blk-mq: don't touch ->tagset in blk_mq_get_sq_hctx
[platform/kernel/linux-rpi.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51         int ddir, sectors, bucket;
52
53         ddir = rq_data_dir(rq);
54         sectors = blk_rq_stats_sectors(rq);
55
56         bucket = ddir + 2 * ilog2(sectors);
57
58         if (bucket < 0)
59                 return -1;
60         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63         return bucket;
64 }
65
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72         return !list_empty_careful(&hctx->dispatch) ||
73                 sbitmap_any_bit_set(&hctx->ctx_map) ||
74                         blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81                                      struct blk_mq_ctx *ctx)
82 {
83         const int bit = ctx->index_hw[hctx->type];
84
85         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86                 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90                                       struct blk_mq_ctx *ctx)
91 {
92         const int bit = ctx->index_hw[hctx->type];
93
94         sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98         struct block_device *part;
99         unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103                                   struct request *rq, void *priv,
104                                   bool reserved)
105 {
106         struct mq_inflight *mi = priv;
107
108         if ((!mi->part->bd_partno || rq->part == mi->part) &&
109             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110                 mi->inflight[rq_data_dir(rq)]++;
111
112         return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116                 struct block_device *part)
117 {
118         struct mq_inflight mi = { .part = part };
119
120         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122         return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126                 unsigned int inflight[2])
127 {
128         struct mq_inflight mi = { .part = part };
129
130         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131         inflight[0] = mi.inflight[0];
132         inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137         mutex_lock(&q->mq_freeze_lock);
138         if (++q->mq_freeze_depth == 1) {
139                 percpu_ref_kill(&q->q_usage_counter);
140                 mutex_unlock(&q->mq_freeze_lock);
141                 if (queue_is_mq(q))
142                         blk_mq_run_hw_queues(q, false);
143         } else {
144                 mutex_unlock(&q->mq_freeze_lock);
145         }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156                                      unsigned long timeout)
157 {
158         return wait_event_timeout(q->mq_freeze_wq,
159                                         percpu_ref_is_zero(&q->q_usage_counter),
160                                         timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * In the !blk_mq case we are only calling this to kill the
172          * q_usage_counter, otherwise this increases the freeze depth
173          * and waits for it to return to zero.  For this reason there is
174          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175          * exported to drivers as the only user for unfreeze is blk_mq.
176          */
177         blk_freeze_queue_start(q);
178         blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183         /*
184          * ...just an alias to keep freeze and unfreeze actions balanced
185          * in the blk_mq_* namespace
186          */
187         blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
192 {
193         mutex_lock(&q->mq_freeze_lock);
194         if (force_atomic)
195                 q->q_usage_counter.data->force_atomic = true;
196         q->mq_freeze_depth--;
197         WARN_ON_ONCE(q->mq_freeze_depth < 0);
198         if (!q->mq_freeze_depth) {
199                 percpu_ref_resurrect(&q->q_usage_counter);
200                 wake_up_all(&q->mq_freeze_wq);
201         }
202         mutex_unlock(&q->mq_freeze_lock);
203 }
204
205 void blk_mq_unfreeze_queue(struct request_queue *q)
206 {
207         __blk_mq_unfreeze_queue(q, false);
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213  * mpt3sas driver such that this function can be removed.
214  */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220
221 /**
222  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223  * @q: request queue.
224  *
225  * Note: this function does not prevent that the struct request end_io()
226  * callback function is invoked. Once this function is returned, we make
227  * sure no dispatch can happen until the queue is unquiesced via
228  * blk_mq_unquiesce_queue().
229  */
230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232         struct blk_mq_hw_ctx *hctx;
233         unsigned int i;
234         bool rcu = false;
235
236         blk_mq_quiesce_queue_nowait(q);
237
238         queue_for_each_hw_ctx(q, hctx, i) {
239                 if (hctx->flags & BLK_MQ_F_BLOCKING)
240                         synchronize_srcu(hctx->srcu);
241                 else
242                         rcu = true;
243         }
244         if (rcu)
245                 synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248
249 /*
250  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251  * @q: request queue.
252  *
253  * This function recovers queue into the state before quiescing
254  * which is done by blk_mq_quiesce_queue.
255  */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259
260         /* dispatch requests which are inserted during quiescing */
261         blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264
265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267         struct blk_mq_hw_ctx *hctx;
268         unsigned int i;
269
270         queue_for_each_hw_ctx(q, hctx, i)
271                 if (blk_mq_hw_queue_mapped(hctx))
272                         blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274
275 /*
276  * Only need start/end time stamping if we have iostat or
277  * blk stats enabled, or using an IO scheduler.
278  */
279 static inline bool blk_mq_need_time_stamp(struct request *rq)
280 {
281         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
282 }
283
284 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
285                 unsigned int tag, u64 alloc_time_ns)
286 {
287         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
288         struct request *rq = tags->static_rqs[tag];
289
290         if (data->q->elevator) {
291                 rq->tag = BLK_MQ_NO_TAG;
292                 rq->internal_tag = tag;
293         } else {
294                 rq->tag = tag;
295                 rq->internal_tag = BLK_MQ_NO_TAG;
296         }
297
298         /* csd/requeue_work/fifo_time is initialized before use */
299         rq->q = data->q;
300         rq->mq_ctx = data->ctx;
301         rq->mq_hctx = data->hctx;
302         rq->rq_flags = 0;
303         rq->cmd_flags = data->cmd_flags;
304         if (data->flags & BLK_MQ_REQ_PM)
305                 rq->rq_flags |= RQF_PM;
306         if (blk_queue_io_stat(data->q))
307                 rq->rq_flags |= RQF_IO_STAT;
308         INIT_LIST_HEAD(&rq->queuelist);
309         INIT_HLIST_NODE(&rq->hash);
310         RB_CLEAR_NODE(&rq->rb_node);
311         rq->rq_disk = NULL;
312         rq->part = NULL;
313 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
314         rq->alloc_time_ns = alloc_time_ns;
315 #endif
316         if (blk_mq_need_time_stamp(rq))
317                 rq->start_time_ns = ktime_get_ns();
318         else
319                 rq->start_time_ns = 0;
320         rq->io_start_time_ns = 0;
321         rq->stats_sectors = 0;
322         rq->nr_phys_segments = 0;
323 #if defined(CONFIG_BLK_DEV_INTEGRITY)
324         rq->nr_integrity_segments = 0;
325 #endif
326         blk_crypto_rq_set_defaults(rq);
327         /* tag was already set */
328         WRITE_ONCE(rq->deadline, 0);
329
330         rq->timeout = 0;
331
332         rq->end_io = NULL;
333         rq->end_io_data = NULL;
334
335         data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
336         refcount_set(&rq->ref, 1);
337
338         if (!op_is_flush(data->cmd_flags)) {
339                 struct elevator_queue *e = data->q->elevator;
340
341                 rq->elv.icq = NULL;
342                 if (e && e->type->ops.prepare_request) {
343                         if (e->type->icq_cache)
344                                 blk_mq_sched_assign_ioc(rq);
345
346                         e->type->ops.prepare_request(rq);
347                         rq->rq_flags |= RQF_ELVPRIV;
348                 }
349         }
350
351         data->hctx->queued++;
352         return rq;
353 }
354
355 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
356 {
357         struct request_queue *q = data->q;
358         struct elevator_queue *e = q->elevator;
359         u64 alloc_time_ns = 0;
360         unsigned int tag;
361
362         /* alloc_time includes depth and tag waits */
363         if (blk_queue_rq_alloc_time(q))
364                 alloc_time_ns = ktime_get_ns();
365
366         if (data->cmd_flags & REQ_NOWAIT)
367                 data->flags |= BLK_MQ_REQ_NOWAIT;
368
369         if (e) {
370                 /*
371                  * Flush/passthrough requests are special and go directly to the
372                  * dispatch list. Don't include reserved tags in the
373                  * limiting, as it isn't useful.
374                  */
375                 if (!op_is_flush(data->cmd_flags) &&
376                     !blk_op_is_passthrough(data->cmd_flags) &&
377                     e->type->ops.limit_depth &&
378                     !(data->flags & BLK_MQ_REQ_RESERVED))
379                         e->type->ops.limit_depth(data->cmd_flags, data);
380         }
381
382 retry:
383         data->ctx = blk_mq_get_ctx(q);
384         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
385         if (!e)
386                 blk_mq_tag_busy(data->hctx);
387
388         /*
389          * Waiting allocations only fail because of an inactive hctx.  In that
390          * case just retry the hctx assignment and tag allocation as CPU hotplug
391          * should have migrated us to an online CPU by now.
392          */
393         tag = blk_mq_get_tag(data);
394         if (tag == BLK_MQ_NO_TAG) {
395                 if (data->flags & BLK_MQ_REQ_NOWAIT)
396                         return NULL;
397
398                 /*
399                  * Give up the CPU and sleep for a random short time to ensure
400                  * that thread using a realtime scheduling class are migrated
401                  * off the CPU, and thus off the hctx that is going away.
402                  */
403                 msleep(3);
404                 goto retry;
405         }
406         return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
407 }
408
409 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
410                 blk_mq_req_flags_t flags)
411 {
412         struct blk_mq_alloc_data data = {
413                 .q              = q,
414                 .flags          = flags,
415                 .cmd_flags      = op,
416         };
417         struct request *rq;
418         int ret;
419
420         ret = blk_queue_enter(q, flags);
421         if (ret)
422                 return ERR_PTR(ret);
423
424         rq = __blk_mq_alloc_request(&data);
425         if (!rq)
426                 goto out_queue_exit;
427         rq->__data_len = 0;
428         rq->__sector = (sector_t) -1;
429         rq->bio = rq->biotail = NULL;
430         return rq;
431 out_queue_exit:
432         blk_queue_exit(q);
433         return ERR_PTR(-EWOULDBLOCK);
434 }
435 EXPORT_SYMBOL(blk_mq_alloc_request);
436
437 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
438         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
439 {
440         struct blk_mq_alloc_data data = {
441                 .q              = q,
442                 .flags          = flags,
443                 .cmd_flags      = op,
444         };
445         u64 alloc_time_ns = 0;
446         unsigned int cpu;
447         unsigned int tag;
448         int ret;
449
450         /* alloc_time includes depth and tag waits */
451         if (blk_queue_rq_alloc_time(q))
452                 alloc_time_ns = ktime_get_ns();
453
454         /*
455          * If the tag allocator sleeps we could get an allocation for a
456          * different hardware context.  No need to complicate the low level
457          * allocator for this for the rare use case of a command tied to
458          * a specific queue.
459          */
460         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
461                 return ERR_PTR(-EINVAL);
462
463         if (hctx_idx >= q->nr_hw_queues)
464                 return ERR_PTR(-EIO);
465
466         ret = blk_queue_enter(q, flags);
467         if (ret)
468                 return ERR_PTR(ret);
469
470         /*
471          * Check if the hardware context is actually mapped to anything.
472          * If not tell the caller that it should skip this queue.
473          */
474         ret = -EXDEV;
475         data.hctx = q->queue_hw_ctx[hctx_idx];
476         if (!blk_mq_hw_queue_mapped(data.hctx))
477                 goto out_queue_exit;
478         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
479         data.ctx = __blk_mq_get_ctx(q, cpu);
480
481         if (!q->elevator)
482                 blk_mq_tag_busy(data.hctx);
483
484         ret = -EWOULDBLOCK;
485         tag = blk_mq_get_tag(&data);
486         if (tag == BLK_MQ_NO_TAG)
487                 goto out_queue_exit;
488         return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
489
490 out_queue_exit:
491         blk_queue_exit(q);
492         return ERR_PTR(ret);
493 }
494 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
495
496 static void __blk_mq_free_request(struct request *rq)
497 {
498         struct request_queue *q = rq->q;
499         struct blk_mq_ctx *ctx = rq->mq_ctx;
500         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
501         const int sched_tag = rq->internal_tag;
502
503         blk_crypto_free_request(rq);
504         blk_pm_mark_last_busy(rq);
505         rq->mq_hctx = NULL;
506         if (rq->tag != BLK_MQ_NO_TAG)
507                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
508         if (sched_tag != BLK_MQ_NO_TAG)
509                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
510         blk_mq_sched_restart(hctx);
511         blk_queue_exit(q);
512 }
513
514 void blk_mq_free_request(struct request *rq)
515 {
516         struct request_queue *q = rq->q;
517         struct elevator_queue *e = q->elevator;
518         struct blk_mq_ctx *ctx = rq->mq_ctx;
519         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
520
521         if (rq->rq_flags & RQF_ELVPRIV) {
522                 if (e && e->type->ops.finish_request)
523                         e->type->ops.finish_request(rq);
524                 if (rq->elv.icq) {
525                         put_io_context(rq->elv.icq->ioc);
526                         rq->elv.icq = NULL;
527                 }
528         }
529
530         ctx->rq_completed[rq_is_sync(rq)]++;
531         if (rq->rq_flags & RQF_MQ_INFLIGHT)
532                 __blk_mq_dec_active_requests(hctx);
533
534         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
535                 laptop_io_completion(q->disk->bdi);
536
537         rq_qos_done(q, rq);
538
539         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
540         if (refcount_dec_and_test(&rq->ref))
541                 __blk_mq_free_request(rq);
542 }
543 EXPORT_SYMBOL_GPL(blk_mq_free_request);
544
545 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
546 {
547         u64 now = 0;
548
549         if (blk_mq_need_time_stamp(rq))
550                 now = ktime_get_ns();
551
552         if (rq->rq_flags & RQF_STATS) {
553                 blk_mq_poll_stats_start(rq->q);
554                 blk_stat_add(rq, now);
555         }
556
557         blk_mq_sched_completed_request(rq, now);
558
559         blk_account_io_done(rq, now);
560
561         if (rq->end_io) {
562                 rq_qos_done(rq->q, rq);
563                 rq->end_io(rq, error);
564         } else {
565                 blk_mq_free_request(rq);
566         }
567 }
568 EXPORT_SYMBOL(__blk_mq_end_request);
569
570 void blk_mq_end_request(struct request *rq, blk_status_t error)
571 {
572         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
573                 BUG();
574         __blk_mq_end_request(rq, error);
575 }
576 EXPORT_SYMBOL(blk_mq_end_request);
577
578 static void blk_complete_reqs(struct llist_head *list)
579 {
580         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
581         struct request *rq, *next;
582
583         llist_for_each_entry_safe(rq, next, entry, ipi_list)
584                 rq->q->mq_ops->complete(rq);
585 }
586
587 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
588 {
589         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
590 }
591
592 static int blk_softirq_cpu_dead(unsigned int cpu)
593 {
594         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
595         return 0;
596 }
597
598 static void __blk_mq_complete_request_remote(void *data)
599 {
600         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
601 }
602
603 static inline bool blk_mq_complete_need_ipi(struct request *rq)
604 {
605         int cpu = raw_smp_processor_id();
606
607         if (!IS_ENABLED(CONFIG_SMP) ||
608             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
609                 return false;
610         /*
611          * With force threaded interrupts enabled, raising softirq from an SMP
612          * function call will always result in waking the ksoftirqd thread.
613          * This is probably worse than completing the request on a different
614          * cache domain.
615          */
616         if (force_irqthreads())
617                 return false;
618
619         /* same CPU or cache domain?  Complete locally */
620         if (cpu == rq->mq_ctx->cpu ||
621             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
622              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
623                 return false;
624
625         /* don't try to IPI to an offline CPU */
626         return cpu_online(rq->mq_ctx->cpu);
627 }
628
629 static void blk_mq_complete_send_ipi(struct request *rq)
630 {
631         struct llist_head *list;
632         unsigned int cpu;
633
634         cpu = rq->mq_ctx->cpu;
635         list = &per_cpu(blk_cpu_done, cpu);
636         if (llist_add(&rq->ipi_list, list)) {
637                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
638                 smp_call_function_single_async(cpu, &rq->csd);
639         }
640 }
641
642 static void blk_mq_raise_softirq(struct request *rq)
643 {
644         struct llist_head *list;
645
646         preempt_disable();
647         list = this_cpu_ptr(&blk_cpu_done);
648         if (llist_add(&rq->ipi_list, list))
649                 raise_softirq(BLOCK_SOFTIRQ);
650         preempt_enable();
651 }
652
653 bool blk_mq_complete_request_remote(struct request *rq)
654 {
655         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
656
657         /*
658          * For a polled request, always complete locallly, it's pointless
659          * to redirect the completion.
660          */
661         if (rq->cmd_flags & REQ_HIPRI)
662                 return false;
663
664         if (blk_mq_complete_need_ipi(rq)) {
665                 blk_mq_complete_send_ipi(rq);
666                 return true;
667         }
668
669         if (rq->q->nr_hw_queues == 1) {
670                 blk_mq_raise_softirq(rq);
671                 return true;
672         }
673         return false;
674 }
675 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
676
677 /**
678  * blk_mq_complete_request - end I/O on a request
679  * @rq:         the request being processed
680  *
681  * Description:
682  *      Complete a request by scheduling the ->complete_rq operation.
683  **/
684 void blk_mq_complete_request(struct request *rq)
685 {
686         if (!blk_mq_complete_request_remote(rq))
687                 rq->q->mq_ops->complete(rq);
688 }
689 EXPORT_SYMBOL(blk_mq_complete_request);
690
691 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
692         __releases(hctx->srcu)
693 {
694         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
695                 rcu_read_unlock();
696         else
697                 srcu_read_unlock(hctx->srcu, srcu_idx);
698 }
699
700 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
701         __acquires(hctx->srcu)
702 {
703         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
704                 /* shut up gcc false positive */
705                 *srcu_idx = 0;
706                 rcu_read_lock();
707         } else
708                 *srcu_idx = srcu_read_lock(hctx->srcu);
709 }
710
711 /**
712  * blk_mq_start_request - Start processing a request
713  * @rq: Pointer to request to be started
714  *
715  * Function used by device drivers to notify the block layer that a request
716  * is going to be processed now, so blk layer can do proper initializations
717  * such as starting the timeout timer.
718  */
719 void blk_mq_start_request(struct request *rq)
720 {
721         struct request_queue *q = rq->q;
722
723         trace_block_rq_issue(rq);
724
725         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
726                 rq->io_start_time_ns = ktime_get_ns();
727                 rq->stats_sectors = blk_rq_sectors(rq);
728                 rq->rq_flags |= RQF_STATS;
729                 rq_qos_issue(q, rq);
730         }
731
732         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
733
734         blk_add_timer(rq);
735         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
736
737 #ifdef CONFIG_BLK_DEV_INTEGRITY
738         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
739                 q->integrity.profile->prepare_fn(rq);
740 #endif
741 }
742 EXPORT_SYMBOL(blk_mq_start_request);
743
744 static void __blk_mq_requeue_request(struct request *rq)
745 {
746         struct request_queue *q = rq->q;
747
748         blk_mq_put_driver_tag(rq);
749
750         trace_block_rq_requeue(rq);
751         rq_qos_requeue(q, rq);
752
753         if (blk_mq_request_started(rq)) {
754                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
755                 rq->rq_flags &= ~RQF_TIMED_OUT;
756         }
757 }
758
759 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
760 {
761         __blk_mq_requeue_request(rq);
762
763         /* this request will be re-inserted to io scheduler queue */
764         blk_mq_sched_requeue_request(rq);
765
766         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
767 }
768 EXPORT_SYMBOL(blk_mq_requeue_request);
769
770 static void blk_mq_requeue_work(struct work_struct *work)
771 {
772         struct request_queue *q =
773                 container_of(work, struct request_queue, requeue_work.work);
774         LIST_HEAD(rq_list);
775         struct request *rq, *next;
776
777         spin_lock_irq(&q->requeue_lock);
778         list_splice_init(&q->requeue_list, &rq_list);
779         spin_unlock_irq(&q->requeue_lock);
780
781         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
782                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
783                         continue;
784
785                 rq->rq_flags &= ~RQF_SOFTBARRIER;
786                 list_del_init(&rq->queuelist);
787                 /*
788                  * If RQF_DONTPREP, rq has contained some driver specific
789                  * data, so insert it to hctx dispatch list to avoid any
790                  * merge.
791                  */
792                 if (rq->rq_flags & RQF_DONTPREP)
793                         blk_mq_request_bypass_insert(rq, false, false);
794                 else
795                         blk_mq_sched_insert_request(rq, true, false, false);
796         }
797
798         while (!list_empty(&rq_list)) {
799                 rq = list_entry(rq_list.next, struct request, queuelist);
800                 list_del_init(&rq->queuelist);
801                 blk_mq_sched_insert_request(rq, false, false, false);
802         }
803
804         blk_mq_run_hw_queues(q, false);
805 }
806
807 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
808                                 bool kick_requeue_list)
809 {
810         struct request_queue *q = rq->q;
811         unsigned long flags;
812
813         /*
814          * We abuse this flag that is otherwise used by the I/O scheduler to
815          * request head insertion from the workqueue.
816          */
817         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
818
819         spin_lock_irqsave(&q->requeue_lock, flags);
820         if (at_head) {
821                 rq->rq_flags |= RQF_SOFTBARRIER;
822                 list_add(&rq->queuelist, &q->requeue_list);
823         } else {
824                 list_add_tail(&rq->queuelist, &q->requeue_list);
825         }
826         spin_unlock_irqrestore(&q->requeue_lock, flags);
827
828         if (kick_requeue_list)
829                 blk_mq_kick_requeue_list(q);
830 }
831
832 void blk_mq_kick_requeue_list(struct request_queue *q)
833 {
834         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
835 }
836 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
837
838 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
839                                     unsigned long msecs)
840 {
841         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
842                                     msecs_to_jiffies(msecs));
843 }
844 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
845
846 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
847 {
848         if (tag < tags->nr_tags) {
849                 prefetch(tags->rqs[tag]);
850                 return tags->rqs[tag];
851         }
852
853         return NULL;
854 }
855 EXPORT_SYMBOL(blk_mq_tag_to_rq);
856
857 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
858                                void *priv, bool reserved)
859 {
860         /*
861          * If we find a request that isn't idle and the queue matches,
862          * we know the queue is busy. Return false to stop the iteration.
863          */
864         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
865                 bool *busy = priv;
866
867                 *busy = true;
868                 return false;
869         }
870
871         return true;
872 }
873
874 bool blk_mq_queue_inflight(struct request_queue *q)
875 {
876         bool busy = false;
877
878         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
879         return busy;
880 }
881 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
882
883 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
884 {
885         req->rq_flags |= RQF_TIMED_OUT;
886         if (req->q->mq_ops->timeout) {
887                 enum blk_eh_timer_return ret;
888
889                 ret = req->q->mq_ops->timeout(req, reserved);
890                 if (ret == BLK_EH_DONE)
891                         return;
892                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
893         }
894
895         blk_add_timer(req);
896 }
897
898 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
899 {
900         unsigned long deadline;
901
902         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
903                 return false;
904         if (rq->rq_flags & RQF_TIMED_OUT)
905                 return false;
906
907         deadline = READ_ONCE(rq->deadline);
908         if (time_after_eq(jiffies, deadline))
909                 return true;
910
911         if (*next == 0)
912                 *next = deadline;
913         else if (time_after(*next, deadline))
914                 *next = deadline;
915         return false;
916 }
917
918 void blk_mq_put_rq_ref(struct request *rq)
919 {
920         if (is_flush_rq(rq))
921                 rq->end_io(rq, 0);
922         else if (refcount_dec_and_test(&rq->ref))
923                 __blk_mq_free_request(rq);
924 }
925
926 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
927                 struct request *rq, void *priv, bool reserved)
928 {
929         unsigned long *next = priv;
930
931         /*
932          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
933          * be reallocated underneath the timeout handler's processing, then
934          * the expire check is reliable. If the request is not expired, then
935          * it was completed and reallocated as a new request after returning
936          * from blk_mq_check_expired().
937          */
938         if (blk_mq_req_expired(rq, next))
939                 blk_mq_rq_timed_out(rq, reserved);
940         return true;
941 }
942
943 static void blk_mq_timeout_work(struct work_struct *work)
944 {
945         struct request_queue *q =
946                 container_of(work, struct request_queue, timeout_work);
947         unsigned long next = 0;
948         struct blk_mq_hw_ctx *hctx;
949         int i;
950
951         /* A deadlock might occur if a request is stuck requiring a
952          * timeout at the same time a queue freeze is waiting
953          * completion, since the timeout code would not be able to
954          * acquire the queue reference here.
955          *
956          * That's why we don't use blk_queue_enter here; instead, we use
957          * percpu_ref_tryget directly, because we need to be able to
958          * obtain a reference even in the short window between the queue
959          * starting to freeze, by dropping the first reference in
960          * blk_freeze_queue_start, and the moment the last request is
961          * consumed, marked by the instant q_usage_counter reaches
962          * zero.
963          */
964         if (!percpu_ref_tryget(&q->q_usage_counter))
965                 return;
966
967         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
968
969         if (next != 0) {
970                 mod_timer(&q->timeout, next);
971         } else {
972                 /*
973                  * Request timeouts are handled as a forward rolling timer. If
974                  * we end up here it means that no requests are pending and
975                  * also that no request has been pending for a while. Mark
976                  * each hctx as idle.
977                  */
978                 queue_for_each_hw_ctx(q, hctx, i) {
979                         /* the hctx may be unmapped, so check it here */
980                         if (blk_mq_hw_queue_mapped(hctx))
981                                 blk_mq_tag_idle(hctx);
982                 }
983         }
984         blk_queue_exit(q);
985 }
986
987 struct flush_busy_ctx_data {
988         struct blk_mq_hw_ctx *hctx;
989         struct list_head *list;
990 };
991
992 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
993 {
994         struct flush_busy_ctx_data *flush_data = data;
995         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
996         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
997         enum hctx_type type = hctx->type;
998
999         spin_lock(&ctx->lock);
1000         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1001         sbitmap_clear_bit(sb, bitnr);
1002         spin_unlock(&ctx->lock);
1003         return true;
1004 }
1005
1006 /*
1007  * Process software queues that have been marked busy, splicing them
1008  * to the for-dispatch
1009  */
1010 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1011 {
1012         struct flush_busy_ctx_data data = {
1013                 .hctx = hctx,
1014                 .list = list,
1015         };
1016
1017         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1018 }
1019 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1020
1021 struct dispatch_rq_data {
1022         struct blk_mq_hw_ctx *hctx;
1023         struct request *rq;
1024 };
1025
1026 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1027                 void *data)
1028 {
1029         struct dispatch_rq_data *dispatch_data = data;
1030         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1031         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1032         enum hctx_type type = hctx->type;
1033
1034         spin_lock(&ctx->lock);
1035         if (!list_empty(&ctx->rq_lists[type])) {
1036                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1037                 list_del_init(&dispatch_data->rq->queuelist);
1038                 if (list_empty(&ctx->rq_lists[type]))
1039                         sbitmap_clear_bit(sb, bitnr);
1040         }
1041         spin_unlock(&ctx->lock);
1042
1043         return !dispatch_data->rq;
1044 }
1045
1046 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1047                                         struct blk_mq_ctx *start)
1048 {
1049         unsigned off = start ? start->index_hw[hctx->type] : 0;
1050         struct dispatch_rq_data data = {
1051                 .hctx = hctx,
1052                 .rq   = NULL,
1053         };
1054
1055         __sbitmap_for_each_set(&hctx->ctx_map, off,
1056                                dispatch_rq_from_ctx, &data);
1057
1058         return data.rq;
1059 }
1060
1061 static inline unsigned int queued_to_index(unsigned int queued)
1062 {
1063         if (!queued)
1064                 return 0;
1065
1066         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1067 }
1068
1069 static bool __blk_mq_get_driver_tag(struct request *rq)
1070 {
1071         struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1072         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1073         int tag;
1074
1075         blk_mq_tag_busy(rq->mq_hctx);
1076
1077         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1078                 bt = rq->mq_hctx->tags->breserved_tags;
1079                 tag_offset = 0;
1080         } else {
1081                 if (!hctx_may_queue(rq->mq_hctx, bt))
1082                         return false;
1083         }
1084
1085         tag = __sbitmap_queue_get(bt);
1086         if (tag == BLK_MQ_NO_TAG)
1087                 return false;
1088
1089         rq->tag = tag + tag_offset;
1090         return true;
1091 }
1092
1093 bool blk_mq_get_driver_tag(struct request *rq)
1094 {
1095         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1096
1097         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1098                 return false;
1099
1100         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1101                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1102                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1103                 __blk_mq_inc_active_requests(hctx);
1104         }
1105         hctx->tags->rqs[rq->tag] = rq;
1106         return true;
1107 }
1108
1109 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1110                                 int flags, void *key)
1111 {
1112         struct blk_mq_hw_ctx *hctx;
1113
1114         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1115
1116         spin_lock(&hctx->dispatch_wait_lock);
1117         if (!list_empty(&wait->entry)) {
1118                 struct sbitmap_queue *sbq;
1119
1120                 list_del_init(&wait->entry);
1121                 sbq = hctx->tags->bitmap_tags;
1122                 atomic_dec(&sbq->ws_active);
1123         }
1124         spin_unlock(&hctx->dispatch_wait_lock);
1125
1126         blk_mq_run_hw_queue(hctx, true);
1127         return 1;
1128 }
1129
1130 /*
1131  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1132  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1133  * restart. For both cases, take care to check the condition again after
1134  * marking us as waiting.
1135  */
1136 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1137                                  struct request *rq)
1138 {
1139         struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1140         struct wait_queue_head *wq;
1141         wait_queue_entry_t *wait;
1142         bool ret;
1143
1144         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1145                 blk_mq_sched_mark_restart_hctx(hctx);
1146
1147                 /*
1148                  * It's possible that a tag was freed in the window between the
1149                  * allocation failure and adding the hardware queue to the wait
1150                  * queue.
1151                  *
1152                  * Don't clear RESTART here, someone else could have set it.
1153                  * At most this will cost an extra queue run.
1154                  */
1155                 return blk_mq_get_driver_tag(rq);
1156         }
1157
1158         wait = &hctx->dispatch_wait;
1159         if (!list_empty_careful(&wait->entry))
1160                 return false;
1161
1162         wq = &bt_wait_ptr(sbq, hctx)->wait;
1163
1164         spin_lock_irq(&wq->lock);
1165         spin_lock(&hctx->dispatch_wait_lock);
1166         if (!list_empty(&wait->entry)) {
1167                 spin_unlock(&hctx->dispatch_wait_lock);
1168                 spin_unlock_irq(&wq->lock);
1169                 return false;
1170         }
1171
1172         atomic_inc(&sbq->ws_active);
1173         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1174         __add_wait_queue(wq, wait);
1175
1176         /*
1177          * It's possible that a tag was freed in the window between the
1178          * allocation failure and adding the hardware queue to the wait
1179          * queue.
1180          */
1181         ret = blk_mq_get_driver_tag(rq);
1182         if (!ret) {
1183                 spin_unlock(&hctx->dispatch_wait_lock);
1184                 spin_unlock_irq(&wq->lock);
1185                 return false;
1186         }
1187
1188         /*
1189          * We got a tag, remove ourselves from the wait queue to ensure
1190          * someone else gets the wakeup.
1191          */
1192         list_del_init(&wait->entry);
1193         atomic_dec(&sbq->ws_active);
1194         spin_unlock(&hctx->dispatch_wait_lock);
1195         spin_unlock_irq(&wq->lock);
1196
1197         return true;
1198 }
1199
1200 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1201 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1202 /*
1203  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1204  * - EWMA is one simple way to compute running average value
1205  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1206  * - take 4 as factor for avoiding to get too small(0) result, and this
1207  *   factor doesn't matter because EWMA decreases exponentially
1208  */
1209 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1210 {
1211         unsigned int ewma;
1212
1213         ewma = hctx->dispatch_busy;
1214
1215         if (!ewma && !busy)
1216                 return;
1217
1218         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1219         if (busy)
1220                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1221         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1222
1223         hctx->dispatch_busy = ewma;
1224 }
1225
1226 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1227
1228 static void blk_mq_handle_dev_resource(struct request *rq,
1229                                        struct list_head *list)
1230 {
1231         struct request *next =
1232                 list_first_entry_or_null(list, struct request, queuelist);
1233
1234         /*
1235          * If an I/O scheduler has been configured and we got a driver tag for
1236          * the next request already, free it.
1237          */
1238         if (next)
1239                 blk_mq_put_driver_tag(next);
1240
1241         list_add(&rq->queuelist, list);
1242         __blk_mq_requeue_request(rq);
1243 }
1244
1245 static void blk_mq_handle_zone_resource(struct request *rq,
1246                                         struct list_head *zone_list)
1247 {
1248         /*
1249          * If we end up here it is because we cannot dispatch a request to a
1250          * specific zone due to LLD level zone-write locking or other zone
1251          * related resource not being available. In this case, set the request
1252          * aside in zone_list for retrying it later.
1253          */
1254         list_add(&rq->queuelist, zone_list);
1255         __blk_mq_requeue_request(rq);
1256 }
1257
1258 enum prep_dispatch {
1259         PREP_DISPATCH_OK,
1260         PREP_DISPATCH_NO_TAG,
1261         PREP_DISPATCH_NO_BUDGET,
1262 };
1263
1264 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1265                                                   bool need_budget)
1266 {
1267         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1268         int budget_token = -1;
1269
1270         if (need_budget) {
1271                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1272                 if (budget_token < 0) {
1273                         blk_mq_put_driver_tag(rq);
1274                         return PREP_DISPATCH_NO_BUDGET;
1275                 }
1276                 blk_mq_set_rq_budget_token(rq, budget_token);
1277         }
1278
1279         if (!blk_mq_get_driver_tag(rq)) {
1280                 /*
1281                  * The initial allocation attempt failed, so we need to
1282                  * rerun the hardware queue when a tag is freed. The
1283                  * waitqueue takes care of that. If the queue is run
1284                  * before we add this entry back on the dispatch list,
1285                  * we'll re-run it below.
1286                  */
1287                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1288                         /*
1289                          * All budgets not got from this function will be put
1290                          * together during handling partial dispatch
1291                          */
1292                         if (need_budget)
1293                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1294                         return PREP_DISPATCH_NO_TAG;
1295                 }
1296         }
1297
1298         return PREP_DISPATCH_OK;
1299 }
1300
1301 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1302 static void blk_mq_release_budgets(struct request_queue *q,
1303                 struct list_head *list)
1304 {
1305         struct request *rq;
1306
1307         list_for_each_entry(rq, list, queuelist) {
1308                 int budget_token = blk_mq_get_rq_budget_token(rq);
1309
1310                 if (budget_token >= 0)
1311                         blk_mq_put_dispatch_budget(q, budget_token);
1312         }
1313 }
1314
1315 /*
1316  * Returns true if we did some work AND can potentially do more.
1317  */
1318 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1319                              unsigned int nr_budgets)
1320 {
1321         enum prep_dispatch prep;
1322         struct request_queue *q = hctx->queue;
1323         struct request *rq, *nxt;
1324         int errors, queued;
1325         blk_status_t ret = BLK_STS_OK;
1326         LIST_HEAD(zone_list);
1327         bool needs_resource = false;
1328
1329         if (list_empty(list))
1330                 return false;
1331
1332         /*
1333          * Now process all the entries, sending them to the driver.
1334          */
1335         errors = queued = 0;
1336         do {
1337                 struct blk_mq_queue_data bd;
1338
1339                 rq = list_first_entry(list, struct request, queuelist);
1340
1341                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1342                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1343                 if (prep != PREP_DISPATCH_OK)
1344                         break;
1345
1346                 list_del_init(&rq->queuelist);
1347
1348                 bd.rq = rq;
1349
1350                 /*
1351                  * Flag last if we have no more requests, or if we have more
1352                  * but can't assign a driver tag to it.
1353                  */
1354                 if (list_empty(list))
1355                         bd.last = true;
1356                 else {
1357                         nxt = list_first_entry(list, struct request, queuelist);
1358                         bd.last = !blk_mq_get_driver_tag(nxt);
1359                 }
1360
1361                 /*
1362                  * once the request is queued to lld, no need to cover the
1363                  * budget any more
1364                  */
1365                 if (nr_budgets)
1366                         nr_budgets--;
1367                 ret = q->mq_ops->queue_rq(hctx, &bd);
1368                 switch (ret) {
1369                 case BLK_STS_OK:
1370                         queued++;
1371                         break;
1372                 case BLK_STS_RESOURCE:
1373                         needs_resource = true;
1374                         fallthrough;
1375                 case BLK_STS_DEV_RESOURCE:
1376                         blk_mq_handle_dev_resource(rq, list);
1377                         goto out;
1378                 case BLK_STS_ZONE_RESOURCE:
1379                         /*
1380                          * Move the request to zone_list and keep going through
1381                          * the dispatch list to find more requests the drive can
1382                          * accept.
1383                          */
1384                         blk_mq_handle_zone_resource(rq, &zone_list);
1385                         needs_resource = true;
1386                         break;
1387                 default:
1388                         errors++;
1389                         blk_mq_end_request(rq, ret);
1390                 }
1391         } while (!list_empty(list));
1392 out:
1393         if (!list_empty(&zone_list))
1394                 list_splice_tail_init(&zone_list, list);
1395
1396         hctx->dispatched[queued_to_index(queued)]++;
1397
1398         /* If we didn't flush the entire list, we could have told the driver
1399          * there was more coming, but that turned out to be a lie.
1400          */
1401         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1402                 q->mq_ops->commit_rqs(hctx);
1403         /*
1404          * Any items that need requeuing? Stuff them into hctx->dispatch,
1405          * that is where we will continue on next queue run.
1406          */
1407         if (!list_empty(list)) {
1408                 bool needs_restart;
1409                 /* For non-shared tags, the RESTART check will suffice */
1410                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1411                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1412
1413                 if (nr_budgets)
1414                         blk_mq_release_budgets(q, list);
1415
1416                 spin_lock(&hctx->lock);
1417                 list_splice_tail_init(list, &hctx->dispatch);
1418                 spin_unlock(&hctx->lock);
1419
1420                 /*
1421                  * Order adding requests to hctx->dispatch and checking
1422                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1423                  * in blk_mq_sched_restart(). Avoid restart code path to
1424                  * miss the new added requests to hctx->dispatch, meantime
1425                  * SCHED_RESTART is observed here.
1426                  */
1427                 smp_mb();
1428
1429                 /*
1430                  * If SCHED_RESTART was set by the caller of this function and
1431                  * it is no longer set that means that it was cleared by another
1432                  * thread and hence that a queue rerun is needed.
1433                  *
1434                  * If 'no_tag' is set, that means that we failed getting
1435                  * a driver tag with an I/O scheduler attached. If our dispatch
1436                  * waitqueue is no longer active, ensure that we run the queue
1437                  * AFTER adding our entries back to the list.
1438                  *
1439                  * If no I/O scheduler has been configured it is possible that
1440                  * the hardware queue got stopped and restarted before requests
1441                  * were pushed back onto the dispatch list. Rerun the queue to
1442                  * avoid starvation. Notes:
1443                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1444                  *   been stopped before rerunning a queue.
1445                  * - Some but not all block drivers stop a queue before
1446                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1447                  *   and dm-rq.
1448                  *
1449                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1450                  * bit is set, run queue after a delay to avoid IO stalls
1451                  * that could otherwise occur if the queue is idle.  We'll do
1452                  * similar if we couldn't get budget or couldn't lock a zone
1453                  * and SCHED_RESTART is set.
1454                  */
1455                 needs_restart = blk_mq_sched_needs_restart(hctx);
1456                 if (prep == PREP_DISPATCH_NO_BUDGET)
1457                         needs_resource = true;
1458                 if (!needs_restart ||
1459                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1460                         blk_mq_run_hw_queue(hctx, true);
1461                 else if (needs_restart && needs_resource)
1462                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1463
1464                 blk_mq_update_dispatch_busy(hctx, true);
1465                 return false;
1466         } else
1467                 blk_mq_update_dispatch_busy(hctx, false);
1468
1469         return (queued + errors) != 0;
1470 }
1471
1472 /**
1473  * __blk_mq_run_hw_queue - Run a hardware queue.
1474  * @hctx: Pointer to the hardware queue to run.
1475  *
1476  * Send pending requests to the hardware.
1477  */
1478 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1479 {
1480         int srcu_idx;
1481
1482         /*
1483          * We can't run the queue inline with ints disabled. Ensure that
1484          * we catch bad users of this early.
1485          */
1486         WARN_ON_ONCE(in_interrupt());
1487
1488         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1489
1490         hctx_lock(hctx, &srcu_idx);
1491         blk_mq_sched_dispatch_requests(hctx);
1492         hctx_unlock(hctx, srcu_idx);
1493 }
1494
1495 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1496 {
1497         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1498
1499         if (cpu >= nr_cpu_ids)
1500                 cpu = cpumask_first(hctx->cpumask);
1501         return cpu;
1502 }
1503
1504 /*
1505  * It'd be great if the workqueue API had a way to pass
1506  * in a mask and had some smarts for more clever placement.
1507  * For now we just round-robin here, switching for every
1508  * BLK_MQ_CPU_WORK_BATCH queued items.
1509  */
1510 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1511 {
1512         bool tried = false;
1513         int next_cpu = hctx->next_cpu;
1514
1515         if (hctx->queue->nr_hw_queues == 1)
1516                 return WORK_CPU_UNBOUND;
1517
1518         if (--hctx->next_cpu_batch <= 0) {
1519 select_cpu:
1520                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1521                                 cpu_online_mask);
1522                 if (next_cpu >= nr_cpu_ids)
1523                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1524                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1525         }
1526
1527         /*
1528          * Do unbound schedule if we can't find a online CPU for this hctx,
1529          * and it should only happen in the path of handling CPU DEAD.
1530          */
1531         if (!cpu_online(next_cpu)) {
1532                 if (!tried) {
1533                         tried = true;
1534                         goto select_cpu;
1535                 }
1536
1537                 /*
1538                  * Make sure to re-select CPU next time once after CPUs
1539                  * in hctx->cpumask become online again.
1540                  */
1541                 hctx->next_cpu = next_cpu;
1542                 hctx->next_cpu_batch = 1;
1543                 return WORK_CPU_UNBOUND;
1544         }
1545
1546         hctx->next_cpu = next_cpu;
1547         return next_cpu;
1548 }
1549
1550 /**
1551  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1552  * @hctx: Pointer to the hardware queue to run.
1553  * @async: If we want to run the queue asynchronously.
1554  * @msecs: Milliseconds of delay to wait before running the queue.
1555  *
1556  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1557  * with a delay of @msecs.
1558  */
1559 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1560                                         unsigned long msecs)
1561 {
1562         if (unlikely(blk_mq_hctx_stopped(hctx)))
1563                 return;
1564
1565         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1566                 int cpu = get_cpu();
1567                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1568                         __blk_mq_run_hw_queue(hctx);
1569                         put_cpu();
1570                         return;
1571                 }
1572
1573                 put_cpu();
1574         }
1575
1576         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1577                                     msecs_to_jiffies(msecs));
1578 }
1579
1580 /**
1581  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1582  * @hctx: Pointer to the hardware queue to run.
1583  * @msecs: Milliseconds of delay to wait before running the queue.
1584  *
1585  * Run a hardware queue asynchronously with a delay of @msecs.
1586  */
1587 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1588 {
1589         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1590 }
1591 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1592
1593 /**
1594  * blk_mq_run_hw_queue - Start to run a hardware queue.
1595  * @hctx: Pointer to the hardware queue to run.
1596  * @async: If we want to run the queue asynchronously.
1597  *
1598  * Check if the request queue is not in a quiesced state and if there are
1599  * pending requests to be sent. If this is true, run the queue to send requests
1600  * to hardware.
1601  */
1602 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1603 {
1604         int srcu_idx;
1605         bool need_run;
1606
1607         /*
1608          * When queue is quiesced, we may be switching io scheduler, or
1609          * updating nr_hw_queues, or other things, and we can't run queue
1610          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1611          *
1612          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1613          * quiesced.
1614          */
1615         hctx_lock(hctx, &srcu_idx);
1616         need_run = !blk_queue_quiesced(hctx->queue) &&
1617                 blk_mq_hctx_has_pending(hctx);
1618         hctx_unlock(hctx, srcu_idx);
1619
1620         if (need_run)
1621                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1622 }
1623 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1624
1625 /*
1626  * Is the request queue handled by an IO scheduler that does not respect
1627  * hardware queues when dispatching?
1628  */
1629 static bool blk_mq_has_sqsched(struct request_queue *q)
1630 {
1631         struct elevator_queue *e = q->elevator;
1632
1633         if (e && e->type->ops.dispatch_request &&
1634             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1635                 return true;
1636         return false;
1637 }
1638
1639 /*
1640  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1641  * scheduler.
1642  */
1643 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1644 {
1645         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
1646         /*
1647          * If the IO scheduler does not respect hardware queues when
1648          * dispatching, we just don't bother with multiple HW queues and
1649          * dispatch from hctx for the current CPU since running multiple queues
1650          * just causes lock contention inside the scheduler and pointless cache
1651          * bouncing.
1652          */
1653         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, 0, ctx);
1654
1655         if (!blk_mq_hctx_stopped(hctx))
1656                 return hctx;
1657         return NULL;
1658 }
1659
1660 /**
1661  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1662  * @q: Pointer to the request queue to run.
1663  * @async: If we want to run the queue asynchronously.
1664  */
1665 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1666 {
1667         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1668         int i;
1669
1670         sq_hctx = NULL;
1671         if (blk_mq_has_sqsched(q))
1672                 sq_hctx = blk_mq_get_sq_hctx(q);
1673         queue_for_each_hw_ctx(q, hctx, i) {
1674                 if (blk_mq_hctx_stopped(hctx))
1675                         continue;
1676                 /*
1677                  * Dispatch from this hctx either if there's no hctx preferred
1678                  * by IO scheduler or if it has requests that bypass the
1679                  * scheduler.
1680                  */
1681                 if (!sq_hctx || sq_hctx == hctx ||
1682                     !list_empty_careful(&hctx->dispatch))
1683                         blk_mq_run_hw_queue(hctx, async);
1684         }
1685 }
1686 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1687
1688 /**
1689  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1690  * @q: Pointer to the request queue to run.
1691  * @msecs: Milliseconds of delay to wait before running the queues.
1692  */
1693 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1694 {
1695         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1696         int i;
1697
1698         sq_hctx = NULL;
1699         if (blk_mq_has_sqsched(q))
1700                 sq_hctx = blk_mq_get_sq_hctx(q);
1701         queue_for_each_hw_ctx(q, hctx, i) {
1702                 if (blk_mq_hctx_stopped(hctx))
1703                         continue;
1704                 /*
1705                  * Dispatch from this hctx either if there's no hctx preferred
1706                  * by IO scheduler or if it has requests that bypass the
1707                  * scheduler.
1708                  */
1709                 if (!sq_hctx || sq_hctx == hctx ||
1710                     !list_empty_careful(&hctx->dispatch))
1711                         blk_mq_delay_run_hw_queue(hctx, msecs);
1712         }
1713 }
1714 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1715
1716 /**
1717  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1718  * @q: request queue.
1719  *
1720  * The caller is responsible for serializing this function against
1721  * blk_mq_{start,stop}_hw_queue().
1722  */
1723 bool blk_mq_queue_stopped(struct request_queue *q)
1724 {
1725         struct blk_mq_hw_ctx *hctx;
1726         int i;
1727
1728         queue_for_each_hw_ctx(q, hctx, i)
1729                 if (blk_mq_hctx_stopped(hctx))
1730                         return true;
1731
1732         return false;
1733 }
1734 EXPORT_SYMBOL(blk_mq_queue_stopped);
1735
1736 /*
1737  * This function is often used for pausing .queue_rq() by driver when
1738  * there isn't enough resource or some conditions aren't satisfied, and
1739  * BLK_STS_RESOURCE is usually returned.
1740  *
1741  * We do not guarantee that dispatch can be drained or blocked
1742  * after blk_mq_stop_hw_queue() returns. Please use
1743  * blk_mq_quiesce_queue() for that requirement.
1744  */
1745 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1746 {
1747         cancel_delayed_work(&hctx->run_work);
1748
1749         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1750 }
1751 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1752
1753 /*
1754  * This function is often used for pausing .queue_rq() by driver when
1755  * there isn't enough resource or some conditions aren't satisfied, and
1756  * BLK_STS_RESOURCE is usually returned.
1757  *
1758  * We do not guarantee that dispatch can be drained or blocked
1759  * after blk_mq_stop_hw_queues() returns. Please use
1760  * blk_mq_quiesce_queue() for that requirement.
1761  */
1762 void blk_mq_stop_hw_queues(struct request_queue *q)
1763 {
1764         struct blk_mq_hw_ctx *hctx;
1765         int i;
1766
1767         queue_for_each_hw_ctx(q, hctx, i)
1768                 blk_mq_stop_hw_queue(hctx);
1769 }
1770 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1771
1772 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1773 {
1774         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1775
1776         blk_mq_run_hw_queue(hctx, false);
1777 }
1778 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1779
1780 void blk_mq_start_hw_queues(struct request_queue *q)
1781 {
1782         struct blk_mq_hw_ctx *hctx;
1783         int i;
1784
1785         queue_for_each_hw_ctx(q, hctx, i)
1786                 blk_mq_start_hw_queue(hctx);
1787 }
1788 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1789
1790 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1791 {
1792         if (!blk_mq_hctx_stopped(hctx))
1793                 return;
1794
1795         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1796         blk_mq_run_hw_queue(hctx, async);
1797 }
1798 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1799
1800 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1801 {
1802         struct blk_mq_hw_ctx *hctx;
1803         int i;
1804
1805         queue_for_each_hw_ctx(q, hctx, i)
1806                 blk_mq_start_stopped_hw_queue(hctx, async);
1807 }
1808 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1809
1810 static void blk_mq_run_work_fn(struct work_struct *work)
1811 {
1812         struct blk_mq_hw_ctx *hctx;
1813
1814         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1815
1816         /*
1817          * If we are stopped, don't run the queue.
1818          */
1819         if (blk_mq_hctx_stopped(hctx))
1820                 return;
1821
1822         __blk_mq_run_hw_queue(hctx);
1823 }
1824
1825 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1826                                             struct request *rq,
1827                                             bool at_head)
1828 {
1829         struct blk_mq_ctx *ctx = rq->mq_ctx;
1830         enum hctx_type type = hctx->type;
1831
1832         lockdep_assert_held(&ctx->lock);
1833
1834         trace_block_rq_insert(rq);
1835
1836         if (at_head)
1837                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1838         else
1839                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1840 }
1841
1842 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1843                              bool at_head)
1844 {
1845         struct blk_mq_ctx *ctx = rq->mq_ctx;
1846
1847         lockdep_assert_held(&ctx->lock);
1848
1849         __blk_mq_insert_req_list(hctx, rq, at_head);
1850         blk_mq_hctx_mark_pending(hctx, ctx);
1851 }
1852
1853 /**
1854  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1855  * @rq: Pointer to request to be inserted.
1856  * @at_head: true if the request should be inserted at the head of the list.
1857  * @run_queue: If we should run the hardware queue after inserting the request.
1858  *
1859  * Should only be used carefully, when the caller knows we want to
1860  * bypass a potential IO scheduler on the target device.
1861  */
1862 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1863                                   bool run_queue)
1864 {
1865         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1866
1867         spin_lock(&hctx->lock);
1868         if (at_head)
1869                 list_add(&rq->queuelist, &hctx->dispatch);
1870         else
1871                 list_add_tail(&rq->queuelist, &hctx->dispatch);
1872         spin_unlock(&hctx->lock);
1873
1874         if (run_queue)
1875                 blk_mq_run_hw_queue(hctx, false);
1876 }
1877
1878 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1879                             struct list_head *list)
1880
1881 {
1882         struct request *rq;
1883         enum hctx_type type = hctx->type;
1884
1885         /*
1886          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1887          * offline now
1888          */
1889         list_for_each_entry(rq, list, queuelist) {
1890                 BUG_ON(rq->mq_ctx != ctx);
1891                 trace_block_rq_insert(rq);
1892         }
1893
1894         spin_lock(&ctx->lock);
1895         list_splice_tail_init(list, &ctx->rq_lists[type]);
1896         blk_mq_hctx_mark_pending(hctx, ctx);
1897         spin_unlock(&ctx->lock);
1898 }
1899
1900 static int plug_rq_cmp(void *priv, const struct list_head *a,
1901                        const struct list_head *b)
1902 {
1903         struct request *rqa = container_of(a, struct request, queuelist);
1904         struct request *rqb = container_of(b, struct request, queuelist);
1905
1906         if (rqa->mq_ctx != rqb->mq_ctx)
1907                 return rqa->mq_ctx > rqb->mq_ctx;
1908         if (rqa->mq_hctx != rqb->mq_hctx)
1909                 return rqa->mq_hctx > rqb->mq_hctx;
1910
1911         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1912 }
1913
1914 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1915 {
1916         LIST_HEAD(list);
1917
1918         if (list_empty(&plug->mq_list))
1919                 return;
1920         list_splice_init(&plug->mq_list, &list);
1921
1922         if (plug->rq_count > 2 && plug->multiple_queues)
1923                 list_sort(NULL, &list, plug_rq_cmp);
1924
1925         plug->rq_count = 0;
1926
1927         do {
1928                 struct list_head rq_list;
1929                 struct request *rq, *head_rq = list_entry_rq(list.next);
1930                 struct list_head *pos = &head_rq->queuelist; /* skip first */
1931                 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1932                 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1933                 unsigned int depth = 1;
1934
1935                 list_for_each_continue(pos, &list) {
1936                         rq = list_entry_rq(pos);
1937                         BUG_ON(!rq->q);
1938                         if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1939                                 break;
1940                         depth++;
1941                 }
1942
1943                 list_cut_before(&rq_list, &list, pos);
1944                 trace_block_unplug(head_rq->q, depth, !from_schedule);
1945                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1946                                                 from_schedule);
1947         } while(!list_empty(&list));
1948 }
1949
1950 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1951                 unsigned int nr_segs)
1952 {
1953         int err;
1954
1955         if (bio->bi_opf & REQ_RAHEAD)
1956                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1957
1958         rq->__sector = bio->bi_iter.bi_sector;
1959         rq->write_hint = bio->bi_write_hint;
1960         blk_rq_bio_prep(rq, bio, nr_segs);
1961
1962         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1963         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1964         WARN_ON_ONCE(err);
1965
1966         blk_account_io_start(rq);
1967 }
1968
1969 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1970                                             struct request *rq,
1971                                             blk_qc_t *cookie, bool last)
1972 {
1973         struct request_queue *q = rq->q;
1974         struct blk_mq_queue_data bd = {
1975                 .rq = rq,
1976                 .last = last,
1977         };
1978         blk_qc_t new_cookie;
1979         blk_status_t ret;
1980
1981         new_cookie = request_to_qc_t(hctx, rq);
1982
1983         /*
1984          * For OK queue, we are done. For error, caller may kill it.
1985          * Any other error (busy), just add it to our list as we
1986          * previously would have done.
1987          */
1988         ret = q->mq_ops->queue_rq(hctx, &bd);
1989         switch (ret) {
1990         case BLK_STS_OK:
1991                 blk_mq_update_dispatch_busy(hctx, false);
1992                 *cookie = new_cookie;
1993                 break;
1994         case BLK_STS_RESOURCE:
1995         case BLK_STS_DEV_RESOURCE:
1996                 blk_mq_update_dispatch_busy(hctx, true);
1997                 __blk_mq_requeue_request(rq);
1998                 break;
1999         default:
2000                 blk_mq_update_dispatch_busy(hctx, false);
2001                 *cookie = BLK_QC_T_NONE;
2002                 break;
2003         }
2004
2005         return ret;
2006 }
2007
2008 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2009                                                 struct request *rq,
2010                                                 blk_qc_t *cookie,
2011                                                 bool bypass_insert, bool last)
2012 {
2013         struct request_queue *q = rq->q;
2014         bool run_queue = true;
2015         int budget_token;
2016
2017         /*
2018          * RCU or SRCU read lock is needed before checking quiesced flag.
2019          *
2020          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2021          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2022          * and avoid driver to try to dispatch again.
2023          */
2024         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2025                 run_queue = false;
2026                 bypass_insert = false;
2027                 goto insert;
2028         }
2029
2030         if (q->elevator && !bypass_insert)
2031                 goto insert;
2032
2033         budget_token = blk_mq_get_dispatch_budget(q);
2034         if (budget_token < 0)
2035                 goto insert;
2036
2037         blk_mq_set_rq_budget_token(rq, budget_token);
2038
2039         if (!blk_mq_get_driver_tag(rq)) {
2040                 blk_mq_put_dispatch_budget(q, budget_token);
2041                 goto insert;
2042         }
2043
2044         return __blk_mq_issue_directly(hctx, rq, cookie, last);
2045 insert:
2046         if (bypass_insert)
2047                 return BLK_STS_RESOURCE;
2048
2049         blk_mq_sched_insert_request(rq, false, run_queue, false);
2050
2051         return BLK_STS_OK;
2052 }
2053
2054 /**
2055  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2056  * @hctx: Pointer of the associated hardware queue.
2057  * @rq: Pointer to request to be sent.
2058  * @cookie: Request queue cookie.
2059  *
2060  * If the device has enough resources to accept a new request now, send the
2061  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2062  * we can try send it another time in the future. Requests inserted at this
2063  * queue have higher priority.
2064  */
2065 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2066                 struct request *rq, blk_qc_t *cookie)
2067 {
2068         blk_status_t ret;
2069         int srcu_idx;
2070
2071         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2072
2073         hctx_lock(hctx, &srcu_idx);
2074
2075         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2076         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2077                 blk_mq_request_bypass_insert(rq, false, true);
2078         else if (ret != BLK_STS_OK)
2079                 blk_mq_end_request(rq, ret);
2080
2081         hctx_unlock(hctx, srcu_idx);
2082 }
2083
2084 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2085 {
2086         blk_status_t ret;
2087         int srcu_idx;
2088         blk_qc_t unused_cookie;
2089         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2090
2091         hctx_lock(hctx, &srcu_idx);
2092         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2093         hctx_unlock(hctx, srcu_idx);
2094
2095         return ret;
2096 }
2097
2098 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2099                 struct list_head *list)
2100 {
2101         int queued = 0;
2102         int errors = 0;
2103
2104         while (!list_empty(list)) {
2105                 blk_status_t ret;
2106                 struct request *rq = list_first_entry(list, struct request,
2107                                 queuelist);
2108
2109                 list_del_init(&rq->queuelist);
2110                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2111                 if (ret != BLK_STS_OK) {
2112                         if (ret == BLK_STS_RESOURCE ||
2113                                         ret == BLK_STS_DEV_RESOURCE) {
2114                                 blk_mq_request_bypass_insert(rq, false,
2115                                                         list_empty(list));
2116                                 break;
2117                         }
2118                         blk_mq_end_request(rq, ret);
2119                         errors++;
2120                 } else
2121                         queued++;
2122         }
2123
2124         /*
2125          * If we didn't flush the entire list, we could have told
2126          * the driver there was more coming, but that turned out to
2127          * be a lie.
2128          */
2129         if ((!list_empty(list) || errors) &&
2130              hctx->queue->mq_ops->commit_rqs && queued)
2131                 hctx->queue->mq_ops->commit_rqs(hctx);
2132 }
2133
2134 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2135 {
2136         list_add_tail(&rq->queuelist, &plug->mq_list);
2137         plug->rq_count++;
2138         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2139                 struct request *tmp;
2140
2141                 tmp = list_first_entry(&plug->mq_list, struct request,
2142                                                 queuelist);
2143                 if (tmp->q != rq->q)
2144                         plug->multiple_queues = true;
2145         }
2146 }
2147
2148 /*
2149  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2150  * queues. This is important for md arrays to benefit from merging
2151  * requests.
2152  */
2153 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2154 {
2155         if (plug->multiple_queues)
2156                 return BLK_MAX_REQUEST_COUNT * 2;
2157         return BLK_MAX_REQUEST_COUNT;
2158 }
2159
2160 /**
2161  * blk_mq_submit_bio - Create and send a request to block device.
2162  * @bio: Bio pointer.
2163  *
2164  * Builds up a request structure from @q and @bio and send to the device. The
2165  * request may not be queued directly to hardware if:
2166  * * This request can be merged with another one
2167  * * We want to place request at plug queue for possible future merging
2168  * * There is an IO scheduler active at this queue
2169  *
2170  * It will not queue the request if there is an error with the bio, or at the
2171  * request creation.
2172  *
2173  * Returns: Request queue cookie.
2174  */
2175 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2176 {
2177         struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2178         const int is_sync = op_is_sync(bio->bi_opf);
2179         const int is_flush_fua = op_is_flush(bio->bi_opf);
2180         struct blk_mq_alloc_data data = {
2181                 .q              = q,
2182         };
2183         struct request *rq;
2184         struct blk_plug *plug;
2185         struct request *same_queue_rq = NULL;
2186         unsigned int nr_segs;
2187         blk_qc_t cookie;
2188         blk_status_t ret;
2189         bool hipri;
2190
2191         blk_queue_bounce(q, &bio);
2192         __blk_queue_split(&bio, &nr_segs);
2193
2194         if (!bio_integrity_prep(bio))
2195                 goto queue_exit;
2196
2197         if (!is_flush_fua && !blk_queue_nomerges(q) &&
2198             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2199                 goto queue_exit;
2200
2201         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2202                 goto queue_exit;
2203
2204         rq_qos_throttle(q, bio);
2205
2206         hipri = bio->bi_opf & REQ_HIPRI;
2207
2208         data.cmd_flags = bio->bi_opf;
2209         rq = __blk_mq_alloc_request(&data);
2210         if (unlikely(!rq)) {
2211                 rq_qos_cleanup(q, bio);
2212                 if (bio->bi_opf & REQ_NOWAIT)
2213                         bio_wouldblock_error(bio);
2214                 goto queue_exit;
2215         }
2216
2217         trace_block_getrq(bio);
2218
2219         rq_qos_track(q, rq, bio);
2220
2221         cookie = request_to_qc_t(data.hctx, rq);
2222
2223         blk_mq_bio_to_request(rq, bio, nr_segs);
2224
2225         ret = blk_crypto_init_request(rq);
2226         if (ret != BLK_STS_OK) {
2227                 bio->bi_status = ret;
2228                 bio_endio(bio);
2229                 blk_mq_free_request(rq);
2230                 return BLK_QC_T_NONE;
2231         }
2232
2233         plug = blk_mq_plug(q, bio);
2234         if (unlikely(is_flush_fua)) {
2235                 /* Bypass scheduler for flush requests */
2236                 blk_insert_flush(rq);
2237                 blk_mq_run_hw_queue(data.hctx, true);
2238         } else if (plug && (q->nr_hw_queues == 1 ||
2239                    blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2240                    q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2241                 /*
2242                  * Use plugging if we have a ->commit_rqs() hook as well, as
2243                  * we know the driver uses bd->last in a smart fashion.
2244                  *
2245                  * Use normal plugging if this disk is slow HDD, as sequential
2246                  * IO may benefit a lot from plug merging.
2247                  */
2248                 unsigned int request_count = plug->rq_count;
2249                 struct request *last = NULL;
2250
2251                 if (!request_count)
2252                         trace_block_plug(q);
2253                 else
2254                         last = list_entry_rq(plug->mq_list.prev);
2255
2256                 if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2257                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2258                         blk_flush_plug_list(plug, false);
2259                         trace_block_plug(q);
2260                 }
2261
2262                 blk_add_rq_to_plug(plug, rq);
2263         } else if (q->elevator) {
2264                 /* Insert the request at the IO scheduler queue */
2265                 blk_mq_sched_insert_request(rq, false, true, true);
2266         } else if (plug && !blk_queue_nomerges(q)) {
2267                 /*
2268                  * We do limited plugging. If the bio can be merged, do that.
2269                  * Otherwise the existing request in the plug list will be
2270                  * issued. So the plug list will have one request at most
2271                  * The plug list might get flushed before this. If that happens,
2272                  * the plug list is empty, and same_queue_rq is invalid.
2273                  */
2274                 if (list_empty(&plug->mq_list))
2275                         same_queue_rq = NULL;
2276                 if (same_queue_rq) {
2277                         list_del_init(&same_queue_rq->queuelist);
2278                         plug->rq_count--;
2279                 }
2280                 blk_add_rq_to_plug(plug, rq);
2281                 trace_block_plug(q);
2282
2283                 if (same_queue_rq) {
2284                         data.hctx = same_queue_rq->mq_hctx;
2285                         trace_block_unplug(q, 1, true);
2286                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2287                                         &cookie);
2288                 }
2289         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2290                         !data.hctx->dispatch_busy) {
2291                 /*
2292                  * There is no scheduler and we can try to send directly
2293                  * to the hardware.
2294                  */
2295                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2296         } else {
2297                 /* Default case. */
2298                 blk_mq_sched_insert_request(rq, false, true, true);
2299         }
2300
2301         if (!hipri)
2302                 return BLK_QC_T_NONE;
2303         return cookie;
2304 queue_exit:
2305         blk_queue_exit(q);
2306         return BLK_QC_T_NONE;
2307 }
2308
2309 static size_t order_to_size(unsigned int order)
2310 {
2311         return (size_t)PAGE_SIZE << order;
2312 }
2313
2314 /* called before freeing request pool in @tags */
2315 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2316                 struct blk_mq_tags *tags, unsigned int hctx_idx)
2317 {
2318         struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2319         struct page *page;
2320         unsigned long flags;
2321
2322         list_for_each_entry(page, &tags->page_list, lru) {
2323                 unsigned long start = (unsigned long)page_address(page);
2324                 unsigned long end = start + order_to_size(page->private);
2325                 int i;
2326
2327                 for (i = 0; i < set->queue_depth; i++) {
2328                         struct request *rq = drv_tags->rqs[i];
2329                         unsigned long rq_addr = (unsigned long)rq;
2330
2331                         if (rq_addr >= start && rq_addr < end) {
2332                                 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2333                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2334                         }
2335                 }
2336         }
2337
2338         /*
2339          * Wait until all pending iteration is done.
2340          *
2341          * Request reference is cleared and it is guaranteed to be observed
2342          * after the ->lock is released.
2343          */
2344         spin_lock_irqsave(&drv_tags->lock, flags);
2345         spin_unlock_irqrestore(&drv_tags->lock, flags);
2346 }
2347
2348 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2349                      unsigned int hctx_idx)
2350 {
2351         struct page *page;
2352
2353         if (tags->rqs && set->ops->exit_request) {
2354                 int i;
2355
2356                 for (i = 0; i < tags->nr_tags; i++) {
2357                         struct request *rq = tags->static_rqs[i];
2358
2359                         if (!rq)
2360                                 continue;
2361                         set->ops->exit_request(set, rq, hctx_idx);
2362                         tags->static_rqs[i] = NULL;
2363                 }
2364         }
2365
2366         blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2367
2368         while (!list_empty(&tags->page_list)) {
2369                 page = list_first_entry(&tags->page_list, struct page, lru);
2370                 list_del_init(&page->lru);
2371                 /*
2372                  * Remove kmemleak object previously allocated in
2373                  * blk_mq_alloc_rqs().
2374                  */
2375                 kmemleak_free(page_address(page));
2376                 __free_pages(page, page->private);
2377         }
2378 }
2379
2380 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2381 {
2382         kfree(tags->rqs);
2383         tags->rqs = NULL;
2384         kfree(tags->static_rqs);
2385         tags->static_rqs = NULL;
2386
2387         blk_mq_free_tags(tags, flags);
2388 }
2389
2390 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2391                                         unsigned int hctx_idx,
2392                                         unsigned int nr_tags,
2393                                         unsigned int reserved_tags,
2394                                         unsigned int flags)
2395 {
2396         struct blk_mq_tags *tags;
2397         int node;
2398
2399         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2400         if (node == NUMA_NO_NODE)
2401                 node = set->numa_node;
2402
2403         tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2404         if (!tags)
2405                 return NULL;
2406
2407         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2408                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2409                                  node);
2410         if (!tags->rqs) {
2411                 blk_mq_free_tags(tags, flags);
2412                 return NULL;
2413         }
2414
2415         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2416                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2417                                         node);
2418         if (!tags->static_rqs) {
2419                 kfree(tags->rqs);
2420                 blk_mq_free_tags(tags, flags);
2421                 return NULL;
2422         }
2423
2424         return tags;
2425 }
2426
2427 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2428                                unsigned int hctx_idx, int node)
2429 {
2430         int ret;
2431
2432         if (set->ops->init_request) {
2433                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2434                 if (ret)
2435                         return ret;
2436         }
2437
2438         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2439         return 0;
2440 }
2441
2442 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2443                      unsigned int hctx_idx, unsigned int depth)
2444 {
2445         unsigned int i, j, entries_per_page, max_order = 4;
2446         size_t rq_size, left;
2447         int node;
2448
2449         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2450         if (node == NUMA_NO_NODE)
2451                 node = set->numa_node;
2452
2453         INIT_LIST_HEAD(&tags->page_list);
2454
2455         /*
2456          * rq_size is the size of the request plus driver payload, rounded
2457          * to the cacheline size
2458          */
2459         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2460                                 cache_line_size());
2461         left = rq_size * depth;
2462
2463         for (i = 0; i < depth; ) {
2464                 int this_order = max_order;
2465                 struct page *page;
2466                 int to_do;
2467                 void *p;
2468
2469                 while (this_order && left < order_to_size(this_order - 1))
2470                         this_order--;
2471
2472                 do {
2473                         page = alloc_pages_node(node,
2474                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2475                                 this_order);
2476                         if (page)
2477                                 break;
2478                         if (!this_order--)
2479                                 break;
2480                         if (order_to_size(this_order) < rq_size)
2481                                 break;
2482                 } while (1);
2483
2484                 if (!page)
2485                         goto fail;
2486
2487                 page->private = this_order;
2488                 list_add_tail(&page->lru, &tags->page_list);
2489
2490                 p = page_address(page);
2491                 /*
2492                  * Allow kmemleak to scan these pages as they contain pointers
2493                  * to additional allocations like via ops->init_request().
2494                  */
2495                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2496                 entries_per_page = order_to_size(this_order) / rq_size;
2497                 to_do = min(entries_per_page, depth - i);
2498                 left -= to_do * rq_size;
2499                 for (j = 0; j < to_do; j++) {
2500                         struct request *rq = p;
2501
2502                         tags->static_rqs[i] = rq;
2503                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2504                                 tags->static_rqs[i] = NULL;
2505                                 goto fail;
2506                         }
2507
2508                         p += rq_size;
2509                         i++;
2510                 }
2511         }
2512         return 0;
2513
2514 fail:
2515         blk_mq_free_rqs(set, tags, hctx_idx);
2516         return -ENOMEM;
2517 }
2518
2519 struct rq_iter_data {
2520         struct blk_mq_hw_ctx *hctx;
2521         bool has_rq;
2522 };
2523
2524 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2525 {
2526         struct rq_iter_data *iter_data = data;
2527
2528         if (rq->mq_hctx != iter_data->hctx)
2529                 return true;
2530         iter_data->has_rq = true;
2531         return false;
2532 }
2533
2534 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2535 {
2536         struct blk_mq_tags *tags = hctx->sched_tags ?
2537                         hctx->sched_tags : hctx->tags;
2538         struct rq_iter_data data = {
2539                 .hctx   = hctx,
2540         };
2541
2542         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2543         return data.has_rq;
2544 }
2545
2546 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2547                 struct blk_mq_hw_ctx *hctx)
2548 {
2549         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2550                 return false;
2551         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2552                 return false;
2553         return true;
2554 }
2555
2556 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2557 {
2558         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2559                         struct blk_mq_hw_ctx, cpuhp_online);
2560
2561         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2562             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2563                 return 0;
2564
2565         /*
2566          * Prevent new request from being allocated on the current hctx.
2567          *
2568          * The smp_mb__after_atomic() Pairs with the implied barrier in
2569          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2570          * seen once we return from the tag allocator.
2571          */
2572         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2573         smp_mb__after_atomic();
2574
2575         /*
2576          * Try to grab a reference to the queue and wait for any outstanding
2577          * requests.  If we could not grab a reference the queue has been
2578          * frozen and there are no requests.
2579          */
2580         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2581                 while (blk_mq_hctx_has_requests(hctx))
2582                         msleep(5);
2583                 percpu_ref_put(&hctx->queue->q_usage_counter);
2584         }
2585
2586         return 0;
2587 }
2588
2589 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2590 {
2591         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2592                         struct blk_mq_hw_ctx, cpuhp_online);
2593
2594         if (cpumask_test_cpu(cpu, hctx->cpumask))
2595                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2596         return 0;
2597 }
2598
2599 /*
2600  * 'cpu' is going away. splice any existing rq_list entries from this
2601  * software queue to the hw queue dispatch list, and ensure that it
2602  * gets run.
2603  */
2604 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2605 {
2606         struct blk_mq_hw_ctx *hctx;
2607         struct blk_mq_ctx *ctx;
2608         LIST_HEAD(tmp);
2609         enum hctx_type type;
2610
2611         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2612         if (!cpumask_test_cpu(cpu, hctx->cpumask))
2613                 return 0;
2614
2615         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2616         type = hctx->type;
2617
2618         spin_lock(&ctx->lock);
2619         if (!list_empty(&ctx->rq_lists[type])) {
2620                 list_splice_init(&ctx->rq_lists[type], &tmp);
2621                 blk_mq_hctx_clear_pending(hctx, ctx);
2622         }
2623         spin_unlock(&ctx->lock);
2624
2625         if (list_empty(&tmp))
2626                 return 0;
2627
2628         spin_lock(&hctx->lock);
2629         list_splice_tail_init(&tmp, &hctx->dispatch);
2630         spin_unlock(&hctx->lock);
2631
2632         blk_mq_run_hw_queue(hctx, true);
2633         return 0;
2634 }
2635
2636 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2637 {
2638         if (!(hctx->flags & BLK_MQ_F_STACKING))
2639                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2640                                                     &hctx->cpuhp_online);
2641         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2642                                             &hctx->cpuhp_dead);
2643 }
2644
2645 /*
2646  * Before freeing hw queue, clearing the flush request reference in
2647  * tags->rqs[] for avoiding potential UAF.
2648  */
2649 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2650                 unsigned int queue_depth, struct request *flush_rq)
2651 {
2652         int i;
2653         unsigned long flags;
2654
2655         /* The hw queue may not be mapped yet */
2656         if (!tags)
2657                 return;
2658
2659         WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2660
2661         for (i = 0; i < queue_depth; i++)
2662                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
2663
2664         /*
2665          * Wait until all pending iteration is done.
2666          *
2667          * Request reference is cleared and it is guaranteed to be observed
2668          * after the ->lock is released.
2669          */
2670         spin_lock_irqsave(&tags->lock, flags);
2671         spin_unlock_irqrestore(&tags->lock, flags);
2672 }
2673
2674 /* hctx->ctxs will be freed in queue's release handler */
2675 static void blk_mq_exit_hctx(struct request_queue *q,
2676                 struct blk_mq_tag_set *set,
2677                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2678 {
2679         struct request *flush_rq = hctx->fq->flush_rq;
2680
2681         if (blk_mq_hw_queue_mapped(hctx))
2682                 blk_mq_tag_idle(hctx);
2683
2684         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2685                         set->queue_depth, flush_rq);
2686         if (set->ops->exit_request)
2687                 set->ops->exit_request(set, flush_rq, hctx_idx);
2688
2689         if (set->ops->exit_hctx)
2690                 set->ops->exit_hctx(hctx, hctx_idx);
2691
2692         blk_mq_remove_cpuhp(hctx);
2693
2694         spin_lock(&q->unused_hctx_lock);
2695         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2696         spin_unlock(&q->unused_hctx_lock);
2697 }
2698
2699 static void blk_mq_exit_hw_queues(struct request_queue *q,
2700                 struct blk_mq_tag_set *set, int nr_queue)
2701 {
2702         struct blk_mq_hw_ctx *hctx;
2703         unsigned int i;
2704
2705         queue_for_each_hw_ctx(q, hctx, i) {
2706                 if (i == nr_queue)
2707                         break;
2708                 blk_mq_debugfs_unregister_hctx(hctx);
2709                 blk_mq_exit_hctx(q, set, hctx, i);
2710         }
2711 }
2712
2713 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2714 {
2715         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2716
2717         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2718                            __alignof__(struct blk_mq_hw_ctx)) !=
2719                      sizeof(struct blk_mq_hw_ctx));
2720
2721         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2722                 hw_ctx_size += sizeof(struct srcu_struct);
2723
2724         return hw_ctx_size;
2725 }
2726
2727 static int blk_mq_init_hctx(struct request_queue *q,
2728                 struct blk_mq_tag_set *set,
2729                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2730 {
2731         hctx->queue_num = hctx_idx;
2732
2733         if (!(hctx->flags & BLK_MQ_F_STACKING))
2734                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2735                                 &hctx->cpuhp_online);
2736         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2737
2738         hctx->tags = set->tags[hctx_idx];
2739
2740         if (set->ops->init_hctx &&
2741             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2742                 goto unregister_cpu_notifier;
2743
2744         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2745                                 hctx->numa_node))
2746                 goto exit_hctx;
2747         return 0;
2748
2749  exit_hctx:
2750         if (set->ops->exit_hctx)
2751                 set->ops->exit_hctx(hctx, hctx_idx);
2752  unregister_cpu_notifier:
2753         blk_mq_remove_cpuhp(hctx);
2754         return -1;
2755 }
2756
2757 static struct blk_mq_hw_ctx *
2758 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2759                 int node)
2760 {
2761         struct blk_mq_hw_ctx *hctx;
2762         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2763
2764         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2765         if (!hctx)
2766                 goto fail_alloc_hctx;
2767
2768         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2769                 goto free_hctx;
2770
2771         atomic_set(&hctx->nr_active, 0);
2772         if (node == NUMA_NO_NODE)
2773                 node = set->numa_node;
2774         hctx->numa_node = node;
2775
2776         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2777         spin_lock_init(&hctx->lock);
2778         INIT_LIST_HEAD(&hctx->dispatch);
2779         hctx->queue = q;
2780         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2781
2782         INIT_LIST_HEAD(&hctx->hctx_list);
2783
2784         /*
2785          * Allocate space for all possible cpus to avoid allocation at
2786          * runtime
2787          */
2788         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2789                         gfp, node);
2790         if (!hctx->ctxs)
2791                 goto free_cpumask;
2792
2793         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2794                                 gfp, node, false, false))
2795                 goto free_ctxs;
2796         hctx->nr_ctx = 0;
2797
2798         spin_lock_init(&hctx->dispatch_wait_lock);
2799         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2800         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2801
2802         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2803         if (!hctx->fq)
2804                 goto free_bitmap;
2805
2806         if (hctx->flags & BLK_MQ_F_BLOCKING)
2807                 init_srcu_struct(hctx->srcu);
2808         blk_mq_hctx_kobj_init(hctx);
2809
2810         return hctx;
2811
2812  free_bitmap:
2813         sbitmap_free(&hctx->ctx_map);
2814  free_ctxs:
2815         kfree(hctx->ctxs);
2816  free_cpumask:
2817         free_cpumask_var(hctx->cpumask);
2818  free_hctx:
2819         kfree(hctx);
2820  fail_alloc_hctx:
2821         return NULL;
2822 }
2823
2824 static void blk_mq_init_cpu_queues(struct request_queue *q,
2825                                    unsigned int nr_hw_queues)
2826 {
2827         struct blk_mq_tag_set *set = q->tag_set;
2828         unsigned int i, j;
2829
2830         for_each_possible_cpu(i) {
2831                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2832                 struct blk_mq_hw_ctx *hctx;
2833                 int k;
2834
2835                 __ctx->cpu = i;
2836                 spin_lock_init(&__ctx->lock);
2837                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2838                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2839
2840                 __ctx->queue = q;
2841
2842                 /*
2843                  * Set local node, IFF we have more than one hw queue. If
2844                  * not, we remain on the home node of the device
2845                  */
2846                 for (j = 0; j < set->nr_maps; j++) {
2847                         hctx = blk_mq_map_queue_type(q, j, i);
2848                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2849                                 hctx->numa_node = cpu_to_node(i);
2850                 }
2851         }
2852 }
2853
2854 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2855                                         int hctx_idx)
2856 {
2857         unsigned int flags = set->flags;
2858         int ret = 0;
2859
2860         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2861                                         set->queue_depth, set->reserved_tags, flags);
2862         if (!set->tags[hctx_idx])
2863                 return false;
2864
2865         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2866                                 set->queue_depth);
2867         if (!ret)
2868                 return true;
2869
2870         blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2871         set->tags[hctx_idx] = NULL;
2872         return false;
2873 }
2874
2875 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2876                                          unsigned int hctx_idx)
2877 {
2878         unsigned int flags = set->flags;
2879
2880         if (set->tags && set->tags[hctx_idx]) {
2881                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2882                 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2883                 set->tags[hctx_idx] = NULL;
2884         }
2885 }
2886
2887 static void blk_mq_map_swqueue(struct request_queue *q)
2888 {
2889         unsigned int i, j, hctx_idx;
2890         struct blk_mq_hw_ctx *hctx;
2891         struct blk_mq_ctx *ctx;
2892         struct blk_mq_tag_set *set = q->tag_set;
2893
2894         queue_for_each_hw_ctx(q, hctx, i) {
2895                 cpumask_clear(hctx->cpumask);
2896                 hctx->nr_ctx = 0;
2897                 hctx->dispatch_from = NULL;
2898         }
2899
2900         /*
2901          * Map software to hardware queues.
2902          *
2903          * If the cpu isn't present, the cpu is mapped to first hctx.
2904          */
2905         for_each_possible_cpu(i) {
2906
2907                 ctx = per_cpu_ptr(q->queue_ctx, i);
2908                 for (j = 0; j < set->nr_maps; j++) {
2909                         if (!set->map[j].nr_queues) {
2910                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2911                                                 HCTX_TYPE_DEFAULT, i);
2912                                 continue;
2913                         }
2914                         hctx_idx = set->map[j].mq_map[i];
2915                         /* unmapped hw queue can be remapped after CPU topo changed */
2916                         if (!set->tags[hctx_idx] &&
2917                             !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2918                                 /*
2919                                  * If tags initialization fail for some hctx,
2920                                  * that hctx won't be brought online.  In this
2921                                  * case, remap the current ctx to hctx[0] which
2922                                  * is guaranteed to always have tags allocated
2923                                  */
2924                                 set->map[j].mq_map[i] = 0;
2925                         }
2926
2927                         hctx = blk_mq_map_queue_type(q, j, i);
2928                         ctx->hctxs[j] = hctx;
2929                         /*
2930                          * If the CPU is already set in the mask, then we've
2931                          * mapped this one already. This can happen if
2932                          * devices share queues across queue maps.
2933                          */
2934                         if (cpumask_test_cpu(i, hctx->cpumask))
2935                                 continue;
2936
2937                         cpumask_set_cpu(i, hctx->cpumask);
2938                         hctx->type = j;
2939                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2940                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2941
2942                         /*
2943                          * If the nr_ctx type overflows, we have exceeded the
2944                          * amount of sw queues we can support.
2945                          */
2946                         BUG_ON(!hctx->nr_ctx);
2947                 }
2948
2949                 for (; j < HCTX_MAX_TYPES; j++)
2950                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2951                                         HCTX_TYPE_DEFAULT, i);
2952         }
2953
2954         queue_for_each_hw_ctx(q, hctx, i) {
2955                 /*
2956                  * If no software queues are mapped to this hardware queue,
2957                  * disable it and free the request entries.
2958                  */
2959                 if (!hctx->nr_ctx) {
2960                         /* Never unmap queue 0.  We need it as a
2961                          * fallback in case of a new remap fails
2962                          * allocation
2963                          */
2964                         if (i && set->tags[i])
2965                                 blk_mq_free_map_and_requests(set, i);
2966
2967                         hctx->tags = NULL;
2968                         continue;
2969                 }
2970
2971                 hctx->tags = set->tags[i];
2972                 WARN_ON(!hctx->tags);
2973
2974                 /*
2975                  * Set the map size to the number of mapped software queues.
2976                  * This is more accurate and more efficient than looping
2977                  * over all possibly mapped software queues.
2978                  */
2979                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2980
2981                 /*
2982                  * Initialize batch roundrobin counts
2983                  */
2984                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2985                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2986         }
2987 }
2988
2989 /*
2990  * Caller needs to ensure that we're either frozen/quiesced, or that
2991  * the queue isn't live yet.
2992  */
2993 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2994 {
2995         struct blk_mq_hw_ctx *hctx;
2996         int i;
2997
2998         queue_for_each_hw_ctx(q, hctx, i) {
2999                 if (shared) {
3000                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3001                 } else {
3002                         blk_mq_tag_idle(hctx);
3003                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3004                 }
3005         }
3006 }
3007
3008 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3009                                          bool shared)
3010 {
3011         struct request_queue *q;
3012
3013         lockdep_assert_held(&set->tag_list_lock);
3014
3015         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3016                 blk_mq_freeze_queue(q);
3017                 queue_set_hctx_shared(q, shared);
3018                 blk_mq_unfreeze_queue(q);
3019         }
3020 }
3021
3022 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3023 {
3024         struct blk_mq_tag_set *set = q->tag_set;
3025
3026         mutex_lock(&set->tag_list_lock);
3027         list_del(&q->tag_set_list);
3028         if (list_is_singular(&set->tag_list)) {
3029                 /* just transitioned to unshared */
3030                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3031                 /* update existing queue */
3032                 blk_mq_update_tag_set_shared(set, false);
3033         }
3034         mutex_unlock(&set->tag_list_lock);
3035         INIT_LIST_HEAD(&q->tag_set_list);
3036 }
3037
3038 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3039                                      struct request_queue *q)
3040 {
3041         mutex_lock(&set->tag_list_lock);
3042
3043         /*
3044          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3045          */
3046         if (!list_empty(&set->tag_list) &&
3047             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3048                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3049                 /* update existing queue */
3050                 blk_mq_update_tag_set_shared(set, true);
3051         }
3052         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3053                 queue_set_hctx_shared(q, true);
3054         list_add_tail(&q->tag_set_list, &set->tag_list);
3055
3056         mutex_unlock(&set->tag_list_lock);
3057 }
3058
3059 /* All allocations will be freed in release handler of q->mq_kobj */
3060 static int blk_mq_alloc_ctxs(struct request_queue *q)
3061 {
3062         struct blk_mq_ctxs *ctxs;
3063         int cpu;
3064
3065         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3066         if (!ctxs)
3067                 return -ENOMEM;
3068
3069         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3070         if (!ctxs->queue_ctx)
3071                 goto fail;
3072
3073         for_each_possible_cpu(cpu) {
3074                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3075                 ctx->ctxs = ctxs;
3076         }
3077
3078         q->mq_kobj = &ctxs->kobj;
3079         q->queue_ctx = ctxs->queue_ctx;
3080
3081         return 0;
3082  fail:
3083         kfree(ctxs);
3084         return -ENOMEM;
3085 }
3086
3087 /*
3088  * It is the actual release handler for mq, but we do it from
3089  * request queue's release handler for avoiding use-after-free
3090  * and headache because q->mq_kobj shouldn't have been introduced,
3091  * but we can't group ctx/kctx kobj without it.
3092  */
3093 void blk_mq_release(struct request_queue *q)
3094 {
3095         struct blk_mq_hw_ctx *hctx, *next;
3096         int i;
3097
3098         queue_for_each_hw_ctx(q, hctx, i)
3099                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3100
3101         /* all hctx are in .unused_hctx_list now */
3102         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3103                 list_del_init(&hctx->hctx_list);
3104                 kobject_put(&hctx->kobj);
3105         }
3106
3107         kfree(q->queue_hw_ctx);
3108
3109         /*
3110          * release .mq_kobj and sw queue's kobject now because
3111          * both share lifetime with request queue.
3112          */
3113         blk_mq_sysfs_deinit(q);
3114 }
3115
3116 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3117                 void *queuedata)
3118 {
3119         struct request_queue *q;
3120         int ret;
3121
3122         q = blk_alloc_queue(set->numa_node);
3123         if (!q)
3124                 return ERR_PTR(-ENOMEM);
3125         q->queuedata = queuedata;
3126         ret = blk_mq_init_allocated_queue(set, q);
3127         if (ret) {
3128                 blk_cleanup_queue(q);
3129                 return ERR_PTR(ret);
3130         }
3131         return q;
3132 }
3133
3134 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3135 {
3136         return blk_mq_init_queue_data(set, NULL);
3137 }
3138 EXPORT_SYMBOL(blk_mq_init_queue);
3139
3140 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3141                 struct lock_class_key *lkclass)
3142 {
3143         struct request_queue *q;
3144         struct gendisk *disk;
3145
3146         q = blk_mq_init_queue_data(set, queuedata);
3147         if (IS_ERR(q))
3148                 return ERR_CAST(q);
3149
3150         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3151         if (!disk) {
3152                 blk_cleanup_queue(q);
3153                 return ERR_PTR(-ENOMEM);
3154         }
3155         return disk;
3156 }
3157 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3158
3159 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3160                 struct blk_mq_tag_set *set, struct request_queue *q,
3161                 int hctx_idx, int node)
3162 {
3163         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3164
3165         /* reuse dead hctx first */
3166         spin_lock(&q->unused_hctx_lock);
3167         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3168                 if (tmp->numa_node == node) {
3169                         hctx = tmp;
3170                         break;
3171                 }
3172         }
3173         if (hctx)
3174                 list_del_init(&hctx->hctx_list);
3175         spin_unlock(&q->unused_hctx_lock);
3176
3177         if (!hctx)
3178                 hctx = blk_mq_alloc_hctx(q, set, node);
3179         if (!hctx)
3180                 goto fail;
3181
3182         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3183                 goto free_hctx;
3184
3185         return hctx;
3186
3187  free_hctx:
3188         kobject_put(&hctx->kobj);
3189  fail:
3190         return NULL;
3191 }
3192
3193 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3194                                                 struct request_queue *q)
3195 {
3196         int i, j, end;
3197         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3198
3199         if (q->nr_hw_queues < set->nr_hw_queues) {
3200                 struct blk_mq_hw_ctx **new_hctxs;
3201
3202                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3203                                        sizeof(*new_hctxs), GFP_KERNEL,
3204                                        set->numa_node);
3205                 if (!new_hctxs)
3206                         return;
3207                 if (hctxs)
3208                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3209                                sizeof(*hctxs));
3210                 q->queue_hw_ctx = new_hctxs;
3211                 kfree(hctxs);
3212                 hctxs = new_hctxs;
3213         }
3214
3215         /* protect against switching io scheduler  */
3216         mutex_lock(&q->sysfs_lock);
3217         for (i = 0; i < set->nr_hw_queues; i++) {
3218                 int node;
3219                 struct blk_mq_hw_ctx *hctx;
3220
3221                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3222                 /*
3223                  * If the hw queue has been mapped to another numa node,
3224                  * we need to realloc the hctx. If allocation fails, fallback
3225                  * to use the previous one.
3226                  */
3227                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3228                         continue;
3229
3230                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3231                 if (hctx) {
3232                         if (hctxs[i])
3233                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3234                         hctxs[i] = hctx;
3235                 } else {
3236                         if (hctxs[i])
3237                                 pr_warn("Allocate new hctx on node %d fails,\
3238                                                 fallback to previous one on node %d\n",
3239                                                 node, hctxs[i]->numa_node);
3240                         else
3241                                 break;
3242                 }
3243         }
3244         /*
3245          * Increasing nr_hw_queues fails. Free the newly allocated
3246          * hctxs and keep the previous q->nr_hw_queues.
3247          */
3248         if (i != set->nr_hw_queues) {
3249                 j = q->nr_hw_queues;
3250                 end = i;
3251         } else {
3252                 j = i;
3253                 end = q->nr_hw_queues;
3254                 q->nr_hw_queues = set->nr_hw_queues;
3255         }
3256
3257         for (; j < end; j++) {
3258                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3259
3260                 if (hctx) {
3261                         if (hctx->tags)
3262                                 blk_mq_free_map_and_requests(set, j);
3263                         blk_mq_exit_hctx(q, set, hctx, j);
3264                         hctxs[j] = NULL;
3265                 }
3266         }
3267         mutex_unlock(&q->sysfs_lock);
3268 }
3269
3270 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3271                 struct request_queue *q)
3272 {
3273         /* mark the queue as mq asap */
3274         q->mq_ops = set->ops;
3275
3276         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3277                                              blk_mq_poll_stats_bkt,
3278                                              BLK_MQ_POLL_STATS_BKTS, q);
3279         if (!q->poll_cb)
3280                 goto err_exit;
3281
3282         if (blk_mq_alloc_ctxs(q))
3283                 goto err_poll;
3284
3285         /* init q->mq_kobj and sw queues' kobjects */
3286         blk_mq_sysfs_init(q);
3287
3288         INIT_LIST_HEAD(&q->unused_hctx_list);
3289         spin_lock_init(&q->unused_hctx_lock);
3290
3291         blk_mq_realloc_hw_ctxs(set, q);
3292         if (!q->nr_hw_queues)
3293                 goto err_hctxs;
3294
3295         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3296         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3297
3298         q->tag_set = set;
3299
3300         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3301         if (set->nr_maps > HCTX_TYPE_POLL &&
3302             set->map[HCTX_TYPE_POLL].nr_queues)
3303                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3304
3305         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3306         INIT_LIST_HEAD(&q->requeue_list);
3307         spin_lock_init(&q->requeue_lock);
3308
3309         q->nr_requests = set->queue_depth;
3310
3311         /*
3312          * Default to classic polling
3313          */
3314         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3315
3316         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3317         blk_mq_add_queue_tag_set(set, q);
3318         blk_mq_map_swqueue(q);
3319         return 0;
3320
3321 err_hctxs:
3322         kfree(q->queue_hw_ctx);
3323         q->nr_hw_queues = 0;
3324         blk_mq_sysfs_deinit(q);
3325 err_poll:
3326         blk_stat_free_callback(q->poll_cb);
3327         q->poll_cb = NULL;
3328 err_exit:
3329         q->mq_ops = NULL;
3330         return -ENOMEM;
3331 }
3332 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3333
3334 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3335 void blk_mq_exit_queue(struct request_queue *q)
3336 {
3337         struct blk_mq_tag_set *set = q->tag_set;
3338
3339         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3340         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3341         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3342         blk_mq_del_queue_tag_set(q);
3343 }
3344
3345 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3346 {
3347         int i;
3348
3349         for (i = 0; i < set->nr_hw_queues; i++) {
3350                 if (!__blk_mq_alloc_map_and_request(set, i))
3351                         goto out_unwind;
3352                 cond_resched();
3353         }
3354
3355         return 0;
3356
3357 out_unwind:
3358         while (--i >= 0)
3359                 blk_mq_free_map_and_requests(set, i);
3360
3361         return -ENOMEM;
3362 }
3363
3364 /*
3365  * Allocate the request maps associated with this tag_set. Note that this
3366  * may reduce the depth asked for, if memory is tight. set->queue_depth
3367  * will be updated to reflect the allocated depth.
3368  */
3369 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3370 {
3371         unsigned int depth;
3372         int err;
3373
3374         depth = set->queue_depth;
3375         do {
3376                 err = __blk_mq_alloc_rq_maps(set);
3377                 if (!err)
3378                         break;
3379
3380                 set->queue_depth >>= 1;
3381                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3382                         err = -ENOMEM;
3383                         break;
3384                 }
3385         } while (set->queue_depth);
3386
3387         if (!set->queue_depth || err) {
3388                 pr_err("blk-mq: failed to allocate request map\n");
3389                 return -ENOMEM;
3390         }
3391
3392         if (depth != set->queue_depth)
3393                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3394                                                 depth, set->queue_depth);
3395
3396         return 0;
3397 }
3398
3399 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3400 {
3401         /*
3402          * blk_mq_map_queues() and multiple .map_queues() implementations
3403          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3404          * number of hardware queues.
3405          */
3406         if (set->nr_maps == 1)
3407                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3408
3409         if (set->ops->map_queues && !is_kdump_kernel()) {
3410                 int i;
3411
3412                 /*
3413                  * transport .map_queues is usually done in the following
3414                  * way:
3415                  *
3416                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3417                  *      mask = get_cpu_mask(queue)
3418                  *      for_each_cpu(cpu, mask)
3419                  *              set->map[x].mq_map[cpu] = queue;
3420                  * }
3421                  *
3422                  * When we need to remap, the table has to be cleared for
3423                  * killing stale mapping since one CPU may not be mapped
3424                  * to any hw queue.
3425                  */
3426                 for (i = 0; i < set->nr_maps; i++)
3427                         blk_mq_clear_mq_map(&set->map[i]);
3428
3429                 return set->ops->map_queues(set);
3430         } else {
3431                 BUG_ON(set->nr_maps > 1);
3432                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3433         }
3434 }
3435
3436 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3437                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3438 {
3439         struct blk_mq_tags **new_tags;
3440
3441         if (cur_nr_hw_queues >= new_nr_hw_queues)
3442                 return 0;
3443
3444         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3445                                 GFP_KERNEL, set->numa_node);
3446         if (!new_tags)
3447                 return -ENOMEM;
3448
3449         if (set->tags)
3450                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3451                        sizeof(*set->tags));
3452         kfree(set->tags);
3453         set->tags = new_tags;
3454         set->nr_hw_queues = new_nr_hw_queues;
3455
3456         return 0;
3457 }
3458
3459 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3460                                 int new_nr_hw_queues)
3461 {
3462         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3463 }
3464
3465 /*
3466  * Alloc a tag set to be associated with one or more request queues.
3467  * May fail with EINVAL for various error conditions. May adjust the
3468  * requested depth down, if it's too large. In that case, the set
3469  * value will be stored in set->queue_depth.
3470  */
3471 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3472 {
3473         int i, ret;
3474
3475         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3476
3477         if (!set->nr_hw_queues)
3478                 return -EINVAL;
3479         if (!set->queue_depth)
3480                 return -EINVAL;
3481         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3482                 return -EINVAL;
3483
3484         if (!set->ops->queue_rq)
3485                 return -EINVAL;
3486
3487         if (!set->ops->get_budget ^ !set->ops->put_budget)
3488                 return -EINVAL;
3489
3490         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3491                 pr_info("blk-mq: reduced tag depth to %u\n",
3492                         BLK_MQ_MAX_DEPTH);
3493                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3494         }
3495
3496         if (!set->nr_maps)
3497                 set->nr_maps = 1;
3498         else if (set->nr_maps > HCTX_MAX_TYPES)
3499                 return -EINVAL;
3500
3501         /*
3502          * If a crashdump is active, then we are potentially in a very
3503          * memory constrained environment. Limit us to 1 queue and
3504          * 64 tags to prevent using too much memory.
3505          */
3506         if (is_kdump_kernel()) {
3507                 set->nr_hw_queues = 1;
3508                 set->nr_maps = 1;
3509                 set->queue_depth = min(64U, set->queue_depth);
3510         }
3511         /*
3512          * There is no use for more h/w queues than cpus if we just have
3513          * a single map
3514          */
3515         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3516                 set->nr_hw_queues = nr_cpu_ids;
3517
3518         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3519                 return -ENOMEM;
3520
3521         ret = -ENOMEM;
3522         for (i = 0; i < set->nr_maps; i++) {
3523                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3524                                                   sizeof(set->map[i].mq_map[0]),
3525                                                   GFP_KERNEL, set->numa_node);
3526                 if (!set->map[i].mq_map)
3527                         goto out_free_mq_map;
3528                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3529         }
3530
3531         ret = blk_mq_update_queue_map(set);
3532         if (ret)
3533                 goto out_free_mq_map;
3534
3535         ret = blk_mq_alloc_map_and_requests(set);
3536         if (ret)
3537                 goto out_free_mq_map;
3538
3539         if (blk_mq_is_sbitmap_shared(set->flags)) {
3540                 atomic_set(&set->active_queues_shared_sbitmap, 0);
3541
3542                 if (blk_mq_init_shared_sbitmap(set)) {
3543                         ret = -ENOMEM;
3544                         goto out_free_mq_rq_maps;
3545                 }
3546         }
3547
3548         mutex_init(&set->tag_list_lock);
3549         INIT_LIST_HEAD(&set->tag_list);
3550
3551         return 0;
3552
3553 out_free_mq_rq_maps:
3554         for (i = 0; i < set->nr_hw_queues; i++)
3555                 blk_mq_free_map_and_requests(set, i);
3556 out_free_mq_map:
3557         for (i = 0; i < set->nr_maps; i++) {
3558                 kfree(set->map[i].mq_map);
3559                 set->map[i].mq_map = NULL;
3560         }
3561         kfree(set->tags);
3562         set->tags = NULL;
3563         return ret;
3564 }
3565 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3566
3567 /* allocate and initialize a tagset for a simple single-queue device */
3568 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3569                 const struct blk_mq_ops *ops, unsigned int queue_depth,
3570                 unsigned int set_flags)
3571 {
3572         memset(set, 0, sizeof(*set));
3573         set->ops = ops;
3574         set->nr_hw_queues = 1;
3575         set->nr_maps = 1;
3576         set->queue_depth = queue_depth;
3577         set->numa_node = NUMA_NO_NODE;
3578         set->flags = set_flags;
3579         return blk_mq_alloc_tag_set(set);
3580 }
3581 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3582
3583 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3584 {
3585         int i, j;
3586
3587         for (i = 0; i < set->nr_hw_queues; i++)
3588                 blk_mq_free_map_and_requests(set, i);
3589
3590         if (blk_mq_is_sbitmap_shared(set->flags))
3591                 blk_mq_exit_shared_sbitmap(set);
3592
3593         for (j = 0; j < set->nr_maps; j++) {
3594                 kfree(set->map[j].mq_map);
3595                 set->map[j].mq_map = NULL;
3596         }
3597
3598         kfree(set->tags);
3599         set->tags = NULL;
3600 }
3601 EXPORT_SYMBOL(blk_mq_free_tag_set);
3602
3603 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3604 {
3605         struct blk_mq_tag_set *set = q->tag_set;
3606         struct blk_mq_hw_ctx *hctx;
3607         int i, ret;
3608
3609         if (!set)
3610                 return -EINVAL;
3611
3612         if (q->nr_requests == nr)
3613                 return 0;
3614
3615         blk_mq_freeze_queue(q);
3616         blk_mq_quiesce_queue(q);
3617
3618         ret = 0;
3619         queue_for_each_hw_ctx(q, hctx, i) {
3620                 if (!hctx->tags)
3621                         continue;
3622                 /*
3623                  * If we're using an MQ scheduler, just update the scheduler
3624                  * queue depth. This is similar to what the old code would do.
3625                  */
3626                 if (!hctx->sched_tags) {
3627                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3628                                                         false);
3629                         if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3630                                 blk_mq_tag_resize_shared_sbitmap(set, nr);
3631                 } else {
3632                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3633                                                         nr, true);
3634                         if (blk_mq_is_sbitmap_shared(set->flags)) {
3635                                 hctx->sched_tags->bitmap_tags =
3636                                         &q->sched_bitmap_tags;
3637                                 hctx->sched_tags->breserved_tags =
3638                                         &q->sched_breserved_tags;
3639                         }
3640                 }
3641                 if (ret)
3642                         break;
3643                 if (q->elevator && q->elevator->type->ops.depth_updated)
3644                         q->elevator->type->ops.depth_updated(hctx);
3645         }
3646         if (!ret) {
3647                 q->nr_requests = nr;
3648                 if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3649                         sbitmap_queue_resize(&q->sched_bitmap_tags,
3650                                              nr - set->reserved_tags);
3651         }
3652
3653         blk_mq_unquiesce_queue(q);
3654         blk_mq_unfreeze_queue(q);
3655
3656         return ret;
3657 }
3658
3659 /*
3660  * request_queue and elevator_type pair.
3661  * It is just used by __blk_mq_update_nr_hw_queues to cache
3662  * the elevator_type associated with a request_queue.
3663  */
3664 struct blk_mq_qe_pair {
3665         struct list_head node;
3666         struct request_queue *q;
3667         struct elevator_type *type;
3668 };
3669
3670 /*
3671  * Cache the elevator_type in qe pair list and switch the
3672  * io scheduler to 'none'
3673  */
3674 static bool blk_mq_elv_switch_none(struct list_head *head,
3675                 struct request_queue *q)
3676 {
3677         struct blk_mq_qe_pair *qe;
3678
3679         if (!q->elevator)
3680                 return true;
3681
3682         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3683         if (!qe)
3684                 return false;
3685
3686         INIT_LIST_HEAD(&qe->node);
3687         qe->q = q;
3688         qe->type = q->elevator->type;
3689         list_add(&qe->node, head);
3690
3691         mutex_lock(&q->sysfs_lock);
3692         /*
3693          * After elevator_switch_mq, the previous elevator_queue will be
3694          * released by elevator_release. The reference of the io scheduler
3695          * module get by elevator_get will also be put. So we need to get
3696          * a reference of the io scheduler module here to prevent it to be
3697          * removed.
3698          */
3699         __module_get(qe->type->elevator_owner);
3700         elevator_switch_mq(q, NULL);
3701         mutex_unlock(&q->sysfs_lock);
3702
3703         return true;
3704 }
3705
3706 static void blk_mq_elv_switch_back(struct list_head *head,
3707                 struct request_queue *q)
3708 {
3709         struct blk_mq_qe_pair *qe;
3710         struct elevator_type *t = NULL;
3711
3712         list_for_each_entry(qe, head, node)
3713                 if (qe->q == q) {
3714                         t = qe->type;
3715                         break;
3716                 }
3717
3718         if (!t)
3719                 return;
3720
3721         list_del(&qe->node);
3722         kfree(qe);
3723
3724         mutex_lock(&q->sysfs_lock);
3725         elevator_switch_mq(q, t);
3726         mutex_unlock(&q->sysfs_lock);
3727 }
3728
3729 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3730                                                         int nr_hw_queues)
3731 {
3732         struct request_queue *q;
3733         LIST_HEAD(head);
3734         int prev_nr_hw_queues;
3735
3736         lockdep_assert_held(&set->tag_list_lock);
3737
3738         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3739                 nr_hw_queues = nr_cpu_ids;
3740         if (nr_hw_queues < 1)
3741                 return;
3742         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3743                 return;
3744
3745         list_for_each_entry(q, &set->tag_list, tag_set_list)
3746                 blk_mq_freeze_queue(q);
3747         /*
3748          * Switch IO scheduler to 'none', cleaning up the data associated
3749          * with the previous scheduler. We will switch back once we are done
3750          * updating the new sw to hw queue mappings.
3751          */
3752         list_for_each_entry(q, &set->tag_list, tag_set_list)
3753                 if (!blk_mq_elv_switch_none(&head, q))
3754                         goto switch_back;
3755
3756         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3757                 blk_mq_debugfs_unregister_hctxs(q);
3758                 blk_mq_sysfs_unregister(q);
3759         }
3760
3761         prev_nr_hw_queues = set->nr_hw_queues;
3762         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3763             0)
3764                 goto reregister;
3765
3766         set->nr_hw_queues = nr_hw_queues;
3767 fallback:
3768         blk_mq_update_queue_map(set);
3769         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3770                 blk_mq_realloc_hw_ctxs(set, q);
3771                 if (q->nr_hw_queues != set->nr_hw_queues) {
3772                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3773                                         nr_hw_queues, prev_nr_hw_queues);
3774                         set->nr_hw_queues = prev_nr_hw_queues;
3775                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3776                         goto fallback;
3777                 }
3778                 blk_mq_map_swqueue(q);
3779         }
3780
3781 reregister:
3782         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3783                 blk_mq_sysfs_register(q);
3784                 blk_mq_debugfs_register_hctxs(q);
3785         }
3786
3787 switch_back:
3788         list_for_each_entry(q, &set->tag_list, tag_set_list)
3789                 blk_mq_elv_switch_back(&head, q);
3790
3791         list_for_each_entry(q, &set->tag_list, tag_set_list)
3792                 blk_mq_unfreeze_queue(q);
3793 }
3794
3795 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3796 {
3797         mutex_lock(&set->tag_list_lock);
3798         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3799         mutex_unlock(&set->tag_list_lock);
3800 }
3801 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3802
3803 /* Enable polling stats and return whether they were already enabled. */
3804 static bool blk_poll_stats_enable(struct request_queue *q)
3805 {
3806         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3807             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3808                 return true;
3809         blk_stat_add_callback(q, q->poll_cb);
3810         return false;
3811 }
3812
3813 static void blk_mq_poll_stats_start(struct request_queue *q)
3814 {
3815         /*
3816          * We don't arm the callback if polling stats are not enabled or the
3817          * callback is already active.
3818          */
3819         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3820             blk_stat_is_active(q->poll_cb))
3821                 return;
3822
3823         blk_stat_activate_msecs(q->poll_cb, 100);
3824 }
3825
3826 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3827 {
3828         struct request_queue *q = cb->data;
3829         int bucket;
3830
3831         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3832                 if (cb->stat[bucket].nr_samples)
3833                         q->poll_stat[bucket] = cb->stat[bucket];
3834         }
3835 }
3836
3837 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3838                                        struct request *rq)
3839 {
3840         unsigned long ret = 0;
3841         int bucket;
3842
3843         /*
3844          * If stats collection isn't on, don't sleep but turn it on for
3845          * future users
3846          */
3847         if (!blk_poll_stats_enable(q))
3848                 return 0;
3849
3850         /*
3851          * As an optimistic guess, use half of the mean service time
3852          * for this type of request. We can (and should) make this smarter.
3853          * For instance, if the completion latencies are tight, we can
3854          * get closer than just half the mean. This is especially
3855          * important on devices where the completion latencies are longer
3856          * than ~10 usec. We do use the stats for the relevant IO size
3857          * if available which does lead to better estimates.
3858          */
3859         bucket = blk_mq_poll_stats_bkt(rq);
3860         if (bucket < 0)
3861                 return ret;
3862
3863         if (q->poll_stat[bucket].nr_samples)
3864                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3865
3866         return ret;
3867 }
3868
3869 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3870                                      struct request *rq)
3871 {
3872         struct hrtimer_sleeper hs;
3873         enum hrtimer_mode mode;
3874         unsigned int nsecs;
3875         ktime_t kt;
3876
3877         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3878                 return false;
3879
3880         /*
3881          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3882          *
3883          *  0:  use half of prev avg
3884          * >0:  use this specific value
3885          */
3886         if (q->poll_nsec > 0)
3887                 nsecs = q->poll_nsec;
3888         else
3889                 nsecs = blk_mq_poll_nsecs(q, rq);
3890
3891         if (!nsecs)
3892                 return false;
3893
3894         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3895
3896         /*
3897          * This will be replaced with the stats tracking code, using
3898          * 'avg_completion_time / 2' as the pre-sleep target.
3899          */
3900         kt = nsecs;
3901
3902         mode = HRTIMER_MODE_REL;
3903         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3904         hrtimer_set_expires(&hs.timer, kt);
3905
3906         do {
3907                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3908                         break;
3909                 set_current_state(TASK_UNINTERRUPTIBLE);
3910                 hrtimer_sleeper_start_expires(&hs, mode);
3911                 if (hs.task)
3912                         io_schedule();
3913                 hrtimer_cancel(&hs.timer);
3914                 mode = HRTIMER_MODE_ABS;
3915         } while (hs.task && !signal_pending(current));
3916
3917         __set_current_state(TASK_RUNNING);
3918         destroy_hrtimer_on_stack(&hs.timer);
3919         return true;
3920 }
3921
3922 static bool blk_mq_poll_hybrid(struct request_queue *q,
3923                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3924 {
3925         struct request *rq;
3926
3927         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3928                 return false;
3929
3930         if (!blk_qc_t_is_internal(cookie))
3931                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3932         else {
3933                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3934                 /*
3935                  * With scheduling, if the request has completed, we'll
3936                  * get a NULL return here, as we clear the sched tag when
3937                  * that happens. The request still remains valid, like always,
3938                  * so we should be safe with just the NULL check.
3939                  */
3940                 if (!rq)
3941                         return false;
3942         }
3943
3944         return blk_mq_poll_hybrid_sleep(q, rq);
3945 }
3946
3947 /**
3948  * blk_poll - poll for IO completions
3949  * @q:  the queue
3950  * @cookie: cookie passed back at IO submission time
3951  * @spin: whether to spin for completions
3952  *
3953  * Description:
3954  *    Poll for completions on the passed in queue. Returns number of
3955  *    completed entries found. If @spin is true, then blk_poll will continue
3956  *    looping until at least one completion is found, unless the task is
3957  *    otherwise marked running (or we need to reschedule).
3958  */
3959 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3960 {
3961         struct blk_mq_hw_ctx *hctx;
3962         unsigned int state;
3963
3964         if (!blk_qc_t_valid(cookie) ||
3965             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3966                 return 0;
3967
3968         if (current->plug)
3969                 blk_flush_plug_list(current->plug, false);
3970
3971         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3972
3973         /*
3974          * If we sleep, have the caller restart the poll loop to reset
3975          * the state. Like for the other success return cases, the
3976          * caller is responsible for checking if the IO completed. If
3977          * the IO isn't complete, we'll get called again and will go
3978          * straight to the busy poll loop. If specified not to spin,
3979          * we also should not sleep.
3980          */
3981         if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3982                 return 1;
3983
3984         hctx->poll_considered++;
3985
3986         state = get_current_state();
3987         do {
3988                 int ret;
3989
3990                 hctx->poll_invoked++;
3991
3992                 ret = q->mq_ops->poll(hctx);
3993                 if (ret > 0) {
3994                         hctx->poll_success++;
3995                         __set_current_state(TASK_RUNNING);
3996                         return ret;
3997                 }
3998
3999                 if (signal_pending_state(state, current))
4000                         __set_current_state(TASK_RUNNING);
4001
4002                 if (task_is_running(current))
4003                         return 1;
4004                 if (ret < 0 || !spin)
4005                         break;
4006                 cpu_relax();
4007         } while (!need_resched());
4008
4009         __set_current_state(TASK_RUNNING);
4010         return 0;
4011 }
4012 EXPORT_SYMBOL_GPL(blk_poll);
4013
4014 unsigned int blk_mq_rq_cpu(struct request *rq)
4015 {
4016         return rq->mq_ctx->cpu;
4017 }
4018 EXPORT_SYMBOL(blk_mq_rq_cpu);
4019
4020 void blk_mq_cancel_work_sync(struct request_queue *q)
4021 {
4022         if (queue_is_mq(q)) {
4023                 struct blk_mq_hw_ctx *hctx;
4024                 int i;
4025
4026                 cancel_delayed_work_sync(&q->requeue_work);
4027
4028                 queue_for_each_hw_ctx(q, hctx, i)
4029                         cancel_delayed_work_sync(&hctx->run_work);
4030         }
4031 }
4032
4033 static int __init blk_mq_init(void)
4034 {
4035         int i;
4036
4037         for_each_possible_cpu(i)
4038                 init_llist_head(&per_cpu(blk_cpu_done, i));
4039         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4040
4041         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4042                                   "block/softirq:dead", NULL,
4043                                   blk_softirq_cpu_dead);
4044         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4045                                 blk_mq_hctx_notify_dead);
4046         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4047                                 blk_mq_hctx_notify_online,
4048                                 blk_mq_hctx_notify_offline);
4049         return 0;
4050 }
4051 subsys_initcall(blk_mq_init);