Merge tag 'hyperv-fixes-signed-20211022' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51         int ddir, sectors, bucket;
52
53         ddir = rq_data_dir(rq);
54         sectors = blk_rq_stats_sectors(rq);
55
56         bucket = ddir + 2 * ilog2(sectors);
57
58         if (bucket < 0)
59                 return -1;
60         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63         return bucket;
64 }
65
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72         return !list_empty_careful(&hctx->dispatch) ||
73                 sbitmap_any_bit_set(&hctx->ctx_map) ||
74                         blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81                                      struct blk_mq_ctx *ctx)
82 {
83         const int bit = ctx->index_hw[hctx->type];
84
85         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86                 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90                                       struct blk_mq_ctx *ctx)
91 {
92         const int bit = ctx->index_hw[hctx->type];
93
94         sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98         struct block_device *part;
99         unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103                                   struct request *rq, void *priv,
104                                   bool reserved)
105 {
106         struct mq_inflight *mi = priv;
107
108         if ((!mi->part->bd_partno || rq->part == mi->part) &&
109             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110                 mi->inflight[rq_data_dir(rq)]++;
111
112         return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116                 struct block_device *part)
117 {
118         struct mq_inflight mi = { .part = part };
119
120         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122         return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126                 unsigned int inflight[2])
127 {
128         struct mq_inflight mi = { .part = part };
129
130         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131         inflight[0] = mi.inflight[0];
132         inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137         mutex_lock(&q->mq_freeze_lock);
138         if (++q->mq_freeze_depth == 1) {
139                 percpu_ref_kill(&q->q_usage_counter);
140                 mutex_unlock(&q->mq_freeze_lock);
141                 if (queue_is_mq(q))
142                         blk_mq_run_hw_queues(q, false);
143         } else {
144                 mutex_unlock(&q->mq_freeze_lock);
145         }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156                                      unsigned long timeout)
157 {
158         return wait_event_timeout(q->mq_freeze_wq,
159                                         percpu_ref_is_zero(&q->q_usage_counter),
160                                         timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * In the !blk_mq case we are only calling this to kill the
172          * q_usage_counter, otherwise this increases the freeze depth
173          * and waits for it to return to zero.  For this reason there is
174          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175          * exported to drivers as the only user for unfreeze is blk_mq.
176          */
177         blk_freeze_queue_start(q);
178         blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183         /*
184          * ...just an alias to keep freeze and unfreeze actions balanced
185          * in the blk_mq_* namespace
186          */
187         blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
192 {
193         mutex_lock(&q->mq_freeze_lock);
194         if (force_atomic)
195                 q->q_usage_counter.data->force_atomic = true;
196         q->mq_freeze_depth--;
197         WARN_ON_ONCE(q->mq_freeze_depth < 0);
198         if (!q->mq_freeze_depth) {
199                 percpu_ref_resurrect(&q->q_usage_counter);
200                 wake_up_all(&q->mq_freeze_wq);
201         }
202         mutex_unlock(&q->mq_freeze_lock);
203 }
204
205 void blk_mq_unfreeze_queue(struct request_queue *q)
206 {
207         __blk_mq_unfreeze_queue(q, false);
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213  * mpt3sas driver such that this function can be removed.
214  */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220
221 /**
222  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223  * @q: request queue.
224  *
225  * Note: this function does not prevent that the struct request end_io()
226  * callback function is invoked. Once this function is returned, we make
227  * sure no dispatch can happen until the queue is unquiesced via
228  * blk_mq_unquiesce_queue().
229  */
230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232         struct blk_mq_hw_ctx *hctx;
233         unsigned int i;
234         bool rcu = false;
235
236         blk_mq_quiesce_queue_nowait(q);
237
238         queue_for_each_hw_ctx(q, hctx, i) {
239                 if (hctx->flags & BLK_MQ_F_BLOCKING)
240                         synchronize_srcu(hctx->srcu);
241                 else
242                         rcu = true;
243         }
244         if (rcu)
245                 synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248
249 /*
250  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251  * @q: request queue.
252  *
253  * This function recovers queue into the state before quiescing
254  * which is done by blk_mq_quiesce_queue.
255  */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259
260         /* dispatch requests which are inserted during quiescing */
261         blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264
265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267         struct blk_mq_hw_ctx *hctx;
268         unsigned int i;
269
270         queue_for_each_hw_ctx(q, hctx, i)
271                 if (blk_mq_hw_queue_mapped(hctx))
272                         blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274
275 /*
276  * Only need start/end time stamping if we have iostat or
277  * blk stats enabled, or using an IO scheduler.
278  */
279 static inline bool blk_mq_need_time_stamp(struct request *rq)
280 {
281         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
282 }
283
284 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
285                 unsigned int tag, u64 alloc_time_ns)
286 {
287         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
288         struct request *rq = tags->static_rqs[tag];
289
290         if (data->q->elevator) {
291                 rq->tag = BLK_MQ_NO_TAG;
292                 rq->internal_tag = tag;
293         } else {
294                 rq->tag = tag;
295                 rq->internal_tag = BLK_MQ_NO_TAG;
296         }
297
298         /* csd/requeue_work/fifo_time is initialized before use */
299         rq->q = data->q;
300         rq->mq_ctx = data->ctx;
301         rq->mq_hctx = data->hctx;
302         rq->rq_flags = 0;
303         rq->cmd_flags = data->cmd_flags;
304         if (data->flags & BLK_MQ_REQ_PM)
305                 rq->rq_flags |= RQF_PM;
306         if (blk_queue_io_stat(data->q))
307                 rq->rq_flags |= RQF_IO_STAT;
308         INIT_LIST_HEAD(&rq->queuelist);
309         INIT_HLIST_NODE(&rq->hash);
310         RB_CLEAR_NODE(&rq->rb_node);
311         rq->rq_disk = NULL;
312         rq->part = NULL;
313 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
314         rq->alloc_time_ns = alloc_time_ns;
315 #endif
316         if (blk_mq_need_time_stamp(rq))
317                 rq->start_time_ns = ktime_get_ns();
318         else
319                 rq->start_time_ns = 0;
320         rq->io_start_time_ns = 0;
321         rq->stats_sectors = 0;
322         rq->nr_phys_segments = 0;
323 #if defined(CONFIG_BLK_DEV_INTEGRITY)
324         rq->nr_integrity_segments = 0;
325 #endif
326         blk_crypto_rq_set_defaults(rq);
327         /* tag was already set */
328         WRITE_ONCE(rq->deadline, 0);
329
330         rq->timeout = 0;
331
332         rq->end_io = NULL;
333         rq->end_io_data = NULL;
334
335         data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
336         refcount_set(&rq->ref, 1);
337
338         if (!op_is_flush(data->cmd_flags)) {
339                 struct elevator_queue *e = data->q->elevator;
340
341                 rq->elv.icq = NULL;
342                 if (e && e->type->ops.prepare_request) {
343                         if (e->type->icq_cache)
344                                 blk_mq_sched_assign_ioc(rq);
345
346                         e->type->ops.prepare_request(rq);
347                         rq->rq_flags |= RQF_ELVPRIV;
348                 }
349         }
350
351         data->hctx->queued++;
352         return rq;
353 }
354
355 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
356 {
357         struct request_queue *q = data->q;
358         struct elevator_queue *e = q->elevator;
359         u64 alloc_time_ns = 0;
360         unsigned int tag;
361
362         /* alloc_time includes depth and tag waits */
363         if (blk_queue_rq_alloc_time(q))
364                 alloc_time_ns = ktime_get_ns();
365
366         if (data->cmd_flags & REQ_NOWAIT)
367                 data->flags |= BLK_MQ_REQ_NOWAIT;
368
369         if (e) {
370                 /*
371                  * Flush/passthrough requests are special and go directly to the
372                  * dispatch list. Don't include reserved tags in the
373                  * limiting, as it isn't useful.
374                  */
375                 if (!op_is_flush(data->cmd_flags) &&
376                     !blk_op_is_passthrough(data->cmd_flags) &&
377                     e->type->ops.limit_depth &&
378                     !(data->flags & BLK_MQ_REQ_RESERVED))
379                         e->type->ops.limit_depth(data->cmd_flags, data);
380         }
381
382 retry:
383         data->ctx = blk_mq_get_ctx(q);
384         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
385         if (!e)
386                 blk_mq_tag_busy(data->hctx);
387
388         /*
389          * Waiting allocations only fail because of an inactive hctx.  In that
390          * case just retry the hctx assignment and tag allocation as CPU hotplug
391          * should have migrated us to an online CPU by now.
392          */
393         tag = blk_mq_get_tag(data);
394         if (tag == BLK_MQ_NO_TAG) {
395                 if (data->flags & BLK_MQ_REQ_NOWAIT)
396                         return NULL;
397
398                 /*
399                  * Give up the CPU and sleep for a random short time to ensure
400                  * that thread using a realtime scheduling class are migrated
401                  * off the CPU, and thus off the hctx that is going away.
402                  */
403                 msleep(3);
404                 goto retry;
405         }
406         return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
407 }
408
409 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
410                 blk_mq_req_flags_t flags)
411 {
412         struct blk_mq_alloc_data data = {
413                 .q              = q,
414                 .flags          = flags,
415                 .cmd_flags      = op,
416         };
417         struct request *rq;
418         int ret;
419
420         ret = blk_queue_enter(q, flags);
421         if (ret)
422                 return ERR_PTR(ret);
423
424         rq = __blk_mq_alloc_request(&data);
425         if (!rq)
426                 goto out_queue_exit;
427         rq->__data_len = 0;
428         rq->__sector = (sector_t) -1;
429         rq->bio = rq->biotail = NULL;
430         return rq;
431 out_queue_exit:
432         blk_queue_exit(q);
433         return ERR_PTR(-EWOULDBLOCK);
434 }
435 EXPORT_SYMBOL(blk_mq_alloc_request);
436
437 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
438         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
439 {
440         struct blk_mq_alloc_data data = {
441                 .q              = q,
442                 .flags          = flags,
443                 .cmd_flags      = op,
444         };
445         u64 alloc_time_ns = 0;
446         unsigned int cpu;
447         unsigned int tag;
448         int ret;
449
450         /* alloc_time includes depth and tag waits */
451         if (blk_queue_rq_alloc_time(q))
452                 alloc_time_ns = ktime_get_ns();
453
454         /*
455          * If the tag allocator sleeps we could get an allocation for a
456          * different hardware context.  No need to complicate the low level
457          * allocator for this for the rare use case of a command tied to
458          * a specific queue.
459          */
460         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
461                 return ERR_PTR(-EINVAL);
462
463         if (hctx_idx >= q->nr_hw_queues)
464                 return ERR_PTR(-EIO);
465
466         ret = blk_queue_enter(q, flags);
467         if (ret)
468                 return ERR_PTR(ret);
469
470         /*
471          * Check if the hardware context is actually mapped to anything.
472          * If not tell the caller that it should skip this queue.
473          */
474         ret = -EXDEV;
475         data.hctx = q->queue_hw_ctx[hctx_idx];
476         if (!blk_mq_hw_queue_mapped(data.hctx))
477                 goto out_queue_exit;
478         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
479         data.ctx = __blk_mq_get_ctx(q, cpu);
480
481         if (!q->elevator)
482                 blk_mq_tag_busy(data.hctx);
483
484         ret = -EWOULDBLOCK;
485         tag = blk_mq_get_tag(&data);
486         if (tag == BLK_MQ_NO_TAG)
487                 goto out_queue_exit;
488         return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
489
490 out_queue_exit:
491         blk_queue_exit(q);
492         return ERR_PTR(ret);
493 }
494 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
495
496 static void __blk_mq_free_request(struct request *rq)
497 {
498         struct request_queue *q = rq->q;
499         struct blk_mq_ctx *ctx = rq->mq_ctx;
500         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
501         const int sched_tag = rq->internal_tag;
502
503         blk_crypto_free_request(rq);
504         blk_pm_mark_last_busy(rq);
505         rq->mq_hctx = NULL;
506         if (rq->tag != BLK_MQ_NO_TAG)
507                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
508         if (sched_tag != BLK_MQ_NO_TAG)
509                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
510         blk_mq_sched_restart(hctx);
511         blk_queue_exit(q);
512 }
513
514 void blk_mq_free_request(struct request *rq)
515 {
516         struct request_queue *q = rq->q;
517         struct elevator_queue *e = q->elevator;
518         struct blk_mq_ctx *ctx = rq->mq_ctx;
519         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
520
521         if (rq->rq_flags & RQF_ELVPRIV) {
522                 if (e && e->type->ops.finish_request)
523                         e->type->ops.finish_request(rq);
524                 if (rq->elv.icq) {
525                         put_io_context(rq->elv.icq->ioc);
526                         rq->elv.icq = NULL;
527                 }
528         }
529
530         ctx->rq_completed[rq_is_sync(rq)]++;
531         if (rq->rq_flags & RQF_MQ_INFLIGHT)
532                 __blk_mq_dec_active_requests(hctx);
533
534         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
535                 laptop_io_completion(q->disk->bdi);
536
537         rq_qos_done(q, rq);
538
539         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
540         if (refcount_dec_and_test(&rq->ref))
541                 __blk_mq_free_request(rq);
542 }
543 EXPORT_SYMBOL_GPL(blk_mq_free_request);
544
545 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
546 {
547         u64 now = 0;
548
549         if (blk_mq_need_time_stamp(rq))
550                 now = ktime_get_ns();
551
552         if (rq->rq_flags & RQF_STATS) {
553                 blk_mq_poll_stats_start(rq->q);
554                 blk_stat_add(rq, now);
555         }
556
557         blk_mq_sched_completed_request(rq, now);
558
559         blk_account_io_done(rq, now);
560
561         if (rq->end_io) {
562                 rq_qos_done(rq->q, rq);
563                 rq->end_io(rq, error);
564         } else {
565                 blk_mq_free_request(rq);
566         }
567 }
568 EXPORT_SYMBOL(__blk_mq_end_request);
569
570 void blk_mq_end_request(struct request *rq, blk_status_t error)
571 {
572         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
573                 BUG();
574         __blk_mq_end_request(rq, error);
575 }
576 EXPORT_SYMBOL(blk_mq_end_request);
577
578 static void blk_complete_reqs(struct llist_head *list)
579 {
580         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
581         struct request *rq, *next;
582
583         llist_for_each_entry_safe(rq, next, entry, ipi_list)
584                 rq->q->mq_ops->complete(rq);
585 }
586
587 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
588 {
589         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
590 }
591
592 static int blk_softirq_cpu_dead(unsigned int cpu)
593 {
594         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
595         return 0;
596 }
597
598 static void __blk_mq_complete_request_remote(void *data)
599 {
600         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
601 }
602
603 static inline bool blk_mq_complete_need_ipi(struct request *rq)
604 {
605         int cpu = raw_smp_processor_id();
606
607         if (!IS_ENABLED(CONFIG_SMP) ||
608             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
609                 return false;
610         /*
611          * With force threaded interrupts enabled, raising softirq from an SMP
612          * function call will always result in waking the ksoftirqd thread.
613          * This is probably worse than completing the request on a different
614          * cache domain.
615          */
616         if (force_irqthreads())
617                 return false;
618
619         /* same CPU or cache domain?  Complete locally */
620         if (cpu == rq->mq_ctx->cpu ||
621             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
622              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
623                 return false;
624
625         /* don't try to IPI to an offline CPU */
626         return cpu_online(rq->mq_ctx->cpu);
627 }
628
629 static void blk_mq_complete_send_ipi(struct request *rq)
630 {
631         struct llist_head *list;
632         unsigned int cpu;
633
634         cpu = rq->mq_ctx->cpu;
635         list = &per_cpu(blk_cpu_done, cpu);
636         if (llist_add(&rq->ipi_list, list)) {
637                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
638                 smp_call_function_single_async(cpu, &rq->csd);
639         }
640 }
641
642 static void blk_mq_raise_softirq(struct request *rq)
643 {
644         struct llist_head *list;
645
646         preempt_disable();
647         list = this_cpu_ptr(&blk_cpu_done);
648         if (llist_add(&rq->ipi_list, list))
649                 raise_softirq(BLOCK_SOFTIRQ);
650         preempt_enable();
651 }
652
653 bool blk_mq_complete_request_remote(struct request *rq)
654 {
655         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
656
657         /*
658          * For a polled request, always complete locallly, it's pointless
659          * to redirect the completion.
660          */
661         if (rq->cmd_flags & REQ_HIPRI)
662                 return false;
663
664         if (blk_mq_complete_need_ipi(rq)) {
665                 blk_mq_complete_send_ipi(rq);
666                 return true;
667         }
668
669         if (rq->q->nr_hw_queues == 1) {
670                 blk_mq_raise_softirq(rq);
671                 return true;
672         }
673         return false;
674 }
675 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
676
677 /**
678  * blk_mq_complete_request - end I/O on a request
679  * @rq:         the request being processed
680  *
681  * Description:
682  *      Complete a request by scheduling the ->complete_rq operation.
683  **/
684 void blk_mq_complete_request(struct request *rq)
685 {
686         if (!blk_mq_complete_request_remote(rq))
687                 rq->q->mq_ops->complete(rq);
688 }
689 EXPORT_SYMBOL(blk_mq_complete_request);
690
691 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
692         __releases(hctx->srcu)
693 {
694         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
695                 rcu_read_unlock();
696         else
697                 srcu_read_unlock(hctx->srcu, srcu_idx);
698 }
699
700 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
701         __acquires(hctx->srcu)
702 {
703         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
704                 /* shut up gcc false positive */
705                 *srcu_idx = 0;
706                 rcu_read_lock();
707         } else
708                 *srcu_idx = srcu_read_lock(hctx->srcu);
709 }
710
711 /**
712  * blk_mq_start_request - Start processing a request
713  * @rq: Pointer to request to be started
714  *
715  * Function used by device drivers to notify the block layer that a request
716  * is going to be processed now, so blk layer can do proper initializations
717  * such as starting the timeout timer.
718  */
719 void blk_mq_start_request(struct request *rq)
720 {
721         struct request_queue *q = rq->q;
722
723         trace_block_rq_issue(rq);
724
725         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
726                 rq->io_start_time_ns = ktime_get_ns();
727                 rq->stats_sectors = blk_rq_sectors(rq);
728                 rq->rq_flags |= RQF_STATS;
729                 rq_qos_issue(q, rq);
730         }
731
732         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
733
734         blk_add_timer(rq);
735         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
736
737 #ifdef CONFIG_BLK_DEV_INTEGRITY
738         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
739                 q->integrity.profile->prepare_fn(rq);
740 #endif
741 }
742 EXPORT_SYMBOL(blk_mq_start_request);
743
744 static void __blk_mq_requeue_request(struct request *rq)
745 {
746         struct request_queue *q = rq->q;
747
748         blk_mq_put_driver_tag(rq);
749
750         trace_block_rq_requeue(rq);
751         rq_qos_requeue(q, rq);
752
753         if (blk_mq_request_started(rq)) {
754                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
755                 rq->rq_flags &= ~RQF_TIMED_OUT;
756         }
757 }
758
759 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
760 {
761         __blk_mq_requeue_request(rq);
762
763         /* this request will be re-inserted to io scheduler queue */
764         blk_mq_sched_requeue_request(rq);
765
766         BUG_ON(!list_empty(&rq->queuelist));
767         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
768 }
769 EXPORT_SYMBOL(blk_mq_requeue_request);
770
771 static void blk_mq_requeue_work(struct work_struct *work)
772 {
773         struct request_queue *q =
774                 container_of(work, struct request_queue, requeue_work.work);
775         LIST_HEAD(rq_list);
776         struct request *rq, *next;
777
778         spin_lock_irq(&q->requeue_lock);
779         list_splice_init(&q->requeue_list, &rq_list);
780         spin_unlock_irq(&q->requeue_lock);
781
782         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
783                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
784                         continue;
785
786                 rq->rq_flags &= ~RQF_SOFTBARRIER;
787                 list_del_init(&rq->queuelist);
788                 /*
789                  * If RQF_DONTPREP, rq has contained some driver specific
790                  * data, so insert it to hctx dispatch list to avoid any
791                  * merge.
792                  */
793                 if (rq->rq_flags & RQF_DONTPREP)
794                         blk_mq_request_bypass_insert(rq, false, false);
795                 else
796                         blk_mq_sched_insert_request(rq, true, false, false);
797         }
798
799         while (!list_empty(&rq_list)) {
800                 rq = list_entry(rq_list.next, struct request, queuelist);
801                 list_del_init(&rq->queuelist);
802                 blk_mq_sched_insert_request(rq, false, false, false);
803         }
804
805         blk_mq_run_hw_queues(q, false);
806 }
807
808 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
809                                 bool kick_requeue_list)
810 {
811         struct request_queue *q = rq->q;
812         unsigned long flags;
813
814         /*
815          * We abuse this flag that is otherwise used by the I/O scheduler to
816          * request head insertion from the workqueue.
817          */
818         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
819
820         spin_lock_irqsave(&q->requeue_lock, flags);
821         if (at_head) {
822                 rq->rq_flags |= RQF_SOFTBARRIER;
823                 list_add(&rq->queuelist, &q->requeue_list);
824         } else {
825                 list_add_tail(&rq->queuelist, &q->requeue_list);
826         }
827         spin_unlock_irqrestore(&q->requeue_lock, flags);
828
829         if (kick_requeue_list)
830                 blk_mq_kick_requeue_list(q);
831 }
832
833 void blk_mq_kick_requeue_list(struct request_queue *q)
834 {
835         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
836 }
837 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
838
839 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
840                                     unsigned long msecs)
841 {
842         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
843                                     msecs_to_jiffies(msecs));
844 }
845 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
846
847 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
848 {
849         if (tag < tags->nr_tags) {
850                 prefetch(tags->rqs[tag]);
851                 return tags->rqs[tag];
852         }
853
854         return NULL;
855 }
856 EXPORT_SYMBOL(blk_mq_tag_to_rq);
857
858 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
859                                void *priv, bool reserved)
860 {
861         /*
862          * If we find a request that isn't idle and the queue matches,
863          * we know the queue is busy. Return false to stop the iteration.
864          */
865         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
866                 bool *busy = priv;
867
868                 *busy = true;
869                 return false;
870         }
871
872         return true;
873 }
874
875 bool blk_mq_queue_inflight(struct request_queue *q)
876 {
877         bool busy = false;
878
879         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
880         return busy;
881 }
882 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
883
884 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
885 {
886         req->rq_flags |= RQF_TIMED_OUT;
887         if (req->q->mq_ops->timeout) {
888                 enum blk_eh_timer_return ret;
889
890                 ret = req->q->mq_ops->timeout(req, reserved);
891                 if (ret == BLK_EH_DONE)
892                         return;
893                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
894         }
895
896         blk_add_timer(req);
897 }
898
899 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
900 {
901         unsigned long deadline;
902
903         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
904                 return false;
905         if (rq->rq_flags & RQF_TIMED_OUT)
906                 return false;
907
908         deadline = READ_ONCE(rq->deadline);
909         if (time_after_eq(jiffies, deadline))
910                 return true;
911
912         if (*next == 0)
913                 *next = deadline;
914         else if (time_after(*next, deadline))
915                 *next = deadline;
916         return false;
917 }
918
919 void blk_mq_put_rq_ref(struct request *rq)
920 {
921         if (is_flush_rq(rq))
922                 rq->end_io(rq, 0);
923         else if (refcount_dec_and_test(&rq->ref))
924                 __blk_mq_free_request(rq);
925 }
926
927 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
928                 struct request *rq, void *priv, bool reserved)
929 {
930         unsigned long *next = priv;
931
932         /*
933          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
934          * be reallocated underneath the timeout handler's processing, then
935          * the expire check is reliable. If the request is not expired, then
936          * it was completed and reallocated as a new request after returning
937          * from blk_mq_check_expired().
938          */
939         if (blk_mq_req_expired(rq, next))
940                 blk_mq_rq_timed_out(rq, reserved);
941         return true;
942 }
943
944 static void blk_mq_timeout_work(struct work_struct *work)
945 {
946         struct request_queue *q =
947                 container_of(work, struct request_queue, timeout_work);
948         unsigned long next = 0;
949         struct blk_mq_hw_ctx *hctx;
950         int i;
951
952         /* A deadlock might occur if a request is stuck requiring a
953          * timeout at the same time a queue freeze is waiting
954          * completion, since the timeout code would not be able to
955          * acquire the queue reference here.
956          *
957          * That's why we don't use blk_queue_enter here; instead, we use
958          * percpu_ref_tryget directly, because we need to be able to
959          * obtain a reference even in the short window between the queue
960          * starting to freeze, by dropping the first reference in
961          * blk_freeze_queue_start, and the moment the last request is
962          * consumed, marked by the instant q_usage_counter reaches
963          * zero.
964          */
965         if (!percpu_ref_tryget(&q->q_usage_counter))
966                 return;
967
968         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
969
970         if (next != 0) {
971                 mod_timer(&q->timeout, next);
972         } else {
973                 /*
974                  * Request timeouts are handled as a forward rolling timer. If
975                  * we end up here it means that no requests are pending and
976                  * also that no request has been pending for a while. Mark
977                  * each hctx as idle.
978                  */
979                 queue_for_each_hw_ctx(q, hctx, i) {
980                         /* the hctx may be unmapped, so check it here */
981                         if (blk_mq_hw_queue_mapped(hctx))
982                                 blk_mq_tag_idle(hctx);
983                 }
984         }
985         blk_queue_exit(q);
986 }
987
988 struct flush_busy_ctx_data {
989         struct blk_mq_hw_ctx *hctx;
990         struct list_head *list;
991 };
992
993 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
994 {
995         struct flush_busy_ctx_data *flush_data = data;
996         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
997         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
998         enum hctx_type type = hctx->type;
999
1000         spin_lock(&ctx->lock);
1001         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1002         sbitmap_clear_bit(sb, bitnr);
1003         spin_unlock(&ctx->lock);
1004         return true;
1005 }
1006
1007 /*
1008  * Process software queues that have been marked busy, splicing them
1009  * to the for-dispatch
1010  */
1011 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1012 {
1013         struct flush_busy_ctx_data data = {
1014                 .hctx = hctx,
1015                 .list = list,
1016         };
1017
1018         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1019 }
1020 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1021
1022 struct dispatch_rq_data {
1023         struct blk_mq_hw_ctx *hctx;
1024         struct request *rq;
1025 };
1026
1027 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1028                 void *data)
1029 {
1030         struct dispatch_rq_data *dispatch_data = data;
1031         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1032         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1033         enum hctx_type type = hctx->type;
1034
1035         spin_lock(&ctx->lock);
1036         if (!list_empty(&ctx->rq_lists[type])) {
1037                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1038                 list_del_init(&dispatch_data->rq->queuelist);
1039                 if (list_empty(&ctx->rq_lists[type]))
1040                         sbitmap_clear_bit(sb, bitnr);
1041         }
1042         spin_unlock(&ctx->lock);
1043
1044         return !dispatch_data->rq;
1045 }
1046
1047 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1048                                         struct blk_mq_ctx *start)
1049 {
1050         unsigned off = start ? start->index_hw[hctx->type] : 0;
1051         struct dispatch_rq_data data = {
1052                 .hctx = hctx,
1053                 .rq   = NULL,
1054         };
1055
1056         __sbitmap_for_each_set(&hctx->ctx_map, off,
1057                                dispatch_rq_from_ctx, &data);
1058
1059         return data.rq;
1060 }
1061
1062 static inline unsigned int queued_to_index(unsigned int queued)
1063 {
1064         if (!queued)
1065                 return 0;
1066
1067         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1068 }
1069
1070 static bool __blk_mq_get_driver_tag(struct request *rq)
1071 {
1072         struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1073         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1074         int tag;
1075
1076         blk_mq_tag_busy(rq->mq_hctx);
1077
1078         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1079                 bt = rq->mq_hctx->tags->breserved_tags;
1080                 tag_offset = 0;
1081         } else {
1082                 if (!hctx_may_queue(rq->mq_hctx, bt))
1083                         return false;
1084         }
1085
1086         tag = __sbitmap_queue_get(bt);
1087         if (tag == BLK_MQ_NO_TAG)
1088                 return false;
1089
1090         rq->tag = tag + tag_offset;
1091         return true;
1092 }
1093
1094 bool blk_mq_get_driver_tag(struct request *rq)
1095 {
1096         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1097
1098         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1099                 return false;
1100
1101         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1102                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1103                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1104                 __blk_mq_inc_active_requests(hctx);
1105         }
1106         hctx->tags->rqs[rq->tag] = rq;
1107         return true;
1108 }
1109
1110 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1111                                 int flags, void *key)
1112 {
1113         struct blk_mq_hw_ctx *hctx;
1114
1115         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1116
1117         spin_lock(&hctx->dispatch_wait_lock);
1118         if (!list_empty(&wait->entry)) {
1119                 struct sbitmap_queue *sbq;
1120
1121                 list_del_init(&wait->entry);
1122                 sbq = hctx->tags->bitmap_tags;
1123                 atomic_dec(&sbq->ws_active);
1124         }
1125         spin_unlock(&hctx->dispatch_wait_lock);
1126
1127         blk_mq_run_hw_queue(hctx, true);
1128         return 1;
1129 }
1130
1131 /*
1132  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1133  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1134  * restart. For both cases, take care to check the condition again after
1135  * marking us as waiting.
1136  */
1137 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1138                                  struct request *rq)
1139 {
1140         struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1141         struct wait_queue_head *wq;
1142         wait_queue_entry_t *wait;
1143         bool ret;
1144
1145         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1146                 blk_mq_sched_mark_restart_hctx(hctx);
1147
1148                 /*
1149                  * It's possible that a tag was freed in the window between the
1150                  * allocation failure and adding the hardware queue to the wait
1151                  * queue.
1152                  *
1153                  * Don't clear RESTART here, someone else could have set it.
1154                  * At most this will cost an extra queue run.
1155                  */
1156                 return blk_mq_get_driver_tag(rq);
1157         }
1158
1159         wait = &hctx->dispatch_wait;
1160         if (!list_empty_careful(&wait->entry))
1161                 return false;
1162
1163         wq = &bt_wait_ptr(sbq, hctx)->wait;
1164
1165         spin_lock_irq(&wq->lock);
1166         spin_lock(&hctx->dispatch_wait_lock);
1167         if (!list_empty(&wait->entry)) {
1168                 spin_unlock(&hctx->dispatch_wait_lock);
1169                 spin_unlock_irq(&wq->lock);
1170                 return false;
1171         }
1172
1173         atomic_inc(&sbq->ws_active);
1174         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1175         __add_wait_queue(wq, wait);
1176
1177         /*
1178          * It's possible that a tag was freed in the window between the
1179          * allocation failure and adding the hardware queue to the wait
1180          * queue.
1181          */
1182         ret = blk_mq_get_driver_tag(rq);
1183         if (!ret) {
1184                 spin_unlock(&hctx->dispatch_wait_lock);
1185                 spin_unlock_irq(&wq->lock);
1186                 return false;
1187         }
1188
1189         /*
1190          * We got a tag, remove ourselves from the wait queue to ensure
1191          * someone else gets the wakeup.
1192          */
1193         list_del_init(&wait->entry);
1194         atomic_dec(&sbq->ws_active);
1195         spin_unlock(&hctx->dispatch_wait_lock);
1196         spin_unlock_irq(&wq->lock);
1197
1198         return true;
1199 }
1200
1201 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1202 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1203 /*
1204  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1205  * - EWMA is one simple way to compute running average value
1206  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1207  * - take 4 as factor for avoiding to get too small(0) result, and this
1208  *   factor doesn't matter because EWMA decreases exponentially
1209  */
1210 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1211 {
1212         unsigned int ewma;
1213
1214         ewma = hctx->dispatch_busy;
1215
1216         if (!ewma && !busy)
1217                 return;
1218
1219         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1220         if (busy)
1221                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1222         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1223
1224         hctx->dispatch_busy = ewma;
1225 }
1226
1227 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1228
1229 static void blk_mq_handle_dev_resource(struct request *rq,
1230                                        struct list_head *list)
1231 {
1232         struct request *next =
1233                 list_first_entry_or_null(list, struct request, queuelist);
1234
1235         /*
1236          * If an I/O scheduler has been configured and we got a driver tag for
1237          * the next request already, free it.
1238          */
1239         if (next)
1240                 blk_mq_put_driver_tag(next);
1241
1242         list_add(&rq->queuelist, list);
1243         __blk_mq_requeue_request(rq);
1244 }
1245
1246 static void blk_mq_handle_zone_resource(struct request *rq,
1247                                         struct list_head *zone_list)
1248 {
1249         /*
1250          * If we end up here it is because we cannot dispatch a request to a
1251          * specific zone due to LLD level zone-write locking or other zone
1252          * related resource not being available. In this case, set the request
1253          * aside in zone_list for retrying it later.
1254          */
1255         list_add(&rq->queuelist, zone_list);
1256         __blk_mq_requeue_request(rq);
1257 }
1258
1259 enum prep_dispatch {
1260         PREP_DISPATCH_OK,
1261         PREP_DISPATCH_NO_TAG,
1262         PREP_DISPATCH_NO_BUDGET,
1263 };
1264
1265 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1266                                                   bool need_budget)
1267 {
1268         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1269         int budget_token = -1;
1270
1271         if (need_budget) {
1272                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1273                 if (budget_token < 0) {
1274                         blk_mq_put_driver_tag(rq);
1275                         return PREP_DISPATCH_NO_BUDGET;
1276                 }
1277                 blk_mq_set_rq_budget_token(rq, budget_token);
1278         }
1279
1280         if (!blk_mq_get_driver_tag(rq)) {
1281                 /*
1282                  * The initial allocation attempt failed, so we need to
1283                  * rerun the hardware queue when a tag is freed. The
1284                  * waitqueue takes care of that. If the queue is run
1285                  * before we add this entry back on the dispatch list,
1286                  * we'll re-run it below.
1287                  */
1288                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1289                         /*
1290                          * All budgets not got from this function will be put
1291                          * together during handling partial dispatch
1292                          */
1293                         if (need_budget)
1294                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1295                         return PREP_DISPATCH_NO_TAG;
1296                 }
1297         }
1298
1299         return PREP_DISPATCH_OK;
1300 }
1301
1302 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1303 static void blk_mq_release_budgets(struct request_queue *q,
1304                 struct list_head *list)
1305 {
1306         struct request *rq;
1307
1308         list_for_each_entry(rq, list, queuelist) {
1309                 int budget_token = blk_mq_get_rq_budget_token(rq);
1310
1311                 if (budget_token >= 0)
1312                         blk_mq_put_dispatch_budget(q, budget_token);
1313         }
1314 }
1315
1316 /*
1317  * Returns true if we did some work AND can potentially do more.
1318  */
1319 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1320                              unsigned int nr_budgets)
1321 {
1322         enum prep_dispatch prep;
1323         struct request_queue *q = hctx->queue;
1324         struct request *rq, *nxt;
1325         int errors, queued;
1326         blk_status_t ret = BLK_STS_OK;
1327         LIST_HEAD(zone_list);
1328
1329         if (list_empty(list))
1330                 return false;
1331
1332         /*
1333          * Now process all the entries, sending them to the driver.
1334          */
1335         errors = queued = 0;
1336         do {
1337                 struct blk_mq_queue_data bd;
1338
1339                 rq = list_first_entry(list, struct request, queuelist);
1340
1341                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1342                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1343                 if (prep != PREP_DISPATCH_OK)
1344                         break;
1345
1346                 list_del_init(&rq->queuelist);
1347
1348                 bd.rq = rq;
1349
1350                 /*
1351                  * Flag last if we have no more requests, or if we have more
1352                  * but can't assign a driver tag to it.
1353                  */
1354                 if (list_empty(list))
1355                         bd.last = true;
1356                 else {
1357                         nxt = list_first_entry(list, struct request, queuelist);
1358                         bd.last = !blk_mq_get_driver_tag(nxt);
1359                 }
1360
1361                 /*
1362                  * once the request is queued to lld, no need to cover the
1363                  * budget any more
1364                  */
1365                 if (nr_budgets)
1366                         nr_budgets--;
1367                 ret = q->mq_ops->queue_rq(hctx, &bd);
1368                 switch (ret) {
1369                 case BLK_STS_OK:
1370                         queued++;
1371                         break;
1372                 case BLK_STS_RESOURCE:
1373                 case BLK_STS_DEV_RESOURCE:
1374                         blk_mq_handle_dev_resource(rq, list);
1375                         goto out;
1376                 case BLK_STS_ZONE_RESOURCE:
1377                         /*
1378                          * Move the request to zone_list and keep going through
1379                          * the dispatch list to find more requests the drive can
1380                          * accept.
1381                          */
1382                         blk_mq_handle_zone_resource(rq, &zone_list);
1383                         break;
1384                 default:
1385                         errors++;
1386                         blk_mq_end_request(rq, ret);
1387                 }
1388         } while (!list_empty(list));
1389 out:
1390         if (!list_empty(&zone_list))
1391                 list_splice_tail_init(&zone_list, list);
1392
1393         hctx->dispatched[queued_to_index(queued)]++;
1394
1395         /* If we didn't flush the entire list, we could have told the driver
1396          * there was more coming, but that turned out to be a lie.
1397          */
1398         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1399                 q->mq_ops->commit_rqs(hctx);
1400         /*
1401          * Any items that need requeuing? Stuff them into hctx->dispatch,
1402          * that is where we will continue on next queue run.
1403          */
1404         if (!list_empty(list)) {
1405                 bool needs_restart;
1406                 /* For non-shared tags, the RESTART check will suffice */
1407                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1408                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1409                 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1410
1411                 if (nr_budgets)
1412                         blk_mq_release_budgets(q, list);
1413
1414                 spin_lock(&hctx->lock);
1415                 list_splice_tail_init(list, &hctx->dispatch);
1416                 spin_unlock(&hctx->lock);
1417
1418                 /*
1419                  * Order adding requests to hctx->dispatch and checking
1420                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1421                  * in blk_mq_sched_restart(). Avoid restart code path to
1422                  * miss the new added requests to hctx->dispatch, meantime
1423                  * SCHED_RESTART is observed here.
1424                  */
1425                 smp_mb();
1426
1427                 /*
1428                  * If SCHED_RESTART was set by the caller of this function and
1429                  * it is no longer set that means that it was cleared by another
1430                  * thread and hence that a queue rerun is needed.
1431                  *
1432                  * If 'no_tag' is set, that means that we failed getting
1433                  * a driver tag with an I/O scheduler attached. If our dispatch
1434                  * waitqueue is no longer active, ensure that we run the queue
1435                  * AFTER adding our entries back to the list.
1436                  *
1437                  * If no I/O scheduler has been configured it is possible that
1438                  * the hardware queue got stopped and restarted before requests
1439                  * were pushed back onto the dispatch list. Rerun the queue to
1440                  * avoid starvation. Notes:
1441                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1442                  *   been stopped before rerunning a queue.
1443                  * - Some but not all block drivers stop a queue before
1444                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1445                  *   and dm-rq.
1446                  *
1447                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1448                  * bit is set, run queue after a delay to avoid IO stalls
1449                  * that could otherwise occur if the queue is idle.  We'll do
1450                  * similar if we couldn't get budget and SCHED_RESTART is set.
1451                  */
1452                 needs_restart = blk_mq_sched_needs_restart(hctx);
1453                 if (!needs_restart ||
1454                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1455                         blk_mq_run_hw_queue(hctx, true);
1456                 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1457                                            no_budget_avail))
1458                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1459
1460                 blk_mq_update_dispatch_busy(hctx, true);
1461                 return false;
1462         } else
1463                 blk_mq_update_dispatch_busy(hctx, false);
1464
1465         return (queued + errors) != 0;
1466 }
1467
1468 /**
1469  * __blk_mq_run_hw_queue - Run a hardware queue.
1470  * @hctx: Pointer to the hardware queue to run.
1471  *
1472  * Send pending requests to the hardware.
1473  */
1474 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1475 {
1476         int srcu_idx;
1477
1478         /*
1479          * We can't run the queue inline with ints disabled. Ensure that
1480          * we catch bad users of this early.
1481          */
1482         WARN_ON_ONCE(in_interrupt());
1483
1484         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1485
1486         hctx_lock(hctx, &srcu_idx);
1487         blk_mq_sched_dispatch_requests(hctx);
1488         hctx_unlock(hctx, srcu_idx);
1489 }
1490
1491 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1492 {
1493         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1494
1495         if (cpu >= nr_cpu_ids)
1496                 cpu = cpumask_first(hctx->cpumask);
1497         return cpu;
1498 }
1499
1500 /*
1501  * It'd be great if the workqueue API had a way to pass
1502  * in a mask and had some smarts for more clever placement.
1503  * For now we just round-robin here, switching for every
1504  * BLK_MQ_CPU_WORK_BATCH queued items.
1505  */
1506 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1507 {
1508         bool tried = false;
1509         int next_cpu = hctx->next_cpu;
1510
1511         if (hctx->queue->nr_hw_queues == 1)
1512                 return WORK_CPU_UNBOUND;
1513
1514         if (--hctx->next_cpu_batch <= 0) {
1515 select_cpu:
1516                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1517                                 cpu_online_mask);
1518                 if (next_cpu >= nr_cpu_ids)
1519                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1520                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1521         }
1522
1523         /*
1524          * Do unbound schedule if we can't find a online CPU for this hctx,
1525          * and it should only happen in the path of handling CPU DEAD.
1526          */
1527         if (!cpu_online(next_cpu)) {
1528                 if (!tried) {
1529                         tried = true;
1530                         goto select_cpu;
1531                 }
1532
1533                 /*
1534                  * Make sure to re-select CPU next time once after CPUs
1535                  * in hctx->cpumask become online again.
1536                  */
1537                 hctx->next_cpu = next_cpu;
1538                 hctx->next_cpu_batch = 1;
1539                 return WORK_CPU_UNBOUND;
1540         }
1541
1542         hctx->next_cpu = next_cpu;
1543         return next_cpu;
1544 }
1545
1546 /**
1547  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1548  * @hctx: Pointer to the hardware queue to run.
1549  * @async: If we want to run the queue asynchronously.
1550  * @msecs: Milliseconds of delay to wait before running the queue.
1551  *
1552  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1553  * with a delay of @msecs.
1554  */
1555 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1556                                         unsigned long msecs)
1557 {
1558         if (unlikely(blk_mq_hctx_stopped(hctx)))
1559                 return;
1560
1561         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1562                 int cpu = get_cpu();
1563                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1564                         __blk_mq_run_hw_queue(hctx);
1565                         put_cpu();
1566                         return;
1567                 }
1568
1569                 put_cpu();
1570         }
1571
1572         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1573                                     msecs_to_jiffies(msecs));
1574 }
1575
1576 /**
1577  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1578  * @hctx: Pointer to the hardware queue to run.
1579  * @msecs: Milliseconds of delay to wait before running the queue.
1580  *
1581  * Run a hardware queue asynchronously with a delay of @msecs.
1582  */
1583 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1584 {
1585         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1586 }
1587 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1588
1589 /**
1590  * blk_mq_run_hw_queue - Start to run a hardware queue.
1591  * @hctx: Pointer to the hardware queue to run.
1592  * @async: If we want to run the queue asynchronously.
1593  *
1594  * Check if the request queue is not in a quiesced state and if there are
1595  * pending requests to be sent. If this is true, run the queue to send requests
1596  * to hardware.
1597  */
1598 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1599 {
1600         int srcu_idx;
1601         bool need_run;
1602
1603         /*
1604          * When queue is quiesced, we may be switching io scheduler, or
1605          * updating nr_hw_queues, or other things, and we can't run queue
1606          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1607          *
1608          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1609          * quiesced.
1610          */
1611         hctx_lock(hctx, &srcu_idx);
1612         need_run = !blk_queue_quiesced(hctx->queue) &&
1613                 blk_mq_hctx_has_pending(hctx);
1614         hctx_unlock(hctx, srcu_idx);
1615
1616         if (need_run)
1617                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1618 }
1619 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1620
1621 /*
1622  * Is the request queue handled by an IO scheduler that does not respect
1623  * hardware queues when dispatching?
1624  */
1625 static bool blk_mq_has_sqsched(struct request_queue *q)
1626 {
1627         struct elevator_queue *e = q->elevator;
1628
1629         if (e && e->type->ops.dispatch_request &&
1630             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1631                 return true;
1632         return false;
1633 }
1634
1635 /*
1636  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1637  * scheduler.
1638  */
1639 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1640 {
1641         struct blk_mq_hw_ctx *hctx;
1642
1643         /*
1644          * If the IO scheduler does not respect hardware queues when
1645          * dispatching, we just don't bother with multiple HW queues and
1646          * dispatch from hctx for the current CPU since running multiple queues
1647          * just causes lock contention inside the scheduler and pointless cache
1648          * bouncing.
1649          */
1650         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1651                                      raw_smp_processor_id());
1652         if (!blk_mq_hctx_stopped(hctx))
1653                 return hctx;
1654         return NULL;
1655 }
1656
1657 /**
1658  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1659  * @q: Pointer to the request queue to run.
1660  * @async: If we want to run the queue asynchronously.
1661  */
1662 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1663 {
1664         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1665         int i;
1666
1667         sq_hctx = NULL;
1668         if (blk_mq_has_sqsched(q))
1669                 sq_hctx = blk_mq_get_sq_hctx(q);
1670         queue_for_each_hw_ctx(q, hctx, i) {
1671                 if (blk_mq_hctx_stopped(hctx))
1672                         continue;
1673                 /*
1674                  * Dispatch from this hctx either if there's no hctx preferred
1675                  * by IO scheduler or if it has requests that bypass the
1676                  * scheduler.
1677                  */
1678                 if (!sq_hctx || sq_hctx == hctx ||
1679                     !list_empty_careful(&hctx->dispatch))
1680                         blk_mq_run_hw_queue(hctx, async);
1681         }
1682 }
1683 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1684
1685 /**
1686  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1687  * @q: Pointer to the request queue to run.
1688  * @msecs: Milliseconds of delay to wait before running the queues.
1689  */
1690 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1691 {
1692         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1693         int i;
1694
1695         sq_hctx = NULL;
1696         if (blk_mq_has_sqsched(q))
1697                 sq_hctx = blk_mq_get_sq_hctx(q);
1698         queue_for_each_hw_ctx(q, hctx, i) {
1699                 if (blk_mq_hctx_stopped(hctx))
1700                         continue;
1701                 /*
1702                  * Dispatch from this hctx either if there's no hctx preferred
1703                  * by IO scheduler or if it has requests that bypass the
1704                  * scheduler.
1705                  */
1706                 if (!sq_hctx || sq_hctx == hctx ||
1707                     !list_empty_careful(&hctx->dispatch))
1708                         blk_mq_delay_run_hw_queue(hctx, msecs);
1709         }
1710 }
1711 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1712
1713 /**
1714  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1715  * @q: request queue.
1716  *
1717  * The caller is responsible for serializing this function against
1718  * blk_mq_{start,stop}_hw_queue().
1719  */
1720 bool blk_mq_queue_stopped(struct request_queue *q)
1721 {
1722         struct blk_mq_hw_ctx *hctx;
1723         int i;
1724
1725         queue_for_each_hw_ctx(q, hctx, i)
1726                 if (blk_mq_hctx_stopped(hctx))
1727                         return true;
1728
1729         return false;
1730 }
1731 EXPORT_SYMBOL(blk_mq_queue_stopped);
1732
1733 /*
1734  * This function is often used for pausing .queue_rq() by driver when
1735  * there isn't enough resource or some conditions aren't satisfied, and
1736  * BLK_STS_RESOURCE is usually returned.
1737  *
1738  * We do not guarantee that dispatch can be drained or blocked
1739  * after blk_mq_stop_hw_queue() returns. Please use
1740  * blk_mq_quiesce_queue() for that requirement.
1741  */
1742 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1743 {
1744         cancel_delayed_work(&hctx->run_work);
1745
1746         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1747 }
1748 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1749
1750 /*
1751  * This function is often used for pausing .queue_rq() by driver when
1752  * there isn't enough resource or some conditions aren't satisfied, and
1753  * BLK_STS_RESOURCE is usually returned.
1754  *
1755  * We do not guarantee that dispatch can be drained or blocked
1756  * after blk_mq_stop_hw_queues() returns. Please use
1757  * blk_mq_quiesce_queue() for that requirement.
1758  */
1759 void blk_mq_stop_hw_queues(struct request_queue *q)
1760 {
1761         struct blk_mq_hw_ctx *hctx;
1762         int i;
1763
1764         queue_for_each_hw_ctx(q, hctx, i)
1765                 blk_mq_stop_hw_queue(hctx);
1766 }
1767 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1768
1769 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1770 {
1771         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1772
1773         blk_mq_run_hw_queue(hctx, false);
1774 }
1775 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1776
1777 void blk_mq_start_hw_queues(struct request_queue *q)
1778 {
1779         struct blk_mq_hw_ctx *hctx;
1780         int i;
1781
1782         queue_for_each_hw_ctx(q, hctx, i)
1783                 blk_mq_start_hw_queue(hctx);
1784 }
1785 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1786
1787 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1788 {
1789         if (!blk_mq_hctx_stopped(hctx))
1790                 return;
1791
1792         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1793         blk_mq_run_hw_queue(hctx, async);
1794 }
1795 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1796
1797 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1798 {
1799         struct blk_mq_hw_ctx *hctx;
1800         int i;
1801
1802         queue_for_each_hw_ctx(q, hctx, i)
1803                 blk_mq_start_stopped_hw_queue(hctx, async);
1804 }
1805 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1806
1807 static void blk_mq_run_work_fn(struct work_struct *work)
1808 {
1809         struct blk_mq_hw_ctx *hctx;
1810
1811         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1812
1813         /*
1814          * If we are stopped, don't run the queue.
1815          */
1816         if (blk_mq_hctx_stopped(hctx))
1817                 return;
1818
1819         __blk_mq_run_hw_queue(hctx);
1820 }
1821
1822 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1823                                             struct request *rq,
1824                                             bool at_head)
1825 {
1826         struct blk_mq_ctx *ctx = rq->mq_ctx;
1827         enum hctx_type type = hctx->type;
1828
1829         lockdep_assert_held(&ctx->lock);
1830
1831         trace_block_rq_insert(rq);
1832
1833         if (at_head)
1834                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1835         else
1836                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1837 }
1838
1839 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1840                              bool at_head)
1841 {
1842         struct blk_mq_ctx *ctx = rq->mq_ctx;
1843
1844         lockdep_assert_held(&ctx->lock);
1845
1846         __blk_mq_insert_req_list(hctx, rq, at_head);
1847         blk_mq_hctx_mark_pending(hctx, ctx);
1848 }
1849
1850 /**
1851  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1852  * @rq: Pointer to request to be inserted.
1853  * @at_head: true if the request should be inserted at the head of the list.
1854  * @run_queue: If we should run the hardware queue after inserting the request.
1855  *
1856  * Should only be used carefully, when the caller knows we want to
1857  * bypass a potential IO scheduler on the target device.
1858  */
1859 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1860                                   bool run_queue)
1861 {
1862         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1863
1864         spin_lock(&hctx->lock);
1865         if (at_head)
1866                 list_add(&rq->queuelist, &hctx->dispatch);
1867         else
1868                 list_add_tail(&rq->queuelist, &hctx->dispatch);
1869         spin_unlock(&hctx->lock);
1870
1871         if (run_queue)
1872                 blk_mq_run_hw_queue(hctx, false);
1873 }
1874
1875 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1876                             struct list_head *list)
1877
1878 {
1879         struct request *rq;
1880         enum hctx_type type = hctx->type;
1881
1882         /*
1883          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1884          * offline now
1885          */
1886         list_for_each_entry(rq, list, queuelist) {
1887                 BUG_ON(rq->mq_ctx != ctx);
1888                 trace_block_rq_insert(rq);
1889         }
1890
1891         spin_lock(&ctx->lock);
1892         list_splice_tail_init(list, &ctx->rq_lists[type]);
1893         blk_mq_hctx_mark_pending(hctx, ctx);
1894         spin_unlock(&ctx->lock);
1895 }
1896
1897 static int plug_rq_cmp(void *priv, const struct list_head *a,
1898                        const struct list_head *b)
1899 {
1900         struct request *rqa = container_of(a, struct request, queuelist);
1901         struct request *rqb = container_of(b, struct request, queuelist);
1902
1903         if (rqa->mq_ctx != rqb->mq_ctx)
1904                 return rqa->mq_ctx > rqb->mq_ctx;
1905         if (rqa->mq_hctx != rqb->mq_hctx)
1906                 return rqa->mq_hctx > rqb->mq_hctx;
1907
1908         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1909 }
1910
1911 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1912 {
1913         LIST_HEAD(list);
1914
1915         if (list_empty(&plug->mq_list))
1916                 return;
1917         list_splice_init(&plug->mq_list, &list);
1918
1919         if (plug->rq_count > 2 && plug->multiple_queues)
1920                 list_sort(NULL, &list, plug_rq_cmp);
1921
1922         plug->rq_count = 0;
1923
1924         do {
1925                 struct list_head rq_list;
1926                 struct request *rq, *head_rq = list_entry_rq(list.next);
1927                 struct list_head *pos = &head_rq->queuelist; /* skip first */
1928                 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1929                 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1930                 unsigned int depth = 1;
1931
1932                 list_for_each_continue(pos, &list) {
1933                         rq = list_entry_rq(pos);
1934                         BUG_ON(!rq->q);
1935                         if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1936                                 break;
1937                         depth++;
1938                 }
1939
1940                 list_cut_before(&rq_list, &list, pos);
1941                 trace_block_unplug(head_rq->q, depth, !from_schedule);
1942                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1943                                                 from_schedule);
1944         } while(!list_empty(&list));
1945 }
1946
1947 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1948                 unsigned int nr_segs)
1949 {
1950         int err;
1951
1952         if (bio->bi_opf & REQ_RAHEAD)
1953                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1954
1955         rq->__sector = bio->bi_iter.bi_sector;
1956         rq->write_hint = bio->bi_write_hint;
1957         blk_rq_bio_prep(rq, bio, nr_segs);
1958
1959         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1960         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1961         WARN_ON_ONCE(err);
1962
1963         blk_account_io_start(rq);
1964 }
1965
1966 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1967                                             struct request *rq,
1968                                             blk_qc_t *cookie, bool last)
1969 {
1970         struct request_queue *q = rq->q;
1971         struct blk_mq_queue_data bd = {
1972                 .rq = rq,
1973                 .last = last,
1974         };
1975         blk_qc_t new_cookie;
1976         blk_status_t ret;
1977
1978         new_cookie = request_to_qc_t(hctx, rq);
1979
1980         /*
1981          * For OK queue, we are done. For error, caller may kill it.
1982          * Any other error (busy), just add it to our list as we
1983          * previously would have done.
1984          */
1985         ret = q->mq_ops->queue_rq(hctx, &bd);
1986         switch (ret) {
1987         case BLK_STS_OK:
1988                 blk_mq_update_dispatch_busy(hctx, false);
1989                 *cookie = new_cookie;
1990                 break;
1991         case BLK_STS_RESOURCE:
1992         case BLK_STS_DEV_RESOURCE:
1993                 blk_mq_update_dispatch_busy(hctx, true);
1994                 __blk_mq_requeue_request(rq);
1995                 break;
1996         default:
1997                 blk_mq_update_dispatch_busy(hctx, false);
1998                 *cookie = BLK_QC_T_NONE;
1999                 break;
2000         }
2001
2002         return ret;
2003 }
2004
2005 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2006                                                 struct request *rq,
2007                                                 blk_qc_t *cookie,
2008                                                 bool bypass_insert, bool last)
2009 {
2010         struct request_queue *q = rq->q;
2011         bool run_queue = true;
2012         int budget_token;
2013
2014         /*
2015          * RCU or SRCU read lock is needed before checking quiesced flag.
2016          *
2017          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2018          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2019          * and avoid driver to try to dispatch again.
2020          */
2021         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2022                 run_queue = false;
2023                 bypass_insert = false;
2024                 goto insert;
2025         }
2026
2027         if (q->elevator && !bypass_insert)
2028                 goto insert;
2029
2030         budget_token = blk_mq_get_dispatch_budget(q);
2031         if (budget_token < 0)
2032                 goto insert;
2033
2034         blk_mq_set_rq_budget_token(rq, budget_token);
2035
2036         if (!blk_mq_get_driver_tag(rq)) {
2037                 blk_mq_put_dispatch_budget(q, budget_token);
2038                 goto insert;
2039         }
2040
2041         return __blk_mq_issue_directly(hctx, rq, cookie, last);
2042 insert:
2043         if (bypass_insert)
2044                 return BLK_STS_RESOURCE;
2045
2046         blk_mq_sched_insert_request(rq, false, run_queue, false);
2047
2048         return BLK_STS_OK;
2049 }
2050
2051 /**
2052  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2053  * @hctx: Pointer of the associated hardware queue.
2054  * @rq: Pointer to request to be sent.
2055  * @cookie: Request queue cookie.
2056  *
2057  * If the device has enough resources to accept a new request now, send the
2058  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2059  * we can try send it another time in the future. Requests inserted at this
2060  * queue have higher priority.
2061  */
2062 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2063                 struct request *rq, blk_qc_t *cookie)
2064 {
2065         blk_status_t ret;
2066         int srcu_idx;
2067
2068         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2069
2070         hctx_lock(hctx, &srcu_idx);
2071
2072         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2073         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2074                 blk_mq_request_bypass_insert(rq, false, true);
2075         else if (ret != BLK_STS_OK)
2076                 blk_mq_end_request(rq, ret);
2077
2078         hctx_unlock(hctx, srcu_idx);
2079 }
2080
2081 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2082 {
2083         blk_status_t ret;
2084         int srcu_idx;
2085         blk_qc_t unused_cookie;
2086         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2087
2088         hctx_lock(hctx, &srcu_idx);
2089         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2090         hctx_unlock(hctx, srcu_idx);
2091
2092         return ret;
2093 }
2094
2095 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2096                 struct list_head *list)
2097 {
2098         int queued = 0;
2099         int errors = 0;
2100
2101         while (!list_empty(list)) {
2102                 blk_status_t ret;
2103                 struct request *rq = list_first_entry(list, struct request,
2104                                 queuelist);
2105
2106                 list_del_init(&rq->queuelist);
2107                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2108                 if (ret != BLK_STS_OK) {
2109                         if (ret == BLK_STS_RESOURCE ||
2110                                         ret == BLK_STS_DEV_RESOURCE) {
2111                                 blk_mq_request_bypass_insert(rq, false,
2112                                                         list_empty(list));
2113                                 break;
2114                         }
2115                         blk_mq_end_request(rq, ret);
2116                         errors++;
2117                 } else
2118                         queued++;
2119         }
2120
2121         /*
2122          * If we didn't flush the entire list, we could have told
2123          * the driver there was more coming, but that turned out to
2124          * be a lie.
2125          */
2126         if ((!list_empty(list) || errors) &&
2127              hctx->queue->mq_ops->commit_rqs && queued)
2128                 hctx->queue->mq_ops->commit_rqs(hctx);
2129 }
2130
2131 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2132 {
2133         list_add_tail(&rq->queuelist, &plug->mq_list);
2134         plug->rq_count++;
2135         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2136                 struct request *tmp;
2137
2138                 tmp = list_first_entry(&plug->mq_list, struct request,
2139                                                 queuelist);
2140                 if (tmp->q != rq->q)
2141                         plug->multiple_queues = true;
2142         }
2143 }
2144
2145 /*
2146  * Allow 4x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2147  * queues. This is important for md arrays to benefit from merging
2148  * requests.
2149  */
2150 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2151 {
2152         if (plug->multiple_queues)
2153                 return BLK_MAX_REQUEST_COUNT * 4;
2154         return BLK_MAX_REQUEST_COUNT;
2155 }
2156
2157 /**
2158  * blk_mq_submit_bio - Create and send a request to block device.
2159  * @bio: Bio pointer.
2160  *
2161  * Builds up a request structure from @q and @bio and send to the device. The
2162  * request may not be queued directly to hardware if:
2163  * * This request can be merged with another one
2164  * * We want to place request at plug queue for possible future merging
2165  * * There is an IO scheduler active at this queue
2166  *
2167  * It will not queue the request if there is an error with the bio, or at the
2168  * request creation.
2169  *
2170  * Returns: Request queue cookie.
2171  */
2172 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2173 {
2174         struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2175         const int is_sync = op_is_sync(bio->bi_opf);
2176         const int is_flush_fua = op_is_flush(bio->bi_opf);
2177         struct blk_mq_alloc_data data = {
2178                 .q              = q,
2179         };
2180         struct request *rq;
2181         struct blk_plug *plug;
2182         struct request *same_queue_rq = NULL;
2183         unsigned int nr_segs;
2184         blk_qc_t cookie;
2185         blk_status_t ret;
2186         bool hipri;
2187
2188         blk_queue_bounce(q, &bio);
2189         __blk_queue_split(&bio, &nr_segs);
2190
2191         if (!bio_integrity_prep(bio))
2192                 goto queue_exit;
2193
2194         if (!is_flush_fua && !blk_queue_nomerges(q) &&
2195             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2196                 goto queue_exit;
2197
2198         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2199                 goto queue_exit;
2200
2201         rq_qos_throttle(q, bio);
2202
2203         hipri = bio->bi_opf & REQ_HIPRI;
2204
2205         data.cmd_flags = bio->bi_opf;
2206         rq = __blk_mq_alloc_request(&data);
2207         if (unlikely(!rq)) {
2208                 rq_qos_cleanup(q, bio);
2209                 if (bio->bi_opf & REQ_NOWAIT)
2210                         bio_wouldblock_error(bio);
2211                 goto queue_exit;
2212         }
2213
2214         trace_block_getrq(bio);
2215
2216         rq_qos_track(q, rq, bio);
2217
2218         cookie = request_to_qc_t(data.hctx, rq);
2219
2220         blk_mq_bio_to_request(rq, bio, nr_segs);
2221
2222         ret = blk_crypto_init_request(rq);
2223         if (ret != BLK_STS_OK) {
2224                 bio->bi_status = ret;
2225                 bio_endio(bio);
2226                 blk_mq_free_request(rq);
2227                 return BLK_QC_T_NONE;
2228         }
2229
2230         plug = blk_mq_plug(q, bio);
2231         if (unlikely(is_flush_fua)) {
2232                 /* Bypass scheduler for flush requests */
2233                 blk_insert_flush(rq);
2234                 blk_mq_run_hw_queue(data.hctx, true);
2235         } else if (plug && (q->nr_hw_queues == 1 ||
2236                    blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2237                    q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2238                 /*
2239                  * Use plugging if we have a ->commit_rqs() hook as well, as
2240                  * we know the driver uses bd->last in a smart fashion.
2241                  *
2242                  * Use normal plugging if this disk is slow HDD, as sequential
2243                  * IO may benefit a lot from plug merging.
2244                  */
2245                 unsigned int request_count = plug->rq_count;
2246                 struct request *last = NULL;
2247
2248                 if (!request_count)
2249                         trace_block_plug(q);
2250                 else
2251                         last = list_entry_rq(plug->mq_list.prev);
2252
2253                 if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2254                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2255                         blk_flush_plug_list(plug, false);
2256                         trace_block_plug(q);
2257                 }
2258
2259                 blk_add_rq_to_plug(plug, rq);
2260         } else if (q->elevator) {
2261                 /* Insert the request at the IO scheduler queue */
2262                 blk_mq_sched_insert_request(rq, false, true, true);
2263         } else if (plug && !blk_queue_nomerges(q)) {
2264                 /*
2265                  * We do limited plugging. If the bio can be merged, do that.
2266                  * Otherwise the existing request in the plug list will be
2267                  * issued. So the plug list will have one request at most
2268                  * The plug list might get flushed before this. If that happens,
2269                  * the plug list is empty, and same_queue_rq is invalid.
2270                  */
2271                 if (list_empty(&plug->mq_list))
2272                         same_queue_rq = NULL;
2273                 if (same_queue_rq) {
2274                         list_del_init(&same_queue_rq->queuelist);
2275                         plug->rq_count--;
2276                 }
2277                 blk_add_rq_to_plug(plug, rq);
2278                 trace_block_plug(q);
2279
2280                 if (same_queue_rq) {
2281                         data.hctx = same_queue_rq->mq_hctx;
2282                         trace_block_unplug(q, 1, true);
2283                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2284                                         &cookie);
2285                 }
2286         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2287                         !data.hctx->dispatch_busy) {
2288                 /*
2289                  * There is no scheduler and we can try to send directly
2290                  * to the hardware.
2291                  */
2292                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2293         } else {
2294                 /* Default case. */
2295                 blk_mq_sched_insert_request(rq, false, true, true);
2296         }
2297
2298         if (!hipri)
2299                 return BLK_QC_T_NONE;
2300         return cookie;
2301 queue_exit:
2302         blk_queue_exit(q);
2303         return BLK_QC_T_NONE;
2304 }
2305
2306 static size_t order_to_size(unsigned int order)
2307 {
2308         return (size_t)PAGE_SIZE << order;
2309 }
2310
2311 /* called before freeing request pool in @tags */
2312 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2313                 struct blk_mq_tags *tags, unsigned int hctx_idx)
2314 {
2315         struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2316         struct page *page;
2317         unsigned long flags;
2318
2319         list_for_each_entry(page, &tags->page_list, lru) {
2320                 unsigned long start = (unsigned long)page_address(page);
2321                 unsigned long end = start + order_to_size(page->private);
2322                 int i;
2323
2324                 for (i = 0; i < set->queue_depth; i++) {
2325                         struct request *rq = drv_tags->rqs[i];
2326                         unsigned long rq_addr = (unsigned long)rq;
2327
2328                         if (rq_addr >= start && rq_addr < end) {
2329                                 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2330                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2331                         }
2332                 }
2333         }
2334
2335         /*
2336          * Wait until all pending iteration is done.
2337          *
2338          * Request reference is cleared and it is guaranteed to be observed
2339          * after the ->lock is released.
2340          */
2341         spin_lock_irqsave(&drv_tags->lock, flags);
2342         spin_unlock_irqrestore(&drv_tags->lock, flags);
2343 }
2344
2345 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2346                      unsigned int hctx_idx)
2347 {
2348         struct page *page;
2349
2350         if (tags->rqs && set->ops->exit_request) {
2351                 int i;
2352
2353                 for (i = 0; i < tags->nr_tags; i++) {
2354                         struct request *rq = tags->static_rqs[i];
2355
2356                         if (!rq)
2357                                 continue;
2358                         set->ops->exit_request(set, rq, hctx_idx);
2359                         tags->static_rqs[i] = NULL;
2360                 }
2361         }
2362
2363         blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2364
2365         while (!list_empty(&tags->page_list)) {
2366                 page = list_first_entry(&tags->page_list, struct page, lru);
2367                 list_del_init(&page->lru);
2368                 /*
2369                  * Remove kmemleak object previously allocated in
2370                  * blk_mq_alloc_rqs().
2371                  */
2372                 kmemleak_free(page_address(page));
2373                 __free_pages(page, page->private);
2374         }
2375 }
2376
2377 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2378 {
2379         kfree(tags->rqs);
2380         tags->rqs = NULL;
2381         kfree(tags->static_rqs);
2382         tags->static_rqs = NULL;
2383
2384         blk_mq_free_tags(tags, flags);
2385 }
2386
2387 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2388                                         unsigned int hctx_idx,
2389                                         unsigned int nr_tags,
2390                                         unsigned int reserved_tags,
2391                                         unsigned int flags)
2392 {
2393         struct blk_mq_tags *tags;
2394         int node;
2395
2396         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2397         if (node == NUMA_NO_NODE)
2398                 node = set->numa_node;
2399
2400         tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2401         if (!tags)
2402                 return NULL;
2403
2404         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2405                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2406                                  node);
2407         if (!tags->rqs) {
2408                 blk_mq_free_tags(tags, flags);
2409                 return NULL;
2410         }
2411
2412         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2413                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2414                                         node);
2415         if (!tags->static_rqs) {
2416                 kfree(tags->rqs);
2417                 blk_mq_free_tags(tags, flags);
2418                 return NULL;
2419         }
2420
2421         return tags;
2422 }
2423
2424 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2425                                unsigned int hctx_idx, int node)
2426 {
2427         int ret;
2428
2429         if (set->ops->init_request) {
2430                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2431                 if (ret)
2432                         return ret;
2433         }
2434
2435         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2436         return 0;
2437 }
2438
2439 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2440                      unsigned int hctx_idx, unsigned int depth)
2441 {
2442         unsigned int i, j, entries_per_page, max_order = 4;
2443         size_t rq_size, left;
2444         int node;
2445
2446         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2447         if (node == NUMA_NO_NODE)
2448                 node = set->numa_node;
2449
2450         INIT_LIST_HEAD(&tags->page_list);
2451
2452         /*
2453          * rq_size is the size of the request plus driver payload, rounded
2454          * to the cacheline size
2455          */
2456         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2457                                 cache_line_size());
2458         left = rq_size * depth;
2459
2460         for (i = 0; i < depth; ) {
2461                 int this_order = max_order;
2462                 struct page *page;
2463                 int to_do;
2464                 void *p;
2465
2466                 while (this_order && left < order_to_size(this_order - 1))
2467                         this_order--;
2468
2469                 do {
2470                         page = alloc_pages_node(node,
2471                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2472                                 this_order);
2473                         if (page)
2474                                 break;
2475                         if (!this_order--)
2476                                 break;
2477                         if (order_to_size(this_order) < rq_size)
2478                                 break;
2479                 } while (1);
2480
2481                 if (!page)
2482                         goto fail;
2483
2484                 page->private = this_order;
2485                 list_add_tail(&page->lru, &tags->page_list);
2486
2487                 p = page_address(page);
2488                 /*
2489                  * Allow kmemleak to scan these pages as they contain pointers
2490                  * to additional allocations like via ops->init_request().
2491                  */
2492                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2493                 entries_per_page = order_to_size(this_order) / rq_size;
2494                 to_do = min(entries_per_page, depth - i);
2495                 left -= to_do * rq_size;
2496                 for (j = 0; j < to_do; j++) {
2497                         struct request *rq = p;
2498
2499                         tags->static_rqs[i] = rq;
2500                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2501                                 tags->static_rqs[i] = NULL;
2502                                 goto fail;
2503                         }
2504
2505                         p += rq_size;
2506                         i++;
2507                 }
2508         }
2509         return 0;
2510
2511 fail:
2512         blk_mq_free_rqs(set, tags, hctx_idx);
2513         return -ENOMEM;
2514 }
2515
2516 struct rq_iter_data {
2517         struct blk_mq_hw_ctx *hctx;
2518         bool has_rq;
2519 };
2520
2521 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2522 {
2523         struct rq_iter_data *iter_data = data;
2524
2525         if (rq->mq_hctx != iter_data->hctx)
2526                 return true;
2527         iter_data->has_rq = true;
2528         return false;
2529 }
2530
2531 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2532 {
2533         struct blk_mq_tags *tags = hctx->sched_tags ?
2534                         hctx->sched_tags : hctx->tags;
2535         struct rq_iter_data data = {
2536                 .hctx   = hctx,
2537         };
2538
2539         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2540         return data.has_rq;
2541 }
2542
2543 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2544                 struct blk_mq_hw_ctx *hctx)
2545 {
2546         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2547                 return false;
2548         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2549                 return false;
2550         return true;
2551 }
2552
2553 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2554 {
2555         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2556                         struct blk_mq_hw_ctx, cpuhp_online);
2557
2558         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2559             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2560                 return 0;
2561
2562         /*
2563          * Prevent new request from being allocated on the current hctx.
2564          *
2565          * The smp_mb__after_atomic() Pairs with the implied barrier in
2566          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2567          * seen once we return from the tag allocator.
2568          */
2569         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2570         smp_mb__after_atomic();
2571
2572         /*
2573          * Try to grab a reference to the queue and wait for any outstanding
2574          * requests.  If we could not grab a reference the queue has been
2575          * frozen and there are no requests.
2576          */
2577         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2578                 while (blk_mq_hctx_has_requests(hctx))
2579                         msleep(5);
2580                 percpu_ref_put(&hctx->queue->q_usage_counter);
2581         }
2582
2583         return 0;
2584 }
2585
2586 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2587 {
2588         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2589                         struct blk_mq_hw_ctx, cpuhp_online);
2590
2591         if (cpumask_test_cpu(cpu, hctx->cpumask))
2592                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2593         return 0;
2594 }
2595
2596 /*
2597  * 'cpu' is going away. splice any existing rq_list entries from this
2598  * software queue to the hw queue dispatch list, and ensure that it
2599  * gets run.
2600  */
2601 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2602 {
2603         struct blk_mq_hw_ctx *hctx;
2604         struct blk_mq_ctx *ctx;
2605         LIST_HEAD(tmp);
2606         enum hctx_type type;
2607
2608         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2609         if (!cpumask_test_cpu(cpu, hctx->cpumask))
2610                 return 0;
2611
2612         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2613         type = hctx->type;
2614
2615         spin_lock(&ctx->lock);
2616         if (!list_empty(&ctx->rq_lists[type])) {
2617                 list_splice_init(&ctx->rq_lists[type], &tmp);
2618                 blk_mq_hctx_clear_pending(hctx, ctx);
2619         }
2620         spin_unlock(&ctx->lock);
2621
2622         if (list_empty(&tmp))
2623                 return 0;
2624
2625         spin_lock(&hctx->lock);
2626         list_splice_tail_init(&tmp, &hctx->dispatch);
2627         spin_unlock(&hctx->lock);
2628
2629         blk_mq_run_hw_queue(hctx, true);
2630         return 0;
2631 }
2632
2633 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2634 {
2635         if (!(hctx->flags & BLK_MQ_F_STACKING))
2636                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2637                                                     &hctx->cpuhp_online);
2638         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2639                                             &hctx->cpuhp_dead);
2640 }
2641
2642 /*
2643  * Before freeing hw queue, clearing the flush request reference in
2644  * tags->rqs[] for avoiding potential UAF.
2645  */
2646 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2647                 unsigned int queue_depth, struct request *flush_rq)
2648 {
2649         int i;
2650         unsigned long flags;
2651
2652         /* The hw queue may not be mapped yet */
2653         if (!tags)
2654                 return;
2655
2656         WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2657
2658         for (i = 0; i < queue_depth; i++)
2659                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
2660
2661         /*
2662          * Wait until all pending iteration is done.
2663          *
2664          * Request reference is cleared and it is guaranteed to be observed
2665          * after the ->lock is released.
2666          */
2667         spin_lock_irqsave(&tags->lock, flags);
2668         spin_unlock_irqrestore(&tags->lock, flags);
2669 }
2670
2671 /* hctx->ctxs will be freed in queue's release handler */
2672 static void blk_mq_exit_hctx(struct request_queue *q,
2673                 struct blk_mq_tag_set *set,
2674                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2675 {
2676         struct request *flush_rq = hctx->fq->flush_rq;
2677
2678         if (blk_mq_hw_queue_mapped(hctx))
2679                 blk_mq_tag_idle(hctx);
2680
2681         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2682                         set->queue_depth, flush_rq);
2683         if (set->ops->exit_request)
2684                 set->ops->exit_request(set, flush_rq, hctx_idx);
2685
2686         if (set->ops->exit_hctx)
2687                 set->ops->exit_hctx(hctx, hctx_idx);
2688
2689         blk_mq_remove_cpuhp(hctx);
2690
2691         spin_lock(&q->unused_hctx_lock);
2692         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2693         spin_unlock(&q->unused_hctx_lock);
2694 }
2695
2696 static void blk_mq_exit_hw_queues(struct request_queue *q,
2697                 struct blk_mq_tag_set *set, int nr_queue)
2698 {
2699         struct blk_mq_hw_ctx *hctx;
2700         unsigned int i;
2701
2702         queue_for_each_hw_ctx(q, hctx, i) {
2703                 if (i == nr_queue)
2704                         break;
2705                 blk_mq_debugfs_unregister_hctx(hctx);
2706                 blk_mq_exit_hctx(q, set, hctx, i);
2707         }
2708 }
2709
2710 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2711 {
2712         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2713
2714         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2715                            __alignof__(struct blk_mq_hw_ctx)) !=
2716                      sizeof(struct blk_mq_hw_ctx));
2717
2718         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2719                 hw_ctx_size += sizeof(struct srcu_struct);
2720
2721         return hw_ctx_size;
2722 }
2723
2724 static int blk_mq_init_hctx(struct request_queue *q,
2725                 struct blk_mq_tag_set *set,
2726                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2727 {
2728         hctx->queue_num = hctx_idx;
2729
2730         if (!(hctx->flags & BLK_MQ_F_STACKING))
2731                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2732                                 &hctx->cpuhp_online);
2733         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2734
2735         hctx->tags = set->tags[hctx_idx];
2736
2737         if (set->ops->init_hctx &&
2738             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2739                 goto unregister_cpu_notifier;
2740
2741         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2742                                 hctx->numa_node))
2743                 goto exit_hctx;
2744         return 0;
2745
2746  exit_hctx:
2747         if (set->ops->exit_hctx)
2748                 set->ops->exit_hctx(hctx, hctx_idx);
2749  unregister_cpu_notifier:
2750         blk_mq_remove_cpuhp(hctx);
2751         return -1;
2752 }
2753
2754 static struct blk_mq_hw_ctx *
2755 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2756                 int node)
2757 {
2758         struct blk_mq_hw_ctx *hctx;
2759         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2760
2761         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2762         if (!hctx)
2763                 goto fail_alloc_hctx;
2764
2765         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2766                 goto free_hctx;
2767
2768         atomic_set(&hctx->nr_active, 0);
2769         if (node == NUMA_NO_NODE)
2770                 node = set->numa_node;
2771         hctx->numa_node = node;
2772
2773         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2774         spin_lock_init(&hctx->lock);
2775         INIT_LIST_HEAD(&hctx->dispatch);
2776         hctx->queue = q;
2777         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2778
2779         INIT_LIST_HEAD(&hctx->hctx_list);
2780
2781         /*
2782          * Allocate space for all possible cpus to avoid allocation at
2783          * runtime
2784          */
2785         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2786                         gfp, node);
2787         if (!hctx->ctxs)
2788                 goto free_cpumask;
2789
2790         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2791                                 gfp, node, false, false))
2792                 goto free_ctxs;
2793         hctx->nr_ctx = 0;
2794
2795         spin_lock_init(&hctx->dispatch_wait_lock);
2796         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2797         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2798
2799         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2800         if (!hctx->fq)
2801                 goto free_bitmap;
2802
2803         if (hctx->flags & BLK_MQ_F_BLOCKING)
2804                 init_srcu_struct(hctx->srcu);
2805         blk_mq_hctx_kobj_init(hctx);
2806
2807         return hctx;
2808
2809  free_bitmap:
2810         sbitmap_free(&hctx->ctx_map);
2811  free_ctxs:
2812         kfree(hctx->ctxs);
2813  free_cpumask:
2814         free_cpumask_var(hctx->cpumask);
2815  free_hctx:
2816         kfree(hctx);
2817  fail_alloc_hctx:
2818         return NULL;
2819 }
2820
2821 static void blk_mq_init_cpu_queues(struct request_queue *q,
2822                                    unsigned int nr_hw_queues)
2823 {
2824         struct blk_mq_tag_set *set = q->tag_set;
2825         unsigned int i, j;
2826
2827         for_each_possible_cpu(i) {
2828                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2829                 struct blk_mq_hw_ctx *hctx;
2830                 int k;
2831
2832                 __ctx->cpu = i;
2833                 spin_lock_init(&__ctx->lock);
2834                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2835                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2836
2837                 __ctx->queue = q;
2838
2839                 /*
2840                  * Set local node, IFF we have more than one hw queue. If
2841                  * not, we remain on the home node of the device
2842                  */
2843                 for (j = 0; j < set->nr_maps; j++) {
2844                         hctx = blk_mq_map_queue_type(q, j, i);
2845                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2846                                 hctx->numa_node = cpu_to_node(i);
2847                 }
2848         }
2849 }
2850
2851 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2852                                         int hctx_idx)
2853 {
2854         unsigned int flags = set->flags;
2855         int ret = 0;
2856
2857         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2858                                         set->queue_depth, set->reserved_tags, flags);
2859         if (!set->tags[hctx_idx])
2860                 return false;
2861
2862         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2863                                 set->queue_depth);
2864         if (!ret)
2865                 return true;
2866
2867         blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2868         set->tags[hctx_idx] = NULL;
2869         return false;
2870 }
2871
2872 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2873                                          unsigned int hctx_idx)
2874 {
2875         unsigned int flags = set->flags;
2876
2877         if (set->tags && set->tags[hctx_idx]) {
2878                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2879                 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2880                 set->tags[hctx_idx] = NULL;
2881         }
2882 }
2883
2884 static void blk_mq_map_swqueue(struct request_queue *q)
2885 {
2886         unsigned int i, j, hctx_idx;
2887         struct blk_mq_hw_ctx *hctx;
2888         struct blk_mq_ctx *ctx;
2889         struct blk_mq_tag_set *set = q->tag_set;
2890
2891         queue_for_each_hw_ctx(q, hctx, i) {
2892                 cpumask_clear(hctx->cpumask);
2893                 hctx->nr_ctx = 0;
2894                 hctx->dispatch_from = NULL;
2895         }
2896
2897         /*
2898          * Map software to hardware queues.
2899          *
2900          * If the cpu isn't present, the cpu is mapped to first hctx.
2901          */
2902         for_each_possible_cpu(i) {
2903
2904                 ctx = per_cpu_ptr(q->queue_ctx, i);
2905                 for (j = 0; j < set->nr_maps; j++) {
2906                         if (!set->map[j].nr_queues) {
2907                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2908                                                 HCTX_TYPE_DEFAULT, i);
2909                                 continue;
2910                         }
2911                         hctx_idx = set->map[j].mq_map[i];
2912                         /* unmapped hw queue can be remapped after CPU topo changed */
2913                         if (!set->tags[hctx_idx] &&
2914                             !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2915                                 /*
2916                                  * If tags initialization fail for some hctx,
2917                                  * that hctx won't be brought online.  In this
2918                                  * case, remap the current ctx to hctx[0] which
2919                                  * is guaranteed to always have tags allocated
2920                                  */
2921                                 set->map[j].mq_map[i] = 0;
2922                         }
2923
2924                         hctx = blk_mq_map_queue_type(q, j, i);
2925                         ctx->hctxs[j] = hctx;
2926                         /*
2927                          * If the CPU is already set in the mask, then we've
2928                          * mapped this one already. This can happen if
2929                          * devices share queues across queue maps.
2930                          */
2931                         if (cpumask_test_cpu(i, hctx->cpumask))
2932                                 continue;
2933
2934                         cpumask_set_cpu(i, hctx->cpumask);
2935                         hctx->type = j;
2936                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2937                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2938
2939                         /*
2940                          * If the nr_ctx type overflows, we have exceeded the
2941                          * amount of sw queues we can support.
2942                          */
2943                         BUG_ON(!hctx->nr_ctx);
2944                 }
2945
2946                 for (; j < HCTX_MAX_TYPES; j++)
2947                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2948                                         HCTX_TYPE_DEFAULT, i);
2949         }
2950
2951         queue_for_each_hw_ctx(q, hctx, i) {
2952                 /*
2953                  * If no software queues are mapped to this hardware queue,
2954                  * disable it and free the request entries.
2955                  */
2956                 if (!hctx->nr_ctx) {
2957                         /* Never unmap queue 0.  We need it as a
2958                          * fallback in case of a new remap fails
2959                          * allocation
2960                          */
2961                         if (i && set->tags[i])
2962                                 blk_mq_free_map_and_requests(set, i);
2963
2964                         hctx->tags = NULL;
2965                         continue;
2966                 }
2967
2968                 hctx->tags = set->tags[i];
2969                 WARN_ON(!hctx->tags);
2970
2971                 /*
2972                  * Set the map size to the number of mapped software queues.
2973                  * This is more accurate and more efficient than looping
2974                  * over all possibly mapped software queues.
2975                  */
2976                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2977
2978                 /*
2979                  * Initialize batch roundrobin counts
2980                  */
2981                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2982                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2983         }
2984 }
2985
2986 /*
2987  * Caller needs to ensure that we're either frozen/quiesced, or that
2988  * the queue isn't live yet.
2989  */
2990 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2991 {
2992         struct blk_mq_hw_ctx *hctx;
2993         int i;
2994
2995         queue_for_each_hw_ctx(q, hctx, i) {
2996                 if (shared) {
2997                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2998                 } else {
2999                         blk_mq_tag_idle(hctx);
3000                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3001                 }
3002         }
3003 }
3004
3005 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3006                                          bool shared)
3007 {
3008         struct request_queue *q;
3009
3010         lockdep_assert_held(&set->tag_list_lock);
3011
3012         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3013                 blk_mq_freeze_queue(q);
3014                 queue_set_hctx_shared(q, shared);
3015                 blk_mq_unfreeze_queue(q);
3016         }
3017 }
3018
3019 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3020 {
3021         struct blk_mq_tag_set *set = q->tag_set;
3022
3023         mutex_lock(&set->tag_list_lock);
3024         list_del(&q->tag_set_list);
3025         if (list_is_singular(&set->tag_list)) {
3026                 /* just transitioned to unshared */
3027                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3028                 /* update existing queue */
3029                 blk_mq_update_tag_set_shared(set, false);
3030         }
3031         mutex_unlock(&set->tag_list_lock);
3032         INIT_LIST_HEAD(&q->tag_set_list);
3033 }
3034
3035 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3036                                      struct request_queue *q)
3037 {
3038         mutex_lock(&set->tag_list_lock);
3039
3040         /*
3041          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3042          */
3043         if (!list_empty(&set->tag_list) &&
3044             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3045                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3046                 /* update existing queue */
3047                 blk_mq_update_tag_set_shared(set, true);
3048         }
3049         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3050                 queue_set_hctx_shared(q, true);
3051         list_add_tail(&q->tag_set_list, &set->tag_list);
3052
3053         mutex_unlock(&set->tag_list_lock);
3054 }
3055
3056 /* All allocations will be freed in release handler of q->mq_kobj */
3057 static int blk_mq_alloc_ctxs(struct request_queue *q)
3058 {
3059         struct blk_mq_ctxs *ctxs;
3060         int cpu;
3061
3062         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3063         if (!ctxs)
3064                 return -ENOMEM;
3065
3066         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3067         if (!ctxs->queue_ctx)
3068                 goto fail;
3069
3070         for_each_possible_cpu(cpu) {
3071                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3072                 ctx->ctxs = ctxs;
3073         }
3074
3075         q->mq_kobj = &ctxs->kobj;
3076         q->queue_ctx = ctxs->queue_ctx;
3077
3078         return 0;
3079  fail:
3080         kfree(ctxs);
3081         return -ENOMEM;
3082 }
3083
3084 /*
3085  * It is the actual release handler for mq, but we do it from
3086  * request queue's release handler for avoiding use-after-free
3087  * and headache because q->mq_kobj shouldn't have been introduced,
3088  * but we can't group ctx/kctx kobj without it.
3089  */
3090 void blk_mq_release(struct request_queue *q)
3091 {
3092         struct blk_mq_hw_ctx *hctx, *next;
3093         int i;
3094
3095         queue_for_each_hw_ctx(q, hctx, i)
3096                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3097
3098         /* all hctx are in .unused_hctx_list now */
3099         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3100                 list_del_init(&hctx->hctx_list);
3101                 kobject_put(&hctx->kobj);
3102         }
3103
3104         kfree(q->queue_hw_ctx);
3105
3106         /*
3107          * release .mq_kobj and sw queue's kobject now because
3108          * both share lifetime with request queue.
3109          */
3110         blk_mq_sysfs_deinit(q);
3111 }
3112
3113 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3114                 void *queuedata)
3115 {
3116         struct request_queue *q;
3117         int ret;
3118
3119         q = blk_alloc_queue(set->numa_node);
3120         if (!q)
3121                 return ERR_PTR(-ENOMEM);
3122         q->queuedata = queuedata;
3123         ret = blk_mq_init_allocated_queue(set, q);
3124         if (ret) {
3125                 blk_cleanup_queue(q);
3126                 return ERR_PTR(ret);
3127         }
3128         return q;
3129 }
3130
3131 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3132 {
3133         return blk_mq_init_queue_data(set, NULL);
3134 }
3135 EXPORT_SYMBOL(blk_mq_init_queue);
3136
3137 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3138                 struct lock_class_key *lkclass)
3139 {
3140         struct request_queue *q;
3141         struct gendisk *disk;
3142
3143         q = blk_mq_init_queue_data(set, queuedata);
3144         if (IS_ERR(q))
3145                 return ERR_CAST(q);
3146
3147         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3148         if (!disk) {
3149                 blk_cleanup_queue(q);
3150                 return ERR_PTR(-ENOMEM);
3151         }
3152         return disk;
3153 }
3154 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3155
3156 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3157                 struct blk_mq_tag_set *set, struct request_queue *q,
3158                 int hctx_idx, int node)
3159 {
3160         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3161
3162         /* reuse dead hctx first */
3163         spin_lock(&q->unused_hctx_lock);
3164         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3165                 if (tmp->numa_node == node) {
3166                         hctx = tmp;
3167                         break;
3168                 }
3169         }
3170         if (hctx)
3171                 list_del_init(&hctx->hctx_list);
3172         spin_unlock(&q->unused_hctx_lock);
3173
3174         if (!hctx)
3175                 hctx = blk_mq_alloc_hctx(q, set, node);
3176         if (!hctx)
3177                 goto fail;
3178
3179         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3180                 goto free_hctx;
3181
3182         return hctx;
3183
3184  free_hctx:
3185         kobject_put(&hctx->kobj);
3186  fail:
3187         return NULL;
3188 }
3189
3190 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3191                                                 struct request_queue *q)
3192 {
3193         int i, j, end;
3194         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3195
3196         if (q->nr_hw_queues < set->nr_hw_queues) {
3197                 struct blk_mq_hw_ctx **new_hctxs;
3198
3199                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3200                                        sizeof(*new_hctxs), GFP_KERNEL,
3201                                        set->numa_node);
3202                 if (!new_hctxs)
3203                         return;
3204                 if (hctxs)
3205                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3206                                sizeof(*hctxs));
3207                 q->queue_hw_ctx = new_hctxs;
3208                 kfree(hctxs);
3209                 hctxs = new_hctxs;
3210         }
3211
3212         /* protect against switching io scheduler  */
3213         mutex_lock(&q->sysfs_lock);
3214         for (i = 0; i < set->nr_hw_queues; i++) {
3215                 int node;
3216                 struct blk_mq_hw_ctx *hctx;
3217
3218                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3219                 /*
3220                  * If the hw queue has been mapped to another numa node,
3221                  * we need to realloc the hctx. If allocation fails, fallback
3222                  * to use the previous one.
3223                  */
3224                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3225                         continue;
3226
3227                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3228                 if (hctx) {
3229                         if (hctxs[i])
3230                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3231                         hctxs[i] = hctx;
3232                 } else {
3233                         if (hctxs[i])
3234                                 pr_warn("Allocate new hctx on node %d fails,\
3235                                                 fallback to previous one on node %d\n",
3236                                                 node, hctxs[i]->numa_node);
3237                         else
3238                                 break;
3239                 }
3240         }
3241         /*
3242          * Increasing nr_hw_queues fails. Free the newly allocated
3243          * hctxs and keep the previous q->nr_hw_queues.
3244          */
3245         if (i != set->nr_hw_queues) {
3246                 j = q->nr_hw_queues;
3247                 end = i;
3248         } else {
3249                 j = i;
3250                 end = q->nr_hw_queues;
3251                 q->nr_hw_queues = set->nr_hw_queues;
3252         }
3253
3254         for (; j < end; j++) {
3255                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3256
3257                 if (hctx) {
3258                         if (hctx->tags)
3259                                 blk_mq_free_map_and_requests(set, j);
3260                         blk_mq_exit_hctx(q, set, hctx, j);
3261                         hctxs[j] = NULL;
3262                 }
3263         }
3264         mutex_unlock(&q->sysfs_lock);
3265 }
3266
3267 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3268                 struct request_queue *q)
3269 {
3270         /* mark the queue as mq asap */
3271         q->mq_ops = set->ops;
3272
3273         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3274                                              blk_mq_poll_stats_bkt,
3275                                              BLK_MQ_POLL_STATS_BKTS, q);
3276         if (!q->poll_cb)
3277                 goto err_exit;
3278
3279         if (blk_mq_alloc_ctxs(q))
3280                 goto err_poll;
3281
3282         /* init q->mq_kobj and sw queues' kobjects */
3283         blk_mq_sysfs_init(q);
3284
3285         INIT_LIST_HEAD(&q->unused_hctx_list);
3286         spin_lock_init(&q->unused_hctx_lock);
3287
3288         blk_mq_realloc_hw_ctxs(set, q);
3289         if (!q->nr_hw_queues)
3290                 goto err_hctxs;
3291
3292         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3293         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3294
3295         q->tag_set = set;
3296
3297         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3298         if (set->nr_maps > HCTX_TYPE_POLL &&
3299             set->map[HCTX_TYPE_POLL].nr_queues)
3300                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3301
3302         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3303         INIT_LIST_HEAD(&q->requeue_list);
3304         spin_lock_init(&q->requeue_lock);
3305
3306         q->nr_requests = set->queue_depth;
3307
3308         /*
3309          * Default to classic polling
3310          */
3311         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3312
3313         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3314         blk_mq_add_queue_tag_set(set, q);
3315         blk_mq_map_swqueue(q);
3316         return 0;
3317
3318 err_hctxs:
3319         kfree(q->queue_hw_ctx);
3320         q->nr_hw_queues = 0;
3321         blk_mq_sysfs_deinit(q);
3322 err_poll:
3323         blk_stat_free_callback(q->poll_cb);
3324         q->poll_cb = NULL;
3325 err_exit:
3326         q->mq_ops = NULL;
3327         return -ENOMEM;
3328 }
3329 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3330
3331 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3332 void blk_mq_exit_queue(struct request_queue *q)
3333 {
3334         struct blk_mq_tag_set *set = q->tag_set;
3335
3336         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3337         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3338         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3339         blk_mq_del_queue_tag_set(q);
3340 }
3341
3342 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3343 {
3344         int i;
3345
3346         for (i = 0; i < set->nr_hw_queues; i++) {
3347                 if (!__blk_mq_alloc_map_and_request(set, i))
3348                         goto out_unwind;
3349                 cond_resched();
3350         }
3351
3352         return 0;
3353
3354 out_unwind:
3355         while (--i >= 0)
3356                 blk_mq_free_map_and_requests(set, i);
3357
3358         return -ENOMEM;
3359 }
3360
3361 /*
3362  * Allocate the request maps associated with this tag_set. Note that this
3363  * may reduce the depth asked for, if memory is tight. set->queue_depth
3364  * will be updated to reflect the allocated depth.
3365  */
3366 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3367 {
3368         unsigned int depth;
3369         int err;
3370
3371         depth = set->queue_depth;
3372         do {
3373                 err = __blk_mq_alloc_rq_maps(set);
3374                 if (!err)
3375                         break;
3376
3377                 set->queue_depth >>= 1;
3378                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3379                         err = -ENOMEM;
3380                         break;
3381                 }
3382         } while (set->queue_depth);
3383
3384         if (!set->queue_depth || err) {
3385                 pr_err("blk-mq: failed to allocate request map\n");
3386                 return -ENOMEM;
3387         }
3388
3389         if (depth != set->queue_depth)
3390                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3391                                                 depth, set->queue_depth);
3392
3393         return 0;
3394 }
3395
3396 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3397 {
3398         /*
3399          * blk_mq_map_queues() and multiple .map_queues() implementations
3400          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3401          * number of hardware queues.
3402          */
3403         if (set->nr_maps == 1)
3404                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3405
3406         if (set->ops->map_queues && !is_kdump_kernel()) {
3407                 int i;
3408
3409                 /*
3410                  * transport .map_queues is usually done in the following
3411                  * way:
3412                  *
3413                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3414                  *      mask = get_cpu_mask(queue)
3415                  *      for_each_cpu(cpu, mask)
3416                  *              set->map[x].mq_map[cpu] = queue;
3417                  * }
3418                  *
3419                  * When we need to remap, the table has to be cleared for
3420                  * killing stale mapping since one CPU may not be mapped
3421                  * to any hw queue.
3422                  */
3423                 for (i = 0; i < set->nr_maps; i++)
3424                         blk_mq_clear_mq_map(&set->map[i]);
3425
3426                 return set->ops->map_queues(set);
3427         } else {
3428                 BUG_ON(set->nr_maps > 1);
3429                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3430         }
3431 }
3432
3433 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3434                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3435 {
3436         struct blk_mq_tags **new_tags;
3437
3438         if (cur_nr_hw_queues >= new_nr_hw_queues)
3439                 return 0;
3440
3441         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3442                                 GFP_KERNEL, set->numa_node);
3443         if (!new_tags)
3444                 return -ENOMEM;
3445
3446         if (set->tags)
3447                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3448                        sizeof(*set->tags));
3449         kfree(set->tags);
3450         set->tags = new_tags;
3451         set->nr_hw_queues = new_nr_hw_queues;
3452
3453         return 0;
3454 }
3455
3456 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3457                                 int new_nr_hw_queues)
3458 {
3459         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3460 }
3461
3462 /*
3463  * Alloc a tag set to be associated with one or more request queues.
3464  * May fail with EINVAL for various error conditions. May adjust the
3465  * requested depth down, if it's too large. In that case, the set
3466  * value will be stored in set->queue_depth.
3467  */
3468 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3469 {
3470         int i, ret;
3471
3472         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3473
3474         if (!set->nr_hw_queues)
3475                 return -EINVAL;
3476         if (!set->queue_depth)
3477                 return -EINVAL;
3478         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3479                 return -EINVAL;
3480
3481         if (!set->ops->queue_rq)
3482                 return -EINVAL;
3483
3484         if (!set->ops->get_budget ^ !set->ops->put_budget)
3485                 return -EINVAL;
3486
3487         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3488                 pr_info("blk-mq: reduced tag depth to %u\n",
3489                         BLK_MQ_MAX_DEPTH);
3490                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3491         }
3492
3493         if (!set->nr_maps)
3494                 set->nr_maps = 1;
3495         else if (set->nr_maps > HCTX_MAX_TYPES)
3496                 return -EINVAL;
3497
3498         /*
3499          * If a crashdump is active, then we are potentially in a very
3500          * memory constrained environment. Limit us to 1 queue and
3501          * 64 tags to prevent using too much memory.
3502          */
3503         if (is_kdump_kernel()) {
3504                 set->nr_hw_queues = 1;
3505                 set->nr_maps = 1;
3506                 set->queue_depth = min(64U, set->queue_depth);
3507         }
3508         /*
3509          * There is no use for more h/w queues than cpus if we just have
3510          * a single map
3511          */
3512         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3513                 set->nr_hw_queues = nr_cpu_ids;
3514
3515         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3516                 return -ENOMEM;
3517
3518         ret = -ENOMEM;
3519         for (i = 0; i < set->nr_maps; i++) {
3520                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3521                                                   sizeof(set->map[i].mq_map[0]),
3522                                                   GFP_KERNEL, set->numa_node);
3523                 if (!set->map[i].mq_map)
3524                         goto out_free_mq_map;
3525                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3526         }
3527
3528         ret = blk_mq_update_queue_map(set);
3529         if (ret)
3530                 goto out_free_mq_map;
3531
3532         ret = blk_mq_alloc_map_and_requests(set);
3533         if (ret)
3534                 goto out_free_mq_map;
3535
3536         if (blk_mq_is_sbitmap_shared(set->flags)) {
3537                 atomic_set(&set->active_queues_shared_sbitmap, 0);
3538
3539                 if (blk_mq_init_shared_sbitmap(set)) {
3540                         ret = -ENOMEM;
3541                         goto out_free_mq_rq_maps;
3542                 }
3543         }
3544
3545         mutex_init(&set->tag_list_lock);
3546         INIT_LIST_HEAD(&set->tag_list);
3547
3548         return 0;
3549
3550 out_free_mq_rq_maps:
3551         for (i = 0; i < set->nr_hw_queues; i++)
3552                 blk_mq_free_map_and_requests(set, i);
3553 out_free_mq_map:
3554         for (i = 0; i < set->nr_maps; i++) {
3555                 kfree(set->map[i].mq_map);
3556                 set->map[i].mq_map = NULL;
3557         }
3558         kfree(set->tags);
3559         set->tags = NULL;
3560         return ret;
3561 }
3562 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3563
3564 /* allocate and initialize a tagset for a simple single-queue device */
3565 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3566                 const struct blk_mq_ops *ops, unsigned int queue_depth,
3567                 unsigned int set_flags)
3568 {
3569         memset(set, 0, sizeof(*set));
3570         set->ops = ops;
3571         set->nr_hw_queues = 1;
3572         set->nr_maps = 1;
3573         set->queue_depth = queue_depth;
3574         set->numa_node = NUMA_NO_NODE;
3575         set->flags = set_flags;
3576         return blk_mq_alloc_tag_set(set);
3577 }
3578 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3579
3580 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3581 {
3582         int i, j;
3583
3584         for (i = 0; i < set->nr_hw_queues; i++)
3585                 blk_mq_free_map_and_requests(set, i);
3586
3587         if (blk_mq_is_sbitmap_shared(set->flags))
3588                 blk_mq_exit_shared_sbitmap(set);
3589
3590         for (j = 0; j < set->nr_maps; j++) {
3591                 kfree(set->map[j].mq_map);
3592                 set->map[j].mq_map = NULL;
3593         }
3594
3595         kfree(set->tags);
3596         set->tags = NULL;
3597 }
3598 EXPORT_SYMBOL(blk_mq_free_tag_set);
3599
3600 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3601 {
3602         struct blk_mq_tag_set *set = q->tag_set;
3603         struct blk_mq_hw_ctx *hctx;
3604         int i, ret;
3605
3606         if (!set)
3607                 return -EINVAL;
3608
3609         if (q->nr_requests == nr)
3610                 return 0;
3611
3612         blk_mq_freeze_queue(q);
3613         blk_mq_quiesce_queue(q);
3614
3615         ret = 0;
3616         queue_for_each_hw_ctx(q, hctx, i) {
3617                 if (!hctx->tags)
3618                         continue;
3619                 /*
3620                  * If we're using an MQ scheduler, just update the scheduler
3621                  * queue depth. This is similar to what the old code would do.
3622                  */
3623                 if (!hctx->sched_tags) {
3624                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3625                                                         false);
3626                         if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3627                                 blk_mq_tag_resize_shared_sbitmap(set, nr);
3628                 } else {
3629                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3630                                                         nr, true);
3631                         if (blk_mq_is_sbitmap_shared(set->flags)) {
3632                                 hctx->sched_tags->bitmap_tags =
3633                                         &q->sched_bitmap_tags;
3634                                 hctx->sched_tags->breserved_tags =
3635                                         &q->sched_breserved_tags;
3636                         }
3637                 }
3638                 if (ret)
3639                         break;
3640                 if (q->elevator && q->elevator->type->ops.depth_updated)
3641                         q->elevator->type->ops.depth_updated(hctx);
3642         }
3643         if (!ret) {
3644                 q->nr_requests = nr;
3645                 if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3646                         sbitmap_queue_resize(&q->sched_bitmap_tags,
3647                                              nr - set->reserved_tags);
3648         }
3649
3650         blk_mq_unquiesce_queue(q);
3651         blk_mq_unfreeze_queue(q);
3652
3653         return ret;
3654 }
3655
3656 /*
3657  * request_queue and elevator_type pair.
3658  * It is just used by __blk_mq_update_nr_hw_queues to cache
3659  * the elevator_type associated with a request_queue.
3660  */
3661 struct blk_mq_qe_pair {
3662         struct list_head node;
3663         struct request_queue *q;
3664         struct elevator_type *type;
3665 };
3666
3667 /*
3668  * Cache the elevator_type in qe pair list and switch the
3669  * io scheduler to 'none'
3670  */
3671 static bool blk_mq_elv_switch_none(struct list_head *head,
3672                 struct request_queue *q)
3673 {
3674         struct blk_mq_qe_pair *qe;
3675
3676         if (!q->elevator)
3677                 return true;
3678
3679         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3680         if (!qe)
3681                 return false;
3682
3683         INIT_LIST_HEAD(&qe->node);
3684         qe->q = q;
3685         qe->type = q->elevator->type;
3686         list_add(&qe->node, head);
3687
3688         mutex_lock(&q->sysfs_lock);
3689         /*
3690          * After elevator_switch_mq, the previous elevator_queue will be
3691          * released by elevator_release. The reference of the io scheduler
3692          * module get by elevator_get will also be put. So we need to get
3693          * a reference of the io scheduler module here to prevent it to be
3694          * removed.
3695          */
3696         __module_get(qe->type->elevator_owner);
3697         elevator_switch_mq(q, NULL);
3698         mutex_unlock(&q->sysfs_lock);
3699
3700         return true;
3701 }
3702
3703 static void blk_mq_elv_switch_back(struct list_head *head,
3704                 struct request_queue *q)
3705 {
3706         struct blk_mq_qe_pair *qe;
3707         struct elevator_type *t = NULL;
3708
3709         list_for_each_entry(qe, head, node)
3710                 if (qe->q == q) {
3711                         t = qe->type;
3712                         break;
3713                 }
3714
3715         if (!t)
3716                 return;
3717
3718         list_del(&qe->node);
3719         kfree(qe);
3720
3721         mutex_lock(&q->sysfs_lock);
3722         elevator_switch_mq(q, t);
3723         mutex_unlock(&q->sysfs_lock);
3724 }
3725
3726 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3727                                                         int nr_hw_queues)
3728 {
3729         struct request_queue *q;
3730         LIST_HEAD(head);
3731         int prev_nr_hw_queues;
3732
3733         lockdep_assert_held(&set->tag_list_lock);
3734
3735         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3736                 nr_hw_queues = nr_cpu_ids;
3737         if (nr_hw_queues < 1)
3738                 return;
3739         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3740                 return;
3741
3742         list_for_each_entry(q, &set->tag_list, tag_set_list)
3743                 blk_mq_freeze_queue(q);
3744         /*
3745          * Switch IO scheduler to 'none', cleaning up the data associated
3746          * with the previous scheduler. We will switch back once we are done
3747          * updating the new sw to hw queue mappings.
3748          */
3749         list_for_each_entry(q, &set->tag_list, tag_set_list)
3750                 if (!blk_mq_elv_switch_none(&head, q))
3751                         goto switch_back;
3752
3753         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3754                 blk_mq_debugfs_unregister_hctxs(q);
3755                 blk_mq_sysfs_unregister(q);
3756         }
3757
3758         prev_nr_hw_queues = set->nr_hw_queues;
3759         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3760             0)
3761                 goto reregister;
3762
3763         set->nr_hw_queues = nr_hw_queues;
3764 fallback:
3765         blk_mq_update_queue_map(set);
3766         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3767                 blk_mq_realloc_hw_ctxs(set, q);
3768                 if (q->nr_hw_queues != set->nr_hw_queues) {
3769                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3770                                         nr_hw_queues, prev_nr_hw_queues);
3771                         set->nr_hw_queues = prev_nr_hw_queues;
3772                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3773                         goto fallback;
3774                 }
3775                 blk_mq_map_swqueue(q);
3776         }
3777
3778 reregister:
3779         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3780                 blk_mq_sysfs_register(q);
3781                 blk_mq_debugfs_register_hctxs(q);
3782         }
3783
3784 switch_back:
3785         list_for_each_entry(q, &set->tag_list, tag_set_list)
3786                 blk_mq_elv_switch_back(&head, q);
3787
3788         list_for_each_entry(q, &set->tag_list, tag_set_list)
3789                 blk_mq_unfreeze_queue(q);
3790 }
3791
3792 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3793 {
3794         mutex_lock(&set->tag_list_lock);
3795         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3796         mutex_unlock(&set->tag_list_lock);
3797 }
3798 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3799
3800 /* Enable polling stats and return whether they were already enabled. */
3801 static bool blk_poll_stats_enable(struct request_queue *q)
3802 {
3803         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3804             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3805                 return true;
3806         blk_stat_add_callback(q, q->poll_cb);
3807         return false;
3808 }
3809
3810 static void blk_mq_poll_stats_start(struct request_queue *q)
3811 {
3812         /*
3813          * We don't arm the callback if polling stats are not enabled or the
3814          * callback is already active.
3815          */
3816         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3817             blk_stat_is_active(q->poll_cb))
3818                 return;
3819
3820         blk_stat_activate_msecs(q->poll_cb, 100);
3821 }
3822
3823 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3824 {
3825         struct request_queue *q = cb->data;
3826         int bucket;
3827
3828         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3829                 if (cb->stat[bucket].nr_samples)
3830                         q->poll_stat[bucket] = cb->stat[bucket];
3831         }
3832 }
3833
3834 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3835                                        struct request *rq)
3836 {
3837         unsigned long ret = 0;
3838         int bucket;
3839
3840         /*
3841          * If stats collection isn't on, don't sleep but turn it on for
3842          * future users
3843          */
3844         if (!blk_poll_stats_enable(q))
3845                 return 0;
3846
3847         /*
3848          * As an optimistic guess, use half of the mean service time
3849          * for this type of request. We can (and should) make this smarter.
3850          * For instance, if the completion latencies are tight, we can
3851          * get closer than just half the mean. This is especially
3852          * important on devices where the completion latencies are longer
3853          * than ~10 usec. We do use the stats for the relevant IO size
3854          * if available which does lead to better estimates.
3855          */
3856         bucket = blk_mq_poll_stats_bkt(rq);
3857         if (bucket < 0)
3858                 return ret;
3859
3860         if (q->poll_stat[bucket].nr_samples)
3861                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3862
3863         return ret;
3864 }
3865
3866 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3867                                      struct request *rq)
3868 {
3869         struct hrtimer_sleeper hs;
3870         enum hrtimer_mode mode;
3871         unsigned int nsecs;
3872         ktime_t kt;
3873
3874         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3875                 return false;
3876
3877         /*
3878          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3879          *
3880          *  0:  use half of prev avg
3881          * >0:  use this specific value
3882          */
3883         if (q->poll_nsec > 0)
3884                 nsecs = q->poll_nsec;
3885         else
3886                 nsecs = blk_mq_poll_nsecs(q, rq);
3887
3888         if (!nsecs)
3889                 return false;
3890
3891         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3892
3893         /*
3894          * This will be replaced with the stats tracking code, using
3895          * 'avg_completion_time / 2' as the pre-sleep target.
3896          */
3897         kt = nsecs;
3898
3899         mode = HRTIMER_MODE_REL;
3900         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3901         hrtimer_set_expires(&hs.timer, kt);
3902
3903         do {
3904                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3905                         break;
3906                 set_current_state(TASK_UNINTERRUPTIBLE);
3907                 hrtimer_sleeper_start_expires(&hs, mode);
3908                 if (hs.task)
3909                         io_schedule();
3910                 hrtimer_cancel(&hs.timer);
3911                 mode = HRTIMER_MODE_ABS;
3912         } while (hs.task && !signal_pending(current));
3913
3914         __set_current_state(TASK_RUNNING);
3915         destroy_hrtimer_on_stack(&hs.timer);
3916         return true;
3917 }
3918
3919 static bool blk_mq_poll_hybrid(struct request_queue *q,
3920                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3921 {
3922         struct request *rq;
3923
3924         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3925                 return false;
3926
3927         if (!blk_qc_t_is_internal(cookie))
3928                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3929         else {
3930                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3931                 /*
3932                  * With scheduling, if the request has completed, we'll
3933                  * get a NULL return here, as we clear the sched tag when
3934                  * that happens. The request still remains valid, like always,
3935                  * so we should be safe with just the NULL check.
3936                  */
3937                 if (!rq)
3938                         return false;
3939         }
3940
3941         return blk_mq_poll_hybrid_sleep(q, rq);
3942 }
3943
3944 /**
3945  * blk_poll - poll for IO completions
3946  * @q:  the queue
3947  * @cookie: cookie passed back at IO submission time
3948  * @spin: whether to spin for completions
3949  *
3950  * Description:
3951  *    Poll for completions on the passed in queue. Returns number of
3952  *    completed entries found. If @spin is true, then blk_poll will continue
3953  *    looping until at least one completion is found, unless the task is
3954  *    otherwise marked running (or we need to reschedule).
3955  */
3956 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3957 {
3958         struct blk_mq_hw_ctx *hctx;
3959         unsigned int state;
3960
3961         if (!blk_qc_t_valid(cookie) ||
3962             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3963                 return 0;
3964
3965         if (current->plug)
3966                 blk_flush_plug_list(current->plug, false);
3967
3968         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3969
3970         /*
3971          * If we sleep, have the caller restart the poll loop to reset
3972          * the state. Like for the other success return cases, the
3973          * caller is responsible for checking if the IO completed. If
3974          * the IO isn't complete, we'll get called again and will go
3975          * straight to the busy poll loop. If specified not to spin,
3976          * we also should not sleep.
3977          */
3978         if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3979                 return 1;
3980
3981         hctx->poll_considered++;
3982
3983         state = get_current_state();
3984         do {
3985                 int ret;
3986
3987                 hctx->poll_invoked++;
3988
3989                 ret = q->mq_ops->poll(hctx);
3990                 if (ret > 0) {
3991                         hctx->poll_success++;
3992                         __set_current_state(TASK_RUNNING);
3993                         return ret;
3994                 }
3995
3996                 if (signal_pending_state(state, current))
3997                         __set_current_state(TASK_RUNNING);
3998
3999                 if (task_is_running(current))
4000                         return 1;
4001                 if (ret < 0 || !spin)
4002                         break;
4003                 cpu_relax();
4004         } while (!need_resched());
4005
4006         __set_current_state(TASK_RUNNING);
4007         return 0;
4008 }
4009 EXPORT_SYMBOL_GPL(blk_poll);
4010
4011 unsigned int blk_mq_rq_cpu(struct request *rq)
4012 {
4013         return rq->mq_ctx->cpu;
4014 }
4015 EXPORT_SYMBOL(blk_mq_rq_cpu);
4016
4017 static int __init blk_mq_init(void)
4018 {
4019         int i;
4020
4021         for_each_possible_cpu(i)
4022                 init_llist_head(&per_cpu(blk_cpu_done, i));
4023         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4024
4025         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4026                                   "block/softirq:dead", NULL,
4027                                   blk_softirq_cpu_dead);
4028         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4029                                 blk_mq_hctx_notify_dead);
4030         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4031                                 blk_mq_hctx_notify_online,
4032                                 blk_mq_hctx_notify_offline);
4033         return 0;
4034 }
4035 subsys_initcall(blk_mq_init);