block: change request end_io handler to pass back a return value
[platform/kernel/linux-starfive.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54         int ddir, sectors, bucket;
55
56         ddir = rq_data_dir(rq);
57         sectors = blk_rq_stats_sectors(rq);
58
59         bucket = ddir + 2 * ilog2(sectors);
60
61         if (bucket < 0)
62                 return -1;
63         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65
66         return bucket;
67 }
68
69 #define BLK_QC_T_SHIFT          16
70 #define BLK_QC_T_INTERNAL       (1U << 31)
71
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73                 blk_qc_t qc)
74 {
75         return xa_load(&q->hctx_table,
76                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80                 blk_qc_t qc)
81 {
82         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83
84         if (qc & BLK_QC_T_INTERNAL)
85                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86         return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92                 (rq->tag != -1 ?
93                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102         return !list_empty_careful(&hctx->dispatch) ||
103                 sbitmap_any_bit_set(&hctx->ctx_map) ||
104                         blk_mq_sched_has_work(hctx);
105 }
106
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111                                      struct blk_mq_ctx *ctx)
112 {
113         const int bit = ctx->index_hw[hctx->type];
114
115         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116                 sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120                                       struct blk_mq_ctx *ctx)
121 {
122         const int bit = ctx->index_hw[hctx->type];
123
124         sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126
127 struct mq_inflight {
128         struct block_device *part;
129         unsigned int inflight[2];
130 };
131
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264         if (blk_queue_has_srcu(q))
265                 synchronize_srcu(q->srcu);
266         else
267                 synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282         blk_mq_quiesce_queue_nowait(q);
283         blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296         unsigned long flags;
297         bool run_queue = false;
298
299         spin_lock_irqsave(&q->queue_lock, flags);
300         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301                 ;
302         } else if (!--q->quiesce_depth) {
303                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304                 run_queue = true;
305         }
306         spin_unlock_irqrestore(&q->queue_lock, flags);
307
308         /* dispatch requests which are inserted during quiescing */
309         if (run_queue)
310                 blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316         struct blk_mq_hw_ctx *hctx;
317         unsigned long i;
318
319         queue_for_each_hw_ctx(q, hctx, i)
320                 if (blk_mq_hw_queue_mapped(hctx))
321                         blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326         memset(rq, 0, sizeof(*rq));
327
328         INIT_LIST_HEAD(&rq->queuelist);
329         rq->q = q;
330         rq->__sector = (sector_t) -1;
331         INIT_HLIST_NODE(&rq->hash);
332         RB_CLEAR_NODE(&rq->rb_node);
333         rq->tag = BLK_MQ_NO_TAG;
334         rq->internal_tag = BLK_MQ_NO_TAG;
335         rq->start_time_ns = ktime_get_ns();
336         rq->part = NULL;
337         blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344         struct blk_mq_ctx *ctx = data->ctx;
345         struct blk_mq_hw_ctx *hctx = data->hctx;
346         struct request_queue *q = data->q;
347         struct request *rq = tags->static_rqs[tag];
348
349         rq->q = q;
350         rq->mq_ctx = ctx;
351         rq->mq_hctx = hctx;
352         rq->cmd_flags = data->cmd_flags;
353
354         if (data->flags & BLK_MQ_REQ_PM)
355                 data->rq_flags |= RQF_PM;
356         if (blk_queue_io_stat(q))
357                 data->rq_flags |= RQF_IO_STAT;
358         rq->rq_flags = data->rq_flags;
359
360         if (!(data->rq_flags & RQF_ELV)) {
361                 rq->tag = tag;
362                 rq->internal_tag = BLK_MQ_NO_TAG;
363         } else {
364                 rq->tag = BLK_MQ_NO_TAG;
365                 rq->internal_tag = tag;
366         }
367         rq->timeout = 0;
368
369         if (blk_mq_need_time_stamp(rq))
370                 rq->start_time_ns = ktime_get_ns();
371         else
372                 rq->start_time_ns = 0;
373         rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375         rq->alloc_time_ns = alloc_time_ns;
376 #endif
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_ELV) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (!op_is_flush(data->cmd_flags) &&
399                     e->type->ops.prepare_request) {
400                         e->type->ops.prepare_request(rq);
401                         rq->rq_flags |= RQF_ELVPRIV;
402                 }
403         }
404
405         return rq;
406 }
407
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410                 u64 alloc_time_ns)
411 {
412         unsigned int tag, tag_offset;
413         struct blk_mq_tags *tags;
414         struct request *rq;
415         unsigned long tag_mask;
416         int i, nr = 0;
417
418         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419         if (unlikely(!tag_mask))
420                 return NULL;
421
422         tags = blk_mq_tags_from_data(data);
423         for (i = 0; tag_mask; i++) {
424                 if (!(tag_mask & (1UL << i)))
425                         continue;
426                 tag = tag_offset + i;
427                 prefetch(tags->static_rqs[tag]);
428                 tag_mask &= ~(1UL << i);
429                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430                 rq_list_add(data->cached_rq, rq);
431                 nr++;
432         }
433         /* caller already holds a reference, add for remainder */
434         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435         data->nr_tags -= nr;
436
437         return rq_list_pop(data->cached_rq);
438 }
439
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442         struct request_queue *q = data->q;
443         u64 alloc_time_ns = 0;
444         struct request *rq;
445         unsigned int tag;
446
447         /* alloc_time includes depth and tag waits */
448         if (blk_queue_rq_alloc_time(q))
449                 alloc_time_ns = ktime_get_ns();
450
451         if (data->cmd_flags & REQ_NOWAIT)
452                 data->flags |= BLK_MQ_REQ_NOWAIT;
453
454         if (q->elevator) {
455                 struct elevator_queue *e = q->elevator;
456
457                 data->rq_flags |= RQF_ELV;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list. Don't include reserved tags in the
462                  * limiting, as it isn't useful.
463                  */
464                 if (!op_is_flush(data->cmd_flags) &&
465                     !blk_op_is_passthrough(data->cmd_flags) &&
466                     e->type->ops.limit_depth &&
467                     !(data->flags & BLK_MQ_REQ_RESERVED))
468                         e->type->ops.limit_depth(data->cmd_flags, data);
469         }
470
471 retry:
472         data->ctx = blk_mq_get_ctx(q);
473         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474         if (!(data->rq_flags & RQF_ELV))
475                 blk_mq_tag_busy(data->hctx);
476
477         if (data->flags & BLK_MQ_REQ_RESERVED)
478                 data->rq_flags |= RQF_RESV;
479
480         /*
481          * Try batched alloc if we want more than 1 tag.
482          */
483         if (data->nr_tags > 1) {
484                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
485                 if (rq)
486                         return rq;
487                 data->nr_tags = 1;
488         }
489
490         /*
491          * Waiting allocations only fail because of an inactive hctx.  In that
492          * case just retry the hctx assignment and tag allocation as CPU hotplug
493          * should have migrated us to an online CPU by now.
494          */
495         tag = blk_mq_get_tag(data);
496         if (tag == BLK_MQ_NO_TAG) {
497                 if (data->flags & BLK_MQ_REQ_NOWAIT)
498                         return NULL;
499                 /*
500                  * Give up the CPU and sleep for a random short time to
501                  * ensure that thread using a realtime scheduling class
502                  * are migrated off the CPU, and thus off the hctx that
503                  * is going away.
504                  */
505                 msleep(3);
506                 goto retry;
507         }
508
509         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
510                                         alloc_time_ns);
511 }
512
513 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
514                                             struct blk_plug *plug,
515                                             blk_opf_t opf,
516                                             blk_mq_req_flags_t flags)
517 {
518         struct blk_mq_alloc_data data = {
519                 .q              = q,
520                 .flags          = flags,
521                 .cmd_flags      = opf,
522                 .nr_tags        = plug->nr_ios,
523                 .cached_rq      = &plug->cached_rq,
524         };
525         struct request *rq;
526
527         if (blk_queue_enter(q, flags))
528                 return NULL;
529
530         plug->nr_ios = 1;
531
532         rq = __blk_mq_alloc_requests(&data);
533         if (unlikely(!rq))
534                 blk_queue_exit(q);
535         return rq;
536 }
537
538 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
539                                                    blk_opf_t opf,
540                                                    blk_mq_req_flags_t flags)
541 {
542         struct blk_plug *plug = current->plug;
543         struct request *rq;
544
545         if (!plug)
546                 return NULL;
547         if (rq_list_empty(plug->cached_rq)) {
548                 if (plug->nr_ios == 1)
549                         return NULL;
550                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
551                 if (rq)
552                         goto got_it;
553                 return NULL;
554         }
555         rq = rq_list_peek(&plug->cached_rq);
556         if (!rq || rq->q != q)
557                 return NULL;
558
559         if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
560                 return NULL;
561         if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
562                 return NULL;
563
564         plug->cached_rq = rq_list_next(rq);
565 got_it:
566         rq->cmd_flags = opf;
567         INIT_LIST_HEAD(&rq->queuelist);
568         return rq;
569 }
570
571 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
572                 blk_mq_req_flags_t flags)
573 {
574         struct request *rq;
575
576         rq = blk_mq_alloc_cached_request(q, opf, flags);
577         if (!rq) {
578                 struct blk_mq_alloc_data data = {
579                         .q              = q,
580                         .flags          = flags,
581                         .cmd_flags      = opf,
582                         .nr_tags        = 1,
583                 };
584                 int ret;
585
586                 ret = blk_queue_enter(q, flags);
587                 if (ret)
588                         return ERR_PTR(ret);
589
590                 rq = __blk_mq_alloc_requests(&data);
591                 if (!rq)
592                         goto out_queue_exit;
593         }
594         rq->__data_len = 0;
595         rq->__sector = (sector_t) -1;
596         rq->bio = rq->biotail = NULL;
597         return rq;
598 out_queue_exit:
599         blk_queue_exit(q);
600         return ERR_PTR(-EWOULDBLOCK);
601 }
602 EXPORT_SYMBOL(blk_mq_alloc_request);
603
604 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
605         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
606 {
607         struct blk_mq_alloc_data data = {
608                 .q              = q,
609                 .flags          = flags,
610                 .cmd_flags      = opf,
611                 .nr_tags        = 1,
612         };
613         u64 alloc_time_ns = 0;
614         unsigned int cpu;
615         unsigned int tag;
616         int ret;
617
618         /* alloc_time includes depth and tag waits */
619         if (blk_queue_rq_alloc_time(q))
620                 alloc_time_ns = ktime_get_ns();
621
622         /*
623          * If the tag allocator sleeps we could get an allocation for a
624          * different hardware context.  No need to complicate the low level
625          * allocator for this for the rare use case of a command tied to
626          * a specific queue.
627          */
628         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
629                 return ERR_PTR(-EINVAL);
630
631         if (hctx_idx >= q->nr_hw_queues)
632                 return ERR_PTR(-EIO);
633
634         ret = blk_queue_enter(q, flags);
635         if (ret)
636                 return ERR_PTR(ret);
637
638         /*
639          * Check if the hardware context is actually mapped to anything.
640          * If not tell the caller that it should skip this queue.
641          */
642         ret = -EXDEV;
643         data.hctx = xa_load(&q->hctx_table, hctx_idx);
644         if (!blk_mq_hw_queue_mapped(data.hctx))
645                 goto out_queue_exit;
646         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
647         if (cpu >= nr_cpu_ids)
648                 goto out_queue_exit;
649         data.ctx = __blk_mq_get_ctx(q, cpu);
650
651         if (!q->elevator)
652                 blk_mq_tag_busy(data.hctx);
653         else
654                 data.rq_flags |= RQF_ELV;
655
656         if (flags & BLK_MQ_REQ_RESERVED)
657                 data.rq_flags |= RQF_RESV;
658
659         ret = -EWOULDBLOCK;
660         tag = blk_mq_get_tag(&data);
661         if (tag == BLK_MQ_NO_TAG)
662                 goto out_queue_exit;
663         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
664                                         alloc_time_ns);
665
666 out_queue_exit:
667         blk_queue_exit(q);
668         return ERR_PTR(ret);
669 }
670 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
671
672 static void __blk_mq_free_request(struct request *rq)
673 {
674         struct request_queue *q = rq->q;
675         struct blk_mq_ctx *ctx = rq->mq_ctx;
676         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
677         const int sched_tag = rq->internal_tag;
678
679         blk_crypto_free_request(rq);
680         blk_pm_mark_last_busy(rq);
681         rq->mq_hctx = NULL;
682         if (rq->tag != BLK_MQ_NO_TAG)
683                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
684         if (sched_tag != BLK_MQ_NO_TAG)
685                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
686         blk_mq_sched_restart(hctx);
687         blk_queue_exit(q);
688 }
689
690 void blk_mq_free_request(struct request *rq)
691 {
692         struct request_queue *q = rq->q;
693         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
694
695         if ((rq->rq_flags & RQF_ELVPRIV) &&
696             q->elevator->type->ops.finish_request)
697                 q->elevator->type->ops.finish_request(rq);
698
699         if (rq->rq_flags & RQF_MQ_INFLIGHT)
700                 __blk_mq_dec_active_requests(hctx);
701
702         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
703                 laptop_io_completion(q->disk->bdi);
704
705         rq_qos_done(q, rq);
706
707         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
708         if (req_ref_put_and_test(rq))
709                 __blk_mq_free_request(rq);
710 }
711 EXPORT_SYMBOL_GPL(blk_mq_free_request);
712
713 void blk_mq_free_plug_rqs(struct blk_plug *plug)
714 {
715         struct request *rq;
716
717         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
718                 blk_mq_free_request(rq);
719 }
720
721 void blk_dump_rq_flags(struct request *rq, char *msg)
722 {
723         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
724                 rq->q->disk ? rq->q->disk->disk_name : "?",
725                 (__force unsigned long long) rq->cmd_flags);
726
727         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
728                (unsigned long long)blk_rq_pos(rq),
729                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
730         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
731                rq->bio, rq->biotail, blk_rq_bytes(rq));
732 }
733 EXPORT_SYMBOL(blk_dump_rq_flags);
734
735 static void req_bio_endio(struct request *rq, struct bio *bio,
736                           unsigned int nbytes, blk_status_t error)
737 {
738         if (unlikely(error)) {
739                 bio->bi_status = error;
740         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
741                 /*
742                  * Partial zone append completions cannot be supported as the
743                  * BIO fragments may end up not being written sequentially.
744                  */
745                 if (bio->bi_iter.bi_size != nbytes)
746                         bio->bi_status = BLK_STS_IOERR;
747                 else
748                         bio->bi_iter.bi_sector = rq->__sector;
749         }
750
751         bio_advance(bio, nbytes);
752
753         if (unlikely(rq->rq_flags & RQF_QUIET))
754                 bio_set_flag(bio, BIO_QUIET);
755         /* don't actually finish bio if it's part of flush sequence */
756         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
757                 bio_endio(bio);
758 }
759
760 static void blk_account_io_completion(struct request *req, unsigned int bytes)
761 {
762         if (req->part && blk_do_io_stat(req)) {
763                 const int sgrp = op_stat_group(req_op(req));
764
765                 part_stat_lock();
766                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
767                 part_stat_unlock();
768         }
769 }
770
771 static void blk_print_req_error(struct request *req, blk_status_t status)
772 {
773         printk_ratelimited(KERN_ERR
774                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
775                 "phys_seg %u prio class %u\n",
776                 blk_status_to_str(status),
777                 req->q->disk ? req->q->disk->disk_name : "?",
778                 blk_rq_pos(req), (__force u32)req_op(req),
779                 blk_op_str(req_op(req)),
780                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
781                 req->nr_phys_segments,
782                 IOPRIO_PRIO_CLASS(req->ioprio));
783 }
784
785 /*
786  * Fully end IO on a request. Does not support partial completions, or
787  * errors.
788  */
789 static void blk_complete_request(struct request *req)
790 {
791         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
792         int total_bytes = blk_rq_bytes(req);
793         struct bio *bio = req->bio;
794
795         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
796
797         if (!bio)
798                 return;
799
800 #ifdef CONFIG_BLK_DEV_INTEGRITY
801         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
802                 req->q->integrity.profile->complete_fn(req, total_bytes);
803 #endif
804
805         blk_account_io_completion(req, total_bytes);
806
807         do {
808                 struct bio *next = bio->bi_next;
809
810                 /* Completion has already been traced */
811                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
812
813                 if (req_op(req) == REQ_OP_ZONE_APPEND)
814                         bio->bi_iter.bi_sector = req->__sector;
815
816                 if (!is_flush)
817                         bio_endio(bio);
818                 bio = next;
819         } while (bio);
820
821         /*
822          * Reset counters so that the request stacking driver
823          * can find how many bytes remain in the request
824          * later.
825          */
826         req->bio = NULL;
827         req->__data_len = 0;
828 }
829
830 /**
831  * blk_update_request - Complete multiple bytes without completing the request
832  * @req:      the request being processed
833  * @error:    block status code
834  * @nr_bytes: number of bytes to complete for @req
835  *
836  * Description:
837  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
838  *     the request structure even if @req doesn't have leftover.
839  *     If @req has leftover, sets it up for the next range of segments.
840  *
841  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
842  *     %false return from this function.
843  *
844  * Note:
845  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
846  *      except in the consistency check at the end of this function.
847  *
848  * Return:
849  *     %false - this request doesn't have any more data
850  *     %true  - this request has more data
851  **/
852 bool blk_update_request(struct request *req, blk_status_t error,
853                 unsigned int nr_bytes)
854 {
855         int total_bytes;
856
857         trace_block_rq_complete(req, error, nr_bytes);
858
859         if (!req->bio)
860                 return false;
861
862 #ifdef CONFIG_BLK_DEV_INTEGRITY
863         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
864             error == BLK_STS_OK)
865                 req->q->integrity.profile->complete_fn(req, nr_bytes);
866 #endif
867
868         if (unlikely(error && !blk_rq_is_passthrough(req) &&
869                      !(req->rq_flags & RQF_QUIET)) &&
870                      !test_bit(GD_DEAD, &req->q->disk->state)) {
871                 blk_print_req_error(req, error);
872                 trace_block_rq_error(req, error, nr_bytes);
873         }
874
875         blk_account_io_completion(req, nr_bytes);
876
877         total_bytes = 0;
878         while (req->bio) {
879                 struct bio *bio = req->bio;
880                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
881
882                 if (bio_bytes == bio->bi_iter.bi_size)
883                         req->bio = bio->bi_next;
884
885                 /* Completion has already been traced */
886                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
887                 req_bio_endio(req, bio, bio_bytes, error);
888
889                 total_bytes += bio_bytes;
890                 nr_bytes -= bio_bytes;
891
892                 if (!nr_bytes)
893                         break;
894         }
895
896         /*
897          * completely done
898          */
899         if (!req->bio) {
900                 /*
901                  * Reset counters so that the request stacking driver
902                  * can find how many bytes remain in the request
903                  * later.
904                  */
905                 req->__data_len = 0;
906                 return false;
907         }
908
909         req->__data_len -= total_bytes;
910
911         /* update sector only for requests with clear definition of sector */
912         if (!blk_rq_is_passthrough(req))
913                 req->__sector += total_bytes >> 9;
914
915         /* mixed attributes always follow the first bio */
916         if (req->rq_flags & RQF_MIXED_MERGE) {
917                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
918                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
919         }
920
921         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
922                 /*
923                  * If total number of sectors is less than the first segment
924                  * size, something has gone terribly wrong.
925                  */
926                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
927                         blk_dump_rq_flags(req, "request botched");
928                         req->__data_len = blk_rq_cur_bytes(req);
929                 }
930
931                 /* recalculate the number of segments */
932                 req->nr_phys_segments = blk_recalc_rq_segments(req);
933         }
934
935         return true;
936 }
937 EXPORT_SYMBOL_GPL(blk_update_request);
938
939 static void __blk_account_io_done(struct request *req, u64 now)
940 {
941         const int sgrp = op_stat_group(req_op(req));
942
943         part_stat_lock();
944         update_io_ticks(req->part, jiffies, true);
945         part_stat_inc(req->part, ios[sgrp]);
946         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
947         part_stat_unlock();
948 }
949
950 static inline void blk_account_io_done(struct request *req, u64 now)
951 {
952         /*
953          * Account IO completion.  flush_rq isn't accounted as a
954          * normal IO on queueing nor completion.  Accounting the
955          * containing request is enough.
956          */
957         if (blk_do_io_stat(req) && req->part &&
958             !(req->rq_flags & RQF_FLUSH_SEQ))
959                 __blk_account_io_done(req, now);
960 }
961
962 static void __blk_account_io_start(struct request *rq)
963 {
964         /*
965          * All non-passthrough requests are created from a bio with one
966          * exception: when a flush command that is part of a flush sequence
967          * generated by the state machine in blk-flush.c is cloned onto the
968          * lower device by dm-multipath we can get here without a bio.
969          */
970         if (rq->bio)
971                 rq->part = rq->bio->bi_bdev;
972         else
973                 rq->part = rq->q->disk->part0;
974
975         part_stat_lock();
976         update_io_ticks(rq->part, jiffies, false);
977         part_stat_unlock();
978 }
979
980 static inline void blk_account_io_start(struct request *req)
981 {
982         if (blk_do_io_stat(req))
983                 __blk_account_io_start(req);
984 }
985
986 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
987 {
988         if (rq->rq_flags & RQF_STATS) {
989                 blk_mq_poll_stats_start(rq->q);
990                 blk_stat_add(rq, now);
991         }
992
993         blk_mq_sched_completed_request(rq, now);
994         blk_account_io_done(rq, now);
995 }
996
997 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
998 {
999         if (blk_mq_need_time_stamp(rq))
1000                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1001
1002         if (rq->end_io) {
1003                 rq_qos_done(rq->q, rq);
1004                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1005                         blk_mq_free_request(rq);
1006         } else {
1007                 blk_mq_free_request(rq);
1008         }
1009 }
1010 EXPORT_SYMBOL(__blk_mq_end_request);
1011
1012 void blk_mq_end_request(struct request *rq, blk_status_t error)
1013 {
1014         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1015                 BUG();
1016         __blk_mq_end_request(rq, error);
1017 }
1018 EXPORT_SYMBOL(blk_mq_end_request);
1019
1020 #define TAG_COMP_BATCH          32
1021
1022 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1023                                           int *tag_array, int nr_tags)
1024 {
1025         struct request_queue *q = hctx->queue;
1026
1027         /*
1028          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1029          * update hctx->nr_active in batch
1030          */
1031         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1032                 __blk_mq_sub_active_requests(hctx, nr_tags);
1033
1034         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1035         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1036 }
1037
1038 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1039 {
1040         int tags[TAG_COMP_BATCH], nr_tags = 0;
1041         struct blk_mq_hw_ctx *cur_hctx = NULL;
1042         struct request *rq;
1043         u64 now = 0;
1044
1045         if (iob->need_ts)
1046                 now = ktime_get_ns();
1047
1048         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1049                 prefetch(rq->bio);
1050                 prefetch(rq->rq_next);
1051
1052                 blk_complete_request(rq);
1053                 if (iob->need_ts)
1054                         __blk_mq_end_request_acct(rq, now);
1055
1056                 rq_qos_done(rq->q, rq);
1057
1058                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1059                 if (!req_ref_put_and_test(rq))
1060                         continue;
1061
1062                 blk_crypto_free_request(rq);
1063                 blk_pm_mark_last_busy(rq);
1064
1065                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1066                         if (cur_hctx)
1067                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1068                         nr_tags = 0;
1069                         cur_hctx = rq->mq_hctx;
1070                 }
1071                 tags[nr_tags++] = rq->tag;
1072         }
1073
1074         if (nr_tags)
1075                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1076 }
1077 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1078
1079 static void blk_complete_reqs(struct llist_head *list)
1080 {
1081         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1082         struct request *rq, *next;
1083
1084         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1085                 rq->q->mq_ops->complete(rq);
1086 }
1087
1088 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1089 {
1090         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1091 }
1092
1093 static int blk_softirq_cpu_dead(unsigned int cpu)
1094 {
1095         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1096         return 0;
1097 }
1098
1099 static void __blk_mq_complete_request_remote(void *data)
1100 {
1101         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1102 }
1103
1104 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1105 {
1106         int cpu = raw_smp_processor_id();
1107
1108         if (!IS_ENABLED(CONFIG_SMP) ||
1109             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1110                 return false;
1111         /*
1112          * With force threaded interrupts enabled, raising softirq from an SMP
1113          * function call will always result in waking the ksoftirqd thread.
1114          * This is probably worse than completing the request on a different
1115          * cache domain.
1116          */
1117         if (force_irqthreads())
1118                 return false;
1119
1120         /* same CPU or cache domain?  Complete locally */
1121         if (cpu == rq->mq_ctx->cpu ||
1122             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1123              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1124                 return false;
1125
1126         /* don't try to IPI to an offline CPU */
1127         return cpu_online(rq->mq_ctx->cpu);
1128 }
1129
1130 static void blk_mq_complete_send_ipi(struct request *rq)
1131 {
1132         struct llist_head *list;
1133         unsigned int cpu;
1134
1135         cpu = rq->mq_ctx->cpu;
1136         list = &per_cpu(blk_cpu_done, cpu);
1137         if (llist_add(&rq->ipi_list, list)) {
1138                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1139                 smp_call_function_single_async(cpu, &rq->csd);
1140         }
1141 }
1142
1143 static void blk_mq_raise_softirq(struct request *rq)
1144 {
1145         struct llist_head *list;
1146
1147         preempt_disable();
1148         list = this_cpu_ptr(&blk_cpu_done);
1149         if (llist_add(&rq->ipi_list, list))
1150                 raise_softirq(BLOCK_SOFTIRQ);
1151         preempt_enable();
1152 }
1153
1154 bool blk_mq_complete_request_remote(struct request *rq)
1155 {
1156         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1157
1158         /*
1159          * For request which hctx has only one ctx mapping,
1160          * or a polled request, always complete locally,
1161          * it's pointless to redirect the completion.
1162          */
1163         if (rq->mq_hctx->nr_ctx == 1 ||
1164                 rq->cmd_flags & REQ_POLLED)
1165                 return false;
1166
1167         if (blk_mq_complete_need_ipi(rq)) {
1168                 blk_mq_complete_send_ipi(rq);
1169                 return true;
1170         }
1171
1172         if (rq->q->nr_hw_queues == 1) {
1173                 blk_mq_raise_softirq(rq);
1174                 return true;
1175         }
1176         return false;
1177 }
1178 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1179
1180 /**
1181  * blk_mq_complete_request - end I/O on a request
1182  * @rq:         the request being processed
1183  *
1184  * Description:
1185  *      Complete a request by scheduling the ->complete_rq operation.
1186  **/
1187 void blk_mq_complete_request(struct request *rq)
1188 {
1189         if (!blk_mq_complete_request_remote(rq))
1190                 rq->q->mq_ops->complete(rq);
1191 }
1192 EXPORT_SYMBOL(blk_mq_complete_request);
1193
1194 /**
1195  * blk_mq_start_request - Start processing a request
1196  * @rq: Pointer to request to be started
1197  *
1198  * Function used by device drivers to notify the block layer that a request
1199  * is going to be processed now, so blk layer can do proper initializations
1200  * such as starting the timeout timer.
1201  */
1202 void blk_mq_start_request(struct request *rq)
1203 {
1204         struct request_queue *q = rq->q;
1205
1206         trace_block_rq_issue(rq);
1207
1208         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1209                 rq->io_start_time_ns = ktime_get_ns();
1210                 rq->stats_sectors = blk_rq_sectors(rq);
1211                 rq->rq_flags |= RQF_STATS;
1212                 rq_qos_issue(q, rq);
1213         }
1214
1215         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1216
1217         blk_add_timer(rq);
1218         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1219
1220 #ifdef CONFIG_BLK_DEV_INTEGRITY
1221         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1222                 q->integrity.profile->prepare_fn(rq);
1223 #endif
1224         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1225                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1226 }
1227 EXPORT_SYMBOL(blk_mq_start_request);
1228
1229 /*
1230  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1231  * queues. This is important for md arrays to benefit from merging
1232  * requests.
1233  */
1234 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1235 {
1236         if (plug->multiple_queues)
1237                 return BLK_MAX_REQUEST_COUNT * 2;
1238         return BLK_MAX_REQUEST_COUNT;
1239 }
1240
1241 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1242 {
1243         struct request *last = rq_list_peek(&plug->mq_list);
1244
1245         if (!plug->rq_count) {
1246                 trace_block_plug(rq->q);
1247         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1248                    (!blk_queue_nomerges(rq->q) &&
1249                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1250                 blk_mq_flush_plug_list(plug, false);
1251                 trace_block_plug(rq->q);
1252         }
1253
1254         if (!plug->multiple_queues && last && last->q != rq->q)
1255                 plug->multiple_queues = true;
1256         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1257                 plug->has_elevator = true;
1258         rq->rq_next = NULL;
1259         rq_list_add(&plug->mq_list, rq);
1260         plug->rq_count++;
1261 }
1262
1263 /**
1264  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1265  * @rq:         request to insert
1266  * @at_head:    insert request at head or tail of queue
1267  *
1268  * Description:
1269  *    Insert a fully prepared request at the back of the I/O scheduler queue
1270  *    for execution.  Don't wait for completion.
1271  *
1272  * Note:
1273  *    This function will invoke @done directly if the queue is dead.
1274  */
1275 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1276 {
1277         WARN_ON(irqs_disabled());
1278         WARN_ON(!blk_rq_is_passthrough(rq));
1279
1280         blk_account_io_start(rq);
1281
1282         /*
1283          * As plugging can be enabled for passthrough requests on a zoned
1284          * device, directly accessing the plug instead of using blk_mq_plug()
1285          * should not have any consequences.
1286          */
1287         if (current->plug)
1288                 blk_add_rq_to_plug(current->plug, rq);
1289         else
1290                 blk_mq_sched_insert_request(rq, at_head, true, false);
1291 }
1292 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1293
1294 struct blk_rq_wait {
1295         struct completion done;
1296         blk_status_t ret;
1297 };
1298
1299 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1300 {
1301         struct blk_rq_wait *wait = rq->end_io_data;
1302
1303         wait->ret = ret;
1304         complete(&wait->done);
1305         return RQ_END_IO_NONE;
1306 }
1307
1308 bool blk_rq_is_poll(struct request *rq)
1309 {
1310         if (!rq->mq_hctx)
1311                 return false;
1312         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1313                 return false;
1314         if (WARN_ON_ONCE(!rq->bio))
1315                 return false;
1316         return true;
1317 }
1318 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1319
1320 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1321 {
1322         do {
1323                 bio_poll(rq->bio, NULL, 0);
1324                 cond_resched();
1325         } while (!completion_done(wait));
1326 }
1327
1328 /**
1329  * blk_execute_rq - insert a request into queue for execution
1330  * @rq:         request to insert
1331  * @at_head:    insert request at head or tail of queue
1332  *
1333  * Description:
1334  *    Insert a fully prepared request at the back of the I/O scheduler queue
1335  *    for execution and wait for completion.
1336  * Return: The blk_status_t result provided to blk_mq_end_request().
1337  */
1338 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1339 {
1340         struct blk_rq_wait wait = {
1341                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1342         };
1343
1344         WARN_ON(irqs_disabled());
1345         WARN_ON(!blk_rq_is_passthrough(rq));
1346
1347         rq->end_io_data = &wait;
1348         rq->end_io = blk_end_sync_rq;
1349
1350         blk_account_io_start(rq);
1351         blk_mq_sched_insert_request(rq, at_head, true, false);
1352
1353         if (blk_rq_is_poll(rq)) {
1354                 blk_rq_poll_completion(rq, &wait.done);
1355         } else {
1356                 /*
1357                  * Prevent hang_check timer from firing at us during very long
1358                  * I/O
1359                  */
1360                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1361
1362                 if (hang_check)
1363                         while (!wait_for_completion_io_timeout(&wait.done,
1364                                         hang_check * (HZ/2)))
1365                                 ;
1366                 else
1367                         wait_for_completion_io(&wait.done);
1368         }
1369
1370         return wait.ret;
1371 }
1372 EXPORT_SYMBOL(blk_execute_rq);
1373
1374 static void __blk_mq_requeue_request(struct request *rq)
1375 {
1376         struct request_queue *q = rq->q;
1377
1378         blk_mq_put_driver_tag(rq);
1379
1380         trace_block_rq_requeue(rq);
1381         rq_qos_requeue(q, rq);
1382
1383         if (blk_mq_request_started(rq)) {
1384                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1385                 rq->rq_flags &= ~RQF_TIMED_OUT;
1386         }
1387 }
1388
1389 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1390 {
1391         __blk_mq_requeue_request(rq);
1392
1393         /* this request will be re-inserted to io scheduler queue */
1394         blk_mq_sched_requeue_request(rq);
1395
1396         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1397 }
1398 EXPORT_SYMBOL(blk_mq_requeue_request);
1399
1400 static void blk_mq_requeue_work(struct work_struct *work)
1401 {
1402         struct request_queue *q =
1403                 container_of(work, struct request_queue, requeue_work.work);
1404         LIST_HEAD(rq_list);
1405         struct request *rq, *next;
1406
1407         spin_lock_irq(&q->requeue_lock);
1408         list_splice_init(&q->requeue_list, &rq_list);
1409         spin_unlock_irq(&q->requeue_lock);
1410
1411         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1412                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1413                         continue;
1414
1415                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1416                 list_del_init(&rq->queuelist);
1417                 /*
1418                  * If RQF_DONTPREP, rq has contained some driver specific
1419                  * data, so insert it to hctx dispatch list to avoid any
1420                  * merge.
1421                  */
1422                 if (rq->rq_flags & RQF_DONTPREP)
1423                         blk_mq_request_bypass_insert(rq, false, false);
1424                 else
1425                         blk_mq_sched_insert_request(rq, true, false, false);
1426         }
1427
1428         while (!list_empty(&rq_list)) {
1429                 rq = list_entry(rq_list.next, struct request, queuelist);
1430                 list_del_init(&rq->queuelist);
1431                 blk_mq_sched_insert_request(rq, false, false, false);
1432         }
1433
1434         blk_mq_run_hw_queues(q, false);
1435 }
1436
1437 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1438                                 bool kick_requeue_list)
1439 {
1440         struct request_queue *q = rq->q;
1441         unsigned long flags;
1442
1443         /*
1444          * We abuse this flag that is otherwise used by the I/O scheduler to
1445          * request head insertion from the workqueue.
1446          */
1447         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1448
1449         spin_lock_irqsave(&q->requeue_lock, flags);
1450         if (at_head) {
1451                 rq->rq_flags |= RQF_SOFTBARRIER;
1452                 list_add(&rq->queuelist, &q->requeue_list);
1453         } else {
1454                 list_add_tail(&rq->queuelist, &q->requeue_list);
1455         }
1456         spin_unlock_irqrestore(&q->requeue_lock, flags);
1457
1458         if (kick_requeue_list)
1459                 blk_mq_kick_requeue_list(q);
1460 }
1461
1462 void blk_mq_kick_requeue_list(struct request_queue *q)
1463 {
1464         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1465 }
1466 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1467
1468 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1469                                     unsigned long msecs)
1470 {
1471         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1472                                     msecs_to_jiffies(msecs));
1473 }
1474 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1475
1476 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1477 {
1478         /*
1479          * If we find a request that isn't idle we know the queue is busy
1480          * as it's checked in the iter.
1481          * Return false to stop the iteration.
1482          */
1483         if (blk_mq_request_started(rq)) {
1484                 bool *busy = priv;
1485
1486                 *busy = true;
1487                 return false;
1488         }
1489
1490         return true;
1491 }
1492
1493 bool blk_mq_queue_inflight(struct request_queue *q)
1494 {
1495         bool busy = false;
1496
1497         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1498         return busy;
1499 }
1500 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1501
1502 static void blk_mq_rq_timed_out(struct request *req)
1503 {
1504         req->rq_flags |= RQF_TIMED_OUT;
1505         if (req->q->mq_ops->timeout) {
1506                 enum blk_eh_timer_return ret;
1507
1508                 ret = req->q->mq_ops->timeout(req);
1509                 if (ret == BLK_EH_DONE)
1510                         return;
1511                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1512         }
1513
1514         blk_add_timer(req);
1515 }
1516
1517 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1518 {
1519         unsigned long deadline;
1520
1521         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1522                 return false;
1523         if (rq->rq_flags & RQF_TIMED_OUT)
1524                 return false;
1525
1526         deadline = READ_ONCE(rq->deadline);
1527         if (time_after_eq(jiffies, deadline))
1528                 return true;
1529
1530         if (*next == 0)
1531                 *next = deadline;
1532         else if (time_after(*next, deadline))
1533                 *next = deadline;
1534         return false;
1535 }
1536
1537 void blk_mq_put_rq_ref(struct request *rq)
1538 {
1539         if (is_flush_rq(rq)) {
1540                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1541                         blk_mq_free_request(rq);
1542         } else if (req_ref_put_and_test(rq)) {
1543                 __blk_mq_free_request(rq);
1544         }
1545 }
1546
1547 static bool blk_mq_check_expired(struct request *rq, void *priv)
1548 {
1549         unsigned long *next = priv;
1550
1551         /*
1552          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1553          * be reallocated underneath the timeout handler's processing, then
1554          * the expire check is reliable. If the request is not expired, then
1555          * it was completed and reallocated as a new request after returning
1556          * from blk_mq_check_expired().
1557          */
1558         if (blk_mq_req_expired(rq, next))
1559                 blk_mq_rq_timed_out(rq);
1560         return true;
1561 }
1562
1563 static void blk_mq_timeout_work(struct work_struct *work)
1564 {
1565         struct request_queue *q =
1566                 container_of(work, struct request_queue, timeout_work);
1567         unsigned long next = 0;
1568         struct blk_mq_hw_ctx *hctx;
1569         unsigned long i;
1570
1571         /* A deadlock might occur if a request is stuck requiring a
1572          * timeout at the same time a queue freeze is waiting
1573          * completion, since the timeout code would not be able to
1574          * acquire the queue reference here.
1575          *
1576          * That's why we don't use blk_queue_enter here; instead, we use
1577          * percpu_ref_tryget directly, because we need to be able to
1578          * obtain a reference even in the short window between the queue
1579          * starting to freeze, by dropping the first reference in
1580          * blk_freeze_queue_start, and the moment the last request is
1581          * consumed, marked by the instant q_usage_counter reaches
1582          * zero.
1583          */
1584         if (!percpu_ref_tryget(&q->q_usage_counter))
1585                 return;
1586
1587         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1588
1589         if (next != 0) {
1590                 mod_timer(&q->timeout, next);
1591         } else {
1592                 /*
1593                  * Request timeouts are handled as a forward rolling timer. If
1594                  * we end up here it means that no requests are pending and
1595                  * also that no request has been pending for a while. Mark
1596                  * each hctx as idle.
1597                  */
1598                 queue_for_each_hw_ctx(q, hctx, i) {
1599                         /* the hctx may be unmapped, so check it here */
1600                         if (blk_mq_hw_queue_mapped(hctx))
1601                                 blk_mq_tag_idle(hctx);
1602                 }
1603         }
1604         blk_queue_exit(q);
1605 }
1606
1607 struct flush_busy_ctx_data {
1608         struct blk_mq_hw_ctx *hctx;
1609         struct list_head *list;
1610 };
1611
1612 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1613 {
1614         struct flush_busy_ctx_data *flush_data = data;
1615         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1616         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1617         enum hctx_type type = hctx->type;
1618
1619         spin_lock(&ctx->lock);
1620         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1621         sbitmap_clear_bit(sb, bitnr);
1622         spin_unlock(&ctx->lock);
1623         return true;
1624 }
1625
1626 /*
1627  * Process software queues that have been marked busy, splicing them
1628  * to the for-dispatch
1629  */
1630 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1631 {
1632         struct flush_busy_ctx_data data = {
1633                 .hctx = hctx,
1634                 .list = list,
1635         };
1636
1637         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1638 }
1639 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1640
1641 struct dispatch_rq_data {
1642         struct blk_mq_hw_ctx *hctx;
1643         struct request *rq;
1644 };
1645
1646 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1647                 void *data)
1648 {
1649         struct dispatch_rq_data *dispatch_data = data;
1650         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1651         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1652         enum hctx_type type = hctx->type;
1653
1654         spin_lock(&ctx->lock);
1655         if (!list_empty(&ctx->rq_lists[type])) {
1656                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1657                 list_del_init(&dispatch_data->rq->queuelist);
1658                 if (list_empty(&ctx->rq_lists[type]))
1659                         sbitmap_clear_bit(sb, bitnr);
1660         }
1661         spin_unlock(&ctx->lock);
1662
1663         return !dispatch_data->rq;
1664 }
1665
1666 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1667                                         struct blk_mq_ctx *start)
1668 {
1669         unsigned off = start ? start->index_hw[hctx->type] : 0;
1670         struct dispatch_rq_data data = {
1671                 .hctx = hctx,
1672                 .rq   = NULL,
1673         };
1674
1675         __sbitmap_for_each_set(&hctx->ctx_map, off,
1676                                dispatch_rq_from_ctx, &data);
1677
1678         return data.rq;
1679 }
1680
1681 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1682 {
1683         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1684         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1685         int tag;
1686
1687         blk_mq_tag_busy(rq->mq_hctx);
1688
1689         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1690                 bt = &rq->mq_hctx->tags->breserved_tags;
1691                 tag_offset = 0;
1692         } else {
1693                 if (!hctx_may_queue(rq->mq_hctx, bt))
1694                         return false;
1695         }
1696
1697         tag = __sbitmap_queue_get(bt);
1698         if (tag == BLK_MQ_NO_TAG)
1699                 return false;
1700
1701         rq->tag = tag + tag_offset;
1702         return true;
1703 }
1704
1705 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1706 {
1707         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1708                 return false;
1709
1710         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1711                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1712                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1713                 __blk_mq_inc_active_requests(hctx);
1714         }
1715         hctx->tags->rqs[rq->tag] = rq;
1716         return true;
1717 }
1718
1719 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1720                                 int flags, void *key)
1721 {
1722         struct blk_mq_hw_ctx *hctx;
1723
1724         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1725
1726         spin_lock(&hctx->dispatch_wait_lock);
1727         if (!list_empty(&wait->entry)) {
1728                 struct sbitmap_queue *sbq;
1729
1730                 list_del_init(&wait->entry);
1731                 sbq = &hctx->tags->bitmap_tags;
1732                 atomic_dec(&sbq->ws_active);
1733         }
1734         spin_unlock(&hctx->dispatch_wait_lock);
1735
1736         blk_mq_run_hw_queue(hctx, true);
1737         return 1;
1738 }
1739
1740 /*
1741  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1742  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1743  * restart. For both cases, take care to check the condition again after
1744  * marking us as waiting.
1745  */
1746 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1747                                  struct request *rq)
1748 {
1749         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1750         struct wait_queue_head *wq;
1751         wait_queue_entry_t *wait;
1752         bool ret;
1753
1754         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1755                 blk_mq_sched_mark_restart_hctx(hctx);
1756
1757                 /*
1758                  * It's possible that a tag was freed in the window between the
1759                  * allocation failure and adding the hardware queue to the wait
1760                  * queue.
1761                  *
1762                  * Don't clear RESTART here, someone else could have set it.
1763                  * At most this will cost an extra queue run.
1764                  */
1765                 return blk_mq_get_driver_tag(rq);
1766         }
1767
1768         wait = &hctx->dispatch_wait;
1769         if (!list_empty_careful(&wait->entry))
1770                 return false;
1771
1772         wq = &bt_wait_ptr(sbq, hctx)->wait;
1773
1774         spin_lock_irq(&wq->lock);
1775         spin_lock(&hctx->dispatch_wait_lock);
1776         if (!list_empty(&wait->entry)) {
1777                 spin_unlock(&hctx->dispatch_wait_lock);
1778                 spin_unlock_irq(&wq->lock);
1779                 return false;
1780         }
1781
1782         atomic_inc(&sbq->ws_active);
1783         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1784         __add_wait_queue(wq, wait);
1785
1786         /*
1787          * It's possible that a tag was freed in the window between the
1788          * allocation failure and adding the hardware queue to the wait
1789          * queue.
1790          */
1791         ret = blk_mq_get_driver_tag(rq);
1792         if (!ret) {
1793                 spin_unlock(&hctx->dispatch_wait_lock);
1794                 spin_unlock_irq(&wq->lock);
1795                 return false;
1796         }
1797
1798         /*
1799          * We got a tag, remove ourselves from the wait queue to ensure
1800          * someone else gets the wakeup.
1801          */
1802         list_del_init(&wait->entry);
1803         atomic_dec(&sbq->ws_active);
1804         spin_unlock(&hctx->dispatch_wait_lock);
1805         spin_unlock_irq(&wq->lock);
1806
1807         return true;
1808 }
1809
1810 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1811 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1812 /*
1813  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1814  * - EWMA is one simple way to compute running average value
1815  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1816  * - take 4 as factor for avoiding to get too small(0) result, and this
1817  *   factor doesn't matter because EWMA decreases exponentially
1818  */
1819 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1820 {
1821         unsigned int ewma;
1822
1823         ewma = hctx->dispatch_busy;
1824
1825         if (!ewma && !busy)
1826                 return;
1827
1828         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1829         if (busy)
1830                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1831         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1832
1833         hctx->dispatch_busy = ewma;
1834 }
1835
1836 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1837
1838 static void blk_mq_handle_dev_resource(struct request *rq,
1839                                        struct list_head *list)
1840 {
1841         struct request *next =
1842                 list_first_entry_or_null(list, struct request, queuelist);
1843
1844         /*
1845          * If an I/O scheduler has been configured and we got a driver tag for
1846          * the next request already, free it.
1847          */
1848         if (next)
1849                 blk_mq_put_driver_tag(next);
1850
1851         list_add(&rq->queuelist, list);
1852         __blk_mq_requeue_request(rq);
1853 }
1854
1855 static void blk_mq_handle_zone_resource(struct request *rq,
1856                                         struct list_head *zone_list)
1857 {
1858         /*
1859          * If we end up here it is because we cannot dispatch a request to a
1860          * specific zone due to LLD level zone-write locking or other zone
1861          * related resource not being available. In this case, set the request
1862          * aside in zone_list for retrying it later.
1863          */
1864         list_add(&rq->queuelist, zone_list);
1865         __blk_mq_requeue_request(rq);
1866 }
1867
1868 enum prep_dispatch {
1869         PREP_DISPATCH_OK,
1870         PREP_DISPATCH_NO_TAG,
1871         PREP_DISPATCH_NO_BUDGET,
1872 };
1873
1874 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1875                                                   bool need_budget)
1876 {
1877         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1878         int budget_token = -1;
1879
1880         if (need_budget) {
1881                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1882                 if (budget_token < 0) {
1883                         blk_mq_put_driver_tag(rq);
1884                         return PREP_DISPATCH_NO_BUDGET;
1885                 }
1886                 blk_mq_set_rq_budget_token(rq, budget_token);
1887         }
1888
1889         if (!blk_mq_get_driver_tag(rq)) {
1890                 /*
1891                  * The initial allocation attempt failed, so we need to
1892                  * rerun the hardware queue when a tag is freed. The
1893                  * waitqueue takes care of that. If the queue is run
1894                  * before we add this entry back on the dispatch list,
1895                  * we'll re-run it below.
1896                  */
1897                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1898                         /*
1899                          * All budgets not got from this function will be put
1900                          * together during handling partial dispatch
1901                          */
1902                         if (need_budget)
1903                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1904                         return PREP_DISPATCH_NO_TAG;
1905                 }
1906         }
1907
1908         return PREP_DISPATCH_OK;
1909 }
1910
1911 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1912 static void blk_mq_release_budgets(struct request_queue *q,
1913                 struct list_head *list)
1914 {
1915         struct request *rq;
1916
1917         list_for_each_entry(rq, list, queuelist) {
1918                 int budget_token = blk_mq_get_rq_budget_token(rq);
1919
1920                 if (budget_token >= 0)
1921                         blk_mq_put_dispatch_budget(q, budget_token);
1922         }
1923 }
1924
1925 /*
1926  * Returns true if we did some work AND can potentially do more.
1927  */
1928 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1929                              unsigned int nr_budgets)
1930 {
1931         enum prep_dispatch prep;
1932         struct request_queue *q = hctx->queue;
1933         struct request *rq, *nxt;
1934         int errors, queued;
1935         blk_status_t ret = BLK_STS_OK;
1936         LIST_HEAD(zone_list);
1937         bool needs_resource = false;
1938
1939         if (list_empty(list))
1940                 return false;
1941
1942         /*
1943          * Now process all the entries, sending them to the driver.
1944          */
1945         errors = queued = 0;
1946         do {
1947                 struct blk_mq_queue_data bd;
1948
1949                 rq = list_first_entry(list, struct request, queuelist);
1950
1951                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1952                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1953                 if (prep != PREP_DISPATCH_OK)
1954                         break;
1955
1956                 list_del_init(&rq->queuelist);
1957
1958                 bd.rq = rq;
1959
1960                 /*
1961                  * Flag last if we have no more requests, or if we have more
1962                  * but can't assign a driver tag to it.
1963                  */
1964                 if (list_empty(list))
1965                         bd.last = true;
1966                 else {
1967                         nxt = list_first_entry(list, struct request, queuelist);
1968                         bd.last = !blk_mq_get_driver_tag(nxt);
1969                 }
1970
1971                 /*
1972                  * once the request is queued to lld, no need to cover the
1973                  * budget any more
1974                  */
1975                 if (nr_budgets)
1976                         nr_budgets--;
1977                 ret = q->mq_ops->queue_rq(hctx, &bd);
1978                 switch (ret) {
1979                 case BLK_STS_OK:
1980                         queued++;
1981                         break;
1982                 case BLK_STS_RESOURCE:
1983                         needs_resource = true;
1984                         fallthrough;
1985                 case BLK_STS_DEV_RESOURCE:
1986                         blk_mq_handle_dev_resource(rq, list);
1987                         goto out;
1988                 case BLK_STS_ZONE_RESOURCE:
1989                         /*
1990                          * Move the request to zone_list and keep going through
1991                          * the dispatch list to find more requests the drive can
1992                          * accept.
1993                          */
1994                         blk_mq_handle_zone_resource(rq, &zone_list);
1995                         needs_resource = true;
1996                         break;
1997                 default:
1998                         errors++;
1999                         blk_mq_end_request(rq, ret);
2000                 }
2001         } while (!list_empty(list));
2002 out:
2003         if (!list_empty(&zone_list))
2004                 list_splice_tail_init(&zone_list, list);
2005
2006         /* If we didn't flush the entire list, we could have told the driver
2007          * there was more coming, but that turned out to be a lie.
2008          */
2009         if ((!list_empty(list) || errors || needs_resource ||
2010              ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
2011                 q->mq_ops->commit_rqs(hctx);
2012         /*
2013          * Any items that need requeuing? Stuff them into hctx->dispatch,
2014          * that is where we will continue on next queue run.
2015          */
2016         if (!list_empty(list)) {
2017                 bool needs_restart;
2018                 /* For non-shared tags, the RESTART check will suffice */
2019                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2020                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
2021
2022                 if (nr_budgets)
2023                         blk_mq_release_budgets(q, list);
2024
2025                 spin_lock(&hctx->lock);
2026                 list_splice_tail_init(list, &hctx->dispatch);
2027                 spin_unlock(&hctx->lock);
2028
2029                 /*
2030                  * Order adding requests to hctx->dispatch and checking
2031                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2032                  * in blk_mq_sched_restart(). Avoid restart code path to
2033                  * miss the new added requests to hctx->dispatch, meantime
2034                  * SCHED_RESTART is observed here.
2035                  */
2036                 smp_mb();
2037
2038                 /*
2039                  * If SCHED_RESTART was set by the caller of this function and
2040                  * it is no longer set that means that it was cleared by another
2041                  * thread and hence that a queue rerun is needed.
2042                  *
2043                  * If 'no_tag' is set, that means that we failed getting
2044                  * a driver tag with an I/O scheduler attached. If our dispatch
2045                  * waitqueue is no longer active, ensure that we run the queue
2046                  * AFTER adding our entries back to the list.
2047                  *
2048                  * If no I/O scheduler has been configured it is possible that
2049                  * the hardware queue got stopped and restarted before requests
2050                  * were pushed back onto the dispatch list. Rerun the queue to
2051                  * avoid starvation. Notes:
2052                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2053                  *   been stopped before rerunning a queue.
2054                  * - Some but not all block drivers stop a queue before
2055                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2056                  *   and dm-rq.
2057                  *
2058                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2059                  * bit is set, run queue after a delay to avoid IO stalls
2060                  * that could otherwise occur if the queue is idle.  We'll do
2061                  * similar if we couldn't get budget or couldn't lock a zone
2062                  * and SCHED_RESTART is set.
2063                  */
2064                 needs_restart = blk_mq_sched_needs_restart(hctx);
2065                 if (prep == PREP_DISPATCH_NO_BUDGET)
2066                         needs_resource = true;
2067                 if (!needs_restart ||
2068                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2069                         blk_mq_run_hw_queue(hctx, true);
2070                 else if (needs_resource)
2071                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2072
2073                 blk_mq_update_dispatch_busy(hctx, true);
2074                 return false;
2075         } else
2076                 blk_mq_update_dispatch_busy(hctx, false);
2077
2078         return (queued + errors) != 0;
2079 }
2080
2081 /**
2082  * __blk_mq_run_hw_queue - Run a hardware queue.
2083  * @hctx: Pointer to the hardware queue to run.
2084  *
2085  * Send pending requests to the hardware.
2086  */
2087 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2088 {
2089         /*
2090          * We can't run the queue inline with ints disabled. Ensure that
2091          * we catch bad users of this early.
2092          */
2093         WARN_ON_ONCE(in_interrupt());
2094
2095         blk_mq_run_dispatch_ops(hctx->queue,
2096                         blk_mq_sched_dispatch_requests(hctx));
2097 }
2098
2099 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2100 {
2101         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2102
2103         if (cpu >= nr_cpu_ids)
2104                 cpu = cpumask_first(hctx->cpumask);
2105         return cpu;
2106 }
2107
2108 /*
2109  * It'd be great if the workqueue API had a way to pass
2110  * in a mask and had some smarts for more clever placement.
2111  * For now we just round-robin here, switching for every
2112  * BLK_MQ_CPU_WORK_BATCH queued items.
2113  */
2114 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2115 {
2116         bool tried = false;
2117         int next_cpu = hctx->next_cpu;
2118
2119         if (hctx->queue->nr_hw_queues == 1)
2120                 return WORK_CPU_UNBOUND;
2121
2122         if (--hctx->next_cpu_batch <= 0) {
2123 select_cpu:
2124                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2125                                 cpu_online_mask);
2126                 if (next_cpu >= nr_cpu_ids)
2127                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2128                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2129         }
2130
2131         /*
2132          * Do unbound schedule if we can't find a online CPU for this hctx,
2133          * and it should only happen in the path of handling CPU DEAD.
2134          */
2135         if (!cpu_online(next_cpu)) {
2136                 if (!tried) {
2137                         tried = true;
2138                         goto select_cpu;
2139                 }
2140
2141                 /*
2142                  * Make sure to re-select CPU next time once after CPUs
2143                  * in hctx->cpumask become online again.
2144                  */
2145                 hctx->next_cpu = next_cpu;
2146                 hctx->next_cpu_batch = 1;
2147                 return WORK_CPU_UNBOUND;
2148         }
2149
2150         hctx->next_cpu = next_cpu;
2151         return next_cpu;
2152 }
2153
2154 /**
2155  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2156  * @hctx: Pointer to the hardware queue to run.
2157  * @async: If we want to run the queue asynchronously.
2158  * @msecs: Milliseconds of delay to wait before running the queue.
2159  *
2160  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2161  * with a delay of @msecs.
2162  */
2163 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2164                                         unsigned long msecs)
2165 {
2166         if (unlikely(blk_mq_hctx_stopped(hctx)))
2167                 return;
2168
2169         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2170                 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2171                         __blk_mq_run_hw_queue(hctx);
2172                         return;
2173                 }
2174         }
2175
2176         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2177                                     msecs_to_jiffies(msecs));
2178 }
2179
2180 /**
2181  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2182  * @hctx: Pointer to the hardware queue to run.
2183  * @msecs: Milliseconds of delay to wait before running the queue.
2184  *
2185  * Run a hardware queue asynchronously with a delay of @msecs.
2186  */
2187 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2188 {
2189         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2190 }
2191 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2192
2193 /**
2194  * blk_mq_run_hw_queue - Start to run a hardware queue.
2195  * @hctx: Pointer to the hardware queue to run.
2196  * @async: If we want to run the queue asynchronously.
2197  *
2198  * Check if the request queue is not in a quiesced state and if there are
2199  * pending requests to be sent. If this is true, run the queue to send requests
2200  * to hardware.
2201  */
2202 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2203 {
2204         bool need_run;
2205
2206         /*
2207          * When queue is quiesced, we may be switching io scheduler, or
2208          * updating nr_hw_queues, or other things, and we can't run queue
2209          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2210          *
2211          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2212          * quiesced.
2213          */
2214         __blk_mq_run_dispatch_ops(hctx->queue, false,
2215                 need_run = !blk_queue_quiesced(hctx->queue) &&
2216                 blk_mq_hctx_has_pending(hctx));
2217
2218         if (need_run)
2219                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2220 }
2221 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2222
2223 /*
2224  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2225  * scheduler.
2226  */
2227 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2228 {
2229         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2230         /*
2231          * If the IO scheduler does not respect hardware queues when
2232          * dispatching, we just don't bother with multiple HW queues and
2233          * dispatch from hctx for the current CPU since running multiple queues
2234          * just causes lock contention inside the scheduler and pointless cache
2235          * bouncing.
2236          */
2237         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2238
2239         if (!blk_mq_hctx_stopped(hctx))
2240                 return hctx;
2241         return NULL;
2242 }
2243
2244 /**
2245  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2246  * @q: Pointer to the request queue to run.
2247  * @async: If we want to run the queue asynchronously.
2248  */
2249 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2250 {
2251         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2252         unsigned long i;
2253
2254         sq_hctx = NULL;
2255         if (blk_queue_sq_sched(q))
2256                 sq_hctx = blk_mq_get_sq_hctx(q);
2257         queue_for_each_hw_ctx(q, hctx, i) {
2258                 if (blk_mq_hctx_stopped(hctx))
2259                         continue;
2260                 /*
2261                  * Dispatch from this hctx either if there's no hctx preferred
2262                  * by IO scheduler or if it has requests that bypass the
2263                  * scheduler.
2264                  */
2265                 if (!sq_hctx || sq_hctx == hctx ||
2266                     !list_empty_careful(&hctx->dispatch))
2267                         blk_mq_run_hw_queue(hctx, async);
2268         }
2269 }
2270 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2271
2272 /**
2273  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2274  * @q: Pointer to the request queue to run.
2275  * @msecs: Milliseconds of delay to wait before running the queues.
2276  */
2277 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2278 {
2279         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2280         unsigned long i;
2281
2282         sq_hctx = NULL;
2283         if (blk_queue_sq_sched(q))
2284                 sq_hctx = blk_mq_get_sq_hctx(q);
2285         queue_for_each_hw_ctx(q, hctx, i) {
2286                 if (blk_mq_hctx_stopped(hctx))
2287                         continue;
2288                 /*
2289                  * If there is already a run_work pending, leave the
2290                  * pending delay untouched. Otherwise, a hctx can stall
2291                  * if another hctx is re-delaying the other's work
2292                  * before the work executes.
2293                  */
2294                 if (delayed_work_pending(&hctx->run_work))
2295                         continue;
2296                 /*
2297                  * Dispatch from this hctx either if there's no hctx preferred
2298                  * by IO scheduler or if it has requests that bypass the
2299                  * scheduler.
2300                  */
2301                 if (!sq_hctx || sq_hctx == hctx ||
2302                     !list_empty_careful(&hctx->dispatch))
2303                         blk_mq_delay_run_hw_queue(hctx, msecs);
2304         }
2305 }
2306 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2307
2308 /*
2309  * This function is often used for pausing .queue_rq() by driver when
2310  * there isn't enough resource or some conditions aren't satisfied, and
2311  * BLK_STS_RESOURCE is usually returned.
2312  *
2313  * We do not guarantee that dispatch can be drained or blocked
2314  * after blk_mq_stop_hw_queue() returns. Please use
2315  * blk_mq_quiesce_queue() for that requirement.
2316  */
2317 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2318 {
2319         cancel_delayed_work(&hctx->run_work);
2320
2321         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2322 }
2323 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2324
2325 /*
2326  * This function is often used for pausing .queue_rq() by driver when
2327  * there isn't enough resource or some conditions aren't satisfied, and
2328  * BLK_STS_RESOURCE is usually returned.
2329  *
2330  * We do not guarantee that dispatch can be drained or blocked
2331  * after blk_mq_stop_hw_queues() returns. Please use
2332  * blk_mq_quiesce_queue() for that requirement.
2333  */
2334 void blk_mq_stop_hw_queues(struct request_queue *q)
2335 {
2336         struct blk_mq_hw_ctx *hctx;
2337         unsigned long i;
2338
2339         queue_for_each_hw_ctx(q, hctx, i)
2340                 blk_mq_stop_hw_queue(hctx);
2341 }
2342 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2343
2344 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2345 {
2346         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2347
2348         blk_mq_run_hw_queue(hctx, false);
2349 }
2350 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2351
2352 void blk_mq_start_hw_queues(struct request_queue *q)
2353 {
2354         struct blk_mq_hw_ctx *hctx;
2355         unsigned long i;
2356
2357         queue_for_each_hw_ctx(q, hctx, i)
2358                 blk_mq_start_hw_queue(hctx);
2359 }
2360 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2361
2362 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2363 {
2364         if (!blk_mq_hctx_stopped(hctx))
2365                 return;
2366
2367         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2368         blk_mq_run_hw_queue(hctx, async);
2369 }
2370 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2371
2372 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2373 {
2374         struct blk_mq_hw_ctx *hctx;
2375         unsigned long i;
2376
2377         queue_for_each_hw_ctx(q, hctx, i)
2378                 blk_mq_start_stopped_hw_queue(hctx, async);
2379 }
2380 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2381
2382 static void blk_mq_run_work_fn(struct work_struct *work)
2383 {
2384         struct blk_mq_hw_ctx *hctx;
2385
2386         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2387
2388         /*
2389          * If we are stopped, don't run the queue.
2390          */
2391         if (blk_mq_hctx_stopped(hctx))
2392                 return;
2393
2394         __blk_mq_run_hw_queue(hctx);
2395 }
2396
2397 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2398                                             struct request *rq,
2399                                             bool at_head)
2400 {
2401         struct blk_mq_ctx *ctx = rq->mq_ctx;
2402         enum hctx_type type = hctx->type;
2403
2404         lockdep_assert_held(&ctx->lock);
2405
2406         trace_block_rq_insert(rq);
2407
2408         if (at_head)
2409                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2410         else
2411                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2412 }
2413
2414 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2415                              bool at_head)
2416 {
2417         struct blk_mq_ctx *ctx = rq->mq_ctx;
2418
2419         lockdep_assert_held(&ctx->lock);
2420
2421         __blk_mq_insert_req_list(hctx, rq, at_head);
2422         blk_mq_hctx_mark_pending(hctx, ctx);
2423 }
2424
2425 /**
2426  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2427  * @rq: Pointer to request to be inserted.
2428  * @at_head: true if the request should be inserted at the head of the list.
2429  * @run_queue: If we should run the hardware queue after inserting the request.
2430  *
2431  * Should only be used carefully, when the caller knows we want to
2432  * bypass a potential IO scheduler on the target device.
2433  */
2434 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2435                                   bool run_queue)
2436 {
2437         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2438
2439         spin_lock(&hctx->lock);
2440         if (at_head)
2441                 list_add(&rq->queuelist, &hctx->dispatch);
2442         else
2443                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2444         spin_unlock(&hctx->lock);
2445
2446         if (run_queue)
2447                 blk_mq_run_hw_queue(hctx, false);
2448 }
2449
2450 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2451                             struct list_head *list)
2452
2453 {
2454         struct request *rq;
2455         enum hctx_type type = hctx->type;
2456
2457         /*
2458          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2459          * offline now
2460          */
2461         list_for_each_entry(rq, list, queuelist) {
2462                 BUG_ON(rq->mq_ctx != ctx);
2463                 trace_block_rq_insert(rq);
2464         }
2465
2466         spin_lock(&ctx->lock);
2467         list_splice_tail_init(list, &ctx->rq_lists[type]);
2468         blk_mq_hctx_mark_pending(hctx, ctx);
2469         spin_unlock(&ctx->lock);
2470 }
2471
2472 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2473                               bool from_schedule)
2474 {
2475         if (hctx->queue->mq_ops->commit_rqs) {
2476                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2477                 hctx->queue->mq_ops->commit_rqs(hctx);
2478         }
2479         *queued = 0;
2480 }
2481
2482 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2483                 unsigned int nr_segs)
2484 {
2485         int err;
2486
2487         if (bio->bi_opf & REQ_RAHEAD)
2488                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2489
2490         rq->__sector = bio->bi_iter.bi_sector;
2491         blk_rq_bio_prep(rq, bio, nr_segs);
2492
2493         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2494         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2495         WARN_ON_ONCE(err);
2496
2497         blk_account_io_start(rq);
2498 }
2499
2500 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2501                                             struct request *rq, bool last)
2502 {
2503         struct request_queue *q = rq->q;
2504         struct blk_mq_queue_data bd = {
2505                 .rq = rq,
2506                 .last = last,
2507         };
2508         blk_status_t ret;
2509
2510         /*
2511          * For OK queue, we are done. For error, caller may kill it.
2512          * Any other error (busy), just add it to our list as we
2513          * previously would have done.
2514          */
2515         ret = q->mq_ops->queue_rq(hctx, &bd);
2516         switch (ret) {
2517         case BLK_STS_OK:
2518                 blk_mq_update_dispatch_busy(hctx, false);
2519                 break;
2520         case BLK_STS_RESOURCE:
2521         case BLK_STS_DEV_RESOURCE:
2522                 blk_mq_update_dispatch_busy(hctx, true);
2523                 __blk_mq_requeue_request(rq);
2524                 break;
2525         default:
2526                 blk_mq_update_dispatch_busy(hctx, false);
2527                 break;
2528         }
2529
2530         return ret;
2531 }
2532
2533 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2534                                                 struct request *rq,
2535                                                 bool bypass_insert, bool last)
2536 {
2537         struct request_queue *q = rq->q;
2538         bool run_queue = true;
2539         int budget_token;
2540
2541         /*
2542          * RCU or SRCU read lock is needed before checking quiesced flag.
2543          *
2544          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2545          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2546          * and avoid driver to try to dispatch again.
2547          */
2548         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2549                 run_queue = false;
2550                 bypass_insert = false;
2551                 goto insert;
2552         }
2553
2554         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2555                 goto insert;
2556
2557         budget_token = blk_mq_get_dispatch_budget(q);
2558         if (budget_token < 0)
2559                 goto insert;
2560
2561         blk_mq_set_rq_budget_token(rq, budget_token);
2562
2563         if (!blk_mq_get_driver_tag(rq)) {
2564                 blk_mq_put_dispatch_budget(q, budget_token);
2565                 goto insert;
2566         }
2567
2568         return __blk_mq_issue_directly(hctx, rq, last);
2569 insert:
2570         if (bypass_insert)
2571                 return BLK_STS_RESOURCE;
2572
2573         blk_mq_sched_insert_request(rq, false, run_queue, false);
2574
2575         return BLK_STS_OK;
2576 }
2577
2578 /**
2579  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2580  * @hctx: Pointer of the associated hardware queue.
2581  * @rq: Pointer to request to be sent.
2582  *
2583  * If the device has enough resources to accept a new request now, send the
2584  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2585  * we can try send it another time in the future. Requests inserted at this
2586  * queue have higher priority.
2587  */
2588 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2589                 struct request *rq)
2590 {
2591         blk_status_t ret =
2592                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2593
2594         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2595                 blk_mq_request_bypass_insert(rq, false, true);
2596         else if (ret != BLK_STS_OK)
2597                 blk_mq_end_request(rq, ret);
2598 }
2599
2600 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2601 {
2602         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2603 }
2604
2605 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2606 {
2607         struct blk_mq_hw_ctx *hctx = NULL;
2608         struct request *rq;
2609         int queued = 0;
2610         int errors = 0;
2611
2612         while ((rq = rq_list_pop(&plug->mq_list))) {
2613                 bool last = rq_list_empty(plug->mq_list);
2614                 blk_status_t ret;
2615
2616                 if (hctx != rq->mq_hctx) {
2617                         if (hctx)
2618                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2619                         hctx = rq->mq_hctx;
2620                 }
2621
2622                 ret = blk_mq_request_issue_directly(rq, last);
2623                 switch (ret) {
2624                 case BLK_STS_OK:
2625                         queued++;
2626                         break;
2627                 case BLK_STS_RESOURCE:
2628                 case BLK_STS_DEV_RESOURCE:
2629                         blk_mq_request_bypass_insert(rq, false, true);
2630                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2631                         return;
2632                 default:
2633                         blk_mq_end_request(rq, ret);
2634                         errors++;
2635                         break;
2636                 }
2637         }
2638
2639         /*
2640          * If we didn't flush the entire list, we could have told the driver
2641          * there was more coming, but that turned out to be a lie.
2642          */
2643         if (errors)
2644                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2645 }
2646
2647 static void __blk_mq_flush_plug_list(struct request_queue *q,
2648                                      struct blk_plug *plug)
2649 {
2650         if (blk_queue_quiesced(q))
2651                 return;
2652         q->mq_ops->queue_rqs(&plug->mq_list);
2653 }
2654
2655 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2656 {
2657         struct blk_mq_hw_ctx *this_hctx = NULL;
2658         struct blk_mq_ctx *this_ctx = NULL;
2659         struct request *requeue_list = NULL;
2660         unsigned int depth = 0;
2661         LIST_HEAD(list);
2662
2663         do {
2664                 struct request *rq = rq_list_pop(&plug->mq_list);
2665
2666                 if (!this_hctx) {
2667                         this_hctx = rq->mq_hctx;
2668                         this_ctx = rq->mq_ctx;
2669                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2670                         rq_list_add(&requeue_list, rq);
2671                         continue;
2672                 }
2673                 list_add_tail(&rq->queuelist, &list);
2674                 depth++;
2675         } while (!rq_list_empty(plug->mq_list));
2676
2677         plug->mq_list = requeue_list;
2678         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2679         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2680 }
2681
2682 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2683 {
2684         struct request *rq;
2685
2686         if (rq_list_empty(plug->mq_list))
2687                 return;
2688         plug->rq_count = 0;
2689
2690         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2691                 struct request_queue *q;
2692
2693                 rq = rq_list_peek(&plug->mq_list);
2694                 q = rq->q;
2695
2696                 /*
2697                  * Peek first request and see if we have a ->queue_rqs() hook.
2698                  * If we do, we can dispatch the whole plug list in one go. We
2699                  * already know at this point that all requests belong to the
2700                  * same queue, caller must ensure that's the case.
2701                  *
2702                  * Since we pass off the full list to the driver at this point,
2703                  * we do not increment the active request count for the queue.
2704                  * Bypass shared tags for now because of that.
2705                  */
2706                 if (q->mq_ops->queue_rqs &&
2707                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2708                         blk_mq_run_dispatch_ops(q,
2709                                 __blk_mq_flush_plug_list(q, plug));
2710                         if (rq_list_empty(plug->mq_list))
2711                                 return;
2712                 }
2713
2714                 blk_mq_run_dispatch_ops(q,
2715                                 blk_mq_plug_issue_direct(plug, false));
2716                 if (rq_list_empty(plug->mq_list))
2717                         return;
2718         }
2719
2720         do {
2721                 blk_mq_dispatch_plug_list(plug, from_schedule);
2722         } while (!rq_list_empty(plug->mq_list));
2723 }
2724
2725 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2726                 struct list_head *list)
2727 {
2728         int queued = 0;
2729         int errors = 0;
2730
2731         while (!list_empty(list)) {
2732                 blk_status_t ret;
2733                 struct request *rq = list_first_entry(list, struct request,
2734                                 queuelist);
2735
2736                 list_del_init(&rq->queuelist);
2737                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2738                 if (ret != BLK_STS_OK) {
2739                         errors++;
2740                         if (ret == BLK_STS_RESOURCE ||
2741                                         ret == BLK_STS_DEV_RESOURCE) {
2742                                 blk_mq_request_bypass_insert(rq, false,
2743                                                         list_empty(list));
2744                                 break;
2745                         }
2746                         blk_mq_end_request(rq, ret);
2747                 } else
2748                         queued++;
2749         }
2750
2751         /*
2752          * If we didn't flush the entire list, we could have told
2753          * the driver there was more coming, but that turned out to
2754          * be a lie.
2755          */
2756         if ((!list_empty(list) || errors) &&
2757              hctx->queue->mq_ops->commit_rqs && queued)
2758                 hctx->queue->mq_ops->commit_rqs(hctx);
2759 }
2760
2761 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2762                                      struct bio *bio, unsigned int nr_segs)
2763 {
2764         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2765                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2766                         return true;
2767                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2768                         return true;
2769         }
2770         return false;
2771 }
2772
2773 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2774                                                struct blk_plug *plug,
2775                                                struct bio *bio,
2776                                                unsigned int nsegs)
2777 {
2778         struct blk_mq_alloc_data data = {
2779                 .q              = q,
2780                 .nr_tags        = 1,
2781                 .cmd_flags      = bio->bi_opf,
2782         };
2783         struct request *rq;
2784
2785         if (unlikely(bio_queue_enter(bio)))
2786                 return NULL;
2787
2788         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2789                 goto queue_exit;
2790
2791         rq_qos_throttle(q, bio);
2792
2793         if (plug) {
2794                 data.nr_tags = plug->nr_ios;
2795                 plug->nr_ios = 1;
2796                 data.cached_rq = &plug->cached_rq;
2797         }
2798
2799         rq = __blk_mq_alloc_requests(&data);
2800         if (rq)
2801                 return rq;
2802         rq_qos_cleanup(q, bio);
2803         if (bio->bi_opf & REQ_NOWAIT)
2804                 bio_wouldblock_error(bio);
2805 queue_exit:
2806         blk_queue_exit(q);
2807         return NULL;
2808 }
2809
2810 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2811                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2812 {
2813         struct request *rq;
2814
2815         if (!plug)
2816                 return NULL;
2817         rq = rq_list_peek(&plug->cached_rq);
2818         if (!rq || rq->q != q)
2819                 return NULL;
2820
2821         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2822                 *bio = NULL;
2823                 return NULL;
2824         }
2825
2826         if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2827                 return NULL;
2828         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2829                 return NULL;
2830
2831         /*
2832          * If any qos ->throttle() end up blocking, we will have flushed the
2833          * plug and hence killed the cached_rq list as well. Pop this entry
2834          * before we throttle.
2835          */
2836         plug->cached_rq = rq_list_next(rq);
2837         rq_qos_throttle(q, *bio);
2838
2839         rq->cmd_flags = (*bio)->bi_opf;
2840         INIT_LIST_HEAD(&rq->queuelist);
2841         return rq;
2842 }
2843
2844 static void bio_set_ioprio(struct bio *bio)
2845 {
2846         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2847         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2848                 bio->bi_ioprio = get_current_ioprio();
2849         blkcg_set_ioprio(bio);
2850 }
2851
2852 /**
2853  * blk_mq_submit_bio - Create and send a request to block device.
2854  * @bio: Bio pointer.
2855  *
2856  * Builds up a request structure from @q and @bio and send to the device. The
2857  * request may not be queued directly to hardware if:
2858  * * This request can be merged with another one
2859  * * We want to place request at plug queue for possible future merging
2860  * * There is an IO scheduler active at this queue
2861  *
2862  * It will not queue the request if there is an error with the bio, or at the
2863  * request creation.
2864  */
2865 void blk_mq_submit_bio(struct bio *bio)
2866 {
2867         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2868         struct blk_plug *plug = blk_mq_plug(bio);
2869         const int is_sync = op_is_sync(bio->bi_opf);
2870         struct request *rq;
2871         unsigned int nr_segs = 1;
2872         blk_status_t ret;
2873
2874         bio = blk_queue_bounce(bio, q);
2875         if (bio_may_exceed_limits(bio, &q->limits))
2876                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2877
2878         if (!bio_integrity_prep(bio))
2879                 return;
2880
2881         bio_set_ioprio(bio);
2882
2883         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2884         if (!rq) {
2885                 if (!bio)
2886                         return;
2887                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2888                 if (unlikely(!rq))
2889                         return;
2890         }
2891
2892         trace_block_getrq(bio);
2893
2894         rq_qos_track(q, rq, bio);
2895
2896         blk_mq_bio_to_request(rq, bio, nr_segs);
2897
2898         ret = blk_crypto_init_request(rq);
2899         if (ret != BLK_STS_OK) {
2900                 bio->bi_status = ret;
2901                 bio_endio(bio);
2902                 blk_mq_free_request(rq);
2903                 return;
2904         }
2905
2906         if (op_is_flush(bio->bi_opf)) {
2907                 blk_insert_flush(rq);
2908                 return;
2909         }
2910
2911         if (plug)
2912                 blk_add_rq_to_plug(plug, rq);
2913         else if ((rq->rq_flags & RQF_ELV) ||
2914                  (rq->mq_hctx->dispatch_busy &&
2915                   (q->nr_hw_queues == 1 || !is_sync)))
2916                 blk_mq_sched_insert_request(rq, false, true, true);
2917         else
2918                 blk_mq_run_dispatch_ops(rq->q,
2919                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2920 }
2921
2922 #ifdef CONFIG_BLK_MQ_STACKING
2923 /**
2924  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2925  * @rq: the request being queued
2926  */
2927 blk_status_t blk_insert_cloned_request(struct request *rq)
2928 {
2929         struct request_queue *q = rq->q;
2930         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2931         blk_status_t ret;
2932
2933         if (blk_rq_sectors(rq) > max_sectors) {
2934                 /*
2935                  * SCSI device does not have a good way to return if
2936                  * Write Same/Zero is actually supported. If a device rejects
2937                  * a non-read/write command (discard, write same,etc.) the
2938                  * low-level device driver will set the relevant queue limit to
2939                  * 0 to prevent blk-lib from issuing more of the offending
2940                  * operations. Commands queued prior to the queue limit being
2941                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2942                  * errors being propagated to upper layers.
2943                  */
2944                 if (max_sectors == 0)
2945                         return BLK_STS_NOTSUPP;
2946
2947                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2948                         __func__, blk_rq_sectors(rq), max_sectors);
2949                 return BLK_STS_IOERR;
2950         }
2951
2952         /*
2953          * The queue settings related to segment counting may differ from the
2954          * original queue.
2955          */
2956         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2957         if (rq->nr_phys_segments > queue_max_segments(q)) {
2958                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2959                         __func__, rq->nr_phys_segments, queue_max_segments(q));
2960                 return BLK_STS_IOERR;
2961         }
2962
2963         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2964                 return BLK_STS_IOERR;
2965
2966         if (blk_crypto_insert_cloned_request(rq))
2967                 return BLK_STS_IOERR;
2968
2969         blk_account_io_start(rq);
2970
2971         /*
2972          * Since we have a scheduler attached on the top device,
2973          * bypass a potential scheduler on the bottom device for
2974          * insert.
2975          */
2976         blk_mq_run_dispatch_ops(q,
2977                         ret = blk_mq_request_issue_directly(rq, true));
2978         if (ret)
2979                 blk_account_io_done(rq, ktime_get_ns());
2980         return ret;
2981 }
2982 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2983
2984 /**
2985  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2986  * @rq: the clone request to be cleaned up
2987  *
2988  * Description:
2989  *     Free all bios in @rq for a cloned request.
2990  */
2991 void blk_rq_unprep_clone(struct request *rq)
2992 {
2993         struct bio *bio;
2994
2995         while ((bio = rq->bio) != NULL) {
2996                 rq->bio = bio->bi_next;
2997
2998                 bio_put(bio);
2999         }
3000 }
3001 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3002
3003 /**
3004  * blk_rq_prep_clone - Helper function to setup clone request
3005  * @rq: the request to be setup
3006  * @rq_src: original request to be cloned
3007  * @bs: bio_set that bios for clone are allocated from
3008  * @gfp_mask: memory allocation mask for bio
3009  * @bio_ctr: setup function to be called for each clone bio.
3010  *           Returns %0 for success, non %0 for failure.
3011  * @data: private data to be passed to @bio_ctr
3012  *
3013  * Description:
3014  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3015  *     Also, pages which the original bios are pointing to are not copied
3016  *     and the cloned bios just point same pages.
3017  *     So cloned bios must be completed before original bios, which means
3018  *     the caller must complete @rq before @rq_src.
3019  */
3020 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3021                       struct bio_set *bs, gfp_t gfp_mask,
3022                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3023                       void *data)
3024 {
3025         struct bio *bio, *bio_src;
3026
3027         if (!bs)
3028                 bs = &fs_bio_set;
3029
3030         __rq_for_each_bio(bio_src, rq_src) {
3031                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3032                                       bs);
3033                 if (!bio)
3034                         goto free_and_out;
3035
3036                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3037                         goto free_and_out;
3038
3039                 if (rq->bio) {
3040                         rq->biotail->bi_next = bio;
3041                         rq->biotail = bio;
3042                 } else {
3043                         rq->bio = rq->biotail = bio;
3044                 }
3045                 bio = NULL;
3046         }
3047
3048         /* Copy attributes of the original request to the clone request. */
3049         rq->__sector = blk_rq_pos(rq_src);
3050         rq->__data_len = blk_rq_bytes(rq_src);
3051         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3052                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3053                 rq->special_vec = rq_src->special_vec;
3054         }
3055         rq->nr_phys_segments = rq_src->nr_phys_segments;
3056         rq->ioprio = rq_src->ioprio;
3057
3058         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3059                 goto free_and_out;
3060
3061         return 0;
3062
3063 free_and_out:
3064         if (bio)
3065                 bio_put(bio);
3066         blk_rq_unprep_clone(rq);
3067
3068         return -ENOMEM;
3069 }
3070 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3071 #endif /* CONFIG_BLK_MQ_STACKING */
3072
3073 /*
3074  * Steal bios from a request and add them to a bio list.
3075  * The request must not have been partially completed before.
3076  */
3077 void blk_steal_bios(struct bio_list *list, struct request *rq)
3078 {
3079         if (rq->bio) {
3080                 if (list->tail)
3081                         list->tail->bi_next = rq->bio;
3082                 else
3083                         list->head = rq->bio;
3084                 list->tail = rq->biotail;
3085
3086                 rq->bio = NULL;
3087                 rq->biotail = NULL;
3088         }
3089
3090         rq->__data_len = 0;
3091 }
3092 EXPORT_SYMBOL_GPL(blk_steal_bios);
3093
3094 static size_t order_to_size(unsigned int order)
3095 {
3096         return (size_t)PAGE_SIZE << order;
3097 }
3098
3099 /* called before freeing request pool in @tags */
3100 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3101                                     struct blk_mq_tags *tags)
3102 {
3103         struct page *page;
3104         unsigned long flags;
3105
3106         /* There is no need to clear a driver tags own mapping */
3107         if (drv_tags == tags)
3108                 return;
3109
3110         list_for_each_entry(page, &tags->page_list, lru) {
3111                 unsigned long start = (unsigned long)page_address(page);
3112                 unsigned long end = start + order_to_size(page->private);
3113                 int i;
3114
3115                 for (i = 0; i < drv_tags->nr_tags; i++) {
3116                         struct request *rq = drv_tags->rqs[i];
3117                         unsigned long rq_addr = (unsigned long)rq;
3118
3119                         if (rq_addr >= start && rq_addr < end) {
3120                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3121                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3122                         }
3123                 }
3124         }
3125
3126         /*
3127          * Wait until all pending iteration is done.
3128          *
3129          * Request reference is cleared and it is guaranteed to be observed
3130          * after the ->lock is released.
3131          */
3132         spin_lock_irqsave(&drv_tags->lock, flags);
3133         spin_unlock_irqrestore(&drv_tags->lock, flags);
3134 }
3135
3136 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3137                      unsigned int hctx_idx)
3138 {
3139         struct blk_mq_tags *drv_tags;
3140         struct page *page;
3141
3142         if (list_empty(&tags->page_list))
3143                 return;
3144
3145         if (blk_mq_is_shared_tags(set->flags))
3146                 drv_tags = set->shared_tags;
3147         else
3148                 drv_tags = set->tags[hctx_idx];
3149
3150         if (tags->static_rqs && set->ops->exit_request) {
3151                 int i;
3152
3153                 for (i = 0; i < tags->nr_tags; i++) {
3154                         struct request *rq = tags->static_rqs[i];
3155
3156                         if (!rq)
3157                                 continue;
3158                         set->ops->exit_request(set, rq, hctx_idx);
3159                         tags->static_rqs[i] = NULL;
3160                 }
3161         }
3162
3163         blk_mq_clear_rq_mapping(drv_tags, tags);
3164
3165         while (!list_empty(&tags->page_list)) {
3166                 page = list_first_entry(&tags->page_list, struct page, lru);
3167                 list_del_init(&page->lru);
3168                 /*
3169                  * Remove kmemleak object previously allocated in
3170                  * blk_mq_alloc_rqs().
3171                  */
3172                 kmemleak_free(page_address(page));
3173                 __free_pages(page, page->private);
3174         }
3175 }
3176
3177 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3178 {
3179         kfree(tags->rqs);
3180         tags->rqs = NULL;
3181         kfree(tags->static_rqs);
3182         tags->static_rqs = NULL;
3183
3184         blk_mq_free_tags(tags);
3185 }
3186
3187 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3188                 unsigned int hctx_idx)
3189 {
3190         int i;
3191
3192         for (i = 0; i < set->nr_maps; i++) {
3193                 unsigned int start = set->map[i].queue_offset;
3194                 unsigned int end = start + set->map[i].nr_queues;
3195
3196                 if (hctx_idx >= start && hctx_idx < end)
3197                         break;
3198         }
3199
3200         if (i >= set->nr_maps)
3201                 i = HCTX_TYPE_DEFAULT;
3202
3203         return i;
3204 }
3205
3206 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3207                 unsigned int hctx_idx)
3208 {
3209         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3210
3211         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3212 }
3213
3214 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3215                                                unsigned int hctx_idx,
3216                                                unsigned int nr_tags,
3217                                                unsigned int reserved_tags)
3218 {
3219         int node = blk_mq_get_hctx_node(set, hctx_idx);
3220         struct blk_mq_tags *tags;
3221
3222         if (node == NUMA_NO_NODE)
3223                 node = set->numa_node;
3224
3225         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3226                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3227         if (!tags)
3228                 return NULL;
3229
3230         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3231                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3232                                  node);
3233         if (!tags->rqs) {
3234                 blk_mq_free_tags(tags);
3235                 return NULL;
3236         }
3237
3238         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3239                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3240                                         node);
3241         if (!tags->static_rqs) {
3242                 kfree(tags->rqs);
3243                 blk_mq_free_tags(tags);
3244                 return NULL;
3245         }
3246
3247         return tags;
3248 }
3249
3250 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3251                                unsigned int hctx_idx, int node)
3252 {
3253         int ret;
3254
3255         if (set->ops->init_request) {
3256                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3257                 if (ret)
3258                         return ret;
3259         }
3260
3261         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3262         return 0;
3263 }
3264
3265 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3266                             struct blk_mq_tags *tags,
3267                             unsigned int hctx_idx, unsigned int depth)
3268 {
3269         unsigned int i, j, entries_per_page, max_order = 4;
3270         int node = blk_mq_get_hctx_node(set, hctx_idx);
3271         size_t rq_size, left;
3272
3273         if (node == NUMA_NO_NODE)
3274                 node = set->numa_node;
3275
3276         INIT_LIST_HEAD(&tags->page_list);
3277
3278         /*
3279          * rq_size is the size of the request plus driver payload, rounded
3280          * to the cacheline size
3281          */
3282         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3283                                 cache_line_size());
3284         left = rq_size * depth;
3285
3286         for (i = 0; i < depth; ) {
3287                 int this_order = max_order;
3288                 struct page *page;
3289                 int to_do;
3290                 void *p;
3291
3292                 while (this_order && left < order_to_size(this_order - 1))
3293                         this_order--;
3294
3295                 do {
3296                         page = alloc_pages_node(node,
3297                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3298                                 this_order);
3299                         if (page)
3300                                 break;
3301                         if (!this_order--)
3302                                 break;
3303                         if (order_to_size(this_order) < rq_size)
3304                                 break;
3305                 } while (1);
3306
3307                 if (!page)
3308                         goto fail;
3309
3310                 page->private = this_order;
3311                 list_add_tail(&page->lru, &tags->page_list);
3312
3313                 p = page_address(page);
3314                 /*
3315                  * Allow kmemleak to scan these pages as they contain pointers
3316                  * to additional allocations like via ops->init_request().
3317                  */
3318                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3319                 entries_per_page = order_to_size(this_order) / rq_size;
3320                 to_do = min(entries_per_page, depth - i);
3321                 left -= to_do * rq_size;
3322                 for (j = 0; j < to_do; j++) {
3323                         struct request *rq = p;
3324
3325                         tags->static_rqs[i] = rq;
3326                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3327                                 tags->static_rqs[i] = NULL;
3328                                 goto fail;
3329                         }
3330
3331                         p += rq_size;
3332                         i++;
3333                 }
3334         }
3335         return 0;
3336
3337 fail:
3338         blk_mq_free_rqs(set, tags, hctx_idx);
3339         return -ENOMEM;
3340 }
3341
3342 struct rq_iter_data {
3343         struct blk_mq_hw_ctx *hctx;
3344         bool has_rq;
3345 };
3346
3347 static bool blk_mq_has_request(struct request *rq, void *data)
3348 {
3349         struct rq_iter_data *iter_data = data;
3350
3351         if (rq->mq_hctx != iter_data->hctx)
3352                 return true;
3353         iter_data->has_rq = true;
3354         return false;
3355 }
3356
3357 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3358 {
3359         struct blk_mq_tags *tags = hctx->sched_tags ?
3360                         hctx->sched_tags : hctx->tags;
3361         struct rq_iter_data data = {
3362                 .hctx   = hctx,
3363         };
3364
3365         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3366         return data.has_rq;
3367 }
3368
3369 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3370                 struct blk_mq_hw_ctx *hctx)
3371 {
3372         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3373                 return false;
3374         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3375                 return false;
3376         return true;
3377 }
3378
3379 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3380 {
3381         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3382                         struct blk_mq_hw_ctx, cpuhp_online);
3383
3384         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3385             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3386                 return 0;
3387
3388         /*
3389          * Prevent new request from being allocated on the current hctx.
3390          *
3391          * The smp_mb__after_atomic() Pairs with the implied barrier in
3392          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3393          * seen once we return from the tag allocator.
3394          */
3395         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3396         smp_mb__after_atomic();
3397
3398         /*
3399          * Try to grab a reference to the queue and wait for any outstanding
3400          * requests.  If we could not grab a reference the queue has been
3401          * frozen and there are no requests.
3402          */
3403         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3404                 while (blk_mq_hctx_has_requests(hctx))
3405                         msleep(5);
3406                 percpu_ref_put(&hctx->queue->q_usage_counter);
3407         }
3408
3409         return 0;
3410 }
3411
3412 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3413 {
3414         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3415                         struct blk_mq_hw_ctx, cpuhp_online);
3416
3417         if (cpumask_test_cpu(cpu, hctx->cpumask))
3418                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3419         return 0;
3420 }
3421
3422 /*
3423  * 'cpu' is going away. splice any existing rq_list entries from this
3424  * software queue to the hw queue dispatch list, and ensure that it
3425  * gets run.
3426  */
3427 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3428 {
3429         struct blk_mq_hw_ctx *hctx;
3430         struct blk_mq_ctx *ctx;
3431         LIST_HEAD(tmp);
3432         enum hctx_type type;
3433
3434         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3435         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3436                 return 0;
3437
3438         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3439         type = hctx->type;
3440
3441         spin_lock(&ctx->lock);
3442         if (!list_empty(&ctx->rq_lists[type])) {
3443                 list_splice_init(&ctx->rq_lists[type], &tmp);
3444                 blk_mq_hctx_clear_pending(hctx, ctx);
3445         }
3446         spin_unlock(&ctx->lock);
3447
3448         if (list_empty(&tmp))
3449                 return 0;
3450
3451         spin_lock(&hctx->lock);
3452         list_splice_tail_init(&tmp, &hctx->dispatch);
3453         spin_unlock(&hctx->lock);
3454
3455         blk_mq_run_hw_queue(hctx, true);
3456         return 0;
3457 }
3458
3459 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3460 {
3461         if (!(hctx->flags & BLK_MQ_F_STACKING))
3462                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3463                                                     &hctx->cpuhp_online);
3464         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3465                                             &hctx->cpuhp_dead);
3466 }
3467
3468 /*
3469  * Before freeing hw queue, clearing the flush request reference in
3470  * tags->rqs[] for avoiding potential UAF.
3471  */
3472 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3473                 unsigned int queue_depth, struct request *flush_rq)
3474 {
3475         int i;
3476         unsigned long flags;
3477
3478         /* The hw queue may not be mapped yet */
3479         if (!tags)
3480                 return;
3481
3482         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3483
3484         for (i = 0; i < queue_depth; i++)
3485                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3486
3487         /*
3488          * Wait until all pending iteration is done.
3489          *
3490          * Request reference is cleared and it is guaranteed to be observed
3491          * after the ->lock is released.
3492          */
3493         spin_lock_irqsave(&tags->lock, flags);
3494         spin_unlock_irqrestore(&tags->lock, flags);
3495 }
3496
3497 /* hctx->ctxs will be freed in queue's release handler */
3498 static void blk_mq_exit_hctx(struct request_queue *q,
3499                 struct blk_mq_tag_set *set,
3500                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3501 {
3502         struct request *flush_rq = hctx->fq->flush_rq;
3503
3504         if (blk_mq_hw_queue_mapped(hctx))
3505                 blk_mq_tag_idle(hctx);
3506
3507         if (blk_queue_init_done(q))
3508                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3509                                 set->queue_depth, flush_rq);
3510         if (set->ops->exit_request)
3511                 set->ops->exit_request(set, flush_rq, hctx_idx);
3512
3513         if (set->ops->exit_hctx)
3514                 set->ops->exit_hctx(hctx, hctx_idx);
3515
3516         blk_mq_remove_cpuhp(hctx);
3517
3518         xa_erase(&q->hctx_table, hctx_idx);
3519
3520         spin_lock(&q->unused_hctx_lock);
3521         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3522         spin_unlock(&q->unused_hctx_lock);
3523 }
3524
3525 static void blk_mq_exit_hw_queues(struct request_queue *q,
3526                 struct blk_mq_tag_set *set, int nr_queue)
3527 {
3528         struct blk_mq_hw_ctx *hctx;
3529         unsigned long i;
3530
3531         queue_for_each_hw_ctx(q, hctx, i) {
3532                 if (i == nr_queue)
3533                         break;
3534                 blk_mq_exit_hctx(q, set, hctx, i);
3535         }
3536 }
3537
3538 static int blk_mq_init_hctx(struct request_queue *q,
3539                 struct blk_mq_tag_set *set,
3540                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3541 {
3542         hctx->queue_num = hctx_idx;
3543
3544         if (!(hctx->flags & BLK_MQ_F_STACKING))
3545                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3546                                 &hctx->cpuhp_online);
3547         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3548
3549         hctx->tags = set->tags[hctx_idx];
3550
3551         if (set->ops->init_hctx &&
3552             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3553                 goto unregister_cpu_notifier;
3554
3555         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3556                                 hctx->numa_node))
3557                 goto exit_hctx;
3558
3559         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3560                 goto exit_flush_rq;
3561
3562         return 0;
3563
3564  exit_flush_rq:
3565         if (set->ops->exit_request)
3566                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3567  exit_hctx:
3568         if (set->ops->exit_hctx)
3569                 set->ops->exit_hctx(hctx, hctx_idx);
3570  unregister_cpu_notifier:
3571         blk_mq_remove_cpuhp(hctx);
3572         return -1;
3573 }
3574
3575 static struct blk_mq_hw_ctx *
3576 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3577                 int node)
3578 {
3579         struct blk_mq_hw_ctx *hctx;
3580         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3581
3582         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3583         if (!hctx)
3584                 goto fail_alloc_hctx;
3585
3586         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3587                 goto free_hctx;
3588
3589         atomic_set(&hctx->nr_active, 0);
3590         if (node == NUMA_NO_NODE)
3591                 node = set->numa_node;
3592         hctx->numa_node = node;
3593
3594         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3595         spin_lock_init(&hctx->lock);
3596         INIT_LIST_HEAD(&hctx->dispatch);
3597         hctx->queue = q;
3598         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3599
3600         INIT_LIST_HEAD(&hctx->hctx_list);
3601
3602         /*
3603          * Allocate space for all possible cpus to avoid allocation at
3604          * runtime
3605          */
3606         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3607                         gfp, node);
3608         if (!hctx->ctxs)
3609                 goto free_cpumask;
3610
3611         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3612                                 gfp, node, false, false))
3613                 goto free_ctxs;
3614         hctx->nr_ctx = 0;
3615
3616         spin_lock_init(&hctx->dispatch_wait_lock);
3617         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3618         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3619
3620         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3621         if (!hctx->fq)
3622                 goto free_bitmap;
3623
3624         blk_mq_hctx_kobj_init(hctx);
3625
3626         return hctx;
3627
3628  free_bitmap:
3629         sbitmap_free(&hctx->ctx_map);
3630  free_ctxs:
3631         kfree(hctx->ctxs);
3632  free_cpumask:
3633         free_cpumask_var(hctx->cpumask);
3634  free_hctx:
3635         kfree(hctx);
3636  fail_alloc_hctx:
3637         return NULL;
3638 }
3639
3640 static void blk_mq_init_cpu_queues(struct request_queue *q,
3641                                    unsigned int nr_hw_queues)
3642 {
3643         struct blk_mq_tag_set *set = q->tag_set;
3644         unsigned int i, j;
3645
3646         for_each_possible_cpu(i) {
3647                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3648                 struct blk_mq_hw_ctx *hctx;
3649                 int k;
3650
3651                 __ctx->cpu = i;
3652                 spin_lock_init(&__ctx->lock);
3653                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3654                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3655
3656                 __ctx->queue = q;
3657
3658                 /*
3659                  * Set local node, IFF we have more than one hw queue. If
3660                  * not, we remain on the home node of the device
3661                  */
3662                 for (j = 0; j < set->nr_maps; j++) {
3663                         hctx = blk_mq_map_queue_type(q, j, i);
3664                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3665                                 hctx->numa_node = cpu_to_node(i);
3666                 }
3667         }
3668 }
3669
3670 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3671                                              unsigned int hctx_idx,
3672                                              unsigned int depth)
3673 {
3674         struct blk_mq_tags *tags;
3675         int ret;
3676
3677         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3678         if (!tags)
3679                 return NULL;
3680
3681         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3682         if (ret) {
3683                 blk_mq_free_rq_map(tags);
3684                 return NULL;
3685         }
3686
3687         return tags;
3688 }
3689
3690 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3691                                        int hctx_idx)
3692 {
3693         if (blk_mq_is_shared_tags(set->flags)) {
3694                 set->tags[hctx_idx] = set->shared_tags;
3695
3696                 return true;
3697         }
3698
3699         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3700                                                        set->queue_depth);
3701
3702         return set->tags[hctx_idx];
3703 }
3704
3705 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3706                              struct blk_mq_tags *tags,
3707                              unsigned int hctx_idx)
3708 {
3709         if (tags) {
3710                 blk_mq_free_rqs(set, tags, hctx_idx);
3711                 blk_mq_free_rq_map(tags);
3712         }
3713 }
3714
3715 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3716                                       unsigned int hctx_idx)
3717 {
3718         if (!blk_mq_is_shared_tags(set->flags))
3719                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3720
3721         set->tags[hctx_idx] = NULL;
3722 }
3723
3724 static void blk_mq_map_swqueue(struct request_queue *q)
3725 {
3726         unsigned int j, hctx_idx;
3727         unsigned long i;
3728         struct blk_mq_hw_ctx *hctx;
3729         struct blk_mq_ctx *ctx;
3730         struct blk_mq_tag_set *set = q->tag_set;
3731
3732         queue_for_each_hw_ctx(q, hctx, i) {
3733                 cpumask_clear(hctx->cpumask);
3734                 hctx->nr_ctx = 0;
3735                 hctx->dispatch_from = NULL;
3736         }
3737
3738         /*
3739          * Map software to hardware queues.
3740          *
3741          * If the cpu isn't present, the cpu is mapped to first hctx.
3742          */
3743         for_each_possible_cpu(i) {
3744
3745                 ctx = per_cpu_ptr(q->queue_ctx, i);
3746                 for (j = 0; j < set->nr_maps; j++) {
3747                         if (!set->map[j].nr_queues) {
3748                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3749                                                 HCTX_TYPE_DEFAULT, i);
3750                                 continue;
3751                         }
3752                         hctx_idx = set->map[j].mq_map[i];
3753                         /* unmapped hw queue can be remapped after CPU topo changed */
3754                         if (!set->tags[hctx_idx] &&
3755                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3756                                 /*
3757                                  * If tags initialization fail for some hctx,
3758                                  * that hctx won't be brought online.  In this
3759                                  * case, remap the current ctx to hctx[0] which
3760                                  * is guaranteed to always have tags allocated
3761                                  */
3762                                 set->map[j].mq_map[i] = 0;
3763                         }
3764
3765                         hctx = blk_mq_map_queue_type(q, j, i);
3766                         ctx->hctxs[j] = hctx;
3767                         /*
3768                          * If the CPU is already set in the mask, then we've
3769                          * mapped this one already. This can happen if
3770                          * devices share queues across queue maps.
3771                          */
3772                         if (cpumask_test_cpu(i, hctx->cpumask))
3773                                 continue;
3774
3775                         cpumask_set_cpu(i, hctx->cpumask);
3776                         hctx->type = j;
3777                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3778                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3779
3780                         /*
3781                          * If the nr_ctx type overflows, we have exceeded the
3782                          * amount of sw queues we can support.
3783                          */
3784                         BUG_ON(!hctx->nr_ctx);
3785                 }
3786
3787                 for (; j < HCTX_MAX_TYPES; j++)
3788                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3789                                         HCTX_TYPE_DEFAULT, i);
3790         }
3791
3792         queue_for_each_hw_ctx(q, hctx, i) {
3793                 /*
3794                  * If no software queues are mapped to this hardware queue,
3795                  * disable it and free the request entries.
3796                  */
3797                 if (!hctx->nr_ctx) {
3798                         /* Never unmap queue 0.  We need it as a
3799                          * fallback in case of a new remap fails
3800                          * allocation
3801                          */
3802                         if (i)
3803                                 __blk_mq_free_map_and_rqs(set, i);
3804
3805                         hctx->tags = NULL;
3806                         continue;
3807                 }
3808
3809                 hctx->tags = set->tags[i];
3810                 WARN_ON(!hctx->tags);
3811
3812                 /*
3813                  * Set the map size to the number of mapped software queues.
3814                  * This is more accurate and more efficient than looping
3815                  * over all possibly mapped software queues.
3816                  */
3817                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3818
3819                 /*
3820                  * Initialize batch roundrobin counts
3821                  */
3822                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3823                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3824         }
3825 }
3826
3827 /*
3828  * Caller needs to ensure that we're either frozen/quiesced, or that
3829  * the queue isn't live yet.
3830  */
3831 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3832 {
3833         struct blk_mq_hw_ctx *hctx;
3834         unsigned long i;
3835
3836         queue_for_each_hw_ctx(q, hctx, i) {
3837                 if (shared) {
3838                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3839                 } else {
3840                         blk_mq_tag_idle(hctx);
3841                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3842                 }
3843         }
3844 }
3845
3846 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3847                                          bool shared)
3848 {
3849         struct request_queue *q;
3850
3851         lockdep_assert_held(&set->tag_list_lock);
3852
3853         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3854                 blk_mq_freeze_queue(q);
3855                 queue_set_hctx_shared(q, shared);
3856                 blk_mq_unfreeze_queue(q);
3857         }
3858 }
3859
3860 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3861 {
3862         struct blk_mq_tag_set *set = q->tag_set;
3863
3864         mutex_lock(&set->tag_list_lock);
3865         list_del(&q->tag_set_list);
3866         if (list_is_singular(&set->tag_list)) {
3867                 /* just transitioned to unshared */
3868                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3869                 /* update existing queue */
3870                 blk_mq_update_tag_set_shared(set, false);
3871         }
3872         mutex_unlock(&set->tag_list_lock);
3873         INIT_LIST_HEAD(&q->tag_set_list);
3874 }
3875
3876 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3877                                      struct request_queue *q)
3878 {
3879         mutex_lock(&set->tag_list_lock);
3880
3881         /*
3882          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3883          */
3884         if (!list_empty(&set->tag_list) &&
3885             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3886                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3887                 /* update existing queue */
3888                 blk_mq_update_tag_set_shared(set, true);
3889         }
3890         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3891                 queue_set_hctx_shared(q, true);
3892         list_add_tail(&q->tag_set_list, &set->tag_list);
3893
3894         mutex_unlock(&set->tag_list_lock);
3895 }
3896
3897 /* All allocations will be freed in release handler of q->mq_kobj */
3898 static int blk_mq_alloc_ctxs(struct request_queue *q)
3899 {
3900         struct blk_mq_ctxs *ctxs;
3901         int cpu;
3902
3903         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3904         if (!ctxs)
3905                 return -ENOMEM;
3906
3907         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3908         if (!ctxs->queue_ctx)
3909                 goto fail;
3910
3911         for_each_possible_cpu(cpu) {
3912                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3913                 ctx->ctxs = ctxs;
3914         }
3915
3916         q->mq_kobj = &ctxs->kobj;
3917         q->queue_ctx = ctxs->queue_ctx;
3918
3919         return 0;
3920  fail:
3921         kfree(ctxs);
3922         return -ENOMEM;
3923 }
3924
3925 /*
3926  * It is the actual release handler for mq, but we do it from
3927  * request queue's release handler for avoiding use-after-free
3928  * and headache because q->mq_kobj shouldn't have been introduced,
3929  * but we can't group ctx/kctx kobj without it.
3930  */
3931 void blk_mq_release(struct request_queue *q)
3932 {
3933         struct blk_mq_hw_ctx *hctx, *next;
3934         unsigned long i;
3935
3936         queue_for_each_hw_ctx(q, hctx, i)
3937                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3938
3939         /* all hctx are in .unused_hctx_list now */
3940         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3941                 list_del_init(&hctx->hctx_list);
3942                 kobject_put(&hctx->kobj);
3943         }
3944
3945         xa_destroy(&q->hctx_table);
3946
3947         /*
3948          * release .mq_kobj and sw queue's kobject now because
3949          * both share lifetime with request queue.
3950          */
3951         blk_mq_sysfs_deinit(q);
3952 }
3953
3954 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3955                 void *queuedata)
3956 {
3957         struct request_queue *q;
3958         int ret;
3959
3960         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3961         if (!q)
3962                 return ERR_PTR(-ENOMEM);
3963         q->queuedata = queuedata;
3964         ret = blk_mq_init_allocated_queue(set, q);
3965         if (ret) {
3966                 blk_put_queue(q);
3967                 return ERR_PTR(ret);
3968         }
3969         return q;
3970 }
3971
3972 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3973 {
3974         return blk_mq_init_queue_data(set, NULL);
3975 }
3976 EXPORT_SYMBOL(blk_mq_init_queue);
3977
3978 /**
3979  * blk_mq_destroy_queue - shutdown a request queue
3980  * @q: request queue to shutdown
3981  *
3982  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
3983  * the initial reference.  All future requests will failed with -ENODEV.
3984  *
3985  * Context: can sleep
3986  */
3987 void blk_mq_destroy_queue(struct request_queue *q)
3988 {
3989         WARN_ON_ONCE(!queue_is_mq(q));
3990         WARN_ON_ONCE(blk_queue_registered(q));
3991
3992         might_sleep();
3993
3994         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
3995         blk_queue_start_drain(q);
3996         blk_freeze_queue(q);
3997
3998         blk_sync_queue(q);
3999         blk_mq_cancel_work_sync(q);
4000         blk_mq_exit_queue(q);
4001
4002         /* @q is and will stay empty, shutdown and put */
4003         blk_put_queue(q);
4004 }
4005 EXPORT_SYMBOL(blk_mq_destroy_queue);
4006
4007 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4008                 struct lock_class_key *lkclass)
4009 {
4010         struct request_queue *q;
4011         struct gendisk *disk;
4012
4013         q = blk_mq_init_queue_data(set, queuedata);
4014         if (IS_ERR(q))
4015                 return ERR_CAST(q);
4016
4017         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4018         if (!disk) {
4019                 blk_mq_destroy_queue(q);
4020                 return ERR_PTR(-ENOMEM);
4021         }
4022         set_bit(GD_OWNS_QUEUE, &disk->state);
4023         return disk;
4024 }
4025 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4026
4027 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4028                 struct lock_class_key *lkclass)
4029 {
4030         if (!blk_get_queue(q))
4031                 return NULL;
4032         return __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4033 }
4034 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4035
4036 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4037                 struct blk_mq_tag_set *set, struct request_queue *q,
4038                 int hctx_idx, int node)
4039 {
4040         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4041
4042         /* reuse dead hctx first */
4043         spin_lock(&q->unused_hctx_lock);
4044         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4045                 if (tmp->numa_node == node) {
4046                         hctx = tmp;
4047                         break;
4048                 }
4049         }
4050         if (hctx)
4051                 list_del_init(&hctx->hctx_list);
4052         spin_unlock(&q->unused_hctx_lock);
4053
4054         if (!hctx)
4055                 hctx = blk_mq_alloc_hctx(q, set, node);
4056         if (!hctx)
4057                 goto fail;
4058
4059         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4060                 goto free_hctx;
4061
4062         return hctx;
4063
4064  free_hctx:
4065         kobject_put(&hctx->kobj);
4066  fail:
4067         return NULL;
4068 }
4069
4070 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4071                                                 struct request_queue *q)
4072 {
4073         struct blk_mq_hw_ctx *hctx;
4074         unsigned long i, j;
4075
4076         /* protect against switching io scheduler  */
4077         mutex_lock(&q->sysfs_lock);
4078         for (i = 0; i < set->nr_hw_queues; i++) {
4079                 int old_node;
4080                 int node = blk_mq_get_hctx_node(set, i);
4081                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4082
4083                 if (old_hctx) {
4084                         old_node = old_hctx->numa_node;
4085                         blk_mq_exit_hctx(q, set, old_hctx, i);
4086                 }
4087
4088                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4089                         if (!old_hctx)
4090                                 break;
4091                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4092                                         node, old_node);
4093                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4094                         WARN_ON_ONCE(!hctx);
4095                 }
4096         }
4097         /*
4098          * Increasing nr_hw_queues fails. Free the newly allocated
4099          * hctxs and keep the previous q->nr_hw_queues.
4100          */
4101         if (i != set->nr_hw_queues) {
4102                 j = q->nr_hw_queues;
4103         } else {
4104                 j = i;
4105                 q->nr_hw_queues = set->nr_hw_queues;
4106         }
4107
4108         xa_for_each_start(&q->hctx_table, j, hctx, j)
4109                 blk_mq_exit_hctx(q, set, hctx, j);
4110         mutex_unlock(&q->sysfs_lock);
4111 }
4112
4113 static void blk_mq_update_poll_flag(struct request_queue *q)
4114 {
4115         struct blk_mq_tag_set *set = q->tag_set;
4116
4117         if (set->nr_maps > HCTX_TYPE_POLL &&
4118             set->map[HCTX_TYPE_POLL].nr_queues)
4119                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4120         else
4121                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4122 }
4123
4124 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4125                 struct request_queue *q)
4126 {
4127         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4128                         !!(set->flags & BLK_MQ_F_BLOCKING));
4129
4130         /* mark the queue as mq asap */
4131         q->mq_ops = set->ops;
4132
4133         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4134                                              blk_mq_poll_stats_bkt,
4135                                              BLK_MQ_POLL_STATS_BKTS, q);
4136         if (!q->poll_cb)
4137                 goto err_exit;
4138
4139         if (blk_mq_alloc_ctxs(q))
4140                 goto err_poll;
4141
4142         /* init q->mq_kobj and sw queues' kobjects */
4143         blk_mq_sysfs_init(q);
4144
4145         INIT_LIST_HEAD(&q->unused_hctx_list);
4146         spin_lock_init(&q->unused_hctx_lock);
4147
4148         xa_init(&q->hctx_table);
4149
4150         blk_mq_realloc_hw_ctxs(set, q);
4151         if (!q->nr_hw_queues)
4152                 goto err_hctxs;
4153
4154         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4155         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4156
4157         q->tag_set = set;
4158
4159         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4160         blk_mq_update_poll_flag(q);
4161
4162         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4163         INIT_LIST_HEAD(&q->requeue_list);
4164         spin_lock_init(&q->requeue_lock);
4165
4166         q->nr_requests = set->queue_depth;
4167
4168         /*
4169          * Default to classic polling
4170          */
4171         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4172
4173         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4174         blk_mq_add_queue_tag_set(set, q);
4175         blk_mq_map_swqueue(q);
4176         return 0;
4177
4178 err_hctxs:
4179         xa_destroy(&q->hctx_table);
4180         q->nr_hw_queues = 0;
4181         blk_mq_sysfs_deinit(q);
4182 err_poll:
4183         blk_stat_free_callback(q->poll_cb);
4184         q->poll_cb = NULL;
4185 err_exit:
4186         q->mq_ops = NULL;
4187         return -ENOMEM;
4188 }
4189 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4190
4191 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4192 void blk_mq_exit_queue(struct request_queue *q)
4193 {
4194         struct blk_mq_tag_set *set = q->tag_set;
4195
4196         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4197         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4198         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4199         blk_mq_del_queue_tag_set(q);
4200 }
4201
4202 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4203 {
4204         int i;
4205
4206         if (blk_mq_is_shared_tags(set->flags)) {
4207                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4208                                                 BLK_MQ_NO_HCTX_IDX,
4209                                                 set->queue_depth);
4210                 if (!set->shared_tags)
4211                         return -ENOMEM;
4212         }
4213
4214         for (i = 0; i < set->nr_hw_queues; i++) {
4215                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4216                         goto out_unwind;
4217                 cond_resched();
4218         }
4219
4220         return 0;
4221
4222 out_unwind:
4223         while (--i >= 0)
4224                 __blk_mq_free_map_and_rqs(set, i);
4225
4226         if (blk_mq_is_shared_tags(set->flags)) {
4227                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4228                                         BLK_MQ_NO_HCTX_IDX);
4229         }
4230
4231         return -ENOMEM;
4232 }
4233
4234 /*
4235  * Allocate the request maps associated with this tag_set. Note that this
4236  * may reduce the depth asked for, if memory is tight. set->queue_depth
4237  * will be updated to reflect the allocated depth.
4238  */
4239 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4240 {
4241         unsigned int depth;
4242         int err;
4243
4244         depth = set->queue_depth;
4245         do {
4246                 err = __blk_mq_alloc_rq_maps(set);
4247                 if (!err)
4248                         break;
4249
4250                 set->queue_depth >>= 1;
4251                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4252                         err = -ENOMEM;
4253                         break;
4254                 }
4255         } while (set->queue_depth);
4256
4257         if (!set->queue_depth || err) {
4258                 pr_err("blk-mq: failed to allocate request map\n");
4259                 return -ENOMEM;
4260         }
4261
4262         if (depth != set->queue_depth)
4263                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4264                                                 depth, set->queue_depth);
4265
4266         return 0;
4267 }
4268
4269 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4270 {
4271         /*
4272          * blk_mq_map_queues() and multiple .map_queues() implementations
4273          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4274          * number of hardware queues.
4275          */
4276         if (set->nr_maps == 1)
4277                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4278
4279         if (set->ops->map_queues && !is_kdump_kernel()) {
4280                 int i;
4281
4282                 /*
4283                  * transport .map_queues is usually done in the following
4284                  * way:
4285                  *
4286                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4287                  *      mask = get_cpu_mask(queue)
4288                  *      for_each_cpu(cpu, mask)
4289                  *              set->map[x].mq_map[cpu] = queue;
4290                  * }
4291                  *
4292                  * When we need to remap, the table has to be cleared for
4293                  * killing stale mapping since one CPU may not be mapped
4294                  * to any hw queue.
4295                  */
4296                 for (i = 0; i < set->nr_maps; i++)
4297                         blk_mq_clear_mq_map(&set->map[i]);
4298
4299                 set->ops->map_queues(set);
4300         } else {
4301                 BUG_ON(set->nr_maps > 1);
4302                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4303         }
4304 }
4305
4306 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4307                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4308 {
4309         struct blk_mq_tags **new_tags;
4310
4311         if (cur_nr_hw_queues >= new_nr_hw_queues)
4312                 return 0;
4313
4314         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4315                                 GFP_KERNEL, set->numa_node);
4316         if (!new_tags)
4317                 return -ENOMEM;
4318
4319         if (set->tags)
4320                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4321                        sizeof(*set->tags));
4322         kfree(set->tags);
4323         set->tags = new_tags;
4324         set->nr_hw_queues = new_nr_hw_queues;
4325
4326         return 0;
4327 }
4328
4329 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4330                                 int new_nr_hw_queues)
4331 {
4332         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4333 }
4334
4335 /*
4336  * Alloc a tag set to be associated with one or more request queues.
4337  * May fail with EINVAL for various error conditions. May adjust the
4338  * requested depth down, if it's too large. In that case, the set
4339  * value will be stored in set->queue_depth.
4340  */
4341 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4342 {
4343         int i, ret;
4344
4345         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4346
4347         if (!set->nr_hw_queues)
4348                 return -EINVAL;
4349         if (!set->queue_depth)
4350                 return -EINVAL;
4351         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4352                 return -EINVAL;
4353
4354         if (!set->ops->queue_rq)
4355                 return -EINVAL;
4356
4357         if (!set->ops->get_budget ^ !set->ops->put_budget)
4358                 return -EINVAL;
4359
4360         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4361                 pr_info("blk-mq: reduced tag depth to %u\n",
4362                         BLK_MQ_MAX_DEPTH);
4363                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4364         }
4365
4366         if (!set->nr_maps)
4367                 set->nr_maps = 1;
4368         else if (set->nr_maps > HCTX_MAX_TYPES)
4369                 return -EINVAL;
4370
4371         /*
4372          * If a crashdump is active, then we are potentially in a very
4373          * memory constrained environment. Limit us to 1 queue and
4374          * 64 tags to prevent using too much memory.
4375          */
4376         if (is_kdump_kernel()) {
4377                 set->nr_hw_queues = 1;
4378                 set->nr_maps = 1;
4379                 set->queue_depth = min(64U, set->queue_depth);
4380         }
4381         /*
4382          * There is no use for more h/w queues than cpus if we just have
4383          * a single map
4384          */
4385         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4386                 set->nr_hw_queues = nr_cpu_ids;
4387
4388         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4389                 return -ENOMEM;
4390
4391         ret = -ENOMEM;
4392         for (i = 0; i < set->nr_maps; i++) {
4393                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4394                                                   sizeof(set->map[i].mq_map[0]),
4395                                                   GFP_KERNEL, set->numa_node);
4396                 if (!set->map[i].mq_map)
4397                         goto out_free_mq_map;
4398                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4399         }
4400
4401         blk_mq_update_queue_map(set);
4402
4403         ret = blk_mq_alloc_set_map_and_rqs(set);
4404         if (ret)
4405                 goto out_free_mq_map;
4406
4407         mutex_init(&set->tag_list_lock);
4408         INIT_LIST_HEAD(&set->tag_list);
4409
4410         return 0;
4411
4412 out_free_mq_map:
4413         for (i = 0; i < set->nr_maps; i++) {
4414                 kfree(set->map[i].mq_map);
4415                 set->map[i].mq_map = NULL;
4416         }
4417         kfree(set->tags);
4418         set->tags = NULL;
4419         return ret;
4420 }
4421 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4422
4423 /* allocate and initialize a tagset for a simple single-queue device */
4424 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4425                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4426                 unsigned int set_flags)
4427 {
4428         memset(set, 0, sizeof(*set));
4429         set->ops = ops;
4430         set->nr_hw_queues = 1;
4431         set->nr_maps = 1;
4432         set->queue_depth = queue_depth;
4433         set->numa_node = NUMA_NO_NODE;
4434         set->flags = set_flags;
4435         return blk_mq_alloc_tag_set(set);
4436 }
4437 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4438
4439 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4440 {
4441         int i, j;
4442
4443         for (i = 0; i < set->nr_hw_queues; i++)
4444                 __blk_mq_free_map_and_rqs(set, i);
4445
4446         if (blk_mq_is_shared_tags(set->flags)) {
4447                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4448                                         BLK_MQ_NO_HCTX_IDX);
4449         }
4450
4451         for (j = 0; j < set->nr_maps; j++) {
4452                 kfree(set->map[j].mq_map);
4453                 set->map[j].mq_map = NULL;
4454         }
4455
4456         kfree(set->tags);
4457         set->tags = NULL;
4458 }
4459 EXPORT_SYMBOL(blk_mq_free_tag_set);
4460
4461 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4462 {
4463         struct blk_mq_tag_set *set = q->tag_set;
4464         struct blk_mq_hw_ctx *hctx;
4465         int ret;
4466         unsigned long i;
4467
4468         if (!set)
4469                 return -EINVAL;
4470
4471         if (q->nr_requests == nr)
4472                 return 0;
4473
4474         blk_mq_freeze_queue(q);
4475         blk_mq_quiesce_queue(q);
4476
4477         ret = 0;
4478         queue_for_each_hw_ctx(q, hctx, i) {
4479                 if (!hctx->tags)
4480                         continue;
4481                 /*
4482                  * If we're using an MQ scheduler, just update the scheduler
4483                  * queue depth. This is similar to what the old code would do.
4484                  */
4485                 if (hctx->sched_tags) {
4486                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4487                                                       nr, true);
4488                 } else {
4489                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4490                                                       false);
4491                 }
4492                 if (ret)
4493                         break;
4494                 if (q->elevator && q->elevator->type->ops.depth_updated)
4495                         q->elevator->type->ops.depth_updated(hctx);
4496         }
4497         if (!ret) {
4498                 q->nr_requests = nr;
4499                 if (blk_mq_is_shared_tags(set->flags)) {
4500                         if (q->elevator)
4501                                 blk_mq_tag_update_sched_shared_tags(q);
4502                         else
4503                                 blk_mq_tag_resize_shared_tags(set, nr);
4504                 }
4505         }
4506
4507         blk_mq_unquiesce_queue(q);
4508         blk_mq_unfreeze_queue(q);
4509
4510         return ret;
4511 }
4512
4513 /*
4514  * request_queue and elevator_type pair.
4515  * It is just used by __blk_mq_update_nr_hw_queues to cache
4516  * the elevator_type associated with a request_queue.
4517  */
4518 struct blk_mq_qe_pair {
4519         struct list_head node;
4520         struct request_queue *q;
4521         struct elevator_type *type;
4522 };
4523
4524 /*
4525  * Cache the elevator_type in qe pair list and switch the
4526  * io scheduler to 'none'
4527  */
4528 static bool blk_mq_elv_switch_none(struct list_head *head,
4529                 struct request_queue *q)
4530 {
4531         struct blk_mq_qe_pair *qe;
4532
4533         if (!q->elevator)
4534                 return true;
4535
4536         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4537         if (!qe)
4538                 return false;
4539
4540         /* q->elevator needs protection from ->sysfs_lock */
4541         mutex_lock(&q->sysfs_lock);
4542
4543         INIT_LIST_HEAD(&qe->node);
4544         qe->q = q;
4545         qe->type = q->elevator->type;
4546         list_add(&qe->node, head);
4547
4548         /*
4549          * After elevator_switch, the previous elevator_queue will be
4550          * released by elevator_release. The reference of the io scheduler
4551          * module get by elevator_get will also be put. So we need to get
4552          * a reference of the io scheduler module here to prevent it to be
4553          * removed.
4554          */
4555         __module_get(qe->type->elevator_owner);
4556         elevator_switch(q, NULL);
4557         mutex_unlock(&q->sysfs_lock);
4558
4559         return true;
4560 }
4561
4562 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4563                                                 struct request_queue *q)
4564 {
4565         struct blk_mq_qe_pair *qe;
4566
4567         list_for_each_entry(qe, head, node)
4568                 if (qe->q == q)
4569                         return qe;
4570
4571         return NULL;
4572 }
4573
4574 static void blk_mq_elv_switch_back(struct list_head *head,
4575                                   struct request_queue *q)
4576 {
4577         struct blk_mq_qe_pair *qe;
4578         struct elevator_type *t;
4579
4580         qe = blk_lookup_qe_pair(head, q);
4581         if (!qe)
4582                 return;
4583         t = qe->type;
4584         list_del(&qe->node);
4585         kfree(qe);
4586
4587         mutex_lock(&q->sysfs_lock);
4588         elevator_switch(q, t);
4589         mutex_unlock(&q->sysfs_lock);
4590 }
4591
4592 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4593                                                         int nr_hw_queues)
4594 {
4595         struct request_queue *q;
4596         LIST_HEAD(head);
4597         int prev_nr_hw_queues;
4598
4599         lockdep_assert_held(&set->tag_list_lock);
4600
4601         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4602                 nr_hw_queues = nr_cpu_ids;
4603         if (nr_hw_queues < 1)
4604                 return;
4605         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4606                 return;
4607
4608         list_for_each_entry(q, &set->tag_list, tag_set_list)
4609                 blk_mq_freeze_queue(q);
4610         /*
4611          * Switch IO scheduler to 'none', cleaning up the data associated
4612          * with the previous scheduler. We will switch back once we are done
4613          * updating the new sw to hw queue mappings.
4614          */
4615         list_for_each_entry(q, &set->tag_list, tag_set_list)
4616                 if (!blk_mq_elv_switch_none(&head, q))
4617                         goto switch_back;
4618
4619         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4620                 blk_mq_debugfs_unregister_hctxs(q);
4621                 blk_mq_sysfs_unregister_hctxs(q);
4622         }
4623
4624         prev_nr_hw_queues = set->nr_hw_queues;
4625         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4626             0)
4627                 goto reregister;
4628
4629         set->nr_hw_queues = nr_hw_queues;
4630 fallback:
4631         blk_mq_update_queue_map(set);
4632         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4633                 blk_mq_realloc_hw_ctxs(set, q);
4634                 blk_mq_update_poll_flag(q);
4635                 if (q->nr_hw_queues != set->nr_hw_queues) {
4636                         int i = prev_nr_hw_queues;
4637
4638                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4639                                         nr_hw_queues, prev_nr_hw_queues);
4640                         for (; i < set->nr_hw_queues; i++)
4641                                 __blk_mq_free_map_and_rqs(set, i);
4642
4643                         set->nr_hw_queues = prev_nr_hw_queues;
4644                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4645                         goto fallback;
4646                 }
4647                 blk_mq_map_swqueue(q);
4648         }
4649
4650 reregister:
4651         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4652                 blk_mq_sysfs_register_hctxs(q);
4653                 blk_mq_debugfs_register_hctxs(q);
4654         }
4655
4656 switch_back:
4657         list_for_each_entry(q, &set->tag_list, tag_set_list)
4658                 blk_mq_elv_switch_back(&head, q);
4659
4660         list_for_each_entry(q, &set->tag_list, tag_set_list)
4661                 blk_mq_unfreeze_queue(q);
4662 }
4663
4664 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4665 {
4666         mutex_lock(&set->tag_list_lock);
4667         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4668         mutex_unlock(&set->tag_list_lock);
4669 }
4670 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4671
4672 /* Enable polling stats and return whether they were already enabled. */
4673 static bool blk_poll_stats_enable(struct request_queue *q)
4674 {
4675         if (q->poll_stat)
4676                 return true;
4677
4678         return blk_stats_alloc_enable(q);
4679 }
4680
4681 static void blk_mq_poll_stats_start(struct request_queue *q)
4682 {
4683         /*
4684          * We don't arm the callback if polling stats are not enabled or the
4685          * callback is already active.
4686          */
4687         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4688                 return;
4689
4690         blk_stat_activate_msecs(q->poll_cb, 100);
4691 }
4692
4693 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4694 {
4695         struct request_queue *q = cb->data;
4696         int bucket;
4697
4698         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4699                 if (cb->stat[bucket].nr_samples)
4700                         q->poll_stat[bucket] = cb->stat[bucket];
4701         }
4702 }
4703
4704 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4705                                        struct request *rq)
4706 {
4707         unsigned long ret = 0;
4708         int bucket;
4709
4710         /*
4711          * If stats collection isn't on, don't sleep but turn it on for
4712          * future users
4713          */
4714         if (!blk_poll_stats_enable(q))
4715                 return 0;
4716
4717         /*
4718          * As an optimistic guess, use half of the mean service time
4719          * for this type of request. We can (and should) make this smarter.
4720          * For instance, if the completion latencies are tight, we can
4721          * get closer than just half the mean. This is especially
4722          * important on devices where the completion latencies are longer
4723          * than ~10 usec. We do use the stats for the relevant IO size
4724          * if available which does lead to better estimates.
4725          */
4726         bucket = blk_mq_poll_stats_bkt(rq);
4727         if (bucket < 0)
4728                 return ret;
4729
4730         if (q->poll_stat[bucket].nr_samples)
4731                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4732
4733         return ret;
4734 }
4735
4736 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4737 {
4738         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4739         struct request *rq = blk_qc_to_rq(hctx, qc);
4740         struct hrtimer_sleeper hs;
4741         enum hrtimer_mode mode;
4742         unsigned int nsecs;
4743         ktime_t kt;
4744
4745         /*
4746          * If a request has completed on queue that uses an I/O scheduler, we
4747          * won't get back a request from blk_qc_to_rq.
4748          */
4749         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4750                 return false;
4751
4752         /*
4753          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4754          *
4755          *  0:  use half of prev avg
4756          * >0:  use this specific value
4757          */
4758         if (q->poll_nsec > 0)
4759                 nsecs = q->poll_nsec;
4760         else
4761                 nsecs = blk_mq_poll_nsecs(q, rq);
4762
4763         if (!nsecs)
4764                 return false;
4765
4766         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4767
4768         /*
4769          * This will be replaced with the stats tracking code, using
4770          * 'avg_completion_time / 2' as the pre-sleep target.
4771          */
4772         kt = nsecs;
4773
4774         mode = HRTIMER_MODE_REL;
4775         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4776         hrtimer_set_expires(&hs.timer, kt);
4777
4778         do {
4779                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4780                         break;
4781                 set_current_state(TASK_UNINTERRUPTIBLE);
4782                 hrtimer_sleeper_start_expires(&hs, mode);
4783                 if (hs.task)
4784                         io_schedule();
4785                 hrtimer_cancel(&hs.timer);
4786                 mode = HRTIMER_MODE_ABS;
4787         } while (hs.task && !signal_pending(current));
4788
4789         __set_current_state(TASK_RUNNING);
4790         destroy_hrtimer_on_stack(&hs.timer);
4791
4792         /*
4793          * If we sleep, have the caller restart the poll loop to reset the
4794          * state.  Like for the other success return cases, the caller is
4795          * responsible for checking if the IO completed.  If the IO isn't
4796          * complete, we'll get called again and will go straight to the busy
4797          * poll loop.
4798          */
4799         return true;
4800 }
4801
4802 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4803                                struct io_comp_batch *iob, unsigned int flags)
4804 {
4805         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4806         long state = get_current_state();
4807         int ret;
4808
4809         do {
4810                 ret = q->mq_ops->poll(hctx, iob);
4811                 if (ret > 0) {
4812                         __set_current_state(TASK_RUNNING);
4813                         return ret;
4814                 }
4815
4816                 if (signal_pending_state(state, current))
4817                         __set_current_state(TASK_RUNNING);
4818                 if (task_is_running(current))
4819                         return 1;
4820
4821                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4822                         break;
4823                 cpu_relax();
4824         } while (!need_resched());
4825
4826         __set_current_state(TASK_RUNNING);
4827         return 0;
4828 }
4829
4830 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4831                 unsigned int flags)
4832 {
4833         if (!(flags & BLK_POLL_NOSLEEP) &&
4834             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4835                 if (blk_mq_poll_hybrid(q, cookie))
4836                         return 1;
4837         }
4838         return blk_mq_poll_classic(q, cookie, iob, flags);
4839 }
4840
4841 unsigned int blk_mq_rq_cpu(struct request *rq)
4842 {
4843         return rq->mq_ctx->cpu;
4844 }
4845 EXPORT_SYMBOL(blk_mq_rq_cpu);
4846
4847 void blk_mq_cancel_work_sync(struct request_queue *q)
4848 {
4849         if (queue_is_mq(q)) {
4850                 struct blk_mq_hw_ctx *hctx;
4851                 unsigned long i;
4852
4853                 cancel_delayed_work_sync(&q->requeue_work);
4854
4855                 queue_for_each_hw_ctx(q, hctx, i)
4856                         cancel_delayed_work_sync(&hctx->run_work);
4857         }
4858 }
4859
4860 static int __init blk_mq_init(void)
4861 {
4862         int i;
4863
4864         for_each_possible_cpu(i)
4865                 init_llist_head(&per_cpu(blk_cpu_done, i));
4866         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4867
4868         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4869                                   "block/softirq:dead", NULL,
4870                                   blk_softirq_cpu_dead);
4871         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4872                                 blk_mq_hctx_notify_dead);
4873         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4874                                 blk_mq_hctx_notify_online,
4875                                 blk_mq_hctx_notify_offline);
4876         return 0;
4877 }
4878 subsys_initcall(blk_mq_init);