Documentation: add documents for DAMON
[platform/kernel/linux-rpi.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51         int ddir, sectors, bucket;
52
53         ddir = rq_data_dir(rq);
54         sectors = blk_rq_stats_sectors(rq);
55
56         bucket = ddir + 2 * ilog2(sectors);
57
58         if (bucket < 0)
59                 return -1;
60         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63         return bucket;
64 }
65
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72         return !list_empty_careful(&hctx->dispatch) ||
73                 sbitmap_any_bit_set(&hctx->ctx_map) ||
74                         blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81                                      struct blk_mq_ctx *ctx)
82 {
83         const int bit = ctx->index_hw[hctx->type];
84
85         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86                 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90                                       struct blk_mq_ctx *ctx)
91 {
92         const int bit = ctx->index_hw[hctx->type];
93
94         sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98         struct block_device *part;
99         unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103                                   struct request *rq, void *priv,
104                                   bool reserved)
105 {
106         struct mq_inflight *mi = priv;
107
108         if ((!mi->part->bd_partno || rq->part == mi->part) &&
109             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110                 mi->inflight[rq_data_dir(rq)]++;
111
112         return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116                 struct block_device *part)
117 {
118         struct mq_inflight mi = { .part = part };
119
120         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122         return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126                 unsigned int inflight[2])
127 {
128         struct mq_inflight mi = { .part = part };
129
130         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131         inflight[0] = mi.inflight[0];
132         inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137         mutex_lock(&q->mq_freeze_lock);
138         if (++q->mq_freeze_depth == 1) {
139                 percpu_ref_kill(&q->q_usage_counter);
140                 mutex_unlock(&q->mq_freeze_lock);
141                 if (queue_is_mq(q))
142                         blk_mq_run_hw_queues(q, false);
143         } else {
144                 mutex_unlock(&q->mq_freeze_lock);
145         }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156                                      unsigned long timeout)
157 {
158         return wait_event_timeout(q->mq_freeze_wq,
159                                         percpu_ref_is_zero(&q->q_usage_counter),
160                                         timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * In the !blk_mq case we are only calling this to kill the
172          * q_usage_counter, otherwise this increases the freeze depth
173          * and waits for it to return to zero.  For this reason there is
174          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175          * exported to drivers as the only user for unfreeze is blk_mq.
176          */
177         blk_freeze_queue_start(q);
178         blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183         /*
184          * ...just an alias to keep freeze and unfreeze actions balanced
185          * in the blk_mq_* namespace
186          */
187         blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193         mutex_lock(&q->mq_freeze_lock);
194         q->mq_freeze_depth--;
195         WARN_ON_ONCE(q->mq_freeze_depth < 0);
196         if (!q->mq_freeze_depth) {
197                 percpu_ref_resurrect(&q->q_usage_counter);
198                 wake_up_all(&q->mq_freeze_wq);
199         }
200         mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203
204 /*
205  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206  * mpt3sas driver such that this function can be removed.
207  */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216  * @q: request queue.
217  *
218  * Note: this function does not prevent that the struct request end_io()
219  * callback function is invoked. Once this function is returned, we make
220  * sure no dispatch can happen until the queue is unquiesced via
221  * blk_mq_unquiesce_queue().
222  */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225         struct blk_mq_hw_ctx *hctx;
226         unsigned int i;
227         bool rcu = false;
228
229         blk_mq_quiesce_queue_nowait(q);
230
231         queue_for_each_hw_ctx(q, hctx, i) {
232                 if (hctx->flags & BLK_MQ_F_BLOCKING)
233                         synchronize_srcu(hctx->srcu);
234                 else
235                         rcu = true;
236         }
237         if (rcu)
238                 synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241
242 /*
243  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244  * @q: request queue.
245  *
246  * This function recovers queue into the state before quiescing
247  * which is done by blk_mq_quiesce_queue.
248  */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252
253         /* dispatch requests which are inserted during quiescing */
254         blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260         struct blk_mq_hw_ctx *hctx;
261         unsigned int i;
262
263         queue_for_each_hw_ctx(q, hctx, i)
264                 if (blk_mq_hw_queue_mapped(hctx))
265                         blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267
268 /*
269  * Only need start/end time stamping if we have iostat or
270  * blk stats enabled, or using an IO scheduler.
271  */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278                 unsigned int tag, u64 alloc_time_ns)
279 {
280         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281         struct request *rq = tags->static_rqs[tag];
282
283         if (data->q->elevator) {
284                 rq->tag = BLK_MQ_NO_TAG;
285                 rq->internal_tag = tag;
286         } else {
287                 rq->tag = tag;
288                 rq->internal_tag = BLK_MQ_NO_TAG;
289         }
290
291         /* csd/requeue_work/fifo_time is initialized before use */
292         rq->q = data->q;
293         rq->mq_ctx = data->ctx;
294         rq->mq_hctx = data->hctx;
295         rq->rq_flags = 0;
296         rq->cmd_flags = data->cmd_flags;
297         if (data->flags & BLK_MQ_REQ_PM)
298                 rq->rq_flags |= RQF_PM;
299         if (blk_queue_io_stat(data->q))
300                 rq->rq_flags |= RQF_IO_STAT;
301         INIT_LIST_HEAD(&rq->queuelist);
302         INIT_HLIST_NODE(&rq->hash);
303         RB_CLEAR_NODE(&rq->rb_node);
304         rq->rq_disk = NULL;
305         rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307         rq->alloc_time_ns = alloc_time_ns;
308 #endif
309         if (blk_mq_need_time_stamp(rq))
310                 rq->start_time_ns = ktime_get_ns();
311         else
312                 rq->start_time_ns = 0;
313         rq->io_start_time_ns = 0;
314         rq->stats_sectors = 0;
315         rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317         rq->nr_integrity_segments = 0;
318 #endif
319         blk_crypto_rq_set_defaults(rq);
320         /* tag was already set */
321         WRITE_ONCE(rq->deadline, 0);
322
323         rq->timeout = 0;
324
325         rq->end_io = NULL;
326         rq->end_io_data = NULL;
327
328         data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329         refcount_set(&rq->ref, 1);
330
331         if (!op_is_flush(data->cmd_flags)) {
332                 struct elevator_queue *e = data->q->elevator;
333
334                 rq->elv.icq = NULL;
335                 if (e && e->type->ops.prepare_request) {
336                         if (e->type->icq_cache)
337                                 blk_mq_sched_assign_ioc(rq);
338
339                         e->type->ops.prepare_request(rq);
340                         rq->rq_flags |= RQF_ELVPRIV;
341                 }
342         }
343
344         data->hctx->queued++;
345         return rq;
346 }
347
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350         struct request_queue *q = data->q;
351         struct elevator_queue *e = q->elevator;
352         u64 alloc_time_ns = 0;
353         unsigned int tag;
354
355         /* alloc_time includes depth and tag waits */
356         if (blk_queue_rq_alloc_time(q))
357                 alloc_time_ns = ktime_get_ns();
358
359         if (data->cmd_flags & REQ_NOWAIT)
360                 data->flags |= BLK_MQ_REQ_NOWAIT;
361
362         if (e) {
363                 /*
364                  * Flush/passthrough requests are special and go directly to the
365                  * dispatch list. Don't include reserved tags in the
366                  * limiting, as it isn't useful.
367                  */
368                 if (!op_is_flush(data->cmd_flags) &&
369                     !blk_op_is_passthrough(data->cmd_flags) &&
370                     e->type->ops.limit_depth &&
371                     !(data->flags & BLK_MQ_REQ_RESERVED))
372                         e->type->ops.limit_depth(data->cmd_flags, data);
373         }
374
375 retry:
376         data->ctx = blk_mq_get_ctx(q);
377         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
378         if (!e)
379                 blk_mq_tag_busy(data->hctx);
380
381         /*
382          * Waiting allocations only fail because of an inactive hctx.  In that
383          * case just retry the hctx assignment and tag allocation as CPU hotplug
384          * should have migrated us to an online CPU by now.
385          */
386         tag = blk_mq_get_tag(data);
387         if (tag == BLK_MQ_NO_TAG) {
388                 if (data->flags & BLK_MQ_REQ_NOWAIT)
389                         return NULL;
390
391                 /*
392                  * Give up the CPU and sleep for a random short time to ensure
393                  * that thread using a realtime scheduling class are migrated
394                  * off the CPU, and thus off the hctx that is going away.
395                  */
396                 msleep(3);
397                 goto retry;
398         }
399         return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
400 }
401
402 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
403                 blk_mq_req_flags_t flags)
404 {
405         struct blk_mq_alloc_data data = {
406                 .q              = q,
407                 .flags          = flags,
408                 .cmd_flags      = op,
409         };
410         struct request *rq;
411         int ret;
412
413         ret = blk_queue_enter(q, flags);
414         if (ret)
415                 return ERR_PTR(ret);
416
417         rq = __blk_mq_alloc_request(&data);
418         if (!rq)
419                 goto out_queue_exit;
420         rq->__data_len = 0;
421         rq->__sector = (sector_t) -1;
422         rq->bio = rq->biotail = NULL;
423         return rq;
424 out_queue_exit:
425         blk_queue_exit(q);
426         return ERR_PTR(-EWOULDBLOCK);
427 }
428 EXPORT_SYMBOL(blk_mq_alloc_request);
429
430 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
431         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
432 {
433         struct blk_mq_alloc_data data = {
434                 .q              = q,
435                 .flags          = flags,
436                 .cmd_flags      = op,
437         };
438         u64 alloc_time_ns = 0;
439         unsigned int cpu;
440         unsigned int tag;
441         int ret;
442
443         /* alloc_time includes depth and tag waits */
444         if (blk_queue_rq_alloc_time(q))
445                 alloc_time_ns = ktime_get_ns();
446
447         /*
448          * If the tag allocator sleeps we could get an allocation for a
449          * different hardware context.  No need to complicate the low level
450          * allocator for this for the rare use case of a command tied to
451          * a specific queue.
452          */
453         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
454                 return ERR_PTR(-EINVAL);
455
456         if (hctx_idx >= q->nr_hw_queues)
457                 return ERR_PTR(-EIO);
458
459         ret = blk_queue_enter(q, flags);
460         if (ret)
461                 return ERR_PTR(ret);
462
463         /*
464          * Check if the hardware context is actually mapped to anything.
465          * If not tell the caller that it should skip this queue.
466          */
467         ret = -EXDEV;
468         data.hctx = q->queue_hw_ctx[hctx_idx];
469         if (!blk_mq_hw_queue_mapped(data.hctx))
470                 goto out_queue_exit;
471         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
472         data.ctx = __blk_mq_get_ctx(q, cpu);
473
474         if (!q->elevator)
475                 blk_mq_tag_busy(data.hctx);
476
477         ret = -EWOULDBLOCK;
478         tag = blk_mq_get_tag(&data);
479         if (tag == BLK_MQ_NO_TAG)
480                 goto out_queue_exit;
481         return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
482
483 out_queue_exit:
484         blk_queue_exit(q);
485         return ERR_PTR(ret);
486 }
487 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
488
489 static void __blk_mq_free_request(struct request *rq)
490 {
491         struct request_queue *q = rq->q;
492         struct blk_mq_ctx *ctx = rq->mq_ctx;
493         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
494         const int sched_tag = rq->internal_tag;
495
496         blk_crypto_free_request(rq);
497         blk_pm_mark_last_busy(rq);
498         rq->mq_hctx = NULL;
499         if (rq->tag != BLK_MQ_NO_TAG)
500                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
501         if (sched_tag != BLK_MQ_NO_TAG)
502                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
503         blk_mq_sched_restart(hctx);
504         blk_queue_exit(q);
505 }
506
507 void blk_mq_free_request(struct request *rq)
508 {
509         struct request_queue *q = rq->q;
510         struct elevator_queue *e = q->elevator;
511         struct blk_mq_ctx *ctx = rq->mq_ctx;
512         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
513
514         if (rq->rq_flags & RQF_ELVPRIV) {
515                 if (e && e->type->ops.finish_request)
516                         e->type->ops.finish_request(rq);
517                 if (rq->elv.icq) {
518                         put_io_context(rq->elv.icq->ioc);
519                         rq->elv.icq = NULL;
520                 }
521         }
522
523         ctx->rq_completed[rq_is_sync(rq)]++;
524         if (rq->rq_flags & RQF_MQ_INFLIGHT)
525                 __blk_mq_dec_active_requests(hctx);
526
527         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
528                 laptop_io_completion(q->backing_dev_info);
529
530         rq_qos_done(q, rq);
531
532         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
533         if (refcount_dec_and_test(&rq->ref))
534                 __blk_mq_free_request(rq);
535 }
536 EXPORT_SYMBOL_GPL(blk_mq_free_request);
537
538 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
539 {
540         u64 now = 0;
541
542         if (blk_mq_need_time_stamp(rq))
543                 now = ktime_get_ns();
544
545         if (rq->rq_flags & RQF_STATS) {
546                 blk_mq_poll_stats_start(rq->q);
547                 blk_stat_add(rq, now);
548         }
549
550         blk_mq_sched_completed_request(rq, now);
551
552         blk_account_io_done(rq, now);
553
554         if (rq->end_io) {
555                 rq_qos_done(rq->q, rq);
556                 rq->end_io(rq, error);
557         } else {
558                 blk_mq_free_request(rq);
559         }
560 }
561 EXPORT_SYMBOL(__blk_mq_end_request);
562
563 void blk_mq_end_request(struct request *rq, blk_status_t error)
564 {
565         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
566                 BUG();
567         __blk_mq_end_request(rq, error);
568 }
569 EXPORT_SYMBOL(blk_mq_end_request);
570
571 static void blk_complete_reqs(struct llist_head *list)
572 {
573         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
574         struct request *rq, *next;
575
576         llist_for_each_entry_safe(rq, next, entry, ipi_list)
577                 rq->q->mq_ops->complete(rq);
578 }
579
580 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
581 {
582         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
583 }
584
585 static int blk_softirq_cpu_dead(unsigned int cpu)
586 {
587         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
588         return 0;
589 }
590
591 static void __blk_mq_complete_request_remote(void *data)
592 {
593         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
594 }
595
596 static inline bool blk_mq_complete_need_ipi(struct request *rq)
597 {
598         int cpu = raw_smp_processor_id();
599
600         if (!IS_ENABLED(CONFIG_SMP) ||
601             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
602                 return false;
603         /*
604          * With force threaded interrupts enabled, raising softirq from an SMP
605          * function call will always result in waking the ksoftirqd thread.
606          * This is probably worse than completing the request on a different
607          * cache domain.
608          */
609         if (force_irqthreads)
610                 return false;
611
612         /* same CPU or cache domain?  Complete locally */
613         if (cpu == rq->mq_ctx->cpu ||
614             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
615              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
616                 return false;
617
618         /* don't try to IPI to an offline CPU */
619         return cpu_online(rq->mq_ctx->cpu);
620 }
621
622 static void blk_mq_complete_send_ipi(struct request *rq)
623 {
624         struct llist_head *list;
625         unsigned int cpu;
626
627         cpu = rq->mq_ctx->cpu;
628         list = &per_cpu(blk_cpu_done, cpu);
629         if (llist_add(&rq->ipi_list, list)) {
630                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
631                 smp_call_function_single_async(cpu, &rq->csd);
632         }
633 }
634
635 static void blk_mq_raise_softirq(struct request *rq)
636 {
637         struct llist_head *list;
638
639         preempt_disable();
640         list = this_cpu_ptr(&blk_cpu_done);
641         if (llist_add(&rq->ipi_list, list))
642                 raise_softirq(BLOCK_SOFTIRQ);
643         preempt_enable();
644 }
645
646 bool blk_mq_complete_request_remote(struct request *rq)
647 {
648         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
649
650         /*
651          * For a polled request, always complete locallly, it's pointless
652          * to redirect the completion.
653          */
654         if (rq->cmd_flags & REQ_HIPRI)
655                 return false;
656
657         if (blk_mq_complete_need_ipi(rq)) {
658                 blk_mq_complete_send_ipi(rq);
659                 return true;
660         }
661
662         if (rq->q->nr_hw_queues == 1) {
663                 blk_mq_raise_softirq(rq);
664                 return true;
665         }
666         return false;
667 }
668 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
669
670 /**
671  * blk_mq_complete_request - end I/O on a request
672  * @rq:         the request being processed
673  *
674  * Description:
675  *      Complete a request by scheduling the ->complete_rq operation.
676  **/
677 void blk_mq_complete_request(struct request *rq)
678 {
679         if (!blk_mq_complete_request_remote(rq))
680                 rq->q->mq_ops->complete(rq);
681 }
682 EXPORT_SYMBOL(blk_mq_complete_request);
683
684 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
685         __releases(hctx->srcu)
686 {
687         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
688                 rcu_read_unlock();
689         else
690                 srcu_read_unlock(hctx->srcu, srcu_idx);
691 }
692
693 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
694         __acquires(hctx->srcu)
695 {
696         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
697                 /* shut up gcc false positive */
698                 *srcu_idx = 0;
699                 rcu_read_lock();
700         } else
701                 *srcu_idx = srcu_read_lock(hctx->srcu);
702 }
703
704 /**
705  * blk_mq_start_request - Start processing a request
706  * @rq: Pointer to request to be started
707  *
708  * Function used by device drivers to notify the block layer that a request
709  * is going to be processed now, so blk layer can do proper initializations
710  * such as starting the timeout timer.
711  */
712 void blk_mq_start_request(struct request *rq)
713 {
714         struct request_queue *q = rq->q;
715
716         trace_block_rq_issue(rq);
717
718         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
719                 rq->io_start_time_ns = ktime_get_ns();
720                 rq->stats_sectors = blk_rq_sectors(rq);
721                 rq->rq_flags |= RQF_STATS;
722                 rq_qos_issue(q, rq);
723         }
724
725         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
726
727         blk_add_timer(rq);
728         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
729
730 #ifdef CONFIG_BLK_DEV_INTEGRITY
731         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
732                 q->integrity.profile->prepare_fn(rq);
733 #endif
734 }
735 EXPORT_SYMBOL(blk_mq_start_request);
736
737 static void __blk_mq_requeue_request(struct request *rq)
738 {
739         struct request_queue *q = rq->q;
740
741         blk_mq_put_driver_tag(rq);
742
743         trace_block_rq_requeue(rq);
744         rq_qos_requeue(q, rq);
745
746         if (blk_mq_request_started(rq)) {
747                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
748                 rq->rq_flags &= ~RQF_TIMED_OUT;
749         }
750 }
751
752 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
753 {
754         __blk_mq_requeue_request(rq);
755
756         /* this request will be re-inserted to io scheduler queue */
757         blk_mq_sched_requeue_request(rq);
758
759         BUG_ON(!list_empty(&rq->queuelist));
760         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
761 }
762 EXPORT_SYMBOL(blk_mq_requeue_request);
763
764 static void blk_mq_requeue_work(struct work_struct *work)
765 {
766         struct request_queue *q =
767                 container_of(work, struct request_queue, requeue_work.work);
768         LIST_HEAD(rq_list);
769         struct request *rq, *next;
770
771         spin_lock_irq(&q->requeue_lock);
772         list_splice_init(&q->requeue_list, &rq_list);
773         spin_unlock_irq(&q->requeue_lock);
774
775         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
776                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
777                         continue;
778
779                 rq->rq_flags &= ~RQF_SOFTBARRIER;
780                 list_del_init(&rq->queuelist);
781                 /*
782                  * If RQF_DONTPREP, rq has contained some driver specific
783                  * data, so insert it to hctx dispatch list to avoid any
784                  * merge.
785                  */
786                 if (rq->rq_flags & RQF_DONTPREP)
787                         blk_mq_request_bypass_insert(rq, false, false);
788                 else
789                         blk_mq_sched_insert_request(rq, true, false, false);
790         }
791
792         while (!list_empty(&rq_list)) {
793                 rq = list_entry(rq_list.next, struct request, queuelist);
794                 list_del_init(&rq->queuelist);
795                 blk_mq_sched_insert_request(rq, false, false, false);
796         }
797
798         blk_mq_run_hw_queues(q, false);
799 }
800
801 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
802                                 bool kick_requeue_list)
803 {
804         struct request_queue *q = rq->q;
805         unsigned long flags;
806
807         /*
808          * We abuse this flag that is otherwise used by the I/O scheduler to
809          * request head insertion from the workqueue.
810          */
811         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
812
813         spin_lock_irqsave(&q->requeue_lock, flags);
814         if (at_head) {
815                 rq->rq_flags |= RQF_SOFTBARRIER;
816                 list_add(&rq->queuelist, &q->requeue_list);
817         } else {
818                 list_add_tail(&rq->queuelist, &q->requeue_list);
819         }
820         spin_unlock_irqrestore(&q->requeue_lock, flags);
821
822         if (kick_requeue_list)
823                 blk_mq_kick_requeue_list(q);
824 }
825
826 void blk_mq_kick_requeue_list(struct request_queue *q)
827 {
828         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
829 }
830 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
831
832 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
833                                     unsigned long msecs)
834 {
835         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
836                                     msecs_to_jiffies(msecs));
837 }
838 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
839
840 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
841 {
842         if (tag < tags->nr_tags) {
843                 prefetch(tags->rqs[tag]);
844                 return tags->rqs[tag];
845         }
846
847         return NULL;
848 }
849 EXPORT_SYMBOL(blk_mq_tag_to_rq);
850
851 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
852                                void *priv, bool reserved)
853 {
854         /*
855          * If we find a request that isn't idle and the queue matches,
856          * we know the queue is busy. Return false to stop the iteration.
857          */
858         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
859                 bool *busy = priv;
860
861                 *busy = true;
862                 return false;
863         }
864
865         return true;
866 }
867
868 bool blk_mq_queue_inflight(struct request_queue *q)
869 {
870         bool busy = false;
871
872         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
873         return busy;
874 }
875 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
876
877 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
878 {
879         req->rq_flags |= RQF_TIMED_OUT;
880         if (req->q->mq_ops->timeout) {
881                 enum blk_eh_timer_return ret;
882
883                 ret = req->q->mq_ops->timeout(req, reserved);
884                 if (ret == BLK_EH_DONE)
885                         return;
886                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
887         }
888
889         blk_add_timer(req);
890 }
891
892 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
893 {
894         unsigned long deadline;
895
896         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
897                 return false;
898         if (rq->rq_flags & RQF_TIMED_OUT)
899                 return false;
900
901         deadline = READ_ONCE(rq->deadline);
902         if (time_after_eq(jiffies, deadline))
903                 return true;
904
905         if (*next == 0)
906                 *next = deadline;
907         else if (time_after(*next, deadline))
908                 *next = deadline;
909         return false;
910 }
911
912 void blk_mq_put_rq_ref(struct request *rq)
913 {
914         if (is_flush_rq(rq))
915                 rq->end_io(rq, 0);
916         else if (refcount_dec_and_test(&rq->ref))
917                 __blk_mq_free_request(rq);
918 }
919
920 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
921                 struct request *rq, void *priv, bool reserved)
922 {
923         unsigned long *next = priv;
924
925         /*
926          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
927          * be reallocated underneath the timeout handler's processing, then
928          * the expire check is reliable. If the request is not expired, then
929          * it was completed and reallocated as a new request after returning
930          * from blk_mq_check_expired().
931          */
932         if (blk_mq_req_expired(rq, next))
933                 blk_mq_rq_timed_out(rq, reserved);
934         return true;
935 }
936
937 static void blk_mq_timeout_work(struct work_struct *work)
938 {
939         struct request_queue *q =
940                 container_of(work, struct request_queue, timeout_work);
941         unsigned long next = 0;
942         struct blk_mq_hw_ctx *hctx;
943         int i;
944
945         /* A deadlock might occur if a request is stuck requiring a
946          * timeout at the same time a queue freeze is waiting
947          * completion, since the timeout code would not be able to
948          * acquire the queue reference here.
949          *
950          * That's why we don't use blk_queue_enter here; instead, we use
951          * percpu_ref_tryget directly, because we need to be able to
952          * obtain a reference even in the short window between the queue
953          * starting to freeze, by dropping the first reference in
954          * blk_freeze_queue_start, and the moment the last request is
955          * consumed, marked by the instant q_usage_counter reaches
956          * zero.
957          */
958         if (!percpu_ref_tryget(&q->q_usage_counter))
959                 return;
960
961         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
962
963         if (next != 0) {
964                 mod_timer(&q->timeout, next);
965         } else {
966                 /*
967                  * Request timeouts are handled as a forward rolling timer. If
968                  * we end up here it means that no requests are pending and
969                  * also that no request has been pending for a while. Mark
970                  * each hctx as idle.
971                  */
972                 queue_for_each_hw_ctx(q, hctx, i) {
973                         /* the hctx may be unmapped, so check it here */
974                         if (blk_mq_hw_queue_mapped(hctx))
975                                 blk_mq_tag_idle(hctx);
976                 }
977         }
978         blk_queue_exit(q);
979 }
980
981 struct flush_busy_ctx_data {
982         struct blk_mq_hw_ctx *hctx;
983         struct list_head *list;
984 };
985
986 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
987 {
988         struct flush_busy_ctx_data *flush_data = data;
989         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
990         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
991         enum hctx_type type = hctx->type;
992
993         spin_lock(&ctx->lock);
994         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
995         sbitmap_clear_bit(sb, bitnr);
996         spin_unlock(&ctx->lock);
997         return true;
998 }
999
1000 /*
1001  * Process software queues that have been marked busy, splicing them
1002  * to the for-dispatch
1003  */
1004 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1005 {
1006         struct flush_busy_ctx_data data = {
1007                 .hctx = hctx,
1008                 .list = list,
1009         };
1010
1011         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1012 }
1013 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1014
1015 struct dispatch_rq_data {
1016         struct blk_mq_hw_ctx *hctx;
1017         struct request *rq;
1018 };
1019
1020 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1021                 void *data)
1022 {
1023         struct dispatch_rq_data *dispatch_data = data;
1024         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1025         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1026         enum hctx_type type = hctx->type;
1027
1028         spin_lock(&ctx->lock);
1029         if (!list_empty(&ctx->rq_lists[type])) {
1030                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1031                 list_del_init(&dispatch_data->rq->queuelist);
1032                 if (list_empty(&ctx->rq_lists[type]))
1033                         sbitmap_clear_bit(sb, bitnr);
1034         }
1035         spin_unlock(&ctx->lock);
1036
1037         return !dispatch_data->rq;
1038 }
1039
1040 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1041                                         struct blk_mq_ctx *start)
1042 {
1043         unsigned off = start ? start->index_hw[hctx->type] : 0;
1044         struct dispatch_rq_data data = {
1045                 .hctx = hctx,
1046                 .rq   = NULL,
1047         };
1048
1049         __sbitmap_for_each_set(&hctx->ctx_map, off,
1050                                dispatch_rq_from_ctx, &data);
1051
1052         return data.rq;
1053 }
1054
1055 static inline unsigned int queued_to_index(unsigned int queued)
1056 {
1057         if (!queued)
1058                 return 0;
1059
1060         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1061 }
1062
1063 static bool __blk_mq_get_driver_tag(struct request *rq)
1064 {
1065         struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1066         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1067         int tag;
1068
1069         blk_mq_tag_busy(rq->mq_hctx);
1070
1071         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1072                 bt = rq->mq_hctx->tags->breserved_tags;
1073                 tag_offset = 0;
1074         } else {
1075                 if (!hctx_may_queue(rq->mq_hctx, bt))
1076                         return false;
1077         }
1078
1079         tag = __sbitmap_queue_get(bt);
1080         if (tag == BLK_MQ_NO_TAG)
1081                 return false;
1082
1083         rq->tag = tag + tag_offset;
1084         return true;
1085 }
1086
1087 bool blk_mq_get_driver_tag(struct request *rq)
1088 {
1089         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1090
1091         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1092                 return false;
1093
1094         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1095                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1096                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1097                 __blk_mq_inc_active_requests(hctx);
1098         }
1099         hctx->tags->rqs[rq->tag] = rq;
1100         return true;
1101 }
1102
1103 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1104                                 int flags, void *key)
1105 {
1106         struct blk_mq_hw_ctx *hctx;
1107
1108         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1109
1110         spin_lock(&hctx->dispatch_wait_lock);
1111         if (!list_empty(&wait->entry)) {
1112                 struct sbitmap_queue *sbq;
1113
1114                 list_del_init(&wait->entry);
1115                 sbq = hctx->tags->bitmap_tags;
1116                 atomic_dec(&sbq->ws_active);
1117         }
1118         spin_unlock(&hctx->dispatch_wait_lock);
1119
1120         blk_mq_run_hw_queue(hctx, true);
1121         return 1;
1122 }
1123
1124 /*
1125  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1126  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1127  * restart. For both cases, take care to check the condition again after
1128  * marking us as waiting.
1129  */
1130 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1131                                  struct request *rq)
1132 {
1133         struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1134         struct wait_queue_head *wq;
1135         wait_queue_entry_t *wait;
1136         bool ret;
1137
1138         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1139                 blk_mq_sched_mark_restart_hctx(hctx);
1140
1141                 /*
1142                  * It's possible that a tag was freed in the window between the
1143                  * allocation failure and adding the hardware queue to the wait
1144                  * queue.
1145                  *
1146                  * Don't clear RESTART here, someone else could have set it.
1147                  * At most this will cost an extra queue run.
1148                  */
1149                 return blk_mq_get_driver_tag(rq);
1150         }
1151
1152         wait = &hctx->dispatch_wait;
1153         if (!list_empty_careful(&wait->entry))
1154                 return false;
1155
1156         wq = &bt_wait_ptr(sbq, hctx)->wait;
1157
1158         spin_lock_irq(&wq->lock);
1159         spin_lock(&hctx->dispatch_wait_lock);
1160         if (!list_empty(&wait->entry)) {
1161                 spin_unlock(&hctx->dispatch_wait_lock);
1162                 spin_unlock_irq(&wq->lock);
1163                 return false;
1164         }
1165
1166         atomic_inc(&sbq->ws_active);
1167         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1168         __add_wait_queue(wq, wait);
1169
1170         /*
1171          * It's possible that a tag was freed in the window between the
1172          * allocation failure and adding the hardware queue to the wait
1173          * queue.
1174          */
1175         ret = blk_mq_get_driver_tag(rq);
1176         if (!ret) {
1177                 spin_unlock(&hctx->dispatch_wait_lock);
1178                 spin_unlock_irq(&wq->lock);
1179                 return false;
1180         }
1181
1182         /*
1183          * We got a tag, remove ourselves from the wait queue to ensure
1184          * someone else gets the wakeup.
1185          */
1186         list_del_init(&wait->entry);
1187         atomic_dec(&sbq->ws_active);
1188         spin_unlock(&hctx->dispatch_wait_lock);
1189         spin_unlock_irq(&wq->lock);
1190
1191         return true;
1192 }
1193
1194 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1195 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1196 /*
1197  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1198  * - EWMA is one simple way to compute running average value
1199  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1200  * - take 4 as factor for avoiding to get too small(0) result, and this
1201  *   factor doesn't matter because EWMA decreases exponentially
1202  */
1203 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1204 {
1205         unsigned int ewma;
1206
1207         ewma = hctx->dispatch_busy;
1208
1209         if (!ewma && !busy)
1210                 return;
1211
1212         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1213         if (busy)
1214                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1215         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1216
1217         hctx->dispatch_busy = ewma;
1218 }
1219
1220 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1221
1222 static void blk_mq_handle_dev_resource(struct request *rq,
1223                                        struct list_head *list)
1224 {
1225         struct request *next =
1226                 list_first_entry_or_null(list, struct request, queuelist);
1227
1228         /*
1229          * If an I/O scheduler has been configured and we got a driver tag for
1230          * the next request already, free it.
1231          */
1232         if (next)
1233                 blk_mq_put_driver_tag(next);
1234
1235         list_add(&rq->queuelist, list);
1236         __blk_mq_requeue_request(rq);
1237 }
1238
1239 static void blk_mq_handle_zone_resource(struct request *rq,
1240                                         struct list_head *zone_list)
1241 {
1242         /*
1243          * If we end up here it is because we cannot dispatch a request to a
1244          * specific zone due to LLD level zone-write locking or other zone
1245          * related resource not being available. In this case, set the request
1246          * aside in zone_list for retrying it later.
1247          */
1248         list_add(&rq->queuelist, zone_list);
1249         __blk_mq_requeue_request(rq);
1250 }
1251
1252 enum prep_dispatch {
1253         PREP_DISPATCH_OK,
1254         PREP_DISPATCH_NO_TAG,
1255         PREP_DISPATCH_NO_BUDGET,
1256 };
1257
1258 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1259                                                   bool need_budget)
1260 {
1261         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1262         int budget_token = -1;
1263
1264         if (need_budget) {
1265                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1266                 if (budget_token < 0) {
1267                         blk_mq_put_driver_tag(rq);
1268                         return PREP_DISPATCH_NO_BUDGET;
1269                 }
1270                 blk_mq_set_rq_budget_token(rq, budget_token);
1271         }
1272
1273         if (!blk_mq_get_driver_tag(rq)) {
1274                 /*
1275                  * The initial allocation attempt failed, so we need to
1276                  * rerun the hardware queue when a tag is freed. The
1277                  * waitqueue takes care of that. If the queue is run
1278                  * before we add this entry back on the dispatch list,
1279                  * we'll re-run it below.
1280                  */
1281                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1282                         /*
1283                          * All budgets not got from this function will be put
1284                          * together during handling partial dispatch
1285                          */
1286                         if (need_budget)
1287                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1288                         return PREP_DISPATCH_NO_TAG;
1289                 }
1290         }
1291
1292         return PREP_DISPATCH_OK;
1293 }
1294
1295 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1296 static void blk_mq_release_budgets(struct request_queue *q,
1297                 struct list_head *list)
1298 {
1299         struct request *rq;
1300
1301         list_for_each_entry(rq, list, queuelist) {
1302                 int budget_token = blk_mq_get_rq_budget_token(rq);
1303
1304                 if (budget_token >= 0)
1305                         blk_mq_put_dispatch_budget(q, budget_token);
1306         }
1307 }
1308
1309 /*
1310  * Returns true if we did some work AND can potentially do more.
1311  */
1312 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1313                              unsigned int nr_budgets)
1314 {
1315         enum prep_dispatch prep;
1316         struct request_queue *q = hctx->queue;
1317         struct request *rq, *nxt;
1318         int errors, queued;
1319         blk_status_t ret = BLK_STS_OK;
1320         LIST_HEAD(zone_list);
1321
1322         if (list_empty(list))
1323                 return false;
1324
1325         /*
1326          * Now process all the entries, sending them to the driver.
1327          */
1328         errors = queued = 0;
1329         do {
1330                 struct blk_mq_queue_data bd;
1331
1332                 rq = list_first_entry(list, struct request, queuelist);
1333
1334                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1335                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1336                 if (prep != PREP_DISPATCH_OK)
1337                         break;
1338
1339                 list_del_init(&rq->queuelist);
1340
1341                 bd.rq = rq;
1342
1343                 /*
1344                  * Flag last if we have no more requests, or if we have more
1345                  * but can't assign a driver tag to it.
1346                  */
1347                 if (list_empty(list))
1348                         bd.last = true;
1349                 else {
1350                         nxt = list_first_entry(list, struct request, queuelist);
1351                         bd.last = !blk_mq_get_driver_tag(nxt);
1352                 }
1353
1354                 /*
1355                  * once the request is queued to lld, no need to cover the
1356                  * budget any more
1357                  */
1358                 if (nr_budgets)
1359                         nr_budgets--;
1360                 ret = q->mq_ops->queue_rq(hctx, &bd);
1361                 switch (ret) {
1362                 case BLK_STS_OK:
1363                         queued++;
1364                         break;
1365                 case BLK_STS_RESOURCE:
1366                 case BLK_STS_DEV_RESOURCE:
1367                         blk_mq_handle_dev_resource(rq, list);
1368                         goto out;
1369                 case BLK_STS_ZONE_RESOURCE:
1370                         /*
1371                          * Move the request to zone_list and keep going through
1372                          * the dispatch list to find more requests the drive can
1373                          * accept.
1374                          */
1375                         blk_mq_handle_zone_resource(rq, &zone_list);
1376                         break;
1377                 default:
1378                         errors++;
1379                         blk_mq_end_request(rq, ret);
1380                 }
1381         } while (!list_empty(list));
1382 out:
1383         if (!list_empty(&zone_list))
1384                 list_splice_tail_init(&zone_list, list);
1385
1386         hctx->dispatched[queued_to_index(queued)]++;
1387
1388         /* If we didn't flush the entire list, we could have told the driver
1389          * there was more coming, but that turned out to be a lie.
1390          */
1391         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1392                 q->mq_ops->commit_rqs(hctx);
1393         /*
1394          * Any items that need requeuing? Stuff them into hctx->dispatch,
1395          * that is where we will continue on next queue run.
1396          */
1397         if (!list_empty(list)) {
1398                 bool needs_restart;
1399                 /* For non-shared tags, the RESTART check will suffice */
1400                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1401                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1402                 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1403
1404                 if (nr_budgets)
1405                         blk_mq_release_budgets(q, list);
1406
1407                 spin_lock(&hctx->lock);
1408                 list_splice_tail_init(list, &hctx->dispatch);
1409                 spin_unlock(&hctx->lock);
1410
1411                 /*
1412                  * Order adding requests to hctx->dispatch and checking
1413                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1414                  * in blk_mq_sched_restart(). Avoid restart code path to
1415                  * miss the new added requests to hctx->dispatch, meantime
1416                  * SCHED_RESTART is observed here.
1417                  */
1418                 smp_mb();
1419
1420                 /*
1421                  * If SCHED_RESTART was set by the caller of this function and
1422                  * it is no longer set that means that it was cleared by another
1423                  * thread and hence that a queue rerun is needed.
1424                  *
1425                  * If 'no_tag' is set, that means that we failed getting
1426                  * a driver tag with an I/O scheduler attached. If our dispatch
1427                  * waitqueue is no longer active, ensure that we run the queue
1428                  * AFTER adding our entries back to the list.
1429                  *
1430                  * If no I/O scheduler has been configured it is possible that
1431                  * the hardware queue got stopped and restarted before requests
1432                  * were pushed back onto the dispatch list. Rerun the queue to
1433                  * avoid starvation. Notes:
1434                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1435                  *   been stopped before rerunning a queue.
1436                  * - Some but not all block drivers stop a queue before
1437                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1438                  *   and dm-rq.
1439                  *
1440                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1441                  * bit is set, run queue after a delay to avoid IO stalls
1442                  * that could otherwise occur if the queue is idle.  We'll do
1443                  * similar if we couldn't get budget and SCHED_RESTART is set.
1444                  */
1445                 needs_restart = blk_mq_sched_needs_restart(hctx);
1446                 if (!needs_restart ||
1447                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1448                         blk_mq_run_hw_queue(hctx, true);
1449                 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1450                                            no_budget_avail))
1451                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1452
1453                 blk_mq_update_dispatch_busy(hctx, true);
1454                 return false;
1455         } else
1456                 blk_mq_update_dispatch_busy(hctx, false);
1457
1458         return (queued + errors) != 0;
1459 }
1460
1461 /**
1462  * __blk_mq_run_hw_queue - Run a hardware queue.
1463  * @hctx: Pointer to the hardware queue to run.
1464  *
1465  * Send pending requests to the hardware.
1466  */
1467 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1468 {
1469         int srcu_idx;
1470
1471         /*
1472          * We can't run the queue inline with ints disabled. Ensure that
1473          * we catch bad users of this early.
1474          */
1475         WARN_ON_ONCE(in_interrupt());
1476
1477         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1478
1479         hctx_lock(hctx, &srcu_idx);
1480         blk_mq_sched_dispatch_requests(hctx);
1481         hctx_unlock(hctx, srcu_idx);
1482 }
1483
1484 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1485 {
1486         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1487
1488         if (cpu >= nr_cpu_ids)
1489                 cpu = cpumask_first(hctx->cpumask);
1490         return cpu;
1491 }
1492
1493 /*
1494  * It'd be great if the workqueue API had a way to pass
1495  * in a mask and had some smarts for more clever placement.
1496  * For now we just round-robin here, switching for every
1497  * BLK_MQ_CPU_WORK_BATCH queued items.
1498  */
1499 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1500 {
1501         bool tried = false;
1502         int next_cpu = hctx->next_cpu;
1503
1504         if (hctx->queue->nr_hw_queues == 1)
1505                 return WORK_CPU_UNBOUND;
1506
1507         if (--hctx->next_cpu_batch <= 0) {
1508 select_cpu:
1509                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1510                                 cpu_online_mask);
1511                 if (next_cpu >= nr_cpu_ids)
1512                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1513                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1514         }
1515
1516         /*
1517          * Do unbound schedule if we can't find a online CPU for this hctx,
1518          * and it should only happen in the path of handling CPU DEAD.
1519          */
1520         if (!cpu_online(next_cpu)) {
1521                 if (!tried) {
1522                         tried = true;
1523                         goto select_cpu;
1524                 }
1525
1526                 /*
1527                  * Make sure to re-select CPU next time once after CPUs
1528                  * in hctx->cpumask become online again.
1529                  */
1530                 hctx->next_cpu = next_cpu;
1531                 hctx->next_cpu_batch = 1;
1532                 return WORK_CPU_UNBOUND;
1533         }
1534
1535         hctx->next_cpu = next_cpu;
1536         return next_cpu;
1537 }
1538
1539 /**
1540  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1541  * @hctx: Pointer to the hardware queue to run.
1542  * @async: If we want to run the queue asynchronously.
1543  * @msecs: Milliseconds of delay to wait before running the queue.
1544  *
1545  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1546  * with a delay of @msecs.
1547  */
1548 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1549                                         unsigned long msecs)
1550 {
1551         if (unlikely(blk_mq_hctx_stopped(hctx)))
1552                 return;
1553
1554         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1555                 int cpu = get_cpu();
1556                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1557                         __blk_mq_run_hw_queue(hctx);
1558                         put_cpu();
1559                         return;
1560                 }
1561
1562                 put_cpu();
1563         }
1564
1565         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1566                                     msecs_to_jiffies(msecs));
1567 }
1568
1569 /**
1570  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1571  * @hctx: Pointer to the hardware queue to run.
1572  * @msecs: Milliseconds of delay to wait before running the queue.
1573  *
1574  * Run a hardware queue asynchronously with a delay of @msecs.
1575  */
1576 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1577 {
1578         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1579 }
1580 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1581
1582 /**
1583  * blk_mq_run_hw_queue - Start to run a hardware queue.
1584  * @hctx: Pointer to the hardware queue to run.
1585  * @async: If we want to run the queue asynchronously.
1586  *
1587  * Check if the request queue is not in a quiesced state and if there are
1588  * pending requests to be sent. If this is true, run the queue to send requests
1589  * to hardware.
1590  */
1591 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1592 {
1593         int srcu_idx;
1594         bool need_run;
1595
1596         /*
1597          * When queue is quiesced, we may be switching io scheduler, or
1598          * updating nr_hw_queues, or other things, and we can't run queue
1599          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1600          *
1601          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1602          * quiesced.
1603          */
1604         hctx_lock(hctx, &srcu_idx);
1605         need_run = !blk_queue_quiesced(hctx->queue) &&
1606                 blk_mq_hctx_has_pending(hctx);
1607         hctx_unlock(hctx, srcu_idx);
1608
1609         if (need_run)
1610                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1611 }
1612 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1613
1614 /*
1615  * Is the request queue handled by an IO scheduler that does not respect
1616  * hardware queues when dispatching?
1617  */
1618 static bool blk_mq_has_sqsched(struct request_queue *q)
1619 {
1620         struct elevator_queue *e = q->elevator;
1621
1622         if (e && e->type->ops.dispatch_request &&
1623             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1624                 return true;
1625         return false;
1626 }
1627
1628 /*
1629  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1630  * scheduler.
1631  */
1632 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1633 {
1634         struct blk_mq_hw_ctx *hctx;
1635
1636         /*
1637          * If the IO scheduler does not respect hardware queues when
1638          * dispatching, we just don't bother with multiple HW queues and
1639          * dispatch from hctx for the current CPU since running multiple queues
1640          * just causes lock contention inside the scheduler and pointless cache
1641          * bouncing.
1642          */
1643         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1644                                      raw_smp_processor_id());
1645         if (!blk_mq_hctx_stopped(hctx))
1646                 return hctx;
1647         return NULL;
1648 }
1649
1650 /**
1651  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1652  * @q: Pointer to the request queue to run.
1653  * @async: If we want to run the queue asynchronously.
1654  */
1655 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1656 {
1657         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1658         int i;
1659
1660         sq_hctx = NULL;
1661         if (blk_mq_has_sqsched(q))
1662                 sq_hctx = blk_mq_get_sq_hctx(q);
1663         queue_for_each_hw_ctx(q, hctx, i) {
1664                 if (blk_mq_hctx_stopped(hctx))
1665                         continue;
1666                 /*
1667                  * Dispatch from this hctx either if there's no hctx preferred
1668                  * by IO scheduler or if it has requests that bypass the
1669                  * scheduler.
1670                  */
1671                 if (!sq_hctx || sq_hctx == hctx ||
1672                     !list_empty_careful(&hctx->dispatch))
1673                         blk_mq_run_hw_queue(hctx, async);
1674         }
1675 }
1676 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1677
1678 /**
1679  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1680  * @q: Pointer to the request queue to run.
1681  * @msecs: Milliseconds of delay to wait before running the queues.
1682  */
1683 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1684 {
1685         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1686         int i;
1687
1688         sq_hctx = NULL;
1689         if (blk_mq_has_sqsched(q))
1690                 sq_hctx = blk_mq_get_sq_hctx(q);
1691         queue_for_each_hw_ctx(q, hctx, i) {
1692                 if (blk_mq_hctx_stopped(hctx))
1693                         continue;
1694                 /*
1695                  * Dispatch from this hctx either if there's no hctx preferred
1696                  * by IO scheduler or if it has requests that bypass the
1697                  * scheduler.
1698                  */
1699                 if (!sq_hctx || sq_hctx == hctx ||
1700                     !list_empty_careful(&hctx->dispatch))
1701                         blk_mq_delay_run_hw_queue(hctx, msecs);
1702         }
1703 }
1704 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1705
1706 /**
1707  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1708  * @q: request queue.
1709  *
1710  * The caller is responsible for serializing this function against
1711  * blk_mq_{start,stop}_hw_queue().
1712  */
1713 bool blk_mq_queue_stopped(struct request_queue *q)
1714 {
1715         struct blk_mq_hw_ctx *hctx;
1716         int i;
1717
1718         queue_for_each_hw_ctx(q, hctx, i)
1719                 if (blk_mq_hctx_stopped(hctx))
1720                         return true;
1721
1722         return false;
1723 }
1724 EXPORT_SYMBOL(blk_mq_queue_stopped);
1725
1726 /*
1727  * This function is often used for pausing .queue_rq() by driver when
1728  * there isn't enough resource or some conditions aren't satisfied, and
1729  * BLK_STS_RESOURCE is usually returned.
1730  *
1731  * We do not guarantee that dispatch can be drained or blocked
1732  * after blk_mq_stop_hw_queue() returns. Please use
1733  * blk_mq_quiesce_queue() for that requirement.
1734  */
1735 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1736 {
1737         cancel_delayed_work(&hctx->run_work);
1738
1739         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1740 }
1741 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1742
1743 /*
1744  * This function is often used for pausing .queue_rq() by driver when
1745  * there isn't enough resource or some conditions aren't satisfied, and
1746  * BLK_STS_RESOURCE is usually returned.
1747  *
1748  * We do not guarantee that dispatch can be drained or blocked
1749  * after blk_mq_stop_hw_queues() returns. Please use
1750  * blk_mq_quiesce_queue() for that requirement.
1751  */
1752 void blk_mq_stop_hw_queues(struct request_queue *q)
1753 {
1754         struct blk_mq_hw_ctx *hctx;
1755         int i;
1756
1757         queue_for_each_hw_ctx(q, hctx, i)
1758                 blk_mq_stop_hw_queue(hctx);
1759 }
1760 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1761
1762 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1763 {
1764         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1765
1766         blk_mq_run_hw_queue(hctx, false);
1767 }
1768 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1769
1770 void blk_mq_start_hw_queues(struct request_queue *q)
1771 {
1772         struct blk_mq_hw_ctx *hctx;
1773         int i;
1774
1775         queue_for_each_hw_ctx(q, hctx, i)
1776                 blk_mq_start_hw_queue(hctx);
1777 }
1778 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1779
1780 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1781 {
1782         if (!blk_mq_hctx_stopped(hctx))
1783                 return;
1784
1785         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1786         blk_mq_run_hw_queue(hctx, async);
1787 }
1788 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1789
1790 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1791 {
1792         struct blk_mq_hw_ctx *hctx;
1793         int i;
1794
1795         queue_for_each_hw_ctx(q, hctx, i)
1796                 blk_mq_start_stopped_hw_queue(hctx, async);
1797 }
1798 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1799
1800 static void blk_mq_run_work_fn(struct work_struct *work)
1801 {
1802         struct blk_mq_hw_ctx *hctx;
1803
1804         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1805
1806         /*
1807          * If we are stopped, don't run the queue.
1808          */
1809         if (blk_mq_hctx_stopped(hctx))
1810                 return;
1811
1812         __blk_mq_run_hw_queue(hctx);
1813 }
1814
1815 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1816                                             struct request *rq,
1817                                             bool at_head)
1818 {
1819         struct blk_mq_ctx *ctx = rq->mq_ctx;
1820         enum hctx_type type = hctx->type;
1821
1822         lockdep_assert_held(&ctx->lock);
1823
1824         trace_block_rq_insert(rq);
1825
1826         if (at_head)
1827                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1828         else
1829                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1830 }
1831
1832 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1833                              bool at_head)
1834 {
1835         struct blk_mq_ctx *ctx = rq->mq_ctx;
1836
1837         lockdep_assert_held(&ctx->lock);
1838
1839         __blk_mq_insert_req_list(hctx, rq, at_head);
1840         blk_mq_hctx_mark_pending(hctx, ctx);
1841 }
1842
1843 /**
1844  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1845  * @rq: Pointer to request to be inserted.
1846  * @at_head: true if the request should be inserted at the head of the list.
1847  * @run_queue: If we should run the hardware queue after inserting the request.
1848  *
1849  * Should only be used carefully, when the caller knows we want to
1850  * bypass a potential IO scheduler on the target device.
1851  */
1852 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1853                                   bool run_queue)
1854 {
1855         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1856
1857         spin_lock(&hctx->lock);
1858         if (at_head)
1859                 list_add(&rq->queuelist, &hctx->dispatch);
1860         else
1861                 list_add_tail(&rq->queuelist, &hctx->dispatch);
1862         spin_unlock(&hctx->lock);
1863
1864         if (run_queue)
1865                 blk_mq_run_hw_queue(hctx, false);
1866 }
1867
1868 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1869                             struct list_head *list)
1870
1871 {
1872         struct request *rq;
1873         enum hctx_type type = hctx->type;
1874
1875         /*
1876          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1877          * offline now
1878          */
1879         list_for_each_entry(rq, list, queuelist) {
1880                 BUG_ON(rq->mq_ctx != ctx);
1881                 trace_block_rq_insert(rq);
1882         }
1883
1884         spin_lock(&ctx->lock);
1885         list_splice_tail_init(list, &ctx->rq_lists[type]);
1886         blk_mq_hctx_mark_pending(hctx, ctx);
1887         spin_unlock(&ctx->lock);
1888 }
1889
1890 static int plug_rq_cmp(void *priv, const struct list_head *a,
1891                        const struct list_head *b)
1892 {
1893         struct request *rqa = container_of(a, struct request, queuelist);
1894         struct request *rqb = container_of(b, struct request, queuelist);
1895
1896         if (rqa->mq_ctx != rqb->mq_ctx)
1897                 return rqa->mq_ctx > rqb->mq_ctx;
1898         if (rqa->mq_hctx != rqb->mq_hctx)
1899                 return rqa->mq_hctx > rqb->mq_hctx;
1900
1901         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1902 }
1903
1904 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1905 {
1906         LIST_HEAD(list);
1907
1908         if (list_empty(&plug->mq_list))
1909                 return;
1910         list_splice_init(&plug->mq_list, &list);
1911
1912         if (plug->rq_count > 2 && plug->multiple_queues)
1913                 list_sort(NULL, &list, plug_rq_cmp);
1914
1915         plug->rq_count = 0;
1916
1917         do {
1918                 struct list_head rq_list;
1919                 struct request *rq, *head_rq = list_entry_rq(list.next);
1920                 struct list_head *pos = &head_rq->queuelist; /* skip first */
1921                 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1922                 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1923                 unsigned int depth = 1;
1924
1925                 list_for_each_continue(pos, &list) {
1926                         rq = list_entry_rq(pos);
1927                         BUG_ON(!rq->q);
1928                         if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1929                                 break;
1930                         depth++;
1931                 }
1932
1933                 list_cut_before(&rq_list, &list, pos);
1934                 trace_block_unplug(head_rq->q, depth, !from_schedule);
1935                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1936                                                 from_schedule);
1937         } while(!list_empty(&list));
1938 }
1939
1940 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1941                 unsigned int nr_segs)
1942 {
1943         int err;
1944
1945         if (bio->bi_opf & REQ_RAHEAD)
1946                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1947
1948         rq->__sector = bio->bi_iter.bi_sector;
1949         rq->write_hint = bio->bi_write_hint;
1950         blk_rq_bio_prep(rq, bio, nr_segs);
1951
1952         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1953         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1954         WARN_ON_ONCE(err);
1955
1956         blk_account_io_start(rq);
1957 }
1958
1959 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1960                                             struct request *rq,
1961                                             blk_qc_t *cookie, bool last)
1962 {
1963         struct request_queue *q = rq->q;
1964         struct blk_mq_queue_data bd = {
1965                 .rq = rq,
1966                 .last = last,
1967         };
1968         blk_qc_t new_cookie;
1969         blk_status_t ret;
1970
1971         new_cookie = request_to_qc_t(hctx, rq);
1972
1973         /*
1974          * For OK queue, we are done. For error, caller may kill it.
1975          * Any other error (busy), just add it to our list as we
1976          * previously would have done.
1977          */
1978         ret = q->mq_ops->queue_rq(hctx, &bd);
1979         switch (ret) {
1980         case BLK_STS_OK:
1981                 blk_mq_update_dispatch_busy(hctx, false);
1982                 *cookie = new_cookie;
1983                 break;
1984         case BLK_STS_RESOURCE:
1985         case BLK_STS_DEV_RESOURCE:
1986                 blk_mq_update_dispatch_busy(hctx, true);
1987                 __blk_mq_requeue_request(rq);
1988                 break;
1989         default:
1990                 blk_mq_update_dispatch_busy(hctx, false);
1991                 *cookie = BLK_QC_T_NONE;
1992                 break;
1993         }
1994
1995         return ret;
1996 }
1997
1998 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1999                                                 struct request *rq,
2000                                                 blk_qc_t *cookie,
2001                                                 bool bypass_insert, bool last)
2002 {
2003         struct request_queue *q = rq->q;
2004         bool run_queue = true;
2005         int budget_token;
2006
2007         /*
2008          * RCU or SRCU read lock is needed before checking quiesced flag.
2009          *
2010          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2011          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2012          * and avoid driver to try to dispatch again.
2013          */
2014         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2015                 run_queue = false;
2016                 bypass_insert = false;
2017                 goto insert;
2018         }
2019
2020         if (q->elevator && !bypass_insert)
2021                 goto insert;
2022
2023         budget_token = blk_mq_get_dispatch_budget(q);
2024         if (budget_token < 0)
2025                 goto insert;
2026
2027         blk_mq_set_rq_budget_token(rq, budget_token);
2028
2029         if (!blk_mq_get_driver_tag(rq)) {
2030                 blk_mq_put_dispatch_budget(q, budget_token);
2031                 goto insert;
2032         }
2033
2034         return __blk_mq_issue_directly(hctx, rq, cookie, last);
2035 insert:
2036         if (bypass_insert)
2037                 return BLK_STS_RESOURCE;
2038
2039         blk_mq_sched_insert_request(rq, false, run_queue, false);
2040
2041         return BLK_STS_OK;
2042 }
2043
2044 /**
2045  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2046  * @hctx: Pointer of the associated hardware queue.
2047  * @rq: Pointer to request to be sent.
2048  * @cookie: Request queue cookie.
2049  *
2050  * If the device has enough resources to accept a new request now, send the
2051  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2052  * we can try send it another time in the future. Requests inserted at this
2053  * queue have higher priority.
2054  */
2055 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2056                 struct request *rq, blk_qc_t *cookie)
2057 {
2058         blk_status_t ret;
2059         int srcu_idx;
2060
2061         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2062
2063         hctx_lock(hctx, &srcu_idx);
2064
2065         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2066         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2067                 blk_mq_request_bypass_insert(rq, false, true);
2068         else if (ret != BLK_STS_OK)
2069                 blk_mq_end_request(rq, ret);
2070
2071         hctx_unlock(hctx, srcu_idx);
2072 }
2073
2074 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2075 {
2076         blk_status_t ret;
2077         int srcu_idx;
2078         blk_qc_t unused_cookie;
2079         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2080
2081         hctx_lock(hctx, &srcu_idx);
2082         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2083         hctx_unlock(hctx, srcu_idx);
2084
2085         return ret;
2086 }
2087
2088 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2089                 struct list_head *list)
2090 {
2091         int queued = 0;
2092         int errors = 0;
2093
2094         while (!list_empty(list)) {
2095                 blk_status_t ret;
2096                 struct request *rq = list_first_entry(list, struct request,
2097                                 queuelist);
2098
2099                 list_del_init(&rq->queuelist);
2100                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2101                 if (ret != BLK_STS_OK) {
2102                         if (ret == BLK_STS_RESOURCE ||
2103                                         ret == BLK_STS_DEV_RESOURCE) {
2104                                 blk_mq_request_bypass_insert(rq, false,
2105                                                         list_empty(list));
2106                                 break;
2107                         }
2108                         blk_mq_end_request(rq, ret);
2109                         errors++;
2110                 } else
2111                         queued++;
2112         }
2113
2114         /*
2115          * If we didn't flush the entire list, we could have told
2116          * the driver there was more coming, but that turned out to
2117          * be a lie.
2118          */
2119         if ((!list_empty(list) || errors) &&
2120              hctx->queue->mq_ops->commit_rqs && queued)
2121                 hctx->queue->mq_ops->commit_rqs(hctx);
2122 }
2123
2124 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2125 {
2126         list_add_tail(&rq->queuelist, &plug->mq_list);
2127         plug->rq_count++;
2128         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2129                 struct request *tmp;
2130
2131                 tmp = list_first_entry(&plug->mq_list, struct request,
2132                                                 queuelist);
2133                 if (tmp->q != rq->q)
2134                         plug->multiple_queues = true;
2135         }
2136 }
2137
2138 /**
2139  * blk_mq_submit_bio - Create and send a request to block device.
2140  * @bio: Bio pointer.
2141  *
2142  * Builds up a request structure from @q and @bio and send to the device. The
2143  * request may not be queued directly to hardware if:
2144  * * This request can be merged with another one
2145  * * We want to place request at plug queue for possible future merging
2146  * * There is an IO scheduler active at this queue
2147  *
2148  * It will not queue the request if there is an error with the bio, or at the
2149  * request creation.
2150  *
2151  * Returns: Request queue cookie.
2152  */
2153 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2154 {
2155         struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2156         const int is_sync = op_is_sync(bio->bi_opf);
2157         const int is_flush_fua = op_is_flush(bio->bi_opf);
2158         struct blk_mq_alloc_data data = {
2159                 .q              = q,
2160         };
2161         struct request *rq;
2162         struct blk_plug *plug;
2163         struct request *same_queue_rq = NULL;
2164         unsigned int nr_segs;
2165         blk_qc_t cookie;
2166         blk_status_t ret;
2167         bool hipri;
2168
2169         blk_queue_bounce(q, &bio);
2170         __blk_queue_split(&bio, &nr_segs);
2171
2172         if (!bio_integrity_prep(bio))
2173                 goto queue_exit;
2174
2175         if (!is_flush_fua && !blk_queue_nomerges(q) &&
2176             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2177                 goto queue_exit;
2178
2179         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2180                 goto queue_exit;
2181
2182         rq_qos_throttle(q, bio);
2183
2184         hipri = bio->bi_opf & REQ_HIPRI;
2185
2186         data.cmd_flags = bio->bi_opf;
2187         rq = __blk_mq_alloc_request(&data);
2188         if (unlikely(!rq)) {
2189                 rq_qos_cleanup(q, bio);
2190                 if (bio->bi_opf & REQ_NOWAIT)
2191                         bio_wouldblock_error(bio);
2192                 goto queue_exit;
2193         }
2194
2195         trace_block_getrq(bio);
2196
2197         rq_qos_track(q, rq, bio);
2198
2199         cookie = request_to_qc_t(data.hctx, rq);
2200
2201         blk_mq_bio_to_request(rq, bio, nr_segs);
2202
2203         ret = blk_crypto_init_request(rq);
2204         if (ret != BLK_STS_OK) {
2205                 bio->bi_status = ret;
2206                 bio_endio(bio);
2207                 blk_mq_free_request(rq);
2208                 return BLK_QC_T_NONE;
2209         }
2210
2211         plug = blk_mq_plug(q, bio);
2212         if (unlikely(is_flush_fua)) {
2213                 /* Bypass scheduler for flush requests */
2214                 blk_insert_flush(rq);
2215                 blk_mq_run_hw_queue(data.hctx, true);
2216         } else if (plug && (q->nr_hw_queues == 1 ||
2217                    blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2218                    q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2219                 /*
2220                  * Use plugging if we have a ->commit_rqs() hook as well, as
2221                  * we know the driver uses bd->last in a smart fashion.
2222                  *
2223                  * Use normal plugging if this disk is slow HDD, as sequential
2224                  * IO may benefit a lot from plug merging.
2225                  */
2226                 unsigned int request_count = plug->rq_count;
2227                 struct request *last = NULL;
2228
2229                 if (!request_count)
2230                         trace_block_plug(q);
2231                 else
2232                         last = list_entry_rq(plug->mq_list.prev);
2233
2234                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2235                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2236                         blk_flush_plug_list(plug, false);
2237                         trace_block_plug(q);
2238                 }
2239
2240                 blk_add_rq_to_plug(plug, rq);
2241         } else if (q->elevator) {
2242                 /* Insert the request at the IO scheduler queue */
2243                 blk_mq_sched_insert_request(rq, false, true, true);
2244         } else if (plug && !blk_queue_nomerges(q)) {
2245                 /*
2246                  * We do limited plugging. If the bio can be merged, do that.
2247                  * Otherwise the existing request in the plug list will be
2248                  * issued. So the plug list will have one request at most
2249                  * The plug list might get flushed before this. If that happens,
2250                  * the plug list is empty, and same_queue_rq is invalid.
2251                  */
2252                 if (list_empty(&plug->mq_list))
2253                         same_queue_rq = NULL;
2254                 if (same_queue_rq) {
2255                         list_del_init(&same_queue_rq->queuelist);
2256                         plug->rq_count--;
2257                 }
2258                 blk_add_rq_to_plug(plug, rq);
2259                 trace_block_plug(q);
2260
2261                 if (same_queue_rq) {
2262                         data.hctx = same_queue_rq->mq_hctx;
2263                         trace_block_unplug(q, 1, true);
2264                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2265                                         &cookie);
2266                 }
2267         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2268                         !data.hctx->dispatch_busy) {
2269                 /*
2270                  * There is no scheduler and we can try to send directly
2271                  * to the hardware.
2272                  */
2273                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2274         } else {
2275                 /* Default case. */
2276                 blk_mq_sched_insert_request(rq, false, true, true);
2277         }
2278
2279         if (!hipri)
2280                 return BLK_QC_T_NONE;
2281         return cookie;
2282 queue_exit:
2283         blk_queue_exit(q);
2284         return BLK_QC_T_NONE;
2285 }
2286
2287 static size_t order_to_size(unsigned int order)
2288 {
2289         return (size_t)PAGE_SIZE << order;
2290 }
2291
2292 /* called before freeing request pool in @tags */
2293 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2294                 struct blk_mq_tags *tags, unsigned int hctx_idx)
2295 {
2296         struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2297         struct page *page;
2298         unsigned long flags;
2299
2300         list_for_each_entry(page, &tags->page_list, lru) {
2301                 unsigned long start = (unsigned long)page_address(page);
2302                 unsigned long end = start + order_to_size(page->private);
2303                 int i;
2304
2305                 for (i = 0; i < set->queue_depth; i++) {
2306                         struct request *rq = drv_tags->rqs[i];
2307                         unsigned long rq_addr = (unsigned long)rq;
2308
2309                         if (rq_addr >= start && rq_addr < end) {
2310                                 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2311                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2312                         }
2313                 }
2314         }
2315
2316         /*
2317          * Wait until all pending iteration is done.
2318          *
2319          * Request reference is cleared and it is guaranteed to be observed
2320          * after the ->lock is released.
2321          */
2322         spin_lock_irqsave(&drv_tags->lock, flags);
2323         spin_unlock_irqrestore(&drv_tags->lock, flags);
2324 }
2325
2326 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2327                      unsigned int hctx_idx)
2328 {
2329         struct page *page;
2330
2331         if (tags->rqs && set->ops->exit_request) {
2332                 int i;
2333
2334                 for (i = 0; i < tags->nr_tags; i++) {
2335                         struct request *rq = tags->static_rqs[i];
2336
2337                         if (!rq)
2338                                 continue;
2339                         set->ops->exit_request(set, rq, hctx_idx);
2340                         tags->static_rqs[i] = NULL;
2341                 }
2342         }
2343
2344         blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2345
2346         while (!list_empty(&tags->page_list)) {
2347                 page = list_first_entry(&tags->page_list, struct page, lru);
2348                 list_del_init(&page->lru);
2349                 /*
2350                  * Remove kmemleak object previously allocated in
2351                  * blk_mq_alloc_rqs().
2352                  */
2353                 kmemleak_free(page_address(page));
2354                 __free_pages(page, page->private);
2355         }
2356 }
2357
2358 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2359 {
2360         kfree(tags->rqs);
2361         tags->rqs = NULL;
2362         kfree(tags->static_rqs);
2363         tags->static_rqs = NULL;
2364
2365         blk_mq_free_tags(tags, flags);
2366 }
2367
2368 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2369                                         unsigned int hctx_idx,
2370                                         unsigned int nr_tags,
2371                                         unsigned int reserved_tags,
2372                                         unsigned int flags)
2373 {
2374         struct blk_mq_tags *tags;
2375         int node;
2376
2377         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2378         if (node == NUMA_NO_NODE)
2379                 node = set->numa_node;
2380
2381         tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2382         if (!tags)
2383                 return NULL;
2384
2385         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2386                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2387                                  node);
2388         if (!tags->rqs) {
2389                 blk_mq_free_tags(tags, flags);
2390                 return NULL;
2391         }
2392
2393         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2394                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2395                                         node);
2396         if (!tags->static_rqs) {
2397                 kfree(tags->rqs);
2398                 blk_mq_free_tags(tags, flags);
2399                 return NULL;
2400         }
2401
2402         return tags;
2403 }
2404
2405 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2406                                unsigned int hctx_idx, int node)
2407 {
2408         int ret;
2409
2410         if (set->ops->init_request) {
2411                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2412                 if (ret)
2413                         return ret;
2414         }
2415
2416         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2417         return 0;
2418 }
2419
2420 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2421                      unsigned int hctx_idx, unsigned int depth)
2422 {
2423         unsigned int i, j, entries_per_page, max_order = 4;
2424         size_t rq_size, left;
2425         int node;
2426
2427         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2428         if (node == NUMA_NO_NODE)
2429                 node = set->numa_node;
2430
2431         INIT_LIST_HEAD(&tags->page_list);
2432
2433         /*
2434          * rq_size is the size of the request plus driver payload, rounded
2435          * to the cacheline size
2436          */
2437         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2438                                 cache_line_size());
2439         left = rq_size * depth;
2440
2441         for (i = 0; i < depth; ) {
2442                 int this_order = max_order;
2443                 struct page *page;
2444                 int to_do;
2445                 void *p;
2446
2447                 while (this_order && left < order_to_size(this_order - 1))
2448                         this_order--;
2449
2450                 do {
2451                         page = alloc_pages_node(node,
2452                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2453                                 this_order);
2454                         if (page)
2455                                 break;
2456                         if (!this_order--)
2457                                 break;
2458                         if (order_to_size(this_order) < rq_size)
2459                                 break;
2460                 } while (1);
2461
2462                 if (!page)
2463                         goto fail;
2464
2465                 page->private = this_order;
2466                 list_add_tail(&page->lru, &tags->page_list);
2467
2468                 p = page_address(page);
2469                 /*
2470                  * Allow kmemleak to scan these pages as they contain pointers
2471                  * to additional allocations like via ops->init_request().
2472                  */
2473                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2474                 entries_per_page = order_to_size(this_order) / rq_size;
2475                 to_do = min(entries_per_page, depth - i);
2476                 left -= to_do * rq_size;
2477                 for (j = 0; j < to_do; j++) {
2478                         struct request *rq = p;
2479
2480                         tags->static_rqs[i] = rq;
2481                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2482                                 tags->static_rqs[i] = NULL;
2483                                 goto fail;
2484                         }
2485
2486                         p += rq_size;
2487                         i++;
2488                 }
2489         }
2490         return 0;
2491
2492 fail:
2493         blk_mq_free_rqs(set, tags, hctx_idx);
2494         return -ENOMEM;
2495 }
2496
2497 struct rq_iter_data {
2498         struct blk_mq_hw_ctx *hctx;
2499         bool has_rq;
2500 };
2501
2502 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2503 {
2504         struct rq_iter_data *iter_data = data;
2505
2506         if (rq->mq_hctx != iter_data->hctx)
2507                 return true;
2508         iter_data->has_rq = true;
2509         return false;
2510 }
2511
2512 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2513 {
2514         struct blk_mq_tags *tags = hctx->sched_tags ?
2515                         hctx->sched_tags : hctx->tags;
2516         struct rq_iter_data data = {
2517                 .hctx   = hctx,
2518         };
2519
2520         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2521         return data.has_rq;
2522 }
2523
2524 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2525                 struct blk_mq_hw_ctx *hctx)
2526 {
2527         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2528                 return false;
2529         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2530                 return false;
2531         return true;
2532 }
2533
2534 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2535 {
2536         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2537                         struct blk_mq_hw_ctx, cpuhp_online);
2538
2539         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2540             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2541                 return 0;
2542
2543         /*
2544          * Prevent new request from being allocated on the current hctx.
2545          *
2546          * The smp_mb__after_atomic() Pairs with the implied barrier in
2547          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2548          * seen once we return from the tag allocator.
2549          */
2550         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2551         smp_mb__after_atomic();
2552
2553         /*
2554          * Try to grab a reference to the queue and wait for any outstanding
2555          * requests.  If we could not grab a reference the queue has been
2556          * frozen and there are no requests.
2557          */
2558         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2559                 while (blk_mq_hctx_has_requests(hctx))
2560                         msleep(5);
2561                 percpu_ref_put(&hctx->queue->q_usage_counter);
2562         }
2563
2564         return 0;
2565 }
2566
2567 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2568 {
2569         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2570                         struct blk_mq_hw_ctx, cpuhp_online);
2571
2572         if (cpumask_test_cpu(cpu, hctx->cpumask))
2573                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2574         return 0;
2575 }
2576
2577 /*
2578  * 'cpu' is going away. splice any existing rq_list entries from this
2579  * software queue to the hw queue dispatch list, and ensure that it
2580  * gets run.
2581  */
2582 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2583 {
2584         struct blk_mq_hw_ctx *hctx;
2585         struct blk_mq_ctx *ctx;
2586         LIST_HEAD(tmp);
2587         enum hctx_type type;
2588
2589         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2590         if (!cpumask_test_cpu(cpu, hctx->cpumask))
2591                 return 0;
2592
2593         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2594         type = hctx->type;
2595
2596         spin_lock(&ctx->lock);
2597         if (!list_empty(&ctx->rq_lists[type])) {
2598                 list_splice_init(&ctx->rq_lists[type], &tmp);
2599                 blk_mq_hctx_clear_pending(hctx, ctx);
2600         }
2601         spin_unlock(&ctx->lock);
2602
2603         if (list_empty(&tmp))
2604                 return 0;
2605
2606         spin_lock(&hctx->lock);
2607         list_splice_tail_init(&tmp, &hctx->dispatch);
2608         spin_unlock(&hctx->lock);
2609
2610         blk_mq_run_hw_queue(hctx, true);
2611         return 0;
2612 }
2613
2614 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2615 {
2616         if (!(hctx->flags & BLK_MQ_F_STACKING))
2617                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2618                                                     &hctx->cpuhp_online);
2619         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2620                                             &hctx->cpuhp_dead);
2621 }
2622
2623 /*
2624  * Before freeing hw queue, clearing the flush request reference in
2625  * tags->rqs[] for avoiding potential UAF.
2626  */
2627 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2628                 unsigned int queue_depth, struct request *flush_rq)
2629 {
2630         int i;
2631         unsigned long flags;
2632
2633         /* The hw queue may not be mapped yet */
2634         if (!tags)
2635                 return;
2636
2637         WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2638
2639         for (i = 0; i < queue_depth; i++)
2640                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
2641
2642         /*
2643          * Wait until all pending iteration is done.
2644          *
2645          * Request reference is cleared and it is guaranteed to be observed
2646          * after the ->lock is released.
2647          */
2648         spin_lock_irqsave(&tags->lock, flags);
2649         spin_unlock_irqrestore(&tags->lock, flags);
2650 }
2651
2652 /* hctx->ctxs will be freed in queue's release handler */
2653 static void blk_mq_exit_hctx(struct request_queue *q,
2654                 struct blk_mq_tag_set *set,
2655                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2656 {
2657         struct request *flush_rq = hctx->fq->flush_rq;
2658
2659         if (blk_mq_hw_queue_mapped(hctx))
2660                 blk_mq_tag_idle(hctx);
2661
2662         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2663                         set->queue_depth, flush_rq);
2664         if (set->ops->exit_request)
2665                 set->ops->exit_request(set, flush_rq, hctx_idx);
2666
2667         if (set->ops->exit_hctx)
2668                 set->ops->exit_hctx(hctx, hctx_idx);
2669
2670         blk_mq_remove_cpuhp(hctx);
2671
2672         spin_lock(&q->unused_hctx_lock);
2673         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2674         spin_unlock(&q->unused_hctx_lock);
2675 }
2676
2677 static void blk_mq_exit_hw_queues(struct request_queue *q,
2678                 struct blk_mq_tag_set *set, int nr_queue)
2679 {
2680         struct blk_mq_hw_ctx *hctx;
2681         unsigned int i;
2682
2683         queue_for_each_hw_ctx(q, hctx, i) {
2684                 if (i == nr_queue)
2685                         break;
2686                 blk_mq_debugfs_unregister_hctx(hctx);
2687                 blk_mq_exit_hctx(q, set, hctx, i);
2688         }
2689 }
2690
2691 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2692 {
2693         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2694
2695         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2696                            __alignof__(struct blk_mq_hw_ctx)) !=
2697                      sizeof(struct blk_mq_hw_ctx));
2698
2699         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2700                 hw_ctx_size += sizeof(struct srcu_struct);
2701
2702         return hw_ctx_size;
2703 }
2704
2705 static int blk_mq_init_hctx(struct request_queue *q,
2706                 struct blk_mq_tag_set *set,
2707                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2708 {
2709         hctx->queue_num = hctx_idx;
2710
2711         if (!(hctx->flags & BLK_MQ_F_STACKING))
2712                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2713                                 &hctx->cpuhp_online);
2714         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2715
2716         hctx->tags = set->tags[hctx_idx];
2717
2718         if (set->ops->init_hctx &&
2719             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2720                 goto unregister_cpu_notifier;
2721
2722         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2723                                 hctx->numa_node))
2724                 goto exit_hctx;
2725         return 0;
2726
2727  exit_hctx:
2728         if (set->ops->exit_hctx)
2729                 set->ops->exit_hctx(hctx, hctx_idx);
2730  unregister_cpu_notifier:
2731         blk_mq_remove_cpuhp(hctx);
2732         return -1;
2733 }
2734
2735 static struct blk_mq_hw_ctx *
2736 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2737                 int node)
2738 {
2739         struct blk_mq_hw_ctx *hctx;
2740         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2741
2742         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2743         if (!hctx)
2744                 goto fail_alloc_hctx;
2745
2746         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2747                 goto free_hctx;
2748
2749         atomic_set(&hctx->nr_active, 0);
2750         if (node == NUMA_NO_NODE)
2751                 node = set->numa_node;
2752         hctx->numa_node = node;
2753
2754         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2755         spin_lock_init(&hctx->lock);
2756         INIT_LIST_HEAD(&hctx->dispatch);
2757         hctx->queue = q;
2758         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2759
2760         INIT_LIST_HEAD(&hctx->hctx_list);
2761
2762         /*
2763          * Allocate space for all possible cpus to avoid allocation at
2764          * runtime
2765          */
2766         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2767                         gfp, node);
2768         if (!hctx->ctxs)
2769                 goto free_cpumask;
2770
2771         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2772                                 gfp, node, false, false))
2773                 goto free_ctxs;
2774         hctx->nr_ctx = 0;
2775
2776         spin_lock_init(&hctx->dispatch_wait_lock);
2777         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2778         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2779
2780         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2781         if (!hctx->fq)
2782                 goto free_bitmap;
2783
2784         if (hctx->flags & BLK_MQ_F_BLOCKING)
2785                 init_srcu_struct(hctx->srcu);
2786         blk_mq_hctx_kobj_init(hctx);
2787
2788         return hctx;
2789
2790  free_bitmap:
2791         sbitmap_free(&hctx->ctx_map);
2792  free_ctxs:
2793         kfree(hctx->ctxs);
2794  free_cpumask:
2795         free_cpumask_var(hctx->cpumask);
2796  free_hctx:
2797         kfree(hctx);
2798  fail_alloc_hctx:
2799         return NULL;
2800 }
2801
2802 static void blk_mq_init_cpu_queues(struct request_queue *q,
2803                                    unsigned int nr_hw_queues)
2804 {
2805         struct blk_mq_tag_set *set = q->tag_set;
2806         unsigned int i, j;
2807
2808         for_each_possible_cpu(i) {
2809                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2810                 struct blk_mq_hw_ctx *hctx;
2811                 int k;
2812
2813                 __ctx->cpu = i;
2814                 spin_lock_init(&__ctx->lock);
2815                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2816                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2817
2818                 __ctx->queue = q;
2819
2820                 /*
2821                  * Set local node, IFF we have more than one hw queue. If
2822                  * not, we remain on the home node of the device
2823                  */
2824                 for (j = 0; j < set->nr_maps; j++) {
2825                         hctx = blk_mq_map_queue_type(q, j, i);
2826                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2827                                 hctx->numa_node = cpu_to_node(i);
2828                 }
2829         }
2830 }
2831
2832 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2833                                         int hctx_idx)
2834 {
2835         unsigned int flags = set->flags;
2836         int ret = 0;
2837
2838         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2839                                         set->queue_depth, set->reserved_tags, flags);
2840         if (!set->tags[hctx_idx])
2841                 return false;
2842
2843         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2844                                 set->queue_depth);
2845         if (!ret)
2846                 return true;
2847
2848         blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2849         set->tags[hctx_idx] = NULL;
2850         return false;
2851 }
2852
2853 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2854                                          unsigned int hctx_idx)
2855 {
2856         unsigned int flags = set->flags;
2857
2858         if (set->tags && set->tags[hctx_idx]) {
2859                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2860                 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2861                 set->tags[hctx_idx] = NULL;
2862         }
2863 }
2864
2865 static void blk_mq_map_swqueue(struct request_queue *q)
2866 {
2867         unsigned int i, j, hctx_idx;
2868         struct blk_mq_hw_ctx *hctx;
2869         struct blk_mq_ctx *ctx;
2870         struct blk_mq_tag_set *set = q->tag_set;
2871
2872         queue_for_each_hw_ctx(q, hctx, i) {
2873                 cpumask_clear(hctx->cpumask);
2874                 hctx->nr_ctx = 0;
2875                 hctx->dispatch_from = NULL;
2876         }
2877
2878         /*
2879          * Map software to hardware queues.
2880          *
2881          * If the cpu isn't present, the cpu is mapped to first hctx.
2882          */
2883         for_each_possible_cpu(i) {
2884
2885                 ctx = per_cpu_ptr(q->queue_ctx, i);
2886                 for (j = 0; j < set->nr_maps; j++) {
2887                         if (!set->map[j].nr_queues) {
2888                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2889                                                 HCTX_TYPE_DEFAULT, i);
2890                                 continue;
2891                         }
2892                         hctx_idx = set->map[j].mq_map[i];
2893                         /* unmapped hw queue can be remapped after CPU topo changed */
2894                         if (!set->tags[hctx_idx] &&
2895                             !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2896                                 /*
2897                                  * If tags initialization fail for some hctx,
2898                                  * that hctx won't be brought online.  In this
2899                                  * case, remap the current ctx to hctx[0] which
2900                                  * is guaranteed to always have tags allocated
2901                                  */
2902                                 set->map[j].mq_map[i] = 0;
2903                         }
2904
2905                         hctx = blk_mq_map_queue_type(q, j, i);
2906                         ctx->hctxs[j] = hctx;
2907                         /*
2908                          * If the CPU is already set in the mask, then we've
2909                          * mapped this one already. This can happen if
2910                          * devices share queues across queue maps.
2911                          */
2912                         if (cpumask_test_cpu(i, hctx->cpumask))
2913                                 continue;
2914
2915                         cpumask_set_cpu(i, hctx->cpumask);
2916                         hctx->type = j;
2917                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2918                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2919
2920                         /*
2921                          * If the nr_ctx type overflows, we have exceeded the
2922                          * amount of sw queues we can support.
2923                          */
2924                         BUG_ON(!hctx->nr_ctx);
2925                 }
2926
2927                 for (; j < HCTX_MAX_TYPES; j++)
2928                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2929                                         HCTX_TYPE_DEFAULT, i);
2930         }
2931
2932         queue_for_each_hw_ctx(q, hctx, i) {
2933                 /*
2934                  * If no software queues are mapped to this hardware queue,
2935                  * disable it and free the request entries.
2936                  */
2937                 if (!hctx->nr_ctx) {
2938                         /* Never unmap queue 0.  We need it as a
2939                          * fallback in case of a new remap fails
2940                          * allocation
2941                          */
2942                         if (i && set->tags[i])
2943                                 blk_mq_free_map_and_requests(set, i);
2944
2945                         hctx->tags = NULL;
2946                         continue;
2947                 }
2948
2949                 hctx->tags = set->tags[i];
2950                 WARN_ON(!hctx->tags);
2951
2952                 /*
2953                  * Set the map size to the number of mapped software queues.
2954                  * This is more accurate and more efficient than looping
2955                  * over all possibly mapped software queues.
2956                  */
2957                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2958
2959                 /*
2960                  * Initialize batch roundrobin counts
2961                  */
2962                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2963                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2964         }
2965 }
2966
2967 /*
2968  * Caller needs to ensure that we're either frozen/quiesced, or that
2969  * the queue isn't live yet.
2970  */
2971 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2972 {
2973         struct blk_mq_hw_ctx *hctx;
2974         int i;
2975
2976         queue_for_each_hw_ctx(q, hctx, i) {
2977                 if (shared) {
2978                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2979                 } else {
2980                         blk_mq_tag_idle(hctx);
2981                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2982                 }
2983         }
2984 }
2985
2986 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2987                                          bool shared)
2988 {
2989         struct request_queue *q;
2990
2991         lockdep_assert_held(&set->tag_list_lock);
2992
2993         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2994                 blk_mq_freeze_queue(q);
2995                 queue_set_hctx_shared(q, shared);
2996                 blk_mq_unfreeze_queue(q);
2997         }
2998 }
2999
3000 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3001 {
3002         struct blk_mq_tag_set *set = q->tag_set;
3003
3004         mutex_lock(&set->tag_list_lock);
3005         list_del(&q->tag_set_list);
3006         if (list_is_singular(&set->tag_list)) {
3007                 /* just transitioned to unshared */
3008                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3009                 /* update existing queue */
3010                 blk_mq_update_tag_set_shared(set, false);
3011         }
3012         mutex_unlock(&set->tag_list_lock);
3013         INIT_LIST_HEAD(&q->tag_set_list);
3014 }
3015
3016 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3017                                      struct request_queue *q)
3018 {
3019         mutex_lock(&set->tag_list_lock);
3020
3021         /*
3022          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3023          */
3024         if (!list_empty(&set->tag_list) &&
3025             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3026                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3027                 /* update existing queue */
3028                 blk_mq_update_tag_set_shared(set, true);
3029         }
3030         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3031                 queue_set_hctx_shared(q, true);
3032         list_add_tail(&q->tag_set_list, &set->tag_list);
3033
3034         mutex_unlock(&set->tag_list_lock);
3035 }
3036
3037 /* All allocations will be freed in release handler of q->mq_kobj */
3038 static int blk_mq_alloc_ctxs(struct request_queue *q)
3039 {
3040         struct blk_mq_ctxs *ctxs;
3041         int cpu;
3042
3043         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3044         if (!ctxs)
3045                 return -ENOMEM;
3046
3047         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3048         if (!ctxs->queue_ctx)
3049                 goto fail;
3050
3051         for_each_possible_cpu(cpu) {
3052                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3053                 ctx->ctxs = ctxs;
3054         }
3055
3056         q->mq_kobj = &ctxs->kobj;
3057         q->queue_ctx = ctxs->queue_ctx;
3058
3059         return 0;
3060  fail:
3061         kfree(ctxs);
3062         return -ENOMEM;
3063 }
3064
3065 /*
3066  * It is the actual release handler for mq, but we do it from
3067  * request queue's release handler for avoiding use-after-free
3068  * and headache because q->mq_kobj shouldn't have been introduced,
3069  * but we can't group ctx/kctx kobj without it.
3070  */
3071 void blk_mq_release(struct request_queue *q)
3072 {
3073         struct blk_mq_hw_ctx *hctx, *next;
3074         int i;
3075
3076         queue_for_each_hw_ctx(q, hctx, i)
3077                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3078
3079         /* all hctx are in .unused_hctx_list now */
3080         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3081                 list_del_init(&hctx->hctx_list);
3082                 kobject_put(&hctx->kobj);
3083         }
3084
3085         kfree(q->queue_hw_ctx);
3086
3087         /*
3088          * release .mq_kobj and sw queue's kobject now because
3089          * both share lifetime with request queue.
3090          */
3091         blk_mq_sysfs_deinit(q);
3092 }
3093
3094 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3095                 void *queuedata)
3096 {
3097         struct request_queue *q;
3098         int ret;
3099
3100         q = blk_alloc_queue(set->numa_node);
3101         if (!q)
3102                 return ERR_PTR(-ENOMEM);
3103         q->queuedata = queuedata;
3104         ret = blk_mq_init_allocated_queue(set, q);
3105         if (ret) {
3106                 blk_cleanup_queue(q);
3107                 return ERR_PTR(ret);
3108         }
3109         return q;
3110 }
3111
3112 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3113 {
3114         return blk_mq_init_queue_data(set, NULL);
3115 }
3116 EXPORT_SYMBOL(blk_mq_init_queue);
3117
3118 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata)
3119 {
3120         struct request_queue *q;
3121         struct gendisk *disk;
3122
3123         q = blk_mq_init_queue_data(set, queuedata);
3124         if (IS_ERR(q))
3125                 return ERR_CAST(q);
3126
3127         disk = __alloc_disk_node(0, set->numa_node);
3128         if (!disk) {
3129                 blk_cleanup_queue(q);
3130                 return ERR_PTR(-ENOMEM);
3131         }
3132         disk->queue = q;
3133         return disk;
3134 }
3135 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3136
3137 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3138                 struct blk_mq_tag_set *set, struct request_queue *q,
3139                 int hctx_idx, int node)
3140 {
3141         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3142
3143         /* reuse dead hctx first */
3144         spin_lock(&q->unused_hctx_lock);
3145         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3146                 if (tmp->numa_node == node) {
3147                         hctx = tmp;
3148                         break;
3149                 }
3150         }
3151         if (hctx)
3152                 list_del_init(&hctx->hctx_list);
3153         spin_unlock(&q->unused_hctx_lock);
3154
3155         if (!hctx)
3156                 hctx = blk_mq_alloc_hctx(q, set, node);
3157         if (!hctx)
3158                 goto fail;
3159
3160         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3161                 goto free_hctx;
3162
3163         return hctx;
3164
3165  free_hctx:
3166         kobject_put(&hctx->kobj);
3167  fail:
3168         return NULL;
3169 }
3170
3171 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3172                                                 struct request_queue *q)
3173 {
3174         int i, j, end;
3175         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3176
3177         if (q->nr_hw_queues < set->nr_hw_queues) {
3178                 struct blk_mq_hw_ctx **new_hctxs;
3179
3180                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3181                                        sizeof(*new_hctxs), GFP_KERNEL,
3182                                        set->numa_node);
3183                 if (!new_hctxs)
3184                         return;
3185                 if (hctxs)
3186                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3187                                sizeof(*hctxs));
3188                 q->queue_hw_ctx = new_hctxs;
3189                 kfree(hctxs);
3190                 hctxs = new_hctxs;
3191         }
3192
3193         /* protect against switching io scheduler  */
3194         mutex_lock(&q->sysfs_lock);
3195         for (i = 0; i < set->nr_hw_queues; i++) {
3196                 int node;
3197                 struct blk_mq_hw_ctx *hctx;
3198
3199                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3200                 /*
3201                  * If the hw queue has been mapped to another numa node,
3202                  * we need to realloc the hctx. If allocation fails, fallback
3203                  * to use the previous one.
3204                  */
3205                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3206                         continue;
3207
3208                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3209                 if (hctx) {
3210                         if (hctxs[i])
3211                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3212                         hctxs[i] = hctx;
3213                 } else {
3214                         if (hctxs[i])
3215                                 pr_warn("Allocate new hctx on node %d fails,\
3216                                                 fallback to previous one on node %d\n",
3217                                                 node, hctxs[i]->numa_node);
3218                         else
3219                                 break;
3220                 }
3221         }
3222         /*
3223          * Increasing nr_hw_queues fails. Free the newly allocated
3224          * hctxs and keep the previous q->nr_hw_queues.
3225          */
3226         if (i != set->nr_hw_queues) {
3227                 j = q->nr_hw_queues;
3228                 end = i;
3229         } else {
3230                 j = i;
3231                 end = q->nr_hw_queues;
3232                 q->nr_hw_queues = set->nr_hw_queues;
3233         }
3234
3235         for (; j < end; j++) {
3236                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3237
3238                 if (hctx) {
3239                         if (hctx->tags)
3240                                 blk_mq_free_map_and_requests(set, j);
3241                         blk_mq_exit_hctx(q, set, hctx, j);
3242                         hctxs[j] = NULL;
3243                 }
3244         }
3245         mutex_unlock(&q->sysfs_lock);
3246 }
3247
3248 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3249                 struct request_queue *q)
3250 {
3251         /* mark the queue as mq asap */
3252         q->mq_ops = set->ops;
3253
3254         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3255                                              blk_mq_poll_stats_bkt,
3256                                              BLK_MQ_POLL_STATS_BKTS, q);
3257         if (!q->poll_cb)
3258                 goto err_exit;
3259
3260         if (blk_mq_alloc_ctxs(q))
3261                 goto err_poll;
3262
3263         /* init q->mq_kobj and sw queues' kobjects */
3264         blk_mq_sysfs_init(q);
3265
3266         INIT_LIST_HEAD(&q->unused_hctx_list);
3267         spin_lock_init(&q->unused_hctx_lock);
3268
3269         blk_mq_realloc_hw_ctxs(set, q);
3270         if (!q->nr_hw_queues)
3271                 goto err_hctxs;
3272
3273         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3274         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3275
3276         q->tag_set = set;
3277
3278         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3279         if (set->nr_maps > HCTX_TYPE_POLL &&
3280             set->map[HCTX_TYPE_POLL].nr_queues)
3281                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3282
3283         q->sg_reserved_size = INT_MAX;
3284
3285         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3286         INIT_LIST_HEAD(&q->requeue_list);
3287         spin_lock_init(&q->requeue_lock);
3288
3289         q->nr_requests = set->queue_depth;
3290
3291         /*
3292          * Default to classic polling
3293          */
3294         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3295
3296         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3297         blk_mq_add_queue_tag_set(set, q);
3298         blk_mq_map_swqueue(q);
3299         return 0;
3300
3301 err_hctxs:
3302         kfree(q->queue_hw_ctx);
3303         q->nr_hw_queues = 0;
3304         blk_mq_sysfs_deinit(q);
3305 err_poll:
3306         blk_stat_free_callback(q->poll_cb);
3307         q->poll_cb = NULL;
3308 err_exit:
3309         q->mq_ops = NULL;
3310         return -ENOMEM;
3311 }
3312 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3313
3314 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3315 void blk_mq_exit_queue(struct request_queue *q)
3316 {
3317         struct blk_mq_tag_set *set = q->tag_set;
3318
3319         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3320         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3321         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3322         blk_mq_del_queue_tag_set(q);
3323 }
3324
3325 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3326 {
3327         int i;
3328
3329         for (i = 0; i < set->nr_hw_queues; i++) {
3330                 if (!__blk_mq_alloc_map_and_request(set, i))
3331                         goto out_unwind;
3332                 cond_resched();
3333         }
3334
3335         return 0;
3336
3337 out_unwind:
3338         while (--i >= 0)
3339                 blk_mq_free_map_and_requests(set, i);
3340
3341         return -ENOMEM;
3342 }
3343
3344 /*
3345  * Allocate the request maps associated with this tag_set. Note that this
3346  * may reduce the depth asked for, if memory is tight. set->queue_depth
3347  * will be updated to reflect the allocated depth.
3348  */
3349 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3350 {
3351         unsigned int depth;
3352         int err;
3353
3354         depth = set->queue_depth;
3355         do {
3356                 err = __blk_mq_alloc_rq_maps(set);
3357                 if (!err)
3358                         break;
3359
3360                 set->queue_depth >>= 1;
3361                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3362                         err = -ENOMEM;
3363                         break;
3364                 }
3365         } while (set->queue_depth);
3366
3367         if (!set->queue_depth || err) {
3368                 pr_err("blk-mq: failed to allocate request map\n");
3369                 return -ENOMEM;
3370         }
3371
3372         if (depth != set->queue_depth)
3373                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3374                                                 depth, set->queue_depth);
3375
3376         return 0;
3377 }
3378
3379 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3380 {
3381         /*
3382          * blk_mq_map_queues() and multiple .map_queues() implementations
3383          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3384          * number of hardware queues.
3385          */
3386         if (set->nr_maps == 1)
3387                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3388
3389         if (set->ops->map_queues && !is_kdump_kernel()) {
3390                 int i;
3391
3392                 /*
3393                  * transport .map_queues is usually done in the following
3394                  * way:
3395                  *
3396                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3397                  *      mask = get_cpu_mask(queue)
3398                  *      for_each_cpu(cpu, mask)
3399                  *              set->map[x].mq_map[cpu] = queue;
3400                  * }
3401                  *
3402                  * When we need to remap, the table has to be cleared for
3403                  * killing stale mapping since one CPU may not be mapped
3404                  * to any hw queue.
3405                  */
3406                 for (i = 0; i < set->nr_maps; i++)
3407                         blk_mq_clear_mq_map(&set->map[i]);
3408
3409                 return set->ops->map_queues(set);
3410         } else {
3411                 BUG_ON(set->nr_maps > 1);
3412                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3413         }
3414 }
3415
3416 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3417                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3418 {
3419         struct blk_mq_tags **new_tags;
3420
3421         if (cur_nr_hw_queues >= new_nr_hw_queues)
3422                 return 0;
3423
3424         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3425                                 GFP_KERNEL, set->numa_node);
3426         if (!new_tags)
3427                 return -ENOMEM;
3428
3429         if (set->tags)
3430                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3431                        sizeof(*set->tags));
3432         kfree(set->tags);
3433         set->tags = new_tags;
3434         set->nr_hw_queues = new_nr_hw_queues;
3435
3436         return 0;
3437 }
3438
3439 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3440                                 int new_nr_hw_queues)
3441 {
3442         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3443 }
3444
3445 /*
3446  * Alloc a tag set to be associated with one or more request queues.
3447  * May fail with EINVAL for various error conditions. May adjust the
3448  * requested depth down, if it's too large. In that case, the set
3449  * value will be stored in set->queue_depth.
3450  */
3451 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3452 {
3453         int i, ret;
3454
3455         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3456
3457         if (!set->nr_hw_queues)
3458                 return -EINVAL;
3459         if (!set->queue_depth)
3460                 return -EINVAL;
3461         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3462                 return -EINVAL;
3463
3464         if (!set->ops->queue_rq)
3465                 return -EINVAL;
3466
3467         if (!set->ops->get_budget ^ !set->ops->put_budget)
3468                 return -EINVAL;
3469
3470         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3471                 pr_info("blk-mq: reduced tag depth to %u\n",
3472                         BLK_MQ_MAX_DEPTH);
3473                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3474         }
3475
3476         if (!set->nr_maps)
3477                 set->nr_maps = 1;
3478         else if (set->nr_maps > HCTX_MAX_TYPES)
3479                 return -EINVAL;
3480
3481         /*
3482          * If a crashdump is active, then we are potentially in a very
3483          * memory constrained environment. Limit us to 1 queue and
3484          * 64 tags to prevent using too much memory.
3485          */
3486         if (is_kdump_kernel()) {
3487                 set->nr_hw_queues = 1;
3488                 set->nr_maps = 1;
3489                 set->queue_depth = min(64U, set->queue_depth);
3490         }
3491         /*
3492          * There is no use for more h/w queues than cpus if we just have
3493          * a single map
3494          */
3495         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3496                 set->nr_hw_queues = nr_cpu_ids;
3497
3498         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3499                 return -ENOMEM;
3500
3501         ret = -ENOMEM;
3502         for (i = 0; i < set->nr_maps; i++) {
3503                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3504                                                   sizeof(set->map[i].mq_map[0]),
3505                                                   GFP_KERNEL, set->numa_node);
3506                 if (!set->map[i].mq_map)
3507                         goto out_free_mq_map;
3508                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3509         }
3510
3511         ret = blk_mq_update_queue_map(set);
3512         if (ret)
3513                 goto out_free_mq_map;
3514
3515         ret = blk_mq_alloc_map_and_requests(set);
3516         if (ret)
3517                 goto out_free_mq_map;
3518
3519         if (blk_mq_is_sbitmap_shared(set->flags)) {
3520                 atomic_set(&set->active_queues_shared_sbitmap, 0);
3521
3522                 if (blk_mq_init_shared_sbitmap(set)) {
3523                         ret = -ENOMEM;
3524                         goto out_free_mq_rq_maps;
3525                 }
3526         }
3527
3528         mutex_init(&set->tag_list_lock);
3529         INIT_LIST_HEAD(&set->tag_list);
3530
3531         return 0;
3532
3533 out_free_mq_rq_maps:
3534         for (i = 0; i < set->nr_hw_queues; i++)
3535                 blk_mq_free_map_and_requests(set, i);
3536 out_free_mq_map:
3537         for (i = 0; i < set->nr_maps; i++) {
3538                 kfree(set->map[i].mq_map);
3539                 set->map[i].mq_map = NULL;
3540         }
3541         kfree(set->tags);
3542         set->tags = NULL;
3543         return ret;
3544 }
3545 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3546
3547 /* allocate and initialize a tagset for a simple single-queue device */
3548 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3549                 const struct blk_mq_ops *ops, unsigned int queue_depth,
3550                 unsigned int set_flags)
3551 {
3552         memset(set, 0, sizeof(*set));
3553         set->ops = ops;
3554         set->nr_hw_queues = 1;
3555         set->nr_maps = 1;
3556         set->queue_depth = queue_depth;
3557         set->numa_node = NUMA_NO_NODE;
3558         set->flags = set_flags;
3559         return blk_mq_alloc_tag_set(set);
3560 }
3561 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3562
3563 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3564 {
3565         int i, j;
3566
3567         for (i = 0; i < set->nr_hw_queues; i++)
3568                 blk_mq_free_map_and_requests(set, i);
3569
3570         if (blk_mq_is_sbitmap_shared(set->flags))
3571                 blk_mq_exit_shared_sbitmap(set);
3572
3573         for (j = 0; j < set->nr_maps; j++) {
3574                 kfree(set->map[j].mq_map);
3575                 set->map[j].mq_map = NULL;
3576         }
3577
3578         kfree(set->tags);
3579         set->tags = NULL;
3580 }
3581 EXPORT_SYMBOL(blk_mq_free_tag_set);
3582
3583 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3584 {
3585         struct blk_mq_tag_set *set = q->tag_set;
3586         struct blk_mq_hw_ctx *hctx;
3587         int i, ret;
3588
3589         if (!set)
3590                 return -EINVAL;
3591
3592         if (q->nr_requests == nr)
3593                 return 0;
3594
3595         blk_mq_freeze_queue(q);
3596         blk_mq_quiesce_queue(q);
3597
3598         ret = 0;
3599         queue_for_each_hw_ctx(q, hctx, i) {
3600                 if (!hctx->tags)
3601                         continue;
3602                 /*
3603                  * If we're using an MQ scheduler, just update the scheduler
3604                  * queue depth. This is similar to what the old code would do.
3605                  */
3606                 if (!hctx->sched_tags) {
3607                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3608                                                         false);
3609                         if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3610                                 blk_mq_tag_resize_shared_sbitmap(set, nr);
3611                 } else {
3612                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3613                                                         nr, true);
3614                         if (blk_mq_is_sbitmap_shared(set->flags)) {
3615                                 hctx->sched_tags->bitmap_tags =
3616                                         &q->sched_bitmap_tags;
3617                                 hctx->sched_tags->breserved_tags =
3618                                         &q->sched_breserved_tags;
3619                         }
3620                 }
3621                 if (ret)
3622                         break;
3623                 if (q->elevator && q->elevator->type->ops.depth_updated)
3624                         q->elevator->type->ops.depth_updated(hctx);
3625         }
3626         if (!ret) {
3627                 q->nr_requests = nr;
3628                 if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3629                         sbitmap_queue_resize(&q->sched_bitmap_tags,
3630                                              nr - set->reserved_tags);
3631         }
3632
3633         blk_mq_unquiesce_queue(q);
3634         blk_mq_unfreeze_queue(q);
3635
3636         return ret;
3637 }
3638
3639 /*
3640  * request_queue and elevator_type pair.
3641  * It is just used by __blk_mq_update_nr_hw_queues to cache
3642  * the elevator_type associated with a request_queue.
3643  */
3644 struct blk_mq_qe_pair {
3645         struct list_head node;
3646         struct request_queue *q;
3647         struct elevator_type *type;
3648 };
3649
3650 /*
3651  * Cache the elevator_type in qe pair list and switch the
3652  * io scheduler to 'none'
3653  */
3654 static bool blk_mq_elv_switch_none(struct list_head *head,
3655                 struct request_queue *q)
3656 {
3657         struct blk_mq_qe_pair *qe;
3658
3659         if (!q->elevator)
3660                 return true;
3661
3662         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3663         if (!qe)
3664                 return false;
3665
3666         INIT_LIST_HEAD(&qe->node);
3667         qe->q = q;
3668         qe->type = q->elevator->type;
3669         list_add(&qe->node, head);
3670
3671         mutex_lock(&q->sysfs_lock);
3672         /*
3673          * After elevator_switch_mq, the previous elevator_queue will be
3674          * released by elevator_release. The reference of the io scheduler
3675          * module get by elevator_get will also be put. So we need to get
3676          * a reference of the io scheduler module here to prevent it to be
3677          * removed.
3678          */
3679         __module_get(qe->type->elevator_owner);
3680         elevator_switch_mq(q, NULL);
3681         mutex_unlock(&q->sysfs_lock);
3682
3683         return true;
3684 }
3685
3686 static void blk_mq_elv_switch_back(struct list_head *head,
3687                 struct request_queue *q)
3688 {
3689         struct blk_mq_qe_pair *qe;
3690         struct elevator_type *t = NULL;
3691
3692         list_for_each_entry(qe, head, node)
3693                 if (qe->q == q) {
3694                         t = qe->type;
3695                         break;
3696                 }
3697
3698         if (!t)
3699                 return;
3700
3701         list_del(&qe->node);
3702         kfree(qe);
3703
3704         mutex_lock(&q->sysfs_lock);
3705         elevator_switch_mq(q, t);
3706         mutex_unlock(&q->sysfs_lock);
3707 }
3708
3709 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3710                                                         int nr_hw_queues)
3711 {
3712         struct request_queue *q;
3713         LIST_HEAD(head);
3714         int prev_nr_hw_queues;
3715
3716         lockdep_assert_held(&set->tag_list_lock);
3717
3718         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3719                 nr_hw_queues = nr_cpu_ids;
3720         if (nr_hw_queues < 1)
3721                 return;
3722         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3723                 return;
3724
3725         list_for_each_entry(q, &set->tag_list, tag_set_list)
3726                 blk_mq_freeze_queue(q);
3727         /*
3728          * Switch IO scheduler to 'none', cleaning up the data associated
3729          * with the previous scheduler. We will switch back once we are done
3730          * updating the new sw to hw queue mappings.
3731          */
3732         list_for_each_entry(q, &set->tag_list, tag_set_list)
3733                 if (!blk_mq_elv_switch_none(&head, q))
3734                         goto switch_back;
3735
3736         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3737                 blk_mq_debugfs_unregister_hctxs(q);
3738                 blk_mq_sysfs_unregister(q);
3739         }
3740
3741         prev_nr_hw_queues = set->nr_hw_queues;
3742         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3743             0)
3744                 goto reregister;
3745
3746         set->nr_hw_queues = nr_hw_queues;
3747 fallback:
3748         blk_mq_update_queue_map(set);
3749         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3750                 blk_mq_realloc_hw_ctxs(set, q);
3751                 if (q->nr_hw_queues != set->nr_hw_queues) {
3752                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3753                                         nr_hw_queues, prev_nr_hw_queues);
3754                         set->nr_hw_queues = prev_nr_hw_queues;
3755                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3756                         goto fallback;
3757                 }
3758                 blk_mq_map_swqueue(q);
3759         }
3760
3761 reregister:
3762         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3763                 blk_mq_sysfs_register(q);
3764                 blk_mq_debugfs_register_hctxs(q);
3765         }
3766
3767 switch_back:
3768         list_for_each_entry(q, &set->tag_list, tag_set_list)
3769                 blk_mq_elv_switch_back(&head, q);
3770
3771         list_for_each_entry(q, &set->tag_list, tag_set_list)
3772                 blk_mq_unfreeze_queue(q);
3773 }
3774
3775 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3776 {
3777         mutex_lock(&set->tag_list_lock);
3778         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3779         mutex_unlock(&set->tag_list_lock);
3780 }
3781 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3782
3783 /* Enable polling stats and return whether they were already enabled. */
3784 static bool blk_poll_stats_enable(struct request_queue *q)
3785 {
3786         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3787             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3788                 return true;
3789         blk_stat_add_callback(q, q->poll_cb);
3790         return false;
3791 }
3792
3793 static void blk_mq_poll_stats_start(struct request_queue *q)
3794 {
3795         /*
3796          * We don't arm the callback if polling stats are not enabled or the
3797          * callback is already active.
3798          */
3799         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3800             blk_stat_is_active(q->poll_cb))
3801                 return;
3802
3803         blk_stat_activate_msecs(q->poll_cb, 100);
3804 }
3805
3806 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3807 {
3808         struct request_queue *q = cb->data;
3809         int bucket;
3810
3811         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3812                 if (cb->stat[bucket].nr_samples)
3813                         q->poll_stat[bucket] = cb->stat[bucket];
3814         }
3815 }
3816
3817 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3818                                        struct request *rq)
3819 {
3820         unsigned long ret = 0;
3821         int bucket;
3822
3823         /*
3824          * If stats collection isn't on, don't sleep but turn it on for
3825          * future users
3826          */
3827         if (!blk_poll_stats_enable(q))
3828                 return 0;
3829
3830         /*
3831          * As an optimistic guess, use half of the mean service time
3832          * for this type of request. We can (and should) make this smarter.
3833          * For instance, if the completion latencies are tight, we can
3834          * get closer than just half the mean. This is especially
3835          * important on devices where the completion latencies are longer
3836          * than ~10 usec. We do use the stats for the relevant IO size
3837          * if available which does lead to better estimates.
3838          */
3839         bucket = blk_mq_poll_stats_bkt(rq);
3840         if (bucket < 0)
3841                 return ret;
3842
3843         if (q->poll_stat[bucket].nr_samples)
3844                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3845
3846         return ret;
3847 }
3848
3849 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3850                                      struct request *rq)
3851 {
3852         struct hrtimer_sleeper hs;
3853         enum hrtimer_mode mode;
3854         unsigned int nsecs;
3855         ktime_t kt;
3856
3857         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3858                 return false;
3859
3860         /*
3861          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3862          *
3863          *  0:  use half of prev avg
3864          * >0:  use this specific value
3865          */
3866         if (q->poll_nsec > 0)
3867                 nsecs = q->poll_nsec;
3868         else
3869                 nsecs = blk_mq_poll_nsecs(q, rq);
3870
3871         if (!nsecs)
3872                 return false;
3873
3874         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3875
3876         /*
3877          * This will be replaced with the stats tracking code, using
3878          * 'avg_completion_time / 2' as the pre-sleep target.
3879          */
3880         kt = nsecs;
3881
3882         mode = HRTIMER_MODE_REL;
3883         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3884         hrtimer_set_expires(&hs.timer, kt);
3885
3886         do {
3887                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3888                         break;
3889                 set_current_state(TASK_UNINTERRUPTIBLE);
3890                 hrtimer_sleeper_start_expires(&hs, mode);
3891                 if (hs.task)
3892                         io_schedule();
3893                 hrtimer_cancel(&hs.timer);
3894                 mode = HRTIMER_MODE_ABS;
3895         } while (hs.task && !signal_pending(current));
3896
3897         __set_current_state(TASK_RUNNING);
3898         destroy_hrtimer_on_stack(&hs.timer);
3899         return true;
3900 }
3901
3902 static bool blk_mq_poll_hybrid(struct request_queue *q,
3903                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3904 {
3905         struct request *rq;
3906
3907         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3908                 return false;
3909
3910         if (!blk_qc_t_is_internal(cookie))
3911                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3912         else {
3913                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3914                 /*
3915                  * With scheduling, if the request has completed, we'll
3916                  * get a NULL return here, as we clear the sched tag when
3917                  * that happens. The request still remains valid, like always,
3918                  * so we should be safe with just the NULL check.
3919                  */
3920                 if (!rq)
3921                         return false;
3922         }
3923
3924         return blk_mq_poll_hybrid_sleep(q, rq);
3925 }
3926
3927 /**
3928  * blk_poll - poll for IO completions
3929  * @q:  the queue
3930  * @cookie: cookie passed back at IO submission time
3931  * @spin: whether to spin for completions
3932  *
3933  * Description:
3934  *    Poll for completions on the passed in queue. Returns number of
3935  *    completed entries found. If @spin is true, then blk_poll will continue
3936  *    looping until at least one completion is found, unless the task is
3937  *    otherwise marked running (or we need to reschedule).
3938  */
3939 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3940 {
3941         struct blk_mq_hw_ctx *hctx;
3942         unsigned int state;
3943
3944         if (!blk_qc_t_valid(cookie) ||
3945             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3946                 return 0;
3947
3948         if (current->plug)
3949                 blk_flush_plug_list(current->plug, false);
3950
3951         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3952
3953         /*
3954          * If we sleep, have the caller restart the poll loop to reset
3955          * the state. Like for the other success return cases, the
3956          * caller is responsible for checking if the IO completed. If
3957          * the IO isn't complete, we'll get called again and will go
3958          * straight to the busy poll loop. If specified not to spin,
3959          * we also should not sleep.
3960          */
3961         if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3962                 return 1;
3963
3964         hctx->poll_considered++;
3965
3966         state = get_current_state();
3967         do {
3968                 int ret;
3969
3970                 hctx->poll_invoked++;
3971
3972                 ret = q->mq_ops->poll(hctx);
3973                 if (ret > 0) {
3974                         hctx->poll_success++;
3975                         __set_current_state(TASK_RUNNING);
3976                         return ret;
3977                 }
3978
3979                 if (signal_pending_state(state, current))
3980                         __set_current_state(TASK_RUNNING);
3981
3982                 if (task_is_running(current))
3983                         return 1;
3984                 if (ret < 0 || !spin)
3985                         break;
3986                 cpu_relax();
3987         } while (!need_resched());
3988
3989         __set_current_state(TASK_RUNNING);
3990         return 0;
3991 }
3992 EXPORT_SYMBOL_GPL(blk_poll);
3993
3994 unsigned int blk_mq_rq_cpu(struct request *rq)
3995 {
3996         return rq->mq_ctx->cpu;
3997 }
3998 EXPORT_SYMBOL(blk_mq_rq_cpu);
3999
4000 static int __init blk_mq_init(void)
4001 {
4002         int i;
4003
4004         for_each_possible_cpu(i)
4005                 init_llist_head(&per_cpu(blk_cpu_done, i));
4006         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4007
4008         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4009                                   "block/softirq:dead", NULL,
4010                                   blk_softirq_cpu_dead);
4011         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4012                                 blk_mq_hctx_notify_dead);
4013         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4014                                 blk_mq_hctx_notify_online,
4015                                 blk_mq_hctx_notify_offline);
4016         return 0;
4017 }
4018 subsys_initcall(blk_mq_init);