block: do not reverse request order when flushing plug list
[platform/kernel/linux-starfive.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54         int ddir, sectors, bucket;
55
56         ddir = rq_data_dir(rq);
57         sectors = blk_rq_stats_sectors(rq);
58
59         bucket = ddir + 2 * ilog2(sectors);
60
61         if (bucket < 0)
62                 return -1;
63         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65
66         return bucket;
67 }
68
69 #define BLK_QC_T_SHIFT          16
70 #define BLK_QC_T_INTERNAL       (1U << 31)
71
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73                 blk_qc_t qc)
74 {
75         return xa_load(&q->hctx_table,
76                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80                 blk_qc_t qc)
81 {
82         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83
84         if (qc & BLK_QC_T_INTERNAL)
85                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86         return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92                 (rq->tag != -1 ?
93                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102         return !list_empty_careful(&hctx->dispatch) ||
103                 sbitmap_any_bit_set(&hctx->ctx_map) ||
104                         blk_mq_sched_has_work(hctx);
105 }
106
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111                                      struct blk_mq_ctx *ctx)
112 {
113         const int bit = ctx->index_hw[hctx->type];
114
115         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116                 sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120                                       struct blk_mq_ctx *ctx)
121 {
122         const int bit = ctx->index_hw[hctx->type];
123
124         sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126
127 struct mq_inflight {
128         struct block_device *part;
129         unsigned int inflight[2];
130 };
131
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264         if (blk_queue_has_srcu(q))
265                 synchronize_srcu(q->srcu);
266         else
267                 synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282         blk_mq_quiesce_queue_nowait(q);
283         blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296         unsigned long flags;
297         bool run_queue = false;
298
299         spin_lock_irqsave(&q->queue_lock, flags);
300         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301                 ;
302         } else if (!--q->quiesce_depth) {
303                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304                 run_queue = true;
305         }
306         spin_unlock_irqrestore(&q->queue_lock, flags);
307
308         /* dispatch requests which are inserted during quiescing */
309         if (run_queue)
310                 blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316         struct blk_mq_hw_ctx *hctx;
317         unsigned long i;
318
319         queue_for_each_hw_ctx(q, hctx, i)
320                 if (blk_mq_hw_queue_mapped(hctx))
321                         blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326         memset(rq, 0, sizeof(*rq));
327
328         INIT_LIST_HEAD(&rq->queuelist);
329         rq->q = q;
330         rq->__sector = (sector_t) -1;
331         INIT_HLIST_NODE(&rq->hash);
332         RB_CLEAR_NODE(&rq->rb_node);
333         rq->tag = BLK_MQ_NO_TAG;
334         rq->internal_tag = BLK_MQ_NO_TAG;
335         rq->start_time_ns = ktime_get_ns();
336         rq->part = NULL;
337         blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344         struct blk_mq_ctx *ctx = data->ctx;
345         struct blk_mq_hw_ctx *hctx = data->hctx;
346         struct request_queue *q = data->q;
347         struct request *rq = tags->static_rqs[tag];
348
349         rq->q = q;
350         rq->mq_ctx = ctx;
351         rq->mq_hctx = hctx;
352         rq->cmd_flags = data->cmd_flags;
353
354         if (data->flags & BLK_MQ_REQ_PM)
355                 data->rq_flags |= RQF_PM;
356         if (blk_queue_io_stat(q))
357                 data->rq_flags |= RQF_IO_STAT;
358         rq->rq_flags = data->rq_flags;
359
360         if (!(data->rq_flags & RQF_ELV)) {
361                 rq->tag = tag;
362                 rq->internal_tag = BLK_MQ_NO_TAG;
363         } else {
364                 rq->tag = BLK_MQ_NO_TAG;
365                 rq->internal_tag = tag;
366         }
367         rq->timeout = 0;
368
369         if (blk_mq_need_time_stamp(rq))
370                 rq->start_time_ns = ktime_get_ns();
371         else
372                 rq->start_time_ns = 0;
373         rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375         rq->alloc_time_ns = alloc_time_ns;
376 #endif
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_ELV) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (!op_is_flush(data->cmd_flags) &&
399                     e->type->ops.prepare_request) {
400                         e->type->ops.prepare_request(rq);
401                         rq->rq_flags |= RQF_ELVPRIV;
402                 }
403         }
404
405         return rq;
406 }
407
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410                 u64 alloc_time_ns)
411 {
412         unsigned int tag, tag_offset;
413         struct blk_mq_tags *tags;
414         struct request *rq;
415         unsigned long tag_mask;
416         int i, nr = 0;
417
418         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419         if (unlikely(!tag_mask))
420                 return NULL;
421
422         tags = blk_mq_tags_from_data(data);
423         for (i = 0; tag_mask; i++) {
424                 if (!(tag_mask & (1UL << i)))
425                         continue;
426                 tag = tag_offset + i;
427                 prefetch(tags->static_rqs[tag]);
428                 tag_mask &= ~(1UL << i);
429                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430                 rq_list_add(data->cached_rq, rq);
431                 nr++;
432         }
433         /* caller already holds a reference, add for remainder */
434         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435         data->nr_tags -= nr;
436
437         return rq_list_pop(data->cached_rq);
438 }
439
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442         struct request_queue *q = data->q;
443         u64 alloc_time_ns = 0;
444         struct request *rq;
445         unsigned int tag;
446
447         /* alloc_time includes depth and tag waits */
448         if (blk_queue_rq_alloc_time(q))
449                 alloc_time_ns = ktime_get_ns();
450
451         if (data->cmd_flags & REQ_NOWAIT)
452                 data->flags |= BLK_MQ_REQ_NOWAIT;
453
454         if (q->elevator) {
455                 struct elevator_queue *e = q->elevator;
456
457                 data->rq_flags |= RQF_ELV;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list. Don't include reserved tags in the
462                  * limiting, as it isn't useful.
463                  */
464                 if (!op_is_flush(data->cmd_flags) &&
465                     !blk_op_is_passthrough(data->cmd_flags) &&
466                     e->type->ops.limit_depth &&
467                     !(data->flags & BLK_MQ_REQ_RESERVED))
468                         e->type->ops.limit_depth(data->cmd_flags, data);
469         }
470
471 retry:
472         data->ctx = blk_mq_get_ctx(q);
473         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474         if (!(data->rq_flags & RQF_ELV))
475                 blk_mq_tag_busy(data->hctx);
476
477         if (data->flags & BLK_MQ_REQ_RESERVED)
478                 data->rq_flags |= RQF_RESV;
479
480         /*
481          * Try batched alloc if we want more than 1 tag.
482          */
483         if (data->nr_tags > 1) {
484                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
485                 if (rq)
486                         return rq;
487                 data->nr_tags = 1;
488         }
489
490         /*
491          * Waiting allocations only fail because of an inactive hctx.  In that
492          * case just retry the hctx assignment and tag allocation as CPU hotplug
493          * should have migrated us to an online CPU by now.
494          */
495         tag = blk_mq_get_tag(data);
496         if (tag == BLK_MQ_NO_TAG) {
497                 if (data->flags & BLK_MQ_REQ_NOWAIT)
498                         return NULL;
499                 /*
500                  * Give up the CPU and sleep for a random short time to
501                  * ensure that thread using a realtime scheduling class
502                  * are migrated off the CPU, and thus off the hctx that
503                  * is going away.
504                  */
505                 msleep(3);
506                 goto retry;
507         }
508
509         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
510                                         alloc_time_ns);
511 }
512
513 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
514                                             struct blk_plug *plug,
515                                             blk_opf_t opf,
516                                             blk_mq_req_flags_t flags)
517 {
518         struct blk_mq_alloc_data data = {
519                 .q              = q,
520                 .flags          = flags,
521                 .cmd_flags      = opf,
522                 .nr_tags        = plug->nr_ios,
523                 .cached_rq      = &plug->cached_rq,
524         };
525         struct request *rq;
526
527         if (blk_queue_enter(q, flags))
528                 return NULL;
529
530         plug->nr_ios = 1;
531
532         rq = __blk_mq_alloc_requests(&data);
533         if (unlikely(!rq))
534                 blk_queue_exit(q);
535         return rq;
536 }
537
538 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
539                                                    blk_opf_t opf,
540                                                    blk_mq_req_flags_t flags)
541 {
542         struct blk_plug *plug = current->plug;
543         struct request *rq;
544
545         if (!plug)
546                 return NULL;
547         if (rq_list_empty(plug->cached_rq)) {
548                 if (plug->nr_ios == 1)
549                         return NULL;
550                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
551                 if (rq)
552                         goto got_it;
553                 return NULL;
554         }
555         rq = rq_list_peek(&plug->cached_rq);
556         if (!rq || rq->q != q)
557                 return NULL;
558
559         if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
560                 return NULL;
561         if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
562                 return NULL;
563
564         plug->cached_rq = rq_list_next(rq);
565 got_it:
566         rq->cmd_flags = opf;
567         INIT_LIST_HEAD(&rq->queuelist);
568         return rq;
569 }
570
571 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
572                 blk_mq_req_flags_t flags)
573 {
574         struct request *rq;
575
576         rq = blk_mq_alloc_cached_request(q, opf, flags);
577         if (!rq) {
578                 struct blk_mq_alloc_data data = {
579                         .q              = q,
580                         .flags          = flags,
581                         .cmd_flags      = opf,
582                         .nr_tags        = 1,
583                 };
584                 int ret;
585
586                 ret = blk_queue_enter(q, flags);
587                 if (ret)
588                         return ERR_PTR(ret);
589
590                 rq = __blk_mq_alloc_requests(&data);
591                 if (!rq)
592                         goto out_queue_exit;
593         }
594         rq->__data_len = 0;
595         rq->__sector = (sector_t) -1;
596         rq->bio = rq->biotail = NULL;
597         return rq;
598 out_queue_exit:
599         blk_queue_exit(q);
600         return ERR_PTR(-EWOULDBLOCK);
601 }
602 EXPORT_SYMBOL(blk_mq_alloc_request);
603
604 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
605         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
606 {
607         struct blk_mq_alloc_data data = {
608                 .q              = q,
609                 .flags          = flags,
610                 .cmd_flags      = opf,
611                 .nr_tags        = 1,
612         };
613         u64 alloc_time_ns = 0;
614         struct request *rq;
615         unsigned int cpu;
616         unsigned int tag;
617         int ret;
618
619         /* alloc_time includes depth and tag waits */
620         if (blk_queue_rq_alloc_time(q))
621                 alloc_time_ns = ktime_get_ns();
622
623         /*
624          * If the tag allocator sleeps we could get an allocation for a
625          * different hardware context.  No need to complicate the low level
626          * allocator for this for the rare use case of a command tied to
627          * a specific queue.
628          */
629         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
630             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
631                 return ERR_PTR(-EINVAL);
632
633         if (hctx_idx >= q->nr_hw_queues)
634                 return ERR_PTR(-EIO);
635
636         ret = blk_queue_enter(q, flags);
637         if (ret)
638                 return ERR_PTR(ret);
639
640         /*
641          * Check if the hardware context is actually mapped to anything.
642          * If not tell the caller that it should skip this queue.
643          */
644         ret = -EXDEV;
645         data.hctx = xa_load(&q->hctx_table, hctx_idx);
646         if (!blk_mq_hw_queue_mapped(data.hctx))
647                 goto out_queue_exit;
648         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
649         if (cpu >= nr_cpu_ids)
650                 goto out_queue_exit;
651         data.ctx = __blk_mq_get_ctx(q, cpu);
652
653         if (!q->elevator)
654                 blk_mq_tag_busy(data.hctx);
655         else
656                 data.rq_flags |= RQF_ELV;
657
658         if (flags & BLK_MQ_REQ_RESERVED)
659                 data.rq_flags |= RQF_RESV;
660
661         ret = -EWOULDBLOCK;
662         tag = blk_mq_get_tag(&data);
663         if (tag == BLK_MQ_NO_TAG)
664                 goto out_queue_exit;
665         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
666                                         alloc_time_ns);
667         rq->__data_len = 0;
668         rq->__sector = (sector_t) -1;
669         rq->bio = rq->biotail = NULL;
670         return rq;
671
672 out_queue_exit:
673         blk_queue_exit(q);
674         return ERR_PTR(ret);
675 }
676 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
677
678 static void __blk_mq_free_request(struct request *rq)
679 {
680         struct request_queue *q = rq->q;
681         struct blk_mq_ctx *ctx = rq->mq_ctx;
682         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
683         const int sched_tag = rq->internal_tag;
684
685         blk_crypto_free_request(rq);
686         blk_pm_mark_last_busy(rq);
687         rq->mq_hctx = NULL;
688         if (rq->tag != BLK_MQ_NO_TAG)
689                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
690         if (sched_tag != BLK_MQ_NO_TAG)
691                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
692         blk_mq_sched_restart(hctx);
693         blk_queue_exit(q);
694 }
695
696 void blk_mq_free_request(struct request *rq)
697 {
698         struct request_queue *q = rq->q;
699         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
700
701         if ((rq->rq_flags & RQF_ELVPRIV) &&
702             q->elevator->type->ops.finish_request)
703                 q->elevator->type->ops.finish_request(rq);
704
705         if (rq->rq_flags & RQF_MQ_INFLIGHT)
706                 __blk_mq_dec_active_requests(hctx);
707
708         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
709                 laptop_io_completion(q->disk->bdi);
710
711         rq_qos_done(q, rq);
712
713         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
714         if (req_ref_put_and_test(rq))
715                 __blk_mq_free_request(rq);
716 }
717 EXPORT_SYMBOL_GPL(blk_mq_free_request);
718
719 void blk_mq_free_plug_rqs(struct blk_plug *plug)
720 {
721         struct request *rq;
722
723         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
724                 blk_mq_free_request(rq);
725 }
726
727 void blk_dump_rq_flags(struct request *rq, char *msg)
728 {
729         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
730                 rq->q->disk ? rq->q->disk->disk_name : "?",
731                 (__force unsigned long long) rq->cmd_flags);
732
733         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
734                (unsigned long long)blk_rq_pos(rq),
735                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
736         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
737                rq->bio, rq->biotail, blk_rq_bytes(rq));
738 }
739 EXPORT_SYMBOL(blk_dump_rq_flags);
740
741 static void req_bio_endio(struct request *rq, struct bio *bio,
742                           unsigned int nbytes, blk_status_t error)
743 {
744         if (unlikely(error)) {
745                 bio->bi_status = error;
746         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
747                 /*
748                  * Partial zone append completions cannot be supported as the
749                  * BIO fragments may end up not being written sequentially.
750                  */
751                 if (bio->bi_iter.bi_size != nbytes)
752                         bio->bi_status = BLK_STS_IOERR;
753                 else
754                         bio->bi_iter.bi_sector = rq->__sector;
755         }
756
757         bio_advance(bio, nbytes);
758
759         if (unlikely(rq->rq_flags & RQF_QUIET))
760                 bio_set_flag(bio, BIO_QUIET);
761         /* don't actually finish bio if it's part of flush sequence */
762         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
763                 bio_endio(bio);
764 }
765
766 static void blk_account_io_completion(struct request *req, unsigned int bytes)
767 {
768         if (req->part && blk_do_io_stat(req)) {
769                 const int sgrp = op_stat_group(req_op(req));
770
771                 part_stat_lock();
772                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
773                 part_stat_unlock();
774         }
775 }
776
777 static void blk_print_req_error(struct request *req, blk_status_t status)
778 {
779         printk_ratelimited(KERN_ERR
780                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
781                 "phys_seg %u prio class %u\n",
782                 blk_status_to_str(status),
783                 req->q->disk ? req->q->disk->disk_name : "?",
784                 blk_rq_pos(req), (__force u32)req_op(req),
785                 blk_op_str(req_op(req)),
786                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
787                 req->nr_phys_segments,
788                 IOPRIO_PRIO_CLASS(req->ioprio));
789 }
790
791 /*
792  * Fully end IO on a request. Does not support partial completions, or
793  * errors.
794  */
795 static void blk_complete_request(struct request *req)
796 {
797         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
798         int total_bytes = blk_rq_bytes(req);
799         struct bio *bio = req->bio;
800
801         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
802
803         if (!bio)
804                 return;
805
806 #ifdef CONFIG_BLK_DEV_INTEGRITY
807         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
808                 req->q->integrity.profile->complete_fn(req, total_bytes);
809 #endif
810
811         blk_account_io_completion(req, total_bytes);
812
813         do {
814                 struct bio *next = bio->bi_next;
815
816                 /* Completion has already been traced */
817                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
818
819                 if (req_op(req) == REQ_OP_ZONE_APPEND)
820                         bio->bi_iter.bi_sector = req->__sector;
821
822                 if (!is_flush)
823                         bio_endio(bio);
824                 bio = next;
825         } while (bio);
826
827         /*
828          * Reset counters so that the request stacking driver
829          * can find how many bytes remain in the request
830          * later.
831          */
832         if (!req->end_io) {
833                 req->bio = NULL;
834                 req->__data_len = 0;
835         }
836 }
837
838 /**
839  * blk_update_request - Complete multiple bytes without completing the request
840  * @req:      the request being processed
841  * @error:    block status code
842  * @nr_bytes: number of bytes to complete for @req
843  *
844  * Description:
845  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
846  *     the request structure even if @req doesn't have leftover.
847  *     If @req has leftover, sets it up for the next range of segments.
848  *
849  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
850  *     %false return from this function.
851  *
852  * Note:
853  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
854  *      except in the consistency check at the end of this function.
855  *
856  * Return:
857  *     %false - this request doesn't have any more data
858  *     %true  - this request has more data
859  **/
860 bool blk_update_request(struct request *req, blk_status_t error,
861                 unsigned int nr_bytes)
862 {
863         int total_bytes;
864
865         trace_block_rq_complete(req, error, nr_bytes);
866
867         if (!req->bio)
868                 return false;
869
870 #ifdef CONFIG_BLK_DEV_INTEGRITY
871         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
872             error == BLK_STS_OK)
873                 req->q->integrity.profile->complete_fn(req, nr_bytes);
874 #endif
875
876         if (unlikely(error && !blk_rq_is_passthrough(req) &&
877                      !(req->rq_flags & RQF_QUIET)) &&
878                      !test_bit(GD_DEAD, &req->q->disk->state)) {
879                 blk_print_req_error(req, error);
880                 trace_block_rq_error(req, error, nr_bytes);
881         }
882
883         blk_account_io_completion(req, nr_bytes);
884
885         total_bytes = 0;
886         while (req->bio) {
887                 struct bio *bio = req->bio;
888                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
889
890                 if (bio_bytes == bio->bi_iter.bi_size)
891                         req->bio = bio->bi_next;
892
893                 /* Completion has already been traced */
894                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
895                 req_bio_endio(req, bio, bio_bytes, error);
896
897                 total_bytes += bio_bytes;
898                 nr_bytes -= bio_bytes;
899
900                 if (!nr_bytes)
901                         break;
902         }
903
904         /*
905          * completely done
906          */
907         if (!req->bio) {
908                 /*
909                  * Reset counters so that the request stacking driver
910                  * can find how many bytes remain in the request
911                  * later.
912                  */
913                 req->__data_len = 0;
914                 return false;
915         }
916
917         req->__data_len -= total_bytes;
918
919         /* update sector only for requests with clear definition of sector */
920         if (!blk_rq_is_passthrough(req))
921                 req->__sector += total_bytes >> 9;
922
923         /* mixed attributes always follow the first bio */
924         if (req->rq_flags & RQF_MIXED_MERGE) {
925                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
926                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
927         }
928
929         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
930                 /*
931                  * If total number of sectors is less than the first segment
932                  * size, something has gone terribly wrong.
933                  */
934                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
935                         blk_dump_rq_flags(req, "request botched");
936                         req->__data_len = blk_rq_cur_bytes(req);
937                 }
938
939                 /* recalculate the number of segments */
940                 req->nr_phys_segments = blk_recalc_rq_segments(req);
941         }
942
943         return true;
944 }
945 EXPORT_SYMBOL_GPL(blk_update_request);
946
947 static void __blk_account_io_done(struct request *req, u64 now)
948 {
949         const int sgrp = op_stat_group(req_op(req));
950
951         part_stat_lock();
952         update_io_ticks(req->part, jiffies, true);
953         part_stat_inc(req->part, ios[sgrp]);
954         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
955         part_stat_unlock();
956 }
957
958 static inline void blk_account_io_done(struct request *req, u64 now)
959 {
960         /*
961          * Account IO completion.  flush_rq isn't accounted as a
962          * normal IO on queueing nor completion.  Accounting the
963          * containing request is enough.
964          */
965         if (blk_do_io_stat(req) && req->part &&
966             !(req->rq_flags & RQF_FLUSH_SEQ))
967                 __blk_account_io_done(req, now);
968 }
969
970 static void __blk_account_io_start(struct request *rq)
971 {
972         /*
973          * All non-passthrough requests are created from a bio with one
974          * exception: when a flush command that is part of a flush sequence
975          * generated by the state machine in blk-flush.c is cloned onto the
976          * lower device by dm-multipath we can get here without a bio.
977          */
978         if (rq->bio)
979                 rq->part = rq->bio->bi_bdev;
980         else
981                 rq->part = rq->q->disk->part0;
982
983         part_stat_lock();
984         update_io_ticks(rq->part, jiffies, false);
985         part_stat_unlock();
986 }
987
988 static inline void blk_account_io_start(struct request *req)
989 {
990         if (blk_do_io_stat(req))
991                 __blk_account_io_start(req);
992 }
993
994 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
995 {
996         if (rq->rq_flags & RQF_STATS) {
997                 blk_mq_poll_stats_start(rq->q);
998                 blk_stat_add(rq, now);
999         }
1000
1001         blk_mq_sched_completed_request(rq, now);
1002         blk_account_io_done(rq, now);
1003 }
1004
1005 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1006 {
1007         if (blk_mq_need_time_stamp(rq))
1008                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1009
1010         if (rq->end_io) {
1011                 rq_qos_done(rq->q, rq);
1012                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1013                         blk_mq_free_request(rq);
1014         } else {
1015                 blk_mq_free_request(rq);
1016         }
1017 }
1018 EXPORT_SYMBOL(__blk_mq_end_request);
1019
1020 void blk_mq_end_request(struct request *rq, blk_status_t error)
1021 {
1022         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1023                 BUG();
1024         __blk_mq_end_request(rq, error);
1025 }
1026 EXPORT_SYMBOL(blk_mq_end_request);
1027
1028 #define TAG_COMP_BATCH          32
1029
1030 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1031                                           int *tag_array, int nr_tags)
1032 {
1033         struct request_queue *q = hctx->queue;
1034
1035         /*
1036          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1037          * update hctx->nr_active in batch
1038          */
1039         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1040                 __blk_mq_sub_active_requests(hctx, nr_tags);
1041
1042         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1043         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1044 }
1045
1046 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1047 {
1048         int tags[TAG_COMP_BATCH], nr_tags = 0;
1049         struct blk_mq_hw_ctx *cur_hctx = NULL;
1050         struct request *rq;
1051         u64 now = 0;
1052
1053         if (iob->need_ts)
1054                 now = ktime_get_ns();
1055
1056         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1057                 prefetch(rq->bio);
1058                 prefetch(rq->rq_next);
1059
1060                 blk_complete_request(rq);
1061                 if (iob->need_ts)
1062                         __blk_mq_end_request_acct(rq, now);
1063
1064                 rq_qos_done(rq->q, rq);
1065
1066                 /*
1067                  * If end_io handler returns NONE, then it still has
1068                  * ownership of the request.
1069                  */
1070                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1071                         continue;
1072
1073                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1074                 if (!req_ref_put_and_test(rq))
1075                         continue;
1076
1077                 blk_crypto_free_request(rq);
1078                 blk_pm_mark_last_busy(rq);
1079
1080                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1081                         if (cur_hctx)
1082                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1083                         nr_tags = 0;
1084                         cur_hctx = rq->mq_hctx;
1085                 }
1086                 tags[nr_tags++] = rq->tag;
1087         }
1088
1089         if (nr_tags)
1090                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1091 }
1092 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1093
1094 static void blk_complete_reqs(struct llist_head *list)
1095 {
1096         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1097         struct request *rq, *next;
1098
1099         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1100                 rq->q->mq_ops->complete(rq);
1101 }
1102
1103 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1104 {
1105         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1106 }
1107
1108 static int blk_softirq_cpu_dead(unsigned int cpu)
1109 {
1110         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1111         return 0;
1112 }
1113
1114 static void __blk_mq_complete_request_remote(void *data)
1115 {
1116         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1117 }
1118
1119 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1120 {
1121         int cpu = raw_smp_processor_id();
1122
1123         if (!IS_ENABLED(CONFIG_SMP) ||
1124             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1125                 return false;
1126         /*
1127          * With force threaded interrupts enabled, raising softirq from an SMP
1128          * function call will always result in waking the ksoftirqd thread.
1129          * This is probably worse than completing the request on a different
1130          * cache domain.
1131          */
1132         if (force_irqthreads())
1133                 return false;
1134
1135         /* same CPU or cache domain?  Complete locally */
1136         if (cpu == rq->mq_ctx->cpu ||
1137             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1138              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1139                 return false;
1140
1141         /* don't try to IPI to an offline CPU */
1142         return cpu_online(rq->mq_ctx->cpu);
1143 }
1144
1145 static void blk_mq_complete_send_ipi(struct request *rq)
1146 {
1147         struct llist_head *list;
1148         unsigned int cpu;
1149
1150         cpu = rq->mq_ctx->cpu;
1151         list = &per_cpu(blk_cpu_done, cpu);
1152         if (llist_add(&rq->ipi_list, list)) {
1153                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1154                 smp_call_function_single_async(cpu, &rq->csd);
1155         }
1156 }
1157
1158 static void blk_mq_raise_softirq(struct request *rq)
1159 {
1160         struct llist_head *list;
1161
1162         preempt_disable();
1163         list = this_cpu_ptr(&blk_cpu_done);
1164         if (llist_add(&rq->ipi_list, list))
1165                 raise_softirq(BLOCK_SOFTIRQ);
1166         preempt_enable();
1167 }
1168
1169 bool blk_mq_complete_request_remote(struct request *rq)
1170 {
1171         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1172
1173         /*
1174          * For request which hctx has only one ctx mapping,
1175          * or a polled request, always complete locally,
1176          * it's pointless to redirect the completion.
1177          */
1178         if (rq->mq_hctx->nr_ctx == 1 ||
1179                 rq->cmd_flags & REQ_POLLED)
1180                 return false;
1181
1182         if (blk_mq_complete_need_ipi(rq)) {
1183                 blk_mq_complete_send_ipi(rq);
1184                 return true;
1185         }
1186
1187         if (rq->q->nr_hw_queues == 1) {
1188                 blk_mq_raise_softirq(rq);
1189                 return true;
1190         }
1191         return false;
1192 }
1193 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1194
1195 /**
1196  * blk_mq_complete_request - end I/O on a request
1197  * @rq:         the request being processed
1198  *
1199  * Description:
1200  *      Complete a request by scheduling the ->complete_rq operation.
1201  **/
1202 void blk_mq_complete_request(struct request *rq)
1203 {
1204         if (!blk_mq_complete_request_remote(rq))
1205                 rq->q->mq_ops->complete(rq);
1206 }
1207 EXPORT_SYMBOL(blk_mq_complete_request);
1208
1209 /**
1210  * blk_mq_start_request - Start processing a request
1211  * @rq: Pointer to request to be started
1212  *
1213  * Function used by device drivers to notify the block layer that a request
1214  * is going to be processed now, so blk layer can do proper initializations
1215  * such as starting the timeout timer.
1216  */
1217 void blk_mq_start_request(struct request *rq)
1218 {
1219         struct request_queue *q = rq->q;
1220
1221         trace_block_rq_issue(rq);
1222
1223         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1224                 rq->io_start_time_ns = ktime_get_ns();
1225                 rq->stats_sectors = blk_rq_sectors(rq);
1226                 rq->rq_flags |= RQF_STATS;
1227                 rq_qos_issue(q, rq);
1228         }
1229
1230         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1231
1232         blk_add_timer(rq);
1233         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1234
1235 #ifdef CONFIG_BLK_DEV_INTEGRITY
1236         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1237                 q->integrity.profile->prepare_fn(rq);
1238 #endif
1239         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1240                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1241 }
1242 EXPORT_SYMBOL(blk_mq_start_request);
1243
1244 /*
1245  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1246  * queues. This is important for md arrays to benefit from merging
1247  * requests.
1248  */
1249 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1250 {
1251         if (plug->multiple_queues)
1252                 return BLK_MAX_REQUEST_COUNT * 2;
1253         return BLK_MAX_REQUEST_COUNT;
1254 }
1255
1256 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1257 {
1258         struct request *last = rq_list_peek(&plug->mq_list);
1259
1260         if (!plug->rq_count) {
1261                 trace_block_plug(rq->q);
1262         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1263                    (!blk_queue_nomerges(rq->q) &&
1264                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1265                 blk_mq_flush_plug_list(plug, false);
1266                 last = NULL;
1267                 trace_block_plug(rq->q);
1268         }
1269
1270         if (!plug->multiple_queues && last && last->q != rq->q)
1271                 plug->multiple_queues = true;
1272         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1273                 plug->has_elevator = true;
1274         rq->rq_next = NULL;
1275         rq_list_add(&plug->mq_list, rq);
1276         plug->rq_count++;
1277 }
1278
1279 /**
1280  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1281  * @rq:         request to insert
1282  * @at_head:    insert request at head or tail of queue
1283  *
1284  * Description:
1285  *    Insert a fully prepared request at the back of the I/O scheduler queue
1286  *    for execution.  Don't wait for completion.
1287  *
1288  * Note:
1289  *    This function will invoke @done directly if the queue is dead.
1290  */
1291 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1292 {
1293         WARN_ON(irqs_disabled());
1294         WARN_ON(!blk_rq_is_passthrough(rq));
1295
1296         blk_account_io_start(rq);
1297
1298         /*
1299          * As plugging can be enabled for passthrough requests on a zoned
1300          * device, directly accessing the plug instead of using blk_mq_plug()
1301          * should not have any consequences.
1302          */
1303         if (current->plug)
1304                 blk_add_rq_to_plug(current->plug, rq);
1305         else
1306                 blk_mq_sched_insert_request(rq, at_head, true, false);
1307 }
1308 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1309
1310 struct blk_rq_wait {
1311         struct completion done;
1312         blk_status_t ret;
1313 };
1314
1315 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1316 {
1317         struct blk_rq_wait *wait = rq->end_io_data;
1318
1319         wait->ret = ret;
1320         complete(&wait->done);
1321         return RQ_END_IO_NONE;
1322 }
1323
1324 bool blk_rq_is_poll(struct request *rq)
1325 {
1326         if (!rq->mq_hctx)
1327                 return false;
1328         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1329                 return false;
1330         if (WARN_ON_ONCE(!rq->bio))
1331                 return false;
1332         return true;
1333 }
1334 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1335
1336 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1337 {
1338         do {
1339                 bio_poll(rq->bio, NULL, 0);
1340                 cond_resched();
1341         } while (!completion_done(wait));
1342 }
1343
1344 /**
1345  * blk_execute_rq - insert a request into queue for execution
1346  * @rq:         request to insert
1347  * @at_head:    insert request at head or tail of queue
1348  *
1349  * Description:
1350  *    Insert a fully prepared request at the back of the I/O scheduler queue
1351  *    for execution and wait for completion.
1352  * Return: The blk_status_t result provided to blk_mq_end_request().
1353  */
1354 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1355 {
1356         struct blk_rq_wait wait = {
1357                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1358         };
1359
1360         WARN_ON(irqs_disabled());
1361         WARN_ON(!blk_rq_is_passthrough(rq));
1362
1363         rq->end_io_data = &wait;
1364         rq->end_io = blk_end_sync_rq;
1365
1366         blk_account_io_start(rq);
1367         blk_mq_sched_insert_request(rq, at_head, true, false);
1368
1369         if (blk_rq_is_poll(rq)) {
1370                 blk_rq_poll_completion(rq, &wait.done);
1371         } else {
1372                 /*
1373                  * Prevent hang_check timer from firing at us during very long
1374                  * I/O
1375                  */
1376                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1377
1378                 if (hang_check)
1379                         while (!wait_for_completion_io_timeout(&wait.done,
1380                                         hang_check * (HZ/2)))
1381                                 ;
1382                 else
1383                         wait_for_completion_io(&wait.done);
1384         }
1385
1386         return wait.ret;
1387 }
1388 EXPORT_SYMBOL(blk_execute_rq);
1389
1390 static void __blk_mq_requeue_request(struct request *rq)
1391 {
1392         struct request_queue *q = rq->q;
1393
1394         blk_mq_put_driver_tag(rq);
1395
1396         trace_block_rq_requeue(rq);
1397         rq_qos_requeue(q, rq);
1398
1399         if (blk_mq_request_started(rq)) {
1400                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1401                 rq->rq_flags &= ~RQF_TIMED_OUT;
1402         }
1403 }
1404
1405 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1406 {
1407         __blk_mq_requeue_request(rq);
1408
1409         /* this request will be re-inserted to io scheduler queue */
1410         blk_mq_sched_requeue_request(rq);
1411
1412         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1413 }
1414 EXPORT_SYMBOL(blk_mq_requeue_request);
1415
1416 static void blk_mq_requeue_work(struct work_struct *work)
1417 {
1418         struct request_queue *q =
1419                 container_of(work, struct request_queue, requeue_work.work);
1420         LIST_HEAD(rq_list);
1421         struct request *rq, *next;
1422
1423         spin_lock_irq(&q->requeue_lock);
1424         list_splice_init(&q->requeue_list, &rq_list);
1425         spin_unlock_irq(&q->requeue_lock);
1426
1427         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1428                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1429                         continue;
1430
1431                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1432                 list_del_init(&rq->queuelist);
1433                 /*
1434                  * If RQF_DONTPREP, rq has contained some driver specific
1435                  * data, so insert it to hctx dispatch list to avoid any
1436                  * merge.
1437                  */
1438                 if (rq->rq_flags & RQF_DONTPREP)
1439                         blk_mq_request_bypass_insert(rq, false, false);
1440                 else
1441                         blk_mq_sched_insert_request(rq, true, false, false);
1442         }
1443
1444         while (!list_empty(&rq_list)) {
1445                 rq = list_entry(rq_list.next, struct request, queuelist);
1446                 list_del_init(&rq->queuelist);
1447                 blk_mq_sched_insert_request(rq, false, false, false);
1448         }
1449
1450         blk_mq_run_hw_queues(q, false);
1451 }
1452
1453 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1454                                 bool kick_requeue_list)
1455 {
1456         struct request_queue *q = rq->q;
1457         unsigned long flags;
1458
1459         /*
1460          * We abuse this flag that is otherwise used by the I/O scheduler to
1461          * request head insertion from the workqueue.
1462          */
1463         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1464
1465         spin_lock_irqsave(&q->requeue_lock, flags);
1466         if (at_head) {
1467                 rq->rq_flags |= RQF_SOFTBARRIER;
1468                 list_add(&rq->queuelist, &q->requeue_list);
1469         } else {
1470                 list_add_tail(&rq->queuelist, &q->requeue_list);
1471         }
1472         spin_unlock_irqrestore(&q->requeue_lock, flags);
1473
1474         if (kick_requeue_list)
1475                 blk_mq_kick_requeue_list(q);
1476 }
1477
1478 void blk_mq_kick_requeue_list(struct request_queue *q)
1479 {
1480         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1481 }
1482 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1483
1484 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1485                                     unsigned long msecs)
1486 {
1487         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1488                                     msecs_to_jiffies(msecs));
1489 }
1490 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1491
1492 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1493 {
1494         /*
1495          * If we find a request that isn't idle we know the queue is busy
1496          * as it's checked in the iter.
1497          * Return false to stop the iteration.
1498          */
1499         if (blk_mq_request_started(rq)) {
1500                 bool *busy = priv;
1501
1502                 *busy = true;
1503                 return false;
1504         }
1505
1506         return true;
1507 }
1508
1509 bool blk_mq_queue_inflight(struct request_queue *q)
1510 {
1511         bool busy = false;
1512
1513         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1514         return busy;
1515 }
1516 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1517
1518 static void blk_mq_rq_timed_out(struct request *req)
1519 {
1520         req->rq_flags |= RQF_TIMED_OUT;
1521         if (req->q->mq_ops->timeout) {
1522                 enum blk_eh_timer_return ret;
1523
1524                 ret = req->q->mq_ops->timeout(req);
1525                 if (ret == BLK_EH_DONE)
1526                         return;
1527                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1528         }
1529
1530         blk_add_timer(req);
1531 }
1532
1533 struct blk_expired_data {
1534         bool has_timedout_rq;
1535         unsigned long next;
1536         unsigned long timeout_start;
1537 };
1538
1539 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1540 {
1541         unsigned long deadline;
1542
1543         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1544                 return false;
1545         if (rq->rq_flags & RQF_TIMED_OUT)
1546                 return false;
1547
1548         deadline = READ_ONCE(rq->deadline);
1549         if (time_after_eq(expired->timeout_start, deadline))
1550                 return true;
1551
1552         if (expired->next == 0)
1553                 expired->next = deadline;
1554         else if (time_after(expired->next, deadline))
1555                 expired->next = deadline;
1556         return false;
1557 }
1558
1559 void blk_mq_put_rq_ref(struct request *rq)
1560 {
1561         if (is_flush_rq(rq)) {
1562                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1563                         blk_mq_free_request(rq);
1564         } else if (req_ref_put_and_test(rq)) {
1565                 __blk_mq_free_request(rq);
1566         }
1567 }
1568
1569 static bool blk_mq_check_expired(struct request *rq, void *priv)
1570 {
1571         struct blk_expired_data *expired = priv;
1572
1573         /*
1574          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1575          * be reallocated underneath the timeout handler's processing, then
1576          * the expire check is reliable. If the request is not expired, then
1577          * it was completed and reallocated as a new request after returning
1578          * from blk_mq_check_expired().
1579          */
1580         if (blk_mq_req_expired(rq, expired)) {
1581                 expired->has_timedout_rq = true;
1582                 return false;
1583         }
1584         return true;
1585 }
1586
1587 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1588 {
1589         struct blk_expired_data *expired = priv;
1590
1591         if (blk_mq_req_expired(rq, expired))
1592                 blk_mq_rq_timed_out(rq);
1593         return true;
1594 }
1595
1596 static void blk_mq_timeout_work(struct work_struct *work)
1597 {
1598         struct request_queue *q =
1599                 container_of(work, struct request_queue, timeout_work);
1600         struct blk_expired_data expired = {
1601                 .timeout_start = jiffies,
1602         };
1603         struct blk_mq_hw_ctx *hctx;
1604         unsigned long i;
1605
1606         /* A deadlock might occur if a request is stuck requiring a
1607          * timeout at the same time a queue freeze is waiting
1608          * completion, since the timeout code would not be able to
1609          * acquire the queue reference here.
1610          *
1611          * That's why we don't use blk_queue_enter here; instead, we use
1612          * percpu_ref_tryget directly, because we need to be able to
1613          * obtain a reference even in the short window between the queue
1614          * starting to freeze, by dropping the first reference in
1615          * blk_freeze_queue_start, and the moment the last request is
1616          * consumed, marked by the instant q_usage_counter reaches
1617          * zero.
1618          */
1619         if (!percpu_ref_tryget(&q->q_usage_counter))
1620                 return;
1621
1622         /* check if there is any timed-out request */
1623         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1624         if (expired.has_timedout_rq) {
1625                 /*
1626                  * Before walking tags, we must ensure any submit started
1627                  * before the current time has finished. Since the submit
1628                  * uses srcu or rcu, wait for a synchronization point to
1629                  * ensure all running submits have finished
1630                  */
1631                 blk_mq_wait_quiesce_done(q);
1632
1633                 expired.next = 0;
1634                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1635         }
1636
1637         if (expired.next != 0) {
1638                 mod_timer(&q->timeout, expired.next);
1639         } else {
1640                 /*
1641                  * Request timeouts are handled as a forward rolling timer. If
1642                  * we end up here it means that no requests are pending and
1643                  * also that no request has been pending for a while. Mark
1644                  * each hctx as idle.
1645                  */
1646                 queue_for_each_hw_ctx(q, hctx, i) {
1647                         /* the hctx may be unmapped, so check it here */
1648                         if (blk_mq_hw_queue_mapped(hctx))
1649                                 blk_mq_tag_idle(hctx);
1650                 }
1651         }
1652         blk_queue_exit(q);
1653 }
1654
1655 struct flush_busy_ctx_data {
1656         struct blk_mq_hw_ctx *hctx;
1657         struct list_head *list;
1658 };
1659
1660 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1661 {
1662         struct flush_busy_ctx_data *flush_data = data;
1663         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1664         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1665         enum hctx_type type = hctx->type;
1666
1667         spin_lock(&ctx->lock);
1668         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1669         sbitmap_clear_bit(sb, bitnr);
1670         spin_unlock(&ctx->lock);
1671         return true;
1672 }
1673
1674 /*
1675  * Process software queues that have been marked busy, splicing them
1676  * to the for-dispatch
1677  */
1678 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1679 {
1680         struct flush_busy_ctx_data data = {
1681                 .hctx = hctx,
1682                 .list = list,
1683         };
1684
1685         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1686 }
1687 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1688
1689 struct dispatch_rq_data {
1690         struct blk_mq_hw_ctx *hctx;
1691         struct request *rq;
1692 };
1693
1694 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1695                 void *data)
1696 {
1697         struct dispatch_rq_data *dispatch_data = data;
1698         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1699         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1700         enum hctx_type type = hctx->type;
1701
1702         spin_lock(&ctx->lock);
1703         if (!list_empty(&ctx->rq_lists[type])) {
1704                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1705                 list_del_init(&dispatch_data->rq->queuelist);
1706                 if (list_empty(&ctx->rq_lists[type]))
1707                         sbitmap_clear_bit(sb, bitnr);
1708         }
1709         spin_unlock(&ctx->lock);
1710
1711         return !dispatch_data->rq;
1712 }
1713
1714 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1715                                         struct blk_mq_ctx *start)
1716 {
1717         unsigned off = start ? start->index_hw[hctx->type] : 0;
1718         struct dispatch_rq_data data = {
1719                 .hctx = hctx,
1720                 .rq   = NULL,
1721         };
1722
1723         __sbitmap_for_each_set(&hctx->ctx_map, off,
1724                                dispatch_rq_from_ctx, &data);
1725
1726         return data.rq;
1727 }
1728
1729 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1730 {
1731         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1732         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1733         int tag;
1734
1735         blk_mq_tag_busy(rq->mq_hctx);
1736
1737         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1738                 bt = &rq->mq_hctx->tags->breserved_tags;
1739                 tag_offset = 0;
1740         } else {
1741                 if (!hctx_may_queue(rq->mq_hctx, bt))
1742                         return false;
1743         }
1744
1745         tag = __sbitmap_queue_get(bt);
1746         if (tag == BLK_MQ_NO_TAG)
1747                 return false;
1748
1749         rq->tag = tag + tag_offset;
1750         return true;
1751 }
1752
1753 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1754 {
1755         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1756                 return false;
1757
1758         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1759                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1760                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1761                 __blk_mq_inc_active_requests(hctx);
1762         }
1763         hctx->tags->rqs[rq->tag] = rq;
1764         return true;
1765 }
1766
1767 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1768                                 int flags, void *key)
1769 {
1770         struct blk_mq_hw_ctx *hctx;
1771
1772         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1773
1774         spin_lock(&hctx->dispatch_wait_lock);
1775         if (!list_empty(&wait->entry)) {
1776                 struct sbitmap_queue *sbq;
1777
1778                 list_del_init(&wait->entry);
1779                 sbq = &hctx->tags->bitmap_tags;
1780                 atomic_dec(&sbq->ws_active);
1781         }
1782         spin_unlock(&hctx->dispatch_wait_lock);
1783
1784         blk_mq_run_hw_queue(hctx, true);
1785         return 1;
1786 }
1787
1788 /*
1789  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1790  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1791  * restart. For both cases, take care to check the condition again after
1792  * marking us as waiting.
1793  */
1794 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1795                                  struct request *rq)
1796 {
1797         struct sbitmap_queue *sbq;
1798         struct wait_queue_head *wq;
1799         wait_queue_entry_t *wait;
1800         bool ret;
1801
1802         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1803             !(blk_mq_is_shared_tags(hctx->flags))) {
1804                 blk_mq_sched_mark_restart_hctx(hctx);
1805
1806                 /*
1807                  * It's possible that a tag was freed in the window between the
1808                  * allocation failure and adding the hardware queue to the wait
1809                  * queue.
1810                  *
1811                  * Don't clear RESTART here, someone else could have set it.
1812                  * At most this will cost an extra queue run.
1813                  */
1814                 return blk_mq_get_driver_tag(rq);
1815         }
1816
1817         wait = &hctx->dispatch_wait;
1818         if (!list_empty_careful(&wait->entry))
1819                 return false;
1820
1821         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1822                 sbq = &hctx->tags->breserved_tags;
1823         else
1824                 sbq = &hctx->tags->bitmap_tags;
1825         wq = &bt_wait_ptr(sbq, hctx)->wait;
1826
1827         spin_lock_irq(&wq->lock);
1828         spin_lock(&hctx->dispatch_wait_lock);
1829         if (!list_empty(&wait->entry)) {
1830                 spin_unlock(&hctx->dispatch_wait_lock);
1831                 spin_unlock_irq(&wq->lock);
1832                 return false;
1833         }
1834
1835         atomic_inc(&sbq->ws_active);
1836         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1837         __add_wait_queue(wq, wait);
1838
1839         /*
1840          * It's possible that a tag was freed in the window between the
1841          * allocation failure and adding the hardware queue to the wait
1842          * queue.
1843          */
1844         ret = blk_mq_get_driver_tag(rq);
1845         if (!ret) {
1846                 spin_unlock(&hctx->dispatch_wait_lock);
1847                 spin_unlock_irq(&wq->lock);
1848                 return false;
1849         }
1850
1851         /*
1852          * We got a tag, remove ourselves from the wait queue to ensure
1853          * someone else gets the wakeup.
1854          */
1855         list_del_init(&wait->entry);
1856         atomic_dec(&sbq->ws_active);
1857         spin_unlock(&hctx->dispatch_wait_lock);
1858         spin_unlock_irq(&wq->lock);
1859
1860         return true;
1861 }
1862
1863 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1864 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1865 /*
1866  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1867  * - EWMA is one simple way to compute running average value
1868  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1869  * - take 4 as factor for avoiding to get too small(0) result, and this
1870  *   factor doesn't matter because EWMA decreases exponentially
1871  */
1872 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1873 {
1874         unsigned int ewma;
1875
1876         ewma = hctx->dispatch_busy;
1877
1878         if (!ewma && !busy)
1879                 return;
1880
1881         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1882         if (busy)
1883                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1884         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1885
1886         hctx->dispatch_busy = ewma;
1887 }
1888
1889 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1890
1891 static void blk_mq_handle_dev_resource(struct request *rq,
1892                                        struct list_head *list)
1893 {
1894         struct request *next =
1895                 list_first_entry_or_null(list, struct request, queuelist);
1896
1897         /*
1898          * If an I/O scheduler has been configured and we got a driver tag for
1899          * the next request already, free it.
1900          */
1901         if (next)
1902                 blk_mq_put_driver_tag(next);
1903
1904         list_add(&rq->queuelist, list);
1905         __blk_mq_requeue_request(rq);
1906 }
1907
1908 static void blk_mq_handle_zone_resource(struct request *rq,
1909                                         struct list_head *zone_list)
1910 {
1911         /*
1912          * If we end up here it is because we cannot dispatch a request to a
1913          * specific zone due to LLD level zone-write locking or other zone
1914          * related resource not being available. In this case, set the request
1915          * aside in zone_list for retrying it later.
1916          */
1917         list_add(&rq->queuelist, zone_list);
1918         __blk_mq_requeue_request(rq);
1919 }
1920
1921 enum prep_dispatch {
1922         PREP_DISPATCH_OK,
1923         PREP_DISPATCH_NO_TAG,
1924         PREP_DISPATCH_NO_BUDGET,
1925 };
1926
1927 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1928                                                   bool need_budget)
1929 {
1930         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1931         int budget_token = -1;
1932
1933         if (need_budget) {
1934                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1935                 if (budget_token < 0) {
1936                         blk_mq_put_driver_tag(rq);
1937                         return PREP_DISPATCH_NO_BUDGET;
1938                 }
1939                 blk_mq_set_rq_budget_token(rq, budget_token);
1940         }
1941
1942         if (!blk_mq_get_driver_tag(rq)) {
1943                 /*
1944                  * The initial allocation attempt failed, so we need to
1945                  * rerun the hardware queue when a tag is freed. The
1946                  * waitqueue takes care of that. If the queue is run
1947                  * before we add this entry back on the dispatch list,
1948                  * we'll re-run it below.
1949                  */
1950                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1951                         /*
1952                          * All budgets not got from this function will be put
1953                          * together during handling partial dispatch
1954                          */
1955                         if (need_budget)
1956                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1957                         return PREP_DISPATCH_NO_TAG;
1958                 }
1959         }
1960
1961         return PREP_DISPATCH_OK;
1962 }
1963
1964 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1965 static void blk_mq_release_budgets(struct request_queue *q,
1966                 struct list_head *list)
1967 {
1968         struct request *rq;
1969
1970         list_for_each_entry(rq, list, queuelist) {
1971                 int budget_token = blk_mq_get_rq_budget_token(rq);
1972
1973                 if (budget_token >= 0)
1974                         blk_mq_put_dispatch_budget(q, budget_token);
1975         }
1976 }
1977
1978 /*
1979  * Returns true if we did some work AND can potentially do more.
1980  */
1981 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1982                              unsigned int nr_budgets)
1983 {
1984         enum prep_dispatch prep;
1985         struct request_queue *q = hctx->queue;
1986         struct request *rq, *nxt;
1987         int errors, queued;
1988         blk_status_t ret = BLK_STS_OK;
1989         LIST_HEAD(zone_list);
1990         bool needs_resource = false;
1991
1992         if (list_empty(list))
1993                 return false;
1994
1995         /*
1996          * Now process all the entries, sending them to the driver.
1997          */
1998         errors = queued = 0;
1999         do {
2000                 struct blk_mq_queue_data bd;
2001
2002                 rq = list_first_entry(list, struct request, queuelist);
2003
2004                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2005                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2006                 if (prep != PREP_DISPATCH_OK)
2007                         break;
2008
2009                 list_del_init(&rq->queuelist);
2010
2011                 bd.rq = rq;
2012
2013                 /*
2014                  * Flag last if we have no more requests, or if we have more
2015                  * but can't assign a driver tag to it.
2016                  */
2017                 if (list_empty(list))
2018                         bd.last = true;
2019                 else {
2020                         nxt = list_first_entry(list, struct request, queuelist);
2021                         bd.last = !blk_mq_get_driver_tag(nxt);
2022                 }
2023
2024                 /*
2025                  * once the request is queued to lld, no need to cover the
2026                  * budget any more
2027                  */
2028                 if (nr_budgets)
2029                         nr_budgets--;
2030                 ret = q->mq_ops->queue_rq(hctx, &bd);
2031                 switch (ret) {
2032                 case BLK_STS_OK:
2033                         queued++;
2034                         break;
2035                 case BLK_STS_RESOURCE:
2036                         needs_resource = true;
2037                         fallthrough;
2038                 case BLK_STS_DEV_RESOURCE:
2039                         blk_mq_handle_dev_resource(rq, list);
2040                         goto out;
2041                 case BLK_STS_ZONE_RESOURCE:
2042                         /*
2043                          * Move the request to zone_list and keep going through
2044                          * the dispatch list to find more requests the drive can
2045                          * accept.
2046                          */
2047                         blk_mq_handle_zone_resource(rq, &zone_list);
2048                         needs_resource = true;
2049                         break;
2050                 default:
2051                         errors++;
2052                         blk_mq_end_request(rq, ret);
2053                 }
2054         } while (!list_empty(list));
2055 out:
2056         if (!list_empty(&zone_list))
2057                 list_splice_tail_init(&zone_list, list);
2058
2059         /* If we didn't flush the entire list, we could have told the driver
2060          * there was more coming, but that turned out to be a lie.
2061          */
2062         if ((!list_empty(list) || errors || needs_resource ||
2063              ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
2064                 q->mq_ops->commit_rqs(hctx);
2065         /*
2066          * Any items that need requeuing? Stuff them into hctx->dispatch,
2067          * that is where we will continue on next queue run.
2068          */
2069         if (!list_empty(list)) {
2070                 bool needs_restart;
2071                 /* For non-shared tags, the RESTART check will suffice */
2072                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2073                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2074                         blk_mq_is_shared_tags(hctx->flags));
2075
2076                 if (nr_budgets)
2077                         blk_mq_release_budgets(q, list);
2078
2079                 spin_lock(&hctx->lock);
2080                 list_splice_tail_init(list, &hctx->dispatch);
2081                 spin_unlock(&hctx->lock);
2082
2083                 /*
2084                  * Order adding requests to hctx->dispatch and checking
2085                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2086                  * in blk_mq_sched_restart(). Avoid restart code path to
2087                  * miss the new added requests to hctx->dispatch, meantime
2088                  * SCHED_RESTART is observed here.
2089                  */
2090                 smp_mb();
2091
2092                 /*
2093                  * If SCHED_RESTART was set by the caller of this function and
2094                  * it is no longer set that means that it was cleared by another
2095                  * thread and hence that a queue rerun is needed.
2096                  *
2097                  * If 'no_tag' is set, that means that we failed getting
2098                  * a driver tag with an I/O scheduler attached. If our dispatch
2099                  * waitqueue is no longer active, ensure that we run the queue
2100                  * AFTER adding our entries back to the list.
2101                  *
2102                  * If no I/O scheduler has been configured it is possible that
2103                  * the hardware queue got stopped and restarted before requests
2104                  * were pushed back onto the dispatch list. Rerun the queue to
2105                  * avoid starvation. Notes:
2106                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2107                  *   been stopped before rerunning a queue.
2108                  * - Some but not all block drivers stop a queue before
2109                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2110                  *   and dm-rq.
2111                  *
2112                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2113                  * bit is set, run queue after a delay to avoid IO stalls
2114                  * that could otherwise occur if the queue is idle.  We'll do
2115                  * similar if we couldn't get budget or couldn't lock a zone
2116                  * and SCHED_RESTART is set.
2117                  */
2118                 needs_restart = blk_mq_sched_needs_restart(hctx);
2119                 if (prep == PREP_DISPATCH_NO_BUDGET)
2120                         needs_resource = true;
2121                 if (!needs_restart ||
2122                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2123                         blk_mq_run_hw_queue(hctx, true);
2124                 else if (needs_resource)
2125                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2126
2127                 blk_mq_update_dispatch_busy(hctx, true);
2128                 return false;
2129         } else
2130                 blk_mq_update_dispatch_busy(hctx, false);
2131
2132         return (queued + errors) != 0;
2133 }
2134
2135 /**
2136  * __blk_mq_run_hw_queue - Run a hardware queue.
2137  * @hctx: Pointer to the hardware queue to run.
2138  *
2139  * Send pending requests to the hardware.
2140  */
2141 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2142 {
2143         /*
2144          * We can't run the queue inline with ints disabled. Ensure that
2145          * we catch bad users of this early.
2146          */
2147         WARN_ON_ONCE(in_interrupt());
2148
2149         blk_mq_run_dispatch_ops(hctx->queue,
2150                         blk_mq_sched_dispatch_requests(hctx));
2151 }
2152
2153 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2154 {
2155         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2156
2157         if (cpu >= nr_cpu_ids)
2158                 cpu = cpumask_first(hctx->cpumask);
2159         return cpu;
2160 }
2161
2162 /*
2163  * It'd be great if the workqueue API had a way to pass
2164  * in a mask and had some smarts for more clever placement.
2165  * For now we just round-robin here, switching for every
2166  * BLK_MQ_CPU_WORK_BATCH queued items.
2167  */
2168 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2169 {
2170         bool tried = false;
2171         int next_cpu = hctx->next_cpu;
2172
2173         if (hctx->queue->nr_hw_queues == 1)
2174                 return WORK_CPU_UNBOUND;
2175
2176         if (--hctx->next_cpu_batch <= 0) {
2177 select_cpu:
2178                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2179                                 cpu_online_mask);
2180                 if (next_cpu >= nr_cpu_ids)
2181                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2182                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2183         }
2184
2185         /*
2186          * Do unbound schedule if we can't find a online CPU for this hctx,
2187          * and it should only happen in the path of handling CPU DEAD.
2188          */
2189         if (!cpu_online(next_cpu)) {
2190                 if (!tried) {
2191                         tried = true;
2192                         goto select_cpu;
2193                 }
2194
2195                 /*
2196                  * Make sure to re-select CPU next time once after CPUs
2197                  * in hctx->cpumask become online again.
2198                  */
2199                 hctx->next_cpu = next_cpu;
2200                 hctx->next_cpu_batch = 1;
2201                 return WORK_CPU_UNBOUND;
2202         }
2203
2204         hctx->next_cpu = next_cpu;
2205         return next_cpu;
2206 }
2207
2208 /**
2209  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2210  * @hctx: Pointer to the hardware queue to run.
2211  * @async: If we want to run the queue asynchronously.
2212  * @msecs: Milliseconds of delay to wait before running the queue.
2213  *
2214  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2215  * with a delay of @msecs.
2216  */
2217 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2218                                         unsigned long msecs)
2219 {
2220         if (unlikely(blk_mq_hctx_stopped(hctx)))
2221                 return;
2222
2223         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2224                 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2225                         __blk_mq_run_hw_queue(hctx);
2226                         return;
2227                 }
2228         }
2229
2230         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2231                                     msecs_to_jiffies(msecs));
2232 }
2233
2234 /**
2235  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2236  * @hctx: Pointer to the hardware queue to run.
2237  * @msecs: Milliseconds of delay to wait before running the queue.
2238  *
2239  * Run a hardware queue asynchronously with a delay of @msecs.
2240  */
2241 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2242 {
2243         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2244 }
2245 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2246
2247 /**
2248  * blk_mq_run_hw_queue - Start to run a hardware queue.
2249  * @hctx: Pointer to the hardware queue to run.
2250  * @async: If we want to run the queue asynchronously.
2251  *
2252  * Check if the request queue is not in a quiesced state and if there are
2253  * pending requests to be sent. If this is true, run the queue to send requests
2254  * to hardware.
2255  */
2256 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2257 {
2258         bool need_run;
2259
2260         /*
2261          * When queue is quiesced, we may be switching io scheduler, or
2262          * updating nr_hw_queues, or other things, and we can't run queue
2263          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2264          *
2265          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2266          * quiesced.
2267          */
2268         __blk_mq_run_dispatch_ops(hctx->queue, false,
2269                 need_run = !blk_queue_quiesced(hctx->queue) &&
2270                 blk_mq_hctx_has_pending(hctx));
2271
2272         if (need_run)
2273                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2274 }
2275 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2276
2277 /*
2278  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2279  * scheduler.
2280  */
2281 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2282 {
2283         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2284         /*
2285          * If the IO scheduler does not respect hardware queues when
2286          * dispatching, we just don't bother with multiple HW queues and
2287          * dispatch from hctx for the current CPU since running multiple queues
2288          * just causes lock contention inside the scheduler and pointless cache
2289          * bouncing.
2290          */
2291         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2292
2293         if (!blk_mq_hctx_stopped(hctx))
2294                 return hctx;
2295         return NULL;
2296 }
2297
2298 /**
2299  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2300  * @q: Pointer to the request queue to run.
2301  * @async: If we want to run the queue asynchronously.
2302  */
2303 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2304 {
2305         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2306         unsigned long i;
2307
2308         sq_hctx = NULL;
2309         if (blk_queue_sq_sched(q))
2310                 sq_hctx = blk_mq_get_sq_hctx(q);
2311         queue_for_each_hw_ctx(q, hctx, i) {
2312                 if (blk_mq_hctx_stopped(hctx))
2313                         continue;
2314                 /*
2315                  * Dispatch from this hctx either if there's no hctx preferred
2316                  * by IO scheduler or if it has requests that bypass the
2317                  * scheduler.
2318                  */
2319                 if (!sq_hctx || sq_hctx == hctx ||
2320                     !list_empty_careful(&hctx->dispatch))
2321                         blk_mq_run_hw_queue(hctx, async);
2322         }
2323 }
2324 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2325
2326 /**
2327  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2328  * @q: Pointer to the request queue to run.
2329  * @msecs: Milliseconds of delay to wait before running the queues.
2330  */
2331 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2332 {
2333         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2334         unsigned long i;
2335
2336         sq_hctx = NULL;
2337         if (blk_queue_sq_sched(q))
2338                 sq_hctx = blk_mq_get_sq_hctx(q);
2339         queue_for_each_hw_ctx(q, hctx, i) {
2340                 if (blk_mq_hctx_stopped(hctx))
2341                         continue;
2342                 /*
2343                  * If there is already a run_work pending, leave the
2344                  * pending delay untouched. Otherwise, a hctx can stall
2345                  * if another hctx is re-delaying the other's work
2346                  * before the work executes.
2347                  */
2348                 if (delayed_work_pending(&hctx->run_work))
2349                         continue;
2350                 /*
2351                  * Dispatch from this hctx either if there's no hctx preferred
2352                  * by IO scheduler or if it has requests that bypass the
2353                  * scheduler.
2354                  */
2355                 if (!sq_hctx || sq_hctx == hctx ||
2356                     !list_empty_careful(&hctx->dispatch))
2357                         blk_mq_delay_run_hw_queue(hctx, msecs);
2358         }
2359 }
2360 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2361
2362 /*
2363  * This function is often used for pausing .queue_rq() by driver when
2364  * there isn't enough resource or some conditions aren't satisfied, and
2365  * BLK_STS_RESOURCE is usually returned.
2366  *
2367  * We do not guarantee that dispatch can be drained or blocked
2368  * after blk_mq_stop_hw_queue() returns. Please use
2369  * blk_mq_quiesce_queue() for that requirement.
2370  */
2371 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2372 {
2373         cancel_delayed_work(&hctx->run_work);
2374
2375         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2376 }
2377 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2378
2379 /*
2380  * This function is often used for pausing .queue_rq() by driver when
2381  * there isn't enough resource or some conditions aren't satisfied, and
2382  * BLK_STS_RESOURCE is usually returned.
2383  *
2384  * We do not guarantee that dispatch can be drained or blocked
2385  * after blk_mq_stop_hw_queues() returns. Please use
2386  * blk_mq_quiesce_queue() for that requirement.
2387  */
2388 void blk_mq_stop_hw_queues(struct request_queue *q)
2389 {
2390         struct blk_mq_hw_ctx *hctx;
2391         unsigned long i;
2392
2393         queue_for_each_hw_ctx(q, hctx, i)
2394                 blk_mq_stop_hw_queue(hctx);
2395 }
2396 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2397
2398 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2399 {
2400         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2401
2402         blk_mq_run_hw_queue(hctx, false);
2403 }
2404 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2405
2406 void blk_mq_start_hw_queues(struct request_queue *q)
2407 {
2408         struct blk_mq_hw_ctx *hctx;
2409         unsigned long i;
2410
2411         queue_for_each_hw_ctx(q, hctx, i)
2412                 blk_mq_start_hw_queue(hctx);
2413 }
2414 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2415
2416 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2417 {
2418         if (!blk_mq_hctx_stopped(hctx))
2419                 return;
2420
2421         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2422         blk_mq_run_hw_queue(hctx, async);
2423 }
2424 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2425
2426 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2427 {
2428         struct blk_mq_hw_ctx *hctx;
2429         unsigned long i;
2430
2431         queue_for_each_hw_ctx(q, hctx, i)
2432                 blk_mq_start_stopped_hw_queue(hctx, async);
2433 }
2434 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2435
2436 static void blk_mq_run_work_fn(struct work_struct *work)
2437 {
2438         struct blk_mq_hw_ctx *hctx;
2439
2440         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2441
2442         /*
2443          * If we are stopped, don't run the queue.
2444          */
2445         if (blk_mq_hctx_stopped(hctx))
2446                 return;
2447
2448         __blk_mq_run_hw_queue(hctx);
2449 }
2450
2451 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2452                                             struct request *rq,
2453                                             bool at_head)
2454 {
2455         struct blk_mq_ctx *ctx = rq->mq_ctx;
2456         enum hctx_type type = hctx->type;
2457
2458         lockdep_assert_held(&ctx->lock);
2459
2460         trace_block_rq_insert(rq);
2461
2462         if (at_head)
2463                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2464         else
2465                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2466 }
2467
2468 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2469                              bool at_head)
2470 {
2471         struct blk_mq_ctx *ctx = rq->mq_ctx;
2472
2473         lockdep_assert_held(&ctx->lock);
2474
2475         __blk_mq_insert_req_list(hctx, rq, at_head);
2476         blk_mq_hctx_mark_pending(hctx, ctx);
2477 }
2478
2479 /**
2480  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2481  * @rq: Pointer to request to be inserted.
2482  * @at_head: true if the request should be inserted at the head of the list.
2483  * @run_queue: If we should run the hardware queue after inserting the request.
2484  *
2485  * Should only be used carefully, when the caller knows we want to
2486  * bypass a potential IO scheduler on the target device.
2487  */
2488 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2489                                   bool run_queue)
2490 {
2491         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2492
2493         spin_lock(&hctx->lock);
2494         if (at_head)
2495                 list_add(&rq->queuelist, &hctx->dispatch);
2496         else
2497                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2498         spin_unlock(&hctx->lock);
2499
2500         if (run_queue)
2501                 blk_mq_run_hw_queue(hctx, false);
2502 }
2503
2504 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2505                             struct list_head *list)
2506
2507 {
2508         struct request *rq;
2509         enum hctx_type type = hctx->type;
2510
2511         /*
2512          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2513          * offline now
2514          */
2515         list_for_each_entry(rq, list, queuelist) {
2516                 BUG_ON(rq->mq_ctx != ctx);
2517                 trace_block_rq_insert(rq);
2518         }
2519
2520         spin_lock(&ctx->lock);
2521         list_splice_tail_init(list, &ctx->rq_lists[type]);
2522         blk_mq_hctx_mark_pending(hctx, ctx);
2523         spin_unlock(&ctx->lock);
2524 }
2525
2526 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2527                               bool from_schedule)
2528 {
2529         if (hctx->queue->mq_ops->commit_rqs) {
2530                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2531                 hctx->queue->mq_ops->commit_rqs(hctx);
2532         }
2533         *queued = 0;
2534 }
2535
2536 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2537                 unsigned int nr_segs)
2538 {
2539         int err;
2540
2541         if (bio->bi_opf & REQ_RAHEAD)
2542                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2543
2544         rq->__sector = bio->bi_iter.bi_sector;
2545         blk_rq_bio_prep(rq, bio, nr_segs);
2546
2547         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2548         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2549         WARN_ON_ONCE(err);
2550
2551         blk_account_io_start(rq);
2552 }
2553
2554 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2555                                             struct request *rq, bool last)
2556 {
2557         struct request_queue *q = rq->q;
2558         struct blk_mq_queue_data bd = {
2559                 .rq = rq,
2560                 .last = last,
2561         };
2562         blk_status_t ret;
2563
2564         /*
2565          * For OK queue, we are done. For error, caller may kill it.
2566          * Any other error (busy), just add it to our list as we
2567          * previously would have done.
2568          */
2569         ret = q->mq_ops->queue_rq(hctx, &bd);
2570         switch (ret) {
2571         case BLK_STS_OK:
2572                 blk_mq_update_dispatch_busy(hctx, false);
2573                 break;
2574         case BLK_STS_RESOURCE:
2575         case BLK_STS_DEV_RESOURCE:
2576                 blk_mq_update_dispatch_busy(hctx, true);
2577                 __blk_mq_requeue_request(rq);
2578                 break;
2579         default:
2580                 blk_mq_update_dispatch_busy(hctx, false);
2581                 break;
2582         }
2583
2584         return ret;
2585 }
2586
2587 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2588                                                 struct request *rq,
2589                                                 bool bypass_insert, bool last)
2590 {
2591         struct request_queue *q = rq->q;
2592         bool run_queue = true;
2593         int budget_token;
2594
2595         /*
2596          * RCU or SRCU read lock is needed before checking quiesced flag.
2597          *
2598          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2599          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2600          * and avoid driver to try to dispatch again.
2601          */
2602         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2603                 run_queue = false;
2604                 bypass_insert = false;
2605                 goto insert;
2606         }
2607
2608         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2609                 goto insert;
2610
2611         budget_token = blk_mq_get_dispatch_budget(q);
2612         if (budget_token < 0)
2613                 goto insert;
2614
2615         blk_mq_set_rq_budget_token(rq, budget_token);
2616
2617         if (!blk_mq_get_driver_tag(rq)) {
2618                 blk_mq_put_dispatch_budget(q, budget_token);
2619                 goto insert;
2620         }
2621
2622         return __blk_mq_issue_directly(hctx, rq, last);
2623 insert:
2624         if (bypass_insert)
2625                 return BLK_STS_RESOURCE;
2626
2627         blk_mq_sched_insert_request(rq, false, run_queue, false);
2628
2629         return BLK_STS_OK;
2630 }
2631
2632 /**
2633  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2634  * @hctx: Pointer of the associated hardware queue.
2635  * @rq: Pointer to request to be sent.
2636  *
2637  * If the device has enough resources to accept a new request now, send the
2638  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2639  * we can try send it another time in the future. Requests inserted at this
2640  * queue have higher priority.
2641  */
2642 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2643                 struct request *rq)
2644 {
2645         blk_status_t ret =
2646                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2647
2648         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2649                 blk_mq_request_bypass_insert(rq, false, true);
2650         else if (ret != BLK_STS_OK)
2651                 blk_mq_end_request(rq, ret);
2652 }
2653
2654 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2655 {
2656         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2657 }
2658
2659 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2660 {
2661         struct blk_mq_hw_ctx *hctx = NULL;
2662         struct request *rq;
2663         int queued = 0;
2664         int errors = 0;
2665
2666         while ((rq = rq_list_pop(&plug->mq_list))) {
2667                 bool last = rq_list_empty(plug->mq_list);
2668                 blk_status_t ret;
2669
2670                 if (hctx != rq->mq_hctx) {
2671                         if (hctx)
2672                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2673                         hctx = rq->mq_hctx;
2674                 }
2675
2676                 ret = blk_mq_request_issue_directly(rq, last);
2677                 switch (ret) {
2678                 case BLK_STS_OK:
2679                         queued++;
2680                         break;
2681                 case BLK_STS_RESOURCE:
2682                 case BLK_STS_DEV_RESOURCE:
2683                         blk_mq_request_bypass_insert(rq, false, true);
2684                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2685                         return;
2686                 default:
2687                         blk_mq_end_request(rq, ret);
2688                         errors++;
2689                         break;
2690                 }
2691         }
2692
2693         /*
2694          * If we didn't flush the entire list, we could have told the driver
2695          * there was more coming, but that turned out to be a lie.
2696          */
2697         if (errors)
2698                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2699 }
2700
2701 static void __blk_mq_flush_plug_list(struct request_queue *q,
2702                                      struct blk_plug *plug)
2703 {
2704         if (blk_queue_quiesced(q))
2705                 return;
2706         q->mq_ops->queue_rqs(&plug->mq_list);
2707 }
2708
2709 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2710 {
2711         struct blk_mq_hw_ctx *this_hctx = NULL;
2712         struct blk_mq_ctx *this_ctx = NULL;
2713         struct request *requeue_list = NULL;
2714         struct request **requeue_lastp = &requeue_list;
2715         unsigned int depth = 0;
2716         LIST_HEAD(list);
2717
2718         do {
2719                 struct request *rq = rq_list_pop(&plug->mq_list);
2720
2721                 if (!this_hctx) {
2722                         this_hctx = rq->mq_hctx;
2723                         this_ctx = rq->mq_ctx;
2724                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2725                         rq_list_add_tail(&requeue_lastp, rq);
2726                         continue;
2727                 }
2728                 list_add(&rq->queuelist, &list);
2729                 depth++;
2730         } while (!rq_list_empty(plug->mq_list));
2731
2732         plug->mq_list = requeue_list;
2733         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2734         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2735 }
2736
2737 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2738 {
2739         struct request *rq;
2740
2741         if (rq_list_empty(plug->mq_list))
2742                 return;
2743         plug->rq_count = 0;
2744
2745         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2746                 struct request_queue *q;
2747
2748                 rq = rq_list_peek(&plug->mq_list);
2749                 q = rq->q;
2750
2751                 /*
2752                  * Peek first request and see if we have a ->queue_rqs() hook.
2753                  * If we do, we can dispatch the whole plug list in one go. We
2754                  * already know at this point that all requests belong to the
2755                  * same queue, caller must ensure that's the case.
2756                  *
2757                  * Since we pass off the full list to the driver at this point,
2758                  * we do not increment the active request count for the queue.
2759                  * Bypass shared tags for now because of that.
2760                  */
2761                 if (q->mq_ops->queue_rqs &&
2762                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2763                         blk_mq_run_dispatch_ops(q,
2764                                 __blk_mq_flush_plug_list(q, plug));
2765                         if (rq_list_empty(plug->mq_list))
2766                                 return;
2767                 }
2768
2769                 blk_mq_run_dispatch_ops(q,
2770                                 blk_mq_plug_issue_direct(plug, false));
2771                 if (rq_list_empty(plug->mq_list))
2772                         return;
2773         }
2774
2775         do {
2776                 blk_mq_dispatch_plug_list(plug, from_schedule);
2777         } while (!rq_list_empty(plug->mq_list));
2778 }
2779
2780 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2781                 struct list_head *list)
2782 {
2783         int queued = 0;
2784         int errors = 0;
2785
2786         while (!list_empty(list)) {
2787                 blk_status_t ret;
2788                 struct request *rq = list_first_entry(list, struct request,
2789                                 queuelist);
2790
2791                 list_del_init(&rq->queuelist);
2792                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2793                 if (ret != BLK_STS_OK) {
2794                         errors++;
2795                         if (ret == BLK_STS_RESOURCE ||
2796                                         ret == BLK_STS_DEV_RESOURCE) {
2797                                 blk_mq_request_bypass_insert(rq, false,
2798                                                         list_empty(list));
2799                                 break;
2800                         }
2801                         blk_mq_end_request(rq, ret);
2802                 } else
2803                         queued++;
2804         }
2805
2806         /*
2807          * If we didn't flush the entire list, we could have told
2808          * the driver there was more coming, but that turned out to
2809          * be a lie.
2810          */
2811         if ((!list_empty(list) || errors) &&
2812              hctx->queue->mq_ops->commit_rqs && queued)
2813                 hctx->queue->mq_ops->commit_rqs(hctx);
2814 }
2815
2816 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2817                                      struct bio *bio, unsigned int nr_segs)
2818 {
2819         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2820                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2821                         return true;
2822                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2823                         return true;
2824         }
2825         return false;
2826 }
2827
2828 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2829                                                struct blk_plug *plug,
2830                                                struct bio *bio,
2831                                                unsigned int nsegs)
2832 {
2833         struct blk_mq_alloc_data data = {
2834                 .q              = q,
2835                 .nr_tags        = 1,
2836                 .cmd_flags      = bio->bi_opf,
2837         };
2838         struct request *rq;
2839
2840         if (unlikely(bio_queue_enter(bio)))
2841                 return NULL;
2842
2843         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2844                 goto queue_exit;
2845
2846         rq_qos_throttle(q, bio);
2847
2848         if (plug) {
2849                 data.nr_tags = plug->nr_ios;
2850                 plug->nr_ios = 1;
2851                 data.cached_rq = &plug->cached_rq;
2852         }
2853
2854         rq = __blk_mq_alloc_requests(&data);
2855         if (rq)
2856                 return rq;
2857         rq_qos_cleanup(q, bio);
2858         if (bio->bi_opf & REQ_NOWAIT)
2859                 bio_wouldblock_error(bio);
2860 queue_exit:
2861         blk_queue_exit(q);
2862         return NULL;
2863 }
2864
2865 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2866                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2867 {
2868         struct request *rq;
2869         enum hctx_type type, hctx_type;
2870
2871         if (!plug)
2872                 return NULL;
2873         rq = rq_list_peek(&plug->cached_rq);
2874         if (!rq || rq->q != q)
2875                 return NULL;
2876
2877         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2878                 *bio = NULL;
2879                 return NULL;
2880         }
2881
2882         type = blk_mq_get_hctx_type((*bio)->bi_opf);
2883         hctx_type = rq->mq_hctx->type;
2884         if (type != hctx_type &&
2885             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2886                 return NULL;
2887         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2888                 return NULL;
2889
2890         /*
2891          * If any qos ->throttle() end up blocking, we will have flushed the
2892          * plug and hence killed the cached_rq list as well. Pop this entry
2893          * before we throttle.
2894          */
2895         plug->cached_rq = rq_list_next(rq);
2896         rq_qos_throttle(q, *bio);
2897
2898         rq->cmd_flags = (*bio)->bi_opf;
2899         INIT_LIST_HEAD(&rq->queuelist);
2900         return rq;
2901 }
2902
2903 static void bio_set_ioprio(struct bio *bio)
2904 {
2905         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2906         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2907                 bio->bi_ioprio = get_current_ioprio();
2908         blkcg_set_ioprio(bio);
2909 }
2910
2911 /**
2912  * blk_mq_submit_bio - Create and send a request to block device.
2913  * @bio: Bio pointer.
2914  *
2915  * Builds up a request structure from @q and @bio and send to the device. The
2916  * request may not be queued directly to hardware if:
2917  * * This request can be merged with another one
2918  * * We want to place request at plug queue for possible future merging
2919  * * There is an IO scheduler active at this queue
2920  *
2921  * It will not queue the request if there is an error with the bio, or at the
2922  * request creation.
2923  */
2924 void blk_mq_submit_bio(struct bio *bio)
2925 {
2926         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2927         struct blk_plug *plug = blk_mq_plug(bio);
2928         const int is_sync = op_is_sync(bio->bi_opf);
2929         struct request *rq;
2930         unsigned int nr_segs = 1;
2931         blk_status_t ret;
2932
2933         bio = blk_queue_bounce(bio, q);
2934         if (bio_may_exceed_limits(bio, &q->limits)) {
2935                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2936                 if (!bio)
2937                         return;
2938         }
2939
2940         if (!bio_integrity_prep(bio))
2941                 return;
2942
2943         bio_set_ioprio(bio);
2944
2945         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2946         if (!rq) {
2947                 if (!bio)
2948                         return;
2949                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2950                 if (unlikely(!rq))
2951                         return;
2952         }
2953
2954         trace_block_getrq(bio);
2955
2956         rq_qos_track(q, rq, bio);
2957
2958         blk_mq_bio_to_request(rq, bio, nr_segs);
2959
2960         ret = blk_crypto_init_request(rq);
2961         if (ret != BLK_STS_OK) {
2962                 bio->bi_status = ret;
2963                 bio_endio(bio);
2964                 blk_mq_free_request(rq);
2965                 return;
2966         }
2967
2968         if (op_is_flush(bio->bi_opf)) {
2969                 blk_insert_flush(rq);
2970                 return;
2971         }
2972
2973         if (plug)
2974                 blk_add_rq_to_plug(plug, rq);
2975         else if ((rq->rq_flags & RQF_ELV) ||
2976                  (rq->mq_hctx->dispatch_busy &&
2977                   (q->nr_hw_queues == 1 || !is_sync)))
2978                 blk_mq_sched_insert_request(rq, false, true, true);
2979         else
2980                 blk_mq_run_dispatch_ops(rq->q,
2981                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2982 }
2983
2984 #ifdef CONFIG_BLK_MQ_STACKING
2985 /**
2986  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2987  * @rq: the request being queued
2988  */
2989 blk_status_t blk_insert_cloned_request(struct request *rq)
2990 {
2991         struct request_queue *q = rq->q;
2992         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2993         blk_status_t ret;
2994
2995         if (blk_rq_sectors(rq) > max_sectors) {
2996                 /*
2997                  * SCSI device does not have a good way to return if
2998                  * Write Same/Zero is actually supported. If a device rejects
2999                  * a non-read/write command (discard, write same,etc.) the
3000                  * low-level device driver will set the relevant queue limit to
3001                  * 0 to prevent blk-lib from issuing more of the offending
3002                  * operations. Commands queued prior to the queue limit being
3003                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3004                  * errors being propagated to upper layers.
3005                  */
3006                 if (max_sectors == 0)
3007                         return BLK_STS_NOTSUPP;
3008
3009                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3010                         __func__, blk_rq_sectors(rq), max_sectors);
3011                 return BLK_STS_IOERR;
3012         }
3013
3014         /*
3015          * The queue settings related to segment counting may differ from the
3016          * original queue.
3017          */
3018         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3019         if (rq->nr_phys_segments > queue_max_segments(q)) {
3020                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
3021                         __func__, rq->nr_phys_segments, queue_max_segments(q));
3022                 return BLK_STS_IOERR;
3023         }
3024
3025         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3026                 return BLK_STS_IOERR;
3027
3028         if (blk_crypto_insert_cloned_request(rq))
3029                 return BLK_STS_IOERR;
3030
3031         blk_account_io_start(rq);
3032
3033         /*
3034          * Since we have a scheduler attached on the top device,
3035          * bypass a potential scheduler on the bottom device for
3036          * insert.
3037          */
3038         blk_mq_run_dispatch_ops(q,
3039                         ret = blk_mq_request_issue_directly(rq, true));
3040         if (ret)
3041                 blk_account_io_done(rq, ktime_get_ns());
3042         return ret;
3043 }
3044 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3045
3046 /**
3047  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3048  * @rq: the clone request to be cleaned up
3049  *
3050  * Description:
3051  *     Free all bios in @rq for a cloned request.
3052  */
3053 void blk_rq_unprep_clone(struct request *rq)
3054 {
3055         struct bio *bio;
3056
3057         while ((bio = rq->bio) != NULL) {
3058                 rq->bio = bio->bi_next;
3059
3060                 bio_put(bio);
3061         }
3062 }
3063 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3064
3065 /**
3066  * blk_rq_prep_clone - Helper function to setup clone request
3067  * @rq: the request to be setup
3068  * @rq_src: original request to be cloned
3069  * @bs: bio_set that bios for clone are allocated from
3070  * @gfp_mask: memory allocation mask for bio
3071  * @bio_ctr: setup function to be called for each clone bio.
3072  *           Returns %0 for success, non %0 for failure.
3073  * @data: private data to be passed to @bio_ctr
3074  *
3075  * Description:
3076  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3077  *     Also, pages which the original bios are pointing to are not copied
3078  *     and the cloned bios just point same pages.
3079  *     So cloned bios must be completed before original bios, which means
3080  *     the caller must complete @rq before @rq_src.
3081  */
3082 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3083                       struct bio_set *bs, gfp_t gfp_mask,
3084                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3085                       void *data)
3086 {
3087         struct bio *bio, *bio_src;
3088
3089         if (!bs)
3090                 bs = &fs_bio_set;
3091
3092         __rq_for_each_bio(bio_src, rq_src) {
3093                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3094                                       bs);
3095                 if (!bio)
3096                         goto free_and_out;
3097
3098                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3099                         goto free_and_out;
3100
3101                 if (rq->bio) {
3102                         rq->biotail->bi_next = bio;
3103                         rq->biotail = bio;
3104                 } else {
3105                         rq->bio = rq->biotail = bio;
3106                 }
3107                 bio = NULL;
3108         }
3109
3110         /* Copy attributes of the original request to the clone request. */
3111         rq->__sector = blk_rq_pos(rq_src);
3112         rq->__data_len = blk_rq_bytes(rq_src);
3113         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3114                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3115                 rq->special_vec = rq_src->special_vec;
3116         }
3117         rq->nr_phys_segments = rq_src->nr_phys_segments;
3118         rq->ioprio = rq_src->ioprio;
3119
3120         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3121                 goto free_and_out;
3122
3123         return 0;
3124
3125 free_and_out:
3126         if (bio)
3127                 bio_put(bio);
3128         blk_rq_unprep_clone(rq);
3129
3130         return -ENOMEM;
3131 }
3132 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3133 #endif /* CONFIG_BLK_MQ_STACKING */
3134
3135 /*
3136  * Steal bios from a request and add them to a bio list.
3137  * The request must not have been partially completed before.
3138  */
3139 void blk_steal_bios(struct bio_list *list, struct request *rq)
3140 {
3141         if (rq->bio) {
3142                 if (list->tail)
3143                         list->tail->bi_next = rq->bio;
3144                 else
3145                         list->head = rq->bio;
3146                 list->tail = rq->biotail;
3147
3148                 rq->bio = NULL;
3149                 rq->biotail = NULL;
3150         }
3151
3152         rq->__data_len = 0;
3153 }
3154 EXPORT_SYMBOL_GPL(blk_steal_bios);
3155
3156 static size_t order_to_size(unsigned int order)
3157 {
3158         return (size_t)PAGE_SIZE << order;
3159 }
3160
3161 /* called before freeing request pool in @tags */
3162 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3163                                     struct blk_mq_tags *tags)
3164 {
3165         struct page *page;
3166         unsigned long flags;
3167
3168         /*
3169          * There is no need to clear mapping if driver tags is not initialized
3170          * or the mapping belongs to the driver tags.
3171          */
3172         if (!drv_tags || drv_tags == tags)
3173                 return;
3174
3175         list_for_each_entry(page, &tags->page_list, lru) {
3176                 unsigned long start = (unsigned long)page_address(page);
3177                 unsigned long end = start + order_to_size(page->private);
3178                 int i;
3179
3180                 for (i = 0; i < drv_tags->nr_tags; i++) {
3181                         struct request *rq = drv_tags->rqs[i];
3182                         unsigned long rq_addr = (unsigned long)rq;
3183
3184                         if (rq_addr >= start && rq_addr < end) {
3185                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3186                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3187                         }
3188                 }
3189         }
3190
3191         /*
3192          * Wait until all pending iteration is done.
3193          *
3194          * Request reference is cleared and it is guaranteed to be observed
3195          * after the ->lock is released.
3196          */
3197         spin_lock_irqsave(&drv_tags->lock, flags);
3198         spin_unlock_irqrestore(&drv_tags->lock, flags);
3199 }
3200
3201 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3202                      unsigned int hctx_idx)
3203 {
3204         struct blk_mq_tags *drv_tags;
3205         struct page *page;
3206
3207         if (list_empty(&tags->page_list))
3208                 return;
3209
3210         if (blk_mq_is_shared_tags(set->flags))
3211                 drv_tags = set->shared_tags;
3212         else
3213                 drv_tags = set->tags[hctx_idx];
3214
3215         if (tags->static_rqs && set->ops->exit_request) {
3216                 int i;
3217
3218                 for (i = 0; i < tags->nr_tags; i++) {
3219                         struct request *rq = tags->static_rqs[i];
3220
3221                         if (!rq)
3222                                 continue;
3223                         set->ops->exit_request(set, rq, hctx_idx);
3224                         tags->static_rqs[i] = NULL;
3225                 }
3226         }
3227
3228         blk_mq_clear_rq_mapping(drv_tags, tags);
3229
3230         while (!list_empty(&tags->page_list)) {
3231                 page = list_first_entry(&tags->page_list, struct page, lru);
3232                 list_del_init(&page->lru);
3233                 /*
3234                  * Remove kmemleak object previously allocated in
3235                  * blk_mq_alloc_rqs().
3236                  */
3237                 kmemleak_free(page_address(page));
3238                 __free_pages(page, page->private);
3239         }
3240 }
3241
3242 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3243 {
3244         kfree(tags->rqs);
3245         tags->rqs = NULL;
3246         kfree(tags->static_rqs);
3247         tags->static_rqs = NULL;
3248
3249         blk_mq_free_tags(tags);
3250 }
3251
3252 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3253                 unsigned int hctx_idx)
3254 {
3255         int i;
3256
3257         for (i = 0; i < set->nr_maps; i++) {
3258                 unsigned int start = set->map[i].queue_offset;
3259                 unsigned int end = start + set->map[i].nr_queues;
3260
3261                 if (hctx_idx >= start && hctx_idx < end)
3262                         break;
3263         }
3264
3265         if (i >= set->nr_maps)
3266                 i = HCTX_TYPE_DEFAULT;
3267
3268         return i;
3269 }
3270
3271 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3272                 unsigned int hctx_idx)
3273 {
3274         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3275
3276         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3277 }
3278
3279 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3280                                                unsigned int hctx_idx,
3281                                                unsigned int nr_tags,
3282                                                unsigned int reserved_tags)
3283 {
3284         int node = blk_mq_get_hctx_node(set, hctx_idx);
3285         struct blk_mq_tags *tags;
3286
3287         if (node == NUMA_NO_NODE)
3288                 node = set->numa_node;
3289
3290         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3291                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3292         if (!tags)
3293                 return NULL;
3294
3295         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3296                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3297                                  node);
3298         if (!tags->rqs) {
3299                 blk_mq_free_tags(tags);
3300                 return NULL;
3301         }
3302
3303         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3304                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3305                                         node);
3306         if (!tags->static_rqs) {
3307                 kfree(tags->rqs);
3308                 blk_mq_free_tags(tags);
3309                 return NULL;
3310         }
3311
3312         return tags;
3313 }
3314
3315 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3316                                unsigned int hctx_idx, int node)
3317 {
3318         int ret;
3319
3320         if (set->ops->init_request) {
3321                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3322                 if (ret)
3323                         return ret;
3324         }
3325
3326         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3327         return 0;
3328 }
3329
3330 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3331                             struct blk_mq_tags *tags,
3332                             unsigned int hctx_idx, unsigned int depth)
3333 {
3334         unsigned int i, j, entries_per_page, max_order = 4;
3335         int node = blk_mq_get_hctx_node(set, hctx_idx);
3336         size_t rq_size, left;
3337
3338         if (node == NUMA_NO_NODE)
3339                 node = set->numa_node;
3340
3341         INIT_LIST_HEAD(&tags->page_list);
3342
3343         /*
3344          * rq_size is the size of the request plus driver payload, rounded
3345          * to the cacheline size
3346          */
3347         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3348                                 cache_line_size());
3349         left = rq_size * depth;
3350
3351         for (i = 0; i < depth; ) {
3352                 int this_order = max_order;
3353                 struct page *page;
3354                 int to_do;
3355                 void *p;
3356
3357                 while (this_order && left < order_to_size(this_order - 1))
3358                         this_order--;
3359
3360                 do {
3361                         page = alloc_pages_node(node,
3362                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3363                                 this_order);
3364                         if (page)
3365                                 break;
3366                         if (!this_order--)
3367                                 break;
3368                         if (order_to_size(this_order) < rq_size)
3369                                 break;
3370                 } while (1);
3371
3372                 if (!page)
3373                         goto fail;
3374
3375                 page->private = this_order;
3376                 list_add_tail(&page->lru, &tags->page_list);
3377
3378                 p = page_address(page);
3379                 /*
3380                  * Allow kmemleak to scan these pages as they contain pointers
3381                  * to additional allocations like via ops->init_request().
3382                  */
3383                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3384                 entries_per_page = order_to_size(this_order) / rq_size;
3385                 to_do = min(entries_per_page, depth - i);
3386                 left -= to_do * rq_size;
3387                 for (j = 0; j < to_do; j++) {
3388                         struct request *rq = p;
3389
3390                         tags->static_rqs[i] = rq;
3391                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3392                                 tags->static_rqs[i] = NULL;
3393                                 goto fail;
3394                         }
3395
3396                         p += rq_size;
3397                         i++;
3398                 }
3399         }
3400         return 0;
3401
3402 fail:
3403         blk_mq_free_rqs(set, tags, hctx_idx);
3404         return -ENOMEM;
3405 }
3406
3407 struct rq_iter_data {
3408         struct blk_mq_hw_ctx *hctx;
3409         bool has_rq;
3410 };
3411
3412 static bool blk_mq_has_request(struct request *rq, void *data)
3413 {
3414         struct rq_iter_data *iter_data = data;
3415
3416         if (rq->mq_hctx != iter_data->hctx)
3417                 return true;
3418         iter_data->has_rq = true;
3419         return false;
3420 }
3421
3422 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3423 {
3424         struct blk_mq_tags *tags = hctx->sched_tags ?
3425                         hctx->sched_tags : hctx->tags;
3426         struct rq_iter_data data = {
3427                 .hctx   = hctx,
3428         };
3429
3430         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3431         return data.has_rq;
3432 }
3433
3434 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3435                 struct blk_mq_hw_ctx *hctx)
3436 {
3437         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3438                 return false;
3439         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3440                 return false;
3441         return true;
3442 }
3443
3444 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3445 {
3446         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3447                         struct blk_mq_hw_ctx, cpuhp_online);
3448
3449         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3450             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3451                 return 0;
3452
3453         /*
3454          * Prevent new request from being allocated on the current hctx.
3455          *
3456          * The smp_mb__after_atomic() Pairs with the implied barrier in
3457          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3458          * seen once we return from the tag allocator.
3459          */
3460         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3461         smp_mb__after_atomic();
3462
3463         /*
3464          * Try to grab a reference to the queue and wait for any outstanding
3465          * requests.  If we could not grab a reference the queue has been
3466          * frozen and there are no requests.
3467          */
3468         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3469                 while (blk_mq_hctx_has_requests(hctx))
3470                         msleep(5);
3471                 percpu_ref_put(&hctx->queue->q_usage_counter);
3472         }
3473
3474         return 0;
3475 }
3476
3477 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3478 {
3479         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3480                         struct blk_mq_hw_ctx, cpuhp_online);
3481
3482         if (cpumask_test_cpu(cpu, hctx->cpumask))
3483                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3484         return 0;
3485 }
3486
3487 /*
3488  * 'cpu' is going away. splice any existing rq_list entries from this
3489  * software queue to the hw queue dispatch list, and ensure that it
3490  * gets run.
3491  */
3492 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3493 {
3494         struct blk_mq_hw_ctx *hctx;
3495         struct blk_mq_ctx *ctx;
3496         LIST_HEAD(tmp);
3497         enum hctx_type type;
3498
3499         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3500         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3501                 return 0;
3502
3503         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3504         type = hctx->type;
3505
3506         spin_lock(&ctx->lock);
3507         if (!list_empty(&ctx->rq_lists[type])) {
3508                 list_splice_init(&ctx->rq_lists[type], &tmp);
3509                 blk_mq_hctx_clear_pending(hctx, ctx);
3510         }
3511         spin_unlock(&ctx->lock);
3512
3513         if (list_empty(&tmp))
3514                 return 0;
3515
3516         spin_lock(&hctx->lock);
3517         list_splice_tail_init(&tmp, &hctx->dispatch);
3518         spin_unlock(&hctx->lock);
3519
3520         blk_mq_run_hw_queue(hctx, true);
3521         return 0;
3522 }
3523
3524 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3525 {
3526         if (!(hctx->flags & BLK_MQ_F_STACKING))
3527                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3528                                                     &hctx->cpuhp_online);
3529         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3530                                             &hctx->cpuhp_dead);
3531 }
3532
3533 /*
3534  * Before freeing hw queue, clearing the flush request reference in
3535  * tags->rqs[] for avoiding potential UAF.
3536  */
3537 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3538                 unsigned int queue_depth, struct request *flush_rq)
3539 {
3540         int i;
3541         unsigned long flags;
3542
3543         /* The hw queue may not be mapped yet */
3544         if (!tags)
3545                 return;
3546
3547         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3548
3549         for (i = 0; i < queue_depth; i++)
3550                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3551
3552         /*
3553          * Wait until all pending iteration is done.
3554          *
3555          * Request reference is cleared and it is guaranteed to be observed
3556          * after the ->lock is released.
3557          */
3558         spin_lock_irqsave(&tags->lock, flags);
3559         spin_unlock_irqrestore(&tags->lock, flags);
3560 }
3561
3562 /* hctx->ctxs will be freed in queue's release handler */
3563 static void blk_mq_exit_hctx(struct request_queue *q,
3564                 struct blk_mq_tag_set *set,
3565                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3566 {
3567         struct request *flush_rq = hctx->fq->flush_rq;
3568
3569         if (blk_mq_hw_queue_mapped(hctx))
3570                 blk_mq_tag_idle(hctx);
3571
3572         if (blk_queue_init_done(q))
3573                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3574                                 set->queue_depth, flush_rq);
3575         if (set->ops->exit_request)
3576                 set->ops->exit_request(set, flush_rq, hctx_idx);
3577
3578         if (set->ops->exit_hctx)
3579                 set->ops->exit_hctx(hctx, hctx_idx);
3580
3581         blk_mq_remove_cpuhp(hctx);
3582
3583         xa_erase(&q->hctx_table, hctx_idx);
3584
3585         spin_lock(&q->unused_hctx_lock);
3586         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3587         spin_unlock(&q->unused_hctx_lock);
3588 }
3589
3590 static void blk_mq_exit_hw_queues(struct request_queue *q,
3591                 struct blk_mq_tag_set *set, int nr_queue)
3592 {
3593         struct blk_mq_hw_ctx *hctx;
3594         unsigned long i;
3595
3596         queue_for_each_hw_ctx(q, hctx, i) {
3597                 if (i == nr_queue)
3598                         break;
3599                 blk_mq_exit_hctx(q, set, hctx, i);
3600         }
3601 }
3602
3603 static int blk_mq_init_hctx(struct request_queue *q,
3604                 struct blk_mq_tag_set *set,
3605                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3606 {
3607         hctx->queue_num = hctx_idx;
3608
3609         if (!(hctx->flags & BLK_MQ_F_STACKING))
3610                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3611                                 &hctx->cpuhp_online);
3612         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3613
3614         hctx->tags = set->tags[hctx_idx];
3615
3616         if (set->ops->init_hctx &&
3617             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3618                 goto unregister_cpu_notifier;
3619
3620         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3621                                 hctx->numa_node))
3622                 goto exit_hctx;
3623
3624         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3625                 goto exit_flush_rq;
3626
3627         return 0;
3628
3629  exit_flush_rq:
3630         if (set->ops->exit_request)
3631                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3632  exit_hctx:
3633         if (set->ops->exit_hctx)
3634                 set->ops->exit_hctx(hctx, hctx_idx);
3635  unregister_cpu_notifier:
3636         blk_mq_remove_cpuhp(hctx);
3637         return -1;
3638 }
3639
3640 static struct blk_mq_hw_ctx *
3641 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3642                 int node)
3643 {
3644         struct blk_mq_hw_ctx *hctx;
3645         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3646
3647         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3648         if (!hctx)
3649                 goto fail_alloc_hctx;
3650
3651         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3652                 goto free_hctx;
3653
3654         atomic_set(&hctx->nr_active, 0);
3655         if (node == NUMA_NO_NODE)
3656                 node = set->numa_node;
3657         hctx->numa_node = node;
3658
3659         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3660         spin_lock_init(&hctx->lock);
3661         INIT_LIST_HEAD(&hctx->dispatch);
3662         hctx->queue = q;
3663         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3664
3665         INIT_LIST_HEAD(&hctx->hctx_list);
3666
3667         /*
3668          * Allocate space for all possible cpus to avoid allocation at
3669          * runtime
3670          */
3671         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3672                         gfp, node);
3673         if (!hctx->ctxs)
3674                 goto free_cpumask;
3675
3676         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3677                                 gfp, node, false, false))
3678                 goto free_ctxs;
3679         hctx->nr_ctx = 0;
3680
3681         spin_lock_init(&hctx->dispatch_wait_lock);
3682         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3683         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3684
3685         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3686         if (!hctx->fq)
3687                 goto free_bitmap;
3688
3689         blk_mq_hctx_kobj_init(hctx);
3690
3691         return hctx;
3692
3693  free_bitmap:
3694         sbitmap_free(&hctx->ctx_map);
3695  free_ctxs:
3696         kfree(hctx->ctxs);
3697  free_cpumask:
3698         free_cpumask_var(hctx->cpumask);
3699  free_hctx:
3700         kfree(hctx);
3701  fail_alloc_hctx:
3702         return NULL;
3703 }
3704
3705 static void blk_mq_init_cpu_queues(struct request_queue *q,
3706                                    unsigned int nr_hw_queues)
3707 {
3708         struct blk_mq_tag_set *set = q->tag_set;
3709         unsigned int i, j;
3710
3711         for_each_possible_cpu(i) {
3712                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3713                 struct blk_mq_hw_ctx *hctx;
3714                 int k;
3715
3716                 __ctx->cpu = i;
3717                 spin_lock_init(&__ctx->lock);
3718                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3719                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3720
3721                 __ctx->queue = q;
3722
3723                 /*
3724                  * Set local node, IFF we have more than one hw queue. If
3725                  * not, we remain on the home node of the device
3726                  */
3727                 for (j = 0; j < set->nr_maps; j++) {
3728                         hctx = blk_mq_map_queue_type(q, j, i);
3729                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3730                                 hctx->numa_node = cpu_to_node(i);
3731                 }
3732         }
3733 }
3734
3735 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3736                                              unsigned int hctx_idx,
3737                                              unsigned int depth)
3738 {
3739         struct blk_mq_tags *tags;
3740         int ret;
3741
3742         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3743         if (!tags)
3744                 return NULL;
3745
3746         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3747         if (ret) {
3748                 blk_mq_free_rq_map(tags);
3749                 return NULL;
3750         }
3751
3752         return tags;
3753 }
3754
3755 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3756                                        int hctx_idx)
3757 {
3758         if (blk_mq_is_shared_tags(set->flags)) {
3759                 set->tags[hctx_idx] = set->shared_tags;
3760
3761                 return true;
3762         }
3763
3764         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3765                                                        set->queue_depth);
3766
3767         return set->tags[hctx_idx];
3768 }
3769
3770 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3771                              struct blk_mq_tags *tags,
3772                              unsigned int hctx_idx)
3773 {
3774         if (tags) {
3775                 blk_mq_free_rqs(set, tags, hctx_idx);
3776                 blk_mq_free_rq_map(tags);
3777         }
3778 }
3779
3780 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3781                                       unsigned int hctx_idx)
3782 {
3783         if (!blk_mq_is_shared_tags(set->flags))
3784                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3785
3786         set->tags[hctx_idx] = NULL;
3787 }
3788
3789 static void blk_mq_map_swqueue(struct request_queue *q)
3790 {
3791         unsigned int j, hctx_idx;
3792         unsigned long i;
3793         struct blk_mq_hw_ctx *hctx;
3794         struct blk_mq_ctx *ctx;
3795         struct blk_mq_tag_set *set = q->tag_set;
3796
3797         queue_for_each_hw_ctx(q, hctx, i) {
3798                 cpumask_clear(hctx->cpumask);
3799                 hctx->nr_ctx = 0;
3800                 hctx->dispatch_from = NULL;
3801         }
3802
3803         /*
3804          * Map software to hardware queues.
3805          *
3806          * If the cpu isn't present, the cpu is mapped to first hctx.
3807          */
3808         for_each_possible_cpu(i) {
3809
3810                 ctx = per_cpu_ptr(q->queue_ctx, i);
3811                 for (j = 0; j < set->nr_maps; j++) {
3812                         if (!set->map[j].nr_queues) {
3813                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3814                                                 HCTX_TYPE_DEFAULT, i);
3815                                 continue;
3816                         }
3817                         hctx_idx = set->map[j].mq_map[i];
3818                         /* unmapped hw queue can be remapped after CPU topo changed */
3819                         if (!set->tags[hctx_idx] &&
3820                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3821                                 /*
3822                                  * If tags initialization fail for some hctx,
3823                                  * that hctx won't be brought online.  In this
3824                                  * case, remap the current ctx to hctx[0] which
3825                                  * is guaranteed to always have tags allocated
3826                                  */
3827                                 set->map[j].mq_map[i] = 0;
3828                         }
3829
3830                         hctx = blk_mq_map_queue_type(q, j, i);
3831                         ctx->hctxs[j] = hctx;
3832                         /*
3833                          * If the CPU is already set in the mask, then we've
3834                          * mapped this one already. This can happen if
3835                          * devices share queues across queue maps.
3836                          */
3837                         if (cpumask_test_cpu(i, hctx->cpumask))
3838                                 continue;
3839
3840                         cpumask_set_cpu(i, hctx->cpumask);
3841                         hctx->type = j;
3842                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3843                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3844
3845                         /*
3846                          * If the nr_ctx type overflows, we have exceeded the
3847                          * amount of sw queues we can support.
3848                          */
3849                         BUG_ON(!hctx->nr_ctx);
3850                 }
3851
3852                 for (; j < HCTX_MAX_TYPES; j++)
3853                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3854                                         HCTX_TYPE_DEFAULT, i);
3855         }
3856
3857         queue_for_each_hw_ctx(q, hctx, i) {
3858                 /*
3859                  * If no software queues are mapped to this hardware queue,
3860                  * disable it and free the request entries.
3861                  */
3862                 if (!hctx->nr_ctx) {
3863                         /* Never unmap queue 0.  We need it as a
3864                          * fallback in case of a new remap fails
3865                          * allocation
3866                          */
3867                         if (i)
3868                                 __blk_mq_free_map_and_rqs(set, i);
3869
3870                         hctx->tags = NULL;
3871                         continue;
3872                 }
3873
3874                 hctx->tags = set->tags[i];
3875                 WARN_ON(!hctx->tags);
3876
3877                 /*
3878                  * Set the map size to the number of mapped software queues.
3879                  * This is more accurate and more efficient than looping
3880                  * over all possibly mapped software queues.
3881                  */
3882                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3883
3884                 /*
3885                  * Initialize batch roundrobin counts
3886                  */
3887                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3888                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3889         }
3890 }
3891
3892 /*
3893  * Caller needs to ensure that we're either frozen/quiesced, or that
3894  * the queue isn't live yet.
3895  */
3896 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3897 {
3898         struct blk_mq_hw_ctx *hctx;
3899         unsigned long i;
3900
3901         queue_for_each_hw_ctx(q, hctx, i) {
3902                 if (shared) {
3903                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3904                 } else {
3905                         blk_mq_tag_idle(hctx);
3906                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3907                 }
3908         }
3909 }
3910
3911 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3912                                          bool shared)
3913 {
3914         struct request_queue *q;
3915
3916         lockdep_assert_held(&set->tag_list_lock);
3917
3918         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3919                 blk_mq_freeze_queue(q);
3920                 queue_set_hctx_shared(q, shared);
3921                 blk_mq_unfreeze_queue(q);
3922         }
3923 }
3924
3925 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3926 {
3927         struct blk_mq_tag_set *set = q->tag_set;
3928
3929         mutex_lock(&set->tag_list_lock);
3930         list_del(&q->tag_set_list);
3931         if (list_is_singular(&set->tag_list)) {
3932                 /* just transitioned to unshared */
3933                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3934                 /* update existing queue */
3935                 blk_mq_update_tag_set_shared(set, false);
3936         }
3937         mutex_unlock(&set->tag_list_lock);
3938         INIT_LIST_HEAD(&q->tag_set_list);
3939 }
3940
3941 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3942                                      struct request_queue *q)
3943 {
3944         mutex_lock(&set->tag_list_lock);
3945
3946         /*
3947          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3948          */
3949         if (!list_empty(&set->tag_list) &&
3950             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3951                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3952                 /* update existing queue */
3953                 blk_mq_update_tag_set_shared(set, true);
3954         }
3955         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3956                 queue_set_hctx_shared(q, true);
3957         list_add_tail(&q->tag_set_list, &set->tag_list);
3958
3959         mutex_unlock(&set->tag_list_lock);
3960 }
3961
3962 /* All allocations will be freed in release handler of q->mq_kobj */
3963 static int blk_mq_alloc_ctxs(struct request_queue *q)
3964 {
3965         struct blk_mq_ctxs *ctxs;
3966         int cpu;
3967
3968         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3969         if (!ctxs)
3970                 return -ENOMEM;
3971
3972         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3973         if (!ctxs->queue_ctx)
3974                 goto fail;
3975
3976         for_each_possible_cpu(cpu) {
3977                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3978                 ctx->ctxs = ctxs;
3979         }
3980
3981         q->mq_kobj = &ctxs->kobj;
3982         q->queue_ctx = ctxs->queue_ctx;
3983
3984         return 0;
3985  fail:
3986         kfree(ctxs);
3987         return -ENOMEM;
3988 }
3989
3990 /*
3991  * It is the actual release handler for mq, but we do it from
3992  * request queue's release handler for avoiding use-after-free
3993  * and headache because q->mq_kobj shouldn't have been introduced,
3994  * but we can't group ctx/kctx kobj without it.
3995  */
3996 void blk_mq_release(struct request_queue *q)
3997 {
3998         struct blk_mq_hw_ctx *hctx, *next;
3999         unsigned long i;
4000
4001         queue_for_each_hw_ctx(q, hctx, i)
4002                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4003
4004         /* all hctx are in .unused_hctx_list now */
4005         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4006                 list_del_init(&hctx->hctx_list);
4007                 kobject_put(&hctx->kobj);
4008         }
4009
4010         xa_destroy(&q->hctx_table);
4011
4012         /*
4013          * release .mq_kobj and sw queue's kobject now because
4014          * both share lifetime with request queue.
4015          */
4016         blk_mq_sysfs_deinit(q);
4017 }
4018
4019 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4020                 void *queuedata)
4021 {
4022         struct request_queue *q;
4023         int ret;
4024
4025         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
4026         if (!q)
4027                 return ERR_PTR(-ENOMEM);
4028         q->queuedata = queuedata;
4029         ret = blk_mq_init_allocated_queue(set, q);
4030         if (ret) {
4031                 blk_put_queue(q);
4032                 return ERR_PTR(ret);
4033         }
4034         return q;
4035 }
4036
4037 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4038 {
4039         return blk_mq_init_queue_data(set, NULL);
4040 }
4041 EXPORT_SYMBOL(blk_mq_init_queue);
4042
4043 /**
4044  * blk_mq_destroy_queue - shutdown a request queue
4045  * @q: request queue to shutdown
4046  *
4047  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
4048  * the initial reference.  All future requests will failed with -ENODEV.
4049  *
4050  * Context: can sleep
4051  */
4052 void blk_mq_destroy_queue(struct request_queue *q)
4053 {
4054         WARN_ON_ONCE(!queue_is_mq(q));
4055         WARN_ON_ONCE(blk_queue_registered(q));
4056
4057         might_sleep();
4058
4059         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4060         blk_queue_start_drain(q);
4061         blk_freeze_queue(q);
4062
4063         blk_sync_queue(q);
4064         blk_mq_cancel_work_sync(q);
4065         blk_mq_exit_queue(q);
4066
4067         /* @q is and will stay empty, shutdown and put */
4068         blk_put_queue(q);
4069 }
4070 EXPORT_SYMBOL(blk_mq_destroy_queue);
4071
4072 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4073                 struct lock_class_key *lkclass)
4074 {
4075         struct request_queue *q;
4076         struct gendisk *disk;
4077
4078         q = blk_mq_init_queue_data(set, queuedata);
4079         if (IS_ERR(q))
4080                 return ERR_CAST(q);
4081
4082         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4083         if (!disk) {
4084                 blk_mq_destroy_queue(q);
4085                 return ERR_PTR(-ENOMEM);
4086         }
4087         set_bit(GD_OWNS_QUEUE, &disk->state);
4088         return disk;
4089 }
4090 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4091
4092 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4093                 struct lock_class_key *lkclass)
4094 {
4095         struct gendisk *disk;
4096
4097         if (!blk_get_queue(q))
4098                 return NULL;
4099         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4100         if (!disk)
4101                 blk_put_queue(q);
4102         return disk;
4103 }
4104 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4105
4106 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4107                 struct blk_mq_tag_set *set, struct request_queue *q,
4108                 int hctx_idx, int node)
4109 {
4110         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4111
4112         /* reuse dead hctx first */
4113         spin_lock(&q->unused_hctx_lock);
4114         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4115                 if (tmp->numa_node == node) {
4116                         hctx = tmp;
4117                         break;
4118                 }
4119         }
4120         if (hctx)
4121                 list_del_init(&hctx->hctx_list);
4122         spin_unlock(&q->unused_hctx_lock);
4123
4124         if (!hctx)
4125                 hctx = blk_mq_alloc_hctx(q, set, node);
4126         if (!hctx)
4127                 goto fail;
4128
4129         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4130                 goto free_hctx;
4131
4132         return hctx;
4133
4134  free_hctx:
4135         kobject_put(&hctx->kobj);
4136  fail:
4137         return NULL;
4138 }
4139
4140 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4141                                                 struct request_queue *q)
4142 {
4143         struct blk_mq_hw_ctx *hctx;
4144         unsigned long i, j;
4145
4146         /* protect against switching io scheduler  */
4147         mutex_lock(&q->sysfs_lock);
4148         for (i = 0; i < set->nr_hw_queues; i++) {
4149                 int old_node;
4150                 int node = blk_mq_get_hctx_node(set, i);
4151                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4152
4153                 if (old_hctx) {
4154                         old_node = old_hctx->numa_node;
4155                         blk_mq_exit_hctx(q, set, old_hctx, i);
4156                 }
4157
4158                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4159                         if (!old_hctx)
4160                                 break;
4161                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4162                                         node, old_node);
4163                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4164                         WARN_ON_ONCE(!hctx);
4165                 }
4166         }
4167         /*
4168          * Increasing nr_hw_queues fails. Free the newly allocated
4169          * hctxs and keep the previous q->nr_hw_queues.
4170          */
4171         if (i != set->nr_hw_queues) {
4172                 j = q->nr_hw_queues;
4173         } else {
4174                 j = i;
4175                 q->nr_hw_queues = set->nr_hw_queues;
4176         }
4177
4178         xa_for_each_start(&q->hctx_table, j, hctx, j)
4179                 blk_mq_exit_hctx(q, set, hctx, j);
4180         mutex_unlock(&q->sysfs_lock);
4181 }
4182
4183 static void blk_mq_update_poll_flag(struct request_queue *q)
4184 {
4185         struct blk_mq_tag_set *set = q->tag_set;
4186
4187         if (set->nr_maps > HCTX_TYPE_POLL &&
4188             set->map[HCTX_TYPE_POLL].nr_queues)
4189                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4190         else
4191                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4192 }
4193
4194 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4195                 struct request_queue *q)
4196 {
4197         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4198                         !!(set->flags & BLK_MQ_F_BLOCKING));
4199
4200         /* mark the queue as mq asap */
4201         q->mq_ops = set->ops;
4202
4203         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4204                                              blk_mq_poll_stats_bkt,
4205                                              BLK_MQ_POLL_STATS_BKTS, q);
4206         if (!q->poll_cb)
4207                 goto err_exit;
4208
4209         if (blk_mq_alloc_ctxs(q))
4210                 goto err_poll;
4211
4212         /* init q->mq_kobj and sw queues' kobjects */
4213         blk_mq_sysfs_init(q);
4214
4215         INIT_LIST_HEAD(&q->unused_hctx_list);
4216         spin_lock_init(&q->unused_hctx_lock);
4217
4218         xa_init(&q->hctx_table);
4219
4220         blk_mq_realloc_hw_ctxs(set, q);
4221         if (!q->nr_hw_queues)
4222                 goto err_hctxs;
4223
4224         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4225         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4226
4227         q->tag_set = set;
4228
4229         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4230         blk_mq_update_poll_flag(q);
4231
4232         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4233         INIT_LIST_HEAD(&q->requeue_list);
4234         spin_lock_init(&q->requeue_lock);
4235
4236         q->nr_requests = set->queue_depth;
4237
4238         /*
4239          * Default to classic polling
4240          */
4241         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4242
4243         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4244         blk_mq_add_queue_tag_set(set, q);
4245         blk_mq_map_swqueue(q);
4246         return 0;
4247
4248 err_hctxs:
4249         blk_mq_release(q);
4250 err_poll:
4251         blk_stat_free_callback(q->poll_cb);
4252         q->poll_cb = NULL;
4253 err_exit:
4254         q->mq_ops = NULL;
4255         return -ENOMEM;
4256 }
4257 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4258
4259 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4260 void blk_mq_exit_queue(struct request_queue *q)
4261 {
4262         struct blk_mq_tag_set *set = q->tag_set;
4263
4264         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4265         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4266         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4267         blk_mq_del_queue_tag_set(q);
4268 }
4269
4270 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4271 {
4272         int i;
4273
4274         if (blk_mq_is_shared_tags(set->flags)) {
4275                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4276                                                 BLK_MQ_NO_HCTX_IDX,
4277                                                 set->queue_depth);
4278                 if (!set->shared_tags)
4279                         return -ENOMEM;
4280         }
4281
4282         for (i = 0; i < set->nr_hw_queues; i++) {
4283                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4284                         goto out_unwind;
4285                 cond_resched();
4286         }
4287
4288         return 0;
4289
4290 out_unwind:
4291         while (--i >= 0)
4292                 __blk_mq_free_map_and_rqs(set, i);
4293
4294         if (blk_mq_is_shared_tags(set->flags)) {
4295                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4296                                         BLK_MQ_NO_HCTX_IDX);
4297         }
4298
4299         return -ENOMEM;
4300 }
4301
4302 /*
4303  * Allocate the request maps associated with this tag_set. Note that this
4304  * may reduce the depth asked for, if memory is tight. set->queue_depth
4305  * will be updated to reflect the allocated depth.
4306  */
4307 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4308 {
4309         unsigned int depth;
4310         int err;
4311
4312         depth = set->queue_depth;
4313         do {
4314                 err = __blk_mq_alloc_rq_maps(set);
4315                 if (!err)
4316                         break;
4317
4318                 set->queue_depth >>= 1;
4319                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4320                         err = -ENOMEM;
4321                         break;
4322                 }
4323         } while (set->queue_depth);
4324
4325         if (!set->queue_depth || err) {
4326                 pr_err("blk-mq: failed to allocate request map\n");
4327                 return -ENOMEM;
4328         }
4329
4330         if (depth != set->queue_depth)
4331                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4332                                                 depth, set->queue_depth);
4333
4334         return 0;
4335 }
4336
4337 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4338 {
4339         /*
4340          * blk_mq_map_queues() and multiple .map_queues() implementations
4341          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4342          * number of hardware queues.
4343          */
4344         if (set->nr_maps == 1)
4345                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4346
4347         if (set->ops->map_queues && !is_kdump_kernel()) {
4348                 int i;
4349
4350                 /*
4351                  * transport .map_queues is usually done in the following
4352                  * way:
4353                  *
4354                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4355                  *      mask = get_cpu_mask(queue)
4356                  *      for_each_cpu(cpu, mask)
4357                  *              set->map[x].mq_map[cpu] = queue;
4358                  * }
4359                  *
4360                  * When we need to remap, the table has to be cleared for
4361                  * killing stale mapping since one CPU may not be mapped
4362                  * to any hw queue.
4363                  */
4364                 for (i = 0; i < set->nr_maps; i++)
4365                         blk_mq_clear_mq_map(&set->map[i]);
4366
4367                 set->ops->map_queues(set);
4368         } else {
4369                 BUG_ON(set->nr_maps > 1);
4370                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4371         }
4372 }
4373
4374 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4375                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4376 {
4377         struct blk_mq_tags **new_tags;
4378
4379         if (cur_nr_hw_queues >= new_nr_hw_queues)
4380                 return 0;
4381
4382         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4383                                 GFP_KERNEL, set->numa_node);
4384         if (!new_tags)
4385                 return -ENOMEM;
4386
4387         if (set->tags)
4388                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4389                        sizeof(*set->tags));
4390         kfree(set->tags);
4391         set->tags = new_tags;
4392         set->nr_hw_queues = new_nr_hw_queues;
4393
4394         return 0;
4395 }
4396
4397 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4398                                 int new_nr_hw_queues)
4399 {
4400         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4401 }
4402
4403 /*
4404  * Alloc a tag set to be associated with one or more request queues.
4405  * May fail with EINVAL for various error conditions. May adjust the
4406  * requested depth down, if it's too large. In that case, the set
4407  * value will be stored in set->queue_depth.
4408  */
4409 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4410 {
4411         int i, ret;
4412
4413         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4414
4415         if (!set->nr_hw_queues)
4416                 return -EINVAL;
4417         if (!set->queue_depth)
4418                 return -EINVAL;
4419         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4420                 return -EINVAL;
4421
4422         if (!set->ops->queue_rq)
4423                 return -EINVAL;
4424
4425         if (!set->ops->get_budget ^ !set->ops->put_budget)
4426                 return -EINVAL;
4427
4428         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4429                 pr_info("blk-mq: reduced tag depth to %u\n",
4430                         BLK_MQ_MAX_DEPTH);
4431                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4432         }
4433
4434         if (!set->nr_maps)
4435                 set->nr_maps = 1;
4436         else if (set->nr_maps > HCTX_MAX_TYPES)
4437                 return -EINVAL;
4438
4439         /*
4440          * If a crashdump is active, then we are potentially in a very
4441          * memory constrained environment. Limit us to 1 queue and
4442          * 64 tags to prevent using too much memory.
4443          */
4444         if (is_kdump_kernel()) {
4445                 set->nr_hw_queues = 1;
4446                 set->nr_maps = 1;
4447                 set->queue_depth = min(64U, set->queue_depth);
4448         }
4449         /*
4450          * There is no use for more h/w queues than cpus if we just have
4451          * a single map
4452          */
4453         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4454                 set->nr_hw_queues = nr_cpu_ids;
4455
4456         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4457                 return -ENOMEM;
4458
4459         ret = -ENOMEM;
4460         for (i = 0; i < set->nr_maps; i++) {
4461                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4462                                                   sizeof(set->map[i].mq_map[0]),
4463                                                   GFP_KERNEL, set->numa_node);
4464                 if (!set->map[i].mq_map)
4465                         goto out_free_mq_map;
4466                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4467         }
4468
4469         blk_mq_update_queue_map(set);
4470
4471         ret = blk_mq_alloc_set_map_and_rqs(set);
4472         if (ret)
4473                 goto out_free_mq_map;
4474
4475         mutex_init(&set->tag_list_lock);
4476         INIT_LIST_HEAD(&set->tag_list);
4477
4478         return 0;
4479
4480 out_free_mq_map:
4481         for (i = 0; i < set->nr_maps; i++) {
4482                 kfree(set->map[i].mq_map);
4483                 set->map[i].mq_map = NULL;
4484         }
4485         kfree(set->tags);
4486         set->tags = NULL;
4487         return ret;
4488 }
4489 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4490
4491 /* allocate and initialize a tagset for a simple single-queue device */
4492 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4493                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4494                 unsigned int set_flags)
4495 {
4496         memset(set, 0, sizeof(*set));
4497         set->ops = ops;
4498         set->nr_hw_queues = 1;
4499         set->nr_maps = 1;
4500         set->queue_depth = queue_depth;
4501         set->numa_node = NUMA_NO_NODE;
4502         set->flags = set_flags;
4503         return blk_mq_alloc_tag_set(set);
4504 }
4505 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4506
4507 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4508 {
4509         int i, j;
4510
4511         for (i = 0; i < set->nr_hw_queues; i++)
4512                 __blk_mq_free_map_and_rqs(set, i);
4513
4514         if (blk_mq_is_shared_tags(set->flags)) {
4515                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4516                                         BLK_MQ_NO_HCTX_IDX);
4517         }
4518
4519         for (j = 0; j < set->nr_maps; j++) {
4520                 kfree(set->map[j].mq_map);
4521                 set->map[j].mq_map = NULL;
4522         }
4523
4524         kfree(set->tags);
4525         set->tags = NULL;
4526 }
4527 EXPORT_SYMBOL(blk_mq_free_tag_set);
4528
4529 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4530 {
4531         struct blk_mq_tag_set *set = q->tag_set;
4532         struct blk_mq_hw_ctx *hctx;
4533         int ret;
4534         unsigned long i;
4535
4536         if (!set)
4537                 return -EINVAL;
4538
4539         if (q->nr_requests == nr)
4540                 return 0;
4541
4542         blk_mq_freeze_queue(q);
4543         blk_mq_quiesce_queue(q);
4544
4545         ret = 0;
4546         queue_for_each_hw_ctx(q, hctx, i) {
4547                 if (!hctx->tags)
4548                         continue;
4549                 /*
4550                  * If we're using an MQ scheduler, just update the scheduler
4551                  * queue depth. This is similar to what the old code would do.
4552                  */
4553                 if (hctx->sched_tags) {
4554                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4555                                                       nr, true);
4556                 } else {
4557                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4558                                                       false);
4559                 }
4560                 if (ret)
4561                         break;
4562                 if (q->elevator && q->elevator->type->ops.depth_updated)
4563                         q->elevator->type->ops.depth_updated(hctx);
4564         }
4565         if (!ret) {
4566                 q->nr_requests = nr;
4567                 if (blk_mq_is_shared_tags(set->flags)) {
4568                         if (q->elevator)
4569                                 blk_mq_tag_update_sched_shared_tags(q);
4570                         else
4571                                 blk_mq_tag_resize_shared_tags(set, nr);
4572                 }
4573         }
4574
4575         blk_mq_unquiesce_queue(q);
4576         blk_mq_unfreeze_queue(q);
4577
4578         return ret;
4579 }
4580
4581 /*
4582  * request_queue and elevator_type pair.
4583  * It is just used by __blk_mq_update_nr_hw_queues to cache
4584  * the elevator_type associated with a request_queue.
4585  */
4586 struct blk_mq_qe_pair {
4587         struct list_head node;
4588         struct request_queue *q;
4589         struct elevator_type *type;
4590 };
4591
4592 /*
4593  * Cache the elevator_type in qe pair list and switch the
4594  * io scheduler to 'none'
4595  */
4596 static bool blk_mq_elv_switch_none(struct list_head *head,
4597                 struct request_queue *q)
4598 {
4599         struct blk_mq_qe_pair *qe;
4600
4601         if (!q->elevator)
4602                 return true;
4603
4604         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4605         if (!qe)
4606                 return false;
4607
4608         /* q->elevator needs protection from ->sysfs_lock */
4609         mutex_lock(&q->sysfs_lock);
4610
4611         INIT_LIST_HEAD(&qe->node);
4612         qe->q = q;
4613         qe->type = q->elevator->type;
4614         list_add(&qe->node, head);
4615
4616         /*
4617          * After elevator_switch, the previous elevator_queue will be
4618          * released by elevator_release. The reference of the io scheduler
4619          * module get by elevator_get will also be put. So we need to get
4620          * a reference of the io scheduler module here to prevent it to be
4621          * removed.
4622          */
4623         __module_get(qe->type->elevator_owner);
4624         elevator_switch(q, NULL);
4625         mutex_unlock(&q->sysfs_lock);
4626
4627         return true;
4628 }
4629
4630 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4631                                                 struct request_queue *q)
4632 {
4633         struct blk_mq_qe_pair *qe;
4634
4635         list_for_each_entry(qe, head, node)
4636                 if (qe->q == q)
4637                         return qe;
4638
4639         return NULL;
4640 }
4641
4642 static void blk_mq_elv_switch_back(struct list_head *head,
4643                                   struct request_queue *q)
4644 {
4645         struct blk_mq_qe_pair *qe;
4646         struct elevator_type *t;
4647
4648         qe = blk_lookup_qe_pair(head, q);
4649         if (!qe)
4650                 return;
4651         t = qe->type;
4652         list_del(&qe->node);
4653         kfree(qe);
4654
4655         mutex_lock(&q->sysfs_lock);
4656         elevator_switch(q, t);
4657         mutex_unlock(&q->sysfs_lock);
4658 }
4659
4660 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4661                                                         int nr_hw_queues)
4662 {
4663         struct request_queue *q;
4664         LIST_HEAD(head);
4665         int prev_nr_hw_queues;
4666
4667         lockdep_assert_held(&set->tag_list_lock);
4668
4669         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4670                 nr_hw_queues = nr_cpu_ids;
4671         if (nr_hw_queues < 1)
4672                 return;
4673         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4674                 return;
4675
4676         list_for_each_entry(q, &set->tag_list, tag_set_list)
4677                 blk_mq_freeze_queue(q);
4678         /*
4679          * Switch IO scheduler to 'none', cleaning up the data associated
4680          * with the previous scheduler. We will switch back once we are done
4681          * updating the new sw to hw queue mappings.
4682          */
4683         list_for_each_entry(q, &set->tag_list, tag_set_list)
4684                 if (!blk_mq_elv_switch_none(&head, q))
4685                         goto switch_back;
4686
4687         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4688                 blk_mq_debugfs_unregister_hctxs(q);
4689                 blk_mq_sysfs_unregister_hctxs(q);
4690         }
4691
4692         prev_nr_hw_queues = set->nr_hw_queues;
4693         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4694             0)
4695                 goto reregister;
4696
4697         set->nr_hw_queues = nr_hw_queues;
4698 fallback:
4699         blk_mq_update_queue_map(set);
4700         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4701                 blk_mq_realloc_hw_ctxs(set, q);
4702                 blk_mq_update_poll_flag(q);
4703                 if (q->nr_hw_queues != set->nr_hw_queues) {
4704                         int i = prev_nr_hw_queues;
4705
4706                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4707                                         nr_hw_queues, prev_nr_hw_queues);
4708                         for (; i < set->nr_hw_queues; i++)
4709                                 __blk_mq_free_map_and_rqs(set, i);
4710
4711                         set->nr_hw_queues = prev_nr_hw_queues;
4712                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4713                         goto fallback;
4714                 }
4715                 blk_mq_map_swqueue(q);
4716         }
4717
4718 reregister:
4719         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4720                 blk_mq_sysfs_register_hctxs(q);
4721                 blk_mq_debugfs_register_hctxs(q);
4722         }
4723
4724 switch_back:
4725         list_for_each_entry(q, &set->tag_list, tag_set_list)
4726                 blk_mq_elv_switch_back(&head, q);
4727
4728         list_for_each_entry(q, &set->tag_list, tag_set_list)
4729                 blk_mq_unfreeze_queue(q);
4730 }
4731
4732 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4733 {
4734         mutex_lock(&set->tag_list_lock);
4735         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4736         mutex_unlock(&set->tag_list_lock);
4737 }
4738 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4739
4740 /* Enable polling stats and return whether they were already enabled. */
4741 static bool blk_poll_stats_enable(struct request_queue *q)
4742 {
4743         if (q->poll_stat)
4744                 return true;
4745
4746         return blk_stats_alloc_enable(q);
4747 }
4748
4749 static void blk_mq_poll_stats_start(struct request_queue *q)
4750 {
4751         /*
4752          * We don't arm the callback if polling stats are not enabled or the
4753          * callback is already active.
4754          */
4755         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4756                 return;
4757
4758         blk_stat_activate_msecs(q->poll_cb, 100);
4759 }
4760
4761 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4762 {
4763         struct request_queue *q = cb->data;
4764         int bucket;
4765
4766         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4767                 if (cb->stat[bucket].nr_samples)
4768                         q->poll_stat[bucket] = cb->stat[bucket];
4769         }
4770 }
4771
4772 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4773                                        struct request *rq)
4774 {
4775         unsigned long ret = 0;
4776         int bucket;
4777
4778         /*
4779          * If stats collection isn't on, don't sleep but turn it on for
4780          * future users
4781          */
4782         if (!blk_poll_stats_enable(q))
4783                 return 0;
4784
4785         /*
4786          * As an optimistic guess, use half of the mean service time
4787          * for this type of request. We can (and should) make this smarter.
4788          * For instance, if the completion latencies are tight, we can
4789          * get closer than just half the mean. This is especially
4790          * important on devices where the completion latencies are longer
4791          * than ~10 usec. We do use the stats for the relevant IO size
4792          * if available which does lead to better estimates.
4793          */
4794         bucket = blk_mq_poll_stats_bkt(rq);
4795         if (bucket < 0)
4796                 return ret;
4797
4798         if (q->poll_stat[bucket].nr_samples)
4799                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4800
4801         return ret;
4802 }
4803
4804 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4805 {
4806         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4807         struct request *rq = blk_qc_to_rq(hctx, qc);
4808         struct hrtimer_sleeper hs;
4809         enum hrtimer_mode mode;
4810         unsigned int nsecs;
4811         ktime_t kt;
4812
4813         /*
4814          * If a request has completed on queue that uses an I/O scheduler, we
4815          * won't get back a request from blk_qc_to_rq.
4816          */
4817         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4818                 return false;
4819
4820         /*
4821          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4822          *
4823          *  0:  use half of prev avg
4824          * >0:  use this specific value
4825          */
4826         if (q->poll_nsec > 0)
4827                 nsecs = q->poll_nsec;
4828         else
4829                 nsecs = blk_mq_poll_nsecs(q, rq);
4830
4831         if (!nsecs)
4832                 return false;
4833
4834         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4835
4836         /*
4837          * This will be replaced with the stats tracking code, using
4838          * 'avg_completion_time / 2' as the pre-sleep target.
4839          */
4840         kt = nsecs;
4841
4842         mode = HRTIMER_MODE_REL;
4843         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4844         hrtimer_set_expires(&hs.timer, kt);
4845
4846         do {
4847                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4848                         break;
4849                 set_current_state(TASK_UNINTERRUPTIBLE);
4850                 hrtimer_sleeper_start_expires(&hs, mode);
4851                 if (hs.task)
4852                         io_schedule();
4853                 hrtimer_cancel(&hs.timer);
4854                 mode = HRTIMER_MODE_ABS;
4855         } while (hs.task && !signal_pending(current));
4856
4857         __set_current_state(TASK_RUNNING);
4858         destroy_hrtimer_on_stack(&hs.timer);
4859
4860         /*
4861          * If we sleep, have the caller restart the poll loop to reset the
4862          * state.  Like for the other success return cases, the caller is
4863          * responsible for checking if the IO completed.  If the IO isn't
4864          * complete, we'll get called again and will go straight to the busy
4865          * poll loop.
4866          */
4867         return true;
4868 }
4869
4870 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4871                                struct io_comp_batch *iob, unsigned int flags)
4872 {
4873         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4874         long state = get_current_state();
4875         int ret;
4876
4877         do {
4878                 ret = q->mq_ops->poll(hctx, iob);
4879                 if (ret > 0) {
4880                         __set_current_state(TASK_RUNNING);
4881                         return ret;
4882                 }
4883
4884                 if (signal_pending_state(state, current))
4885                         __set_current_state(TASK_RUNNING);
4886                 if (task_is_running(current))
4887                         return 1;
4888
4889                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4890                         break;
4891                 cpu_relax();
4892         } while (!need_resched());
4893
4894         __set_current_state(TASK_RUNNING);
4895         return 0;
4896 }
4897
4898 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4899                 unsigned int flags)
4900 {
4901         if (!(flags & BLK_POLL_NOSLEEP) &&
4902             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4903                 if (blk_mq_poll_hybrid(q, cookie))
4904                         return 1;
4905         }
4906         return blk_mq_poll_classic(q, cookie, iob, flags);
4907 }
4908
4909 unsigned int blk_mq_rq_cpu(struct request *rq)
4910 {
4911         return rq->mq_ctx->cpu;
4912 }
4913 EXPORT_SYMBOL(blk_mq_rq_cpu);
4914
4915 void blk_mq_cancel_work_sync(struct request_queue *q)
4916 {
4917         if (queue_is_mq(q)) {
4918                 struct blk_mq_hw_ctx *hctx;
4919                 unsigned long i;
4920
4921                 cancel_delayed_work_sync(&q->requeue_work);
4922
4923                 queue_for_each_hw_ctx(q, hctx, i)
4924                         cancel_delayed_work_sync(&hctx->run_work);
4925         }
4926 }
4927
4928 static int __init blk_mq_init(void)
4929 {
4930         int i;
4931
4932         for_each_possible_cpu(i)
4933                 init_llist_head(&per_cpu(blk_cpu_done, i));
4934         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4935
4936         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4937                                   "block/softirq:dead", NULL,
4938                                   blk_softirq_cpu_dead);
4939         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4940                                 blk_mq_hctx_notify_dead);
4941         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4942                                 blk_mq_hctx_notify_online,
4943                                 blk_mq_hctx_notify_offline);
4944         return 0;
4945 }
4946 subsys_initcall(blk_mq_init);