block: simplify the block device syncing code
[platform/kernel/linux-rpi.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51         int ddir, sectors, bucket;
52
53         ddir = rq_data_dir(rq);
54         sectors = blk_rq_stats_sectors(rq);
55
56         bucket = ddir + 2 * ilog2(sectors);
57
58         if (bucket < 0)
59                 return -1;
60         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63         return bucket;
64 }
65
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72         return !list_empty_careful(&hctx->dispatch) ||
73                 sbitmap_any_bit_set(&hctx->ctx_map) ||
74                         blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81                                      struct blk_mq_ctx *ctx)
82 {
83         const int bit = ctx->index_hw[hctx->type];
84
85         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86                 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90                                       struct blk_mq_ctx *ctx)
91 {
92         const int bit = ctx->index_hw[hctx->type];
93
94         sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98         struct block_device *part;
99         unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103                                   struct request *rq, void *priv,
104                                   bool reserved)
105 {
106         struct mq_inflight *mi = priv;
107
108         if ((!mi->part->bd_partno || rq->part == mi->part) &&
109             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110                 mi->inflight[rq_data_dir(rq)]++;
111
112         return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116                 struct block_device *part)
117 {
118         struct mq_inflight mi = { .part = part };
119
120         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122         return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126                 unsigned int inflight[2])
127 {
128         struct mq_inflight mi = { .part = part };
129
130         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131         inflight[0] = mi.inflight[0];
132         inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137         mutex_lock(&q->mq_freeze_lock);
138         if (++q->mq_freeze_depth == 1) {
139                 percpu_ref_kill(&q->q_usage_counter);
140                 mutex_unlock(&q->mq_freeze_lock);
141                 if (queue_is_mq(q))
142                         blk_mq_run_hw_queues(q, false);
143         } else {
144                 mutex_unlock(&q->mq_freeze_lock);
145         }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156                                      unsigned long timeout)
157 {
158         return wait_event_timeout(q->mq_freeze_wq,
159                                         percpu_ref_is_zero(&q->q_usage_counter),
160                                         timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * In the !blk_mq case we are only calling this to kill the
172          * q_usage_counter, otherwise this increases the freeze depth
173          * and waits for it to return to zero.  For this reason there is
174          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175          * exported to drivers as the only user for unfreeze is blk_mq.
176          */
177         blk_freeze_queue_start(q);
178         blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183         /*
184          * ...just an alias to keep freeze and unfreeze actions balanced
185          * in the blk_mq_* namespace
186          */
187         blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
192 {
193         mutex_lock(&q->mq_freeze_lock);
194         if (force_atomic)
195                 q->q_usage_counter.data->force_atomic = true;
196         q->mq_freeze_depth--;
197         WARN_ON_ONCE(q->mq_freeze_depth < 0);
198         if (!q->mq_freeze_depth) {
199                 percpu_ref_resurrect(&q->q_usage_counter);
200                 wake_up_all(&q->mq_freeze_wq);
201         }
202         mutex_unlock(&q->mq_freeze_lock);
203 }
204
205 void blk_mq_unfreeze_queue(struct request_queue *q)
206 {
207         __blk_mq_unfreeze_queue(q, false);
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213  * mpt3sas driver such that this function can be removed.
214  */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220
221 /**
222  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223  * @q: request queue.
224  *
225  * Note: this function does not prevent that the struct request end_io()
226  * callback function is invoked. Once this function is returned, we make
227  * sure no dispatch can happen until the queue is unquiesced via
228  * blk_mq_unquiesce_queue().
229  */
230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232         struct blk_mq_hw_ctx *hctx;
233         unsigned int i;
234         bool rcu = false;
235
236         blk_mq_quiesce_queue_nowait(q);
237
238         queue_for_each_hw_ctx(q, hctx, i) {
239                 if (hctx->flags & BLK_MQ_F_BLOCKING)
240                         synchronize_srcu(hctx->srcu);
241                 else
242                         rcu = true;
243         }
244         if (rcu)
245                 synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248
249 /*
250  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251  * @q: request queue.
252  *
253  * This function recovers queue into the state before quiescing
254  * which is done by blk_mq_quiesce_queue.
255  */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259
260         /* dispatch requests which are inserted during quiescing */
261         blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264
265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267         struct blk_mq_hw_ctx *hctx;
268         unsigned int i;
269
270         queue_for_each_hw_ctx(q, hctx, i)
271                 if (blk_mq_hw_queue_mapped(hctx))
272                         blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274
275 /*
276  * Only need start/end time stamping if we have iostat or
277  * blk stats enabled, or using an IO scheduler.
278  */
279 static inline bool blk_mq_need_time_stamp(struct request *rq)
280 {
281         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
282 }
283
284 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
285                 unsigned int tag, u64 alloc_time_ns)
286 {
287         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
288         struct request *rq = tags->static_rqs[tag];
289
290         if (data->q->elevator) {
291                 rq->tag = BLK_MQ_NO_TAG;
292                 rq->internal_tag = tag;
293         } else {
294                 rq->tag = tag;
295                 rq->internal_tag = BLK_MQ_NO_TAG;
296         }
297
298         /* csd/requeue_work/fifo_time is initialized before use */
299         rq->q = data->q;
300         rq->mq_ctx = data->ctx;
301         rq->mq_hctx = data->hctx;
302         rq->rq_flags = 0;
303         rq->cmd_flags = data->cmd_flags;
304         if (data->flags & BLK_MQ_REQ_PM)
305                 rq->rq_flags |= RQF_PM;
306         if (blk_queue_io_stat(data->q))
307                 rq->rq_flags |= RQF_IO_STAT;
308         INIT_LIST_HEAD(&rq->queuelist);
309         INIT_HLIST_NODE(&rq->hash);
310         RB_CLEAR_NODE(&rq->rb_node);
311         rq->rq_disk = NULL;
312         rq->part = NULL;
313 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
314         rq->alloc_time_ns = alloc_time_ns;
315 #endif
316         if (blk_mq_need_time_stamp(rq))
317                 rq->start_time_ns = ktime_get_ns();
318         else
319                 rq->start_time_ns = 0;
320         rq->io_start_time_ns = 0;
321         rq->stats_sectors = 0;
322         rq->nr_phys_segments = 0;
323 #if defined(CONFIG_BLK_DEV_INTEGRITY)
324         rq->nr_integrity_segments = 0;
325 #endif
326         blk_crypto_rq_set_defaults(rq);
327         /* tag was already set */
328         WRITE_ONCE(rq->deadline, 0);
329
330         rq->timeout = 0;
331
332         rq->end_io = NULL;
333         rq->end_io_data = NULL;
334
335         data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
336         refcount_set(&rq->ref, 1);
337
338         if (!op_is_flush(data->cmd_flags)) {
339                 struct elevator_queue *e = data->q->elevator;
340
341                 rq->elv.icq = NULL;
342                 if (e && e->type->ops.prepare_request) {
343                         if (e->type->icq_cache)
344                                 blk_mq_sched_assign_ioc(rq);
345
346                         e->type->ops.prepare_request(rq);
347                         rq->rq_flags |= RQF_ELVPRIV;
348                 }
349         }
350
351         data->hctx->queued++;
352         return rq;
353 }
354
355 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
356 {
357         struct request_queue *q = data->q;
358         struct elevator_queue *e = q->elevator;
359         u64 alloc_time_ns = 0;
360         unsigned int tag;
361
362         /* alloc_time includes depth and tag waits */
363         if (blk_queue_rq_alloc_time(q))
364                 alloc_time_ns = ktime_get_ns();
365
366         if (data->cmd_flags & REQ_NOWAIT)
367                 data->flags |= BLK_MQ_REQ_NOWAIT;
368
369         if (e) {
370                 /*
371                  * Flush/passthrough requests are special and go directly to the
372                  * dispatch list. Don't include reserved tags in the
373                  * limiting, as it isn't useful.
374                  */
375                 if (!op_is_flush(data->cmd_flags) &&
376                     !blk_op_is_passthrough(data->cmd_flags) &&
377                     e->type->ops.limit_depth &&
378                     !(data->flags & BLK_MQ_REQ_RESERVED))
379                         e->type->ops.limit_depth(data->cmd_flags, data);
380         }
381
382 retry:
383         data->ctx = blk_mq_get_ctx(q);
384         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
385         if (!e)
386                 blk_mq_tag_busy(data->hctx);
387
388         /*
389          * Waiting allocations only fail because of an inactive hctx.  In that
390          * case just retry the hctx assignment and tag allocation as CPU hotplug
391          * should have migrated us to an online CPU by now.
392          */
393         tag = blk_mq_get_tag(data);
394         if (tag == BLK_MQ_NO_TAG) {
395                 if (data->flags & BLK_MQ_REQ_NOWAIT)
396                         return NULL;
397
398                 /*
399                  * Give up the CPU and sleep for a random short time to ensure
400                  * that thread using a realtime scheduling class are migrated
401                  * off the CPU, and thus off the hctx that is going away.
402                  */
403                 msleep(3);
404                 goto retry;
405         }
406         return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
407 }
408
409 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
410                 blk_mq_req_flags_t flags)
411 {
412         struct blk_mq_alloc_data data = {
413                 .q              = q,
414                 .flags          = flags,
415                 .cmd_flags      = op,
416         };
417         struct request *rq;
418         int ret;
419
420         ret = blk_queue_enter(q, flags);
421         if (ret)
422                 return ERR_PTR(ret);
423
424         rq = __blk_mq_alloc_request(&data);
425         if (!rq)
426                 goto out_queue_exit;
427         rq->__data_len = 0;
428         rq->__sector = (sector_t) -1;
429         rq->bio = rq->biotail = NULL;
430         return rq;
431 out_queue_exit:
432         blk_queue_exit(q);
433         return ERR_PTR(-EWOULDBLOCK);
434 }
435 EXPORT_SYMBOL(blk_mq_alloc_request);
436
437 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
438         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
439 {
440         struct blk_mq_alloc_data data = {
441                 .q              = q,
442                 .flags          = flags,
443                 .cmd_flags      = op,
444         };
445         u64 alloc_time_ns = 0;
446         unsigned int cpu;
447         unsigned int tag;
448         int ret;
449
450         /* alloc_time includes depth and tag waits */
451         if (blk_queue_rq_alloc_time(q))
452                 alloc_time_ns = ktime_get_ns();
453
454         /*
455          * If the tag allocator sleeps we could get an allocation for a
456          * different hardware context.  No need to complicate the low level
457          * allocator for this for the rare use case of a command tied to
458          * a specific queue.
459          */
460         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
461                 return ERR_PTR(-EINVAL);
462
463         if (hctx_idx >= q->nr_hw_queues)
464                 return ERR_PTR(-EIO);
465
466         ret = blk_queue_enter(q, flags);
467         if (ret)
468                 return ERR_PTR(ret);
469
470         /*
471          * Check if the hardware context is actually mapped to anything.
472          * If not tell the caller that it should skip this queue.
473          */
474         ret = -EXDEV;
475         data.hctx = q->queue_hw_ctx[hctx_idx];
476         if (!blk_mq_hw_queue_mapped(data.hctx))
477                 goto out_queue_exit;
478         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
479         data.ctx = __blk_mq_get_ctx(q, cpu);
480
481         if (!q->elevator)
482                 blk_mq_tag_busy(data.hctx);
483
484         ret = -EWOULDBLOCK;
485         tag = blk_mq_get_tag(&data);
486         if (tag == BLK_MQ_NO_TAG)
487                 goto out_queue_exit;
488         return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
489
490 out_queue_exit:
491         blk_queue_exit(q);
492         return ERR_PTR(ret);
493 }
494 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
495
496 static void __blk_mq_free_request(struct request *rq)
497 {
498         struct request_queue *q = rq->q;
499         struct blk_mq_ctx *ctx = rq->mq_ctx;
500         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
501         const int sched_tag = rq->internal_tag;
502
503         blk_crypto_free_request(rq);
504         blk_pm_mark_last_busy(rq);
505         rq->mq_hctx = NULL;
506         if (rq->tag != BLK_MQ_NO_TAG)
507                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
508         if (sched_tag != BLK_MQ_NO_TAG)
509                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
510         blk_mq_sched_restart(hctx);
511         blk_queue_exit(q);
512 }
513
514 void blk_mq_free_request(struct request *rq)
515 {
516         struct request_queue *q = rq->q;
517         struct elevator_queue *e = q->elevator;
518         struct blk_mq_ctx *ctx = rq->mq_ctx;
519         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
520
521         if (rq->rq_flags & RQF_ELVPRIV) {
522                 if (e && e->type->ops.finish_request)
523                         e->type->ops.finish_request(rq);
524                 if (rq->elv.icq) {
525                         put_io_context(rq->elv.icq->ioc);
526                         rq->elv.icq = NULL;
527                 }
528         }
529
530         ctx->rq_completed[rq_is_sync(rq)]++;
531         if (rq->rq_flags & RQF_MQ_INFLIGHT)
532                 __blk_mq_dec_active_requests(hctx);
533
534         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
535                 laptop_io_completion(q->disk->bdi);
536
537         rq_qos_done(q, rq);
538
539         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
540         if (refcount_dec_and_test(&rq->ref))
541                 __blk_mq_free_request(rq);
542 }
543 EXPORT_SYMBOL_GPL(blk_mq_free_request);
544
545 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
546 {
547         u64 now = 0;
548
549         if (blk_mq_need_time_stamp(rq))
550                 now = ktime_get_ns();
551
552         if (rq->rq_flags & RQF_STATS) {
553                 blk_mq_poll_stats_start(rq->q);
554                 blk_stat_add(rq, now);
555         }
556
557         blk_mq_sched_completed_request(rq, now);
558
559         blk_account_io_done(rq, now);
560
561         if (rq->end_io) {
562                 rq_qos_done(rq->q, rq);
563                 rq->end_io(rq, error);
564         } else {
565                 blk_mq_free_request(rq);
566         }
567 }
568 EXPORT_SYMBOL(__blk_mq_end_request);
569
570 void blk_mq_end_request(struct request *rq, blk_status_t error)
571 {
572         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
573                 BUG();
574         __blk_mq_end_request(rq, error);
575 }
576 EXPORT_SYMBOL(blk_mq_end_request);
577
578 static void blk_complete_reqs(struct llist_head *list)
579 {
580         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
581         struct request *rq, *next;
582
583         llist_for_each_entry_safe(rq, next, entry, ipi_list)
584                 rq->q->mq_ops->complete(rq);
585 }
586
587 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
588 {
589         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
590 }
591
592 static int blk_softirq_cpu_dead(unsigned int cpu)
593 {
594         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
595         return 0;
596 }
597
598 static void __blk_mq_complete_request_remote(void *data)
599 {
600         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
601 }
602
603 static inline bool blk_mq_complete_need_ipi(struct request *rq)
604 {
605         int cpu = raw_smp_processor_id();
606
607         if (!IS_ENABLED(CONFIG_SMP) ||
608             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
609                 return false;
610         /*
611          * With force threaded interrupts enabled, raising softirq from an SMP
612          * function call will always result in waking the ksoftirqd thread.
613          * This is probably worse than completing the request on a different
614          * cache domain.
615          */
616         if (force_irqthreads())
617                 return false;
618
619         /* same CPU or cache domain?  Complete locally */
620         if (cpu == rq->mq_ctx->cpu ||
621             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
622              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
623                 return false;
624
625         /* don't try to IPI to an offline CPU */
626         return cpu_online(rq->mq_ctx->cpu);
627 }
628
629 static void blk_mq_complete_send_ipi(struct request *rq)
630 {
631         struct llist_head *list;
632         unsigned int cpu;
633
634         cpu = rq->mq_ctx->cpu;
635         list = &per_cpu(blk_cpu_done, cpu);
636         if (llist_add(&rq->ipi_list, list)) {
637                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
638                 smp_call_function_single_async(cpu, &rq->csd);
639         }
640 }
641
642 static void blk_mq_raise_softirq(struct request *rq)
643 {
644         struct llist_head *list;
645
646         preempt_disable();
647         list = this_cpu_ptr(&blk_cpu_done);
648         if (llist_add(&rq->ipi_list, list))
649                 raise_softirq(BLOCK_SOFTIRQ);
650         preempt_enable();
651 }
652
653 bool blk_mq_complete_request_remote(struct request *rq)
654 {
655         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
656
657         /*
658          * For a polled request, always complete locallly, it's pointless
659          * to redirect the completion.
660          */
661         if (rq->cmd_flags & REQ_HIPRI)
662                 return false;
663
664         if (blk_mq_complete_need_ipi(rq)) {
665                 blk_mq_complete_send_ipi(rq);
666                 return true;
667         }
668
669         if (rq->q->nr_hw_queues == 1) {
670                 blk_mq_raise_softirq(rq);
671                 return true;
672         }
673         return false;
674 }
675 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
676
677 /**
678  * blk_mq_complete_request - end I/O on a request
679  * @rq:         the request being processed
680  *
681  * Description:
682  *      Complete a request by scheduling the ->complete_rq operation.
683  **/
684 void blk_mq_complete_request(struct request *rq)
685 {
686         if (!blk_mq_complete_request_remote(rq))
687                 rq->q->mq_ops->complete(rq);
688 }
689 EXPORT_SYMBOL(blk_mq_complete_request);
690
691 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
692         __releases(hctx->srcu)
693 {
694         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
695                 rcu_read_unlock();
696         else
697                 srcu_read_unlock(hctx->srcu, srcu_idx);
698 }
699
700 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
701         __acquires(hctx->srcu)
702 {
703         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
704                 /* shut up gcc false positive */
705                 *srcu_idx = 0;
706                 rcu_read_lock();
707         } else
708                 *srcu_idx = srcu_read_lock(hctx->srcu);
709 }
710
711 /**
712  * blk_mq_start_request - Start processing a request
713  * @rq: Pointer to request to be started
714  *
715  * Function used by device drivers to notify the block layer that a request
716  * is going to be processed now, so blk layer can do proper initializations
717  * such as starting the timeout timer.
718  */
719 void blk_mq_start_request(struct request *rq)
720 {
721         struct request_queue *q = rq->q;
722
723         trace_block_rq_issue(rq);
724
725         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
726                 rq->io_start_time_ns = ktime_get_ns();
727                 rq->stats_sectors = blk_rq_sectors(rq);
728                 rq->rq_flags |= RQF_STATS;
729                 rq_qos_issue(q, rq);
730         }
731
732         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
733
734         blk_add_timer(rq);
735         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
736
737 #ifdef CONFIG_BLK_DEV_INTEGRITY
738         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
739                 q->integrity.profile->prepare_fn(rq);
740 #endif
741 }
742 EXPORT_SYMBOL(blk_mq_start_request);
743
744 static void __blk_mq_requeue_request(struct request *rq)
745 {
746         struct request_queue *q = rq->q;
747
748         blk_mq_put_driver_tag(rq);
749
750         trace_block_rq_requeue(rq);
751         rq_qos_requeue(q, rq);
752
753         if (blk_mq_request_started(rq)) {
754                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
755                 rq->rq_flags &= ~RQF_TIMED_OUT;
756         }
757 }
758
759 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
760 {
761         __blk_mq_requeue_request(rq);
762
763         /* this request will be re-inserted to io scheduler queue */
764         blk_mq_sched_requeue_request(rq);
765
766         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
767 }
768 EXPORT_SYMBOL(blk_mq_requeue_request);
769
770 static void blk_mq_requeue_work(struct work_struct *work)
771 {
772         struct request_queue *q =
773                 container_of(work, struct request_queue, requeue_work.work);
774         LIST_HEAD(rq_list);
775         struct request *rq, *next;
776
777         spin_lock_irq(&q->requeue_lock);
778         list_splice_init(&q->requeue_list, &rq_list);
779         spin_unlock_irq(&q->requeue_lock);
780
781         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
782                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
783                         continue;
784
785                 rq->rq_flags &= ~RQF_SOFTBARRIER;
786                 list_del_init(&rq->queuelist);
787                 /*
788                  * If RQF_DONTPREP, rq has contained some driver specific
789                  * data, so insert it to hctx dispatch list to avoid any
790                  * merge.
791                  */
792                 if (rq->rq_flags & RQF_DONTPREP)
793                         blk_mq_request_bypass_insert(rq, false, false);
794                 else
795                         blk_mq_sched_insert_request(rq, true, false, false);
796         }
797
798         while (!list_empty(&rq_list)) {
799                 rq = list_entry(rq_list.next, struct request, queuelist);
800                 list_del_init(&rq->queuelist);
801                 blk_mq_sched_insert_request(rq, false, false, false);
802         }
803
804         blk_mq_run_hw_queues(q, false);
805 }
806
807 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
808                                 bool kick_requeue_list)
809 {
810         struct request_queue *q = rq->q;
811         unsigned long flags;
812
813         /*
814          * We abuse this flag that is otherwise used by the I/O scheduler to
815          * request head insertion from the workqueue.
816          */
817         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
818
819         spin_lock_irqsave(&q->requeue_lock, flags);
820         if (at_head) {
821                 rq->rq_flags |= RQF_SOFTBARRIER;
822                 list_add(&rq->queuelist, &q->requeue_list);
823         } else {
824                 list_add_tail(&rq->queuelist, &q->requeue_list);
825         }
826         spin_unlock_irqrestore(&q->requeue_lock, flags);
827
828         if (kick_requeue_list)
829                 blk_mq_kick_requeue_list(q);
830 }
831
832 void blk_mq_kick_requeue_list(struct request_queue *q)
833 {
834         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
835 }
836 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
837
838 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
839                                     unsigned long msecs)
840 {
841         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
842                                     msecs_to_jiffies(msecs));
843 }
844 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
845
846 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
847 {
848         if (tag < tags->nr_tags) {
849                 prefetch(tags->rqs[tag]);
850                 return tags->rqs[tag];
851         }
852
853         return NULL;
854 }
855 EXPORT_SYMBOL(blk_mq_tag_to_rq);
856
857 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
858                                void *priv, bool reserved)
859 {
860         /*
861          * If we find a request that isn't idle and the queue matches,
862          * we know the queue is busy. Return false to stop the iteration.
863          */
864         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
865                 bool *busy = priv;
866
867                 *busy = true;
868                 return false;
869         }
870
871         return true;
872 }
873
874 bool blk_mq_queue_inflight(struct request_queue *q)
875 {
876         bool busy = false;
877
878         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
879         return busy;
880 }
881 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
882
883 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
884 {
885         req->rq_flags |= RQF_TIMED_OUT;
886         if (req->q->mq_ops->timeout) {
887                 enum blk_eh_timer_return ret;
888
889                 ret = req->q->mq_ops->timeout(req, reserved);
890                 if (ret == BLK_EH_DONE)
891                         return;
892                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
893         }
894
895         blk_add_timer(req);
896 }
897
898 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
899 {
900         unsigned long deadline;
901
902         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
903                 return false;
904         if (rq->rq_flags & RQF_TIMED_OUT)
905                 return false;
906
907         deadline = READ_ONCE(rq->deadline);
908         if (time_after_eq(jiffies, deadline))
909                 return true;
910
911         if (*next == 0)
912                 *next = deadline;
913         else if (time_after(*next, deadline))
914                 *next = deadline;
915         return false;
916 }
917
918 void blk_mq_put_rq_ref(struct request *rq)
919 {
920         if (is_flush_rq(rq))
921                 rq->end_io(rq, 0);
922         else if (refcount_dec_and_test(&rq->ref))
923                 __blk_mq_free_request(rq);
924 }
925
926 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
927                 struct request *rq, void *priv, bool reserved)
928 {
929         unsigned long *next = priv;
930
931         /*
932          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
933          * be reallocated underneath the timeout handler's processing, then
934          * the expire check is reliable. If the request is not expired, then
935          * it was completed and reallocated as a new request after returning
936          * from blk_mq_check_expired().
937          */
938         if (blk_mq_req_expired(rq, next))
939                 blk_mq_rq_timed_out(rq, reserved);
940         return true;
941 }
942
943 static void blk_mq_timeout_work(struct work_struct *work)
944 {
945         struct request_queue *q =
946                 container_of(work, struct request_queue, timeout_work);
947         unsigned long next = 0;
948         struct blk_mq_hw_ctx *hctx;
949         int i;
950
951         /* A deadlock might occur if a request is stuck requiring a
952          * timeout at the same time a queue freeze is waiting
953          * completion, since the timeout code would not be able to
954          * acquire the queue reference here.
955          *
956          * That's why we don't use blk_queue_enter here; instead, we use
957          * percpu_ref_tryget directly, because we need to be able to
958          * obtain a reference even in the short window between the queue
959          * starting to freeze, by dropping the first reference in
960          * blk_freeze_queue_start, and the moment the last request is
961          * consumed, marked by the instant q_usage_counter reaches
962          * zero.
963          */
964         if (!percpu_ref_tryget(&q->q_usage_counter))
965                 return;
966
967         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
968
969         if (next != 0) {
970                 mod_timer(&q->timeout, next);
971         } else {
972                 /*
973                  * Request timeouts are handled as a forward rolling timer. If
974                  * we end up here it means that no requests are pending and
975                  * also that no request has been pending for a while. Mark
976                  * each hctx as idle.
977                  */
978                 queue_for_each_hw_ctx(q, hctx, i) {
979                         /* the hctx may be unmapped, so check it here */
980                         if (blk_mq_hw_queue_mapped(hctx))
981                                 blk_mq_tag_idle(hctx);
982                 }
983         }
984         blk_queue_exit(q);
985 }
986
987 struct flush_busy_ctx_data {
988         struct blk_mq_hw_ctx *hctx;
989         struct list_head *list;
990 };
991
992 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
993 {
994         struct flush_busy_ctx_data *flush_data = data;
995         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
996         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
997         enum hctx_type type = hctx->type;
998
999         spin_lock(&ctx->lock);
1000         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1001         sbitmap_clear_bit(sb, bitnr);
1002         spin_unlock(&ctx->lock);
1003         return true;
1004 }
1005
1006 /*
1007  * Process software queues that have been marked busy, splicing them
1008  * to the for-dispatch
1009  */
1010 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1011 {
1012         struct flush_busy_ctx_data data = {
1013                 .hctx = hctx,
1014                 .list = list,
1015         };
1016
1017         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1018 }
1019 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1020
1021 struct dispatch_rq_data {
1022         struct blk_mq_hw_ctx *hctx;
1023         struct request *rq;
1024 };
1025
1026 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1027                 void *data)
1028 {
1029         struct dispatch_rq_data *dispatch_data = data;
1030         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1031         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1032         enum hctx_type type = hctx->type;
1033
1034         spin_lock(&ctx->lock);
1035         if (!list_empty(&ctx->rq_lists[type])) {
1036                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1037                 list_del_init(&dispatch_data->rq->queuelist);
1038                 if (list_empty(&ctx->rq_lists[type]))
1039                         sbitmap_clear_bit(sb, bitnr);
1040         }
1041         spin_unlock(&ctx->lock);
1042
1043         return !dispatch_data->rq;
1044 }
1045
1046 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1047                                         struct blk_mq_ctx *start)
1048 {
1049         unsigned off = start ? start->index_hw[hctx->type] : 0;
1050         struct dispatch_rq_data data = {
1051                 .hctx = hctx,
1052                 .rq   = NULL,
1053         };
1054
1055         __sbitmap_for_each_set(&hctx->ctx_map, off,
1056                                dispatch_rq_from_ctx, &data);
1057
1058         return data.rq;
1059 }
1060
1061 static inline unsigned int queued_to_index(unsigned int queued)
1062 {
1063         if (!queued)
1064                 return 0;
1065
1066         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1067 }
1068
1069 static bool __blk_mq_get_driver_tag(struct request *rq)
1070 {
1071         struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1072         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1073         int tag;
1074
1075         blk_mq_tag_busy(rq->mq_hctx);
1076
1077         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1078                 bt = rq->mq_hctx->tags->breserved_tags;
1079                 tag_offset = 0;
1080         } else {
1081                 if (!hctx_may_queue(rq->mq_hctx, bt))
1082                         return false;
1083         }
1084
1085         tag = __sbitmap_queue_get(bt);
1086         if (tag == BLK_MQ_NO_TAG)
1087                 return false;
1088
1089         rq->tag = tag + tag_offset;
1090         return true;
1091 }
1092
1093 bool blk_mq_get_driver_tag(struct request *rq)
1094 {
1095         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1096
1097         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1098                 return false;
1099
1100         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1101                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1102                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1103                 __blk_mq_inc_active_requests(hctx);
1104         }
1105         hctx->tags->rqs[rq->tag] = rq;
1106         return true;
1107 }
1108
1109 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1110                                 int flags, void *key)
1111 {
1112         struct blk_mq_hw_ctx *hctx;
1113
1114         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1115
1116         spin_lock(&hctx->dispatch_wait_lock);
1117         if (!list_empty(&wait->entry)) {
1118                 struct sbitmap_queue *sbq;
1119
1120                 list_del_init(&wait->entry);
1121                 sbq = hctx->tags->bitmap_tags;
1122                 atomic_dec(&sbq->ws_active);
1123         }
1124         spin_unlock(&hctx->dispatch_wait_lock);
1125
1126         blk_mq_run_hw_queue(hctx, true);
1127         return 1;
1128 }
1129
1130 /*
1131  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1132  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1133  * restart. For both cases, take care to check the condition again after
1134  * marking us as waiting.
1135  */
1136 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1137                                  struct request *rq)
1138 {
1139         struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1140         struct wait_queue_head *wq;
1141         wait_queue_entry_t *wait;
1142         bool ret;
1143
1144         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1145                 blk_mq_sched_mark_restart_hctx(hctx);
1146
1147                 /*
1148                  * It's possible that a tag was freed in the window between the
1149                  * allocation failure and adding the hardware queue to the wait
1150                  * queue.
1151                  *
1152                  * Don't clear RESTART here, someone else could have set it.
1153                  * At most this will cost an extra queue run.
1154                  */
1155                 return blk_mq_get_driver_tag(rq);
1156         }
1157
1158         wait = &hctx->dispatch_wait;
1159         if (!list_empty_careful(&wait->entry))
1160                 return false;
1161
1162         wq = &bt_wait_ptr(sbq, hctx)->wait;
1163
1164         spin_lock_irq(&wq->lock);
1165         spin_lock(&hctx->dispatch_wait_lock);
1166         if (!list_empty(&wait->entry)) {
1167                 spin_unlock(&hctx->dispatch_wait_lock);
1168                 spin_unlock_irq(&wq->lock);
1169                 return false;
1170         }
1171
1172         atomic_inc(&sbq->ws_active);
1173         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1174         __add_wait_queue(wq, wait);
1175
1176         /*
1177          * It's possible that a tag was freed in the window between the
1178          * allocation failure and adding the hardware queue to the wait
1179          * queue.
1180          */
1181         ret = blk_mq_get_driver_tag(rq);
1182         if (!ret) {
1183                 spin_unlock(&hctx->dispatch_wait_lock);
1184                 spin_unlock_irq(&wq->lock);
1185                 return false;
1186         }
1187
1188         /*
1189          * We got a tag, remove ourselves from the wait queue to ensure
1190          * someone else gets the wakeup.
1191          */
1192         list_del_init(&wait->entry);
1193         atomic_dec(&sbq->ws_active);
1194         spin_unlock(&hctx->dispatch_wait_lock);
1195         spin_unlock_irq(&wq->lock);
1196
1197         return true;
1198 }
1199
1200 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1201 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1202 /*
1203  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1204  * - EWMA is one simple way to compute running average value
1205  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1206  * - take 4 as factor for avoiding to get too small(0) result, and this
1207  *   factor doesn't matter because EWMA decreases exponentially
1208  */
1209 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1210 {
1211         unsigned int ewma;
1212
1213         ewma = hctx->dispatch_busy;
1214
1215         if (!ewma && !busy)
1216                 return;
1217
1218         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1219         if (busy)
1220                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1221         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1222
1223         hctx->dispatch_busy = ewma;
1224 }
1225
1226 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1227
1228 static void blk_mq_handle_dev_resource(struct request *rq,
1229                                        struct list_head *list)
1230 {
1231         struct request *next =
1232                 list_first_entry_or_null(list, struct request, queuelist);
1233
1234         /*
1235          * If an I/O scheduler has been configured and we got a driver tag for
1236          * the next request already, free it.
1237          */
1238         if (next)
1239                 blk_mq_put_driver_tag(next);
1240
1241         list_add(&rq->queuelist, list);
1242         __blk_mq_requeue_request(rq);
1243 }
1244
1245 static void blk_mq_handle_zone_resource(struct request *rq,
1246                                         struct list_head *zone_list)
1247 {
1248         /*
1249          * If we end up here it is because we cannot dispatch a request to a
1250          * specific zone due to LLD level zone-write locking or other zone
1251          * related resource not being available. In this case, set the request
1252          * aside in zone_list for retrying it later.
1253          */
1254         list_add(&rq->queuelist, zone_list);
1255         __blk_mq_requeue_request(rq);
1256 }
1257
1258 enum prep_dispatch {
1259         PREP_DISPATCH_OK,
1260         PREP_DISPATCH_NO_TAG,
1261         PREP_DISPATCH_NO_BUDGET,
1262 };
1263
1264 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1265                                                   bool need_budget)
1266 {
1267         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1268         int budget_token = -1;
1269
1270         if (need_budget) {
1271                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1272                 if (budget_token < 0) {
1273                         blk_mq_put_driver_tag(rq);
1274                         return PREP_DISPATCH_NO_BUDGET;
1275                 }
1276                 blk_mq_set_rq_budget_token(rq, budget_token);
1277         }
1278
1279         if (!blk_mq_get_driver_tag(rq)) {
1280                 /*
1281                  * The initial allocation attempt failed, so we need to
1282                  * rerun the hardware queue when a tag is freed. The
1283                  * waitqueue takes care of that. If the queue is run
1284                  * before we add this entry back on the dispatch list,
1285                  * we'll re-run it below.
1286                  */
1287                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1288                         /*
1289                          * All budgets not got from this function will be put
1290                          * together during handling partial dispatch
1291                          */
1292                         if (need_budget)
1293                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1294                         return PREP_DISPATCH_NO_TAG;
1295                 }
1296         }
1297
1298         return PREP_DISPATCH_OK;
1299 }
1300
1301 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1302 static void blk_mq_release_budgets(struct request_queue *q,
1303                 struct list_head *list)
1304 {
1305         struct request *rq;
1306
1307         list_for_each_entry(rq, list, queuelist) {
1308                 int budget_token = blk_mq_get_rq_budget_token(rq);
1309
1310                 if (budget_token >= 0)
1311                         blk_mq_put_dispatch_budget(q, budget_token);
1312         }
1313 }
1314
1315 /*
1316  * Returns true if we did some work AND can potentially do more.
1317  */
1318 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1319                              unsigned int nr_budgets)
1320 {
1321         enum prep_dispatch prep;
1322         struct request_queue *q = hctx->queue;
1323         struct request *rq, *nxt;
1324         int errors, queued;
1325         blk_status_t ret = BLK_STS_OK;
1326         LIST_HEAD(zone_list);
1327         bool needs_resource = false;
1328
1329         if (list_empty(list))
1330                 return false;
1331
1332         /*
1333          * Now process all the entries, sending them to the driver.
1334          */
1335         errors = queued = 0;
1336         do {
1337                 struct blk_mq_queue_data bd;
1338
1339                 rq = list_first_entry(list, struct request, queuelist);
1340
1341                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1342                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1343                 if (prep != PREP_DISPATCH_OK)
1344                         break;
1345
1346                 list_del_init(&rq->queuelist);
1347
1348                 bd.rq = rq;
1349
1350                 /*
1351                  * Flag last if we have no more requests, or if we have more
1352                  * but can't assign a driver tag to it.
1353                  */
1354                 if (list_empty(list))
1355                         bd.last = true;
1356                 else {
1357                         nxt = list_first_entry(list, struct request, queuelist);
1358                         bd.last = !blk_mq_get_driver_tag(nxt);
1359                 }
1360
1361                 /*
1362                  * once the request is queued to lld, no need to cover the
1363                  * budget any more
1364                  */
1365                 if (nr_budgets)
1366                         nr_budgets--;
1367                 ret = q->mq_ops->queue_rq(hctx, &bd);
1368                 switch (ret) {
1369                 case BLK_STS_OK:
1370                         queued++;
1371                         break;
1372                 case BLK_STS_RESOURCE:
1373                         needs_resource = true;
1374                         fallthrough;
1375                 case BLK_STS_DEV_RESOURCE:
1376                         blk_mq_handle_dev_resource(rq, list);
1377                         goto out;
1378                 case BLK_STS_ZONE_RESOURCE:
1379                         /*
1380                          * Move the request to zone_list and keep going through
1381                          * the dispatch list to find more requests the drive can
1382                          * accept.
1383                          */
1384                         blk_mq_handle_zone_resource(rq, &zone_list);
1385                         needs_resource = true;
1386                         break;
1387                 default:
1388                         errors++;
1389                         blk_mq_end_request(rq, ret);
1390                 }
1391         } while (!list_empty(list));
1392 out:
1393         if (!list_empty(&zone_list))
1394                 list_splice_tail_init(&zone_list, list);
1395
1396         hctx->dispatched[queued_to_index(queued)]++;
1397
1398         /* If we didn't flush the entire list, we could have told the driver
1399          * there was more coming, but that turned out to be a lie.
1400          */
1401         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1402                 q->mq_ops->commit_rqs(hctx);
1403         /*
1404          * Any items that need requeuing? Stuff them into hctx->dispatch,
1405          * that is where we will continue on next queue run.
1406          */
1407         if (!list_empty(list)) {
1408                 bool needs_restart;
1409                 /* For non-shared tags, the RESTART check will suffice */
1410                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1411                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1412
1413                 if (nr_budgets)
1414                         blk_mq_release_budgets(q, list);
1415
1416                 spin_lock(&hctx->lock);
1417                 list_splice_tail_init(list, &hctx->dispatch);
1418                 spin_unlock(&hctx->lock);
1419
1420                 /*
1421                  * Order adding requests to hctx->dispatch and checking
1422                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1423                  * in blk_mq_sched_restart(). Avoid restart code path to
1424                  * miss the new added requests to hctx->dispatch, meantime
1425                  * SCHED_RESTART is observed here.
1426                  */
1427                 smp_mb();
1428
1429                 /*
1430                  * If SCHED_RESTART was set by the caller of this function and
1431                  * it is no longer set that means that it was cleared by another
1432                  * thread and hence that a queue rerun is needed.
1433                  *
1434                  * If 'no_tag' is set, that means that we failed getting
1435                  * a driver tag with an I/O scheduler attached. If our dispatch
1436                  * waitqueue is no longer active, ensure that we run the queue
1437                  * AFTER adding our entries back to the list.
1438                  *
1439                  * If no I/O scheduler has been configured it is possible that
1440                  * the hardware queue got stopped and restarted before requests
1441                  * were pushed back onto the dispatch list. Rerun the queue to
1442                  * avoid starvation. Notes:
1443                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1444                  *   been stopped before rerunning a queue.
1445                  * - Some but not all block drivers stop a queue before
1446                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1447                  *   and dm-rq.
1448                  *
1449                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1450                  * bit is set, run queue after a delay to avoid IO stalls
1451                  * that could otherwise occur if the queue is idle.  We'll do
1452                  * similar if we couldn't get budget or couldn't lock a zone
1453                  * and SCHED_RESTART is set.
1454                  */
1455                 needs_restart = blk_mq_sched_needs_restart(hctx);
1456                 if (prep == PREP_DISPATCH_NO_BUDGET)
1457                         needs_resource = true;
1458                 if (!needs_restart ||
1459                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1460                         blk_mq_run_hw_queue(hctx, true);
1461                 else if (needs_restart && needs_resource)
1462                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1463
1464                 blk_mq_update_dispatch_busy(hctx, true);
1465                 return false;
1466         } else
1467                 blk_mq_update_dispatch_busy(hctx, false);
1468
1469         return (queued + errors) != 0;
1470 }
1471
1472 /**
1473  * __blk_mq_run_hw_queue - Run a hardware queue.
1474  * @hctx: Pointer to the hardware queue to run.
1475  *
1476  * Send pending requests to the hardware.
1477  */
1478 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1479 {
1480         int srcu_idx;
1481
1482         /*
1483          * We can't run the queue inline with ints disabled. Ensure that
1484          * we catch bad users of this early.
1485          */
1486         WARN_ON_ONCE(in_interrupt());
1487
1488         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1489
1490         hctx_lock(hctx, &srcu_idx);
1491         blk_mq_sched_dispatch_requests(hctx);
1492         hctx_unlock(hctx, srcu_idx);
1493 }
1494
1495 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1496 {
1497         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1498
1499         if (cpu >= nr_cpu_ids)
1500                 cpu = cpumask_first(hctx->cpumask);
1501         return cpu;
1502 }
1503
1504 /*
1505  * It'd be great if the workqueue API had a way to pass
1506  * in a mask and had some smarts for more clever placement.
1507  * For now we just round-robin here, switching for every
1508  * BLK_MQ_CPU_WORK_BATCH queued items.
1509  */
1510 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1511 {
1512         bool tried = false;
1513         int next_cpu = hctx->next_cpu;
1514
1515         if (hctx->queue->nr_hw_queues == 1)
1516                 return WORK_CPU_UNBOUND;
1517
1518         if (--hctx->next_cpu_batch <= 0) {
1519 select_cpu:
1520                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1521                                 cpu_online_mask);
1522                 if (next_cpu >= nr_cpu_ids)
1523                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1524                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1525         }
1526
1527         /*
1528          * Do unbound schedule if we can't find a online CPU for this hctx,
1529          * and it should only happen in the path of handling CPU DEAD.
1530          */
1531         if (!cpu_online(next_cpu)) {
1532                 if (!tried) {
1533                         tried = true;
1534                         goto select_cpu;
1535                 }
1536
1537                 /*
1538                  * Make sure to re-select CPU next time once after CPUs
1539                  * in hctx->cpumask become online again.
1540                  */
1541                 hctx->next_cpu = next_cpu;
1542                 hctx->next_cpu_batch = 1;
1543                 return WORK_CPU_UNBOUND;
1544         }
1545
1546         hctx->next_cpu = next_cpu;
1547         return next_cpu;
1548 }
1549
1550 /**
1551  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1552  * @hctx: Pointer to the hardware queue to run.
1553  * @async: If we want to run the queue asynchronously.
1554  * @msecs: Milliseconds of delay to wait before running the queue.
1555  *
1556  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1557  * with a delay of @msecs.
1558  */
1559 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1560                                         unsigned long msecs)
1561 {
1562         if (unlikely(blk_mq_hctx_stopped(hctx)))
1563                 return;
1564
1565         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1566                 int cpu = get_cpu();
1567                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1568                         __blk_mq_run_hw_queue(hctx);
1569                         put_cpu();
1570                         return;
1571                 }
1572
1573                 put_cpu();
1574         }
1575
1576         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1577                                     msecs_to_jiffies(msecs));
1578 }
1579
1580 /**
1581  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1582  * @hctx: Pointer to the hardware queue to run.
1583  * @msecs: Milliseconds of delay to wait before running the queue.
1584  *
1585  * Run a hardware queue asynchronously with a delay of @msecs.
1586  */
1587 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1588 {
1589         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1590 }
1591 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1592
1593 /**
1594  * blk_mq_run_hw_queue - Start to run a hardware queue.
1595  * @hctx: Pointer to the hardware queue to run.
1596  * @async: If we want to run the queue asynchronously.
1597  *
1598  * Check if the request queue is not in a quiesced state and if there are
1599  * pending requests to be sent. If this is true, run the queue to send requests
1600  * to hardware.
1601  */
1602 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1603 {
1604         int srcu_idx;
1605         bool need_run;
1606
1607         /*
1608          * When queue is quiesced, we may be switching io scheduler, or
1609          * updating nr_hw_queues, or other things, and we can't run queue
1610          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1611          *
1612          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1613          * quiesced.
1614          */
1615         hctx_lock(hctx, &srcu_idx);
1616         need_run = !blk_queue_quiesced(hctx->queue) &&
1617                 blk_mq_hctx_has_pending(hctx);
1618         hctx_unlock(hctx, srcu_idx);
1619
1620         if (need_run)
1621                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1622 }
1623 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1624
1625 /*
1626  * Is the request queue handled by an IO scheduler that does not respect
1627  * hardware queues when dispatching?
1628  */
1629 static bool blk_mq_has_sqsched(struct request_queue *q)
1630 {
1631         struct elevator_queue *e = q->elevator;
1632
1633         if (e && e->type->ops.dispatch_request &&
1634             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1635                 return true;
1636         return false;
1637 }
1638
1639 /*
1640  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1641  * scheduler.
1642  */
1643 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1644 {
1645         struct blk_mq_hw_ctx *hctx;
1646
1647         /*
1648          * If the IO scheduler does not respect hardware queues when
1649          * dispatching, we just don't bother with multiple HW queues and
1650          * dispatch from hctx for the current CPU since running multiple queues
1651          * just causes lock contention inside the scheduler and pointless cache
1652          * bouncing.
1653          */
1654         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1655                                      raw_smp_processor_id());
1656         if (!blk_mq_hctx_stopped(hctx))
1657                 return hctx;
1658         return NULL;
1659 }
1660
1661 /**
1662  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1663  * @q: Pointer to the request queue to run.
1664  * @async: If we want to run the queue asynchronously.
1665  */
1666 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1667 {
1668         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1669         int i;
1670
1671         sq_hctx = NULL;
1672         if (blk_mq_has_sqsched(q))
1673                 sq_hctx = blk_mq_get_sq_hctx(q);
1674         queue_for_each_hw_ctx(q, hctx, i) {
1675                 if (blk_mq_hctx_stopped(hctx))
1676                         continue;
1677                 /*
1678                  * Dispatch from this hctx either if there's no hctx preferred
1679                  * by IO scheduler or if it has requests that bypass the
1680                  * scheduler.
1681                  */
1682                 if (!sq_hctx || sq_hctx == hctx ||
1683                     !list_empty_careful(&hctx->dispatch))
1684                         blk_mq_run_hw_queue(hctx, async);
1685         }
1686 }
1687 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1688
1689 /**
1690  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1691  * @q: Pointer to the request queue to run.
1692  * @msecs: Milliseconds of delay to wait before running the queues.
1693  */
1694 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1695 {
1696         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1697         int i;
1698
1699         sq_hctx = NULL;
1700         if (blk_mq_has_sqsched(q))
1701                 sq_hctx = blk_mq_get_sq_hctx(q);
1702         queue_for_each_hw_ctx(q, hctx, i) {
1703                 if (blk_mq_hctx_stopped(hctx))
1704                         continue;
1705                 /*
1706                  * Dispatch from this hctx either if there's no hctx preferred
1707                  * by IO scheduler or if it has requests that bypass the
1708                  * scheduler.
1709                  */
1710                 if (!sq_hctx || sq_hctx == hctx ||
1711                     !list_empty_careful(&hctx->dispatch))
1712                         blk_mq_delay_run_hw_queue(hctx, msecs);
1713         }
1714 }
1715 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1716
1717 /**
1718  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1719  * @q: request queue.
1720  *
1721  * The caller is responsible for serializing this function against
1722  * blk_mq_{start,stop}_hw_queue().
1723  */
1724 bool blk_mq_queue_stopped(struct request_queue *q)
1725 {
1726         struct blk_mq_hw_ctx *hctx;
1727         int i;
1728
1729         queue_for_each_hw_ctx(q, hctx, i)
1730                 if (blk_mq_hctx_stopped(hctx))
1731                         return true;
1732
1733         return false;
1734 }
1735 EXPORT_SYMBOL(blk_mq_queue_stopped);
1736
1737 /*
1738  * This function is often used for pausing .queue_rq() by driver when
1739  * there isn't enough resource or some conditions aren't satisfied, and
1740  * BLK_STS_RESOURCE is usually returned.
1741  *
1742  * We do not guarantee that dispatch can be drained or blocked
1743  * after blk_mq_stop_hw_queue() returns. Please use
1744  * blk_mq_quiesce_queue() for that requirement.
1745  */
1746 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1747 {
1748         cancel_delayed_work(&hctx->run_work);
1749
1750         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1751 }
1752 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1753
1754 /*
1755  * This function is often used for pausing .queue_rq() by driver when
1756  * there isn't enough resource or some conditions aren't satisfied, and
1757  * BLK_STS_RESOURCE is usually returned.
1758  *
1759  * We do not guarantee that dispatch can be drained or blocked
1760  * after blk_mq_stop_hw_queues() returns. Please use
1761  * blk_mq_quiesce_queue() for that requirement.
1762  */
1763 void blk_mq_stop_hw_queues(struct request_queue *q)
1764 {
1765         struct blk_mq_hw_ctx *hctx;
1766         int i;
1767
1768         queue_for_each_hw_ctx(q, hctx, i)
1769                 blk_mq_stop_hw_queue(hctx);
1770 }
1771 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1772
1773 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1774 {
1775         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1776
1777         blk_mq_run_hw_queue(hctx, false);
1778 }
1779 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1780
1781 void blk_mq_start_hw_queues(struct request_queue *q)
1782 {
1783         struct blk_mq_hw_ctx *hctx;
1784         int i;
1785
1786         queue_for_each_hw_ctx(q, hctx, i)
1787                 blk_mq_start_hw_queue(hctx);
1788 }
1789 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1790
1791 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1792 {
1793         if (!blk_mq_hctx_stopped(hctx))
1794                 return;
1795
1796         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1797         blk_mq_run_hw_queue(hctx, async);
1798 }
1799 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1800
1801 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1802 {
1803         struct blk_mq_hw_ctx *hctx;
1804         int i;
1805
1806         queue_for_each_hw_ctx(q, hctx, i)
1807                 blk_mq_start_stopped_hw_queue(hctx, async);
1808 }
1809 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1810
1811 static void blk_mq_run_work_fn(struct work_struct *work)
1812 {
1813         struct blk_mq_hw_ctx *hctx;
1814
1815         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1816
1817         /*
1818          * If we are stopped, don't run the queue.
1819          */
1820         if (blk_mq_hctx_stopped(hctx))
1821                 return;
1822
1823         __blk_mq_run_hw_queue(hctx);
1824 }
1825
1826 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1827                                             struct request *rq,
1828                                             bool at_head)
1829 {
1830         struct blk_mq_ctx *ctx = rq->mq_ctx;
1831         enum hctx_type type = hctx->type;
1832
1833         lockdep_assert_held(&ctx->lock);
1834
1835         trace_block_rq_insert(rq);
1836
1837         if (at_head)
1838                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1839         else
1840                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1841 }
1842
1843 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1844                              bool at_head)
1845 {
1846         struct blk_mq_ctx *ctx = rq->mq_ctx;
1847
1848         lockdep_assert_held(&ctx->lock);
1849
1850         __blk_mq_insert_req_list(hctx, rq, at_head);
1851         blk_mq_hctx_mark_pending(hctx, ctx);
1852 }
1853
1854 /**
1855  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1856  * @rq: Pointer to request to be inserted.
1857  * @at_head: true if the request should be inserted at the head of the list.
1858  * @run_queue: If we should run the hardware queue after inserting the request.
1859  *
1860  * Should only be used carefully, when the caller knows we want to
1861  * bypass a potential IO scheduler on the target device.
1862  */
1863 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1864                                   bool run_queue)
1865 {
1866         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1867
1868         spin_lock(&hctx->lock);
1869         if (at_head)
1870                 list_add(&rq->queuelist, &hctx->dispatch);
1871         else
1872                 list_add_tail(&rq->queuelist, &hctx->dispatch);
1873         spin_unlock(&hctx->lock);
1874
1875         if (run_queue)
1876                 blk_mq_run_hw_queue(hctx, false);
1877 }
1878
1879 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1880                             struct list_head *list)
1881
1882 {
1883         struct request *rq;
1884         enum hctx_type type = hctx->type;
1885
1886         /*
1887          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1888          * offline now
1889          */
1890         list_for_each_entry(rq, list, queuelist) {
1891                 BUG_ON(rq->mq_ctx != ctx);
1892                 trace_block_rq_insert(rq);
1893         }
1894
1895         spin_lock(&ctx->lock);
1896         list_splice_tail_init(list, &ctx->rq_lists[type]);
1897         blk_mq_hctx_mark_pending(hctx, ctx);
1898         spin_unlock(&ctx->lock);
1899 }
1900
1901 static int plug_rq_cmp(void *priv, const struct list_head *a,
1902                        const struct list_head *b)
1903 {
1904         struct request *rqa = container_of(a, struct request, queuelist);
1905         struct request *rqb = container_of(b, struct request, queuelist);
1906
1907         if (rqa->mq_ctx != rqb->mq_ctx)
1908                 return rqa->mq_ctx > rqb->mq_ctx;
1909         if (rqa->mq_hctx != rqb->mq_hctx)
1910                 return rqa->mq_hctx > rqb->mq_hctx;
1911
1912         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1913 }
1914
1915 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1916 {
1917         LIST_HEAD(list);
1918
1919         if (list_empty(&plug->mq_list))
1920                 return;
1921         list_splice_init(&plug->mq_list, &list);
1922
1923         if (plug->rq_count > 2 && plug->multiple_queues)
1924                 list_sort(NULL, &list, plug_rq_cmp);
1925
1926         plug->rq_count = 0;
1927
1928         do {
1929                 struct list_head rq_list;
1930                 struct request *rq, *head_rq = list_entry_rq(list.next);
1931                 struct list_head *pos = &head_rq->queuelist; /* skip first */
1932                 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1933                 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1934                 unsigned int depth = 1;
1935
1936                 list_for_each_continue(pos, &list) {
1937                         rq = list_entry_rq(pos);
1938                         BUG_ON(!rq->q);
1939                         if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1940                                 break;
1941                         depth++;
1942                 }
1943
1944                 list_cut_before(&rq_list, &list, pos);
1945                 trace_block_unplug(head_rq->q, depth, !from_schedule);
1946                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1947                                                 from_schedule);
1948         } while(!list_empty(&list));
1949 }
1950
1951 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1952                 unsigned int nr_segs)
1953 {
1954         int err;
1955
1956         if (bio->bi_opf & REQ_RAHEAD)
1957                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1958
1959         rq->__sector = bio->bi_iter.bi_sector;
1960         rq->write_hint = bio->bi_write_hint;
1961         blk_rq_bio_prep(rq, bio, nr_segs);
1962
1963         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1964         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1965         WARN_ON_ONCE(err);
1966
1967         blk_account_io_start(rq);
1968 }
1969
1970 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1971                                             struct request *rq,
1972                                             blk_qc_t *cookie, bool last)
1973 {
1974         struct request_queue *q = rq->q;
1975         struct blk_mq_queue_data bd = {
1976                 .rq = rq,
1977                 .last = last,
1978         };
1979         blk_qc_t new_cookie;
1980         blk_status_t ret;
1981
1982         new_cookie = request_to_qc_t(hctx, rq);
1983
1984         /*
1985          * For OK queue, we are done. For error, caller may kill it.
1986          * Any other error (busy), just add it to our list as we
1987          * previously would have done.
1988          */
1989         ret = q->mq_ops->queue_rq(hctx, &bd);
1990         switch (ret) {
1991         case BLK_STS_OK:
1992                 blk_mq_update_dispatch_busy(hctx, false);
1993                 *cookie = new_cookie;
1994                 break;
1995         case BLK_STS_RESOURCE:
1996         case BLK_STS_DEV_RESOURCE:
1997                 blk_mq_update_dispatch_busy(hctx, true);
1998                 __blk_mq_requeue_request(rq);
1999                 break;
2000         default:
2001                 blk_mq_update_dispatch_busy(hctx, false);
2002                 *cookie = BLK_QC_T_NONE;
2003                 break;
2004         }
2005
2006         return ret;
2007 }
2008
2009 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2010                                                 struct request *rq,
2011                                                 blk_qc_t *cookie,
2012                                                 bool bypass_insert, bool last)
2013 {
2014         struct request_queue *q = rq->q;
2015         bool run_queue = true;
2016         int budget_token;
2017
2018         /*
2019          * RCU or SRCU read lock is needed before checking quiesced flag.
2020          *
2021          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2022          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2023          * and avoid driver to try to dispatch again.
2024          */
2025         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2026                 run_queue = false;
2027                 bypass_insert = false;
2028                 goto insert;
2029         }
2030
2031         if (q->elevator && !bypass_insert)
2032                 goto insert;
2033
2034         budget_token = blk_mq_get_dispatch_budget(q);
2035         if (budget_token < 0)
2036                 goto insert;
2037
2038         blk_mq_set_rq_budget_token(rq, budget_token);
2039
2040         if (!blk_mq_get_driver_tag(rq)) {
2041                 blk_mq_put_dispatch_budget(q, budget_token);
2042                 goto insert;
2043         }
2044
2045         return __blk_mq_issue_directly(hctx, rq, cookie, last);
2046 insert:
2047         if (bypass_insert)
2048                 return BLK_STS_RESOURCE;
2049
2050         blk_mq_sched_insert_request(rq, false, run_queue, false);
2051
2052         return BLK_STS_OK;
2053 }
2054
2055 /**
2056  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2057  * @hctx: Pointer of the associated hardware queue.
2058  * @rq: Pointer to request to be sent.
2059  * @cookie: Request queue cookie.
2060  *
2061  * If the device has enough resources to accept a new request now, send the
2062  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2063  * we can try send it another time in the future. Requests inserted at this
2064  * queue have higher priority.
2065  */
2066 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2067                 struct request *rq, blk_qc_t *cookie)
2068 {
2069         blk_status_t ret;
2070         int srcu_idx;
2071
2072         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2073
2074         hctx_lock(hctx, &srcu_idx);
2075
2076         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2077         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2078                 blk_mq_request_bypass_insert(rq, false, true);
2079         else if (ret != BLK_STS_OK)
2080                 blk_mq_end_request(rq, ret);
2081
2082         hctx_unlock(hctx, srcu_idx);
2083 }
2084
2085 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2086 {
2087         blk_status_t ret;
2088         int srcu_idx;
2089         blk_qc_t unused_cookie;
2090         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2091
2092         hctx_lock(hctx, &srcu_idx);
2093         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2094         hctx_unlock(hctx, srcu_idx);
2095
2096         return ret;
2097 }
2098
2099 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2100                 struct list_head *list)
2101 {
2102         int queued = 0;
2103         int errors = 0;
2104
2105         while (!list_empty(list)) {
2106                 blk_status_t ret;
2107                 struct request *rq = list_first_entry(list, struct request,
2108                                 queuelist);
2109
2110                 list_del_init(&rq->queuelist);
2111                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2112                 if (ret != BLK_STS_OK) {
2113                         if (ret == BLK_STS_RESOURCE ||
2114                                         ret == BLK_STS_DEV_RESOURCE) {
2115                                 blk_mq_request_bypass_insert(rq, false,
2116                                                         list_empty(list));
2117                                 break;
2118                         }
2119                         blk_mq_end_request(rq, ret);
2120                         errors++;
2121                 } else
2122                         queued++;
2123         }
2124
2125         /*
2126          * If we didn't flush the entire list, we could have told
2127          * the driver there was more coming, but that turned out to
2128          * be a lie.
2129          */
2130         if ((!list_empty(list) || errors) &&
2131              hctx->queue->mq_ops->commit_rqs && queued)
2132                 hctx->queue->mq_ops->commit_rqs(hctx);
2133 }
2134
2135 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2136 {
2137         list_add_tail(&rq->queuelist, &plug->mq_list);
2138         plug->rq_count++;
2139         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2140                 struct request *tmp;
2141
2142                 tmp = list_first_entry(&plug->mq_list, struct request,
2143                                                 queuelist);
2144                 if (tmp->q != rq->q)
2145                         plug->multiple_queues = true;
2146         }
2147 }
2148
2149 /*
2150  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2151  * queues. This is important for md arrays to benefit from merging
2152  * requests.
2153  */
2154 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2155 {
2156         if (plug->multiple_queues)
2157                 return BLK_MAX_REQUEST_COUNT * 2;
2158         return BLK_MAX_REQUEST_COUNT;
2159 }
2160
2161 /**
2162  * blk_mq_submit_bio - Create and send a request to block device.
2163  * @bio: Bio pointer.
2164  *
2165  * Builds up a request structure from @q and @bio and send to the device. The
2166  * request may not be queued directly to hardware if:
2167  * * This request can be merged with another one
2168  * * We want to place request at plug queue for possible future merging
2169  * * There is an IO scheduler active at this queue
2170  *
2171  * It will not queue the request if there is an error with the bio, or at the
2172  * request creation.
2173  *
2174  * Returns: Request queue cookie.
2175  */
2176 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2177 {
2178         struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2179         const int is_sync = op_is_sync(bio->bi_opf);
2180         const int is_flush_fua = op_is_flush(bio->bi_opf);
2181         struct blk_mq_alloc_data data = {
2182                 .q              = q,
2183         };
2184         struct request *rq;
2185         struct blk_plug *plug;
2186         struct request *same_queue_rq = NULL;
2187         unsigned int nr_segs;
2188         blk_qc_t cookie;
2189         blk_status_t ret;
2190         bool hipri;
2191
2192         blk_queue_bounce(q, &bio);
2193         __blk_queue_split(&bio, &nr_segs);
2194
2195         if (!bio_integrity_prep(bio))
2196                 goto queue_exit;
2197
2198         if (!is_flush_fua && !blk_queue_nomerges(q) &&
2199             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2200                 goto queue_exit;
2201
2202         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2203                 goto queue_exit;
2204
2205         rq_qos_throttle(q, bio);
2206
2207         hipri = bio->bi_opf & REQ_HIPRI;
2208
2209         data.cmd_flags = bio->bi_opf;
2210         rq = __blk_mq_alloc_request(&data);
2211         if (unlikely(!rq)) {
2212                 rq_qos_cleanup(q, bio);
2213                 if (bio->bi_opf & REQ_NOWAIT)
2214                         bio_wouldblock_error(bio);
2215                 goto queue_exit;
2216         }
2217
2218         trace_block_getrq(bio);
2219
2220         rq_qos_track(q, rq, bio);
2221
2222         cookie = request_to_qc_t(data.hctx, rq);
2223
2224         blk_mq_bio_to_request(rq, bio, nr_segs);
2225
2226         ret = blk_crypto_init_request(rq);
2227         if (ret != BLK_STS_OK) {
2228                 bio->bi_status = ret;
2229                 bio_endio(bio);
2230                 blk_mq_free_request(rq);
2231                 return BLK_QC_T_NONE;
2232         }
2233
2234         plug = blk_mq_plug(q, bio);
2235         if (unlikely(is_flush_fua)) {
2236                 /* Bypass scheduler for flush requests */
2237                 blk_insert_flush(rq);
2238                 blk_mq_run_hw_queue(data.hctx, true);
2239         } else if (plug && (q->nr_hw_queues == 1 ||
2240                    blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2241                    q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2242                 /*
2243                  * Use plugging if we have a ->commit_rqs() hook as well, as
2244                  * we know the driver uses bd->last in a smart fashion.
2245                  *
2246                  * Use normal plugging if this disk is slow HDD, as sequential
2247                  * IO may benefit a lot from plug merging.
2248                  */
2249                 unsigned int request_count = plug->rq_count;
2250                 struct request *last = NULL;
2251
2252                 if (!request_count)
2253                         trace_block_plug(q);
2254                 else
2255                         last = list_entry_rq(plug->mq_list.prev);
2256
2257                 if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2258                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2259                         blk_flush_plug_list(plug, false);
2260                         trace_block_plug(q);
2261                 }
2262
2263                 blk_add_rq_to_plug(plug, rq);
2264         } else if (q->elevator) {
2265                 /* Insert the request at the IO scheduler queue */
2266                 blk_mq_sched_insert_request(rq, false, true, true);
2267         } else if (plug && !blk_queue_nomerges(q)) {
2268                 /*
2269                  * We do limited plugging. If the bio can be merged, do that.
2270                  * Otherwise the existing request in the plug list will be
2271                  * issued. So the plug list will have one request at most
2272                  * The plug list might get flushed before this. If that happens,
2273                  * the plug list is empty, and same_queue_rq is invalid.
2274                  */
2275                 if (list_empty(&plug->mq_list))
2276                         same_queue_rq = NULL;
2277                 if (same_queue_rq) {
2278                         list_del_init(&same_queue_rq->queuelist);
2279                         plug->rq_count--;
2280                 }
2281                 blk_add_rq_to_plug(plug, rq);
2282                 trace_block_plug(q);
2283
2284                 if (same_queue_rq) {
2285                         data.hctx = same_queue_rq->mq_hctx;
2286                         trace_block_unplug(q, 1, true);
2287                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2288                                         &cookie);
2289                 }
2290         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2291                         !data.hctx->dispatch_busy) {
2292                 /*
2293                  * There is no scheduler and we can try to send directly
2294                  * to the hardware.
2295                  */
2296                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2297         } else {
2298                 /* Default case. */
2299                 blk_mq_sched_insert_request(rq, false, true, true);
2300         }
2301
2302         if (!hipri)
2303                 return BLK_QC_T_NONE;
2304         return cookie;
2305 queue_exit:
2306         blk_queue_exit(q);
2307         return BLK_QC_T_NONE;
2308 }
2309
2310 static size_t order_to_size(unsigned int order)
2311 {
2312         return (size_t)PAGE_SIZE << order;
2313 }
2314
2315 /* called before freeing request pool in @tags */
2316 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2317                 struct blk_mq_tags *tags, unsigned int hctx_idx)
2318 {
2319         struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2320         struct page *page;
2321         unsigned long flags;
2322
2323         list_for_each_entry(page, &tags->page_list, lru) {
2324                 unsigned long start = (unsigned long)page_address(page);
2325                 unsigned long end = start + order_to_size(page->private);
2326                 int i;
2327
2328                 for (i = 0; i < set->queue_depth; i++) {
2329                         struct request *rq = drv_tags->rqs[i];
2330                         unsigned long rq_addr = (unsigned long)rq;
2331
2332                         if (rq_addr >= start && rq_addr < end) {
2333                                 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2334                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2335                         }
2336                 }
2337         }
2338
2339         /*
2340          * Wait until all pending iteration is done.
2341          *
2342          * Request reference is cleared and it is guaranteed to be observed
2343          * after the ->lock is released.
2344          */
2345         spin_lock_irqsave(&drv_tags->lock, flags);
2346         spin_unlock_irqrestore(&drv_tags->lock, flags);
2347 }
2348
2349 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2350                      unsigned int hctx_idx)
2351 {
2352         struct page *page;
2353
2354         if (tags->rqs && set->ops->exit_request) {
2355                 int i;
2356
2357                 for (i = 0; i < tags->nr_tags; i++) {
2358                         struct request *rq = tags->static_rqs[i];
2359
2360                         if (!rq)
2361                                 continue;
2362                         set->ops->exit_request(set, rq, hctx_idx);
2363                         tags->static_rqs[i] = NULL;
2364                 }
2365         }
2366
2367         blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2368
2369         while (!list_empty(&tags->page_list)) {
2370                 page = list_first_entry(&tags->page_list, struct page, lru);
2371                 list_del_init(&page->lru);
2372                 /*
2373                  * Remove kmemleak object previously allocated in
2374                  * blk_mq_alloc_rqs().
2375                  */
2376                 kmemleak_free(page_address(page));
2377                 __free_pages(page, page->private);
2378         }
2379 }
2380
2381 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2382 {
2383         kfree(tags->rqs);
2384         tags->rqs = NULL;
2385         kfree(tags->static_rqs);
2386         tags->static_rqs = NULL;
2387
2388         blk_mq_free_tags(tags, flags);
2389 }
2390
2391 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2392                                         unsigned int hctx_idx,
2393                                         unsigned int nr_tags,
2394                                         unsigned int reserved_tags,
2395                                         unsigned int flags)
2396 {
2397         struct blk_mq_tags *tags;
2398         int node;
2399
2400         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2401         if (node == NUMA_NO_NODE)
2402                 node = set->numa_node;
2403
2404         tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2405         if (!tags)
2406                 return NULL;
2407
2408         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2409                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2410                                  node);
2411         if (!tags->rqs) {
2412                 blk_mq_free_tags(tags, flags);
2413                 return NULL;
2414         }
2415
2416         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2417                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2418                                         node);
2419         if (!tags->static_rqs) {
2420                 kfree(tags->rqs);
2421                 blk_mq_free_tags(tags, flags);
2422                 return NULL;
2423         }
2424
2425         return tags;
2426 }
2427
2428 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2429                                unsigned int hctx_idx, int node)
2430 {
2431         int ret;
2432
2433         if (set->ops->init_request) {
2434                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2435                 if (ret)
2436                         return ret;
2437         }
2438
2439         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2440         return 0;
2441 }
2442
2443 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2444                      unsigned int hctx_idx, unsigned int depth)
2445 {
2446         unsigned int i, j, entries_per_page, max_order = 4;
2447         size_t rq_size, left;
2448         int node;
2449
2450         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2451         if (node == NUMA_NO_NODE)
2452                 node = set->numa_node;
2453
2454         INIT_LIST_HEAD(&tags->page_list);
2455
2456         /*
2457          * rq_size is the size of the request plus driver payload, rounded
2458          * to the cacheline size
2459          */
2460         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2461                                 cache_line_size());
2462         left = rq_size * depth;
2463
2464         for (i = 0; i < depth; ) {
2465                 int this_order = max_order;
2466                 struct page *page;
2467                 int to_do;
2468                 void *p;
2469
2470                 while (this_order && left < order_to_size(this_order - 1))
2471                         this_order--;
2472
2473                 do {
2474                         page = alloc_pages_node(node,
2475                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2476                                 this_order);
2477                         if (page)
2478                                 break;
2479                         if (!this_order--)
2480                                 break;
2481                         if (order_to_size(this_order) < rq_size)
2482                                 break;
2483                 } while (1);
2484
2485                 if (!page)
2486                         goto fail;
2487
2488                 page->private = this_order;
2489                 list_add_tail(&page->lru, &tags->page_list);
2490
2491                 p = page_address(page);
2492                 /*
2493                  * Allow kmemleak to scan these pages as they contain pointers
2494                  * to additional allocations like via ops->init_request().
2495                  */
2496                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2497                 entries_per_page = order_to_size(this_order) / rq_size;
2498                 to_do = min(entries_per_page, depth - i);
2499                 left -= to_do * rq_size;
2500                 for (j = 0; j < to_do; j++) {
2501                         struct request *rq = p;
2502
2503                         tags->static_rqs[i] = rq;
2504                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2505                                 tags->static_rqs[i] = NULL;
2506                                 goto fail;
2507                         }
2508
2509                         p += rq_size;
2510                         i++;
2511                 }
2512         }
2513         return 0;
2514
2515 fail:
2516         blk_mq_free_rqs(set, tags, hctx_idx);
2517         return -ENOMEM;
2518 }
2519
2520 struct rq_iter_data {
2521         struct blk_mq_hw_ctx *hctx;
2522         bool has_rq;
2523 };
2524
2525 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2526 {
2527         struct rq_iter_data *iter_data = data;
2528
2529         if (rq->mq_hctx != iter_data->hctx)
2530                 return true;
2531         iter_data->has_rq = true;
2532         return false;
2533 }
2534
2535 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2536 {
2537         struct blk_mq_tags *tags = hctx->sched_tags ?
2538                         hctx->sched_tags : hctx->tags;
2539         struct rq_iter_data data = {
2540                 .hctx   = hctx,
2541         };
2542
2543         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2544         return data.has_rq;
2545 }
2546
2547 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2548                 struct blk_mq_hw_ctx *hctx)
2549 {
2550         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2551                 return false;
2552         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2553                 return false;
2554         return true;
2555 }
2556
2557 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2558 {
2559         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2560                         struct blk_mq_hw_ctx, cpuhp_online);
2561
2562         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2563             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2564                 return 0;
2565
2566         /*
2567          * Prevent new request from being allocated on the current hctx.
2568          *
2569          * The smp_mb__after_atomic() Pairs with the implied barrier in
2570          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2571          * seen once we return from the tag allocator.
2572          */
2573         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2574         smp_mb__after_atomic();
2575
2576         /*
2577          * Try to grab a reference to the queue and wait for any outstanding
2578          * requests.  If we could not grab a reference the queue has been
2579          * frozen and there are no requests.
2580          */
2581         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2582                 while (blk_mq_hctx_has_requests(hctx))
2583                         msleep(5);
2584                 percpu_ref_put(&hctx->queue->q_usage_counter);
2585         }
2586
2587         return 0;
2588 }
2589
2590 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2591 {
2592         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2593                         struct blk_mq_hw_ctx, cpuhp_online);
2594
2595         if (cpumask_test_cpu(cpu, hctx->cpumask))
2596                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2597         return 0;
2598 }
2599
2600 /*
2601  * 'cpu' is going away. splice any existing rq_list entries from this
2602  * software queue to the hw queue dispatch list, and ensure that it
2603  * gets run.
2604  */
2605 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2606 {
2607         struct blk_mq_hw_ctx *hctx;
2608         struct blk_mq_ctx *ctx;
2609         LIST_HEAD(tmp);
2610         enum hctx_type type;
2611
2612         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2613         if (!cpumask_test_cpu(cpu, hctx->cpumask))
2614                 return 0;
2615
2616         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2617         type = hctx->type;
2618
2619         spin_lock(&ctx->lock);
2620         if (!list_empty(&ctx->rq_lists[type])) {
2621                 list_splice_init(&ctx->rq_lists[type], &tmp);
2622                 blk_mq_hctx_clear_pending(hctx, ctx);
2623         }
2624         spin_unlock(&ctx->lock);
2625
2626         if (list_empty(&tmp))
2627                 return 0;
2628
2629         spin_lock(&hctx->lock);
2630         list_splice_tail_init(&tmp, &hctx->dispatch);
2631         spin_unlock(&hctx->lock);
2632
2633         blk_mq_run_hw_queue(hctx, true);
2634         return 0;
2635 }
2636
2637 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2638 {
2639         if (!(hctx->flags & BLK_MQ_F_STACKING))
2640                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2641                                                     &hctx->cpuhp_online);
2642         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2643                                             &hctx->cpuhp_dead);
2644 }
2645
2646 /*
2647  * Before freeing hw queue, clearing the flush request reference in
2648  * tags->rqs[] for avoiding potential UAF.
2649  */
2650 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2651                 unsigned int queue_depth, struct request *flush_rq)
2652 {
2653         int i;
2654         unsigned long flags;
2655
2656         /* The hw queue may not be mapped yet */
2657         if (!tags)
2658                 return;
2659
2660         WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2661
2662         for (i = 0; i < queue_depth; i++)
2663                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
2664
2665         /*
2666          * Wait until all pending iteration is done.
2667          *
2668          * Request reference is cleared and it is guaranteed to be observed
2669          * after the ->lock is released.
2670          */
2671         spin_lock_irqsave(&tags->lock, flags);
2672         spin_unlock_irqrestore(&tags->lock, flags);
2673 }
2674
2675 /* hctx->ctxs will be freed in queue's release handler */
2676 static void blk_mq_exit_hctx(struct request_queue *q,
2677                 struct blk_mq_tag_set *set,
2678                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2679 {
2680         struct request *flush_rq = hctx->fq->flush_rq;
2681
2682         if (blk_mq_hw_queue_mapped(hctx))
2683                 blk_mq_tag_idle(hctx);
2684
2685         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2686                         set->queue_depth, flush_rq);
2687         if (set->ops->exit_request)
2688                 set->ops->exit_request(set, flush_rq, hctx_idx);
2689
2690         if (set->ops->exit_hctx)
2691                 set->ops->exit_hctx(hctx, hctx_idx);
2692
2693         blk_mq_remove_cpuhp(hctx);
2694
2695         spin_lock(&q->unused_hctx_lock);
2696         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2697         spin_unlock(&q->unused_hctx_lock);
2698 }
2699
2700 static void blk_mq_exit_hw_queues(struct request_queue *q,
2701                 struct blk_mq_tag_set *set, int nr_queue)
2702 {
2703         struct blk_mq_hw_ctx *hctx;
2704         unsigned int i;
2705
2706         queue_for_each_hw_ctx(q, hctx, i) {
2707                 if (i == nr_queue)
2708                         break;
2709                 blk_mq_debugfs_unregister_hctx(hctx);
2710                 blk_mq_exit_hctx(q, set, hctx, i);
2711         }
2712 }
2713
2714 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2715 {
2716         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2717
2718         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2719                            __alignof__(struct blk_mq_hw_ctx)) !=
2720                      sizeof(struct blk_mq_hw_ctx));
2721
2722         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2723                 hw_ctx_size += sizeof(struct srcu_struct);
2724
2725         return hw_ctx_size;
2726 }
2727
2728 static int blk_mq_init_hctx(struct request_queue *q,
2729                 struct blk_mq_tag_set *set,
2730                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2731 {
2732         hctx->queue_num = hctx_idx;
2733
2734         if (!(hctx->flags & BLK_MQ_F_STACKING))
2735                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2736                                 &hctx->cpuhp_online);
2737         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2738
2739         hctx->tags = set->tags[hctx_idx];
2740
2741         if (set->ops->init_hctx &&
2742             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2743                 goto unregister_cpu_notifier;
2744
2745         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2746                                 hctx->numa_node))
2747                 goto exit_hctx;
2748         return 0;
2749
2750  exit_hctx:
2751         if (set->ops->exit_hctx)
2752                 set->ops->exit_hctx(hctx, hctx_idx);
2753  unregister_cpu_notifier:
2754         blk_mq_remove_cpuhp(hctx);
2755         return -1;
2756 }
2757
2758 static struct blk_mq_hw_ctx *
2759 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2760                 int node)
2761 {
2762         struct blk_mq_hw_ctx *hctx;
2763         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2764
2765         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2766         if (!hctx)
2767                 goto fail_alloc_hctx;
2768
2769         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2770                 goto free_hctx;
2771
2772         atomic_set(&hctx->nr_active, 0);
2773         if (node == NUMA_NO_NODE)
2774                 node = set->numa_node;
2775         hctx->numa_node = node;
2776
2777         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2778         spin_lock_init(&hctx->lock);
2779         INIT_LIST_HEAD(&hctx->dispatch);
2780         hctx->queue = q;
2781         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2782
2783         INIT_LIST_HEAD(&hctx->hctx_list);
2784
2785         /*
2786          * Allocate space for all possible cpus to avoid allocation at
2787          * runtime
2788          */
2789         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2790                         gfp, node);
2791         if (!hctx->ctxs)
2792                 goto free_cpumask;
2793
2794         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2795                                 gfp, node, false, false))
2796                 goto free_ctxs;
2797         hctx->nr_ctx = 0;
2798
2799         spin_lock_init(&hctx->dispatch_wait_lock);
2800         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2801         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2802
2803         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2804         if (!hctx->fq)
2805                 goto free_bitmap;
2806
2807         if (hctx->flags & BLK_MQ_F_BLOCKING)
2808                 init_srcu_struct(hctx->srcu);
2809         blk_mq_hctx_kobj_init(hctx);
2810
2811         return hctx;
2812
2813  free_bitmap:
2814         sbitmap_free(&hctx->ctx_map);
2815  free_ctxs:
2816         kfree(hctx->ctxs);
2817  free_cpumask:
2818         free_cpumask_var(hctx->cpumask);
2819  free_hctx:
2820         kfree(hctx);
2821  fail_alloc_hctx:
2822         return NULL;
2823 }
2824
2825 static void blk_mq_init_cpu_queues(struct request_queue *q,
2826                                    unsigned int nr_hw_queues)
2827 {
2828         struct blk_mq_tag_set *set = q->tag_set;
2829         unsigned int i, j;
2830
2831         for_each_possible_cpu(i) {
2832                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2833                 struct blk_mq_hw_ctx *hctx;
2834                 int k;
2835
2836                 __ctx->cpu = i;
2837                 spin_lock_init(&__ctx->lock);
2838                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2839                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2840
2841                 __ctx->queue = q;
2842
2843                 /*
2844                  * Set local node, IFF we have more than one hw queue. If
2845                  * not, we remain on the home node of the device
2846                  */
2847                 for (j = 0; j < set->nr_maps; j++) {
2848                         hctx = blk_mq_map_queue_type(q, j, i);
2849                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2850                                 hctx->numa_node = cpu_to_node(i);
2851                 }
2852         }
2853 }
2854
2855 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2856                                         int hctx_idx)
2857 {
2858         unsigned int flags = set->flags;
2859         int ret = 0;
2860
2861         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2862                                         set->queue_depth, set->reserved_tags, flags);
2863         if (!set->tags[hctx_idx])
2864                 return false;
2865
2866         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2867                                 set->queue_depth);
2868         if (!ret)
2869                 return true;
2870
2871         blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2872         set->tags[hctx_idx] = NULL;
2873         return false;
2874 }
2875
2876 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2877                                          unsigned int hctx_idx)
2878 {
2879         unsigned int flags = set->flags;
2880
2881         if (set->tags && set->tags[hctx_idx]) {
2882                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2883                 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2884                 set->tags[hctx_idx] = NULL;
2885         }
2886 }
2887
2888 static void blk_mq_map_swqueue(struct request_queue *q)
2889 {
2890         unsigned int i, j, hctx_idx;
2891         struct blk_mq_hw_ctx *hctx;
2892         struct blk_mq_ctx *ctx;
2893         struct blk_mq_tag_set *set = q->tag_set;
2894
2895         queue_for_each_hw_ctx(q, hctx, i) {
2896                 cpumask_clear(hctx->cpumask);
2897                 hctx->nr_ctx = 0;
2898                 hctx->dispatch_from = NULL;
2899         }
2900
2901         /*
2902          * Map software to hardware queues.
2903          *
2904          * If the cpu isn't present, the cpu is mapped to first hctx.
2905          */
2906         for_each_possible_cpu(i) {
2907
2908                 ctx = per_cpu_ptr(q->queue_ctx, i);
2909                 for (j = 0; j < set->nr_maps; j++) {
2910                         if (!set->map[j].nr_queues) {
2911                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2912                                                 HCTX_TYPE_DEFAULT, i);
2913                                 continue;
2914                         }
2915                         hctx_idx = set->map[j].mq_map[i];
2916                         /* unmapped hw queue can be remapped after CPU topo changed */
2917                         if (!set->tags[hctx_idx] &&
2918                             !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2919                                 /*
2920                                  * If tags initialization fail for some hctx,
2921                                  * that hctx won't be brought online.  In this
2922                                  * case, remap the current ctx to hctx[0] which
2923                                  * is guaranteed to always have tags allocated
2924                                  */
2925                                 set->map[j].mq_map[i] = 0;
2926                         }
2927
2928                         hctx = blk_mq_map_queue_type(q, j, i);
2929                         ctx->hctxs[j] = hctx;
2930                         /*
2931                          * If the CPU is already set in the mask, then we've
2932                          * mapped this one already. This can happen if
2933                          * devices share queues across queue maps.
2934                          */
2935                         if (cpumask_test_cpu(i, hctx->cpumask))
2936                                 continue;
2937
2938                         cpumask_set_cpu(i, hctx->cpumask);
2939                         hctx->type = j;
2940                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2941                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2942
2943                         /*
2944                          * If the nr_ctx type overflows, we have exceeded the
2945                          * amount of sw queues we can support.
2946                          */
2947                         BUG_ON(!hctx->nr_ctx);
2948                 }
2949
2950                 for (; j < HCTX_MAX_TYPES; j++)
2951                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2952                                         HCTX_TYPE_DEFAULT, i);
2953         }
2954
2955         queue_for_each_hw_ctx(q, hctx, i) {
2956                 /*
2957                  * If no software queues are mapped to this hardware queue,
2958                  * disable it and free the request entries.
2959                  */
2960                 if (!hctx->nr_ctx) {
2961                         /* Never unmap queue 0.  We need it as a
2962                          * fallback in case of a new remap fails
2963                          * allocation
2964                          */
2965                         if (i && set->tags[i])
2966                                 blk_mq_free_map_and_requests(set, i);
2967
2968                         hctx->tags = NULL;
2969                         continue;
2970                 }
2971
2972                 hctx->tags = set->tags[i];
2973                 WARN_ON(!hctx->tags);
2974
2975                 /*
2976                  * Set the map size to the number of mapped software queues.
2977                  * This is more accurate and more efficient than looping
2978                  * over all possibly mapped software queues.
2979                  */
2980                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2981
2982                 /*
2983                  * Initialize batch roundrobin counts
2984                  */
2985                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2986                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2987         }
2988 }
2989
2990 /*
2991  * Caller needs to ensure that we're either frozen/quiesced, or that
2992  * the queue isn't live yet.
2993  */
2994 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2995 {
2996         struct blk_mq_hw_ctx *hctx;
2997         int i;
2998
2999         queue_for_each_hw_ctx(q, hctx, i) {
3000                 if (shared) {
3001                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3002                 } else {
3003                         blk_mq_tag_idle(hctx);
3004                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3005                 }
3006         }
3007 }
3008
3009 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3010                                          bool shared)
3011 {
3012         struct request_queue *q;
3013
3014         lockdep_assert_held(&set->tag_list_lock);
3015
3016         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3017                 blk_mq_freeze_queue(q);
3018                 queue_set_hctx_shared(q, shared);
3019                 blk_mq_unfreeze_queue(q);
3020         }
3021 }
3022
3023 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3024 {
3025         struct blk_mq_tag_set *set = q->tag_set;
3026
3027         mutex_lock(&set->tag_list_lock);
3028         list_del(&q->tag_set_list);
3029         if (list_is_singular(&set->tag_list)) {
3030                 /* just transitioned to unshared */
3031                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3032                 /* update existing queue */
3033                 blk_mq_update_tag_set_shared(set, false);
3034         }
3035         mutex_unlock(&set->tag_list_lock);
3036         INIT_LIST_HEAD(&q->tag_set_list);
3037 }
3038
3039 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3040                                      struct request_queue *q)
3041 {
3042         mutex_lock(&set->tag_list_lock);
3043
3044         /*
3045          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3046          */
3047         if (!list_empty(&set->tag_list) &&
3048             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3049                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3050                 /* update existing queue */
3051                 blk_mq_update_tag_set_shared(set, true);
3052         }
3053         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3054                 queue_set_hctx_shared(q, true);
3055         list_add_tail(&q->tag_set_list, &set->tag_list);
3056
3057         mutex_unlock(&set->tag_list_lock);
3058 }
3059
3060 /* All allocations will be freed in release handler of q->mq_kobj */
3061 static int blk_mq_alloc_ctxs(struct request_queue *q)
3062 {
3063         struct blk_mq_ctxs *ctxs;
3064         int cpu;
3065
3066         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3067         if (!ctxs)
3068                 return -ENOMEM;
3069
3070         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3071         if (!ctxs->queue_ctx)
3072                 goto fail;
3073
3074         for_each_possible_cpu(cpu) {
3075                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3076                 ctx->ctxs = ctxs;
3077         }
3078
3079         q->mq_kobj = &ctxs->kobj;
3080         q->queue_ctx = ctxs->queue_ctx;
3081
3082         return 0;
3083  fail:
3084         kfree(ctxs);
3085         return -ENOMEM;
3086 }
3087
3088 /*
3089  * It is the actual release handler for mq, but we do it from
3090  * request queue's release handler for avoiding use-after-free
3091  * and headache because q->mq_kobj shouldn't have been introduced,
3092  * but we can't group ctx/kctx kobj without it.
3093  */
3094 void blk_mq_release(struct request_queue *q)
3095 {
3096         struct blk_mq_hw_ctx *hctx, *next;
3097         int i;
3098
3099         queue_for_each_hw_ctx(q, hctx, i)
3100                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3101
3102         /* all hctx are in .unused_hctx_list now */
3103         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3104                 list_del_init(&hctx->hctx_list);
3105                 kobject_put(&hctx->kobj);
3106         }
3107
3108         kfree(q->queue_hw_ctx);
3109
3110         /*
3111          * release .mq_kobj and sw queue's kobject now because
3112          * both share lifetime with request queue.
3113          */
3114         blk_mq_sysfs_deinit(q);
3115 }
3116
3117 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3118                 void *queuedata)
3119 {
3120         struct request_queue *q;
3121         int ret;
3122
3123         q = blk_alloc_queue(set->numa_node);
3124         if (!q)
3125                 return ERR_PTR(-ENOMEM);
3126         q->queuedata = queuedata;
3127         ret = blk_mq_init_allocated_queue(set, q);
3128         if (ret) {
3129                 blk_cleanup_queue(q);
3130                 return ERR_PTR(ret);
3131         }
3132         return q;
3133 }
3134
3135 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3136 {
3137         return blk_mq_init_queue_data(set, NULL);
3138 }
3139 EXPORT_SYMBOL(blk_mq_init_queue);
3140
3141 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3142                 struct lock_class_key *lkclass)
3143 {
3144         struct request_queue *q;
3145         struct gendisk *disk;
3146
3147         q = blk_mq_init_queue_data(set, queuedata);
3148         if (IS_ERR(q))
3149                 return ERR_CAST(q);
3150
3151         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3152         if (!disk) {
3153                 blk_cleanup_queue(q);
3154                 return ERR_PTR(-ENOMEM);
3155         }
3156         return disk;
3157 }
3158 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3159
3160 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3161                 struct blk_mq_tag_set *set, struct request_queue *q,
3162                 int hctx_idx, int node)
3163 {
3164         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3165
3166         /* reuse dead hctx first */
3167         spin_lock(&q->unused_hctx_lock);
3168         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3169                 if (tmp->numa_node == node) {
3170                         hctx = tmp;
3171                         break;
3172                 }
3173         }
3174         if (hctx)
3175                 list_del_init(&hctx->hctx_list);
3176         spin_unlock(&q->unused_hctx_lock);
3177
3178         if (!hctx)
3179                 hctx = blk_mq_alloc_hctx(q, set, node);
3180         if (!hctx)
3181                 goto fail;
3182
3183         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3184                 goto free_hctx;
3185
3186         return hctx;
3187
3188  free_hctx:
3189         kobject_put(&hctx->kobj);
3190  fail:
3191         return NULL;
3192 }
3193
3194 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3195                                                 struct request_queue *q)
3196 {
3197         int i, j, end;
3198         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3199
3200         if (q->nr_hw_queues < set->nr_hw_queues) {
3201                 struct blk_mq_hw_ctx **new_hctxs;
3202
3203                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3204                                        sizeof(*new_hctxs), GFP_KERNEL,
3205                                        set->numa_node);
3206                 if (!new_hctxs)
3207                         return;
3208                 if (hctxs)
3209                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3210                                sizeof(*hctxs));
3211                 q->queue_hw_ctx = new_hctxs;
3212                 kfree(hctxs);
3213                 hctxs = new_hctxs;
3214         }
3215
3216         /* protect against switching io scheduler  */
3217         mutex_lock(&q->sysfs_lock);
3218         for (i = 0; i < set->nr_hw_queues; i++) {
3219                 int node;
3220                 struct blk_mq_hw_ctx *hctx;
3221
3222                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3223                 /*
3224                  * If the hw queue has been mapped to another numa node,
3225                  * we need to realloc the hctx. If allocation fails, fallback
3226                  * to use the previous one.
3227                  */
3228                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3229                         continue;
3230
3231                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3232                 if (hctx) {
3233                         if (hctxs[i])
3234                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3235                         hctxs[i] = hctx;
3236                 } else {
3237                         if (hctxs[i])
3238                                 pr_warn("Allocate new hctx on node %d fails,\
3239                                                 fallback to previous one on node %d\n",
3240                                                 node, hctxs[i]->numa_node);
3241                         else
3242                                 break;
3243                 }
3244         }
3245         /*
3246          * Increasing nr_hw_queues fails. Free the newly allocated
3247          * hctxs and keep the previous q->nr_hw_queues.
3248          */
3249         if (i != set->nr_hw_queues) {
3250                 j = q->nr_hw_queues;
3251                 end = i;
3252         } else {
3253                 j = i;
3254                 end = q->nr_hw_queues;
3255                 q->nr_hw_queues = set->nr_hw_queues;
3256         }
3257
3258         for (; j < end; j++) {
3259                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3260
3261                 if (hctx) {
3262                         if (hctx->tags)
3263                                 blk_mq_free_map_and_requests(set, j);
3264                         blk_mq_exit_hctx(q, set, hctx, j);
3265                         hctxs[j] = NULL;
3266                 }
3267         }
3268         mutex_unlock(&q->sysfs_lock);
3269 }
3270
3271 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3272                 struct request_queue *q)
3273 {
3274         /* mark the queue as mq asap */
3275         q->mq_ops = set->ops;
3276
3277         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3278                                              blk_mq_poll_stats_bkt,
3279                                              BLK_MQ_POLL_STATS_BKTS, q);
3280         if (!q->poll_cb)
3281                 goto err_exit;
3282
3283         if (blk_mq_alloc_ctxs(q))
3284                 goto err_poll;
3285
3286         /* init q->mq_kobj and sw queues' kobjects */
3287         blk_mq_sysfs_init(q);
3288
3289         INIT_LIST_HEAD(&q->unused_hctx_list);
3290         spin_lock_init(&q->unused_hctx_lock);
3291
3292         blk_mq_realloc_hw_ctxs(set, q);
3293         if (!q->nr_hw_queues)
3294                 goto err_hctxs;
3295
3296         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3297         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3298
3299         q->tag_set = set;
3300
3301         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3302         if (set->nr_maps > HCTX_TYPE_POLL &&
3303             set->map[HCTX_TYPE_POLL].nr_queues)
3304                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3305
3306         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3307         INIT_LIST_HEAD(&q->requeue_list);
3308         spin_lock_init(&q->requeue_lock);
3309
3310         q->nr_requests = set->queue_depth;
3311
3312         /*
3313          * Default to classic polling
3314          */
3315         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3316
3317         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3318         blk_mq_add_queue_tag_set(set, q);
3319         blk_mq_map_swqueue(q);
3320         return 0;
3321
3322 err_hctxs:
3323         kfree(q->queue_hw_ctx);
3324         q->nr_hw_queues = 0;
3325         blk_mq_sysfs_deinit(q);
3326 err_poll:
3327         blk_stat_free_callback(q->poll_cb);
3328         q->poll_cb = NULL;
3329 err_exit:
3330         q->mq_ops = NULL;
3331         return -ENOMEM;
3332 }
3333 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3334
3335 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3336 void blk_mq_exit_queue(struct request_queue *q)
3337 {
3338         struct blk_mq_tag_set *set = q->tag_set;
3339
3340         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3341         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3342         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3343         blk_mq_del_queue_tag_set(q);
3344 }
3345
3346 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3347 {
3348         int i;
3349
3350         for (i = 0; i < set->nr_hw_queues; i++) {
3351                 if (!__blk_mq_alloc_map_and_request(set, i))
3352                         goto out_unwind;
3353                 cond_resched();
3354         }
3355
3356         return 0;
3357
3358 out_unwind:
3359         while (--i >= 0)
3360                 blk_mq_free_map_and_requests(set, i);
3361
3362         return -ENOMEM;
3363 }
3364
3365 /*
3366  * Allocate the request maps associated with this tag_set. Note that this
3367  * may reduce the depth asked for, if memory is tight. set->queue_depth
3368  * will be updated to reflect the allocated depth.
3369  */
3370 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3371 {
3372         unsigned int depth;
3373         int err;
3374
3375         depth = set->queue_depth;
3376         do {
3377                 err = __blk_mq_alloc_rq_maps(set);
3378                 if (!err)
3379                         break;
3380
3381                 set->queue_depth >>= 1;
3382                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3383                         err = -ENOMEM;
3384                         break;
3385                 }
3386         } while (set->queue_depth);
3387
3388         if (!set->queue_depth || err) {
3389                 pr_err("blk-mq: failed to allocate request map\n");
3390                 return -ENOMEM;
3391         }
3392
3393         if (depth != set->queue_depth)
3394                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3395                                                 depth, set->queue_depth);
3396
3397         return 0;
3398 }
3399
3400 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3401 {
3402         /*
3403          * blk_mq_map_queues() and multiple .map_queues() implementations
3404          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3405          * number of hardware queues.
3406          */
3407         if (set->nr_maps == 1)
3408                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3409
3410         if (set->ops->map_queues && !is_kdump_kernel()) {
3411                 int i;
3412
3413                 /*
3414                  * transport .map_queues is usually done in the following
3415                  * way:
3416                  *
3417                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3418                  *      mask = get_cpu_mask(queue)
3419                  *      for_each_cpu(cpu, mask)
3420                  *              set->map[x].mq_map[cpu] = queue;
3421                  * }
3422                  *
3423                  * When we need to remap, the table has to be cleared for
3424                  * killing stale mapping since one CPU may not be mapped
3425                  * to any hw queue.
3426                  */
3427                 for (i = 0; i < set->nr_maps; i++)
3428                         blk_mq_clear_mq_map(&set->map[i]);
3429
3430                 return set->ops->map_queues(set);
3431         } else {
3432                 BUG_ON(set->nr_maps > 1);
3433                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3434         }
3435 }
3436
3437 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3438                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3439 {
3440         struct blk_mq_tags **new_tags;
3441
3442         if (cur_nr_hw_queues >= new_nr_hw_queues)
3443                 return 0;
3444
3445         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3446                                 GFP_KERNEL, set->numa_node);
3447         if (!new_tags)
3448                 return -ENOMEM;
3449
3450         if (set->tags)
3451                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3452                        sizeof(*set->tags));
3453         kfree(set->tags);
3454         set->tags = new_tags;
3455         set->nr_hw_queues = new_nr_hw_queues;
3456
3457         return 0;
3458 }
3459
3460 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3461                                 int new_nr_hw_queues)
3462 {
3463         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3464 }
3465
3466 /*
3467  * Alloc a tag set to be associated with one or more request queues.
3468  * May fail with EINVAL for various error conditions. May adjust the
3469  * requested depth down, if it's too large. In that case, the set
3470  * value will be stored in set->queue_depth.
3471  */
3472 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3473 {
3474         int i, ret;
3475
3476         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3477
3478         if (!set->nr_hw_queues)
3479                 return -EINVAL;
3480         if (!set->queue_depth)
3481                 return -EINVAL;
3482         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3483                 return -EINVAL;
3484
3485         if (!set->ops->queue_rq)
3486                 return -EINVAL;
3487
3488         if (!set->ops->get_budget ^ !set->ops->put_budget)
3489                 return -EINVAL;
3490
3491         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3492                 pr_info("blk-mq: reduced tag depth to %u\n",
3493                         BLK_MQ_MAX_DEPTH);
3494                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3495         }
3496
3497         if (!set->nr_maps)
3498                 set->nr_maps = 1;
3499         else if (set->nr_maps > HCTX_MAX_TYPES)
3500                 return -EINVAL;
3501
3502         /*
3503          * If a crashdump is active, then we are potentially in a very
3504          * memory constrained environment. Limit us to 1 queue and
3505          * 64 tags to prevent using too much memory.
3506          */
3507         if (is_kdump_kernel()) {
3508                 set->nr_hw_queues = 1;
3509                 set->nr_maps = 1;
3510                 set->queue_depth = min(64U, set->queue_depth);
3511         }
3512         /*
3513          * There is no use for more h/w queues than cpus if we just have
3514          * a single map
3515          */
3516         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3517                 set->nr_hw_queues = nr_cpu_ids;
3518
3519         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3520                 return -ENOMEM;
3521
3522         ret = -ENOMEM;
3523         for (i = 0; i < set->nr_maps; i++) {
3524                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3525                                                   sizeof(set->map[i].mq_map[0]),
3526                                                   GFP_KERNEL, set->numa_node);
3527                 if (!set->map[i].mq_map)
3528                         goto out_free_mq_map;
3529                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3530         }
3531
3532         ret = blk_mq_update_queue_map(set);
3533         if (ret)
3534                 goto out_free_mq_map;
3535
3536         ret = blk_mq_alloc_map_and_requests(set);
3537         if (ret)
3538                 goto out_free_mq_map;
3539
3540         if (blk_mq_is_sbitmap_shared(set->flags)) {
3541                 atomic_set(&set->active_queues_shared_sbitmap, 0);
3542
3543                 if (blk_mq_init_shared_sbitmap(set)) {
3544                         ret = -ENOMEM;
3545                         goto out_free_mq_rq_maps;
3546                 }
3547         }
3548
3549         mutex_init(&set->tag_list_lock);
3550         INIT_LIST_HEAD(&set->tag_list);
3551
3552         return 0;
3553
3554 out_free_mq_rq_maps:
3555         for (i = 0; i < set->nr_hw_queues; i++)
3556                 blk_mq_free_map_and_requests(set, i);
3557 out_free_mq_map:
3558         for (i = 0; i < set->nr_maps; i++) {
3559                 kfree(set->map[i].mq_map);
3560                 set->map[i].mq_map = NULL;
3561         }
3562         kfree(set->tags);
3563         set->tags = NULL;
3564         return ret;
3565 }
3566 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3567
3568 /* allocate and initialize a tagset for a simple single-queue device */
3569 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3570                 const struct blk_mq_ops *ops, unsigned int queue_depth,
3571                 unsigned int set_flags)
3572 {
3573         memset(set, 0, sizeof(*set));
3574         set->ops = ops;
3575         set->nr_hw_queues = 1;
3576         set->nr_maps = 1;
3577         set->queue_depth = queue_depth;
3578         set->numa_node = NUMA_NO_NODE;
3579         set->flags = set_flags;
3580         return blk_mq_alloc_tag_set(set);
3581 }
3582 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3583
3584 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3585 {
3586         int i, j;
3587
3588         for (i = 0; i < set->nr_hw_queues; i++)
3589                 blk_mq_free_map_and_requests(set, i);
3590
3591         if (blk_mq_is_sbitmap_shared(set->flags))
3592                 blk_mq_exit_shared_sbitmap(set);
3593
3594         for (j = 0; j < set->nr_maps; j++) {
3595                 kfree(set->map[j].mq_map);
3596                 set->map[j].mq_map = NULL;
3597         }
3598
3599         kfree(set->tags);
3600         set->tags = NULL;
3601 }
3602 EXPORT_SYMBOL(blk_mq_free_tag_set);
3603
3604 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3605 {
3606         struct blk_mq_tag_set *set = q->tag_set;
3607         struct blk_mq_hw_ctx *hctx;
3608         int i, ret;
3609
3610         if (!set)
3611                 return -EINVAL;
3612
3613         if (q->nr_requests == nr)
3614                 return 0;
3615
3616         blk_mq_freeze_queue(q);
3617         blk_mq_quiesce_queue(q);
3618
3619         ret = 0;
3620         queue_for_each_hw_ctx(q, hctx, i) {
3621                 if (!hctx->tags)
3622                         continue;
3623                 /*
3624                  * If we're using an MQ scheduler, just update the scheduler
3625                  * queue depth. This is similar to what the old code would do.
3626                  */
3627                 if (!hctx->sched_tags) {
3628                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3629                                                         false);
3630                         if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3631                                 blk_mq_tag_resize_shared_sbitmap(set, nr);
3632                 } else {
3633                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3634                                                         nr, true);
3635                         if (blk_mq_is_sbitmap_shared(set->flags)) {
3636                                 hctx->sched_tags->bitmap_tags =
3637                                         &q->sched_bitmap_tags;
3638                                 hctx->sched_tags->breserved_tags =
3639                                         &q->sched_breserved_tags;
3640                         }
3641                 }
3642                 if (ret)
3643                         break;
3644                 if (q->elevator && q->elevator->type->ops.depth_updated)
3645                         q->elevator->type->ops.depth_updated(hctx);
3646         }
3647         if (!ret) {
3648                 q->nr_requests = nr;
3649                 if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3650                         sbitmap_queue_resize(&q->sched_bitmap_tags,
3651                                              nr - set->reserved_tags);
3652         }
3653
3654         blk_mq_unquiesce_queue(q);
3655         blk_mq_unfreeze_queue(q);
3656
3657         return ret;
3658 }
3659
3660 /*
3661  * request_queue and elevator_type pair.
3662  * It is just used by __blk_mq_update_nr_hw_queues to cache
3663  * the elevator_type associated with a request_queue.
3664  */
3665 struct blk_mq_qe_pair {
3666         struct list_head node;
3667         struct request_queue *q;
3668         struct elevator_type *type;
3669 };
3670
3671 /*
3672  * Cache the elevator_type in qe pair list and switch the
3673  * io scheduler to 'none'
3674  */
3675 static bool blk_mq_elv_switch_none(struct list_head *head,
3676                 struct request_queue *q)
3677 {
3678         struct blk_mq_qe_pair *qe;
3679
3680         if (!q->elevator)
3681                 return true;
3682
3683         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3684         if (!qe)
3685                 return false;
3686
3687         INIT_LIST_HEAD(&qe->node);
3688         qe->q = q;
3689         qe->type = q->elevator->type;
3690         list_add(&qe->node, head);
3691
3692         mutex_lock(&q->sysfs_lock);
3693         /*
3694          * After elevator_switch_mq, the previous elevator_queue will be
3695          * released by elevator_release. The reference of the io scheduler
3696          * module get by elevator_get will also be put. So we need to get
3697          * a reference of the io scheduler module here to prevent it to be
3698          * removed.
3699          */
3700         __module_get(qe->type->elevator_owner);
3701         elevator_switch_mq(q, NULL);
3702         mutex_unlock(&q->sysfs_lock);
3703
3704         return true;
3705 }
3706
3707 static void blk_mq_elv_switch_back(struct list_head *head,
3708                 struct request_queue *q)
3709 {
3710         struct blk_mq_qe_pair *qe;
3711         struct elevator_type *t = NULL;
3712
3713         list_for_each_entry(qe, head, node)
3714                 if (qe->q == q) {
3715                         t = qe->type;
3716                         break;
3717                 }
3718
3719         if (!t)
3720                 return;
3721
3722         list_del(&qe->node);
3723         kfree(qe);
3724
3725         mutex_lock(&q->sysfs_lock);
3726         elevator_switch_mq(q, t);
3727         mutex_unlock(&q->sysfs_lock);
3728 }
3729
3730 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3731                                                         int nr_hw_queues)
3732 {
3733         struct request_queue *q;
3734         LIST_HEAD(head);
3735         int prev_nr_hw_queues;
3736
3737         lockdep_assert_held(&set->tag_list_lock);
3738
3739         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3740                 nr_hw_queues = nr_cpu_ids;
3741         if (nr_hw_queues < 1)
3742                 return;
3743         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3744                 return;
3745
3746         list_for_each_entry(q, &set->tag_list, tag_set_list)
3747                 blk_mq_freeze_queue(q);
3748         /*
3749          * Switch IO scheduler to 'none', cleaning up the data associated
3750          * with the previous scheduler. We will switch back once we are done
3751          * updating the new sw to hw queue mappings.
3752          */
3753         list_for_each_entry(q, &set->tag_list, tag_set_list)
3754                 if (!blk_mq_elv_switch_none(&head, q))
3755                         goto switch_back;
3756
3757         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3758                 blk_mq_debugfs_unregister_hctxs(q);
3759                 blk_mq_sysfs_unregister(q);
3760         }
3761
3762         prev_nr_hw_queues = set->nr_hw_queues;
3763         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3764             0)
3765                 goto reregister;
3766
3767         set->nr_hw_queues = nr_hw_queues;
3768 fallback:
3769         blk_mq_update_queue_map(set);
3770         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3771                 blk_mq_realloc_hw_ctxs(set, q);
3772                 if (q->nr_hw_queues != set->nr_hw_queues) {
3773                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3774                                         nr_hw_queues, prev_nr_hw_queues);
3775                         set->nr_hw_queues = prev_nr_hw_queues;
3776                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3777                         goto fallback;
3778                 }
3779                 blk_mq_map_swqueue(q);
3780         }
3781
3782 reregister:
3783         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3784                 blk_mq_sysfs_register(q);
3785                 blk_mq_debugfs_register_hctxs(q);
3786         }
3787
3788 switch_back:
3789         list_for_each_entry(q, &set->tag_list, tag_set_list)
3790                 blk_mq_elv_switch_back(&head, q);
3791
3792         list_for_each_entry(q, &set->tag_list, tag_set_list)
3793                 blk_mq_unfreeze_queue(q);
3794 }
3795
3796 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3797 {
3798         mutex_lock(&set->tag_list_lock);
3799         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3800         mutex_unlock(&set->tag_list_lock);
3801 }
3802 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3803
3804 /* Enable polling stats and return whether they were already enabled. */
3805 static bool blk_poll_stats_enable(struct request_queue *q)
3806 {
3807         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3808             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3809                 return true;
3810         blk_stat_add_callback(q, q->poll_cb);
3811         return false;
3812 }
3813
3814 static void blk_mq_poll_stats_start(struct request_queue *q)
3815 {
3816         /*
3817          * We don't arm the callback if polling stats are not enabled or the
3818          * callback is already active.
3819          */
3820         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3821             blk_stat_is_active(q->poll_cb))
3822                 return;
3823
3824         blk_stat_activate_msecs(q->poll_cb, 100);
3825 }
3826
3827 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3828 {
3829         struct request_queue *q = cb->data;
3830         int bucket;
3831
3832         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3833                 if (cb->stat[bucket].nr_samples)
3834                         q->poll_stat[bucket] = cb->stat[bucket];
3835         }
3836 }
3837
3838 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3839                                        struct request *rq)
3840 {
3841         unsigned long ret = 0;
3842         int bucket;
3843
3844         /*
3845          * If stats collection isn't on, don't sleep but turn it on for
3846          * future users
3847          */
3848         if (!blk_poll_stats_enable(q))
3849                 return 0;
3850
3851         /*
3852          * As an optimistic guess, use half of the mean service time
3853          * for this type of request. We can (and should) make this smarter.
3854          * For instance, if the completion latencies are tight, we can
3855          * get closer than just half the mean. This is especially
3856          * important on devices where the completion latencies are longer
3857          * than ~10 usec. We do use the stats for the relevant IO size
3858          * if available which does lead to better estimates.
3859          */
3860         bucket = blk_mq_poll_stats_bkt(rq);
3861         if (bucket < 0)
3862                 return ret;
3863
3864         if (q->poll_stat[bucket].nr_samples)
3865                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3866
3867         return ret;
3868 }
3869
3870 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3871                                      struct request *rq)
3872 {
3873         struct hrtimer_sleeper hs;
3874         enum hrtimer_mode mode;
3875         unsigned int nsecs;
3876         ktime_t kt;
3877
3878         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3879                 return false;
3880
3881         /*
3882          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3883          *
3884          *  0:  use half of prev avg
3885          * >0:  use this specific value
3886          */
3887         if (q->poll_nsec > 0)
3888                 nsecs = q->poll_nsec;
3889         else
3890                 nsecs = blk_mq_poll_nsecs(q, rq);
3891
3892         if (!nsecs)
3893                 return false;
3894
3895         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3896
3897         /*
3898          * This will be replaced with the stats tracking code, using
3899          * 'avg_completion_time / 2' as the pre-sleep target.
3900          */
3901         kt = nsecs;
3902
3903         mode = HRTIMER_MODE_REL;
3904         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3905         hrtimer_set_expires(&hs.timer, kt);
3906
3907         do {
3908                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3909                         break;
3910                 set_current_state(TASK_UNINTERRUPTIBLE);
3911                 hrtimer_sleeper_start_expires(&hs, mode);
3912                 if (hs.task)
3913                         io_schedule();
3914                 hrtimer_cancel(&hs.timer);
3915                 mode = HRTIMER_MODE_ABS;
3916         } while (hs.task && !signal_pending(current));
3917
3918         __set_current_state(TASK_RUNNING);
3919         destroy_hrtimer_on_stack(&hs.timer);
3920         return true;
3921 }
3922
3923 static bool blk_mq_poll_hybrid(struct request_queue *q,
3924                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3925 {
3926         struct request *rq;
3927
3928         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3929                 return false;
3930
3931         if (!blk_qc_t_is_internal(cookie))
3932                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3933         else {
3934                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3935                 /*
3936                  * With scheduling, if the request has completed, we'll
3937                  * get a NULL return here, as we clear the sched tag when
3938                  * that happens. The request still remains valid, like always,
3939                  * so we should be safe with just the NULL check.
3940                  */
3941                 if (!rq)
3942                         return false;
3943         }
3944
3945         return blk_mq_poll_hybrid_sleep(q, rq);
3946 }
3947
3948 /**
3949  * blk_poll - poll for IO completions
3950  * @q:  the queue
3951  * @cookie: cookie passed back at IO submission time
3952  * @spin: whether to spin for completions
3953  *
3954  * Description:
3955  *    Poll for completions on the passed in queue. Returns number of
3956  *    completed entries found. If @spin is true, then blk_poll will continue
3957  *    looping until at least one completion is found, unless the task is
3958  *    otherwise marked running (or we need to reschedule).
3959  */
3960 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3961 {
3962         struct blk_mq_hw_ctx *hctx;
3963         unsigned int state;
3964
3965         if (!blk_qc_t_valid(cookie) ||
3966             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3967                 return 0;
3968
3969         if (current->plug)
3970                 blk_flush_plug_list(current->plug, false);
3971
3972         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3973
3974         /*
3975          * If we sleep, have the caller restart the poll loop to reset
3976          * the state. Like for the other success return cases, the
3977          * caller is responsible for checking if the IO completed. If
3978          * the IO isn't complete, we'll get called again and will go
3979          * straight to the busy poll loop. If specified not to spin,
3980          * we also should not sleep.
3981          */
3982         if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3983                 return 1;
3984
3985         hctx->poll_considered++;
3986
3987         state = get_current_state();
3988         do {
3989                 int ret;
3990
3991                 hctx->poll_invoked++;
3992
3993                 ret = q->mq_ops->poll(hctx);
3994                 if (ret > 0) {
3995                         hctx->poll_success++;
3996                         __set_current_state(TASK_RUNNING);
3997                         return ret;
3998                 }
3999
4000                 if (signal_pending_state(state, current))
4001                         __set_current_state(TASK_RUNNING);
4002
4003                 if (task_is_running(current))
4004                         return 1;
4005                 if (ret < 0 || !spin)
4006                         break;
4007                 cpu_relax();
4008         } while (!need_resched());
4009
4010         __set_current_state(TASK_RUNNING);
4011         return 0;
4012 }
4013 EXPORT_SYMBOL_GPL(blk_poll);
4014
4015 unsigned int blk_mq_rq_cpu(struct request *rq)
4016 {
4017         return rq->mq_ctx->cpu;
4018 }
4019 EXPORT_SYMBOL(blk_mq_rq_cpu);
4020
4021 void blk_mq_cancel_work_sync(struct request_queue *q)
4022 {
4023         if (queue_is_mq(q)) {
4024                 struct blk_mq_hw_ctx *hctx;
4025                 int i;
4026
4027                 cancel_delayed_work_sync(&q->requeue_work);
4028
4029                 queue_for_each_hw_ctx(q, hctx, i)
4030                         cancel_delayed_work_sync(&hctx->run_work);
4031         }
4032 }
4033
4034 static int __init blk_mq_init(void)
4035 {
4036         int i;
4037
4038         for_each_possible_cpu(i)
4039                 init_llist_head(&per_cpu(blk_cpu_done, i));
4040         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4041
4042         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4043                                   "block/softirq:dead", NULL,
4044                                   blk_softirq_cpu_dead);
4045         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4046                                 blk_mq_hctx_notify_dead);
4047         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4048                                 blk_mq_hctx_notify_online,
4049                                 blk_mq_hctx_notify_offline);
4050         return 0;
4051 }
4052 subsys_initcall(blk_mq_init);