Merge tag 'nfs-for-4.14-3' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[platform/kernel/linux-rpi.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static void blk_mq_poll_stats_start(struct request_queue *q);
41 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
42
43 static int blk_mq_poll_stats_bkt(const struct request *rq)
44 {
45         int ddir, bytes, bucket;
46
47         ddir = rq_data_dir(rq);
48         bytes = blk_rq_bytes(rq);
49
50         bucket = ddir + 2*(ilog2(bytes) - 9);
51
52         if (bucket < 0)
53                 return -1;
54         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
55                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
56
57         return bucket;
58 }
59
60 /*
61  * Check if any of the ctx's have pending work in this hardware queue
62  */
63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64 {
65         return sbitmap_any_bit_set(&hctx->ctx_map) ||
66                         !list_empty_careful(&hctx->dispatch) ||
67                         blk_mq_sched_has_work(hctx);
68 }
69
70 /*
71  * Mark this ctx as having pending work in this hardware queue
72  */
73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
74                                      struct blk_mq_ctx *ctx)
75 {
76         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
77                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 }
79
80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81                                       struct blk_mq_ctx *ctx)
82 {
83         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 }
85
86 struct mq_inflight {
87         struct hd_struct *part;
88         unsigned int *inflight;
89 };
90
91 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
92                                   struct request *rq, void *priv,
93                                   bool reserved)
94 {
95         struct mq_inflight *mi = priv;
96
97         if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
98             !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
99                 /*
100                  * index[0] counts the specific partition that was asked
101                  * for. index[1] counts the ones that are active on the
102                  * whole device, so increment that if mi->part is indeed
103                  * a partition, and not a whole device.
104                  */
105                 if (rq->part == mi->part)
106                         mi->inflight[0]++;
107                 if (mi->part->partno)
108                         mi->inflight[1]++;
109         }
110 }
111
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113                       unsigned int inflight[2])
114 {
115         struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
117         inflight[0] = inflight[1] = 0;
118         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123         int freeze_depth;
124
125         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126         if (freeze_depth == 1) {
127                 percpu_ref_kill(&q->q_usage_counter);
128                 blk_mq_run_hw_queues(q, false);
129         }
130 }
131 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
132
133 void blk_mq_freeze_queue_wait(struct request_queue *q)
134 {
135         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
136 }
137 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
138
139 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
140                                      unsigned long timeout)
141 {
142         return wait_event_timeout(q->mq_freeze_wq,
143                                         percpu_ref_is_zero(&q->q_usage_counter),
144                                         timeout);
145 }
146 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
147
148 /*
149  * Guarantee no request is in use, so we can change any data structure of
150  * the queue afterward.
151  */
152 void blk_freeze_queue(struct request_queue *q)
153 {
154         /*
155          * In the !blk_mq case we are only calling this to kill the
156          * q_usage_counter, otherwise this increases the freeze depth
157          * and waits for it to return to zero.  For this reason there is
158          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
159          * exported to drivers as the only user for unfreeze is blk_mq.
160          */
161         blk_freeze_queue_start(q);
162         blk_mq_freeze_queue_wait(q);
163 }
164
165 void blk_mq_freeze_queue(struct request_queue *q)
166 {
167         /*
168          * ...just an alias to keep freeze and unfreeze actions balanced
169          * in the blk_mq_* namespace
170          */
171         blk_freeze_queue(q);
172 }
173 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
174
175 void blk_mq_unfreeze_queue(struct request_queue *q)
176 {
177         int freeze_depth;
178
179         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
180         WARN_ON_ONCE(freeze_depth < 0);
181         if (!freeze_depth) {
182                 percpu_ref_reinit(&q->q_usage_counter);
183                 wake_up_all(&q->mq_freeze_wq);
184         }
185 }
186 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
187
188 /*
189  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
190  * mpt3sas driver such that this function can be removed.
191  */
192 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
193 {
194         unsigned long flags;
195
196         spin_lock_irqsave(q->queue_lock, flags);
197         queue_flag_set(QUEUE_FLAG_QUIESCED, q);
198         spin_unlock_irqrestore(q->queue_lock, flags);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
201
202 /**
203  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
204  * @q: request queue.
205  *
206  * Note: this function does not prevent that the struct request end_io()
207  * callback function is invoked. Once this function is returned, we make
208  * sure no dispatch can happen until the queue is unquiesced via
209  * blk_mq_unquiesce_queue().
210  */
211 void blk_mq_quiesce_queue(struct request_queue *q)
212 {
213         struct blk_mq_hw_ctx *hctx;
214         unsigned int i;
215         bool rcu = false;
216
217         blk_mq_quiesce_queue_nowait(q);
218
219         queue_for_each_hw_ctx(q, hctx, i) {
220                 if (hctx->flags & BLK_MQ_F_BLOCKING)
221                         synchronize_srcu(hctx->queue_rq_srcu);
222                 else
223                         rcu = true;
224         }
225         if (rcu)
226                 synchronize_rcu();
227 }
228 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
229
230 /*
231  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
232  * @q: request queue.
233  *
234  * This function recovers queue into the state before quiescing
235  * which is done by blk_mq_quiesce_queue.
236  */
237 void blk_mq_unquiesce_queue(struct request_queue *q)
238 {
239         unsigned long flags;
240
241         spin_lock_irqsave(q->queue_lock, flags);
242         queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
243         spin_unlock_irqrestore(q->queue_lock, flags);
244
245         /* dispatch requests which are inserted during quiescing */
246         blk_mq_run_hw_queues(q, true);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
249
250 void blk_mq_wake_waiters(struct request_queue *q)
251 {
252         struct blk_mq_hw_ctx *hctx;
253         unsigned int i;
254
255         queue_for_each_hw_ctx(q, hctx, i)
256                 if (blk_mq_hw_queue_mapped(hctx))
257                         blk_mq_tag_wakeup_all(hctx->tags, true);
258
259         /*
260          * If we are called because the queue has now been marked as
261          * dying, we need to ensure that processes currently waiting on
262          * the queue are notified as well.
263          */
264         wake_up_all(&q->mq_freeze_wq);
265 }
266
267 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
268 {
269         return blk_mq_has_free_tags(hctx->tags);
270 }
271 EXPORT_SYMBOL(blk_mq_can_queue);
272
273 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
274                 unsigned int tag, unsigned int op)
275 {
276         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
277         struct request *rq = tags->static_rqs[tag];
278
279         rq->rq_flags = 0;
280
281         if (data->flags & BLK_MQ_REQ_INTERNAL) {
282                 rq->tag = -1;
283                 rq->internal_tag = tag;
284         } else {
285                 if (blk_mq_tag_busy(data->hctx)) {
286                         rq->rq_flags = RQF_MQ_INFLIGHT;
287                         atomic_inc(&data->hctx->nr_active);
288                 }
289                 rq->tag = tag;
290                 rq->internal_tag = -1;
291                 data->hctx->tags->rqs[rq->tag] = rq;
292         }
293
294         INIT_LIST_HEAD(&rq->queuelist);
295         /* csd/requeue_work/fifo_time is initialized before use */
296         rq->q = data->q;
297         rq->mq_ctx = data->ctx;
298         rq->cmd_flags = op;
299         if (blk_queue_io_stat(data->q))
300                 rq->rq_flags |= RQF_IO_STAT;
301         /* do not touch atomic flags, it needs atomic ops against the timer */
302         rq->cpu = -1;
303         INIT_HLIST_NODE(&rq->hash);
304         RB_CLEAR_NODE(&rq->rb_node);
305         rq->rq_disk = NULL;
306         rq->part = NULL;
307         rq->start_time = jiffies;
308 #ifdef CONFIG_BLK_CGROUP
309         rq->rl = NULL;
310         set_start_time_ns(rq);
311         rq->io_start_time_ns = 0;
312 #endif
313         rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315         rq->nr_integrity_segments = 0;
316 #endif
317         rq->special = NULL;
318         /* tag was already set */
319         rq->extra_len = 0;
320
321         INIT_LIST_HEAD(&rq->timeout_list);
322         rq->timeout = 0;
323
324         rq->end_io = NULL;
325         rq->end_io_data = NULL;
326         rq->next_rq = NULL;
327
328         data->ctx->rq_dispatched[op_is_sync(op)]++;
329         return rq;
330 }
331
332 static struct request *blk_mq_get_request(struct request_queue *q,
333                 struct bio *bio, unsigned int op,
334                 struct blk_mq_alloc_data *data)
335 {
336         struct elevator_queue *e = q->elevator;
337         struct request *rq;
338         unsigned int tag;
339         struct blk_mq_ctx *local_ctx = NULL;
340
341         blk_queue_enter_live(q);
342         data->q = q;
343         if (likely(!data->ctx))
344                 data->ctx = local_ctx = blk_mq_get_ctx(q);
345         if (likely(!data->hctx))
346                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
347         if (op & REQ_NOWAIT)
348                 data->flags |= BLK_MQ_REQ_NOWAIT;
349
350         if (e) {
351                 data->flags |= BLK_MQ_REQ_INTERNAL;
352
353                 /*
354                  * Flush requests are special and go directly to the
355                  * dispatch list.
356                  */
357                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
358                         e->type->ops.mq.limit_depth(op, data);
359         }
360
361         tag = blk_mq_get_tag(data);
362         if (tag == BLK_MQ_TAG_FAIL) {
363                 if (local_ctx) {
364                         blk_mq_put_ctx(local_ctx);
365                         data->ctx = NULL;
366                 }
367                 blk_queue_exit(q);
368                 return NULL;
369         }
370
371         rq = blk_mq_rq_ctx_init(data, tag, op);
372         if (!op_is_flush(op)) {
373                 rq->elv.icq = NULL;
374                 if (e && e->type->ops.mq.prepare_request) {
375                         if (e->type->icq_cache && rq_ioc(bio))
376                                 blk_mq_sched_assign_ioc(rq, bio);
377
378                         e->type->ops.mq.prepare_request(rq, bio);
379                         rq->rq_flags |= RQF_ELVPRIV;
380                 }
381         }
382         data->hctx->queued++;
383         return rq;
384 }
385
386 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
387                 unsigned int flags)
388 {
389         struct blk_mq_alloc_data alloc_data = { .flags = flags };
390         struct request *rq;
391         int ret;
392
393         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
394         if (ret)
395                 return ERR_PTR(ret);
396
397         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
398         blk_queue_exit(q);
399
400         if (!rq)
401                 return ERR_PTR(-EWOULDBLOCK);
402
403         blk_mq_put_ctx(alloc_data.ctx);
404
405         rq->__data_len = 0;
406         rq->__sector = (sector_t) -1;
407         rq->bio = rq->biotail = NULL;
408         return rq;
409 }
410 EXPORT_SYMBOL(blk_mq_alloc_request);
411
412 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
413                 unsigned int op, unsigned int flags, unsigned int hctx_idx)
414 {
415         struct blk_mq_alloc_data alloc_data = { .flags = flags };
416         struct request *rq;
417         unsigned int cpu;
418         int ret;
419
420         /*
421          * If the tag allocator sleeps we could get an allocation for a
422          * different hardware context.  No need to complicate the low level
423          * allocator for this for the rare use case of a command tied to
424          * a specific queue.
425          */
426         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
427                 return ERR_PTR(-EINVAL);
428
429         if (hctx_idx >= q->nr_hw_queues)
430                 return ERR_PTR(-EIO);
431
432         ret = blk_queue_enter(q, true);
433         if (ret)
434                 return ERR_PTR(ret);
435
436         /*
437          * Check if the hardware context is actually mapped to anything.
438          * If not tell the caller that it should skip this queue.
439          */
440         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
441         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
442                 blk_queue_exit(q);
443                 return ERR_PTR(-EXDEV);
444         }
445         cpu = cpumask_first(alloc_data.hctx->cpumask);
446         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
447
448         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
449         blk_queue_exit(q);
450
451         if (!rq)
452                 return ERR_PTR(-EWOULDBLOCK);
453
454         return rq;
455 }
456 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
457
458 void blk_mq_free_request(struct request *rq)
459 {
460         struct request_queue *q = rq->q;
461         struct elevator_queue *e = q->elevator;
462         struct blk_mq_ctx *ctx = rq->mq_ctx;
463         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
464         const int sched_tag = rq->internal_tag;
465
466         if (rq->rq_flags & RQF_ELVPRIV) {
467                 if (e && e->type->ops.mq.finish_request)
468                         e->type->ops.mq.finish_request(rq);
469                 if (rq->elv.icq) {
470                         put_io_context(rq->elv.icq->ioc);
471                         rq->elv.icq = NULL;
472                 }
473         }
474
475         ctx->rq_completed[rq_is_sync(rq)]++;
476         if (rq->rq_flags & RQF_MQ_INFLIGHT)
477                 atomic_dec(&hctx->nr_active);
478
479         wbt_done(q->rq_wb, &rq->issue_stat);
480
481         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
482         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
483         if (rq->tag != -1)
484                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
485         if (sched_tag != -1)
486                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
487         blk_mq_sched_restart(hctx);
488         blk_queue_exit(q);
489 }
490 EXPORT_SYMBOL_GPL(blk_mq_free_request);
491
492 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
493 {
494         blk_account_io_done(rq);
495
496         if (rq->end_io) {
497                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
498                 rq->end_io(rq, error);
499         } else {
500                 if (unlikely(blk_bidi_rq(rq)))
501                         blk_mq_free_request(rq->next_rq);
502                 blk_mq_free_request(rq);
503         }
504 }
505 EXPORT_SYMBOL(__blk_mq_end_request);
506
507 void blk_mq_end_request(struct request *rq, blk_status_t error)
508 {
509         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
510                 BUG();
511         __blk_mq_end_request(rq, error);
512 }
513 EXPORT_SYMBOL(blk_mq_end_request);
514
515 static void __blk_mq_complete_request_remote(void *data)
516 {
517         struct request *rq = data;
518
519         rq->q->softirq_done_fn(rq);
520 }
521
522 static void __blk_mq_complete_request(struct request *rq)
523 {
524         struct blk_mq_ctx *ctx = rq->mq_ctx;
525         bool shared = false;
526         int cpu;
527
528         if (rq->internal_tag != -1)
529                 blk_mq_sched_completed_request(rq);
530         if (rq->rq_flags & RQF_STATS) {
531                 blk_mq_poll_stats_start(rq->q);
532                 blk_stat_add(rq);
533         }
534
535         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
536                 rq->q->softirq_done_fn(rq);
537                 return;
538         }
539
540         cpu = get_cpu();
541         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
542                 shared = cpus_share_cache(cpu, ctx->cpu);
543
544         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
545                 rq->csd.func = __blk_mq_complete_request_remote;
546                 rq->csd.info = rq;
547                 rq->csd.flags = 0;
548                 smp_call_function_single_async(ctx->cpu, &rq->csd);
549         } else {
550                 rq->q->softirq_done_fn(rq);
551         }
552         put_cpu();
553 }
554
555 /**
556  * blk_mq_complete_request - end I/O on a request
557  * @rq:         the request being processed
558  *
559  * Description:
560  *      Ends all I/O on a request. It does not handle partial completions.
561  *      The actual completion happens out-of-order, through a IPI handler.
562  **/
563 void blk_mq_complete_request(struct request *rq)
564 {
565         struct request_queue *q = rq->q;
566
567         if (unlikely(blk_should_fake_timeout(q)))
568                 return;
569         if (!blk_mark_rq_complete(rq))
570                 __blk_mq_complete_request(rq);
571 }
572 EXPORT_SYMBOL(blk_mq_complete_request);
573
574 int blk_mq_request_started(struct request *rq)
575 {
576         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
577 }
578 EXPORT_SYMBOL_GPL(blk_mq_request_started);
579
580 void blk_mq_start_request(struct request *rq)
581 {
582         struct request_queue *q = rq->q;
583
584         blk_mq_sched_started_request(rq);
585
586         trace_block_rq_issue(q, rq);
587
588         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
589                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
590                 rq->rq_flags |= RQF_STATS;
591                 wbt_issue(q->rq_wb, &rq->issue_stat);
592         }
593
594         blk_add_timer(rq);
595
596         /*
597          * Ensure that ->deadline is visible before set the started
598          * flag and clear the completed flag.
599          */
600         smp_mb__before_atomic();
601
602         /*
603          * Mark us as started and clear complete. Complete might have been
604          * set if requeue raced with timeout, which then marked it as
605          * complete. So be sure to clear complete again when we start
606          * the request, otherwise we'll ignore the completion event.
607          */
608         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
609                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
610         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
611                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
612
613         if (q->dma_drain_size && blk_rq_bytes(rq)) {
614                 /*
615                  * Make sure space for the drain appears.  We know we can do
616                  * this because max_hw_segments has been adjusted to be one
617                  * fewer than the device can handle.
618                  */
619                 rq->nr_phys_segments++;
620         }
621 }
622 EXPORT_SYMBOL(blk_mq_start_request);
623
624 /*
625  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
626  * flag isn't set yet, so there may be race with timeout handler,
627  * but given rq->deadline is just set in .queue_rq() under
628  * this situation, the race won't be possible in reality because
629  * rq->timeout should be set as big enough to cover the window
630  * between blk_mq_start_request() called from .queue_rq() and
631  * clearing REQ_ATOM_STARTED here.
632  */
633 static void __blk_mq_requeue_request(struct request *rq)
634 {
635         struct request_queue *q = rq->q;
636
637         trace_block_rq_requeue(q, rq);
638         wbt_requeue(q->rq_wb, &rq->issue_stat);
639         blk_mq_sched_requeue_request(rq);
640
641         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
642                 if (q->dma_drain_size && blk_rq_bytes(rq))
643                         rq->nr_phys_segments--;
644         }
645 }
646
647 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
648 {
649         __blk_mq_requeue_request(rq);
650
651         BUG_ON(blk_queued_rq(rq));
652         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
653 }
654 EXPORT_SYMBOL(blk_mq_requeue_request);
655
656 static void blk_mq_requeue_work(struct work_struct *work)
657 {
658         struct request_queue *q =
659                 container_of(work, struct request_queue, requeue_work.work);
660         LIST_HEAD(rq_list);
661         struct request *rq, *next;
662
663         spin_lock_irq(&q->requeue_lock);
664         list_splice_init(&q->requeue_list, &rq_list);
665         spin_unlock_irq(&q->requeue_lock);
666
667         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
668                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
669                         continue;
670
671                 rq->rq_flags &= ~RQF_SOFTBARRIER;
672                 list_del_init(&rq->queuelist);
673                 blk_mq_sched_insert_request(rq, true, false, false, true);
674         }
675
676         while (!list_empty(&rq_list)) {
677                 rq = list_entry(rq_list.next, struct request, queuelist);
678                 list_del_init(&rq->queuelist);
679                 blk_mq_sched_insert_request(rq, false, false, false, true);
680         }
681
682         blk_mq_run_hw_queues(q, false);
683 }
684
685 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
686                                 bool kick_requeue_list)
687 {
688         struct request_queue *q = rq->q;
689         unsigned long flags;
690
691         /*
692          * We abuse this flag that is otherwise used by the I/O scheduler to
693          * request head insertation from the workqueue.
694          */
695         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
696
697         spin_lock_irqsave(&q->requeue_lock, flags);
698         if (at_head) {
699                 rq->rq_flags |= RQF_SOFTBARRIER;
700                 list_add(&rq->queuelist, &q->requeue_list);
701         } else {
702                 list_add_tail(&rq->queuelist, &q->requeue_list);
703         }
704         spin_unlock_irqrestore(&q->requeue_lock, flags);
705
706         if (kick_requeue_list)
707                 blk_mq_kick_requeue_list(q);
708 }
709 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
710
711 void blk_mq_kick_requeue_list(struct request_queue *q)
712 {
713         kblockd_schedule_delayed_work(&q->requeue_work, 0);
714 }
715 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
716
717 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
718                                     unsigned long msecs)
719 {
720         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
721                                     msecs_to_jiffies(msecs));
722 }
723 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
724
725 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
726 {
727         if (tag < tags->nr_tags) {
728                 prefetch(tags->rqs[tag]);
729                 return tags->rqs[tag];
730         }
731
732         return NULL;
733 }
734 EXPORT_SYMBOL(blk_mq_tag_to_rq);
735
736 struct blk_mq_timeout_data {
737         unsigned long next;
738         unsigned int next_set;
739 };
740
741 void blk_mq_rq_timed_out(struct request *req, bool reserved)
742 {
743         const struct blk_mq_ops *ops = req->q->mq_ops;
744         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
745
746         /*
747          * We know that complete is set at this point. If STARTED isn't set
748          * anymore, then the request isn't active and the "timeout" should
749          * just be ignored. This can happen due to the bitflag ordering.
750          * Timeout first checks if STARTED is set, and if it is, assumes
751          * the request is active. But if we race with completion, then
752          * both flags will get cleared. So check here again, and ignore
753          * a timeout event with a request that isn't active.
754          */
755         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
756                 return;
757
758         if (ops->timeout)
759                 ret = ops->timeout(req, reserved);
760
761         switch (ret) {
762         case BLK_EH_HANDLED:
763                 __blk_mq_complete_request(req);
764                 break;
765         case BLK_EH_RESET_TIMER:
766                 blk_add_timer(req);
767                 blk_clear_rq_complete(req);
768                 break;
769         case BLK_EH_NOT_HANDLED:
770                 break;
771         default:
772                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
773                 break;
774         }
775 }
776
777 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
778                 struct request *rq, void *priv, bool reserved)
779 {
780         struct blk_mq_timeout_data *data = priv;
781
782         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
783                 return;
784
785         /*
786          * The rq being checked may have been freed and reallocated
787          * out already here, we avoid this race by checking rq->deadline
788          * and REQ_ATOM_COMPLETE flag together:
789          *
790          * - if rq->deadline is observed as new value because of
791          *   reusing, the rq won't be timed out because of timing.
792          * - if rq->deadline is observed as previous value,
793          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
794          *   because we put a barrier between setting rq->deadline
795          *   and clearing the flag in blk_mq_start_request(), so
796          *   this rq won't be timed out too.
797          */
798         if (time_after_eq(jiffies, rq->deadline)) {
799                 if (!blk_mark_rq_complete(rq))
800                         blk_mq_rq_timed_out(rq, reserved);
801         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
802                 data->next = rq->deadline;
803                 data->next_set = 1;
804         }
805 }
806
807 static void blk_mq_timeout_work(struct work_struct *work)
808 {
809         struct request_queue *q =
810                 container_of(work, struct request_queue, timeout_work);
811         struct blk_mq_timeout_data data = {
812                 .next           = 0,
813                 .next_set       = 0,
814         };
815         int i;
816
817         /* A deadlock might occur if a request is stuck requiring a
818          * timeout at the same time a queue freeze is waiting
819          * completion, since the timeout code would not be able to
820          * acquire the queue reference here.
821          *
822          * That's why we don't use blk_queue_enter here; instead, we use
823          * percpu_ref_tryget directly, because we need to be able to
824          * obtain a reference even in the short window between the queue
825          * starting to freeze, by dropping the first reference in
826          * blk_freeze_queue_start, and the moment the last request is
827          * consumed, marked by the instant q_usage_counter reaches
828          * zero.
829          */
830         if (!percpu_ref_tryget(&q->q_usage_counter))
831                 return;
832
833         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
834
835         if (data.next_set) {
836                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
837                 mod_timer(&q->timeout, data.next);
838         } else {
839                 struct blk_mq_hw_ctx *hctx;
840
841                 queue_for_each_hw_ctx(q, hctx, i) {
842                         /* the hctx may be unmapped, so check it here */
843                         if (blk_mq_hw_queue_mapped(hctx))
844                                 blk_mq_tag_idle(hctx);
845                 }
846         }
847         blk_queue_exit(q);
848 }
849
850 struct flush_busy_ctx_data {
851         struct blk_mq_hw_ctx *hctx;
852         struct list_head *list;
853 };
854
855 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
856 {
857         struct flush_busy_ctx_data *flush_data = data;
858         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
859         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
860
861         sbitmap_clear_bit(sb, bitnr);
862         spin_lock(&ctx->lock);
863         list_splice_tail_init(&ctx->rq_list, flush_data->list);
864         spin_unlock(&ctx->lock);
865         return true;
866 }
867
868 /*
869  * Process software queues that have been marked busy, splicing them
870  * to the for-dispatch
871  */
872 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
873 {
874         struct flush_busy_ctx_data data = {
875                 .hctx = hctx,
876                 .list = list,
877         };
878
879         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
880 }
881 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
882
883 static inline unsigned int queued_to_index(unsigned int queued)
884 {
885         if (!queued)
886                 return 0;
887
888         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
889 }
890
891 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
892                            bool wait)
893 {
894         struct blk_mq_alloc_data data = {
895                 .q = rq->q,
896                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
897                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
898         };
899
900         might_sleep_if(wait);
901
902         if (rq->tag != -1)
903                 goto done;
904
905         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
906                 data.flags |= BLK_MQ_REQ_RESERVED;
907
908         rq->tag = blk_mq_get_tag(&data);
909         if (rq->tag >= 0) {
910                 if (blk_mq_tag_busy(data.hctx)) {
911                         rq->rq_flags |= RQF_MQ_INFLIGHT;
912                         atomic_inc(&data.hctx->nr_active);
913                 }
914                 data.hctx->tags->rqs[rq->tag] = rq;
915         }
916
917 done:
918         if (hctx)
919                 *hctx = data.hctx;
920         return rq->tag != -1;
921 }
922
923 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
924                                     struct request *rq)
925 {
926         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
927         rq->tag = -1;
928
929         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
930                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
931                 atomic_dec(&hctx->nr_active);
932         }
933 }
934
935 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
936                                        struct request *rq)
937 {
938         if (rq->tag == -1 || rq->internal_tag == -1)
939                 return;
940
941         __blk_mq_put_driver_tag(hctx, rq);
942 }
943
944 static void blk_mq_put_driver_tag(struct request *rq)
945 {
946         struct blk_mq_hw_ctx *hctx;
947
948         if (rq->tag == -1 || rq->internal_tag == -1)
949                 return;
950
951         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
952         __blk_mq_put_driver_tag(hctx, rq);
953 }
954
955 /*
956  * If we fail getting a driver tag because all the driver tags are already
957  * assigned and on the dispatch list, BUT the first entry does not have a
958  * tag, then we could deadlock. For that case, move entries with assigned
959  * driver tags to the front, leaving the set of tagged requests in the
960  * same order, and the untagged set in the same order.
961  */
962 static bool reorder_tags_to_front(struct list_head *list)
963 {
964         struct request *rq, *tmp, *first = NULL;
965
966         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
967                 if (rq == first)
968                         break;
969                 if (rq->tag != -1) {
970                         list_move(&rq->queuelist, list);
971                         if (!first)
972                                 first = rq;
973                 }
974         }
975
976         return first != NULL;
977 }
978
979 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
980                                 void *key)
981 {
982         struct blk_mq_hw_ctx *hctx;
983
984         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
985
986         list_del(&wait->entry);
987         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
988         blk_mq_run_hw_queue(hctx, true);
989         return 1;
990 }
991
992 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
993 {
994         struct sbq_wait_state *ws;
995
996         /*
997          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
998          * The thread which wins the race to grab this bit adds the hardware
999          * queue to the wait queue.
1000          */
1001         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
1002             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
1003                 return false;
1004
1005         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
1006         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
1007
1008         /*
1009          * As soon as this returns, it's no longer safe to fiddle with
1010          * hctx->dispatch_wait, since a completion can wake up the wait queue
1011          * and unlock the bit.
1012          */
1013         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
1014         return true;
1015 }
1016
1017 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
1018 {
1019         struct blk_mq_hw_ctx *hctx;
1020         struct request *rq;
1021         int errors, queued;
1022
1023         if (list_empty(list))
1024                 return false;
1025
1026         /*
1027          * Now process all the entries, sending them to the driver.
1028          */
1029         errors = queued = 0;
1030         do {
1031                 struct blk_mq_queue_data bd;
1032                 blk_status_t ret;
1033
1034                 rq = list_first_entry(list, struct request, queuelist);
1035                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1036                         if (!queued && reorder_tags_to_front(list))
1037                                 continue;
1038
1039                         /*
1040                          * The initial allocation attempt failed, so we need to
1041                          * rerun the hardware queue when a tag is freed.
1042                          */
1043                         if (!blk_mq_dispatch_wait_add(hctx))
1044                                 break;
1045
1046                         /*
1047                          * It's possible that a tag was freed in the window
1048                          * between the allocation failure and adding the
1049                          * hardware queue to the wait queue.
1050                          */
1051                         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1052                                 break;
1053                 }
1054
1055                 list_del_init(&rq->queuelist);
1056
1057                 bd.rq = rq;
1058
1059                 /*
1060                  * Flag last if we have no more requests, or if we have more
1061                  * but can't assign a driver tag to it.
1062                  */
1063                 if (list_empty(list))
1064                         bd.last = true;
1065                 else {
1066                         struct request *nxt;
1067
1068                         nxt = list_first_entry(list, struct request, queuelist);
1069                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1070                 }
1071
1072                 ret = q->mq_ops->queue_rq(hctx, &bd);
1073                 if (ret == BLK_STS_RESOURCE) {
1074                         blk_mq_put_driver_tag_hctx(hctx, rq);
1075                         list_add(&rq->queuelist, list);
1076                         __blk_mq_requeue_request(rq);
1077                         break;
1078                 }
1079
1080                 if (unlikely(ret != BLK_STS_OK)) {
1081                         errors++;
1082                         blk_mq_end_request(rq, BLK_STS_IOERR);
1083                         continue;
1084                 }
1085
1086                 queued++;
1087         } while (!list_empty(list));
1088
1089         hctx->dispatched[queued_to_index(queued)]++;
1090
1091         /*
1092          * Any items that need requeuing? Stuff them into hctx->dispatch,
1093          * that is where we will continue on next queue run.
1094          */
1095         if (!list_empty(list)) {
1096                 /*
1097                  * If an I/O scheduler has been configured and we got a driver
1098                  * tag for the next request already, free it again.
1099                  */
1100                 rq = list_first_entry(list, struct request, queuelist);
1101                 blk_mq_put_driver_tag(rq);
1102
1103                 spin_lock(&hctx->lock);
1104                 list_splice_init(list, &hctx->dispatch);
1105                 spin_unlock(&hctx->lock);
1106
1107                 /*
1108                  * If SCHED_RESTART was set by the caller of this function and
1109                  * it is no longer set that means that it was cleared by another
1110                  * thread and hence that a queue rerun is needed.
1111                  *
1112                  * If TAG_WAITING is set that means that an I/O scheduler has
1113                  * been configured and another thread is waiting for a driver
1114                  * tag. To guarantee fairness, do not rerun this hardware queue
1115                  * but let the other thread grab the driver tag.
1116                  *
1117                  * If no I/O scheduler has been configured it is possible that
1118                  * the hardware queue got stopped and restarted before requests
1119                  * were pushed back onto the dispatch list. Rerun the queue to
1120                  * avoid starvation. Notes:
1121                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1122                  *   been stopped before rerunning a queue.
1123                  * - Some but not all block drivers stop a queue before
1124                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1125                  *   and dm-rq.
1126                  */
1127                 if (!blk_mq_sched_needs_restart(hctx) &&
1128                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1129                         blk_mq_run_hw_queue(hctx, true);
1130         }
1131
1132         return (queued + errors) != 0;
1133 }
1134
1135 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1136 {
1137         int srcu_idx;
1138
1139         /*
1140          * We should be running this queue from one of the CPUs that
1141          * are mapped to it.
1142          */
1143         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1144                 cpu_online(hctx->next_cpu));
1145
1146         /*
1147          * We can't run the queue inline with ints disabled. Ensure that
1148          * we catch bad users of this early.
1149          */
1150         WARN_ON_ONCE(in_interrupt());
1151
1152         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1153                 rcu_read_lock();
1154                 blk_mq_sched_dispatch_requests(hctx);
1155                 rcu_read_unlock();
1156         } else {
1157                 might_sleep();
1158
1159                 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1160                 blk_mq_sched_dispatch_requests(hctx);
1161                 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1162         }
1163 }
1164
1165 /*
1166  * It'd be great if the workqueue API had a way to pass
1167  * in a mask and had some smarts for more clever placement.
1168  * For now we just round-robin here, switching for every
1169  * BLK_MQ_CPU_WORK_BATCH queued items.
1170  */
1171 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1172 {
1173         if (hctx->queue->nr_hw_queues == 1)
1174                 return WORK_CPU_UNBOUND;
1175
1176         if (--hctx->next_cpu_batch <= 0) {
1177                 int next_cpu;
1178
1179                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1180                 if (next_cpu >= nr_cpu_ids)
1181                         next_cpu = cpumask_first(hctx->cpumask);
1182
1183                 hctx->next_cpu = next_cpu;
1184                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1185         }
1186
1187         return hctx->next_cpu;
1188 }
1189
1190 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1191                                         unsigned long msecs)
1192 {
1193         if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1194                 return;
1195
1196         if (unlikely(blk_mq_hctx_stopped(hctx)))
1197                 return;
1198
1199         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1200                 int cpu = get_cpu();
1201                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1202                         __blk_mq_run_hw_queue(hctx);
1203                         put_cpu();
1204                         return;
1205                 }
1206
1207                 put_cpu();
1208         }
1209
1210         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1211                                          &hctx->run_work,
1212                                          msecs_to_jiffies(msecs));
1213 }
1214
1215 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1216 {
1217         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1218 }
1219 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1220
1221 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1222 {
1223         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1224 }
1225 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1226
1227 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1228 {
1229         struct blk_mq_hw_ctx *hctx;
1230         int i;
1231
1232         queue_for_each_hw_ctx(q, hctx, i) {
1233                 if (!blk_mq_hctx_has_pending(hctx) ||
1234                     blk_mq_hctx_stopped(hctx))
1235                         continue;
1236
1237                 blk_mq_run_hw_queue(hctx, async);
1238         }
1239 }
1240 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1241
1242 /**
1243  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1244  * @q: request queue.
1245  *
1246  * The caller is responsible for serializing this function against
1247  * blk_mq_{start,stop}_hw_queue().
1248  */
1249 bool blk_mq_queue_stopped(struct request_queue *q)
1250 {
1251         struct blk_mq_hw_ctx *hctx;
1252         int i;
1253
1254         queue_for_each_hw_ctx(q, hctx, i)
1255                 if (blk_mq_hctx_stopped(hctx))
1256                         return true;
1257
1258         return false;
1259 }
1260 EXPORT_SYMBOL(blk_mq_queue_stopped);
1261
1262 /*
1263  * This function is often used for pausing .queue_rq() by driver when
1264  * there isn't enough resource or some conditions aren't satisfied, and
1265  * BLK_STS_RESOURCE is usually returned.
1266  *
1267  * We do not guarantee that dispatch can be drained or blocked
1268  * after blk_mq_stop_hw_queue() returns. Please use
1269  * blk_mq_quiesce_queue() for that requirement.
1270  */
1271 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1272 {
1273         cancel_delayed_work(&hctx->run_work);
1274
1275         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1276 }
1277 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1278
1279 /*
1280  * This function is often used for pausing .queue_rq() by driver when
1281  * there isn't enough resource or some conditions aren't satisfied, and
1282  * BLK_STS_RESOURCE is usually returned.
1283  *
1284  * We do not guarantee that dispatch can be drained or blocked
1285  * after blk_mq_stop_hw_queues() returns. Please use
1286  * blk_mq_quiesce_queue() for that requirement.
1287  */
1288 void blk_mq_stop_hw_queues(struct request_queue *q)
1289 {
1290         struct blk_mq_hw_ctx *hctx;
1291         int i;
1292
1293         queue_for_each_hw_ctx(q, hctx, i)
1294                 blk_mq_stop_hw_queue(hctx);
1295 }
1296 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1297
1298 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1299 {
1300         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1301
1302         blk_mq_run_hw_queue(hctx, false);
1303 }
1304 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1305
1306 void blk_mq_start_hw_queues(struct request_queue *q)
1307 {
1308         struct blk_mq_hw_ctx *hctx;
1309         int i;
1310
1311         queue_for_each_hw_ctx(q, hctx, i)
1312                 blk_mq_start_hw_queue(hctx);
1313 }
1314 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1315
1316 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1317 {
1318         if (!blk_mq_hctx_stopped(hctx))
1319                 return;
1320
1321         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1322         blk_mq_run_hw_queue(hctx, async);
1323 }
1324 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1325
1326 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1327 {
1328         struct blk_mq_hw_ctx *hctx;
1329         int i;
1330
1331         queue_for_each_hw_ctx(q, hctx, i)
1332                 blk_mq_start_stopped_hw_queue(hctx, async);
1333 }
1334 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1335
1336 static void blk_mq_run_work_fn(struct work_struct *work)
1337 {
1338         struct blk_mq_hw_ctx *hctx;
1339
1340         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1341
1342         /*
1343          * If we are stopped, don't run the queue. The exception is if
1344          * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1345          * the STOPPED bit and run it.
1346          */
1347         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1348                 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1349                         return;
1350
1351                 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1352                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1353         }
1354
1355         __blk_mq_run_hw_queue(hctx);
1356 }
1357
1358
1359 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1360 {
1361         if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1362                 return;
1363
1364         /*
1365          * Stop the hw queue, then modify currently delayed work.
1366          * This should prevent us from running the queue prematurely.
1367          * Mark the queue as auto-clearing STOPPED when it runs.
1368          */
1369         blk_mq_stop_hw_queue(hctx);
1370         set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1371         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1372                                         &hctx->run_work,
1373                                         msecs_to_jiffies(msecs));
1374 }
1375 EXPORT_SYMBOL(blk_mq_delay_queue);
1376
1377 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1378                                             struct request *rq,
1379                                             bool at_head)
1380 {
1381         struct blk_mq_ctx *ctx = rq->mq_ctx;
1382
1383         lockdep_assert_held(&ctx->lock);
1384
1385         trace_block_rq_insert(hctx->queue, rq);
1386
1387         if (at_head)
1388                 list_add(&rq->queuelist, &ctx->rq_list);
1389         else
1390                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1391 }
1392
1393 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1394                              bool at_head)
1395 {
1396         struct blk_mq_ctx *ctx = rq->mq_ctx;
1397
1398         lockdep_assert_held(&ctx->lock);
1399
1400         __blk_mq_insert_req_list(hctx, rq, at_head);
1401         blk_mq_hctx_mark_pending(hctx, ctx);
1402 }
1403
1404 /*
1405  * Should only be used carefully, when the caller knows we want to
1406  * bypass a potential IO scheduler on the target device.
1407  */
1408 void blk_mq_request_bypass_insert(struct request *rq)
1409 {
1410         struct blk_mq_ctx *ctx = rq->mq_ctx;
1411         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1412
1413         spin_lock(&hctx->lock);
1414         list_add_tail(&rq->queuelist, &hctx->dispatch);
1415         spin_unlock(&hctx->lock);
1416
1417         blk_mq_run_hw_queue(hctx, false);
1418 }
1419
1420 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1421                             struct list_head *list)
1422
1423 {
1424         /*
1425          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1426          * offline now
1427          */
1428         spin_lock(&ctx->lock);
1429         while (!list_empty(list)) {
1430                 struct request *rq;
1431
1432                 rq = list_first_entry(list, struct request, queuelist);
1433                 BUG_ON(rq->mq_ctx != ctx);
1434                 list_del_init(&rq->queuelist);
1435                 __blk_mq_insert_req_list(hctx, rq, false);
1436         }
1437         blk_mq_hctx_mark_pending(hctx, ctx);
1438         spin_unlock(&ctx->lock);
1439 }
1440
1441 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1442 {
1443         struct request *rqa = container_of(a, struct request, queuelist);
1444         struct request *rqb = container_of(b, struct request, queuelist);
1445
1446         return !(rqa->mq_ctx < rqb->mq_ctx ||
1447                  (rqa->mq_ctx == rqb->mq_ctx &&
1448                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1449 }
1450
1451 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1452 {
1453         struct blk_mq_ctx *this_ctx;
1454         struct request_queue *this_q;
1455         struct request *rq;
1456         LIST_HEAD(list);
1457         LIST_HEAD(ctx_list);
1458         unsigned int depth;
1459
1460         list_splice_init(&plug->mq_list, &list);
1461
1462         list_sort(NULL, &list, plug_ctx_cmp);
1463
1464         this_q = NULL;
1465         this_ctx = NULL;
1466         depth = 0;
1467
1468         while (!list_empty(&list)) {
1469                 rq = list_entry_rq(list.next);
1470                 list_del_init(&rq->queuelist);
1471                 BUG_ON(!rq->q);
1472                 if (rq->mq_ctx != this_ctx) {
1473                         if (this_ctx) {
1474                                 trace_block_unplug(this_q, depth, from_schedule);
1475                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1476                                                                 &ctx_list,
1477                                                                 from_schedule);
1478                         }
1479
1480                         this_ctx = rq->mq_ctx;
1481                         this_q = rq->q;
1482                         depth = 0;
1483                 }
1484
1485                 depth++;
1486                 list_add_tail(&rq->queuelist, &ctx_list);
1487         }
1488
1489         /*
1490          * If 'this_ctx' is set, we know we have entries to complete
1491          * on 'ctx_list'. Do those.
1492          */
1493         if (this_ctx) {
1494                 trace_block_unplug(this_q, depth, from_schedule);
1495                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1496                                                 from_schedule);
1497         }
1498 }
1499
1500 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1501 {
1502         blk_init_request_from_bio(rq, bio);
1503
1504         blk_account_io_start(rq, true);
1505 }
1506
1507 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1508 {
1509         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1510                 !blk_queue_nomerges(hctx->queue);
1511 }
1512
1513 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1514                                    struct blk_mq_ctx *ctx,
1515                                    struct request *rq)
1516 {
1517         spin_lock(&ctx->lock);
1518         __blk_mq_insert_request(hctx, rq, false);
1519         spin_unlock(&ctx->lock);
1520 }
1521
1522 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1523 {
1524         if (rq->tag != -1)
1525                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1526
1527         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1528 }
1529
1530 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1531                                         struct request *rq,
1532                                         blk_qc_t *cookie, bool may_sleep)
1533 {
1534         struct request_queue *q = rq->q;
1535         struct blk_mq_queue_data bd = {
1536                 .rq = rq,
1537                 .last = true,
1538         };
1539         blk_qc_t new_cookie;
1540         blk_status_t ret;
1541         bool run_queue = true;
1542
1543         /* RCU or SRCU read lock is needed before checking quiesced flag */
1544         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1545                 run_queue = false;
1546                 goto insert;
1547         }
1548
1549         if (q->elevator)
1550                 goto insert;
1551
1552         if (!blk_mq_get_driver_tag(rq, NULL, false))
1553                 goto insert;
1554
1555         new_cookie = request_to_qc_t(hctx, rq);
1556
1557         /*
1558          * For OK queue, we are done. For error, kill it. Any other
1559          * error (busy), just add it to our list as we previously
1560          * would have done
1561          */
1562         ret = q->mq_ops->queue_rq(hctx, &bd);
1563         switch (ret) {
1564         case BLK_STS_OK:
1565                 *cookie = new_cookie;
1566                 return;
1567         case BLK_STS_RESOURCE:
1568                 __blk_mq_requeue_request(rq);
1569                 goto insert;
1570         default:
1571                 *cookie = BLK_QC_T_NONE;
1572                 blk_mq_end_request(rq, ret);
1573                 return;
1574         }
1575
1576 insert:
1577         blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1578 }
1579
1580 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1581                 struct request *rq, blk_qc_t *cookie)
1582 {
1583         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1584                 rcu_read_lock();
1585                 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1586                 rcu_read_unlock();
1587         } else {
1588                 unsigned int srcu_idx;
1589
1590                 might_sleep();
1591
1592                 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1593                 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1594                 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1595         }
1596 }
1597
1598 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1599 {
1600         const int is_sync = op_is_sync(bio->bi_opf);
1601         const int is_flush_fua = op_is_flush(bio->bi_opf);
1602         struct blk_mq_alloc_data data = { .flags = 0 };
1603         struct request *rq;
1604         unsigned int request_count = 0;
1605         struct blk_plug *plug;
1606         struct request *same_queue_rq = NULL;
1607         blk_qc_t cookie;
1608         unsigned int wb_acct;
1609
1610         blk_queue_bounce(q, &bio);
1611
1612         blk_queue_split(q, &bio);
1613
1614         if (!bio_integrity_prep(bio))
1615                 return BLK_QC_T_NONE;
1616
1617         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1618             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1619                 return BLK_QC_T_NONE;
1620
1621         if (blk_mq_sched_bio_merge(q, bio))
1622                 return BLK_QC_T_NONE;
1623
1624         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1625
1626         trace_block_getrq(q, bio, bio->bi_opf);
1627
1628         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1629         if (unlikely(!rq)) {
1630                 __wbt_done(q->rq_wb, wb_acct);
1631                 if (bio->bi_opf & REQ_NOWAIT)
1632                         bio_wouldblock_error(bio);
1633                 return BLK_QC_T_NONE;
1634         }
1635
1636         wbt_track(&rq->issue_stat, wb_acct);
1637
1638         cookie = request_to_qc_t(data.hctx, rq);
1639
1640         plug = current->plug;
1641         if (unlikely(is_flush_fua)) {
1642                 blk_mq_put_ctx(data.ctx);
1643                 blk_mq_bio_to_request(rq, bio);
1644                 if (q->elevator) {
1645                         blk_mq_sched_insert_request(rq, false, true, true,
1646                                         true);
1647                 } else {
1648                         blk_insert_flush(rq);
1649                         blk_mq_run_hw_queue(data.hctx, true);
1650                 }
1651         } else if (plug && q->nr_hw_queues == 1) {
1652                 struct request *last = NULL;
1653
1654                 blk_mq_put_ctx(data.ctx);
1655                 blk_mq_bio_to_request(rq, bio);
1656
1657                 /*
1658                  * @request_count may become stale because of schedule
1659                  * out, so check the list again.
1660                  */
1661                 if (list_empty(&plug->mq_list))
1662                         request_count = 0;
1663                 else if (blk_queue_nomerges(q))
1664                         request_count = blk_plug_queued_count(q);
1665
1666                 if (!request_count)
1667                         trace_block_plug(q);
1668                 else
1669                         last = list_entry_rq(plug->mq_list.prev);
1670
1671                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1672                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1673                         blk_flush_plug_list(plug, false);
1674                         trace_block_plug(q);
1675                 }
1676
1677                 list_add_tail(&rq->queuelist, &plug->mq_list);
1678         } else if (plug && !blk_queue_nomerges(q)) {
1679                 blk_mq_bio_to_request(rq, bio);
1680
1681                 /*
1682                  * We do limited plugging. If the bio can be merged, do that.
1683                  * Otherwise the existing request in the plug list will be
1684                  * issued. So the plug list will have one request at most
1685                  * The plug list might get flushed before this. If that happens,
1686                  * the plug list is empty, and same_queue_rq is invalid.
1687                  */
1688                 if (list_empty(&plug->mq_list))
1689                         same_queue_rq = NULL;
1690                 if (same_queue_rq)
1691                         list_del_init(&same_queue_rq->queuelist);
1692                 list_add_tail(&rq->queuelist, &plug->mq_list);
1693
1694                 blk_mq_put_ctx(data.ctx);
1695
1696                 if (same_queue_rq) {
1697                         data.hctx = blk_mq_map_queue(q,
1698                                         same_queue_rq->mq_ctx->cpu);
1699                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1700                                         &cookie);
1701                 }
1702         } else if (q->nr_hw_queues > 1 && is_sync) {
1703                 blk_mq_put_ctx(data.ctx);
1704                 blk_mq_bio_to_request(rq, bio);
1705                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1706         } else if (q->elevator) {
1707                 blk_mq_put_ctx(data.ctx);
1708                 blk_mq_bio_to_request(rq, bio);
1709                 blk_mq_sched_insert_request(rq, false, true, true, true);
1710         } else {
1711                 blk_mq_put_ctx(data.ctx);
1712                 blk_mq_bio_to_request(rq, bio);
1713                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1714                 blk_mq_run_hw_queue(data.hctx, true);
1715         }
1716
1717         return cookie;
1718 }
1719
1720 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1721                      unsigned int hctx_idx)
1722 {
1723         struct page *page;
1724
1725         if (tags->rqs && set->ops->exit_request) {
1726                 int i;
1727
1728                 for (i = 0; i < tags->nr_tags; i++) {
1729                         struct request *rq = tags->static_rqs[i];
1730
1731                         if (!rq)
1732                                 continue;
1733                         set->ops->exit_request(set, rq, hctx_idx);
1734                         tags->static_rqs[i] = NULL;
1735                 }
1736         }
1737
1738         while (!list_empty(&tags->page_list)) {
1739                 page = list_first_entry(&tags->page_list, struct page, lru);
1740                 list_del_init(&page->lru);
1741                 /*
1742                  * Remove kmemleak object previously allocated in
1743                  * blk_mq_init_rq_map().
1744                  */
1745                 kmemleak_free(page_address(page));
1746                 __free_pages(page, page->private);
1747         }
1748 }
1749
1750 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1751 {
1752         kfree(tags->rqs);
1753         tags->rqs = NULL;
1754         kfree(tags->static_rqs);
1755         tags->static_rqs = NULL;
1756
1757         blk_mq_free_tags(tags);
1758 }
1759
1760 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1761                                         unsigned int hctx_idx,
1762                                         unsigned int nr_tags,
1763                                         unsigned int reserved_tags)
1764 {
1765         struct blk_mq_tags *tags;
1766         int node;
1767
1768         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1769         if (node == NUMA_NO_NODE)
1770                 node = set->numa_node;
1771
1772         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1773                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1774         if (!tags)
1775                 return NULL;
1776
1777         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1778                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1779                                  node);
1780         if (!tags->rqs) {
1781                 blk_mq_free_tags(tags);
1782                 return NULL;
1783         }
1784
1785         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1786                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1787                                  node);
1788         if (!tags->static_rqs) {
1789                 kfree(tags->rqs);
1790                 blk_mq_free_tags(tags);
1791                 return NULL;
1792         }
1793
1794         return tags;
1795 }
1796
1797 static size_t order_to_size(unsigned int order)
1798 {
1799         return (size_t)PAGE_SIZE << order;
1800 }
1801
1802 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1803                      unsigned int hctx_idx, unsigned int depth)
1804 {
1805         unsigned int i, j, entries_per_page, max_order = 4;
1806         size_t rq_size, left;
1807         int node;
1808
1809         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1810         if (node == NUMA_NO_NODE)
1811                 node = set->numa_node;
1812
1813         INIT_LIST_HEAD(&tags->page_list);
1814
1815         /*
1816          * rq_size is the size of the request plus driver payload, rounded
1817          * to the cacheline size
1818          */
1819         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1820                                 cache_line_size());
1821         left = rq_size * depth;
1822
1823         for (i = 0; i < depth; ) {
1824                 int this_order = max_order;
1825                 struct page *page;
1826                 int to_do;
1827                 void *p;
1828
1829                 while (this_order && left < order_to_size(this_order - 1))
1830                         this_order--;
1831
1832                 do {
1833                         page = alloc_pages_node(node,
1834                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1835                                 this_order);
1836                         if (page)
1837                                 break;
1838                         if (!this_order--)
1839                                 break;
1840                         if (order_to_size(this_order) < rq_size)
1841                                 break;
1842                 } while (1);
1843
1844                 if (!page)
1845                         goto fail;
1846
1847                 page->private = this_order;
1848                 list_add_tail(&page->lru, &tags->page_list);
1849
1850                 p = page_address(page);
1851                 /*
1852                  * Allow kmemleak to scan these pages as they contain pointers
1853                  * to additional allocations like via ops->init_request().
1854                  */
1855                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1856                 entries_per_page = order_to_size(this_order) / rq_size;
1857                 to_do = min(entries_per_page, depth - i);
1858                 left -= to_do * rq_size;
1859                 for (j = 0; j < to_do; j++) {
1860                         struct request *rq = p;
1861
1862                         tags->static_rqs[i] = rq;
1863                         if (set->ops->init_request) {
1864                                 if (set->ops->init_request(set, rq, hctx_idx,
1865                                                 node)) {
1866                                         tags->static_rqs[i] = NULL;
1867                                         goto fail;
1868                                 }
1869                         }
1870
1871                         p += rq_size;
1872                         i++;
1873                 }
1874         }
1875         return 0;
1876
1877 fail:
1878         blk_mq_free_rqs(set, tags, hctx_idx);
1879         return -ENOMEM;
1880 }
1881
1882 /*
1883  * 'cpu' is going away. splice any existing rq_list entries from this
1884  * software queue to the hw queue dispatch list, and ensure that it
1885  * gets run.
1886  */
1887 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1888 {
1889         struct blk_mq_hw_ctx *hctx;
1890         struct blk_mq_ctx *ctx;
1891         LIST_HEAD(tmp);
1892
1893         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1894         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1895
1896         spin_lock(&ctx->lock);
1897         if (!list_empty(&ctx->rq_list)) {
1898                 list_splice_init(&ctx->rq_list, &tmp);
1899                 blk_mq_hctx_clear_pending(hctx, ctx);
1900         }
1901         spin_unlock(&ctx->lock);
1902
1903         if (list_empty(&tmp))
1904                 return 0;
1905
1906         spin_lock(&hctx->lock);
1907         list_splice_tail_init(&tmp, &hctx->dispatch);
1908         spin_unlock(&hctx->lock);
1909
1910         blk_mq_run_hw_queue(hctx, true);
1911         return 0;
1912 }
1913
1914 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1915 {
1916         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1917                                             &hctx->cpuhp_dead);
1918 }
1919
1920 /* hctx->ctxs will be freed in queue's release handler */
1921 static void blk_mq_exit_hctx(struct request_queue *q,
1922                 struct blk_mq_tag_set *set,
1923                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1924 {
1925         blk_mq_debugfs_unregister_hctx(hctx);
1926
1927         blk_mq_tag_idle(hctx);
1928
1929         if (set->ops->exit_request)
1930                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1931
1932         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1933
1934         if (set->ops->exit_hctx)
1935                 set->ops->exit_hctx(hctx, hctx_idx);
1936
1937         if (hctx->flags & BLK_MQ_F_BLOCKING)
1938                 cleanup_srcu_struct(hctx->queue_rq_srcu);
1939
1940         blk_mq_remove_cpuhp(hctx);
1941         blk_free_flush_queue(hctx->fq);
1942         sbitmap_free(&hctx->ctx_map);
1943 }
1944
1945 static void blk_mq_exit_hw_queues(struct request_queue *q,
1946                 struct blk_mq_tag_set *set, int nr_queue)
1947 {
1948         struct blk_mq_hw_ctx *hctx;
1949         unsigned int i;
1950
1951         queue_for_each_hw_ctx(q, hctx, i) {
1952                 if (i == nr_queue)
1953                         break;
1954                 blk_mq_exit_hctx(q, set, hctx, i);
1955         }
1956 }
1957
1958 static int blk_mq_init_hctx(struct request_queue *q,
1959                 struct blk_mq_tag_set *set,
1960                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1961 {
1962         int node;
1963
1964         node = hctx->numa_node;
1965         if (node == NUMA_NO_NODE)
1966                 node = hctx->numa_node = set->numa_node;
1967
1968         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1969         spin_lock_init(&hctx->lock);
1970         INIT_LIST_HEAD(&hctx->dispatch);
1971         hctx->queue = q;
1972         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1973
1974         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1975
1976         hctx->tags = set->tags[hctx_idx];
1977
1978         /*
1979          * Allocate space for all possible cpus to avoid allocation at
1980          * runtime
1981          */
1982         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1983                                         GFP_KERNEL, node);
1984         if (!hctx->ctxs)
1985                 goto unregister_cpu_notifier;
1986
1987         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1988                               node))
1989                 goto free_ctxs;
1990
1991         hctx->nr_ctx = 0;
1992
1993         if (set->ops->init_hctx &&
1994             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1995                 goto free_bitmap;
1996
1997         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1998                 goto exit_hctx;
1999
2000         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2001         if (!hctx->fq)
2002                 goto sched_exit_hctx;
2003
2004         if (set->ops->init_request &&
2005             set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2006                                    node))
2007                 goto free_fq;
2008
2009         if (hctx->flags & BLK_MQ_F_BLOCKING)
2010                 init_srcu_struct(hctx->queue_rq_srcu);
2011
2012         blk_mq_debugfs_register_hctx(q, hctx);
2013
2014         return 0;
2015
2016  free_fq:
2017         kfree(hctx->fq);
2018  sched_exit_hctx:
2019         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2020  exit_hctx:
2021         if (set->ops->exit_hctx)
2022                 set->ops->exit_hctx(hctx, hctx_idx);
2023  free_bitmap:
2024         sbitmap_free(&hctx->ctx_map);
2025  free_ctxs:
2026         kfree(hctx->ctxs);
2027  unregister_cpu_notifier:
2028         blk_mq_remove_cpuhp(hctx);
2029         return -1;
2030 }
2031
2032 static void blk_mq_init_cpu_queues(struct request_queue *q,
2033                                    unsigned int nr_hw_queues)
2034 {
2035         unsigned int i;
2036
2037         for_each_possible_cpu(i) {
2038                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2039                 struct blk_mq_hw_ctx *hctx;
2040
2041                 __ctx->cpu = i;
2042                 spin_lock_init(&__ctx->lock);
2043                 INIT_LIST_HEAD(&__ctx->rq_list);
2044                 __ctx->queue = q;
2045
2046                 /* If the cpu isn't present, the cpu is mapped to first hctx */
2047                 if (!cpu_present(i))
2048                         continue;
2049
2050                 hctx = blk_mq_map_queue(q, i);
2051
2052                 /*
2053                  * Set local node, IFF we have more than one hw queue. If
2054                  * not, we remain on the home node of the device
2055                  */
2056                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2057                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2058         }
2059 }
2060
2061 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2062 {
2063         int ret = 0;
2064
2065         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2066                                         set->queue_depth, set->reserved_tags);
2067         if (!set->tags[hctx_idx])
2068                 return false;
2069
2070         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2071                                 set->queue_depth);
2072         if (!ret)
2073                 return true;
2074
2075         blk_mq_free_rq_map(set->tags[hctx_idx]);
2076         set->tags[hctx_idx] = NULL;
2077         return false;
2078 }
2079
2080 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2081                                          unsigned int hctx_idx)
2082 {
2083         if (set->tags[hctx_idx]) {
2084                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2085                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2086                 set->tags[hctx_idx] = NULL;
2087         }
2088 }
2089
2090 static void blk_mq_map_swqueue(struct request_queue *q)
2091 {
2092         unsigned int i, hctx_idx;
2093         struct blk_mq_hw_ctx *hctx;
2094         struct blk_mq_ctx *ctx;
2095         struct blk_mq_tag_set *set = q->tag_set;
2096
2097         /*
2098          * Avoid others reading imcomplete hctx->cpumask through sysfs
2099          */
2100         mutex_lock(&q->sysfs_lock);
2101
2102         queue_for_each_hw_ctx(q, hctx, i) {
2103                 cpumask_clear(hctx->cpumask);
2104                 hctx->nr_ctx = 0;
2105         }
2106
2107         /*
2108          * Map software to hardware queues.
2109          *
2110          * If the cpu isn't present, the cpu is mapped to first hctx.
2111          */
2112         for_each_present_cpu(i) {
2113                 hctx_idx = q->mq_map[i];
2114                 /* unmapped hw queue can be remapped after CPU topo changed */
2115                 if (!set->tags[hctx_idx] &&
2116                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2117                         /*
2118                          * If tags initialization fail for some hctx,
2119                          * that hctx won't be brought online.  In this
2120                          * case, remap the current ctx to hctx[0] which
2121                          * is guaranteed to always have tags allocated
2122                          */
2123                         q->mq_map[i] = 0;
2124                 }
2125
2126                 ctx = per_cpu_ptr(q->queue_ctx, i);
2127                 hctx = blk_mq_map_queue(q, i);
2128
2129                 cpumask_set_cpu(i, hctx->cpumask);
2130                 ctx->index_hw = hctx->nr_ctx;
2131                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2132         }
2133
2134         mutex_unlock(&q->sysfs_lock);
2135
2136         queue_for_each_hw_ctx(q, hctx, i) {
2137                 /*
2138                  * If no software queues are mapped to this hardware queue,
2139                  * disable it and free the request entries.
2140                  */
2141                 if (!hctx->nr_ctx) {
2142                         /* Never unmap queue 0.  We need it as a
2143                          * fallback in case of a new remap fails
2144                          * allocation
2145                          */
2146                         if (i && set->tags[i])
2147                                 blk_mq_free_map_and_requests(set, i);
2148
2149                         hctx->tags = NULL;
2150                         continue;
2151                 }
2152
2153                 hctx->tags = set->tags[i];
2154                 WARN_ON(!hctx->tags);
2155
2156                 /*
2157                  * Set the map size to the number of mapped software queues.
2158                  * This is more accurate and more efficient than looping
2159                  * over all possibly mapped software queues.
2160                  */
2161                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2162
2163                 /*
2164                  * Initialize batch roundrobin counts
2165                  */
2166                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2167                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2168         }
2169 }
2170
2171 /*
2172  * Caller needs to ensure that we're either frozen/quiesced, or that
2173  * the queue isn't live yet.
2174  */
2175 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2176 {
2177         struct blk_mq_hw_ctx *hctx;
2178         int i;
2179
2180         queue_for_each_hw_ctx(q, hctx, i) {
2181                 if (shared) {
2182                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2183                                 atomic_inc(&q->shared_hctx_restart);
2184                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2185                 } else {
2186                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2187                                 atomic_dec(&q->shared_hctx_restart);
2188                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2189                 }
2190         }
2191 }
2192
2193 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2194                                         bool shared)
2195 {
2196         struct request_queue *q;
2197
2198         lockdep_assert_held(&set->tag_list_lock);
2199
2200         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2201                 blk_mq_freeze_queue(q);
2202                 queue_set_hctx_shared(q, shared);
2203                 blk_mq_unfreeze_queue(q);
2204         }
2205 }
2206
2207 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2208 {
2209         struct blk_mq_tag_set *set = q->tag_set;
2210
2211         mutex_lock(&set->tag_list_lock);
2212         list_del_rcu(&q->tag_set_list);
2213         INIT_LIST_HEAD(&q->tag_set_list);
2214         if (list_is_singular(&set->tag_list)) {
2215                 /* just transitioned to unshared */
2216                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2217                 /* update existing queue */
2218                 blk_mq_update_tag_set_depth(set, false);
2219         }
2220         mutex_unlock(&set->tag_list_lock);
2221
2222         synchronize_rcu();
2223 }
2224
2225 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2226                                      struct request_queue *q)
2227 {
2228         q->tag_set = set;
2229
2230         mutex_lock(&set->tag_list_lock);
2231
2232         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2233         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2234                 set->flags |= BLK_MQ_F_TAG_SHARED;
2235                 /* update existing queue */
2236                 blk_mq_update_tag_set_depth(set, true);
2237         }
2238         if (set->flags & BLK_MQ_F_TAG_SHARED)
2239                 queue_set_hctx_shared(q, true);
2240         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2241
2242         mutex_unlock(&set->tag_list_lock);
2243 }
2244
2245 /*
2246  * It is the actual release handler for mq, but we do it from
2247  * request queue's release handler for avoiding use-after-free
2248  * and headache because q->mq_kobj shouldn't have been introduced,
2249  * but we can't group ctx/kctx kobj without it.
2250  */
2251 void blk_mq_release(struct request_queue *q)
2252 {
2253         struct blk_mq_hw_ctx *hctx;
2254         unsigned int i;
2255
2256         /* hctx kobj stays in hctx */
2257         queue_for_each_hw_ctx(q, hctx, i) {
2258                 if (!hctx)
2259                         continue;
2260                 kobject_put(&hctx->kobj);
2261         }
2262
2263         q->mq_map = NULL;
2264
2265         kfree(q->queue_hw_ctx);
2266
2267         /*
2268          * release .mq_kobj and sw queue's kobject now because
2269          * both share lifetime with request queue.
2270          */
2271         blk_mq_sysfs_deinit(q);
2272
2273         free_percpu(q->queue_ctx);
2274 }
2275
2276 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2277 {
2278         struct request_queue *uninit_q, *q;
2279
2280         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2281         if (!uninit_q)
2282                 return ERR_PTR(-ENOMEM);
2283
2284         q = blk_mq_init_allocated_queue(set, uninit_q);
2285         if (IS_ERR(q))
2286                 blk_cleanup_queue(uninit_q);
2287
2288         return q;
2289 }
2290 EXPORT_SYMBOL(blk_mq_init_queue);
2291
2292 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2293 {
2294         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2295
2296         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2297                            __alignof__(struct blk_mq_hw_ctx)) !=
2298                      sizeof(struct blk_mq_hw_ctx));
2299
2300         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2301                 hw_ctx_size += sizeof(struct srcu_struct);
2302
2303         return hw_ctx_size;
2304 }
2305
2306 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2307                                                 struct request_queue *q)
2308 {
2309         int i, j;
2310         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2311
2312         blk_mq_sysfs_unregister(q);
2313         for (i = 0; i < set->nr_hw_queues; i++) {
2314                 int node;
2315
2316                 if (hctxs[i])
2317                         continue;
2318
2319                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2320                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2321                                         GFP_KERNEL, node);
2322                 if (!hctxs[i])
2323                         break;
2324
2325                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2326                                                 node)) {
2327                         kfree(hctxs[i]);
2328                         hctxs[i] = NULL;
2329                         break;
2330                 }
2331
2332                 atomic_set(&hctxs[i]->nr_active, 0);
2333                 hctxs[i]->numa_node = node;
2334                 hctxs[i]->queue_num = i;
2335
2336                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2337                         free_cpumask_var(hctxs[i]->cpumask);
2338                         kfree(hctxs[i]);
2339                         hctxs[i] = NULL;
2340                         break;
2341                 }
2342                 blk_mq_hctx_kobj_init(hctxs[i]);
2343         }
2344         for (j = i; j < q->nr_hw_queues; j++) {
2345                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2346
2347                 if (hctx) {
2348                         if (hctx->tags)
2349                                 blk_mq_free_map_and_requests(set, j);
2350                         blk_mq_exit_hctx(q, set, hctx, j);
2351                         kobject_put(&hctx->kobj);
2352                         hctxs[j] = NULL;
2353
2354                 }
2355         }
2356         q->nr_hw_queues = i;
2357         blk_mq_sysfs_register(q);
2358 }
2359
2360 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2361                                                   struct request_queue *q)
2362 {
2363         /* mark the queue as mq asap */
2364         q->mq_ops = set->ops;
2365
2366         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2367                                              blk_mq_poll_stats_bkt,
2368                                              BLK_MQ_POLL_STATS_BKTS, q);
2369         if (!q->poll_cb)
2370                 goto err_exit;
2371
2372         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2373         if (!q->queue_ctx)
2374                 goto err_exit;
2375
2376         /* init q->mq_kobj and sw queues' kobjects */
2377         blk_mq_sysfs_init(q);
2378
2379         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2380                                                 GFP_KERNEL, set->numa_node);
2381         if (!q->queue_hw_ctx)
2382                 goto err_percpu;
2383
2384         q->mq_map = set->mq_map;
2385
2386         blk_mq_realloc_hw_ctxs(set, q);
2387         if (!q->nr_hw_queues)
2388                 goto err_hctxs;
2389
2390         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2391         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2392
2393         q->nr_queues = nr_cpu_ids;
2394
2395         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2396
2397         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2398                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2399
2400         q->sg_reserved_size = INT_MAX;
2401
2402         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2403         INIT_LIST_HEAD(&q->requeue_list);
2404         spin_lock_init(&q->requeue_lock);
2405
2406         blk_queue_make_request(q, blk_mq_make_request);
2407
2408         /*
2409          * Do this after blk_queue_make_request() overrides it...
2410          */
2411         q->nr_requests = set->queue_depth;
2412
2413         /*
2414          * Default to classic polling
2415          */
2416         q->poll_nsec = -1;
2417
2418         if (set->ops->complete)
2419                 blk_queue_softirq_done(q, set->ops->complete);
2420
2421         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2422         blk_mq_add_queue_tag_set(set, q);
2423         blk_mq_map_swqueue(q);
2424
2425         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2426                 int ret;
2427
2428                 ret = blk_mq_sched_init(q);
2429                 if (ret)
2430                         return ERR_PTR(ret);
2431         }
2432
2433         return q;
2434
2435 err_hctxs:
2436         kfree(q->queue_hw_ctx);
2437 err_percpu:
2438         free_percpu(q->queue_ctx);
2439 err_exit:
2440         q->mq_ops = NULL;
2441         return ERR_PTR(-ENOMEM);
2442 }
2443 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2444
2445 void blk_mq_free_queue(struct request_queue *q)
2446 {
2447         struct blk_mq_tag_set   *set = q->tag_set;
2448
2449         blk_mq_del_queue_tag_set(q);
2450         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2451 }
2452
2453 /* Basically redo blk_mq_init_queue with queue frozen */
2454 static void blk_mq_queue_reinit(struct request_queue *q)
2455 {
2456         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2457
2458         blk_mq_debugfs_unregister_hctxs(q);
2459         blk_mq_sysfs_unregister(q);
2460
2461         /*
2462          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2463          * we should change hctx numa_node according to new topology (this
2464          * involves free and re-allocate memory, worthy doing?)
2465          */
2466
2467         blk_mq_map_swqueue(q);
2468
2469         blk_mq_sysfs_register(q);
2470         blk_mq_debugfs_register_hctxs(q);
2471 }
2472
2473 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2474 {
2475         int i;
2476
2477         for (i = 0; i < set->nr_hw_queues; i++)
2478                 if (!__blk_mq_alloc_rq_map(set, i))
2479                         goto out_unwind;
2480
2481         return 0;
2482
2483 out_unwind:
2484         while (--i >= 0)
2485                 blk_mq_free_rq_map(set->tags[i]);
2486
2487         return -ENOMEM;
2488 }
2489
2490 /*
2491  * Allocate the request maps associated with this tag_set. Note that this
2492  * may reduce the depth asked for, if memory is tight. set->queue_depth
2493  * will be updated to reflect the allocated depth.
2494  */
2495 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2496 {
2497         unsigned int depth;
2498         int err;
2499
2500         depth = set->queue_depth;
2501         do {
2502                 err = __blk_mq_alloc_rq_maps(set);
2503                 if (!err)
2504                         break;
2505
2506                 set->queue_depth >>= 1;
2507                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2508                         err = -ENOMEM;
2509                         break;
2510                 }
2511         } while (set->queue_depth);
2512
2513         if (!set->queue_depth || err) {
2514                 pr_err("blk-mq: failed to allocate request map\n");
2515                 return -ENOMEM;
2516         }
2517
2518         if (depth != set->queue_depth)
2519                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2520                                                 depth, set->queue_depth);
2521
2522         return 0;
2523 }
2524
2525 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2526 {
2527         if (set->ops->map_queues)
2528                 return set->ops->map_queues(set);
2529         else
2530                 return blk_mq_map_queues(set);
2531 }
2532
2533 /*
2534  * Alloc a tag set to be associated with one or more request queues.
2535  * May fail with EINVAL for various error conditions. May adjust the
2536  * requested depth down, if if it too large. In that case, the set
2537  * value will be stored in set->queue_depth.
2538  */
2539 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2540 {
2541         int ret;
2542
2543         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2544
2545         if (!set->nr_hw_queues)
2546                 return -EINVAL;
2547         if (!set->queue_depth)
2548                 return -EINVAL;
2549         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2550                 return -EINVAL;
2551
2552         if (!set->ops->queue_rq)
2553                 return -EINVAL;
2554
2555         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2556                 pr_info("blk-mq: reduced tag depth to %u\n",
2557                         BLK_MQ_MAX_DEPTH);
2558                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2559         }
2560
2561         /*
2562          * If a crashdump is active, then we are potentially in a very
2563          * memory constrained environment. Limit us to 1 queue and
2564          * 64 tags to prevent using too much memory.
2565          */
2566         if (is_kdump_kernel()) {
2567                 set->nr_hw_queues = 1;
2568                 set->queue_depth = min(64U, set->queue_depth);
2569         }
2570         /*
2571          * There is no use for more h/w queues than cpus.
2572          */
2573         if (set->nr_hw_queues > nr_cpu_ids)
2574                 set->nr_hw_queues = nr_cpu_ids;
2575
2576         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2577                                  GFP_KERNEL, set->numa_node);
2578         if (!set->tags)
2579                 return -ENOMEM;
2580
2581         ret = -ENOMEM;
2582         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2583                         GFP_KERNEL, set->numa_node);
2584         if (!set->mq_map)
2585                 goto out_free_tags;
2586
2587         ret = blk_mq_update_queue_map(set);
2588         if (ret)
2589                 goto out_free_mq_map;
2590
2591         ret = blk_mq_alloc_rq_maps(set);
2592         if (ret)
2593                 goto out_free_mq_map;
2594
2595         mutex_init(&set->tag_list_lock);
2596         INIT_LIST_HEAD(&set->tag_list);
2597
2598         return 0;
2599
2600 out_free_mq_map:
2601         kfree(set->mq_map);
2602         set->mq_map = NULL;
2603 out_free_tags:
2604         kfree(set->tags);
2605         set->tags = NULL;
2606         return ret;
2607 }
2608 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2609
2610 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2611 {
2612         int i;
2613
2614         for (i = 0; i < nr_cpu_ids; i++)
2615                 blk_mq_free_map_and_requests(set, i);
2616
2617         kfree(set->mq_map);
2618         set->mq_map = NULL;
2619
2620         kfree(set->tags);
2621         set->tags = NULL;
2622 }
2623 EXPORT_SYMBOL(blk_mq_free_tag_set);
2624
2625 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2626 {
2627         struct blk_mq_tag_set *set = q->tag_set;
2628         struct blk_mq_hw_ctx *hctx;
2629         int i, ret;
2630
2631         if (!set)
2632                 return -EINVAL;
2633
2634         blk_mq_freeze_queue(q);
2635
2636         ret = 0;
2637         queue_for_each_hw_ctx(q, hctx, i) {
2638                 if (!hctx->tags)
2639                         continue;
2640                 /*
2641                  * If we're using an MQ scheduler, just update the scheduler
2642                  * queue depth. This is similar to what the old code would do.
2643                  */
2644                 if (!hctx->sched_tags) {
2645                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2646                                                         min(nr, set->queue_depth),
2647                                                         false);
2648                 } else {
2649                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2650                                                         nr, true);
2651                 }
2652                 if (ret)
2653                         break;
2654         }
2655
2656         if (!ret)
2657                 q->nr_requests = nr;
2658
2659         blk_mq_unfreeze_queue(q);
2660
2661         return ret;
2662 }
2663
2664 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2665                                                         int nr_hw_queues)
2666 {
2667         struct request_queue *q;
2668
2669         lockdep_assert_held(&set->tag_list_lock);
2670
2671         if (nr_hw_queues > nr_cpu_ids)
2672                 nr_hw_queues = nr_cpu_ids;
2673         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2674                 return;
2675
2676         list_for_each_entry(q, &set->tag_list, tag_set_list)
2677                 blk_mq_freeze_queue(q);
2678
2679         set->nr_hw_queues = nr_hw_queues;
2680         blk_mq_update_queue_map(set);
2681         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2682                 blk_mq_realloc_hw_ctxs(set, q);
2683                 blk_mq_queue_reinit(q);
2684         }
2685
2686         list_for_each_entry(q, &set->tag_list, tag_set_list)
2687                 blk_mq_unfreeze_queue(q);
2688 }
2689
2690 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2691 {
2692         mutex_lock(&set->tag_list_lock);
2693         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2694         mutex_unlock(&set->tag_list_lock);
2695 }
2696 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2697
2698 /* Enable polling stats and return whether they were already enabled. */
2699 static bool blk_poll_stats_enable(struct request_queue *q)
2700 {
2701         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2702             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2703                 return true;
2704         blk_stat_add_callback(q, q->poll_cb);
2705         return false;
2706 }
2707
2708 static void blk_mq_poll_stats_start(struct request_queue *q)
2709 {
2710         /*
2711          * We don't arm the callback if polling stats are not enabled or the
2712          * callback is already active.
2713          */
2714         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2715             blk_stat_is_active(q->poll_cb))
2716                 return;
2717
2718         blk_stat_activate_msecs(q->poll_cb, 100);
2719 }
2720
2721 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2722 {
2723         struct request_queue *q = cb->data;
2724         int bucket;
2725
2726         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2727                 if (cb->stat[bucket].nr_samples)
2728                         q->poll_stat[bucket] = cb->stat[bucket];
2729         }
2730 }
2731
2732 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2733                                        struct blk_mq_hw_ctx *hctx,
2734                                        struct request *rq)
2735 {
2736         unsigned long ret = 0;
2737         int bucket;
2738
2739         /*
2740          * If stats collection isn't on, don't sleep but turn it on for
2741          * future users
2742          */
2743         if (!blk_poll_stats_enable(q))
2744                 return 0;
2745
2746         /*
2747          * As an optimistic guess, use half of the mean service time
2748          * for this type of request. We can (and should) make this smarter.
2749          * For instance, if the completion latencies are tight, we can
2750          * get closer than just half the mean. This is especially
2751          * important on devices where the completion latencies are longer
2752          * than ~10 usec. We do use the stats for the relevant IO size
2753          * if available which does lead to better estimates.
2754          */
2755         bucket = blk_mq_poll_stats_bkt(rq);
2756         if (bucket < 0)
2757                 return ret;
2758
2759         if (q->poll_stat[bucket].nr_samples)
2760                 ret = (q->poll_stat[bucket].mean + 1) / 2;
2761
2762         return ret;
2763 }
2764
2765 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2766                                      struct blk_mq_hw_ctx *hctx,
2767                                      struct request *rq)
2768 {
2769         struct hrtimer_sleeper hs;
2770         enum hrtimer_mode mode;
2771         unsigned int nsecs;
2772         ktime_t kt;
2773
2774         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2775                 return false;
2776
2777         /*
2778          * poll_nsec can be:
2779          *
2780          * -1:  don't ever hybrid sleep
2781          *  0:  use half of prev avg
2782          * >0:  use this specific value
2783          */
2784         if (q->poll_nsec == -1)
2785                 return false;
2786         else if (q->poll_nsec > 0)
2787                 nsecs = q->poll_nsec;
2788         else
2789                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2790
2791         if (!nsecs)
2792                 return false;
2793
2794         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2795
2796         /*
2797          * This will be replaced with the stats tracking code, using
2798          * 'avg_completion_time / 2' as the pre-sleep target.
2799          */
2800         kt = nsecs;
2801
2802         mode = HRTIMER_MODE_REL;
2803         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2804         hrtimer_set_expires(&hs.timer, kt);
2805
2806         hrtimer_init_sleeper(&hs, current);
2807         do {
2808                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2809                         break;
2810                 set_current_state(TASK_UNINTERRUPTIBLE);
2811                 hrtimer_start_expires(&hs.timer, mode);
2812                 if (hs.task)
2813                         io_schedule();
2814                 hrtimer_cancel(&hs.timer);
2815                 mode = HRTIMER_MODE_ABS;
2816         } while (hs.task && !signal_pending(current));
2817
2818         __set_current_state(TASK_RUNNING);
2819         destroy_hrtimer_on_stack(&hs.timer);
2820         return true;
2821 }
2822
2823 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2824 {
2825         struct request_queue *q = hctx->queue;
2826         long state;
2827
2828         /*
2829          * If we sleep, have the caller restart the poll loop to reset
2830          * the state. Like for the other success return cases, the
2831          * caller is responsible for checking if the IO completed. If
2832          * the IO isn't complete, we'll get called again and will go
2833          * straight to the busy poll loop.
2834          */
2835         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2836                 return true;
2837
2838         hctx->poll_considered++;
2839
2840         state = current->state;
2841         while (!need_resched()) {
2842                 int ret;
2843
2844                 hctx->poll_invoked++;
2845
2846                 ret = q->mq_ops->poll(hctx, rq->tag);
2847                 if (ret > 0) {
2848                         hctx->poll_success++;
2849                         set_current_state(TASK_RUNNING);
2850                         return true;
2851                 }
2852
2853                 if (signal_pending_state(state, current))
2854                         set_current_state(TASK_RUNNING);
2855
2856                 if (current->state == TASK_RUNNING)
2857                         return true;
2858                 if (ret < 0)
2859                         break;
2860                 cpu_relax();
2861         }
2862
2863         return false;
2864 }
2865
2866 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2867 {
2868         struct blk_mq_hw_ctx *hctx;
2869         struct blk_plug *plug;
2870         struct request *rq;
2871
2872         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2873             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2874                 return false;
2875
2876         plug = current->plug;
2877         if (plug)
2878                 blk_flush_plug_list(plug, false);
2879
2880         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2881         if (!blk_qc_t_is_internal(cookie))
2882                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2883         else {
2884                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2885                 /*
2886                  * With scheduling, if the request has completed, we'll
2887                  * get a NULL return here, as we clear the sched tag when
2888                  * that happens. The request still remains valid, like always,
2889                  * so we should be safe with just the NULL check.
2890                  */
2891                 if (!rq)
2892                         return false;
2893         }
2894
2895         return __blk_mq_poll(hctx, rq);
2896 }
2897 EXPORT_SYMBOL_GPL(blk_mq_poll);
2898
2899 static int __init blk_mq_init(void)
2900 {
2901         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2902                                 blk_mq_hctx_notify_dead);
2903         return 0;
2904 }
2905 subsys_initcall(blk_mq_init);