part &&
997             !(req->rq_flags & RQF_FLUSH_SEQ))
998                 __blk_account_io_done(req, now);
999 }
1000
1001 static void __blk_account_io_start(struct request *rq)
1002 {
1003         /*
1004          * All non-passthrough requests are created from a bio with one
1005          * exception: when a flush command that is part of a flush sequence
1006          * generated by the state machine in blk-flush.c is cloned onto the
1007          * lower device by dm-multipath we can get here without a bio.
1008          */
1009         if (rq->bio)
1010                 rq->part = rq->bio->bi_bdev;
1011         else
1012                 rq->part = rq->q->disk->part0;
1013
1014         part_stat_lock();
1015         update_io_ticks(rq->part, jiffies, false);
1016         part_stat_unlock();
1017 }
1018
1019 static inline void blk_account_io_start(struct request *req)
1020 {
1021         if (blk_do_io_stat(req))
1022                 __blk_account_io_start(req);
1023 }
1024
1025 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1026 {
1027         if (rq->rq_flags & RQF_STATS) {
1028                 blk_mq_poll_stats_start(rq->q);
1029                 blk_stat_add(rq, now);
1030         }
1031
1032         blk_mq_sched_completed_request(rq, now);
1033         blk_account_io_done(rq, now);
1034 }
1035
1036 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1037 {
1038         if (blk_mq_need_time_stamp(rq))
1039                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1040
1041         if (rq->end_io) {
1042                 rq_qos_done(rq->q, rq);
1043                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1044                         blk_mq_free_request(rq);
1045         } else {
1046                 blk_mq_free_request(rq);
1047         }
1048 }
1049 EXPORT_SYMBOL(__blk_mq_end_request);
1050
1051 void blk_mq_end_request(struct request *rq, blk_status_t error)
1052 {
1053         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1054                 BUG();
1055         __blk_mq_end_request(rq, error);
1056 }
1057 EXPORT_SYMBOL(blk_mq_end_request);
1058
1059 #define TAG_COMP_BATCH          32
1060
1061 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1062                                           int *tag_array, int nr_tags)
1063 {
1064         struct request_queue *q = hctx->queue;
1065
1066         /*
1067          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1068          * update hctx->nr_active in batch
1069          */
1070         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1071                 __blk_mq_sub_active_requests(hctx, nr_tags);
1072
1073         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1074         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1075 }
1076
1077 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1078 {
1079         int tags[TAG_COMP_BATCH], nr_tags = 0;
1080         struct blk_mq_hw_ctx *cur_hctx = NULL;
1081         struct request *rq;
1082         u64 now = 0;
1083
1084         if (iob->need_ts)
1085                 now = ktime_get_ns();
1086
1087         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1088                 prefetch(rq->bio);
1089                 prefetch(rq->rq_next);
1090
1091                 blk_complete_request(rq);
1092                 if (iob->need_ts)
1093                         __blk_mq_end_request_acct(rq, now);
1094
1095                 rq_qos_done(rq->q, rq);
1096
1097                 /*
1098                  * If end_io handler returns NONE, then it still has
1099                  * ownership of the request.
1100                  */
1101                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1102                         continue;
1103
1104                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105                 if (!req_ref_put_and_test(rq))
1106                         continue;
1107
1108                 blk_crypto_free_request(rq);
1109                 blk_pm_mark_last_busy(rq);
1110
1111                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1112                         if (cur_hctx)
1113                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1114                         nr_tags = 0;
1115                         cur_hctx = rq->mq_hctx;
1116                 }
1117                 tags[nr_tags++] = rq->tag;
1118         }
1119
1120         if (nr_tags)
1121                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1122 }
1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1124
1125 static void blk_complete_reqs(struct llist_head *list)
1126 {
1127         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128         struct request *rq, *next;
1129
1130         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131                 rq->q->mq_ops->complete(rq);
1132 }
1133
1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1135 {
1136         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1137 }
1138
1139 static int blk_softirq_cpu_dead(unsigned int cpu)
1140 {
1141         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1142         return 0;
1143 }
1144
1145 static void __blk_mq_complete_request_remote(void *data)
1146 {
1147         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1148 }
1149
1150 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1151 {
1152         int cpu = raw_smp_processor_id();
1153
1154         if (!IS_ENABLED(CONFIG_SMP) ||
1155             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1156                 return false;
1157         /*
1158          * With force threaded interrupts enabled, raising softirq from an SMP
1159          * function call will always result in waking the ksoftirqd thread.
1160          * This is probably worse than completing the request on a different
1161          * cache domain.
1162          */
1163         if (force_irqthreads())
1164                 return false;
1165
1166         /* same CPU or cache domain?  Complete locally */
1167         if (cpu == rq->mq_ctx->cpu ||
1168             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1170                 return false;
1171
1172         /* don't try to IPI to an offline CPU */
1173         return cpu_online(rq->mq_ctx->cpu);
1174 }
1175
1176 static void blk_mq_complete_send_ipi(struct request *rq)
1177 {
1178         struct llist_head *list;
1179         unsigned int cpu;
1180
1181         cpu = rq->mq_ctx->cpu;
1182         list = &per_cpu(blk_cpu_done, cpu);
1183         if (llist_add(&rq->ipi_list, list)) {
1184                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1185                 smp_call_function_single_async(cpu, &rq->csd);
1186         }
1187 }
1188
1189 static void blk_mq_raise_softirq(struct request *rq)
1190 {
1191         struct llist_head *list;
1192
1193         preempt_disable();
1194         list = this_cpu_ptr(&blk_cpu_done);
1195         if (llist_add(&rq->ipi_list, list))
1196                 raise_softirq(BLOCK_SOFTIRQ);
1197         preempt_enable();
1198 }
1199
1200 bool blk_mq_complete_request_remote(struct request *rq)
1201 {
1202         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1203
1204         /*
1205          * For request which hctx has only one ctx mapping,
1206          * or a polled request, always complete locally,
1207          * it's pointless to redirect the completion.
1208          */
1209         if (rq->mq_hctx->nr_ctx == 1 ||
1210                 rq->cmd_flags & REQ_POLLED)
1211                 return false;
1212
1213         if (blk_mq_complete_need_ipi(rq)) {
1214                 blk_mq_complete_send_ipi(rq);
1215                 return true;
1216         }
1217
1218         if (rq->q->nr_hw_queues == 1) {
1219                 blk_mq_raise_softirq(rq);
1220                 return true;
1221         }
1222         return false;
1223 }
1224 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1225
1226 /**
1227  * blk_mq_complete_request - end I/O on a request
1228  * @rq:         the request being processed
1229  *
1230  * Description:
1231  *      Complete a request by scheduling the ->complete_rq operation.
1232  **/
1233 void blk_mq_complete_request(struct request *rq)
1234 {
1235         if (!blk_mq_complete_request_remote(rq))
1236                 rq->q->mq_ops->complete(rq);
1237 }
1238 EXPORT_SYMBOL(blk_mq_complete_request);
1239
1240 /**
1241  * blk_mq_start_request - Start processing a request
1242  * @rq: Pointer to request to be started
1243  *
1244  * Function used by device drivers to notify the block layer that a request
1245  * is going to be processed now, so blk layer can do proper initializations
1246  * such as starting the timeout timer.
1247  */
1248 void blk_mq_start_request(struct request *rq)
1249 {
1250         struct request_queue *q = rq->q;
1251
1252         trace_block_rq_issue(rq);
1253
1254         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1255                 rq->io_start_time_ns = ktime_get_ns();
1256                 rq->stats_sectors = blk_rq_sectors(rq);
1257                 rq->rq_flags |= RQF_STATS;
1258                 rq_qos_issue(q, rq);
1259         }
1260
1261         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1262
1263         blk_add_timer(rq);
1264         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1265
1266 #ifdef CONFIG_BLK_DEV_INTEGRITY
1267         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1268                 q->integrity.profile->prepare_fn(rq);
1269 #endif
1270         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1271                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1272 }
1273 EXPORT_SYMBOL(blk_mq_start_request);
1274
1275 /*
1276  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1277  * queues. This is important for md arrays to benefit from merging
1278  * requests.
1279  */
1280 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1281 {
1282         if (plug->multiple_queues)
1283                 return BLK_MAX_REQUEST_COUNT * 2;
1284         return BLK_MAX_REQUEST_COUNT;
1285 }
1286
1287 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1288 {
1289         struct request *last = rq_list_peek(&plug->mq_list);
1290
1291         if (!plug->rq_count) {
1292                 trace_block_plug(rq->q);
1293         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1294                    (!blk_queue_nomerges(rq->q) &&
1295                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1296                 blk_mq_flush_plug_list(plug, false);
1297                 last = NULL;
1298                 trace_block_plug(rq->q);
1299         }
1300
1301         if (!plug->multiple_queues && last && last->q != rq->q)
1302                 plug->multiple_queues = true;
1303         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1304                 plug->has_elevator = true;
1305         rq->rq_next = NULL;
1306         rq_list_add(&plug->mq_list, rq);
1307         plug->rq_count++;
1308 }
1309
1310 /**
1311  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1312  * @rq:         request to insert
1313  * @at_head:    insert request at head or tail of queue
1314  *
1315  * Description:
1316  *    Insert a fully prepared request at the back of the I/O scheduler queue
1317  *    for execution.  Don't wait for completion.
1318  *
1319  * Note:
1320  *    This function will invoke @done directly if the queue is dead.
1321  */
1322 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1323 {
1324         WARN_ON(irqs_disabled());
1325         WARN_ON(!blk_rq_is_passthrough(rq));
1326
1327         blk_account_io_start(rq);
1328
1329         /*
1330          * As plugging can be enabled for passthrough requests on a zoned
1331          * device, directly accessing the plug instead of using blk_mq_plug()
1332          * should not have any consequences.
1333          */
1334         if (current->plug)
1335                 blk_add_rq_to_plug(current->plug, rq);
1336         else
1337                 blk_mq_sched_insert_request(rq, at_head, true, false);
1338 }
1339 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1340
1341 struct blk_rq_wait {
1342         struct completion done;
1343         blk_status_t ret;
1344 };
1345
1346 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1347 {
1348         struct blk_rq_wait *wait = rq->end_io_data;
1349
1350         wait->ret = ret;
1351         complete(&wait->done);
1352         return RQ_END_IO_NONE;
1353 }
1354
1355 bool blk_rq_is_poll(struct request *rq)
1356 {
1357         if (!rq->mq_hctx)
1358                 return false;
1359         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1360                 return false;
1361         if (WARN_ON_ONCE(!rq->bio))
1362                 return false;
1363         return true;
1364 }
1365 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1366
1367 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1368 {
1369         do {
1370                 bio_poll(rq->bio, NULL, 0);
1371                 cond_resched();
1372         } while (!completion_done(wait));
1373 }
1374
1375 /**
1376  * blk_execute_rq - insert a request into queue for execution
1377  * @rq:         request to insert
1378  * @at_head:    insert request at head or tail of queue
1379  *
1380  * Description:
1381  *    Insert a fully prepared request at the back of the I/O scheduler queue
1382  *    for execution and wait for completion.
1383  * Return: The blk_status_t result provided to blk_mq_end_request().
1384  */
1385 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1386 {
1387         struct blk_rq_wait wait = {
1388                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1389         };
1390
1391         WARN_ON(irqs_disabled());
1392         WARN_ON(!blk_rq_is_passthrough(rq));
1393
1394         rq->end_io_data = &wait;
1395         rq->end_io = blk_end_sync_rq;
1396
1397         blk_account_io_start(rq);
1398         blk_mq_sched_insert_request(rq, at_head, true, false);
1399
1400         if (blk_rq_is_poll(rq)) {
1401                 blk_rq_poll_completion(rq, &wait.done);
1402         } else {
1403                 /*
1404                  * Prevent hang_check timer from firing at us during very long
1405                  * I/O
1406                  */
1407                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1408
1409                 if (hang_check)
1410                         while (!wait_for_completion_io_timeout(&wait.done,
1411                                         hang_check * (HZ/2)))
1412                                 ;
1413                 else
1414                         wait_for_completion_io(&wait.done);
1415         }
1416
1417         return wait.ret;
1418 }
1419 EXPORT_SYMBOL(blk_execute_rq);
1420
1421 static void __blk_mq_requeue_request(struct request *rq)
1422 {
1423         struct request_queue *q = rq->q;
1424
1425         blk_mq_put_driver_tag(rq);
1426
1427         trace_block_rq_requeue(rq);
1428         rq_qos_requeue(q, rq);
1429
1430         if (blk_mq_request_started(rq)) {
1431                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1432                 rq->rq_flags &= ~RQF_TIMED_OUT;
1433         }
1434 }
1435
1436 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1437 {
1438         __blk_mq_requeue_request(rq);
1439
1440         /* this request will be re-inserted to io scheduler queue */
1441         blk_mq_sched_requeue_request(rq);
1442
1443         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1444 }
1445 EXPORT_SYMBOL(blk_mq_requeue_request);
1446
1447 static void blk_mq_requeue_work(struct work_struct *work)
1448 {
1449         struct request_queue *q =
1450                 container_of(work, struct request_queue, requeue_work.work);
1451         LIST_HEAD(rq_list);
1452         struct request *rq, *next;
1453
1454         spin_lock_irq(&q->requeue_lock);
1455         list_splice_init(&q->requeue_list, &rq_list);
1456         spin_unlock_irq(&q->requeue_lock);
1457
1458         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1459                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1460                         continue;
1461
1462                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1463                 list_del_init(&rq->queuelist);
1464                 /*
1465                  * If RQF_DONTPREP, rq has contained some driver specific
1466                  * data, so insert it to hctx dispatch list to avoid any
1467                  * merge.
1468                  */
1469                 if (rq->rq_flags & RQF_DONTPREP)
1470                         blk_mq_request_bypass_insert(rq, false, false);
1471                 else
1472                         blk_mq_sched_insert_request(rq, true, false, false);
1473         }
1474
1475         while (!list_empty(&rq_list)) {
1476                 rq = list_entry(rq_list.next, struct request, queuelist);
1477                 list_del_init(&rq->queuelist);
1478                 blk_mq_sched_insert_request(rq, false, false, false);
1479         }
1480
1481         blk_mq_run_hw_queues(q, false);
1482 }
1483
1484 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1485                                 bool kick_requeue_list)
1486 {
1487         struct request_queue *q = rq->q;
1488         unsigned long flags;
1489
1490         /*
1491          * We abuse this flag that is otherwise used by the I/O scheduler to
1492          * request head insertion from the workqueue.
1493          */
1494         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1495
1496         spin_lock_irqsave(&q->requeue_lock, flags);
1497         if (at_head) {
1498                 rq->rq_flags |= RQF_SOFTBARRIER;
1499                 list_add(&rq->queuelist, &q->requeue_list);
1500         } else {
1501                 list_add_tail(&rq->queuelist, &q->requeue_list);
1502         }
1503         spin_unlock_irqrestore(&q->requeue_lock, flags);
1504
1505         if (kick_requeue_list)
1506                 blk_mq_kick_requeue_list(q);
1507 }
1508
1509 void blk_mq_kick_requeue_list(struct request_queue *q)
1510 {
1511         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1512 }
1513 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1514
1515 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1516                                     unsigned long msecs)
1517 {
1518         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1519                                     msecs_to_jiffies(msecs));
1520 }
1521 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1522
1523 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1524 {
1525         /*
1526          * If we find a request that isn't idle we know the queue is busy
1527          * as it's checked in the iter.
1528          * Return false to stop the iteration.
1529          */
1530         if (blk_mq_request_started(rq)) {
1531                 bool *busy = priv;
1532
1533                 *busy = true;
1534                 return false;
1535         }
1536
1537         return true;
1538 }
1539
1540 bool blk_mq_queue_inflight(struct request_queue *q)
1541 {
1542         bool busy = false;
1543
1544         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1545         return busy;
1546 }
1547 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1548
1549 static void blk_mq_rq_timed_out(struct request *req)
1550 {
1551         req->rq_flags |= RQF_TIMED_OUT;
1552         if (req->q->mq_ops->timeout) {
1553                 enum blk_eh_timer_return ret;
1554
1555                 ret = req->q->mq_ops->timeout(req);
1556                 if (ret == BLK_EH_DONE)
1557                         return;
1558                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1559         }
1560
1561         blk_add_timer(req);
1562 }
1563
1564 struct blk_expired_data {
1565         bool has_timedout_rq;
1566         unsigned long next;
1567         unsigned long timeout_start;
1568 };
1569
1570 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1571 {
1572         unsigned long deadline;
1573
1574         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1575                 return false;
1576         if (rq->rq_flags & RQF_TIMED_OUT)
1577                 return false;
1578
1579         deadline = READ_ONCE(rq->deadline);
1580         if (time_after_eq(expired->timeout_start, deadline))
1581                 return true;
1582
1583         if (expired->next == 0)
1584                 expired->next = deadline;
1585         else if (time_after(expired->next, deadline))
1586                 expired->next = deadline;
1587         return false;
1588 }
1589
1590 void blk_mq_put_rq_ref(struct request *rq)
1591 {
1592         if (is_flush_rq(rq)) {
1593                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1594                         blk_mq_free_request(rq);
1595         } else if (req_ref_put_and_test(rq)) {
1596                 __blk_mq_free_request(rq);
1597         }
1598 }
1599
1600 static bool blk_mq_check_expired(struct request *rq, void *priv)
1601 {
1602         struct blk_expired_data *expired = priv;
1603
1604         /*
1605          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1606          * be reallocated underneath the timeout handler's processing, then
1607          * the expire check is reliable. If the request is not expired, then
1608          * it was completed and reallocated as a new request after returning
1609          * from blk_mq_check_expired().
1610          */
1611         if (blk_mq_req_expired(rq, expired)) {
1612                 expired->has_timedout_rq = true;
1613                 return false;
1614         }
1615         return true;
1616 }
1617
1618 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1619 {
1620         struct blk_expired_data *expired = priv;
1621
1622         if (blk_mq_req_expired(rq, expired))
1623                 blk_mq_rq_timed_out(rq);
1624         return true;
1625 }
1626
1627 static void blk_mq_timeout_work(struct work_struct *work)
1628 {
1629         struct request_queue *q =
1630                 container_of(work, struct request_queue, timeout_work);
1631         struct blk_expired_data expired = {
1632                 .timeout_start = jiffies,
1633         };
1634         struct blk_mq_hw_ctx *hctx;
1635         unsigned long i;
1636
1637         /* A deadlock might occur if a request is stuck requiring a
1638          * timeout at the same time a queue freeze is waiting
1639          * completion, since the timeout code would not be able to
1640          * acquire the queue reference here.
1641          *
1642          * That's why we don't use blk_queue_enter here; instead, we use
1643          * percpu_ref_tryget directly, because we need to be able to
1644          * obtain a reference even in the short window between the queue
1645          * starting to freeze, by dropping the first reference in
1646          * blk_freeze_queue_start, and the moment the last request is
1647          * consumed, marked by the instant q_usage_counter reaches
1648          * zero.
1649          */
1650         if (!percpu_ref_tryget(&q->q_usage_counter))
1651                 return;
1652
1653         /* check if there is any timed-out request */
1654         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1655         if (expired.has_timedout_rq) {
1656                 /*
1657                  * Before walking tags, we must ensure any submit started
1658                  * before the current time has finished. Since the submit
1659                  * uses srcu or rcu, wait for a synchronization point to
1660                  * ensure all running submits have finished
1661                  */
1662                 blk_mq_wait_quiesce_done(q->tag_set);
1663
1664                 expired.next = 0;
1665                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1666         }
1667
1668         if (expired.next != 0) {
1669                 mod_timer(&q->timeout, expired.next);
1670         } else {
1671                 /*
1672                  * Request timeouts are handled as a forward rolling timer. If
1673                  * we end up here it means that no requests are pending and
1674                  * also that no request has been pending for a while. Mark
1675                  * each hctx as idle.
1676                  */
1677                 queue_for_each_hw_ctx(q, hctx, i) {
1678                         /* the hctx may be unmapped, so check it here */
1679                         if (blk_mq_hw_queue_mapped(hctx))
1680                                 blk_mq_tag_idle(hctx);
1681                 }
1682         }
1683         blk_queue_exit(q);
1684 }
1685
1686 struct flush_busy_ctx_data {
1687         struct blk_mq_hw_ctx *hctx;
1688         struct list_head *list;
1689 };
1690
1691 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1692 {
1693         struct flush_busy_ctx_data *flush_data = data;
1694         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1695         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1696         enum hctx_type type = hctx->type;
1697
1698         spin_lock(&ctx->lock);
1699         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1700         sbitmap_clear_bit(sb, bitnr);
1701         spin_unlock(&ctx->lock);
1702         return true;
1703 }
1704
1705 /*
1706  * Process software queues that have been marked busy, splicing them
1707  * to the for-dispatch
1708  */
1709 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1710 {
1711         struct flush_busy_ctx_data data = {
1712                 .hctx = hctx,
1713                 .list = list,
1714         };
1715
1716         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1717 }
1718 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1719
1720 struct dispatch_rq_data {
1721         struct blk_mq_hw_ctx *hctx;
1722         struct request *rq;
1723 };
1724
1725 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1726                 void *data)
1727 {
1728         struct dispatch_rq_data *dispatch_data = data;
1729         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1730         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1731         enum hctx_type type = hctx->type;
1732
1733         spin_lock(&ctx->lock);
1734         if (!list_empty(&ctx->rq_lists[type])) {
1735                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1736                 list_del_init(&dispatch_data->rq->queuelist);
1737                 if (list_empty(&ctx->rq_lists[type]))
1738                         sbitmap_clear_bit(sb, bitnr);
1739         }
1740         spin_unlock(&ctx->lock);
1741
1742         return !dispatch_data->rq;
1743 }
1744
1745 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1746                                         struct blk_mq_ctx *start)
1747 {
1748         unsigned off = start ? start->index_hw[hctx->type] : 0;
1749         struct dispatch_rq_data data = {
1750                 .hctx = hctx,
1751                 .rq   = NULL,
1752         };
1753
1754         __sbitmap_for_each_set(&hctx->ctx_map, off,
1755                                dispatch_rq_from_ctx, &data);
1756
1757         return data.rq;
1758 }
1759
1760 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1761 {
1762         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1763         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1764         int tag;
1765
1766         blk_mq_tag_busy(rq->mq_hctx);
1767
1768         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1769                 bt = &rq->mq_hctx->tags->breserved_tags;
1770                 tag_offset = 0;
1771         } else {
1772                 if (!hctx_may_queue(rq->mq_hctx, bt))
1773                         return false;
1774         }
1775
1776         tag = __sbitmap_queue_get(bt);
1777         if (tag == BLK_MQ_NO_TAG)
1778                 return false;
1779
1780         rq->tag = tag + tag_offset;
1781         return true;
1782 }
1783
1784 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1785 {
1786         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1787                 return false;
1788
1789         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1790                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1791                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1792                 __blk_mq_inc_active_requests(hctx);
1793         }
1794         hctx->tags->rqs[rq->tag] = rq;
1795         return true;
1796 }
1797
1798 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1799                                 int flags, void *key)
1800 {
1801         struct blk_mq_hw_ctx *hctx;
1802
1803         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1804
1805         spin_lock(&hctx->dispatch_wait_lock);
1806         if (!list_empty(&wait->entry)) {
1807                 struct sbitmap_queue *sbq;
1808
1809                 list_del_init(&wait->entry);
1810                 sbq = &hctx->tags->bitmap_tags;
1811                 atomic_dec(&sbq->ws_active);
1812         }
1813         spin_unlock(&hctx->dispatch_wait_lock);
1814
1815         blk_mq_run_hw_queue(hctx, true);
1816         return 1;
1817 }
1818
1819 /*
1820  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1821  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1822  * restart. For both cases, take care to check the condition again after
1823  * marking us as waiting.
1824  */
1825 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1826                                  struct request *rq)
1827 {
1828         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1829         struct wait_queue_head *wq;
1830         wait_queue_entry_t *wait;
1831         bool ret;
1832
1833         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1834                 blk_mq_sched_mark_restart_hctx(hctx);
1835
1836                 /*
1837                  * It's possible that a tag was freed in the window between the
1838                  * allocation failure and adding the hardware queue to the wait
1839                  * queue.
1840                  *
1841                  * Don't clear RESTART here, someone else could have set it.
1842                  * At most this will cost an extra queue run.
1843                  */
1844                 return blk_mq_get_driver_tag(rq);
1845         }
1846
1847         wait = &hctx->dispatch_wait;
1848         if (!list_empty_careful(&wait->entry))
1849                 return false;
1850
1851         wq = &bt_wait_ptr(sbq, hctx)->wait;
1852
1853         spin_lock_irq(&wq->lock);
1854         spin_lock(&hctx->dispatch_wait_lock);
1855         if (!list_empty(&wait->entry)) {
1856                 spin_unlock(&hctx->dispatch_wait_lock);
1857                 spin_unlock_irq(&wq->lock);
1858                 return false;
1859         }
1860
1861         atomic_inc(&sbq->ws_active);
1862         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1863         __add_wait_queue(wq, wait);
1864
1865         /*
1866          * It's possible that a tag was freed in the window between the
1867          * allocation failure and adding the hardware queue to the wait
1868          * queue.
1869          */
1870         ret = blk_mq_get_driver_tag(rq);
1871         if (!ret) {
1872                 spin_unlock(&hctx->dispatch_wait_lock);
1873                 spin_unlock_irq(&wq->lock);
1874                 return false;
1875         }
1876
1877         /*
1878          * We got a tag, remove ourselves from the wait queue to ensure
1879          * someone else gets the wakeup.
1880          */
1881         list_del_init(&wait->entry);
1882         atomic_dec(&sbq->ws_active);
1883         spin_unlock(&hctx->dispatch_wait_lock);
1884         spin_unlock_irq(&wq->lock);
1885
1886         return true;
1887 }
1888
1889 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1890 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1891 /*
1892  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1893  * - EWMA is one simple way to compute running average value
1894  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1895  * - take 4 as factor for avoiding to get too small(0) result, and this
1896  *   factor doesn't matter because EWMA decreases exponentially
1897  */
1898 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1899 {
1900         unsigned int ewma;
1901
1902         ewma = hctx->dispatch_busy;
1903
1904         if (!ewma && !busy)
1905                 return;
1906
1907         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1908         if (busy)
1909                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1910         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1911
1912         hctx->dispatch_busy = ewma;
1913 }
1914
1915 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1916
1917 static void blk_mq_handle_dev_resource(struct request *rq,
1918                                        struct list_head *list)
1919 {
1920         struct request *next =
1921                 list_first_entry_or_null(list, struct request, queuelist);
1922
1923         /*
1924          * If an I/O scheduler has been configured and we got a driver tag for
1925          * the next request already, free it.
1926          */
1927         if (next)
1928                 blk_mq_put_driver_tag(next);
1929
1930         list_add(&rq->queuelist, list);
1931         __blk_mq_requeue_request(rq);
1932 }
1933
1934 static void blk_mq_handle_zone_resource(struct request *rq,
1935                                         struct list_head *zone_list)
1936 {
1937         /*
1938          * If we end up here it is because we cannot dispatch a request to a
1939          * specific zone due to LLD level zone-write locking or other zone
1940          * related resource not being available. In this case, set the request
1941          * aside in zone_list for retrying it later.
1942          */
1943         list_add(&rq->queuelist, zone_list);
1944         __blk_mq_requeue_request(rq);
1945 }
1946
1947 enum prep_dispatch {
1948         PREP_DISPATCH_OK,
1949         PREP_DISPATCH_NO_TAG,
1950         PREP_DISPATCH_NO_BUDGET,
1951 };
1952
1953 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1954                                                   bool need_budget)
1955 {
1956         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1957         int budget_token = -1;
1958
1959         if (need_budget) {
1960                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1961                 if (budget_token < 0) {
1962                         blk_mq_put_driver_tag(rq);
1963                         return PREP_DISPATCH_NO_BUDGET;
1964                 }
1965                 blk_mq_set_rq_budget_token(rq, budget_token);
1966         }
1967
1968         if (!blk_mq_get_driver_tag(rq)) {
1969                 /*
1970                  * The initial allocation attempt failed, so we need to
1971                  * rerun the hardware queue when a tag is freed. The
1972                  * waitqueue takes care of that. If the queue is run
1973                  * before we add this entry back on the dispatch list,
1974                  * we'll re-run it below.
1975                  */
1976                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1977                         /*
1978                          * All budgets not got from this function will be put
1979                          * together during handling partial dispatch
1980                          */
1981                         if (need_budget)
1982                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1983                         return PREP_DISPATCH_NO_TAG;
1984                 }
1985         }
1986
1987         return PREP_DISPATCH_OK;
1988 }
1989
1990 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1991 static void blk_mq_release_budgets(struct request_queue *q,
1992                 struct list_head *list)
1993 {
1994         struct request *rq;
1995
1996         list_for_each_entry(rq, list, queuelist) {
1997                 int budget_token = blk_mq_get_rq_budget_token(rq);
1998
1999                 if (budget_token >= 0)
2000                         blk_mq_put_dispatch_budget(q, budget_token);
2001         }
2002 }
2003
2004 /*
2005  * Returns true if we did some work AND can potentially do more.
2006  */
2007 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2008                              unsigned int nr_budgets)
2009 {
2010         enum prep_dispatch prep;
2011         struct request_queue *q = hctx->queue;
2012         struct request *rq, *nxt;
2013         int errors, queued;
2014         blk_status_t ret = BLK_STS_OK;
2015         LIST_HEAD(zone_list);
2016         bool needs_resource = false;
2017
2018         if (list_empty(list))
2019                 return false;
2020
2021         /*
2022          * Now process all the entries, sending them to the driver.
2023          */
2024         errors = queued = 0;
2025         do {
2026                 struct blk_mq_queue_data bd;
2027
2028                 rq = list_first_entry(list, struct request, queuelist);
2029
2030                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2031                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2032                 if (prep != PREP_DISPATCH_OK)
2033                         break;
2034
2035                 list_del_init(&rq->queuelist);
2036
2037                 bd.rq = rq;
2038
2039                 /*
2040                  * Flag last if we have no more requests, or if we have more
2041                  * but can't assign a driver tag to it.
2042                  */
2043                 if (list_empty(list))
2044                         bd.last = true;
2045                 else {
2046                         nxt = list_first_entry(list, struct request, queuelist);
2047                         bd.last = !blk_mq_get_driver_tag(nxt);
2048                 }
2049
2050                 /*
2051                  * once the request is queued to lld, no need to cover the
2052                  * budget any more
2053                  */
2054                 if (nr_budgets)
2055                         nr_budgets--;
2056                 ret = q->mq_ops->queue_rq(hctx, &bd);
2057                 switch (ret) {
2058                 case BLK_STS_OK:
2059                         queued++;
2060                         break;
2061                 case BLK_STS_RESOURCE:
2062                         needs_resource = true;
2063                         fallthrough;
2064                 case BLK_STS_DEV_RESOURCE:
2065                         blk_mq_handle_dev_resource(rq, list);
2066                         goto out;
2067                 case BLK_STS_ZONE_RESOURCE:
2068                         /*
2069                          * Move the request to zone_list and keep going through
2070                          * the dispatch list to find more requests the drive can
2071                          * accept.
2072                          */
2073                         blk_mq_handle_zone_resource(rq, &zone_list);
2074                         needs_resource = true;
2075                         break;
2076                 default:
2077                         errors++;
2078                         blk_mq_end_request(rq, ret);
2079                 }
2080         } while (!list_empty(list));
2081 out:
2082         if (!list_empty(&zone_list))
2083                 list_splice_tail_init(&zone_list, list);
2084
2085         /* If we didn't flush the entire list, we could have told the driver
2086          * there was more coming, but that turned out to be a lie.
2087          */
2088         if ((!list_empty(list) || errors || needs_resource ||
2089              ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
2090                 q->mq_ops->commit_rqs(hctx);
2091         /*
2092          * Any items that need requeuing? Stuff them into hctx->dispatch,
2093          * that is where we will continue on next queue run.
2094          */
2095         if (!list_empty(list)) {
2096                 bool needs_restart;
2097                 /* For non-shared tags, the RESTART check will suffice */
2098                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2099                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
2100
2101                 if (nr_budgets)
2102                         blk_mq_release_budgets(q, list);
2103
2104                 spin_lock(&hctx->lock);
2105                 list_splice_tail_init(list, &hctx->dispatch);
2106                 spin_unlock(&hctx->lock);
2107
2108                 /*
2109                  * Order adding requests to hctx->dispatch and checking
2110                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2111                  * in blk_mq_sched_restart(). Avoid restart code path to
2112                  * miss the new added requests to hctx->dispatch, meantime
2113                  * SCHED_RESTART is observed here.
2114                  */
2115                 smp_mb();
2116
2117                 /*
2118                  * If SCHED_RESTART was set by the caller of this function and
2119                  * it is no longer set that means that it was cleared by another
2120                  * thread and hence that a queue rerun is needed.
2121                  *
2122                  * If 'no_tag' is set, that means that we failed getting
2123                  * a driver tag with an I/O scheduler attached. If our dispatch
2124                  * waitqueue is no longer active, ensure that we run the queue
2125                  * AFTER adding our entries back to the list.
2126                  *
2127                  * If no I/O scheduler has been configured it is possible that
2128                  * the hardware queue got stopped and restarted before requests
2129                  * were pushed back onto the dispatch list. Rerun the queue to
2130                  * avoid starvation. Notes:
2131                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2132                  *   been stopped before rerunning a queue.
2133                  * - Some but not all block drivers stop a queue before
2134                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2135                  *   and dm-rq.
2136                  *
2137                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2138                  * bit is set, run queue after a delay to avoid IO stalls
2139                  * that could otherwise occur if the queue is idle.  We'll do
2140                  * similar if we couldn't get budget or couldn't lock a zone
2141                  * and SCHED_RESTART is set.
2142                  */
2143                 needs_restart = blk_mq_sched_needs_restart(hctx);
2144                 if (prep == PREP_DISPATCH_NO_BUDGET)
2145                         needs_resource = true;
2146                 if (!needs_restart ||
2147                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2148                         blk_mq_run_hw_queue(hctx, true);
2149                 else if (needs_resource)
2150                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2151
2152                 blk_mq_update_dispatch_busy(hctx, true);
2153                 return false;
2154         } else
2155                 blk_mq_update_dispatch_busy(hctx, false);
2156
2157         return (queued + errors) != 0;
2158 }
2159
2160 /**
2161  * __blk_mq_run_hw_queue - Run a hardware queue.
2162  * @hctx: Pointer to the hardware queue to run.
2163  *
2164  * Send pending requests to the hardware.
2165  */
2166 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2167 {
2168         /*
2169          * We can't run the queue inline with ints disabled. Ensure that
2170          * we catch bad users of this early.
2171          */
2172         WARN_ON_ONCE(in_interrupt());
2173
2174         blk_mq_run_dispatch_ops(hctx->queue,
2175                         blk_mq_sched_dispatch_requests(hctx));
2176 }
2177
2178 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2179 {
2180         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2181
2182         if (cpu >= nr_cpu_ids)
2183                 cpu = cpumask_first(hctx->cpumask);
2184         return cpu;
2185 }
2186
2187 /*
2188  * It'd be great if the workqueue API had a way to pass
2189  * in a mask and had some smarts for more clever placement.
2190  * For now we just round-robin here, switching for every
2191  * BLK_MQ_CPU_WORK_BATCH queued items.
2192  */
2193 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2194 {
2195         bool tried = false;
2196         int next_cpu = hctx->next_cpu;
2197
2198         if (hctx->queue->nr_hw_queues == 1)
2199                 return WORK_CPU_UNBOUND;
2200
2201         if (--hctx->next_cpu_batch <= 0) {
2202 select_cpu:
2203                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2204                                 cpu_online_mask);
2205                 if (next_cpu >= nr_cpu_ids)
2206                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2207                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2208         }
2209
2210         /*
2211          * Do unbound schedule if we can't find a online CPU for this hctx,
2212          * and it should only happen in the path of handling CPU DEAD.
2213          */
2214         if (!cpu_online(next_cpu)) {
2215                 if (!tried) {
2216                         tried = true;
2217                         goto select_cpu;
2218                 }
2219
2220                 /*
2221                  * Make sure to re-select CPU next time once after CPUs
2222                  * in hctx->cpumask become online again.
2223                  */
2224                 hctx->next_cpu = next_cpu;
2225                 hctx->next_cpu_batch = 1;
2226                 return WORK_CPU_UNBOUND;
2227         }
2228
2229         hctx->next_cpu = next_cpu;
2230         return next_cpu;
2231 }
2232
2233 /**
2234  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2235  * @hctx: Pointer to the hardware queue to run.
2236  * @async: If we want to run the queue asynchronously.
2237  * @msecs: Milliseconds of delay to wait before running the queue.
2238  *
2239  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2240  * with a delay of @msecs.
2241  */
2242 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2243                                         unsigned long msecs)
2244 {
2245         if (unlikely(blk_mq_hctx_stopped(hctx)))
2246                 return;
2247
2248         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2249                 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2250                         __blk_mq_run_hw_queue(hctx);
2251                         return;
2252                 }
2253         }
2254
2255         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2256                                     msecs_to_jiffies(msecs));
2257 }
2258
2259 /**
2260  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2261  * @hctx: Pointer to the hardware queue to run.
2262  * @msecs: Milliseconds of delay to wait before running the queue.
2263  *
2264  * Run a hardware queue asynchronously with a delay of @msecs.
2265  */
2266 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2267 {
2268         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2269 }
2270 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2271
2272 /**
2273  * blk_mq_run_hw_queue - Start to run a hardware queue.
2274  * @hctx: Pointer to the hardware queue to run.
2275  * @async: If we want to run the queue asynchronously.
2276  *
2277  * Check if the request queue is not in a quiesced state and if there are
2278  * pending requests to be sent. If this is true, run the queue to send requests
2279  * to hardware.
2280  */
2281 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2282 {
2283         bool need_run;
2284
2285         /*
2286          * When queue is quiesced, we may be switching io scheduler, or
2287          * updating nr_hw_queues, or other things, and we can't run queue
2288          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2289          *
2290          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2291          * quiesced.
2292          */
2293         __blk_mq_run_dispatch_ops(hctx->queue, false,
2294                 need_run = !blk_queue_quiesced(hctx->queue) &&
2295                 blk_mq_hctx_has_pending(hctx));
2296
2297         if (need_run)
2298                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2299 }
2300 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2301
2302 /*
2303  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2304  * scheduler.
2305  */
2306 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2307 {
2308         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2309         /*
2310          * If the IO scheduler does not respect hardware queues when
2311          * dispatching, we just don't bother with multiple HW queues and
2312          * dispatch from hctx for the current CPU since running multiple queues
2313          * just causes lock contention inside the scheduler and pointless cache
2314          * bouncing.
2315          */
2316         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2317
2318         if (!blk_mq_hctx_stopped(hctx))
2319                 return hctx;
2320         return NULL;
2321 }
2322
2323 /**
2324  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2325  * @q: Pointer to the request queue to run.
2326  * @async: If we want to run the queue asynchronously.
2327  */
2328 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2329 {
2330         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2331         unsigned long i;
2332
2333         sq_hctx = NULL;
2334         if (blk_queue_sq_sched(q))
2335                 sq_hctx = blk_mq_get_sq_hctx(q);
2336         queue_for_each_hw_ctx(q, hctx, i) {
2337                 if (blk_mq_hctx_stopped(hctx))
2338                         continue;
2339                 /*
2340                  * Dispatch from this hctx either if there's no hctx preferred
2341                  * by IO scheduler or if it has requests that bypass the
2342                  * scheduler.
2343                  */
2344                 if (!sq_hctx || sq_hctx == hctx ||
2345                     !list_empty_careful(&hctx->dispatch))
2346                         blk_mq_run_hw_queue(hctx, async);
2347         }
2348 }
2349 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2350
2351 /**
2352  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2353  * @q: Pointer to the request queue to run.
2354  * @msecs: Milliseconds of delay to wait before running the queues.
2355  */
2356 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2357 {
2358         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2359         unsigned long i;
2360
2361         sq_hctx = NULL;
2362         if (blk_queue_sq_sched(q))
2363                 sq_hctx = blk_mq_get_sq_hctx(q);
2364         queue_for_each_hw_ctx(q, hctx, i) {
2365                 if (blk_mq_hctx_stopped(hctx))
2366                         continue;
2367                 /*
2368                  * If there is already a run_work pending, leave the
2369                  * pending delay untouched. Otherwise, a hctx can stall
2370                  * if another hctx is re-delaying the other's work
2371                  * before the work executes.
2372                  */
2373                 if (delayed_work_pending(&hctx->run_work))
2374                         continue;
2375                 /*
2376                  * Dispatch from this hctx either if there's no hctx preferred
2377                  * by IO scheduler or if it has requests that bypass the
2378                  * scheduler.
2379                  */
2380                 if (!sq_hctx || sq_hctx == hctx ||
2381                     !list_empty_careful(&hctx->dispatch))
2382                         blk_mq_delay_run_hw_queue(hctx, msecs);
2383         }
2384 }
2385 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2386
2387 /*
2388  * This function is often used for pausing .queue_rq() by driver when
2389  * there isn't enough resource or some conditions aren't satisfied, and
2390  * BLK_STS_RESOURCE is usually returned.
2391  *
2392  * We do not guarantee that dispatch can be drained or blocked
2393  * after blk_mq_stop_hw_queue() returns. Please use
2394  * blk_mq_quiesce_queue() for that requirement.
2395  */
2396 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2397 {
2398         cancel_delayed_work(&hctx->run_work);
2399
2400         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2401 }
2402 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2403
2404 /*
2405  * This function is often used for pausing .queue_rq() by driver when
2406  * there isn't enough resource or some conditions aren't satisfied, and
2407  * BLK_STS_RESOURCE is usually returned.
2408  *
2409  * We do not guarantee that dispatch can be drained or blocked
2410  * after blk_mq_stop_hw_queues() returns. Please use
2411  * blk_mq_quiesce_queue() for that requirement.
2412  */
2413 void blk_mq_stop_hw_queues(struct request_queue *q)
2414 {
2415         struct blk_mq_hw_ctx *hctx;
2416         unsigned long i;
2417
2418         queue_for_each_hw_ctx(q, hctx, i)
2419                 blk_mq_stop_hw_queue(hctx);
2420 }
2421 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2422
2423 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2424 {
2425         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2426
2427         blk_mq_run_hw_queue(hctx, false);
2428 }
2429 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2430
2431 void blk_mq_start_hw_queues(struct request_queue *q)
2432 {
2433         struct blk_mq_hw_ctx *hctx;
2434         unsigned long i;
2435
2436         queue_for_each_hw_ctx(q, hctx, i)
2437                 blk_mq_start_hw_queue(hctx);
2438 }
2439 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2440
2441 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2442 {
2443         if (!blk_mq_hctx_stopped(hctx))
2444                 return;
2445
2446         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2447         blk_mq_run_hw_queue(hctx, async);
2448 }
2449 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2450
2451 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2452 {
2453         struct blk_mq_hw_ctx *hctx;
2454         unsigned long i;
2455
2456         queue_for_each_hw_ctx(q, hctx, i)
2457                 blk_mq_start_stopped_hw_queue(hctx, async);
2458 }
2459 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2460
2461 static void blk_mq_run_work_fn(struct work_struct *work)
2462 {
2463         struct blk_mq_hw_ctx *hctx;
2464
2465         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2466
2467         /*
2468          * If we are stopped, don't run the queue.
2469          */
2470         if (blk_mq_hctx_stopped(hctx))
2471                 return;
2472
2473         __blk_mq_run_hw_queue(hctx);
2474 }
2475
2476 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2477                                             struct request *rq,
2478                                             bool at_head)
2479 {
2480         struct blk_mq_ctx *ctx = rq->mq_ctx;
2481         enum hctx_type type = hctx->type;
2482
2483         lockdep_assert_held(&ctx->lock);
2484
2485         trace_block_rq_insert(rq);
2486
2487         if (at_head)
2488                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2489         else
2490                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2491 }
2492
2493 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2494                              bool at_head)
2495 {
2496         struct blk_mq_ctx *ctx = rq->mq_ctx;
2497
2498         lockdep_assert_held(&ctx->lock);
2499
2500         __blk_mq_insert_req_list(hctx, rq, at_head);
2501         blk_mq_hctx_mark_pending(hctx, ctx);
2502 }
2503
2504 /**
2505  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2506  * @rq: Pointer to request to be inserted.
2507  * @at_head: true if the request should be inserted at the head of the list.
2508  * @run_queue: If we should run the hardware queue after inserting the request.
2509  *
2510  * Should only be used carefully, when the caller knows we want to
2511  * bypass a potential IO scheduler on the target device.
2512  */
2513 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2514                                   bool run_queue)
2515 {
2516         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2517
2518         spin_lock(&hctx->lock);
2519         if (at_head)
2520                 list_add(&rq->queuelist, &hctx->dispatch);
2521         else
2522                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2523         spin_unlock(&hctx->lock);
2524
2525         if (run_queue)
2526                 blk_mq_run_hw_queue(hctx, false);
2527 }
2528
2529 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2530                             struct list_head *list)
2531
2532 {
2533         struct request *rq;
2534         enum hctx_type type = hctx->type;
2535
2536         /*
2537          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2538          * offline now
2539          */
2540         list_for_each_entry(rq, list, queuelist) {
2541                 BUG_ON(rq->mq_ctx != ctx);
2542                 trace_block_rq_insert(rq);
2543         }
2544
2545         spin_lock(&ctx->lock);
2546         list_splice_tail_init(list, &ctx->rq_lists[type]);
2547         blk_mq_hctx_mark_pending(hctx, ctx);
2548         spin_unlock(&ctx->lock);
2549 }
2550
2551 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2552                               bool from_schedule)
2553 {
2554         if (hctx->queue->mq_ops->commit_rqs) {
2555                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2556                 hctx->queue->mq_ops->commit_rqs(hctx);
2557         }
2558         *queued = 0;
2559 }
2560
2561 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2562                 unsigned int nr_segs)
2563 {
2564         int err;
2565
2566         if (bio->bi_opf & REQ_RAHEAD)
2567                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2568
2569         rq->__sector = bio->bi_iter.bi_sector;
2570         blk_rq_bio_prep(rq, bio, nr_segs);
2571
2572         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2573         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2574         WARN_ON_ONCE(err);
2575
2576         blk_account_io_start(rq);
2577 }
2578
2579 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2580                                             struct request *rq, bool last)
2581 {
2582         struct request_queue *q = rq->q;
2583         struct blk_mq_queue_data bd = {
2584                 .rq = rq,
2585                 .last = last,
2586         };
2587         blk_status_t ret;
2588
2589         /*
2590          * For OK queue, we are done. For error, caller may kill it.
2591          * Any other error (busy), just add it to our list as we
2592          * previously would have done.
2593          */
2594         ret = q->mq_ops->queue_rq(hctx, &bd);
2595         switch (ret) {
2596         case BLK_STS_OK:
2597                 blk_mq_update_dispatch_busy(hctx, false);
2598                 break;
2599         case BLK_STS_RESOURCE:
2600         case BLK_STS_DEV_RESOURCE:
2601                 blk_mq_update_dispatch_busy(hctx, true);
2602                 __blk_mq_requeue_request(rq);
2603                 break;
2604         default:
2605                 blk_mq_update_dispatch_busy(hctx, false);
2606                 break;
2607         }
2608
2609         return ret;
2610 }
2611
2612 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2613                                                 struct request *rq,
2614                                                 bool bypass_insert, bool last)
2615 {
2616         struct request_queue *q = rq->q;
2617         bool run_queue = true;
2618         int budget_token;
2619
2620         /*
2621          * RCU or SRCU read lock is needed before checking quiesced flag.
2622          *
2623          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2624          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2625          * and avoid driver to try to dispatch again.
2626          */
2627         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2628                 run_queue = false;
2629                 bypass_insert = false;
2630                 goto insert;
2631         }
2632
2633         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2634                 goto insert;
2635
2636         budget_token = blk_mq_get_dispatch_budget(q);
2637         if (budget_token < 0)
2638                 goto insert;
2639
2640         blk_mq_set_rq_budget_token(rq, budget_token);
2641
2642         if (!blk_mq_get_driver_tag(rq)) {
2643                 blk_mq_put_dispatch_budget(q, budget_token);
2644                 goto insert;
2645         }
2646
2647         return __blk_mq_issue_directly(hctx, rq, last);
2648 insert:
2649         if (bypass_insert)
2650                 return BLK_STS_RESOURCE;
2651
2652         blk_mq_sched_insert_request(rq, false, run_queue, false);
2653
2654         return BLK_STS_OK;
2655 }
2656
2657 /**
2658  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2659  * @hctx: Pointer of the associated hardware queue.
2660  * @rq: Pointer to request to be sent.
2661  *
2662  * If the device has enough resources to accept a new request now, send the
2663  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2664  * we can try send it another time in the future. Requests inserted at this
2665  * queue have higher priority.
2666  */
2667 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2668                 struct request *rq)
2669 {
2670         blk_status_t ret =
2671                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2672
2673         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2674                 blk_mq_request_bypass_insert(rq, false, true);
2675         else if (ret != BLK_STS_OK)
2676                 blk_mq_end_request(rq, ret);
2677 }
2678
2679 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2680 {
2681         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2682 }
2683
2684 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2685 {
2686         struct blk_mq_hw_ctx *hctx = NULL;
2687         struct request *rq;
2688         int queued = 0;
2689         int errors = 0;
2690
2691         while ((rq = rq_list_pop(&plug->mq_list))) {
2692                 bool last = rq_list_empty(plug->mq_list);
2693                 blk_status_t ret;
2694
2695                 if (hctx != rq->mq_hctx) {
2696                         if (hctx)
2697                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2698                         hctx = rq->mq_hctx;
2699                 }
2700
2701                 ret = blk_mq_request_issue_directly(rq, last);
2702                 switch (ret) {
2703                 case BLK_STS_OK:
2704                         queued++;
2705                         break;
2706                 case BLK_STS_RESOURCE:
2707                 case BLK_STS_DEV_RESOURCE:
2708                         blk_mq_request_bypass_insert(rq, false, true);
2709                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2710                         return;
2711                 default:
2712                         blk_mq_end_request(rq, ret);
2713                         errors++;
2714                         break;
2715                 }
2716         }
2717
2718         /*
2719          * If we didn't flush the entire list, we could have told the driver
2720          * there was more coming, but that turned out to be a lie.
2721          */
2722         if (errors)
2723                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2724 }
2725
2726 static void __blk_mq_flush_plug_list(struct request_queue *q,
2727                                      struct blk_plug *plug)
2728 {
2729         if (blk_queue_quiesced(q))
2730                 return;
2731         q->mq_ops->queue_rqs(&plug->mq_list);
2732 }
2733
2734 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2735 {
2736         struct blk_mq_hw_ctx *this_hctx = NULL;
2737         struct blk_mq_ctx *this_ctx = NULL;
2738         struct request *requeue_list = NULL;
2739         unsigned int depth = 0;
2740         LIST_HEAD(list);
2741
2742         do {
2743                 struct request *rq = rq_list_pop(&plug->mq_list);
2744
2745                 if (!this_hctx) {
2746                         this_hctx = rq->mq_hctx;
2747                         this_ctx = rq->mq_ctx;
2748                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2749                         rq_list_add(&requeue_list, rq);
2750                         continue;
2751                 }
2752                 list_add_tail(&rq->queuelist, &list);
2753                 depth++;
2754         } while (!rq_list_empty(plug->mq_list));
2755
2756         plug->mq_list = requeue_list;
2757         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2758         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2759 }
2760
2761 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2762 {
2763         struct request *rq;
2764
2765         if (rq_list_empty(plug->mq_list))
2766                 return;
2767         plug->rq_count = 0;
2768
2769         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2770                 struct request_queue *q;
2771
2772                 rq = rq_list_peek(&plug->mq_list);
2773                 q = rq->q;
2774
2775                 /*
2776                  * Peek first request and see if we have a ->queue_rqs() hook.
2777                  * If we do, we can dispatch the whole plug list in one go. We
2778                  * already know at this point that all requests belong to the
2779                  * same queue, caller must ensure that's the case.
2780                  *
2781                  * Since we pass off the full list to the driver at this point,
2782                  * we do not increment the active request count for the queue.
2783                  * Bypass shared tags for now because of that.
2784                  */
2785                 if (q->mq_ops->queue_rqs &&
2786                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2787                         blk_mq_run_dispatch_ops(q,
2788                                 __blk_mq_flush_plug_list(q, plug));
2789                         if (rq_list_empty(plug->mq_list))
2790                                 return;
2791                 }
2792
2793                 blk_mq_run_dispatch_ops(q,
2794                                 blk_mq_plug_issue_direct(plug, false));
2795                 if (rq_list_empty(plug->mq_list))
2796                         return;
2797         }
2798
2799         do {
2800                 blk_mq_dispatch_plug_list(plug, from_schedule);
2801         } while (!rq_list_empty(plug->mq_list));
2802 }
2803
2804 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2805                 struct list_head *list)
2806 {
2807         int queued = 0;
2808         int errors = 0;
2809
2810         while (!list_empty(list)) {
2811                 blk_status_t ret;
2812                 struct request *rq = list_first_entry(list, struct request,
2813                                 queuelist);
2814
2815                 list_del_init(&rq->queuelist);
2816                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2817                 if (ret != BLK_STS_OK) {
2818                         errors++;
2819                         if (ret == BLK_STS_RESOURCE ||
2820                                         ret == BLK_STS_DEV_RESOURCE) {
2821                                 blk_mq_request_bypass_insert(rq, false,
2822                                                         list_empty(list));
2823                                 break;
2824                         }
2825                         blk_mq_end_request(rq, ret);
2826                 } else
2827                         queued++;
2828         }
2829
2830         /*
2831          * If we didn't flush the entire list, we could have told
2832          * the driver there was more coming, but that turned out to
2833          * be a lie.
2834          */
2835         if ((!list_empty(list) || errors) &&
2836              hctx->queue->mq_ops->commit_rqs && queued)
2837                 hctx->queue->mq_ops->commit_rqs(hctx);
2838 }
2839
2840 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2841                                      struct bio *bio, unsigned int nr_segs)
2842 {
2843         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2844                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2845                         return true;
2846                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2847                         return true;
2848         }
2849         return false;
2850 }
2851
2852 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2853                                                struct blk_plug *plug,
2854                                                struct bio *bio,
2855                                                unsigned int nsegs)
2856 {
2857         struct blk_mq_alloc_data data = {
2858                 .q              = q,
2859                 .nr_tags        = 1,
2860                 .cmd_flags      = bio->bi_opf,
2861         };
2862         struct request *rq;
2863
2864         if (unlikely(bio_queue_enter(bio)))
2865                 return NULL;
2866
2867         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2868                 goto queue_exit;
2869
2870         rq_qos_throttle(q, bio);
2871
2872         if (plug) {
2873                 data.nr_tags = plug->nr_ios;
2874                 plug->nr_ios = 1;
2875                 data.cached_rq = &plug->cached_rq;
2876         }
2877
2878         rq = __blk_mq_alloc_requests(&data);
2879         if (rq)
2880                 return rq;
2881         rq_qos_cleanup(q, bio);
2882         if (bio->bi_opf & REQ_NOWAIT)
2883                 bio_wouldblock_error(bio);
2884 queue_exit:
2885         blk_queue_exit(q);
2886         return NULL;
2887 }
2888
2889 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2890                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2891 {
2892         struct request *rq;
2893
2894         if (!plug)
2895                 return NULL;
2896         rq = rq_list_peek(&plug->cached_rq);
2897         if (!rq || rq->q != q)
2898                 return NULL;
2899
2900         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2901                 *bio = NULL;
2902                 return NULL;
2903         }
2904
2905         if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2906                 return NULL;
2907         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2908                 return NULL;
2909
2910         /*
2911          * If any qos ->throttle() end up blocking, we will have flushed the
2912          * plug and hence killed the cached_rq list as well. Pop this entry
2913          * before we throttle.
2914          */
2915         plug->cached_rq = rq_list_next(rq);
2916         rq_qos_throttle(q, *bio);
2917
2918         rq->cmd_flags = (*bio)->bi_opf;
2919         INIT_LIST_HEAD(&rq->queuelist);
2920         return rq;
2921 }
2922
2923 static void bio_set_ioprio(struct bio *bio)
2924 {
2925         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2926         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2927                 bio->bi_ioprio = get_current_ioprio();
2928         blkcg_set_ioprio(bio);
2929 }
2930
2931 /**
2932  * blk_mq_submit_bio - Create and send a request to block device.
2933  * @bio: Bio pointer.
2934  *
2935  * Builds up a request structure from @q and @bio and send to the device. The
2936  * request may not be queued directly to hardware if:
2937  * * This request can be merged with another one
2938  * * We want to place request at plug queue for possible future merging
2939  * * There is an IO scheduler active at this queue
2940  *
2941  * It will not queue the request if there is an error with the bio, or at the
2942  * request creation.
2943  */
2944 void blk_mq_submit_bio(struct bio *bio)
2945 {
2946         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2947         struct blk_plug *plug = blk_mq_plug(bio);
2948         const int is_sync = op_is_sync(bio->bi_opf);
2949         struct request *rq;
2950         unsigned int nr_segs = 1;
2951         blk_status_t ret;
2952
2953         bio = blk_queue_bounce(bio, q);
2954         if (bio_may_exceed_limits(bio, &q->limits))
2955                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2956
2957         if (!bio_integrity_prep(bio))
2958                 return;
2959
2960         bio_set_ioprio(bio);
2961
2962         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2963         if (!rq) {
2964                 if (!bio)
2965                         return;
2966                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2967                 if (unlikely(!rq))
2968                         return;
2969         }
2970
2971         trace_block_getrq(bio);
2972
2973         rq_qos_track(q, rq, bio);
2974
2975         blk_mq_bio_to_request(rq, bio, nr_segs);
2976
2977         ret = blk_crypto_init_request(rq);
2978         if (ret != BLK_STS_OK) {
2979                 bio->bi_status = ret;
2980                 bio_endio(bio);
2981                 blk_mq_free_request(rq);
2982                 return;
2983         }
2984
2985         if (op_is_flush(bio->bi_opf)) {
2986                 blk_insert_flush(rq);
2987                 return;
2988         }
2989
2990         if (plug)
2991                 blk_add_rq_to_plug(plug, rq);
2992         else if ((rq->rq_flags & RQF_ELV) ||
2993                  (rq->mq_hctx->dispatch_busy &&
2994                   (q->nr_hw_queues == 1 || !is_sync)))
2995                 blk_mq_sched_insert_request(rq, false, true, true);
2996         else
2997                 blk_mq_run_dispatch_ops(rq->q,
2998                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2999 }
3000
3001 #ifdef CONFIG_BLK_MQ_STACKING
3002 /**
3003  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3004  * @rq: the request being queued
3005  */
3006 blk_status_t blk_insert_cloned_request(struct request *rq)
3007 {
3008         struct request_queue *q = rq->q;
3009         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3010         blk_status_t ret;
3011
3012         if (blk_rq_sectors(rq) > max_sectors) {
3013                 /*
3014                  * SCSI device does not have a good way to return if
3015                  * Write Same/Zero is actually supported. If a device rejects
3016                  * a non-read/write command (discard, write same,etc.) the
3017                  * low-level device driver will set the relevant queue limit to
3018                  * 0 to prevent blk-lib from issuing more of the offending
3019                  * operations. Commands queued prior to the queue limit being
3020                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3021                  * errors being propagated to upper layers.
3022                  */
3023                 if (max_sectors == 0)
3024                         return BLK_STS_NOTSUPP;
3025
3026                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3027                         __func__, blk_rq_sectors(rq), max_sectors);
3028                 return BLK_STS_IOERR;
3029         }
3030
3031         /*
3032          * The queue settings related to segment counting may differ from the
3033          * original queue.
3034          */
3035         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3036         if (rq->nr_phys_segments > queue_max_segments(q)) {
3037                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
3038                         __func__, rq->nr_phys_segments, queue_max_segments(q));
3039                 return BLK_STS_IOERR;
3040         }
3041
3042         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3043                 return BLK_STS_IOERR;
3044
3045         if (blk_crypto_insert_cloned_request(rq))
3046                 return BLK_STS_IOERR;
3047
3048         blk_account_io_start(rq);
3049
3050         /*
3051          * Since we have a scheduler attached on the top device,
3052          * bypass a potential scheduler on the bottom device for
3053          * insert.
3054          */
3055         blk_mq_run_dispatch_ops(q,
3056                         ret = blk_mq_request_issue_directly(rq, true));
3057         if (ret)
3058                 blk_account_io_done(rq, ktime_get_ns());
3059         return ret;
3060 }
3061 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3062
3063 /**
3064  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3065  * @rq: the clone request to be cleaned up
3066  *
3067  * Description:
3068  *     Free all bios in @rq for a cloned request.
3069  */
3070 void blk_rq_unprep_clone(struct request *rq)
3071 {
3072         struct bio *bio;
3073
3074         while ((bio = rq->bio) != NULL) {
3075                 rq->bio = bio->bi_next;
3076
3077                 bio_put(bio);
3078         }
3079 }
3080 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3081
3082 /**
3083  * blk_rq_prep_clone - Helper function to setup clone request
3084  * @rq: the request to be setup
3085  * @rq_src: original request to be cloned
3086  * @bs: bio_set that bios for clone are allocated from
3087  * @gfp_mask: memory allocation mask for bio
3088  * @bio_ctr: setup function to be called for each clone bio.
3089  *           Returns %0 for success, non %0 for failure.
3090  * @data: private data to be passed to @bio_ctr
3091  *
3092  * Description:
3093  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3094  *     Also, pages which the original bios are pointing to are not copied
3095  *     and the cloned bios just point same pages.
3096  *     So cloned bios must be completed before original bios, which means
3097  *     the caller must complete @rq before @rq_src.
3098  */
3099 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3100                       struct bio_set *bs, gfp_t gfp_mask,
3101                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3102                       void *data)
3103 {
3104         struct bio *bio, *bio_src;
3105
3106         if (!bs)
3107                 bs = &fs_bio_set;
3108
3109         __rq_for_each_bio(bio_src, rq_src) {
3110                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3111                                       bs);
3112                 if (!bio)
3113                         goto free_and_out;
3114
3115                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3116                         goto free_and_out;
3117
3118                 if (rq->bio) {
3119                         rq->biotail->bi_next = bio;
3120                         rq->biotail = bio;
3121                 } else {
3122                         rq->bio = rq->biotail = bio;
3123                 }
3124                 bio = NULL;
3125         }
3126
3127         /* Copy attributes of the original request to the clone request. */
3128         rq->__sector = blk_rq_pos(rq_src);
3129         rq->__data_len = blk_rq_bytes(rq_src);
3130         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3131                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3132                 rq->special_vec = rq_src->special_vec;
3133         }
3134         rq->nr_phys_segments = rq_src->nr_phys_segments;
3135         rq->ioprio = rq_src->ioprio;
3136
3137         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3138                 goto free_and_out;
3139
3140         return 0;
3141
3142 free_and_out:
3143         if (bio)
3144                 bio_put(bio);
3145         blk_rq_unprep_clone(rq);
3146
3147         return -ENOMEM;
3148 }
3149 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3150 #endif /* CONFIG_BLK_MQ_STACKING */
3151
3152 /*
3153  * Steal bios from a request and add them to a bio list.
3154  * The request must not have been partially completed before.
3155  */
3156 void blk_steal_bios(struct bio_list *list, struct request *rq)
3157 {
3158         if (rq->bio) {
3159                 if (list->tail)
3160                         list->tail->bi_next = rq->bio;
3161                 else
3162                         list->head = rq->bio;
3163                 list->tail = rq->biotail;
3164
3165                 rq->bio = NULL;
3166                 rq->biotail = NULL;
3167         }
3168
3169         rq->__data_len = 0;
3170 }
3171 EXPORT_SYMBOL_GPL(blk_steal_bios);
3172
3173 static size_t order_to_size(unsigned int order)
3174 {
3175         return (size_t)PAGE_SIZE << order;
3176 }
3177
3178 /* called before freeing request pool in @tags */
3179 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3180                                     struct blk_mq_tags *tags)
3181 {
3182         struct page *page;
3183         unsigned long flags;
3184
3185         /*
3186          * There is no need to clear mapping if driver tags is not initialized
3187          * or the mapping belongs to the driver tags.
3188          */
3189         if (!drv_tags || drv_tags == tags)
3190                 return;
3191
3192         list_for_each_entry(page, &tags->page_list, lru) {
3193                 unsigned long start = (unsigned long)page_address(page);
3194                 unsigned long end = start + order_to_size(page->private);
3195                 int i;
3196
3197                 for (i = 0; i < drv_tags->nr_tags; i++) {
3198                         struct request *rq = drv_tags->rqs[i];
3199                         unsigned long rq_addr = (unsigned long)rq;
3200
3201                         if (rq_addr >= start && rq_addr < end) {
3202                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3203                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3204                         }
3205                 }
3206         }
3207
3208         /*
3209          * Wait until all pending iteration is done.
3210          *
3211          * Request reference is cleared and it is guaranteed to be observed
3212          * after the ->lock is released.
3213          */
3214         spin_lock_irqsave(&drv_tags->lock, flags);
3215         spin_unlock_irqrestore(&drv_tags->lock, flags);
3216 }
3217
3218 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3219                      unsigned int hctx_idx)
3220 {
3221         struct blk_mq_tags *drv_tags;
3222         struct page *page;
3223
3224         if (list_empty(&tags->page_list))
3225                 return;
3226
3227         if (blk_mq_is_shared_tags(set->flags))
3228                 drv_tags = set->shared_tags;
3229         else
3230                 drv_tags = set->tags[hctx_idx];
3231
3232         if (tags->static_rqs && set->ops->exit_request) {
3233                 int i;
3234
3235                 for (i = 0; i < tags->nr_tags; i++) {
3236                         struct request *rq = tags->static_rqs[i];
3237
3238                         if (!rq)
3239                                 continue;
3240                         set->ops->exit_request(set, rq, hctx_idx);
3241                         tags->static_rqs[i] = NULL;
3242                 }
3243         }
3244
3245         blk_mq_clear_rq_mapping(drv_tags, tags);
3246
3247         while (!list_empty(&tags->page_list)) {
3248                 page = list_first_entry(&tags->page_list, struct page, lru);
3249                 list_del_init(&page->lru);
3250                 /*
3251                  * Remove kmemleak object previously allocated in
3252                  * blk_mq_alloc_rqs().
3253                  */
3254                 kmemleak_free(page_address(page));
3255                 __free_pages(page, page->private);
3256         }
3257 }
3258
3259 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3260 {
3261         kfree(tags->rqs);
3262         tags->rqs = NULL;
3263         kfree(tags->static_rqs);
3264         tags->static_rqs = NULL;
3265
3266         blk_mq_free_tags(tags);
3267 }
3268
3269 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3270                 unsigned int hctx_idx)
3271 {
3272         int i;
3273
3274         for (i = 0; i < set->nr_maps; i++) {
3275                 unsigned int start = set->map[i].queue_offset;
3276                 unsigned int end = start + set->map[i].nr_queues;
3277
3278                 if (hctx_idx >= start && hctx_idx < end)
3279                         break;
3280         }
3281
3282         if (i >= set->nr_maps)
3283                 i = HCTX_TYPE_DEFAULT;
3284
3285         return i;
3286 }
3287
3288 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3289                 unsigned int hctx_idx)
3290 {
3291         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3292
3293         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3294 }
3295
3296 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3297                                                unsigned int hctx_idx,
3298                                                unsigned int nr_tags,
3299                                                unsigned int reserved_tags)
3300 {
3301         int node = blk_mq_get_hctx_node(set, hctx_idx);
3302         struct blk_mq_tags *tags;
3303
3304         if (node == NUMA_NO_NODE)
3305                 node = set->numa_node;
3306
3307         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3308                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3309         if (!tags)
3310                 return NULL;
3311
3312         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3313                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3314                                  node);
3315         if (!tags->rqs)
3316                 goto err_free_tags;
3317
3318         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3319                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3320                                         node);
3321         if (!tags->static_rqs)
3322                 goto err_free_rqs;
3323
3324         return tags;
3325
3326 err_free_rqs:
3327         kfree(tags->rqs);
3328 err_free_tags:
3329         blk_mq_free_tags(tags);
3330         return NULL;
3331 }
3332
3333 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3334                                unsigned int hctx_idx, int node)
3335 {
3336         int ret;
3337
3338         if (set->ops->init_request) {
3339                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3340                 if (ret)
3341                         return ret;
3342         }
3343
3344         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3345         return 0;
3346 }
3347
3348 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3349                             struct blk_mq_tags *tags,
3350                             unsigned int hctx_idx, unsigned int depth)
3351 {
3352         unsigned int i, j, entries_per_page, max_order = 4;
3353         int node = blk_mq_get_hctx_node(set, hctx_idx);
3354         size_t rq_size, left;
3355
3356         if (node == NUMA_NO_NODE)
3357                 node = set->numa_node;
3358
3359         INIT_LIST_HEAD(&tags->page_list);
3360
3361         /*
3362          * rq_size is the size of the request plus driver payload, rounded
3363          * to the cacheline size
3364          */
3365         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3366                                 cache_line_size());
3367         left = rq_size * depth;
3368
3369         for (i = 0; i < depth; ) {
3370                 int this_order = max_order;
3371                 struct page *page;
3372                 int to_do;
3373                 void *p;
3374
3375                 while (this_order && left < order_to_size(this_order - 1))
3376                         this_order--;
3377
3378                 do {
3379                         page = alloc_pages_node(node,
3380                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3381                                 this_order);
3382                         if (page)
3383                                 break;
3384                         if (!this_order--)
3385                                 break;
3386                         if (order_to_size(this_order) < rq_size)
3387                                 break;
3388                 } while (1);
3389
3390                 if (!page)
3391                         goto fail;
3392
3393                 page->private = this_order;
3394                 list_add_tail(&page->lru, &tags->page_list);
3395
3396                 p = page_address(page);
3397                 /*
3398                  * Allow kmemleak to scan these pages as they contain pointers
3399                  * to additional allocations like via ops->init_request().
3400                  */
3401                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3402                 entries_per_page = order_to_size(this_order) / rq_size;
3403                 to_do = min(entries_per_page, depth - i);
3404                 left -= to_do * rq_size;
3405                 for (j = 0; j < to_do; j++) {
3406                         struct request *rq = p;
3407
3408                         tags->static_rqs[i] = rq;
3409                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3410                                 tags->static_rqs[i] = NULL;
3411                                 goto fail;
3412                         }
3413
3414                         p += rq_size;
3415                         i++;
3416                 }
3417         }
3418         return 0;
3419
3420 fail:
3421         blk_mq_free_rqs(set, tags, hctx_idx);
3422         return -ENOMEM;
3423 }
3424
3425 struct rq_iter_data {
3426         struct blk_mq_hw_ctx *hctx;
3427         bool has_rq;
3428 };
3429
3430 static bool blk_mq_has_request(struct request *rq, void *data)
3431 {
3432         struct rq_iter_data *iter_data = data;
3433
3434         if (rq->mq_hctx != iter_data->hctx)
3435                 return true;
3436         iter_data->has_rq = true;
3437         return false;
3438 }
3439
3440 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3441 {
3442         struct blk_mq_tags *tags = hctx->sched_tags ?
3443                         hctx->sched_tags : hctx->tags;
3444         struct rq_iter_data data = {
3445                 .hctx   = hctx,
3446         };
3447
3448         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3449         return data.has_rq;
3450 }
3451
3452 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3453                 struct blk_mq_hw_ctx *hctx)
3454 {
3455         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3456                 return false;
3457         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3458                 return false;
3459         return true;
3460 }
3461
3462 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3463 {
3464         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3465                         struct blk_mq_hw_ctx, cpuhp_online);
3466
3467         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3468             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3469                 return 0;
3470
3471         /*
3472          * Prevent new request from being allocated on the current hctx.
3473          *
3474          * The smp_mb__after_atomic() Pairs with the implied barrier in
3475          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3476          * seen once we return from the tag allocator.
3477          */
3478         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3479         smp_mb__after_atomic();
3480
3481         /*
3482          * Try to grab a reference to the queue and wait for any outstanding
3483          * requests.  If we could not grab a reference the queue has been
3484          * frozen and there are no requests.
3485          */
3486         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3487                 while (blk_mq_hctx_has_requests(hctx))
3488                         msleep(5);
3489                 percpu_ref_put(&hctx->queue->q_usage_counter);
3490         }
3491
3492         return 0;
3493 }
3494
3495 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3496 {
3497         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3498                         struct blk_mq_hw_ctx, cpuhp_online);
3499
3500         if (cpumask_test_cpu(cpu, hctx->cpumask))
3501                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3502         return 0;
3503 }
3504
3505 /*
3506  * 'cpu' is going away. splice any existing rq_list entries from this
3507  * software queue to the hw queue dispatch list, and ensure that it
3508  * gets run.
3509  */
3510 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3511 {
3512         struct blk_mq_hw_ctx *hctx;
3513         struct blk_mq_ctx *ctx;
3514         LIST_HEAD(tmp);
3515         enum hctx_type type;
3516
3517         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3518         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3519                 return 0;
3520
3521         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3522         type = hctx->type;
3523
3524         spin_lock(&ctx->lock);
3525         if (!list_empty(&ctx->rq_lists[type])) {
3526                 list_splice_init(&ctx->rq_lists[type], &tmp);
3527                 blk_mq_hctx_clear_pending(hctx, ctx);
3528         }
3529         spin_unlock(&ctx->lock);
3530
3531         if (list_empty(&tmp))
3532                 return 0;
3533
3534         spin_lock(&hctx->lock);
3535         list_splice_tail_init(&tmp, &hctx->dispatch);
3536         spin_unlock(&hctx->lock);
3537
3538         blk_mq_run_hw_queue(hctx, true);
3539         return 0;
3540 }
3541
3542 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3543 {
3544         if (!(hctx->flags & BLK_MQ_F_STACKING))
3545                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3546                                                     &hctx->cpuhp_online);
3547         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3548                                             &hctx->cpuhp_dead);
3549 }
3550
3551 /*
3552  * Before freeing hw queue, clearing the flush request reference in
3553  * tags->rqs[] for avoiding potential UAF.
3554  */
3555 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3556                 unsigned int queue_depth, struct request *flush_rq)
3557 {
3558         int i;
3559         unsigned long flags;
3560
3561         /* The hw queue may not be mapped yet */
3562         if (!tags)
3563                 return;
3564
3565         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3566
3567         for (i = 0; i < queue_depth; i++)
3568                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3569
3570         /*
3571          * Wait until all pending iteration is done.
3572          *
3573          * Request reference is cleared and it is guaranteed to be observed
3574          * after the ->lock is released.
3575          */
3576         spin_lock_irqsave(&tags->lock, flags);
3577         spin_unlock_irqrestore(&tags->lock, flags);
3578 }
3579
3580 /* hctx->ctxs will be freed in queue's release handler */
3581 static void blk_mq_exit_hctx(struct request_queue *q,
3582                 struct blk_mq_tag_set *set,
3583                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3584 {
3585         struct request *flush_rq = hctx->fq->flush_rq;
3586
3587         if (blk_mq_hw_queue_mapped(hctx))
3588                 blk_mq_tag_idle(hctx);
3589
3590         if (blk_queue_init_done(q))
3591                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3592                                 set->queue_depth, flush_rq);
3593         if (set->ops->exit_request)
3594                 set->ops->exit_request(set, flush_rq, hctx_idx);
3595
3596         if (set->ops->exit_hctx)
3597                 set->ops->exit_hctx(hctx, hctx_idx);
3598
3599         blk_mq_remove_cpuhp(hctx);
3600
3601         xa_erase(&q->hctx_table, hctx_idx);
3602
3603         spin_lock(&q->unused_hctx_lock);
3604         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3605         spin_unlock(&q->unused_hctx_lock);
3606 }
3607
3608 static void blk_mq_exit_hw_queues(struct request_queue *q,
3609                 struct blk_mq_tag_set *set, int nr_queue)
3610 {
3611         struct blk_mq_hw_ctx *hctx;
3612         unsigned long i;
3613
3614         queue_for_each_hw_ctx(q, hctx, i) {
3615                 if (i == nr_queue)
3616                         break;
3617                 blk_mq_exit_hctx(q, set, hctx, i);
3618         }
3619 }
3620
3621 static int blk_mq_init_hctx(struct request_queue *q,
3622                 struct blk_mq_tag_set *set,
3623                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3624 {
3625         hctx->queue_num = hctx_idx;
3626
3627         if (!(hctx->flags & BLK_MQ_F_STACKING))
3628                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3629                                 &hctx->cpuhp_online);
3630         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3631
3632         hctx->tags = set->tags[hctx_idx];
3633
3634         if (set->ops->init_hctx &&
3635             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3636                 goto unregister_cpu_notifier;
3637
3638         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3639                                 hctx->numa_node))
3640                 goto exit_hctx;
3641
3642         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3643                 goto exit_flush_rq;
3644
3645         return 0;
3646
3647  exit_flush_rq:
3648         if (set->ops->exit_request)
3649                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3650  exit_hctx:
3651         if (set->ops->exit_hctx)
3652                 set->ops->exit_hctx(hctx, hctx_idx);
3653  unregister_cpu_notifier:
3654         blk_mq_remove_cpuhp(hctx);
3655         return -1;
3656 }
3657
3658 static struct blk_mq_hw_ctx *
3659 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3660                 int node)
3661 {
3662         struct blk_mq_hw_ctx *hctx;
3663         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3664
3665         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3666         if (!hctx)
3667                 goto fail_alloc_hctx;
3668
3669         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3670                 goto free_hctx;
3671
3672         atomic_set(&hctx->nr_active, 0);
3673         if (node == NUMA_NO_NODE)
3674                 node = set->numa_node;
3675         hctx->numa_node = node;
3676
3677         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3678         spin_lock_init(&hctx->lock);
3679         INIT_LIST_HEAD(&hctx->dispatch);
3680         hctx->queue = q;
3681         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3682
3683         INIT_LIST_HEAD(&hctx->hctx_list);
3684
3685         /*
3686          * Allocate space for all possible cpus to avoid allocation at
3687          * runtime
3688          */
3689         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3690                         gfp, node);
3691         if (!hctx->ctxs)
3692                 goto free_cpumask;
3693
3694         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3695                                 gfp, node, false, false))
3696                 goto free_ctxs;
3697         hctx->nr_ctx = 0;
3698
3699         spin_lock_init(&hctx->dispatch_wait_lock);
3700         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3701         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3702
3703         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3704         if (!hctx->fq)
3705                 goto free_bitmap;
3706
3707         blk_mq_hctx_kobj_init(hctx);
3708
3709         return hctx;
3710
3711  free_bitmap:
3712         sbitmap_free(&hctx->ctx_map);
3713  free_ctxs:
3714         kfree(hctx->ctxs);
3715  free_cpumask:
3716         free_cpumask_var(hctx->cpumask);
3717  free_hctx:
3718         kfree(hctx);
3719  fail_alloc_hctx:
3720         return NULL;
3721 }
3722
3723 static void blk_mq_init_cpu_queues(struct request_queue *q,
3724                                    unsigned int nr_hw_queues)
3725 {
3726         struct blk_mq_tag_set *set = q->tag_set;
3727         unsigned int i, j;
3728
3729         for_each_possible_cpu(i) {
3730                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3731                 struct blk_mq_hw_ctx *hctx;
3732                 int k;
3733
3734                 __ctx->cpu = i;
3735                 spin_lock_init(&__ctx->lock);
3736                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3737                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3738
3739                 __ctx->queue = q;
3740
3741                 /*
3742                  * Set local node, IFF we have more than one hw queue. If
3743                  * not, we remain on the home node of the device
3744                  */
3745                 for (j = 0; j < set->nr_maps; j++) {
3746                         hctx = blk_mq_map_queue_type(q, j, i);
3747                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3748                                 hctx->numa_node = cpu_to_node(i);
3749                 }
3750         }
3751 }
3752
3753 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3754                                              unsigned int hctx_idx,
3755                                              unsigned int depth)
3756 {
3757         struct blk_mq_tags *tags;
3758         int ret;
3759
3760         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3761         if (!tags)
3762                 return NULL;
3763
3764         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3765         if (ret) {
3766                 blk_mq_free_rq_map(tags);
3767                 return NULL;
3768         }
3769
3770         return tags;
3771 }
3772
3773 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3774                                        int hctx_idx)
3775 {
3776         if (blk_mq_is_shared_tags(set->flags)) {
3777                 set->tags[hctx_idx] = set->shared_tags;
3778
3779                 return true;
3780         }
3781
3782         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3783                                                        set->queue_depth);
3784
3785         return set->tags[hctx_idx];
3786 }
3787
3788 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3789                              struct blk_mq_tags *tags,
3790                              unsigned int hctx_idx)
3791 {
3792         if (tags) {
3793                 blk_mq_free_rqs(set, tags, hctx_idx);
3794                 blk_mq_free_rq_map(tags);
3795         }
3796 }
3797
3798 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3799                                       unsigned int hctx_idx)
3800 {
3801         if (!blk_mq_is_shared_tags(set->flags))
3802                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3803
3804         set->tags[hctx_idx] = NULL;
3805 }
3806
3807 static void blk_mq_map_swqueue(struct request_queue *q)
3808 {
3809         unsigned int j, hctx_idx;
3810         unsigned long i;
3811         struct blk_mq_hw_ctx *hctx;
3812         struct blk_mq_ctx *ctx;
3813         struct blk_mq_tag_set *set = q->tag_set;
3814
3815         queue_for_each_hw_ctx(q, hctx, i) {
3816                 cpumask_clear(hctx->cpumask);
3817                 hctx->nr_ctx = 0;
3818                 hctx->dispatch_from = NULL;
3819         }
3820
3821         /*
3822          * Map software to hardware queues.
3823          *
3824          * If the cpu isn't present, the cpu is mapped to first hctx.
3825          */
3826         for_each_possible_cpu(i) {
3827
3828                 ctx = per_cpu_ptr(q->queue_ctx, i);
3829                 for (j = 0; j < set->nr_maps; j++) {
3830                         if (!set->map[j].nr_queues) {
3831                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3832                                                 HCTX_TYPE_DEFAULT, i);
3833                                 continue;
3834                         }
3835                         hctx_idx = set->map[j].mq_map[i];
3836                         /* unmapped hw queue can be remapped after CPU topo changed */
3837                         if (!set->tags[hctx_idx] &&
3838                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3839                                 /*
3840                                  * If tags initialization fail for some hctx,
3841                                  * that hctx won't be brought online.  In this
3842                                  * case, remap the current ctx to hctx[0] which
3843                                  * is guaranteed to always have tags allocated
3844                                  */
3845                                 set->map[j].mq_map[i] = 0;
3846                         }
3847
3848                         hctx = blk_mq_map_queue_type(q, j, i);
3849                         ctx->hctxs[j] = hctx;
3850                         /*
3851                          * If the CPU is already set in the mask, then we've
3852                          * mapped this one already. This can happen if
3853                          * devices share queues across queue maps.
3854                          */
3855                         if (cpumask_test_cpu(i, hctx->cpumask))
3856                                 continue;
3857
3858                         cpumask_set_cpu(i, hctx->cpumask);
3859                         hctx->type = j;
3860                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3861                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3862
3863                         /*
3864                          * If the nr_ctx type overflows, we have exceeded the
3865                          * amount of sw queues we can support.
3866                          */
3867                         BUG_ON(!hctx->nr_ctx);
3868                 }
3869
3870                 for (; j < HCTX_MAX_TYPES; j++)
3871                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3872                                         HCTX_TYPE_DEFAULT, i);
3873         }
3874
3875         queue_for_each_hw_ctx(q, hctx, i) {
3876                 /*
3877                  * If no software queues are mapped to this hardware queue,
3878                  * disable it and free the request entries.
3879                  */
3880                 if (!hctx->nr_ctx) {
3881                         /* Never unmap queue 0.  We need it as a
3882                          * fallback in case of a new remap fails
3883                          * allocation
3884                          */
3885                         if (i)
3886                                 __blk_mq_free_map_and_rqs(set, i);
3887
3888                         hctx->tags = NULL;
3889                         continue;
3890                 }
3891
3892                 hctx->tags = set->tags[i];
3893                 WARN_ON(!hctx->tags);
3894
3895                 /*
3896                  * Set the map size to the number of mapped software queues.
3897                  * This is more accurate and more efficient than looping
3898                  * over all possibly mapped software queues.
3899                  */
3900                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3901
3902                 /*
3903                  * Initialize batch roundrobin counts
3904                  */
3905                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3906                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3907         }
3908 }
3909
3910 /*
3911  * Caller needs to ensure that we're either frozen/quiesced, or that
3912  * the queue isn't live yet.
3913  */
3914 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3915 {
3916         struct blk_mq_hw_ctx *hctx;
3917         unsigned long i;
3918
3919         queue_for_each_hw_ctx(q, hctx, i) {
3920                 if (shared) {
3921                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3922                 } else {
3923                         blk_mq_tag_idle(hctx);
3924                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3925                 }
3926         }
3927 }
3928
3929 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3930                                          bool shared)
3931 {
3932         struct request_queue *q;
3933
3934         lockdep_assert_held(&set->tag_list_lock);
3935
3936         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3937                 blk_mq_freeze_queue(q);
3938                 queue_set_hctx_shared(q, shared);
3939                 blk_mq_unfreeze_queue(q);
3940         }
3941 }
3942
3943 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3944 {
3945         struct blk_mq_tag_set *set = q->tag_set;
3946
3947         mutex_lock(&set->tag_list_lock);
3948         list_del(&q->tag_set_list);
3949         if (list_is_singular(&set->tag_list)) {
3950                 /* just transitioned to unshared */
3951                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3952                 /* update existing queue */
3953                 blk_mq_update_tag_set_shared(set, false);
3954         }
3955         mutex_unlock(&set->tag_list_lock);
3956         INIT_LIST_HEAD(&q->tag_set_list);
3957 }
3958
3959 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3960                                      struct request_queue *q)
3961 {
3962         mutex_lock(&set->tag_list_lock);
3963
3964         /*
3965          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3966          */
3967         if (!list_empty(&set->tag_list) &&
3968             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3969                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3970                 /* update existing queue */
3971                 blk_mq_update_tag_set_shared(set, true);
3972         }
3973         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3974                 queue_set_hctx_shared(q, true);
3975         list_add_tail(&q->tag_set_list, &set->tag_list);
3976
3977         mutex_unlock(&set->tag_list_lock);
3978 }
3979
3980 /* All allocations will be freed in release handler of q->mq_kobj */
3981 static int blk_mq_alloc_ctxs(struct request_queue *q)
3982 {
3983         struct blk_mq_ctxs *ctxs;
3984         int cpu;
3985
3986         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3987         if (!ctxs)
3988                 return -ENOMEM;
3989
3990         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3991         if (!ctxs->queue_ctx)
3992                 goto fail;
3993
3994         for_each_possible_cpu(cpu) {
3995                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3996                 ctx->ctxs = ctxs;
3997         }
3998
3999         q->mq_kobj = &ctxs->kobj;
4000         q->queue_ctx = ctxs->queue_ctx;
4001
4002         return 0;
4003  fail:
4004         kfree(ctxs);
4005         return -ENOMEM;
4006 }
4007
4008 /*
4009  * It is the actual release handler for mq, but we do it from
4010  * request queue's release handler for avoiding use-after-free
4011  * and headache because q->mq_kobj shouldn't have been introduced,
4012  * but we can't group ctx/kctx kobj without it.
4013  */
4014 void blk_mq_release(struct request_queue *q)
4015 {
4016         struct blk_mq_hw_ctx *hctx, *next;
4017         unsigned long i;
4018
4019         queue_for_each_hw_ctx(q, hctx, i)
4020                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4021
4022         /* all hctx are in .unused_hctx_list now */
4023         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4024                 list_del_init(&hctx->hctx_list);
4025                 kobject_put(&hctx->kobj);
4026         }
4027
4028         xa_destroy(&q->hctx_table);
4029
4030         /*
4031          * release .mq_kobj and sw queue's kobject now because
4032          * both share lifetime with request queue.
4033          */
4034         blk_mq_sysfs_deinit(q);
4035 }
4036
4037 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4038                 void *queuedata)
4039 {
4040         struct request_queue *q;
4041         int ret;
4042
4043         q = blk_alloc_queue(set->numa_node);
4044         if (!q)
4045                 return ERR_PTR(-ENOMEM);
4046         q->queuedata = queuedata;
4047         ret = blk_mq_init_allocated_queue(set, q);
4048         if (ret) {
4049                 blk_put_queue(q);
4050                 return ERR_PTR(ret);
4051         }
4052         return q;
4053 }
4054
4055 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4056 {
4057         return blk_mq_init_queue_data(set, NULL);
4058 }
4059 EXPORT_SYMBOL(blk_mq_init_queue);
4060
4061 /**
4062  * blk_mq_destroy_queue - shutdown a request queue
4063  * @q: request queue to shutdown
4064  *
4065  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
4066  * the initial reference.  All future requests will failed with -ENODEV.
4067  *
4068  * Context: can sleep
4069  */
4070 void blk_mq_destroy_queue(struct request_queue *q)
4071 {
4072         WARN_ON_ONCE(!queue_is_mq(q));
4073         WARN_ON_ONCE(blk_queue_registered(q));
4074
4075         might_sleep();
4076
4077         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4078         blk_queue_start_drain(q);
4079         blk_mq_freeze_queue_wait(q);
4080
4081         blk_sync_queue(q);
4082         blk_mq_cancel_work_sync(q);
4083         blk_mq_exit_queue(q);
4084 }
4085 EXPORT_SYMBOL(blk_mq_destroy_queue);
4086
4087 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4088                 struct lock_class_key *lkclass)
4089 {
4090         struct request_queue *q;
4091         struct gendisk *disk;
4092
4093         q = blk_mq_init_queue_data(set, queuedata);
4094         if (IS_ERR(q))
4095                 return ERR_CAST(q);
4096
4097         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4098         if (!disk) {
4099                 blk_mq_destroy_queue(q);
4100                 blk_put_queue(q);
4101                 return ERR_PTR(-ENOMEM);
4102         }
4103         set_bit(GD_OWNS_QUEUE, &disk->state);
4104         return disk;
4105 }
4106 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4107
4108 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4109                 struct lock_class_key *lkclass)
4110 {
4111         struct gendisk *disk;
4112
4113         if (!blk_get_queue(q))
4114                 return NULL;
4115         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4116         if (!disk)
4117                 blk_put_queue(q);
4118         return disk;
4119 }
4120 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4121
4122 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4123                 struct blk_mq_tag_set *set, struct request_queue *q,
4124                 int hctx_idx, int node)
4125 {
4126         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4127
4128         /* reuse dead hctx first */
4129         spin_lock(&q->unused_hctx_lock);
4130         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4131                 if (tmp->numa_node == node) {
4132                         hctx = tmp;
4133                         break;
4134                 }
4135         }
4136         if (hctx)
4137                 list_del_init(&hctx->hctx_list);
4138         spin_unlock(&q->unused_hctx_lock);
4139
4140         if (!hctx)
4141                 hctx = blk_mq_alloc_hctx(q, set, node);
4142         if (!hctx)
4143                 goto fail;
4144
4145         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4146                 goto free_hctx;
4147
4148         return hctx;
4149
4150  free_hctx:
4151         kobject_put(&hctx->kobj);
4152  fail:
4153         return NULL;
4154 }
4155
4156 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4157                                                 struct request_queue *q)
4158 {
4159         struct blk_mq_hw_ctx *hctx;
4160         unsigned long i, j;
4161
4162         /* protect against switching io scheduler  */
4163         mutex_lock(&q->sysfs_lock);
4164         for (i = 0; i < set->nr_hw_queues; i++) {
4165                 int old_node;
4166                 int node = blk_mq_get_hctx_node(set, i);
4167                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4168
4169                 if (old_hctx) {
4170                         old_node = old_hctx->numa_node;
4171                         blk_mq_exit_hctx(q, set, old_hctx, i);
4172                 }
4173
4174                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4175                         if (!old_hctx)
4176                                 break;
4177                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4178                                         node, old_node);
4179                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4180                         WARN_ON_ONCE(!hctx);
4181                 }
4182         }
4183         /*
4184          * Increasing nr_hw_queues fails. Free the newly allocated
4185          * hctxs and keep the previous q->nr_hw_queues.
4186          */
4187         if (i != set->nr_hw_queues) {
4188                 j = q->nr_hw_queues;
4189         } else {
4190                 j = i;
4191                 q->nr_hw_queues = set->nr_hw_queues;
4192         }
4193
4194         xa_for_each_start(&q->hctx_table, j, hctx, j)
4195                 blk_mq_exit_hctx(q, set, hctx, j);
4196         mutex_unlock(&q->sysfs_lock);
4197 }
4198
4199 static void blk_mq_update_poll_flag(struct request_queue *q)
4200 {
4201         struct blk_mq_tag_set *set = q->tag_set;
4202
4203         if (set->nr_maps > HCTX_TYPE_POLL &&
4204             set->map[HCTX_TYPE_POLL].nr_queues)
4205                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4206         else
4207                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4208 }
4209
4210 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4211                 struct request_queue *q)
4212 {
4213         /* mark the queue as mq asap */
4214         q->mq_ops = set->ops;
4215
4216         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4217                                              blk_mq_poll_stats_bkt,
4218                                              BLK_MQ_POLL_STATS_BKTS, q);
4219         if (!q->poll_cb)
4220                 goto err_exit;
4221
4222         if (blk_mq_alloc_ctxs(q))
4223                 goto err_poll;
4224
4225         /* init q->mq_kobj and sw queues' kobjects */
4226         blk_mq_sysfs_init(q);
4227
4228         INIT_LIST_HEAD(&q->unused_hctx_list);
4229         spin_lock_init(&q->unused_hctx_lock);
4230
4231         xa_init(&q->hctx_table);
4232
4233         blk_mq_realloc_hw_ctxs(set, q);
4234         if (!q->nr_hw_queues)
4235                 goto err_hctxs;
4236
4237         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4238         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4239
4240         q->tag_set = set;
4241
4242         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4243         blk_mq_update_poll_flag(q);
4244
4245         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4246         INIT_LIST_HEAD(&q->requeue_list);
4247         spin_lock_init(&q->requeue_lock);
4248
4249         q->nr_requests = set->queue_depth;
4250
4251         /*
4252          * Default to classic polling
4253          */
4254         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4255
4256         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4257         blk_mq_add_queue_tag_set(set, q);
4258         blk_mq_map_swqueue(q);
4259         return 0;
4260
4261 err_hctxs:
4262         blk_mq_release(q);
4263 err_poll:
4264         blk_stat_free_callback(q->poll_cb);
4265         q->poll_cb = NULL;
4266 err_exit:
4267         q->mq_ops = NULL;
4268         return -ENOMEM;
4269 }
4270 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4271
4272 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4273 void blk_mq_exit_queue(struct request_queue *q)
4274 {
4275         struct blk_mq_tag_set *set = q->tag_set;
4276
4277         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4278         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4279         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4280         blk_mq_del_queue_tag_set(q);
4281 }
4282
4283 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4284 {
4285         int i;
4286
4287         if (blk_mq_is_shared_tags(set->flags)) {
4288                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4289                                                 BLK_MQ_NO_HCTX_IDX,
4290                                                 set->queue_depth);
4291                 if (!set->shared_tags)
4292                         return -ENOMEM;
4293         }
4294
4295         for (i = 0; i < set->nr_hw_queues; i++) {
4296                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4297                         goto out_unwind;
4298                 cond_resched();
4299         }
4300
4301         return 0;
4302
4303 out_unwind:
4304         while (--i >= 0)
4305                 __blk_mq_free_map_and_rqs(set, i);
4306
4307         if (blk_mq_is_shared_tags(set->flags)) {
4308                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4309                                         BLK_MQ_NO_HCTX_IDX);
4310         }
4311
4312         return -ENOMEM;
4313 }
4314
4315 /*
4316  * Allocate the request maps associated with this tag_set. Note that this
4317  * may reduce the depth asked for, if memory is tight. set->queue_depth
4318  * will be updated to reflect the allocated depth.
4319  */
4320 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4321 {
4322         unsigned int depth;
4323         int err;
4324
4325         depth = set->queue_depth;
4326         do {
4327                 err = __blk_mq_alloc_rq_maps(set);
4328                 if (!err)
4329                         break;
4330
4331                 set->queue_depth >>= 1;
4332                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4333                         err = -ENOMEM;
4334                         break;
4335                 }
4336         } while (set->queue_depth);
4337
4338         if (!set->queue_depth || err) {
4339                 pr_err("blk-mq: failed to allocate request map\n");
4340                 return -ENOMEM;
4341         }
4342
4343         if (depth != set->queue_depth)
4344                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4345                                                 depth, set->queue_depth);
4346
4347         return 0;
4348 }
4349
4350 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4351 {
4352         /*
4353          * blk_mq_map_queues() and multiple .map_queues() implementations
4354          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4355          * number of hardware queues.
4356          */
4357         if (set->nr_maps == 1)
4358                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4359
4360         if (set->ops->map_queues && !is_kdump_kernel()) {
4361                 int i;
4362
4363                 /*
4364                  * transport .map_queues is usually done in the following
4365                  * way:
4366                  *
4367                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4368                  *      mask = get_cpu_mask(queue)
4369                  *      for_each_cpu(cpu, mask)
4370                  *              set->map[x].mq_map[cpu] = queue;
4371                  * }
4372                  *
4373                  * When we need to remap, the table has to be cleared for
4374                  * killing stale mapping since one CPU may not be mapped
4375                  * to any hw queue.
4376                  */
4377                 for (i = 0; i < set->nr_maps; i++)
4378                         blk_mq_clear_mq_map(&set->map[i]);
4379
4380                 set->ops->map_queues(set);
4381         } else {
4382                 BUG_ON(set->nr_maps > 1);
4383                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4384         }
4385 }
4386
4387 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4388                                        int new_nr_hw_queues)
4389 {
4390         struct blk_mq_tags **new_tags;
4391
4392         if (set->nr_hw_queues >= new_nr_hw_queues)
4393                 goto done;
4394
4395         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4396                                 GFP_KERNEL, set->numa_node);
4397         if (!new_tags)
4398                 return -ENOMEM;
4399
4400         if (set->tags)
4401                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4402                        sizeof(*set->tags));
4403         kfree(set->tags);
4404         set->tags = new_tags;
4405 done:
4406         set->nr_hw_queues = new_nr_hw_queues;
4407         return 0;
4408 }
4409
4410 /*
4411  * Alloc a tag set to be associated with one or more request queues.
4412  * May fail with EINVAL for various error conditions. May adjust the
4413  * requested depth down, if it's too large. In that case, the set
4414  * value will be stored in set->queue_depth.
4415  */
4416 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4417 {
4418         int i, ret;
4419
4420         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4421
4422         if (!set->nr_hw_queues)
4423                 return -EINVAL;
4424         if (!set->queue_depth)
4425                 return -EINVAL;
4426         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4427                 return -EINVAL;
4428
4429         if (!set->ops->queue_rq)
4430                 return -EINVAL;
4431
4432         if (!set->ops->get_budget ^ !set->ops->put_budget)
4433                 return -EINVAL;
4434
4435         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4436                 pr_info("blk-mq: reduced tag depth to %u\n",
4437                         BLK_MQ_MAX_DEPTH);
4438                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4439         }
4440
4441         if (!set->nr_maps)
4442                 set->nr_maps = 1;
4443         else if (set->nr_maps > HCTX_MAX_TYPES)
4444                 return -EINVAL;
4445
4446         /*
4447          * If a crashdump is active, then we are potentially in a very
4448          * memory constrained environment. Limit us to 1 queue and
4449          * 64 tags to prevent using too much memory.
4450          */
4451         if (is_kdump_kernel()) {
4452                 set->nr_hw_queues = 1;
4453                 set->nr_maps = 1;
4454                 set->queue_depth = min(64U, set->queue_depth);
4455         }
4456         /*
4457          * There is no use for more h/w queues than cpus if we just have
4458          * a single map
4459          */
4460         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4461                 set->nr_hw_queues = nr_cpu_ids;
4462
4463         if (set->flags & BLK_MQ_F_BLOCKING) {
4464                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4465                 if (!set->srcu)
4466                         return -ENOMEM;
4467                 ret = init_srcu_struct(set->srcu);
4468                 if (ret)
4469                         goto out_free_srcu;
4470         }
4471
4472         ret = -ENOMEM;
4473         set->tags = kcalloc_node(set->nr_hw_queues,
4474                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4475                                  set->numa_node);
4476         if (!set->tags)
4477                 goto out_cleanup_srcu;
4478
4479         for (i = 0; i < set->nr_maps; i++) {
4480                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4481                                                   sizeof(set->map[i].mq_map[0]),
4482                                                   GFP_KERNEL, set->numa_node);
4483                 if (!set->map[i].mq_map)
4484                         goto out_free_mq_map;
4485                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4486         }
4487
4488         blk_mq_update_queue_map(set);
4489
4490         ret = blk_mq_alloc_set_map_and_rqs(set);
4491         if (ret)
4492                 goto out_free_mq_map;
4493
4494         mutex_init(&set->tag_list_lock);
4495         INIT_LIST_HEAD(&set->tag_list);
4496
4497         return 0;
4498
4499 out_free_mq_map:
4500         for (i = 0; i < set->nr_maps; i++) {
4501                 kfree(set->map[i].mq_map);
4502                 set->map[i].mq_map = NULL;
4503         }
4504         kfree(set->tags);
4505         set->tags = NULL;
4506 out_cleanup_srcu:
4507         if (set->flags & BLK_MQ_F_BLOCKING)
4508                 cleanup_srcu_struct(set->srcu);
4509 out_free_srcu:
4510         if (set->flags & BLK_MQ_F_BLOCKING)
4511                 kfree(set->srcu);
4512         return ret;
4513 }
4514 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4515
4516 /* allocate and initialize a tagset for a simple single-queue device */
4517 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4518                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4519                 unsigned int set_flags)
4520 {
4521         memset(set, 0, sizeof(*set));
4522         set->ops = ops;
4523         set->nr_hw_queues = 1;
4524         set->nr_maps = 1;
4525         set->queue_depth = queue_depth;
4526         set->numa_node = NUMA_NO_NODE;
4527         set->flags = set_flags;
4528         return blk_mq_alloc_tag_set(set);
4529 }
4530 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4531
4532 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4533 {
4534         int i, j;
4535
4536         for (i = 0; i < set->nr_hw_queues; i++)
4537                 __blk_mq_free_map_and_rqs(set, i);
4538
4539         if (blk_mq_is_shared_tags(set->flags)) {
4540                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4541                                         BLK_MQ_NO_HCTX_IDX);
4542         }
4543
4544         for (j = 0; j < set->nr_maps; j++) {
4545                 kfree(set->map[j].mq_map);
4546                 set->map[j].mq_map = NULL;
4547         }
4548
4549         kfree(set->tags);
4550         set->tags = NULL;
4551         if (set->flags & BLK_MQ_F_BLOCKING) {
4552                 cleanup_srcu_struct(set->srcu);
4553                 kfree(set->srcu);
4554         }
4555 }
4556 EXPORT_SYMBOL(blk_mq_free_tag_set);
4557
4558 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4559 {
4560         struct blk_mq_tag_set *set = q->tag_set;
4561         struct blk_mq_hw_ctx *hctx;
4562         int ret;
4563         unsigned long i;
4564
4565         if (!set)
4566                 return -EINVAL;
4567
4568         if (q->nr_requests == nr)
4569                 return 0;
4570
4571         blk_mq_freeze_queue(q);
4572         blk_mq_quiesce_queue(q);
4573
4574         ret = 0;
4575         queue_for_each_hw_ctx(q, hctx, i) {
4576                 if (!hctx->tags)
4577                         continue;
4578                 /*
4579                  * If we're using an MQ scheduler, just update the scheduler
4580                  * queue depth. This is similar to what the old code would do.
4581                  */
4582                 if (hctx->sched_tags) {
4583                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4584                                                       nr, true);
4585                 } else {
4586                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4587                                                       false);
4588                 }
4589                 if (ret)
4590                         break;
4591                 if (q->elevator && q->elevator->type->ops.depth_updated)
4592                         q->elevator->type->ops.depth_updated(hctx);
4593         }
4594         if (!ret) {
4595                 q->nr_requests = nr;
4596                 if (blk_mq_is_shared_tags(set->flags)) {
4597                         if (q->elevator)
4598                                 blk_mq_tag_update_sched_shared_tags(q);
4599                         else
4600                                 blk_mq_tag_resize_shared_tags(set, nr);
4601                 }
4602         }
4603
4604         blk_mq_unquiesce_queue(q);
4605         blk_mq_unfreeze_queue(q);
4606
4607         return ret;
4608 }
4609
4610 /*
4611  * request_queue and elevator_type pair.
4612  * It is just used by __blk_mq_update_nr_hw_queues to cache
4613  * the elevator_type associated with a request_queue.
4614  */
4615 struct blk_mq_qe_pair {
4616         struct list_head node;
4617         struct request_queue *q;
4618         struct elevator_type *type;
4619 };
4620
4621 /*
4622  * Cache the elevator_type in qe pair list and switch the
4623  * io scheduler to 'none'
4624  */
4625 static bool blk_mq_elv_switch_none(struct list_head *head,
4626                 struct request_queue *q)
4627 {
4628         struct blk_mq_qe_pair *qe;
4629
4630         if (!q->elevator)
4631                 return true;
4632
4633         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4634         if (!qe)
4635                 return false;
4636
4637         /* q->elevator needs protection from ->sysfs_lock */
4638         mutex_lock(&q->sysfs_lock);
4639
4640         INIT_LIST_HEAD(&qe->node);
4641         qe->q = q;
4642         qe->type = q->elevator->type;
4643         /* keep a reference to the elevator module as we'll switch back */
4644         __elevator_get(qe->type);
4645         list_add(&qe->node, head);
4646         elevator_disable(q);
4647         mutex_unlock(&q->sysfs_lock);
4648
4649         return true;
4650 }
4651
4652 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4653                                                 struct request_queue *q)
4654 {
4655         struct blk_mq_qe_pair *qe;
4656
4657         list_for_each_entry(qe, head, node)
4658                 if (qe->q == q)
4659                         return qe;
4660
4661         return NULL;
4662 }
4663
4664 static void blk_mq_elv_switch_back(struct list_head *head,
4665                                   struct request_queue *q)
4666 {
4667         struct blk_mq_qe_pair *qe;
4668         struct elevator_type *t;
4669
4670         qe = blk_lookup_qe_pair(head, q);
4671         if (!qe)
4672                 return;
4673         t = qe->type;
4674         list_del(&qe->node);
4675         kfree(qe);
4676
4677         mutex_lock(&q->sysfs_lock);
4678         elevator_switch(q, t);
4679         /* drop the reference acquired in blk_mq_elv_switch_none */
4680         elevator_put(t);
4681         mutex_unlock(&q->sysfs_lock);
4682 }
4683
4684 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4685                                                         int nr_hw_queues)
4686 {
4687         struct request_queue *q;
4688         LIST_HEAD(head);
4689         int prev_nr_hw_queues;
4690
4691         lockdep_assert_held(&set->tag_list_lock);
4692
4693         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4694                 nr_hw_queues = nr_cpu_ids;
4695         if (nr_hw_queues < 1)
4696                 return;
4697         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4698                 return;
4699
4700         list_for_each_entry(q, &set->tag_list, tag_set_list)
4701                 blk_mq_freeze_queue(q);
4702         /*
4703          * Switch IO scheduler to 'none', cleaning up the data associated
4704          * with the previous scheduler. We will switch back once we are done
4705          * updating the new sw to hw queue mappings.
4706          */
4707         list_for_each_entry(q, &set->tag_list, tag_set_list)
4708                 if (!blk_mq_elv_switch_none(&head, q))
4709                         goto switch_back;
4710
4711         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4712                 blk_mq_debugfs_unregister_hctxs(q);
4713                 blk_mq_sysfs_unregister_hctxs(q);
4714         }
4715
4716         prev_nr_hw_queues = set->nr_hw_queues;
4717         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4718                 goto reregister;
4719
4720 fallback:
4721         blk_mq_update_queue_map(set);
4722         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4723                 blk_mq_realloc_hw_ctxs(set, q);
4724                 blk_mq_update_poll_flag(q);
4725                 if (q->nr_hw_queues != set->nr_hw_queues) {
4726                         int i = prev_nr_hw_queues;
4727
4728                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4729                                         nr_hw_queues, prev_nr_hw_queues);
4730                         for (; i < set->nr_hw_queues; i++)
4731                                 __blk_mq_free_map_and_rqs(set, i);
4732
4733                         set->nr_hw_queues = prev_nr_hw_queues;
4734                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4735                         goto fallback;
4736                 }
4737                 blk_mq_map_swqueue(q);
4738         }
4739
4740 reregister:
4741         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4742                 blk_mq_sysfs_register_hctxs(q);
4743                 blk_mq_debugfs_register_hctxs(q);
4744         }
4745
4746 switch_back:
4747         list_for_each_entry(q, &set->tag_list, tag_set_list)
4748                 blk_mq_elv_switch_back(&head, q);
4749
4750         list_for_each_entry(q, &set->tag_list, tag_set_list)
4751                 blk_mq_unfreeze_queue(q);
4752 }
4753
4754 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4755 {
4756         mutex_lock(&set->tag_list_lock);
4757         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4758         mutex_unlock(&set->tag_list_lock);
4759 }
4760 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4761
4762 /* Enable polling stats and return whether they were already enabled. */
4763 static bool blk_poll_stats_enable(struct request_queue *q)
4764 {
4765         if (q->poll_stat)
4766                 return true;
4767
4768         return blk_stats_alloc_enable(q);
4769 }
4770
4771 static void blk_mq_poll_stats_start(struct request_queue *q)
4772 {
4773         /*
4774          * We don't arm the callback if polling stats are not enabled or the
4775          * callback is already active.
4776          */
4777         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4778                 return;
4779
4780         blk_stat_activate_msecs(q->poll_cb, 100);
4781 }
4782
4783 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4784 {
4785         struct request_queue *q = cb->data;
4786         int bucket;
4787
4788         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4789                 if (cb->stat[bucket].nr_samples)
4790                         q->poll_stat[bucket] = cb->stat[bucket];
4791         }
4792 }
4793
4794 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4795                                        struct request *rq)
4796 {
4797         unsigned long ret = 0;
4798         int bucket;
4799
4800         /*
4801          * If stats collection isn't on, don't sleep but turn it on for
4802          * future users
4803          */
4804         if (!blk_poll_stats_enable(q))
4805                 return 0;
4806
4807         /*
4808          * As an optimistic guess, use half of the mean service time
4809          * for this type of request. We can (and should) make this smarter.
4810          * For instance, if the completion latencies are tight, we can
4811          * get closer than just half the mean. This is especially
4812          * important on devices where the completion latencies are longer
4813          * than ~10 usec. We do use the stats for the relevant IO size
4814          * if available which does lead to better estimates.
4815          */
4816         bucket = blk_mq_poll_stats_bkt(rq);
4817         if (bucket < 0)
4818                 return ret;
4819
4820         if (q->poll_stat[bucket].nr_samples)
4821                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4822
4823         return ret;
4824 }
4825
4826 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4827 {
4828         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4829         struct request *rq = blk_qc_to_rq(hctx, qc);
4830         struct hrtimer_sleeper hs;
4831         enum hrtimer_mode mode;
4832         unsigned int nsecs;
4833         ktime_t kt;
4834
4835         /*
4836          * If a request has completed on queue that uses an I/O scheduler, we
4837          * won't get back a request from blk_qc_to_rq.
4838          */
4839         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4840                 return false;
4841
4842         /*
4843          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4844          *
4845          *  0:  use half of prev avg
4846          * >0:  use this specific value
4847          */
4848         if (q->poll_nsec > 0)
4849                 nsecs = q->poll_nsec;
4850         else
4851                 nsecs = blk_mq_poll_nsecs(q, rq);
4852
4853         if (!nsecs)
4854                 return false;
4855
4856         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4857
4858         /*
4859          * This will be replaced with the stats tracking code, using
4860          * 'avg_completion_time / 2' as the pre-sleep target.
4861          */
4862         kt = nsecs;
4863
4864         mode = HRTIMER_MODE_REL;
4865         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4866         hrtimer_set_expires(&hs.timer, kt);
4867
4868         do {
4869                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4870                         break;
4871                 set_current_state(TASK_UNINTERRUPTIBLE);
4872                 hrtimer_sleeper_start_expires(&hs, mode);
4873                 if (hs.task)
4874                         io_schedule();
4875                 hrtimer_cancel(&hs.timer);
4876                 mode = HRTIMER_MODE_ABS;
4877         } while (hs.task && !signal_pending(current));
4878
4879         __set_current_state(TASK_RUNNING);
4880         destroy_hrtimer_on_stack(&hs.timer);
4881
4882         /*
4883          * If we sleep, have the caller restart the poll loop to reset the
4884          * state.  Like for the other success return cases, the caller is
4885          * responsible for checking if the IO completed.  If the IO isn't
4886          * complete, we'll get called again and will go straight to the busy
4887          * poll loop.
4888          */
4889         return true;
4890 }
4891
4892 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4893                                struct io_comp_batch *iob, unsigned int flags)
4894 {
4895         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4896         long state = get_current_state();
4897         int ret;
4898
4899         do {
4900                 ret = q->mq_ops->poll(hctx, iob);
4901                 if (ret > 0) {
4902                         __set_current_state(TASK_RUNNING);
4903                         return ret;
4904                 }
4905
4906                 if (signal_pending_state(state, current))
4907                         __set_current_state(TASK_RUNNING);
4908                 if (task_is_running(current))
4909                         return 1;
4910
4911                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4912                         break;
4913                 cpu_relax();
4914         } while (!need_resched());
4915
4916         __set_current_state(TASK_RUNNING);
4917         return 0;
4918 }
4919
4920 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4921                 unsigned int flags)
4922 {
4923         if (!(flags & BLK_POLL_NOSLEEP) &&
4924             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4925                 if (blk_mq_poll_hybrid(q, cookie))
4926                         return 1;
4927         }
4928         return blk_mq_poll_classic(q, cookie, iob, flags);
4929 }
4930
4931 unsigned int blk_mq_rq_cpu(struct request *rq)
4932 {
4933         return rq->mq_ctx->cpu;
4934 }
4935 EXPORT_SYMBOL(blk_mq_rq_cpu);
4936
4937 void blk_mq_cancel_work_sync(struct request_queue *q)
4938 {
4939         struct blk_mq_hw_ctx *hctx;
4940         unsigned long i;
4941
4942         cancel_delayed_work_sync(&q->requeue_work);
4943
4944         queue_for_each_hw_ctx(q, hctx, i)
4945                 cancel_delayed_work_sync(&hctx->run_work);
4946 }
4947
4948 static int __init blk_mq_init(void)
4949 {
4950         int i;
4951
4952         for_each_possible_cpu(i)
4953                 init_llist_head(&per_cpu(blk_cpu_done, i));
4954         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4955
4956         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4957                                   "block/softirq:dead", NULL,
4958                                   blk_softirq_cpu_dead);
4959         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4960                                 blk_mq_hctx_notify_dead);
4961         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4962                                 blk_mq_hctx_notify_online,
4963                                 blk_mq_hctx_notify_offline);
4964         return 0;
4965 }
4966 subsys_initcall(blk_mq_init);