Merge tag 'x86_mm_for_v6.1_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54         int ddir, sectors, bucket;
55
56         ddir = rq_data_dir(rq);
57         sectors = blk_rq_stats_sectors(rq);
58
59         bucket = ddir + 2 * ilog2(sectors);
60
61         if (bucket < 0)
62                 return -1;
63         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65
66         return bucket;
67 }
68
69 #define BLK_QC_T_SHIFT          16
70 #define BLK_QC_T_INTERNAL       (1U << 31)
71
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73                 blk_qc_t qc)
74 {
75         return xa_load(&q->hctx_table,
76                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80                 blk_qc_t qc)
81 {
82         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83
84         if (qc & BLK_QC_T_INTERNAL)
85                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86         return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92                 (rq->tag != -1 ?
93                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102         return !list_empty_careful(&hctx->dispatch) ||
103                 sbitmap_any_bit_set(&hctx->ctx_map) ||
104                         blk_mq_sched_has_work(hctx);
105 }
106
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111                                      struct blk_mq_ctx *ctx)
112 {
113         const int bit = ctx->index_hw[hctx->type];
114
115         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116                 sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120                                       struct blk_mq_ctx *ctx)
121 {
122         const int bit = ctx->index_hw[hctx->type];
123
124         sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126
127 struct mq_inflight {
128         struct block_device *part;
129         unsigned int inflight[2];
130 };
131
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264         if (blk_queue_has_srcu(q))
265                 synchronize_srcu(q->srcu);
266         else
267                 synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282         blk_mq_quiesce_queue_nowait(q);
283         blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296         unsigned long flags;
297         bool run_queue = false;
298
299         spin_lock_irqsave(&q->queue_lock, flags);
300         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301                 ;
302         } else if (!--q->quiesce_depth) {
303                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304                 run_queue = true;
305         }
306         spin_unlock_irqrestore(&q->queue_lock, flags);
307
308         /* dispatch requests which are inserted during quiescing */
309         if (run_queue)
310                 blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316         struct blk_mq_hw_ctx *hctx;
317         unsigned long i;
318
319         queue_for_each_hw_ctx(q, hctx, i)
320                 if (blk_mq_hw_queue_mapped(hctx))
321                         blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326         memset(rq, 0, sizeof(*rq));
327
328         INIT_LIST_HEAD(&rq->queuelist);
329         rq->q = q;
330         rq->__sector = (sector_t) -1;
331         INIT_HLIST_NODE(&rq->hash);
332         RB_CLEAR_NODE(&rq->rb_node);
333         rq->tag = BLK_MQ_NO_TAG;
334         rq->internal_tag = BLK_MQ_NO_TAG;
335         rq->start_time_ns = ktime_get_ns();
336         rq->part = NULL;
337         blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344         struct blk_mq_ctx *ctx = data->ctx;
345         struct blk_mq_hw_ctx *hctx = data->hctx;
346         struct request_queue *q = data->q;
347         struct request *rq = tags->static_rqs[tag];
348
349         rq->q = q;
350         rq->mq_ctx = ctx;
351         rq->mq_hctx = hctx;
352         rq->cmd_flags = data->cmd_flags;
353
354         if (data->flags & BLK_MQ_REQ_PM)
355                 data->rq_flags |= RQF_PM;
356         if (blk_queue_io_stat(q))
357                 data->rq_flags |= RQF_IO_STAT;
358         rq->rq_flags = data->rq_flags;
359
360         if (!(data->rq_flags & RQF_ELV)) {
361                 rq->tag = tag;
362                 rq->internal_tag = BLK_MQ_NO_TAG;
363         } else {
364                 rq->tag = BLK_MQ_NO_TAG;
365                 rq->internal_tag = tag;
366         }
367         rq->timeout = 0;
368
369         if (blk_mq_need_time_stamp(rq))
370                 rq->start_time_ns = ktime_get_ns();
371         else
372                 rq->start_time_ns = 0;
373         rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375         rq->alloc_time_ns = alloc_time_ns;
376 #endif
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_ELV) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (!op_is_flush(data->cmd_flags) &&
399                     e->type->ops.prepare_request) {
400                         e->type->ops.prepare_request(rq);
401                         rq->rq_flags |= RQF_ELVPRIV;
402                 }
403         }
404
405         return rq;
406 }
407
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410                 u64 alloc_time_ns)
411 {
412         unsigned int tag, tag_offset;
413         struct blk_mq_tags *tags;
414         struct request *rq;
415         unsigned long tag_mask;
416         int i, nr = 0;
417
418         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419         if (unlikely(!tag_mask))
420                 return NULL;
421
422         tags = blk_mq_tags_from_data(data);
423         for (i = 0; tag_mask; i++) {
424                 if (!(tag_mask & (1UL << i)))
425                         continue;
426                 tag = tag_offset + i;
427                 prefetch(tags->static_rqs[tag]);
428                 tag_mask &= ~(1UL << i);
429                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430                 rq_list_add(data->cached_rq, rq);
431                 nr++;
432         }
433         /* caller already holds a reference, add for remainder */
434         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435         data->nr_tags -= nr;
436
437         return rq_list_pop(data->cached_rq);
438 }
439
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442         struct request_queue *q = data->q;
443         u64 alloc_time_ns = 0;
444         struct request *rq;
445         unsigned int tag;
446
447         /* alloc_time includes depth and tag waits */
448         if (blk_queue_rq_alloc_time(q))
449                 alloc_time_ns = ktime_get_ns();
450
451         if (data->cmd_flags & REQ_NOWAIT)
452                 data->flags |= BLK_MQ_REQ_NOWAIT;
453
454         if (q->elevator) {
455                 struct elevator_queue *e = q->elevator;
456
457                 data->rq_flags |= RQF_ELV;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list. Don't include reserved tags in the
462                  * limiting, as it isn't useful.
463                  */
464                 if (!op_is_flush(data->cmd_flags) &&
465                     !blk_op_is_passthrough(data->cmd_flags) &&
466                     e->type->ops.limit_depth &&
467                     !(data->flags & BLK_MQ_REQ_RESERVED))
468                         e->type->ops.limit_depth(data->cmd_flags, data);
469         }
470
471 retry:
472         data->ctx = blk_mq_get_ctx(q);
473         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474         if (!(data->rq_flags & RQF_ELV))
475                 blk_mq_tag_busy(data->hctx);
476
477         if (data->flags & BLK_MQ_REQ_RESERVED)
478                 data->rq_flags |= RQF_RESV;
479
480         /*
481          * Try batched alloc if we want more than 1 tag.
482          */
483         if (data->nr_tags > 1) {
484                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
485                 if (rq)
486                         return rq;
487                 data->nr_tags = 1;
488         }
489
490         /*
491          * Waiting allocations only fail because of an inactive hctx.  In that
492          * case just retry the hctx assignment and tag allocation as CPU hotplug
493          * should have migrated us to an online CPU by now.
494          */
495         tag = blk_mq_get_tag(data);
496         if (tag == BLK_MQ_NO_TAG) {
497                 if (data->flags & BLK_MQ_REQ_NOWAIT)
498                         return NULL;
499                 /*
500                  * Give up the CPU and sleep for a random short time to
501                  * ensure that thread using a realtime scheduling class
502                  * are migrated off the CPU, and thus off the hctx that
503                  * is going away.
504                  */
505                 msleep(3);
506                 goto retry;
507         }
508
509         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
510                                         alloc_time_ns);
511 }
512
513 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
514                                             struct blk_plug *plug,
515                                             blk_opf_t opf,
516                                             blk_mq_req_flags_t flags)
517 {
518         struct blk_mq_alloc_data data = {
519                 .q              = q,
520                 .flags          = flags,
521                 .cmd_flags      = opf,
522                 .nr_tags        = plug->nr_ios,
523                 .cached_rq      = &plug->cached_rq,
524         };
525         struct request *rq;
526
527         if (blk_queue_enter(q, flags))
528                 return NULL;
529
530         plug->nr_ios = 1;
531
532         rq = __blk_mq_alloc_requests(&data);
533         if (unlikely(!rq))
534                 blk_queue_exit(q);
535         return rq;
536 }
537
538 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
539                                                    blk_opf_t opf,
540                                                    blk_mq_req_flags_t flags)
541 {
542         struct blk_plug *plug = current->plug;
543         struct request *rq;
544
545         if (!plug)
546                 return NULL;
547         if (rq_list_empty(plug->cached_rq)) {
548                 if (plug->nr_ios == 1)
549                         return NULL;
550                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
551                 if (rq)
552                         goto got_it;
553                 return NULL;
554         }
555         rq = rq_list_peek(&plug->cached_rq);
556         if (!rq || rq->q != q)
557                 return NULL;
558
559         if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
560                 return NULL;
561         if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
562                 return NULL;
563
564         plug->cached_rq = rq_list_next(rq);
565 got_it:
566         rq->cmd_flags = opf;
567         INIT_LIST_HEAD(&rq->queuelist);
568         return rq;
569 }
570
571 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
572                 blk_mq_req_flags_t flags)
573 {
574         struct request *rq;
575
576         rq = blk_mq_alloc_cached_request(q, opf, flags);
577         if (!rq) {
578                 struct blk_mq_alloc_data data = {
579                         .q              = q,
580                         .flags          = flags,
581                         .cmd_flags      = opf,
582                         .nr_tags        = 1,
583                 };
584                 int ret;
585
586                 ret = blk_queue_enter(q, flags);
587                 if (ret)
588                         return ERR_PTR(ret);
589
590                 rq = __blk_mq_alloc_requests(&data);
591                 if (!rq)
592                         goto out_queue_exit;
593         }
594         rq->__data_len = 0;
595         rq->__sector = (sector_t) -1;
596         rq->bio = rq->biotail = NULL;
597         return rq;
598 out_queue_exit:
599         blk_queue_exit(q);
600         return ERR_PTR(-EWOULDBLOCK);
601 }
602 EXPORT_SYMBOL(blk_mq_alloc_request);
603
604 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
605         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
606 {
607         struct blk_mq_alloc_data data = {
608                 .q              = q,
609                 .flags          = flags,
610                 .cmd_flags      = opf,
611                 .nr_tags        = 1,
612         };
613         u64 alloc_time_ns = 0;
614         unsigned int cpu;
615         unsigned int tag;
616         int ret;
617
618         /* alloc_time includes depth and tag waits */
619         if (blk_queue_rq_alloc_time(q))
620                 alloc_time_ns = ktime_get_ns();
621
622         /*
623          * If the tag allocator sleeps we could get an allocation for a
624          * different hardware context.  No need to complicate the low level
625          * allocator for this for the rare use case of a command tied to
626          * a specific queue.
627          */
628         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
629                 return ERR_PTR(-EINVAL);
630
631         if (hctx_idx >= q->nr_hw_queues)
632                 return ERR_PTR(-EIO);
633
634         ret = blk_queue_enter(q, flags);
635         if (ret)
636                 return ERR_PTR(ret);
637
638         /*
639          * Check if the hardware context is actually mapped to anything.
640          * If not tell the caller that it should skip this queue.
641          */
642         ret = -EXDEV;
643         data.hctx = xa_load(&q->hctx_table, hctx_idx);
644         if (!blk_mq_hw_queue_mapped(data.hctx))
645                 goto out_queue_exit;
646         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
647         if (cpu >= nr_cpu_ids)
648                 goto out_queue_exit;
649         data.ctx = __blk_mq_get_ctx(q, cpu);
650
651         if (!q->elevator)
652                 blk_mq_tag_busy(data.hctx);
653         else
654                 data.rq_flags |= RQF_ELV;
655
656         if (flags & BLK_MQ_REQ_RESERVED)
657                 data.rq_flags |= RQF_RESV;
658
659         ret = -EWOULDBLOCK;
660         tag = blk_mq_get_tag(&data);
661         if (tag == BLK_MQ_NO_TAG)
662                 goto out_queue_exit;
663         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
664                                         alloc_time_ns);
665
666 out_queue_exit:
667         blk_queue_exit(q);
668         return ERR_PTR(ret);
669 }
670 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
671
672 static void __blk_mq_free_request(struct request *rq)
673 {
674         struct request_queue *q = rq->q;
675         struct blk_mq_ctx *ctx = rq->mq_ctx;
676         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
677         const int sched_tag = rq->internal_tag;
678
679         blk_crypto_free_request(rq);
680         blk_pm_mark_last_busy(rq);
681         rq->mq_hctx = NULL;
682         if (rq->tag != BLK_MQ_NO_TAG)
683                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
684         if (sched_tag != BLK_MQ_NO_TAG)
685                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
686         blk_mq_sched_restart(hctx);
687         blk_queue_exit(q);
688 }
689
690 void blk_mq_free_request(struct request *rq)
691 {
692         struct request_queue *q = rq->q;
693         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
694
695         if ((rq->rq_flags & RQF_ELVPRIV) &&
696             q->elevator->type->ops.finish_request)
697                 q->elevator->type->ops.finish_request(rq);
698
699         if (rq->rq_flags & RQF_MQ_INFLIGHT)
700                 __blk_mq_dec_active_requests(hctx);
701
702         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
703                 laptop_io_completion(q->disk->bdi);
704
705         rq_qos_done(q, rq);
706
707         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
708         if (req_ref_put_and_test(rq))
709                 __blk_mq_free_request(rq);
710 }
711 EXPORT_SYMBOL_GPL(blk_mq_free_request);
712
713 void blk_mq_free_plug_rqs(struct blk_plug *plug)
714 {
715         struct request *rq;
716
717         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
718                 blk_mq_free_request(rq);
719 }
720
721 void blk_dump_rq_flags(struct request *rq, char *msg)
722 {
723         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
724                 rq->q->disk ? rq->q->disk->disk_name : "?",
725                 (__force unsigned long long) rq->cmd_flags);
726
727         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
728                (unsigned long long)blk_rq_pos(rq),
729                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
730         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
731                rq->bio, rq->biotail, blk_rq_bytes(rq));
732 }
733 EXPORT_SYMBOL(blk_dump_rq_flags);
734
735 static void req_bio_endio(struct request *rq, struct bio *bio,
736                           unsigned int nbytes, blk_status_t error)
737 {
738         if (unlikely(error)) {
739                 bio->bi_status = error;
740         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
741                 /*
742                  * Partial zone append completions cannot be supported as the
743                  * BIO fragments may end up not being written sequentially.
744                  */
745                 if (bio->bi_iter.bi_size != nbytes)
746                         bio->bi_status = BLK_STS_IOERR;
747                 else
748                         bio->bi_iter.bi_sector = rq->__sector;
749         }
750
751         bio_advance(bio, nbytes);
752
753         if (unlikely(rq->rq_flags & RQF_QUIET))
754                 bio_set_flag(bio, BIO_QUIET);
755         /* don't actually finish bio if it's part of flush sequence */
756         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
757                 bio_endio(bio);
758 }
759
760 static void blk_account_io_completion(struct request *req, unsigned int bytes)
761 {
762         if (req->part && blk_do_io_stat(req)) {
763                 const int sgrp = op_stat_group(req_op(req));
764
765                 part_stat_lock();
766                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
767                 part_stat_unlock();
768         }
769 }
770
771 static void blk_print_req_error(struct request *req, blk_status_t status)
772 {
773         printk_ratelimited(KERN_ERR
774                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
775                 "phys_seg %u prio class %u\n",
776                 blk_status_to_str(status),
777                 req->q->disk ? req->q->disk->disk_name : "?",
778                 blk_rq_pos(req), (__force u32)req_op(req),
779                 blk_op_str(req_op(req)),
780                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
781                 req->nr_phys_segments,
782                 IOPRIO_PRIO_CLASS(req->ioprio));
783 }
784
785 /*
786  * Fully end IO on a request. Does not support partial completions, or
787  * errors.
788  */
789 static void blk_complete_request(struct request *req)
790 {
791         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
792         int total_bytes = blk_rq_bytes(req);
793         struct bio *bio = req->bio;
794
795         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
796
797         if (!bio)
798                 return;
799
800 #ifdef CONFIG_BLK_DEV_INTEGRITY
801         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
802                 req->q->integrity.profile->complete_fn(req, total_bytes);
803 #endif
804
805         blk_account_io_completion(req, total_bytes);
806
807         do {
808                 struct bio *next = bio->bi_next;
809
810                 /* Completion has already been traced */
811                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
812
813                 if (req_op(req) == REQ_OP_ZONE_APPEND)
814                         bio->bi_iter.bi_sector = req->__sector;
815
816                 if (!is_flush)
817                         bio_endio(bio);
818                 bio = next;
819         } while (bio);
820
821         /*
822          * Reset counters so that the request stacking driver
823          * can find how many bytes remain in the request
824          * later.
825          */
826         if (!req->end_io) {
827                 req->bio = NULL;
828                 req->__data_len = 0;
829         }
830 }
831
832 /**
833  * blk_update_request - Complete multiple bytes without completing the request
834  * @req:      the request being processed
835  * @error:    block status code
836  * @nr_bytes: number of bytes to complete for @req
837  *
838  * Description:
839  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
840  *     the request structure even if @req doesn't have leftover.
841  *     If @req has leftover, sets it up for the next range of segments.
842  *
843  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
844  *     %false return from this function.
845  *
846  * Note:
847  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
848  *      except in the consistency check at the end of this function.
849  *
850  * Return:
851  *     %false - this request doesn't have any more data
852  *     %true  - this request has more data
853  **/
854 bool blk_update_request(struct request *req, blk_status_t error,
855                 unsigned int nr_bytes)
856 {
857         int total_bytes;
858
859         trace_block_rq_complete(req, error, nr_bytes);
860
861         if (!req->bio)
862                 return false;
863
864 #ifdef CONFIG_BLK_DEV_INTEGRITY
865         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
866             error == BLK_STS_OK)
867                 req->q->integrity.profile->complete_fn(req, nr_bytes);
868 #endif
869
870         if (unlikely(error && !blk_rq_is_passthrough(req) &&
871                      !(req->rq_flags & RQF_QUIET)) &&
872                      !test_bit(GD_DEAD, &req->q->disk->state)) {
873                 blk_print_req_error(req, error);
874                 trace_block_rq_error(req, error, nr_bytes);
875         }
876
877         blk_account_io_completion(req, nr_bytes);
878
879         total_bytes = 0;
880         while (req->bio) {
881                 struct bio *bio = req->bio;
882                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
883
884                 if (bio_bytes == bio->bi_iter.bi_size)
885                         req->bio = bio->bi_next;
886
887                 /* Completion has already been traced */
888                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
889                 req_bio_endio(req, bio, bio_bytes, error);
890
891                 total_bytes += bio_bytes;
892                 nr_bytes -= bio_bytes;
893
894                 if (!nr_bytes)
895                         break;
896         }
897
898         /*
899          * completely done
900          */
901         if (!req->bio) {
902                 /*
903                  * Reset counters so that the request stacking driver
904                  * can find how many bytes remain in the request
905                  * later.
906                  */
907                 req->__data_len = 0;
908                 return false;
909         }
910
911         req->__data_len -= total_bytes;
912
913         /* update sector only for requests with clear definition of sector */
914         if (!blk_rq_is_passthrough(req))
915                 req->__sector += total_bytes >> 9;
916
917         /* mixed attributes always follow the first bio */
918         if (req->rq_flags & RQF_MIXED_MERGE) {
919                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
920                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
921         }
922
923         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
924                 /*
925                  * If total number of sectors is less than the first segment
926                  * size, something has gone terribly wrong.
927                  */
928                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
929                         blk_dump_rq_flags(req, "request botched");
930                         req->__data_len = blk_rq_cur_bytes(req);
931                 }
932
933                 /* recalculate the number of segments */
934                 req->nr_phys_segments = blk_recalc_rq_segments(req);
935         }
936
937         return true;
938 }
939 EXPORT_SYMBOL_GPL(blk_update_request);
940
941 static void __blk_account_io_done(struct request *req, u64 now)
942 {
943         const int sgrp = op_stat_group(req_op(req));
944
945         part_stat_lock();
946         update_io_ticks(req->part, jiffies, true);
947         part_stat_inc(req->part, ios[sgrp]);
948         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
949         part_stat_unlock();
950 }
951
952 static inline void blk_account_io_done(struct request *req, u64 now)
953 {
954         /*
955          * Account IO completion.  flush_rq isn't accounted as a
956          * normal IO on queueing nor completion.  Accounting the
957          * containing request is enough.
958          */
959         if (blk_do_io_stat(req) && req->part &&
960             !(req->rq_flags & RQF_FLUSH_SEQ))
961                 __blk_account_io_done(req, now);
962 }
963
964 static void __blk_account_io_start(struct request *rq)
965 {
966         /*
967          * All non-passthrough requests are created from a bio with one
968          * exception: when a flush command that is part of a flush sequence
969          * generated by the state machine in blk-flush.c is cloned onto the
970          * lower device by dm-multipath we can get here without a bio.
971          */
972         if (rq->bio)
973                 rq->part = rq->bio->bi_bdev;
974         else
975                 rq->part = rq->q->disk->part0;
976
977         part_stat_lock();
978         update_io_ticks(rq->part, jiffies, false);
979         part_stat_unlock();
980 }
981
982 static inline void blk_account_io_start(struct request *req)
983 {
984         if (blk_do_io_stat(req))
985                 __blk_account_io_start(req);
986 }
987
988 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
989 {
990         if (rq->rq_flags & RQF_STATS) {
991                 blk_mq_poll_stats_start(rq->q);
992                 blk_stat_add(rq, now);
993         }
994
995         blk_mq_sched_completed_request(rq, now);
996         blk_account_io_done(rq, now);
997 }
998
999 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1000 {
1001         if (blk_mq_need_time_stamp(rq))
1002                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1003
1004         if (rq->end_io) {
1005                 rq_qos_done(rq->q, rq);
1006                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1007                         blk_mq_free_request(rq);
1008         } else {
1009                 blk_mq_free_request(rq);
1010         }
1011 }
1012 EXPORT_SYMBOL(__blk_mq_end_request);
1013
1014 void blk_mq_end_request(struct request *rq, blk_status_t error)
1015 {
1016         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1017                 BUG();
1018         __blk_mq_end_request(rq, error);
1019 }
1020 EXPORT_SYMBOL(blk_mq_end_request);
1021
1022 #define TAG_COMP_BATCH          32
1023
1024 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1025                                           int *tag_array, int nr_tags)
1026 {
1027         struct request_queue *q = hctx->queue;
1028
1029         /*
1030          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1031          * update hctx->nr_active in batch
1032          */
1033         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1034                 __blk_mq_sub_active_requests(hctx, nr_tags);
1035
1036         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1037         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1038 }
1039
1040 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1041 {
1042         int tags[TAG_COMP_BATCH], nr_tags = 0;
1043         struct blk_mq_hw_ctx *cur_hctx = NULL;
1044         struct request *rq;
1045         u64 now = 0;
1046
1047         if (iob->need_ts)
1048                 now = ktime_get_ns();
1049
1050         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1051                 prefetch(rq->bio);
1052                 prefetch(rq->rq_next);
1053
1054                 blk_complete_request(rq);
1055                 if (iob->need_ts)
1056                         __blk_mq_end_request_acct(rq, now);
1057
1058                 rq_qos_done(rq->q, rq);
1059
1060                 /*
1061                  * If end_io handler returns NONE, then it still has
1062                  * ownership of the request.
1063                  */
1064                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1065                         continue;
1066
1067                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1068                 if (!req_ref_put_and_test(rq))
1069                         continue;
1070
1071                 blk_crypto_free_request(rq);
1072                 blk_pm_mark_last_busy(rq);
1073
1074                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1075                         if (cur_hctx)
1076                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1077                         nr_tags = 0;
1078                         cur_hctx = rq->mq_hctx;
1079                 }
1080                 tags[nr_tags++] = rq->tag;
1081         }
1082
1083         if (nr_tags)
1084                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1085 }
1086 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1087
1088 static void blk_complete_reqs(struct llist_head *list)
1089 {
1090         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1091         struct request *rq, *next;
1092
1093         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1094                 rq->q->mq_ops->complete(rq);
1095 }
1096
1097 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1098 {
1099         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1100 }
1101
1102 static int blk_softirq_cpu_dead(unsigned int cpu)
1103 {
1104         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1105         return 0;
1106 }
1107
1108 static void __blk_mq_complete_request_remote(void *data)
1109 {
1110         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1111 }
1112
1113 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1114 {
1115         int cpu = raw_smp_processor_id();
1116
1117         if (!IS_ENABLED(CONFIG_SMP) ||
1118             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1119                 return false;
1120         /*
1121          * With force threaded interrupts enabled, raising softirq from an SMP
1122          * function call will always result in waking the ksoftirqd thread.
1123          * This is probably worse than completing the request on a different
1124          * cache domain.
1125          */
1126         if (force_irqthreads())
1127                 return false;
1128
1129         /* same CPU or cache domain?  Complete locally */
1130         if (cpu == rq->mq_ctx->cpu ||
1131             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1132              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1133                 return false;
1134
1135         /* don't try to IPI to an offline CPU */
1136         return cpu_online(rq->mq_ctx->cpu);
1137 }
1138
1139 static void blk_mq_complete_send_ipi(struct request *rq)
1140 {
1141         struct llist_head *list;
1142         unsigned int cpu;
1143
1144         cpu = rq->mq_ctx->cpu;
1145         list = &per_cpu(blk_cpu_done, cpu);
1146         if (llist_add(&rq->ipi_list, list)) {
1147                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1148                 smp_call_function_single_async(cpu, &rq->csd);
1149         }
1150 }
1151
1152 static void blk_mq_raise_softirq(struct request *rq)
1153 {
1154         struct llist_head *list;
1155
1156         preempt_disable();
1157         list = this_cpu_ptr(&blk_cpu_done);
1158         if (llist_add(&rq->ipi_list, list))
1159                 raise_softirq(BLOCK_SOFTIRQ);
1160         preempt_enable();
1161 }
1162
1163 bool blk_mq_complete_request_remote(struct request *rq)
1164 {
1165         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1166
1167         /*
1168          * For request which hctx has only one ctx mapping,
1169          * or a polled request, always complete locally,
1170          * it's pointless to redirect the completion.
1171          */
1172         if (rq->mq_hctx->nr_ctx == 1 ||
1173                 rq->cmd_flags & REQ_POLLED)
1174                 return false;
1175
1176         if (blk_mq_complete_need_ipi(rq)) {
1177                 blk_mq_complete_send_ipi(rq);
1178                 return true;
1179         }
1180
1181         if (rq->q->nr_hw_queues == 1) {
1182                 blk_mq_raise_softirq(rq);
1183                 return true;
1184         }
1185         return false;
1186 }
1187 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1188
1189 /**
1190  * blk_mq_complete_request - end I/O on a request
1191  * @rq:         the request being processed
1192  *
1193  * Description:
1194  *      Complete a request by scheduling the ->complete_rq operation.
1195  **/
1196 void blk_mq_complete_request(struct request *rq)
1197 {
1198         if (!blk_mq_complete_request_remote(rq))
1199                 rq->q->mq_ops->complete(rq);
1200 }
1201 EXPORT_SYMBOL(blk_mq_complete_request);
1202
1203 /**
1204  * blk_mq_start_request - Start processing a request
1205  * @rq: Pointer to request to be started
1206  *
1207  * Function used by device drivers to notify the block layer that a request
1208  * is going to be processed now, so blk layer can do proper initializations
1209  * such as starting the timeout timer.
1210  */
1211 void blk_mq_start_request(struct request *rq)
1212 {
1213         struct request_queue *q = rq->q;
1214
1215         trace_block_rq_issue(rq);
1216
1217         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1218                 rq->io_start_time_ns = ktime_get_ns();
1219                 rq->stats_sectors = blk_rq_sectors(rq);
1220                 rq->rq_flags |= RQF_STATS;
1221                 rq_qos_issue(q, rq);
1222         }
1223
1224         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1225
1226         blk_add_timer(rq);
1227         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1228
1229 #ifdef CONFIG_BLK_DEV_INTEGRITY
1230         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1231                 q->integrity.profile->prepare_fn(rq);
1232 #endif
1233         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1234                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1235 }
1236 EXPORT_SYMBOL(blk_mq_start_request);
1237
1238 /*
1239  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1240  * queues. This is important for md arrays to benefit from merging
1241  * requests.
1242  */
1243 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1244 {
1245         if (plug->multiple_queues)
1246                 return BLK_MAX_REQUEST_COUNT * 2;
1247         return BLK_MAX_REQUEST_COUNT;
1248 }
1249
1250 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1251 {
1252         struct request *last = rq_list_peek(&plug->mq_list);
1253
1254         if (!plug->rq_count) {
1255                 trace_block_plug(rq->q);
1256         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1257                    (!blk_queue_nomerges(rq->q) &&
1258                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1259                 blk_mq_flush_plug_list(plug, false);
1260                 trace_block_plug(rq->q);
1261         }
1262
1263         if (!plug->multiple_queues && last && last->q != rq->q)
1264                 plug->multiple_queues = true;
1265         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1266                 plug->has_elevator = true;
1267         rq->rq_next = NULL;
1268         rq_list_add(&plug->mq_list, rq);
1269         plug->rq_count++;
1270 }
1271
1272 /**
1273  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1274  * @rq:         request to insert
1275  * @at_head:    insert request at head or tail of queue
1276  *
1277  * Description:
1278  *    Insert a fully prepared request at the back of the I/O scheduler queue
1279  *    for execution.  Don't wait for completion.
1280  *
1281  * Note:
1282  *    This function will invoke @done directly if the queue is dead.
1283  */
1284 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1285 {
1286         WARN_ON(irqs_disabled());
1287         WARN_ON(!blk_rq_is_passthrough(rq));
1288
1289         blk_account_io_start(rq);
1290
1291         /*
1292          * As plugging can be enabled for passthrough requests on a zoned
1293          * device, directly accessing the plug instead of using blk_mq_plug()
1294          * should not have any consequences.
1295          */
1296         if (current->plug)
1297                 blk_add_rq_to_plug(current->plug, rq);
1298         else
1299                 blk_mq_sched_insert_request(rq, at_head, true, false);
1300 }
1301 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1302
1303 struct blk_rq_wait {
1304         struct completion done;
1305         blk_status_t ret;
1306 };
1307
1308 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1309 {
1310         struct blk_rq_wait *wait = rq->end_io_data;
1311
1312         wait->ret = ret;
1313         complete(&wait->done);
1314         return RQ_END_IO_NONE;
1315 }
1316
1317 bool blk_rq_is_poll(struct request *rq)
1318 {
1319         if (!rq->mq_hctx)
1320                 return false;
1321         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1322                 return false;
1323         if (WARN_ON_ONCE(!rq->bio))
1324                 return false;
1325         return true;
1326 }
1327 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1328
1329 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1330 {
1331         do {
1332                 bio_poll(rq->bio, NULL, 0);
1333                 cond_resched();
1334         } while (!completion_done(wait));
1335 }
1336
1337 /**
1338  * blk_execute_rq - insert a request into queue for execution
1339  * @rq:         request to insert
1340  * @at_head:    insert request at head or tail of queue
1341  *
1342  * Description:
1343  *    Insert a fully prepared request at the back of the I/O scheduler queue
1344  *    for execution and wait for completion.
1345  * Return: The blk_status_t result provided to blk_mq_end_request().
1346  */
1347 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1348 {
1349         struct blk_rq_wait wait = {
1350                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1351         };
1352
1353         WARN_ON(irqs_disabled());
1354         WARN_ON(!blk_rq_is_passthrough(rq));
1355
1356         rq->end_io_data = &wait;
1357         rq->end_io = blk_end_sync_rq;
1358
1359         blk_account_io_start(rq);
1360         blk_mq_sched_insert_request(rq, at_head, true, false);
1361
1362         if (blk_rq_is_poll(rq)) {
1363                 blk_rq_poll_completion(rq, &wait.done);
1364         } else {
1365                 /*
1366                  * Prevent hang_check timer from firing at us during very long
1367                  * I/O
1368                  */
1369                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1370
1371                 if (hang_check)
1372                         while (!wait_for_completion_io_timeout(&wait.done,
1373                                         hang_check * (HZ/2)))
1374                                 ;
1375                 else
1376                         wait_for_completion_io(&wait.done);
1377         }
1378
1379         return wait.ret;
1380 }
1381 EXPORT_SYMBOL(blk_execute_rq);
1382
1383 static void __blk_mq_requeue_request(struct request *rq)
1384 {
1385         struct request_queue *q = rq->q;
1386
1387         blk_mq_put_driver_tag(rq);
1388
1389         trace_block_rq_requeue(rq);
1390         rq_qos_requeue(q, rq);
1391
1392         if (blk_mq_request_started(rq)) {
1393                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1394                 rq->rq_flags &= ~RQF_TIMED_OUT;
1395         }
1396 }
1397
1398 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1399 {
1400         __blk_mq_requeue_request(rq);
1401
1402         /* this request will be re-inserted to io scheduler queue */
1403         blk_mq_sched_requeue_request(rq);
1404
1405         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1406 }
1407 EXPORT_SYMBOL(blk_mq_requeue_request);
1408
1409 static void blk_mq_requeue_work(struct work_struct *work)
1410 {
1411         struct request_queue *q =
1412                 container_of(work, struct request_queue, requeue_work.work);
1413         LIST_HEAD(rq_list);
1414         struct request *rq, *next;
1415
1416         spin_lock_irq(&q->requeue_lock);
1417         list_splice_init(&q->requeue_list, &rq_list);
1418         spin_unlock_irq(&q->requeue_lock);
1419
1420         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1421                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1422                         continue;
1423
1424                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1425                 list_del_init(&rq->queuelist);
1426                 /*
1427                  * If RQF_DONTPREP, rq has contained some driver specific
1428                  * data, so insert it to hctx dispatch list to avoid any
1429                  * merge.
1430                  */
1431                 if (rq->rq_flags & RQF_DONTPREP)
1432                         blk_mq_request_bypass_insert(rq, false, false);
1433                 else
1434                         blk_mq_sched_insert_request(rq, true, false, false);
1435         }
1436
1437         while (!list_empty(&rq_list)) {
1438                 rq = list_entry(rq_list.next, struct request, queuelist);
1439                 list_del_init(&rq->queuelist);
1440                 blk_mq_sched_insert_request(rq, false, false, false);
1441         }
1442
1443         blk_mq_run_hw_queues(q, false);
1444 }
1445
1446 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1447                                 bool kick_requeue_list)
1448 {
1449         struct request_queue *q = rq->q;
1450         unsigned long flags;
1451
1452         /*
1453          * We abuse this flag that is otherwise used by the I/O scheduler to
1454          * request head insertion from the workqueue.
1455          */
1456         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1457
1458         spin_lock_irqsave(&q->requeue_lock, flags);
1459         if (at_head) {
1460                 rq->rq_flags |= RQF_SOFTBARRIER;
1461                 list_add(&rq->queuelist, &q->requeue_list);
1462         } else {
1463                 list_add_tail(&rq->queuelist, &q->requeue_list);
1464         }
1465         spin_unlock_irqrestore(&q->requeue_lock, flags);
1466
1467         if (kick_requeue_list)
1468                 blk_mq_kick_requeue_list(q);
1469 }
1470
1471 void blk_mq_kick_requeue_list(struct request_queue *q)
1472 {
1473         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1474 }
1475 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1476
1477 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1478                                     unsigned long msecs)
1479 {
1480         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1481                                     msecs_to_jiffies(msecs));
1482 }
1483 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1484
1485 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1486 {
1487         /*
1488          * If we find a request that isn't idle we know the queue is busy
1489          * as it's checked in the iter.
1490          * Return false to stop the iteration.
1491          */
1492         if (blk_mq_request_started(rq)) {
1493                 bool *busy = priv;
1494
1495                 *busy = true;
1496                 return false;
1497         }
1498
1499         return true;
1500 }
1501
1502 bool blk_mq_queue_inflight(struct request_queue *q)
1503 {
1504         bool busy = false;
1505
1506         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1507         return busy;
1508 }
1509 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1510
1511 static void blk_mq_rq_timed_out(struct request *req)
1512 {
1513         req->rq_flags |= RQF_TIMED_OUT;
1514         if (req->q->mq_ops->timeout) {
1515                 enum blk_eh_timer_return ret;
1516
1517                 ret = req->q->mq_ops->timeout(req);
1518                 if (ret == BLK_EH_DONE)
1519                         return;
1520                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1521         }
1522
1523         blk_add_timer(req);
1524 }
1525
1526 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1527 {
1528         unsigned long deadline;
1529
1530         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1531                 return false;
1532         if (rq->rq_flags & RQF_TIMED_OUT)
1533                 return false;
1534
1535         deadline = READ_ONCE(rq->deadline);
1536         if (time_after_eq(jiffies, deadline))
1537                 return true;
1538
1539         if (*next == 0)
1540                 *next = deadline;
1541         else if (time_after(*next, deadline))
1542                 *next = deadline;
1543         return false;
1544 }
1545
1546 void blk_mq_put_rq_ref(struct request *rq)
1547 {
1548         if (is_flush_rq(rq)) {
1549                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1550                         blk_mq_free_request(rq);
1551         } else if (req_ref_put_and_test(rq)) {
1552                 __blk_mq_free_request(rq);
1553         }
1554 }
1555
1556 static bool blk_mq_check_expired(struct request *rq, void *priv)
1557 {
1558         unsigned long *next = priv;
1559
1560         /*
1561          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1562          * be reallocated underneath the timeout handler's processing, then
1563          * the expire check is reliable. If the request is not expired, then
1564          * it was completed and reallocated as a new request after returning
1565          * from blk_mq_check_expired().
1566          */
1567         if (blk_mq_req_expired(rq, next))
1568                 blk_mq_rq_timed_out(rq);
1569         return true;
1570 }
1571
1572 static void blk_mq_timeout_work(struct work_struct *work)
1573 {
1574         struct request_queue *q =
1575                 container_of(work, struct request_queue, timeout_work);
1576         unsigned long next = 0;
1577         struct blk_mq_hw_ctx *hctx;
1578         unsigned long i;
1579
1580         /* A deadlock might occur if a request is stuck requiring a
1581          * timeout at the same time a queue freeze is waiting
1582          * completion, since the timeout code would not be able to
1583          * acquire the queue reference here.
1584          *
1585          * That's why we don't use blk_queue_enter here; instead, we use
1586          * percpu_ref_tryget directly, because we need to be able to
1587          * obtain a reference even in the short window between the queue
1588          * starting to freeze, by dropping the first reference in
1589          * blk_freeze_queue_start, and the moment the last request is
1590          * consumed, marked by the instant q_usage_counter reaches
1591          * zero.
1592          */
1593         if (!percpu_ref_tryget(&q->q_usage_counter))
1594                 return;
1595
1596         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1597
1598         if (next != 0) {
1599                 mod_timer(&q->timeout, next);
1600         } else {
1601                 /*
1602                  * Request timeouts are handled as a forward rolling timer. If
1603                  * we end up here it means that no requests are pending and
1604                  * also that no request has been pending for a while. Mark
1605                  * each hctx as idle.
1606                  */
1607                 queue_for_each_hw_ctx(q, hctx, i) {
1608                         /* the hctx may be unmapped, so check it here */
1609                         if (blk_mq_hw_queue_mapped(hctx))
1610                                 blk_mq_tag_idle(hctx);
1611                 }
1612         }
1613         blk_queue_exit(q);
1614 }
1615
1616 struct flush_busy_ctx_data {
1617         struct blk_mq_hw_ctx *hctx;
1618         struct list_head *list;
1619 };
1620
1621 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1622 {
1623         struct flush_busy_ctx_data *flush_data = data;
1624         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1625         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1626         enum hctx_type type = hctx->type;
1627
1628         spin_lock(&ctx->lock);
1629         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1630         sbitmap_clear_bit(sb, bitnr);
1631         spin_unlock(&ctx->lock);
1632         return true;
1633 }
1634
1635 /*
1636  * Process software queues that have been marked busy, splicing them
1637  * to the for-dispatch
1638  */
1639 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1640 {
1641         struct flush_busy_ctx_data data = {
1642                 .hctx = hctx,
1643                 .list = list,
1644         };
1645
1646         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1647 }
1648 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1649
1650 struct dispatch_rq_data {
1651         struct blk_mq_hw_ctx *hctx;
1652         struct request *rq;
1653 };
1654
1655 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1656                 void *data)
1657 {
1658         struct dispatch_rq_data *dispatch_data = data;
1659         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1660         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1661         enum hctx_type type = hctx->type;
1662
1663         spin_lock(&ctx->lock);
1664         if (!list_empty(&ctx->rq_lists[type])) {
1665                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1666                 list_del_init(&dispatch_data->rq->queuelist);
1667                 if (list_empty(&ctx->rq_lists[type]))
1668                         sbitmap_clear_bit(sb, bitnr);
1669         }
1670         spin_unlock(&ctx->lock);
1671
1672         return !dispatch_data->rq;
1673 }
1674
1675 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1676                                         struct blk_mq_ctx *start)
1677 {
1678         unsigned off = start ? start->index_hw[hctx->type] : 0;
1679         struct dispatch_rq_data data = {
1680                 .hctx = hctx,
1681                 .rq   = NULL,
1682         };
1683
1684         __sbitmap_for_each_set(&hctx->ctx_map, off,
1685                                dispatch_rq_from_ctx, &data);
1686
1687         return data.rq;
1688 }
1689
1690 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1691 {
1692         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1693         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1694         int tag;
1695
1696         blk_mq_tag_busy(rq->mq_hctx);
1697
1698         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1699                 bt = &rq->mq_hctx->tags->breserved_tags;
1700                 tag_offset = 0;
1701         } else {
1702                 if (!hctx_may_queue(rq->mq_hctx, bt))
1703                         return false;
1704         }
1705
1706         tag = __sbitmap_queue_get(bt);
1707         if (tag == BLK_MQ_NO_TAG)
1708                 return false;
1709
1710         rq->tag = tag + tag_offset;
1711         return true;
1712 }
1713
1714 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1715 {
1716         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1717                 return false;
1718
1719         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1720                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1721                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1722                 __blk_mq_inc_active_requests(hctx);
1723         }
1724         hctx->tags->rqs[rq->tag] = rq;
1725         return true;
1726 }
1727
1728 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1729                                 int flags, void *key)
1730 {
1731         struct blk_mq_hw_ctx *hctx;
1732
1733         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1734
1735         spin_lock(&hctx->dispatch_wait_lock);
1736         if (!list_empty(&wait->entry)) {
1737                 struct sbitmap_queue *sbq;
1738
1739                 list_del_init(&wait->entry);
1740                 sbq = &hctx->tags->bitmap_tags;
1741                 atomic_dec(&sbq->ws_active);
1742         }
1743         spin_unlock(&hctx->dispatch_wait_lock);
1744
1745         blk_mq_run_hw_queue(hctx, true);
1746         return 1;
1747 }
1748
1749 /*
1750  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1751  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1752  * restart. For both cases, take care to check the condition again after
1753  * marking us as waiting.
1754  */
1755 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1756                                  struct request *rq)
1757 {
1758         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1759         struct wait_queue_head *wq;
1760         wait_queue_entry_t *wait;
1761         bool ret;
1762
1763         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1764                 blk_mq_sched_mark_restart_hctx(hctx);
1765
1766                 /*
1767                  * It's possible that a tag was freed in the window between the
1768                  * allocation failure and adding the hardware queue to the wait
1769                  * queue.
1770                  *
1771                  * Don't clear RESTART here, someone else could have set it.
1772                  * At most this will cost an extra queue run.
1773                  */
1774                 return blk_mq_get_driver_tag(rq);
1775         }
1776
1777         wait = &hctx->dispatch_wait;
1778         if (!list_empty_careful(&wait->entry))
1779                 return false;
1780
1781         wq = &bt_wait_ptr(sbq, hctx)->wait;
1782
1783         spin_lock_irq(&wq->lock);
1784         spin_lock(&hctx->dispatch_wait_lock);
1785         if (!list_empty(&wait->entry)) {
1786                 spin_unlock(&hctx->dispatch_wait_lock);
1787                 spin_unlock_irq(&wq->lock);
1788                 return false;
1789         }
1790
1791         atomic_inc(&sbq->ws_active);
1792         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1793         __add_wait_queue(wq, wait);
1794
1795         /*
1796          * It's possible that a tag was freed in the window between the
1797          * allocation failure and adding the hardware queue to the wait
1798          * queue.
1799          */
1800         ret = blk_mq_get_driver_tag(rq);
1801         if (!ret) {
1802                 spin_unlock(&hctx->dispatch_wait_lock);
1803                 spin_unlock_irq(&wq->lock);
1804                 return false;
1805         }
1806
1807         /*
1808          * We got a tag, remove ourselves from the wait queue to ensure
1809          * someone else gets the wakeup.
1810          */
1811         list_del_init(&wait->entry);
1812         atomic_dec(&sbq->ws_active);
1813         spin_unlock(&hctx->dispatch_wait_lock);
1814         spin_unlock_irq(&wq->lock);
1815
1816         return true;
1817 }
1818
1819 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1820 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1821 /*
1822  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1823  * - EWMA is one simple way to compute running average value
1824  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1825  * - take 4 as factor for avoiding to get too small(0) result, and this
1826  *   factor doesn't matter because EWMA decreases exponentially
1827  */
1828 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1829 {
1830         unsigned int ewma;
1831
1832         ewma = hctx->dispatch_busy;
1833
1834         if (!ewma && !busy)
1835                 return;
1836
1837         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1838         if (busy)
1839                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1840         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1841
1842         hctx->dispatch_busy = ewma;
1843 }
1844
1845 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1846
1847 static void blk_mq_handle_dev_resource(struct request *rq,
1848                                        struct list_head *list)
1849 {
1850         struct request *next =
1851                 list_first_entry_or_null(list, struct request, queuelist);
1852
1853         /*
1854          * If an I/O scheduler has been configured and we got a driver tag for
1855          * the next request already, free it.
1856          */
1857         if (next)
1858                 blk_mq_put_driver_tag(next);
1859
1860         list_add(&rq->queuelist, list);
1861         __blk_mq_requeue_request(rq);
1862 }
1863
1864 static void blk_mq_handle_zone_resource(struct request *rq,
1865                                         struct list_head *zone_list)
1866 {
1867         /*
1868          * If we end up here it is because we cannot dispatch a request to a
1869          * specific zone due to LLD level zone-write locking or other zone
1870          * related resource not being available. In this case, set the request
1871          * aside in zone_list for retrying it later.
1872          */
1873         list_add(&rq->queuelist, zone_list);
1874         __blk_mq_requeue_request(rq);
1875 }
1876
1877 enum prep_dispatch {
1878         PREP_DISPATCH_OK,
1879         PREP_DISPATCH_NO_TAG,
1880         PREP_DISPATCH_NO_BUDGET,
1881 };
1882
1883 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1884                                                   bool need_budget)
1885 {
1886         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1887         int budget_token = -1;
1888
1889         if (need_budget) {
1890                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1891                 if (budget_token < 0) {
1892                         blk_mq_put_driver_tag(rq);
1893                         return PREP_DISPATCH_NO_BUDGET;
1894                 }
1895                 blk_mq_set_rq_budget_token(rq, budget_token);
1896         }
1897
1898         if (!blk_mq_get_driver_tag(rq)) {
1899                 /*
1900                  * The initial allocation attempt failed, so we need to
1901                  * rerun the hardware queue when a tag is freed. The
1902                  * waitqueue takes care of that. If the queue is run
1903                  * before we add this entry back on the dispatch list,
1904                  * we'll re-run it below.
1905                  */
1906                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1907                         /*
1908                          * All budgets not got from this function will be put
1909                          * together during handling partial dispatch
1910                          */
1911                         if (need_budget)
1912                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1913                         return PREP_DISPATCH_NO_TAG;
1914                 }
1915         }
1916
1917         return PREP_DISPATCH_OK;
1918 }
1919
1920 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1921 static void blk_mq_release_budgets(struct request_queue *q,
1922                 struct list_head *list)
1923 {
1924         struct request *rq;
1925
1926         list_for_each_entry(rq, list, queuelist) {
1927                 int budget_token = blk_mq_get_rq_budget_token(rq);
1928
1929                 if (budget_token >= 0)
1930                         blk_mq_put_dispatch_budget(q, budget_token);
1931         }
1932 }
1933
1934 /*
1935  * Returns true if we did some work AND can potentially do more.
1936  */
1937 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1938                              unsigned int nr_budgets)
1939 {
1940         enum prep_dispatch prep;
1941         struct request_queue *q = hctx->queue;
1942         struct request *rq, *nxt;
1943         int errors, queued;
1944         blk_status_t ret = BLK_STS_OK;
1945         LIST_HEAD(zone_list);
1946         bool needs_resource = false;
1947
1948         if (list_empty(list))
1949                 return false;
1950
1951         /*
1952          * Now process all the entries, sending them to the driver.
1953          */
1954         errors = queued = 0;
1955         do {
1956                 struct blk_mq_queue_data bd;
1957
1958                 rq = list_first_entry(list, struct request, queuelist);
1959
1960                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1961                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1962                 if (prep != PREP_DISPATCH_OK)
1963                         break;
1964
1965                 list_del_init(&rq->queuelist);
1966
1967                 bd.rq = rq;
1968
1969                 /*
1970                  * Flag last if we have no more requests, or if we have more
1971                  * but can't assign a driver tag to it.
1972                  */
1973                 if (list_empty(list))
1974                         bd.last = true;
1975                 else {
1976                         nxt = list_first_entry(list, struct request, queuelist);
1977                         bd.last = !blk_mq_get_driver_tag(nxt);
1978                 }
1979
1980                 /*
1981                  * once the request is queued to lld, no need to cover the
1982                  * budget any more
1983                  */
1984                 if (nr_budgets)
1985                         nr_budgets--;
1986                 ret = q->mq_ops->queue_rq(hctx, &bd);
1987                 switch (ret) {
1988                 case BLK_STS_OK:
1989                         queued++;
1990                         break;
1991                 case BLK_STS_RESOURCE:
1992                         needs_resource = true;
1993                         fallthrough;
1994                 case BLK_STS_DEV_RESOURCE:
1995                         blk_mq_handle_dev_resource(rq, list);
1996                         goto out;
1997                 case BLK_STS_ZONE_RESOURCE:
1998                         /*
1999                          * Move the request to zone_list and keep going through
2000                          * the dispatch list to find more requests the drive can
2001                          * accept.
2002                          */
2003                         blk_mq_handle_zone_resource(rq, &zone_list);
2004                         needs_resource = true;
2005                         break;
2006                 default:
2007                         errors++;
2008                         blk_mq_end_request(rq, ret);
2009                 }
2010         } while (!list_empty(list));
2011 out:
2012         if (!list_empty(&zone_list))
2013                 list_splice_tail_init(&zone_list, list);
2014
2015         /* If we didn't flush the entire list, we could have told the driver
2016          * there was more coming, but that turned out to be a lie.
2017          */
2018         if ((!list_empty(list) || errors || needs_resource ||
2019              ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
2020                 q->mq_ops->commit_rqs(hctx);
2021         /*
2022          * Any items that need requeuing? Stuff them into hctx->dispatch,
2023          * that is where we will continue on next queue run.
2024          */
2025         if (!list_empty(list)) {
2026                 bool needs_restart;
2027                 /* For non-shared tags, the RESTART check will suffice */
2028                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2029                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
2030
2031                 if (nr_budgets)
2032                         blk_mq_release_budgets(q, list);
2033
2034                 spin_lock(&hctx->lock);
2035                 list_splice_tail_init(list, &hctx->dispatch);
2036                 spin_unlock(&hctx->lock);
2037
2038                 /*
2039                  * Order adding requests to hctx->dispatch and checking
2040                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2041                  * in blk_mq_sched_restart(). Avoid restart code path to
2042                  * miss the new added requests to hctx->dispatch, meantime
2043                  * SCHED_RESTART is observed here.
2044                  */
2045                 smp_mb();
2046
2047                 /*
2048                  * If SCHED_RESTART was set by the caller of this function and
2049                  * it is no longer set that means that it was cleared by another
2050                  * thread and hence that a queue rerun is needed.
2051                  *
2052                  * If 'no_tag' is set, that means that we failed getting
2053                  * a driver tag with an I/O scheduler attached. If our dispatch
2054                  * waitqueue is no longer active, ensure that we run the queue
2055                  * AFTER adding our entries back to the list.
2056                  *
2057                  * If no I/O scheduler has been configured it is possible that
2058                  * the hardware queue got stopped and restarted before requests
2059                  * were pushed back onto the dispatch list. Rerun the queue to
2060                  * avoid starvation. Notes:
2061                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2062                  *   been stopped before rerunning a queue.
2063                  * - Some but not all block drivers stop a queue before
2064                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2065                  *   and dm-rq.
2066                  *
2067                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2068                  * bit is set, run queue after a delay to avoid IO stalls
2069                  * that could otherwise occur if the queue is idle.  We'll do
2070                  * similar if we couldn't get budget or couldn't lock a zone
2071                  * and SCHED_RESTART is set.
2072                  */
2073                 needs_restart = blk_mq_sched_needs_restart(hctx);
2074                 if (prep == PREP_DISPATCH_NO_BUDGET)
2075                         needs_resource = true;
2076                 if (!needs_restart ||
2077                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2078                         blk_mq_run_hw_queue(hctx, true);
2079                 else if (needs_resource)
2080                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2081
2082                 blk_mq_update_dispatch_busy(hctx, true);
2083                 return false;
2084         } else
2085                 blk_mq_update_dispatch_busy(hctx, false);
2086
2087         return (queued + errors) != 0;
2088 }
2089
2090 /**
2091  * __blk_mq_run_hw_queue - Run a hardware queue.
2092  * @hctx: Pointer to the hardware queue to run.
2093  *
2094  * Send pending requests to the hardware.
2095  */
2096 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2097 {
2098         /*
2099          * We can't run the queue inline with ints disabled. Ensure that
2100          * we catch bad users of this early.
2101          */
2102         WARN_ON_ONCE(in_interrupt());
2103
2104         blk_mq_run_dispatch_ops(hctx->queue,
2105                         blk_mq_sched_dispatch_requests(hctx));
2106 }
2107
2108 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2109 {
2110         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2111
2112         if (cpu >= nr_cpu_ids)
2113                 cpu = cpumask_first(hctx->cpumask);
2114         return cpu;
2115 }
2116
2117 /*
2118  * It'd be great if the workqueue API had a way to pass
2119  * in a mask and had some smarts for more clever placement.
2120  * For now we just round-robin here, switching for every
2121  * BLK_MQ_CPU_WORK_BATCH queued items.
2122  */
2123 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2124 {
2125         bool tried = false;
2126         int next_cpu = hctx->next_cpu;
2127
2128         if (hctx->queue->nr_hw_queues == 1)
2129                 return WORK_CPU_UNBOUND;
2130
2131         if (--hctx->next_cpu_batch <= 0) {
2132 select_cpu:
2133                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2134                                 cpu_online_mask);
2135                 if (next_cpu >= nr_cpu_ids)
2136                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2137                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2138         }
2139
2140         /*
2141          * Do unbound schedule if we can't find a online CPU for this hctx,
2142          * and it should only happen in the path of handling CPU DEAD.
2143          */
2144         if (!cpu_online(next_cpu)) {
2145                 if (!tried) {
2146                         tried = true;
2147                         goto select_cpu;
2148                 }
2149
2150                 /*
2151                  * Make sure to re-select CPU next time once after CPUs
2152                  * in hctx->cpumask become online again.
2153                  */
2154                 hctx->next_cpu = next_cpu;
2155                 hctx->next_cpu_batch = 1;
2156                 return WORK_CPU_UNBOUND;
2157         }
2158
2159         hctx->next_cpu = next_cpu;
2160         return next_cpu;
2161 }
2162
2163 /**
2164  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2165  * @hctx: Pointer to the hardware queue to run.
2166  * @async: If we want to run the queue asynchronously.
2167  * @msecs: Milliseconds of delay to wait before running the queue.
2168  *
2169  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2170  * with a delay of @msecs.
2171  */
2172 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2173                                         unsigned long msecs)
2174 {
2175         if (unlikely(blk_mq_hctx_stopped(hctx)))
2176                 return;
2177
2178         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2179                 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2180                         __blk_mq_run_hw_queue(hctx);
2181                         return;
2182                 }
2183         }
2184
2185         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2186                                     msecs_to_jiffies(msecs));
2187 }
2188
2189 /**
2190  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2191  * @hctx: Pointer to the hardware queue to run.
2192  * @msecs: Milliseconds of delay to wait before running the queue.
2193  *
2194  * Run a hardware queue asynchronously with a delay of @msecs.
2195  */
2196 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2197 {
2198         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2199 }
2200 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2201
2202 /**
2203  * blk_mq_run_hw_queue - Start to run a hardware queue.
2204  * @hctx: Pointer to the hardware queue to run.
2205  * @async: If we want to run the queue asynchronously.
2206  *
2207  * Check if the request queue is not in a quiesced state and if there are
2208  * pending requests to be sent. If this is true, run the queue to send requests
2209  * to hardware.
2210  */
2211 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2212 {
2213         bool need_run;
2214
2215         /*
2216          * When queue is quiesced, we may be switching io scheduler, or
2217          * updating nr_hw_queues, or other things, and we can't run queue
2218          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2219          *
2220          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2221          * quiesced.
2222          */
2223         __blk_mq_run_dispatch_ops(hctx->queue, false,
2224                 need_run = !blk_queue_quiesced(hctx->queue) &&
2225                 blk_mq_hctx_has_pending(hctx));
2226
2227         if (need_run)
2228                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2229 }
2230 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2231
2232 /*
2233  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2234  * scheduler.
2235  */
2236 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2237 {
2238         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2239         /*
2240          * If the IO scheduler does not respect hardware queues when
2241          * dispatching, we just don't bother with multiple HW queues and
2242          * dispatch from hctx for the current CPU since running multiple queues
2243          * just causes lock contention inside the scheduler and pointless cache
2244          * bouncing.
2245          */
2246         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2247
2248         if (!blk_mq_hctx_stopped(hctx))
2249                 return hctx;
2250         return NULL;
2251 }
2252
2253 /**
2254  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2255  * @q: Pointer to the request queue to run.
2256  * @async: If we want to run the queue asynchronously.
2257  */
2258 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2259 {
2260         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2261         unsigned long i;
2262
2263         sq_hctx = NULL;
2264         if (blk_queue_sq_sched(q))
2265                 sq_hctx = blk_mq_get_sq_hctx(q);
2266         queue_for_each_hw_ctx(q, hctx, i) {
2267                 if (blk_mq_hctx_stopped(hctx))
2268                         continue;
2269                 /*
2270                  * Dispatch from this hctx either if there's no hctx preferred
2271                  * by IO scheduler or if it has requests that bypass the
2272                  * scheduler.
2273                  */
2274                 if (!sq_hctx || sq_hctx == hctx ||
2275                     !list_empty_careful(&hctx->dispatch))
2276                         blk_mq_run_hw_queue(hctx, async);
2277         }
2278 }
2279 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2280
2281 /**
2282  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2283  * @q: Pointer to the request queue to run.
2284  * @msecs: Milliseconds of delay to wait before running the queues.
2285  */
2286 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2287 {
2288         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2289         unsigned long i;
2290
2291         sq_hctx = NULL;
2292         if (blk_queue_sq_sched(q))
2293                 sq_hctx = blk_mq_get_sq_hctx(q);
2294         queue_for_each_hw_ctx(q, hctx, i) {
2295                 if (blk_mq_hctx_stopped(hctx))
2296                         continue;
2297                 /*
2298                  * If there is already a run_work pending, leave the
2299                  * pending delay untouched. Otherwise, a hctx can stall
2300                  * if another hctx is re-delaying the other's work
2301                  * before the work executes.
2302                  */
2303                 if (delayed_work_pending(&hctx->run_work))
2304                         continue;
2305                 /*
2306                  * Dispatch from this hctx either if there's no hctx preferred
2307                  * by IO scheduler or if it has requests that bypass the
2308                  * scheduler.
2309                  */
2310                 if (!sq_hctx || sq_hctx == hctx ||
2311                     !list_empty_careful(&hctx->dispatch))
2312                         blk_mq_delay_run_hw_queue(hctx, msecs);
2313         }
2314 }
2315 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2316
2317 /*
2318  * This function is often used for pausing .queue_rq() by driver when
2319  * there isn't enough resource or some conditions aren't satisfied, and
2320  * BLK_STS_RESOURCE is usually returned.
2321  *
2322  * We do not guarantee that dispatch can be drained or blocked
2323  * after blk_mq_stop_hw_queue() returns. Please use
2324  * blk_mq_quiesce_queue() for that requirement.
2325  */
2326 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2327 {
2328         cancel_delayed_work(&hctx->run_work);
2329
2330         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2331 }
2332 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2333
2334 /*
2335  * This function is often used for pausing .queue_rq() by driver when
2336  * there isn't enough resource or some conditions aren't satisfied, and
2337  * BLK_STS_RESOURCE is usually returned.
2338  *
2339  * We do not guarantee that dispatch can be drained or blocked
2340  * after blk_mq_stop_hw_queues() returns. Please use
2341  * blk_mq_quiesce_queue() for that requirement.
2342  */
2343 void blk_mq_stop_hw_queues(struct request_queue *q)
2344 {
2345         struct blk_mq_hw_ctx *hctx;
2346         unsigned long i;
2347
2348         queue_for_each_hw_ctx(q, hctx, i)
2349                 blk_mq_stop_hw_queue(hctx);
2350 }
2351 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2352
2353 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2354 {
2355         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2356
2357         blk_mq_run_hw_queue(hctx, false);
2358 }
2359 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2360
2361 void blk_mq_start_hw_queues(struct request_queue *q)
2362 {
2363         struct blk_mq_hw_ctx *hctx;
2364         unsigned long i;
2365
2366         queue_for_each_hw_ctx(q, hctx, i)
2367                 blk_mq_start_hw_queue(hctx);
2368 }
2369 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2370
2371 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2372 {
2373         if (!blk_mq_hctx_stopped(hctx))
2374                 return;
2375
2376         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2377         blk_mq_run_hw_queue(hctx, async);
2378 }
2379 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2380
2381 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2382 {
2383         struct blk_mq_hw_ctx *hctx;
2384         unsigned long i;
2385
2386         queue_for_each_hw_ctx(q, hctx, i)
2387                 blk_mq_start_stopped_hw_queue(hctx, async);
2388 }
2389 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2390
2391 static void blk_mq_run_work_fn(struct work_struct *work)
2392 {
2393         struct blk_mq_hw_ctx *hctx;
2394
2395         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2396
2397         /*
2398          * If we are stopped, don't run the queue.
2399          */
2400         if (blk_mq_hctx_stopped(hctx))
2401                 return;
2402
2403         __blk_mq_run_hw_queue(hctx);
2404 }
2405
2406 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2407                                             struct request *rq,
2408                                             bool at_head)
2409 {
2410         struct blk_mq_ctx *ctx = rq->mq_ctx;
2411         enum hctx_type type = hctx->type;
2412
2413         lockdep_assert_held(&ctx->lock);
2414
2415         trace_block_rq_insert(rq);
2416
2417         if (at_head)
2418                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2419         else
2420                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2421 }
2422
2423 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2424                              bool at_head)
2425 {
2426         struct blk_mq_ctx *ctx = rq->mq_ctx;
2427
2428         lockdep_assert_held(&ctx->lock);
2429
2430         __blk_mq_insert_req_list(hctx, rq, at_head);
2431         blk_mq_hctx_mark_pending(hctx, ctx);
2432 }
2433
2434 /**
2435  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2436  * @rq: Pointer to request to be inserted.
2437  * @at_head: true if the request should be inserted at the head of the list.
2438  * @run_queue: If we should run the hardware queue after inserting the request.
2439  *
2440  * Should only be used carefully, when the caller knows we want to
2441  * bypass a potential IO scheduler on the target device.
2442  */
2443 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2444                                   bool run_queue)
2445 {
2446         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2447
2448         spin_lock(&hctx->lock);
2449         if (at_head)
2450                 list_add(&rq->queuelist, &hctx->dispatch);
2451         else
2452                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2453         spin_unlock(&hctx->lock);
2454
2455         if (run_queue)
2456                 blk_mq_run_hw_queue(hctx, false);
2457 }
2458
2459 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2460                             struct list_head *list)
2461
2462 {
2463         struct request *rq;
2464         enum hctx_type type = hctx->type;
2465
2466         /*
2467          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2468          * offline now
2469          */
2470         list_for_each_entry(rq, list, queuelist) {
2471                 BUG_ON(rq->mq_ctx != ctx);
2472                 trace_block_rq_insert(rq);
2473         }
2474
2475         spin_lock(&ctx->lock);
2476         list_splice_tail_init(list, &ctx->rq_lists[type]);
2477         blk_mq_hctx_mark_pending(hctx, ctx);
2478         spin_unlock(&ctx->lock);
2479 }
2480
2481 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2482                               bool from_schedule)
2483 {
2484         if (hctx->queue->mq_ops->commit_rqs) {
2485                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2486                 hctx->queue->mq_ops->commit_rqs(hctx);
2487         }
2488         *queued = 0;
2489 }
2490
2491 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2492                 unsigned int nr_segs)
2493 {
2494         int err;
2495
2496         if (bio->bi_opf & REQ_RAHEAD)
2497                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2498
2499         rq->__sector = bio->bi_iter.bi_sector;
2500         blk_rq_bio_prep(rq, bio, nr_segs);
2501
2502         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2503         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2504         WARN_ON_ONCE(err);
2505
2506         blk_account_io_start(rq);
2507 }
2508
2509 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2510                                             struct request *rq, bool last)
2511 {
2512         struct request_queue *q = rq->q;
2513         struct blk_mq_queue_data bd = {
2514                 .rq = rq,
2515                 .last = last,
2516         };
2517         blk_status_t ret;
2518
2519         /*
2520          * For OK queue, we are done. For error, caller may kill it.
2521          * Any other error (busy), just add it to our list as we
2522          * previously would have done.
2523          */
2524         ret = q->mq_ops->queue_rq(hctx, &bd);
2525         switch (ret) {
2526         case BLK_STS_OK:
2527                 blk_mq_update_dispatch_busy(hctx, false);
2528                 break;
2529         case BLK_STS_RESOURCE:
2530         case BLK_STS_DEV_RESOURCE:
2531                 blk_mq_update_dispatch_busy(hctx, true);
2532                 __blk_mq_requeue_request(rq);
2533                 break;
2534         default:
2535                 blk_mq_update_dispatch_busy(hctx, false);
2536                 break;
2537         }
2538
2539         return ret;
2540 }
2541
2542 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2543                                                 struct request *rq,
2544                                                 bool bypass_insert, bool last)
2545 {
2546         struct request_queue *q = rq->q;
2547         bool run_queue = true;
2548         int budget_token;
2549
2550         /*
2551          * RCU or SRCU read lock is needed before checking quiesced flag.
2552          *
2553          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2554          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2555          * and avoid driver to try to dispatch again.
2556          */
2557         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2558                 run_queue = false;
2559                 bypass_insert = false;
2560                 goto insert;
2561         }
2562
2563         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2564                 goto insert;
2565
2566         budget_token = blk_mq_get_dispatch_budget(q);
2567         if (budget_token < 0)
2568                 goto insert;
2569
2570         blk_mq_set_rq_budget_token(rq, budget_token);
2571
2572         if (!blk_mq_get_driver_tag(rq)) {
2573                 blk_mq_put_dispatch_budget(q, budget_token);
2574                 goto insert;
2575         }
2576
2577         return __blk_mq_issue_directly(hctx, rq, last);
2578 insert:
2579         if (bypass_insert)
2580                 return BLK_STS_RESOURCE;
2581
2582         blk_mq_sched_insert_request(rq, false, run_queue, false);
2583
2584         return BLK_STS_OK;
2585 }
2586
2587 /**
2588  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2589  * @hctx: Pointer of the associated hardware queue.
2590  * @rq: Pointer to request to be sent.
2591  *
2592  * If the device has enough resources to accept a new request now, send the
2593  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2594  * we can try send it another time in the future. Requests inserted at this
2595  * queue have higher priority.
2596  */
2597 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2598                 struct request *rq)
2599 {
2600         blk_status_t ret =
2601                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2602
2603         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2604                 blk_mq_request_bypass_insert(rq, false, true);
2605         else if (ret != BLK_STS_OK)
2606                 blk_mq_end_request(rq, ret);
2607 }
2608
2609 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2610 {
2611         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2612 }
2613
2614 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2615 {
2616         struct blk_mq_hw_ctx *hctx = NULL;
2617         struct request *rq;
2618         int queued = 0;
2619         int errors = 0;
2620
2621         while ((rq = rq_list_pop(&plug->mq_list))) {
2622                 bool last = rq_list_empty(plug->mq_list);
2623                 blk_status_t ret;
2624
2625                 if (hctx != rq->mq_hctx) {
2626                         if (hctx)
2627                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2628                         hctx = rq->mq_hctx;
2629                 }
2630
2631                 ret = blk_mq_request_issue_directly(rq, last);
2632                 switch (ret) {
2633                 case BLK_STS_OK:
2634                         queued++;
2635                         break;
2636                 case BLK_STS_RESOURCE:
2637                 case BLK_STS_DEV_RESOURCE:
2638                         blk_mq_request_bypass_insert(rq, false, true);
2639                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2640                         return;
2641                 default:
2642                         blk_mq_end_request(rq, ret);
2643                         errors++;
2644                         break;
2645                 }
2646         }
2647
2648         /*
2649          * If we didn't flush the entire list, we could have told the driver
2650          * there was more coming, but that turned out to be a lie.
2651          */
2652         if (errors)
2653                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2654 }
2655
2656 static void __blk_mq_flush_plug_list(struct request_queue *q,
2657                                      struct blk_plug *plug)
2658 {
2659         if (blk_queue_quiesced(q))
2660                 return;
2661         q->mq_ops->queue_rqs(&plug->mq_list);
2662 }
2663
2664 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2665 {
2666         struct blk_mq_hw_ctx *this_hctx = NULL;
2667         struct blk_mq_ctx *this_ctx = NULL;
2668         struct request *requeue_list = NULL;
2669         unsigned int depth = 0;
2670         LIST_HEAD(list);
2671
2672         do {
2673                 struct request *rq = rq_list_pop(&plug->mq_list);
2674
2675                 if (!this_hctx) {
2676                         this_hctx = rq->mq_hctx;
2677                         this_ctx = rq->mq_ctx;
2678                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2679                         rq_list_add(&requeue_list, rq);
2680                         continue;
2681                 }
2682                 list_add_tail(&rq->queuelist, &list);
2683                 depth++;
2684         } while (!rq_list_empty(plug->mq_list));
2685
2686         plug->mq_list = requeue_list;
2687         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2688         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2689 }
2690
2691 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2692 {
2693         struct request *rq;
2694
2695         if (rq_list_empty(plug->mq_list))
2696                 return;
2697         plug->rq_count = 0;
2698
2699         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2700                 struct request_queue *q;
2701
2702                 rq = rq_list_peek(&plug->mq_list);
2703                 q = rq->q;
2704
2705                 /*
2706                  * Peek first request and see if we have a ->queue_rqs() hook.
2707                  * If we do, we can dispatch the whole plug list in one go. We
2708                  * already know at this point that all requests belong to the
2709                  * same queue, caller must ensure that's the case.
2710                  *
2711                  * Since we pass off the full list to the driver at this point,
2712                  * we do not increment the active request count for the queue.
2713                  * Bypass shared tags for now because of that.
2714                  */
2715                 if (q->mq_ops->queue_rqs &&
2716                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2717                         blk_mq_run_dispatch_ops(q,
2718                                 __blk_mq_flush_plug_list(q, plug));
2719                         if (rq_list_empty(plug->mq_list))
2720                                 return;
2721                 }
2722
2723                 blk_mq_run_dispatch_ops(q,
2724                                 blk_mq_plug_issue_direct(plug, false));
2725                 if (rq_list_empty(plug->mq_list))
2726                         return;
2727         }
2728
2729         do {
2730                 blk_mq_dispatch_plug_list(plug, from_schedule);
2731         } while (!rq_list_empty(plug->mq_list));
2732 }
2733
2734 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2735                 struct list_head *list)
2736 {
2737         int queued = 0;
2738         int errors = 0;
2739
2740         while (!list_empty(list)) {
2741                 blk_status_t ret;
2742                 struct request *rq = list_first_entry(list, struct request,
2743                                 queuelist);
2744
2745                 list_del_init(&rq->queuelist);
2746                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2747                 if (ret != BLK_STS_OK) {
2748                         errors++;
2749                         if (ret == BLK_STS_RESOURCE ||
2750                                         ret == BLK_STS_DEV_RESOURCE) {
2751                                 blk_mq_request_bypass_insert(rq, false,
2752                                                         list_empty(list));
2753                                 break;
2754                         }
2755                         blk_mq_end_request(rq, ret);
2756                 } else
2757                         queued++;
2758         }
2759
2760         /*
2761          * If we didn't flush the entire list, we could have told
2762          * the driver there was more coming, but that turned out to
2763          * be a lie.
2764          */
2765         if ((!list_empty(list) || errors) &&
2766              hctx->queue->mq_ops->commit_rqs && queued)
2767                 hctx->queue->mq_ops->commit_rqs(hctx);
2768 }
2769
2770 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2771                                      struct bio *bio, unsigned int nr_segs)
2772 {
2773         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2774                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2775                         return true;
2776                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2777                         return true;
2778         }
2779         return false;
2780 }
2781
2782 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2783                                                struct blk_plug *plug,
2784                                                struct bio *bio,
2785                                                unsigned int nsegs)
2786 {
2787         struct blk_mq_alloc_data data = {
2788                 .q              = q,
2789                 .nr_tags        = 1,
2790                 .cmd_flags      = bio->bi_opf,
2791         };
2792         struct request *rq;
2793
2794         if (unlikely(bio_queue_enter(bio)))
2795                 return NULL;
2796
2797         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2798                 goto queue_exit;
2799
2800         rq_qos_throttle(q, bio);
2801
2802         if (plug) {
2803                 data.nr_tags = plug->nr_ios;
2804                 plug->nr_ios = 1;
2805                 data.cached_rq = &plug->cached_rq;
2806         }
2807
2808         rq = __blk_mq_alloc_requests(&data);
2809         if (rq)
2810                 return rq;
2811         rq_qos_cleanup(q, bio);
2812         if (bio->bi_opf & REQ_NOWAIT)
2813                 bio_wouldblock_error(bio);
2814 queue_exit:
2815         blk_queue_exit(q);
2816         return NULL;
2817 }
2818
2819 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2820                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2821 {
2822         struct request *rq;
2823
2824         if (!plug)
2825                 return NULL;
2826         rq = rq_list_peek(&plug->cached_rq);
2827         if (!rq || rq->q != q)
2828                 return NULL;
2829
2830         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2831                 *bio = NULL;
2832                 return NULL;
2833         }
2834
2835         if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2836                 return NULL;
2837         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2838                 return NULL;
2839
2840         /*
2841          * If any qos ->throttle() end up blocking, we will have flushed the
2842          * plug and hence killed the cached_rq list as well. Pop this entry
2843          * before we throttle.
2844          */
2845         plug->cached_rq = rq_list_next(rq);
2846         rq_qos_throttle(q, *bio);
2847
2848         rq->cmd_flags = (*bio)->bi_opf;
2849         INIT_LIST_HEAD(&rq->queuelist);
2850         return rq;
2851 }
2852
2853 static void bio_set_ioprio(struct bio *bio)
2854 {
2855         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2856         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2857                 bio->bi_ioprio = get_current_ioprio();
2858         blkcg_set_ioprio(bio);
2859 }
2860
2861 /**
2862  * blk_mq_submit_bio - Create and send a request to block device.
2863  * @bio: Bio pointer.
2864  *
2865  * Builds up a request structure from @q and @bio and send to the device. The
2866  * request may not be queued directly to hardware if:
2867  * * This request can be merged with another one
2868  * * We want to place request at plug queue for possible future merging
2869  * * There is an IO scheduler active at this queue
2870  *
2871  * It will not queue the request if there is an error with the bio, or at the
2872  * request creation.
2873  */
2874 void blk_mq_submit_bio(struct bio *bio)
2875 {
2876         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2877         struct blk_plug *plug = blk_mq_plug(bio);
2878         const int is_sync = op_is_sync(bio->bi_opf);
2879         struct request *rq;
2880         unsigned int nr_segs = 1;
2881         blk_status_t ret;
2882
2883         bio = blk_queue_bounce(bio, q);
2884         if (bio_may_exceed_limits(bio, &q->limits))
2885                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2886
2887         if (!bio_integrity_prep(bio))
2888                 return;
2889
2890         bio_set_ioprio(bio);
2891
2892         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2893         if (!rq) {
2894                 if (!bio)
2895                         return;
2896                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2897                 if (unlikely(!rq))
2898                         return;
2899         }
2900
2901         trace_block_getrq(bio);
2902
2903         rq_qos_track(q, rq, bio);
2904
2905         blk_mq_bio_to_request(rq, bio, nr_segs);
2906
2907         ret = blk_crypto_init_request(rq);
2908         if (ret != BLK_STS_OK) {
2909                 bio->bi_status = ret;
2910                 bio_endio(bio);
2911                 blk_mq_free_request(rq);
2912                 return;
2913         }
2914
2915         if (op_is_flush(bio->bi_opf)) {
2916                 blk_insert_flush(rq);
2917                 return;
2918         }
2919
2920         if (plug)
2921                 blk_add_rq_to_plug(plug, rq);
2922         else if ((rq->rq_flags & RQF_ELV) ||
2923                  (rq->mq_hctx->dispatch_busy &&
2924                   (q->nr_hw_queues == 1 || !is_sync)))
2925                 blk_mq_sched_insert_request(rq, false, true, true);
2926         else
2927                 blk_mq_run_dispatch_ops(rq->q,
2928                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2929 }
2930
2931 #ifdef CONFIG_BLK_MQ_STACKING
2932 /**
2933  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2934  * @rq: the request being queued
2935  */
2936 blk_status_t blk_insert_cloned_request(struct request *rq)
2937 {
2938         struct request_queue *q = rq->q;
2939         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2940         blk_status_t ret;
2941
2942         if (blk_rq_sectors(rq) > max_sectors) {
2943                 /*
2944                  * SCSI device does not have a good way to return if
2945                  * Write Same/Zero is actually supported. If a device rejects
2946                  * a non-read/write command (discard, write same,etc.) the
2947                  * low-level device driver will set the relevant queue limit to
2948                  * 0 to prevent blk-lib from issuing more of the offending
2949                  * operations. Commands queued prior to the queue limit being
2950                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2951                  * errors being propagated to upper layers.
2952                  */
2953                 if (max_sectors == 0)
2954                         return BLK_STS_NOTSUPP;
2955
2956                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2957                         __func__, blk_rq_sectors(rq), max_sectors);
2958                 return BLK_STS_IOERR;
2959         }
2960
2961         /*
2962          * The queue settings related to segment counting may differ from the
2963          * original queue.
2964          */
2965         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2966         if (rq->nr_phys_segments > queue_max_segments(q)) {
2967                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2968                         __func__, rq->nr_phys_segments, queue_max_segments(q));
2969                 return BLK_STS_IOERR;
2970         }
2971
2972         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2973                 return BLK_STS_IOERR;
2974
2975         if (blk_crypto_insert_cloned_request(rq))
2976                 return BLK_STS_IOERR;
2977
2978         blk_account_io_start(rq);
2979
2980         /*
2981          * Since we have a scheduler attached on the top device,
2982          * bypass a potential scheduler on the bottom device for
2983          * insert.
2984          */
2985         blk_mq_run_dispatch_ops(q,
2986                         ret = blk_mq_request_issue_directly(rq, true));
2987         if (ret)
2988                 blk_account_io_done(rq, ktime_get_ns());
2989         return ret;
2990 }
2991 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2992
2993 /**
2994  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2995  * @rq: the clone request to be cleaned up
2996  *
2997  * Description:
2998  *     Free all bios in @rq for a cloned request.
2999  */
3000 void blk_rq_unprep_clone(struct request *rq)
3001 {
3002         struct bio *bio;
3003
3004         while ((bio = rq->bio) != NULL) {
3005                 rq->bio = bio->bi_next;
3006
3007                 bio_put(bio);
3008         }
3009 }
3010 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3011
3012 /**
3013  * blk_rq_prep_clone - Helper function to setup clone request
3014  * @rq: the request to be setup
3015  * @rq_src: original request to be cloned
3016  * @bs: bio_set that bios for clone are allocated from
3017  * @gfp_mask: memory allocation mask for bio
3018  * @bio_ctr: setup function to be called for each clone bio.
3019  *           Returns %0 for success, non %0 for failure.
3020  * @data: private data to be passed to @bio_ctr
3021  *
3022  * Description:
3023  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3024  *     Also, pages which the original bios are pointing to are not copied
3025  *     and the cloned bios just point same pages.
3026  *     So cloned bios must be completed before original bios, which means
3027  *     the caller must complete @rq before @rq_src.
3028  */
3029 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3030                       struct bio_set *bs, gfp_t gfp_mask,
3031                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3032                       void *data)
3033 {
3034         struct bio *bio, *bio_src;
3035
3036         if (!bs)
3037                 bs = &fs_bio_set;
3038
3039         __rq_for_each_bio(bio_src, rq_src) {
3040                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3041                                       bs);
3042                 if (!bio)
3043                         goto free_and_out;
3044
3045                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3046                         goto free_and_out;
3047
3048                 if (rq->bio) {
3049                         rq->biotail->bi_next = bio;
3050                         rq->biotail = bio;
3051                 } else {
3052                         rq->bio = rq->biotail = bio;
3053                 }
3054                 bio = NULL;
3055         }
3056
3057         /* Copy attributes of the original request to the clone request. */
3058         rq->__sector = blk_rq_pos(rq_src);
3059         rq->__data_len = blk_rq_bytes(rq_src);
3060         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3061                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3062                 rq->special_vec = rq_src->special_vec;
3063         }
3064         rq->nr_phys_segments = rq_src->nr_phys_segments;
3065         rq->ioprio = rq_src->ioprio;
3066
3067         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3068                 goto free_and_out;
3069
3070         return 0;
3071
3072 free_and_out:
3073         if (bio)
3074                 bio_put(bio);
3075         blk_rq_unprep_clone(rq);
3076
3077         return -ENOMEM;
3078 }
3079 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3080 #endif /* CONFIG_BLK_MQ_STACKING */
3081
3082 /*
3083  * Steal bios from a request and add them to a bio list.
3084  * The request must not have been partially completed before.
3085  */
3086 void blk_steal_bios(struct bio_list *list, struct request *rq)
3087 {
3088         if (rq->bio) {
3089                 if (list->tail)
3090                         list->tail->bi_next = rq->bio;
3091                 else
3092                         list->head = rq->bio;
3093                 list->tail = rq->biotail;
3094
3095                 rq->bio = NULL;
3096                 rq->biotail = NULL;
3097         }
3098
3099         rq->__data_len = 0;
3100 }
3101 EXPORT_SYMBOL_GPL(blk_steal_bios);
3102
3103 static size_t order_to_size(unsigned int order)
3104 {
3105         return (size_t)PAGE_SIZE << order;
3106 }
3107
3108 /* called before freeing request pool in @tags */
3109 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3110                                     struct blk_mq_tags *tags)
3111 {
3112         struct page *page;
3113         unsigned long flags;
3114
3115         /* There is no need to clear a driver tags own mapping */
3116         if (drv_tags == tags)
3117                 return;
3118
3119         list_for_each_entry(page, &tags->page_list, lru) {
3120                 unsigned long start = (unsigned long)page_address(page);
3121                 unsigned long end = start + order_to_size(page->private);
3122                 int i;
3123
3124                 for (i = 0; i < drv_tags->nr_tags; i++) {
3125                         struct request *rq = drv_tags->rqs[i];
3126                         unsigned long rq_addr = (unsigned long)rq;
3127
3128                         if (rq_addr >= start && rq_addr < end) {
3129                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3130                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3131                         }
3132                 }
3133         }
3134
3135         /*
3136          * Wait until all pending iteration is done.
3137          *
3138          * Request reference is cleared and it is guaranteed to be observed
3139          * after the ->lock is released.
3140          */
3141         spin_lock_irqsave(&drv_tags->lock, flags);
3142         spin_unlock_irqrestore(&drv_tags->lock, flags);
3143 }
3144
3145 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3146                      unsigned int hctx_idx)
3147 {
3148         struct blk_mq_tags *drv_tags;
3149         struct page *page;
3150
3151         if (list_empty(&tags->page_list))
3152                 return;
3153
3154         if (blk_mq_is_shared_tags(set->flags))
3155                 drv_tags = set->shared_tags;
3156         else
3157                 drv_tags = set->tags[hctx_idx];
3158
3159         if (tags->static_rqs && set->ops->exit_request) {
3160                 int i;
3161
3162                 for (i = 0; i < tags->nr_tags; i++) {
3163                         struct request *rq = tags->static_rqs[i];
3164
3165                         if (!rq)
3166                                 continue;
3167                         set->ops->exit_request(set, rq, hctx_idx);
3168                         tags->static_rqs[i] = NULL;
3169                 }
3170         }
3171
3172         blk_mq_clear_rq_mapping(drv_tags, tags);
3173
3174         while (!list_empty(&tags->page_list)) {
3175                 page = list_first_entry(&tags->page_list, struct page, lru);
3176                 list_del_init(&page->lru);
3177                 /*
3178                  * Remove kmemleak object previously allocated in
3179                  * blk_mq_alloc_rqs().
3180                  */
3181                 kmemleak_free(page_address(page));
3182                 __free_pages(page, page->private);
3183         }
3184 }
3185
3186 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3187 {
3188         kfree(tags->rqs);
3189         tags->rqs = NULL;
3190         kfree(tags->static_rqs);
3191         tags->static_rqs = NULL;
3192
3193         blk_mq_free_tags(tags);
3194 }
3195
3196 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3197                 unsigned int hctx_idx)
3198 {
3199         int i;
3200
3201         for (i = 0; i < set->nr_maps; i++) {
3202                 unsigned int start = set->map[i].queue_offset;
3203                 unsigned int end = start + set->map[i].nr_queues;
3204
3205                 if (hctx_idx >= start && hctx_idx < end)
3206                         break;
3207         }
3208
3209         if (i >= set->nr_maps)
3210                 i = HCTX_TYPE_DEFAULT;
3211
3212         return i;
3213 }
3214
3215 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3216                 unsigned int hctx_idx)
3217 {
3218         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3219
3220         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3221 }
3222
3223 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3224                                                unsigned int hctx_idx,
3225                                                unsigned int nr_tags,
3226                                                unsigned int reserved_tags)
3227 {
3228         int node = blk_mq_get_hctx_node(set, hctx_idx);
3229         struct blk_mq_tags *tags;
3230
3231         if (node == NUMA_NO_NODE)
3232                 node = set->numa_node;
3233
3234         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3235                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3236         if (!tags)
3237                 return NULL;
3238
3239         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3240                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3241                                  node);
3242         if (!tags->rqs) {
3243                 blk_mq_free_tags(tags);
3244                 return NULL;
3245         }
3246
3247         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3248                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3249                                         node);
3250         if (!tags->static_rqs) {
3251                 kfree(tags->rqs);
3252                 blk_mq_free_tags(tags);
3253                 return NULL;
3254         }
3255
3256         return tags;
3257 }
3258
3259 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3260                                unsigned int hctx_idx, int node)
3261 {
3262         int ret;
3263
3264         if (set->ops->init_request) {
3265                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3266                 if (ret)
3267                         return ret;
3268         }
3269
3270         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3271         return 0;
3272 }
3273
3274 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3275                             struct blk_mq_tags *tags,
3276                             unsigned int hctx_idx, unsigned int depth)
3277 {
3278         unsigned int i, j, entries_per_page, max_order = 4;
3279         int node = blk_mq_get_hctx_node(set, hctx_idx);
3280         size_t rq_size, left;
3281
3282         if (node == NUMA_NO_NODE)
3283                 node = set->numa_node;
3284
3285         INIT_LIST_HEAD(&tags->page_list);
3286
3287         /*
3288          * rq_size is the size of the request plus driver payload, rounded
3289          * to the cacheline size
3290          */
3291         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3292                                 cache_line_size());
3293         left = rq_size * depth;
3294
3295         for (i = 0; i < depth; ) {
3296                 int this_order = max_order;
3297                 struct page *page;
3298                 int to_do;
3299                 void *p;
3300
3301                 while (this_order && left < order_to_size(this_order - 1))
3302                         this_order--;
3303
3304                 do {
3305                         page = alloc_pages_node(node,
3306                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3307                                 this_order);
3308                         if (page)
3309                                 break;
3310                         if (!this_order--)
3311                                 break;
3312                         if (order_to_size(this_order) < rq_size)
3313                                 break;
3314                 } while (1);
3315
3316                 if (!page)
3317                         goto fail;
3318
3319                 page->private = this_order;
3320                 list_add_tail(&page->lru, &tags->page_list);
3321
3322                 p = page_address(page);
3323                 /*
3324                  * Allow kmemleak to scan these pages as they contain pointers
3325                  * to additional allocations like via ops->init_request().
3326                  */
3327                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3328                 entries_per_page = order_to_size(this_order) / rq_size;
3329                 to_do = min(entries_per_page, depth - i);
3330                 left -= to_do * rq_size;
3331                 for (j = 0; j < to_do; j++) {
3332                         struct request *rq = p;
3333
3334                         tags->static_rqs[i] = rq;
3335                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3336                                 tags->static_rqs[i] = NULL;
3337                                 goto fail;
3338                         }
3339
3340                         p += rq_size;
3341                         i++;
3342                 }
3343         }
3344         return 0;
3345
3346 fail:
3347         blk_mq_free_rqs(set, tags, hctx_idx);
3348         return -ENOMEM;
3349 }
3350
3351 struct rq_iter_data {
3352         struct blk_mq_hw_ctx *hctx;
3353         bool has_rq;
3354 };
3355
3356 static bool blk_mq_has_request(struct request *rq, void *data)
3357 {
3358         struct rq_iter_data *iter_data = data;
3359
3360         if (rq->mq_hctx != iter_data->hctx)
3361                 return true;
3362         iter_data->has_rq = true;
3363         return false;
3364 }
3365
3366 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3367 {
3368         struct blk_mq_tags *tags = hctx->sched_tags ?
3369                         hctx->sched_tags : hctx->tags;
3370         struct rq_iter_data data = {
3371                 .hctx   = hctx,
3372         };
3373
3374         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3375         return data.has_rq;
3376 }
3377
3378 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3379                 struct blk_mq_hw_ctx *hctx)
3380 {
3381         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3382                 return false;
3383         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3384                 return false;
3385         return true;
3386 }
3387
3388 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3389 {
3390         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3391                         struct blk_mq_hw_ctx, cpuhp_online);
3392
3393         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3394             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3395                 return 0;
3396
3397         /*
3398          * Prevent new request from being allocated on the current hctx.
3399          *
3400          * The smp_mb__after_atomic() Pairs with the implied barrier in
3401          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3402          * seen once we return from the tag allocator.
3403          */
3404         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3405         smp_mb__after_atomic();
3406
3407         /*
3408          * Try to grab a reference to the queue and wait for any outstanding
3409          * requests.  If we could not grab a reference the queue has been
3410          * frozen and there are no requests.
3411          */
3412         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3413                 while (blk_mq_hctx_has_requests(hctx))
3414                         msleep(5);
3415                 percpu_ref_put(&hctx->queue->q_usage_counter);
3416         }
3417
3418         return 0;
3419 }
3420
3421 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3422 {
3423         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3424                         struct blk_mq_hw_ctx, cpuhp_online);
3425
3426         if (cpumask_test_cpu(cpu, hctx->cpumask))
3427                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3428         return 0;
3429 }
3430
3431 /*
3432  * 'cpu' is going away. splice any existing rq_list entries from this
3433  * software queue to the hw queue dispatch list, and ensure that it
3434  * gets run.
3435  */
3436 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3437 {
3438         struct blk_mq_hw_ctx *hctx;
3439         struct blk_mq_ctx *ctx;
3440         LIST_HEAD(tmp);
3441         enum hctx_type type;
3442
3443         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3444         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3445                 return 0;
3446
3447         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3448         type = hctx->type;
3449
3450         spin_lock(&ctx->lock);
3451         if (!list_empty(&ctx->rq_lists[type])) {
3452                 list_splice_init(&ctx->rq_lists[type], &tmp);
3453                 blk_mq_hctx_clear_pending(hctx, ctx);
3454         }
3455         spin_unlock(&ctx->lock);
3456
3457         if (list_empty(&tmp))
3458                 return 0;
3459
3460         spin_lock(&hctx->lock);
3461         list_splice_tail_init(&tmp, &hctx->dispatch);
3462         spin_unlock(&hctx->lock);
3463
3464         blk_mq_run_hw_queue(hctx, true);
3465         return 0;
3466 }
3467
3468 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3469 {
3470         if (!(hctx->flags & BLK_MQ_F_STACKING))
3471                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3472                                                     &hctx->cpuhp_online);
3473         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3474                                             &hctx->cpuhp_dead);
3475 }
3476
3477 /*
3478  * Before freeing hw queue, clearing the flush request reference in
3479  * tags->rqs[] for avoiding potential UAF.
3480  */
3481 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3482                 unsigned int queue_depth, struct request *flush_rq)
3483 {
3484         int i;
3485         unsigned long flags;
3486
3487         /* The hw queue may not be mapped yet */
3488         if (!tags)
3489                 return;
3490
3491         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3492
3493         for (i = 0; i < queue_depth; i++)
3494                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3495
3496         /*
3497          * Wait until all pending iteration is done.
3498          *
3499          * Request reference is cleared and it is guaranteed to be observed
3500          * after the ->lock is released.
3501          */
3502         spin_lock_irqsave(&tags->lock, flags);
3503         spin_unlock_irqrestore(&tags->lock, flags);
3504 }
3505
3506 /* hctx->ctxs will be freed in queue's release handler */
3507 static void blk_mq_exit_hctx(struct request_queue *q,
3508                 struct blk_mq_tag_set *set,
3509                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3510 {
3511         struct request *flush_rq = hctx->fq->flush_rq;
3512
3513         if (blk_mq_hw_queue_mapped(hctx))
3514                 blk_mq_tag_idle(hctx);
3515
3516         if (blk_queue_init_done(q))
3517                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3518                                 set->queue_depth, flush_rq);
3519         if (set->ops->exit_request)
3520                 set->ops->exit_request(set, flush_rq, hctx_idx);
3521
3522         if (set->ops->exit_hctx)
3523                 set->ops->exit_hctx(hctx, hctx_idx);
3524
3525         blk_mq_remove_cpuhp(hctx);
3526
3527         xa_erase(&q->hctx_table, hctx_idx);
3528
3529         spin_lock(&q->unused_hctx_lock);
3530         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3531         spin_unlock(&q->unused_hctx_lock);
3532 }
3533
3534 static void blk_mq_exit_hw_queues(struct request_queue *q,
3535                 struct blk_mq_tag_set *set, int nr_queue)
3536 {
3537         struct blk_mq_hw_ctx *hctx;
3538         unsigned long i;
3539
3540         queue_for_each_hw_ctx(q, hctx, i) {
3541                 if (i == nr_queue)
3542                         break;
3543                 blk_mq_exit_hctx(q, set, hctx, i);
3544         }
3545 }
3546
3547 static int blk_mq_init_hctx(struct request_queue *q,
3548                 struct blk_mq_tag_set *set,
3549                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3550 {
3551         hctx->queue_num = hctx_idx;
3552
3553         if (!(hctx->flags & BLK_MQ_F_STACKING))
3554                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3555                                 &hctx->cpuhp_online);
3556         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3557
3558         hctx->tags = set->tags[hctx_idx];
3559
3560         if (set->ops->init_hctx &&
3561             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3562                 goto unregister_cpu_notifier;
3563
3564         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3565                                 hctx->numa_node))
3566                 goto exit_hctx;
3567
3568         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3569                 goto exit_flush_rq;
3570
3571         return 0;
3572
3573  exit_flush_rq:
3574         if (set->ops->exit_request)
3575                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3576  exit_hctx:
3577         if (set->ops->exit_hctx)
3578                 set->ops->exit_hctx(hctx, hctx_idx);
3579  unregister_cpu_notifier:
3580         blk_mq_remove_cpuhp(hctx);
3581         return -1;
3582 }
3583
3584 static struct blk_mq_hw_ctx *
3585 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3586                 int node)
3587 {
3588         struct blk_mq_hw_ctx *hctx;
3589         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3590
3591         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3592         if (!hctx)
3593                 goto fail_alloc_hctx;
3594
3595         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3596                 goto free_hctx;
3597
3598         atomic_set(&hctx->nr_active, 0);
3599         if (node == NUMA_NO_NODE)
3600                 node = set->numa_node;
3601         hctx->numa_node = node;
3602
3603         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3604         spin_lock_init(&hctx->lock);
3605         INIT_LIST_HEAD(&hctx->dispatch);
3606         hctx->queue = q;
3607         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3608
3609         INIT_LIST_HEAD(&hctx->hctx_list);
3610
3611         /*
3612          * Allocate space for all possible cpus to avoid allocation at
3613          * runtime
3614          */
3615         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3616                         gfp, node);
3617         if (!hctx->ctxs)
3618                 goto free_cpumask;
3619
3620         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3621                                 gfp, node, false, false))
3622                 goto free_ctxs;
3623         hctx->nr_ctx = 0;
3624
3625         spin_lock_init(&hctx->dispatch_wait_lock);
3626         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3627         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3628
3629         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3630         if (!hctx->fq)
3631                 goto free_bitmap;
3632
3633         blk_mq_hctx_kobj_init(hctx);
3634
3635         return hctx;
3636
3637  free_bitmap:
3638         sbitmap_free(&hctx->ctx_map);
3639  free_ctxs:
3640         kfree(hctx->ctxs);
3641  free_cpumask:
3642         free_cpumask_var(hctx->cpumask);
3643  free_hctx:
3644         kfree(hctx);
3645  fail_alloc_hctx:
3646         return NULL;
3647 }
3648
3649 static void blk_mq_init_cpu_queues(struct request_queue *q,
3650                                    unsigned int nr_hw_queues)
3651 {
3652         struct blk_mq_tag_set *set = q->tag_set;
3653         unsigned int i, j;
3654
3655         for_each_possible_cpu(i) {
3656                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3657                 struct blk_mq_hw_ctx *hctx;
3658                 int k;
3659
3660                 __ctx->cpu = i;
3661                 spin_lock_init(&__ctx->lock);
3662                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3663                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3664
3665                 __ctx->queue = q;
3666
3667                 /*
3668                  * Set local node, IFF we have more than one hw queue. If
3669                  * not, we remain on the home node of the device
3670                  */
3671                 for (j = 0; j < set->nr_maps; j++) {
3672                         hctx = blk_mq_map_queue_type(q, j, i);
3673                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3674                                 hctx->numa_node = cpu_to_node(i);
3675                 }
3676         }
3677 }
3678
3679 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3680                                              unsigned int hctx_idx,
3681                                              unsigned int depth)
3682 {
3683         struct blk_mq_tags *tags;
3684         int ret;
3685
3686         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3687         if (!tags)
3688                 return NULL;
3689
3690         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3691         if (ret) {
3692                 blk_mq_free_rq_map(tags);
3693                 return NULL;
3694         }
3695
3696         return tags;
3697 }
3698
3699 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3700                                        int hctx_idx)
3701 {
3702         if (blk_mq_is_shared_tags(set->flags)) {
3703                 set->tags[hctx_idx] = set->shared_tags;
3704
3705                 return true;
3706         }
3707
3708         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3709                                                        set->queue_depth);
3710
3711         return set->tags[hctx_idx];
3712 }
3713
3714 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3715                              struct blk_mq_tags *tags,
3716                              unsigned int hctx_idx)
3717 {
3718         if (tags) {
3719                 blk_mq_free_rqs(set, tags, hctx_idx);
3720                 blk_mq_free_rq_map(tags);
3721         }
3722 }
3723
3724 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3725                                       unsigned int hctx_idx)
3726 {
3727         if (!blk_mq_is_shared_tags(set->flags))
3728                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3729
3730         set->tags[hctx_idx] = NULL;
3731 }
3732
3733 static void blk_mq_map_swqueue(struct request_queue *q)
3734 {
3735         unsigned int j, hctx_idx;
3736         unsigned long i;
3737         struct blk_mq_hw_ctx *hctx;
3738         struct blk_mq_ctx *ctx;
3739         struct blk_mq_tag_set *set = q->tag_set;
3740
3741         queue_for_each_hw_ctx(q, hctx, i) {
3742                 cpumask_clear(hctx->cpumask);
3743                 hctx->nr_ctx = 0;
3744                 hctx->dispatch_from = NULL;
3745         }
3746
3747         /*
3748          * Map software to hardware queues.
3749          *
3750          * If the cpu isn't present, the cpu is mapped to first hctx.
3751          */
3752         for_each_possible_cpu(i) {
3753
3754                 ctx = per_cpu_ptr(q->queue_ctx, i);
3755                 for (j = 0; j < set->nr_maps; j++) {
3756                         if (!set->map[j].nr_queues) {
3757                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3758                                                 HCTX_TYPE_DEFAULT, i);
3759                                 continue;
3760                         }
3761                         hctx_idx = set->map[j].mq_map[i];
3762                         /* unmapped hw queue can be remapped after CPU topo changed */
3763                         if (!set->tags[hctx_idx] &&
3764                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3765                                 /*
3766                                  * If tags initialization fail for some hctx,
3767                                  * that hctx won't be brought online.  In this
3768                                  * case, remap the current ctx to hctx[0] which
3769                                  * is guaranteed to always have tags allocated
3770                                  */
3771                                 set->map[j].mq_map[i] = 0;
3772                         }
3773
3774                         hctx = blk_mq_map_queue_type(q, j, i);
3775                         ctx->hctxs[j] = hctx;
3776                         /*
3777                          * If the CPU is already set in the mask, then we've
3778                          * mapped this one already. This can happen if
3779                          * devices share queues across queue maps.
3780                          */
3781                         if (cpumask_test_cpu(i, hctx->cpumask))
3782                                 continue;
3783
3784                         cpumask_set_cpu(i, hctx->cpumask);
3785                         hctx->type = j;
3786                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3787                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3788
3789                         /*
3790                          * If the nr_ctx type overflows, we have exceeded the
3791                          * amount of sw queues we can support.
3792                          */
3793                         BUG_ON(!hctx->nr_ctx);
3794                 }
3795
3796                 for (; j < HCTX_MAX_TYPES; j++)
3797                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3798                                         HCTX_TYPE_DEFAULT, i);
3799         }
3800
3801         queue_for_each_hw_ctx(q, hctx, i) {
3802                 /*
3803                  * If no software queues are mapped to this hardware queue,
3804                  * disable it and free the request entries.
3805                  */
3806                 if (!hctx->nr_ctx) {
3807                         /* Never unmap queue 0.  We need it as a
3808                          * fallback in case of a new remap fails
3809                          * allocation
3810                          */
3811                         if (i)
3812                                 __blk_mq_free_map_and_rqs(set, i);
3813
3814                         hctx->tags = NULL;
3815                         continue;
3816                 }
3817
3818                 hctx->tags = set->tags[i];
3819                 WARN_ON(!hctx->tags);
3820
3821                 /*
3822                  * Set the map size to the number of mapped software queues.
3823                  * This is more accurate and more efficient than looping
3824                  * over all possibly mapped software queues.
3825                  */
3826                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3827
3828                 /*
3829                  * Initialize batch roundrobin counts
3830                  */
3831                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3832                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3833         }
3834 }
3835
3836 /*
3837  * Caller needs to ensure that we're either frozen/quiesced, or that
3838  * the queue isn't live yet.
3839  */
3840 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3841 {
3842         struct blk_mq_hw_ctx *hctx;
3843         unsigned long i;
3844
3845         queue_for_each_hw_ctx(q, hctx, i) {
3846                 if (shared) {
3847                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3848                 } else {
3849                         blk_mq_tag_idle(hctx);
3850                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3851                 }
3852         }
3853 }
3854
3855 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3856                                          bool shared)
3857 {
3858         struct request_queue *q;
3859
3860         lockdep_assert_held(&set->tag_list_lock);
3861
3862         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3863                 blk_mq_freeze_queue(q);
3864                 queue_set_hctx_shared(q, shared);
3865                 blk_mq_unfreeze_queue(q);
3866         }
3867 }
3868
3869 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3870 {
3871         struct blk_mq_tag_set *set = q->tag_set;
3872
3873         mutex_lock(&set->tag_list_lock);
3874         list_del(&q->tag_set_list);
3875         if (list_is_singular(&set->tag_list)) {
3876                 /* just transitioned to unshared */
3877                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3878                 /* update existing queue */
3879                 blk_mq_update_tag_set_shared(set, false);
3880         }
3881         mutex_unlock(&set->tag_list_lock);
3882         INIT_LIST_HEAD(&q->tag_set_list);
3883 }
3884
3885 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3886                                      struct request_queue *q)
3887 {
3888         mutex_lock(&set->tag_list_lock);
3889
3890         /*
3891          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3892          */
3893         if (!list_empty(&set->tag_list) &&
3894             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3895                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3896                 /* update existing queue */
3897                 blk_mq_update_tag_set_shared(set, true);
3898         }
3899         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3900                 queue_set_hctx_shared(q, true);
3901         list_add_tail(&q->tag_set_list, &set->tag_list);
3902
3903         mutex_unlock(&set->tag_list_lock);
3904 }
3905
3906 /* All allocations will be freed in release handler of q->mq_kobj */
3907 static int blk_mq_alloc_ctxs(struct request_queue *q)
3908 {
3909         struct blk_mq_ctxs *ctxs;
3910         int cpu;
3911
3912         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3913         if (!ctxs)
3914                 return -ENOMEM;
3915
3916         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3917         if (!ctxs->queue_ctx)
3918                 goto fail;
3919
3920         for_each_possible_cpu(cpu) {
3921                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3922                 ctx->ctxs = ctxs;
3923         }
3924
3925         q->mq_kobj = &ctxs->kobj;
3926         q->queue_ctx = ctxs->queue_ctx;
3927
3928         return 0;
3929  fail:
3930         kfree(ctxs);
3931         return -ENOMEM;
3932 }
3933
3934 /*
3935  * It is the actual release handler for mq, but we do it from
3936  * request queue's release handler for avoiding use-after-free
3937  * and headache because q->mq_kobj shouldn't have been introduced,
3938  * but we can't group ctx/kctx kobj without it.
3939  */
3940 void blk_mq_release(struct request_queue *q)
3941 {
3942         struct blk_mq_hw_ctx *hctx, *next;
3943         unsigned long i;
3944
3945         queue_for_each_hw_ctx(q, hctx, i)
3946                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3947
3948         /* all hctx are in .unused_hctx_list now */
3949         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3950                 list_del_init(&hctx->hctx_list);
3951                 kobject_put(&hctx->kobj);
3952         }
3953
3954         xa_destroy(&q->hctx_table);
3955
3956         /*
3957          * release .mq_kobj and sw queue's kobject now because
3958          * both share lifetime with request queue.
3959          */
3960         blk_mq_sysfs_deinit(q);
3961 }
3962
3963 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3964                 void *queuedata)
3965 {
3966         struct request_queue *q;
3967         int ret;
3968
3969         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3970         if (!q)
3971                 return ERR_PTR(-ENOMEM);
3972         q->queuedata = queuedata;
3973         ret = blk_mq_init_allocated_queue(set, q);
3974         if (ret) {
3975                 blk_put_queue(q);
3976                 return ERR_PTR(ret);
3977         }
3978         return q;
3979 }
3980
3981 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3982 {
3983         return blk_mq_init_queue_data(set, NULL);
3984 }
3985 EXPORT_SYMBOL(blk_mq_init_queue);
3986
3987 /**
3988  * blk_mq_destroy_queue - shutdown a request queue
3989  * @q: request queue to shutdown
3990  *
3991  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
3992  * the initial reference.  All future requests will failed with -ENODEV.
3993  *
3994  * Context: can sleep
3995  */
3996 void blk_mq_destroy_queue(struct request_queue *q)
3997 {
3998         WARN_ON_ONCE(!queue_is_mq(q));
3999         WARN_ON_ONCE(blk_queue_registered(q));
4000
4001         might_sleep();
4002
4003         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4004         blk_queue_start_drain(q);
4005         blk_freeze_queue(q);
4006
4007         blk_sync_queue(q);
4008         blk_mq_cancel_work_sync(q);
4009         blk_mq_exit_queue(q);
4010
4011         /* @q is and will stay empty, shutdown and put */
4012         blk_put_queue(q);
4013 }
4014 EXPORT_SYMBOL(blk_mq_destroy_queue);
4015
4016 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4017                 struct lock_class_key *lkclass)
4018 {
4019         struct request_queue *q;
4020         struct gendisk *disk;
4021
4022         q = blk_mq_init_queue_data(set, queuedata);
4023         if (IS_ERR(q))
4024                 return ERR_CAST(q);
4025
4026         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4027         if (!disk) {
4028                 blk_mq_destroy_queue(q);
4029                 return ERR_PTR(-ENOMEM);
4030         }
4031         set_bit(GD_OWNS_QUEUE, &disk->state);
4032         return disk;
4033 }
4034 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4035
4036 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4037                 struct lock_class_key *lkclass)
4038 {
4039         if (!blk_get_queue(q))
4040                 return NULL;
4041         return __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4042 }
4043 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4044
4045 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4046                 struct blk_mq_tag_set *set, struct request_queue *q,
4047                 int hctx_idx, int node)
4048 {
4049         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4050
4051         /* reuse dead hctx first */
4052         spin_lock(&q->unused_hctx_lock);
4053         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4054                 if (tmp->numa_node == node) {
4055                         hctx = tmp;
4056                         break;
4057                 }
4058         }
4059         if (hctx)
4060                 list_del_init(&hctx->hctx_list);
4061         spin_unlock(&q->unused_hctx_lock);
4062
4063         if (!hctx)
4064                 hctx = blk_mq_alloc_hctx(q, set, node);
4065         if (!hctx)
4066                 goto fail;
4067
4068         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4069                 goto free_hctx;
4070
4071         return hctx;
4072
4073  free_hctx:
4074         kobject_put(&hctx->kobj);
4075  fail:
4076         return NULL;
4077 }
4078
4079 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4080                                                 struct request_queue *q)
4081 {
4082         struct blk_mq_hw_ctx *hctx;
4083         unsigned long i, j;
4084
4085         /* protect against switching io scheduler  */
4086         mutex_lock(&q->sysfs_lock);
4087         for (i = 0; i < set->nr_hw_queues; i++) {
4088                 int old_node;
4089                 int node = blk_mq_get_hctx_node(set, i);
4090                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4091
4092                 if (old_hctx) {
4093                         old_node = old_hctx->numa_node;
4094                         blk_mq_exit_hctx(q, set, old_hctx, i);
4095                 }
4096
4097                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4098                         if (!old_hctx)
4099                                 break;
4100                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4101                                         node, old_node);
4102                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4103                         WARN_ON_ONCE(!hctx);
4104                 }
4105         }
4106         /*
4107          * Increasing nr_hw_queues fails. Free the newly allocated
4108          * hctxs and keep the previous q->nr_hw_queues.
4109          */
4110         if (i != set->nr_hw_queues) {
4111                 j = q->nr_hw_queues;
4112         } else {
4113                 j = i;
4114                 q->nr_hw_queues = set->nr_hw_queues;
4115         }
4116
4117         xa_for_each_start(&q->hctx_table, j, hctx, j)
4118                 blk_mq_exit_hctx(q, set, hctx, j);
4119         mutex_unlock(&q->sysfs_lock);
4120 }
4121
4122 static void blk_mq_update_poll_flag(struct request_queue *q)
4123 {
4124         struct blk_mq_tag_set *set = q->tag_set;
4125
4126         if (set->nr_maps > HCTX_TYPE_POLL &&
4127             set->map[HCTX_TYPE_POLL].nr_queues)
4128                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4129         else
4130                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4131 }
4132
4133 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4134                 struct request_queue *q)
4135 {
4136         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4137                         !!(set->flags & BLK_MQ_F_BLOCKING));
4138
4139         /* mark the queue as mq asap */
4140         q->mq_ops = set->ops;
4141
4142         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4143                                              blk_mq_poll_stats_bkt,
4144                                              BLK_MQ_POLL_STATS_BKTS, q);
4145         if (!q->poll_cb)
4146                 goto err_exit;
4147
4148         if (blk_mq_alloc_ctxs(q))
4149                 goto err_poll;
4150
4151         /* init q->mq_kobj and sw queues' kobjects */
4152         blk_mq_sysfs_init(q);
4153
4154         INIT_LIST_HEAD(&q->unused_hctx_list);
4155         spin_lock_init(&q->unused_hctx_lock);
4156
4157         xa_init(&q->hctx_table);
4158
4159         blk_mq_realloc_hw_ctxs(set, q);
4160         if (!q->nr_hw_queues)
4161                 goto err_hctxs;
4162
4163         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4164         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4165
4166         q->tag_set = set;
4167
4168         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4169         blk_mq_update_poll_flag(q);
4170
4171         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4172         INIT_LIST_HEAD(&q->requeue_list);
4173         spin_lock_init(&q->requeue_lock);
4174
4175         q->nr_requests = set->queue_depth;
4176
4177         /*
4178          * Default to classic polling
4179          */
4180         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4181
4182         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4183         blk_mq_add_queue_tag_set(set, q);
4184         blk_mq_map_swqueue(q);
4185         return 0;
4186
4187 err_hctxs:
4188         xa_destroy(&q->hctx_table);
4189         q->nr_hw_queues = 0;
4190         blk_mq_sysfs_deinit(q);
4191 err_poll:
4192         blk_stat_free_callback(q->poll_cb);
4193         q->poll_cb = NULL;
4194 err_exit:
4195         q->mq_ops = NULL;
4196         return -ENOMEM;
4197 }
4198 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4199
4200 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4201 void blk_mq_exit_queue(struct request_queue *q)
4202 {
4203         struct blk_mq_tag_set *set = q->tag_set;
4204
4205         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4206         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4207         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4208         blk_mq_del_queue_tag_set(q);
4209 }
4210
4211 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4212 {
4213         int i;
4214
4215         if (blk_mq_is_shared_tags(set->flags)) {
4216                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4217                                                 BLK_MQ_NO_HCTX_IDX,
4218                                                 set->queue_depth);
4219                 if (!set->shared_tags)
4220                         return -ENOMEM;
4221         }
4222
4223         for (i = 0; i < set->nr_hw_queues; i++) {
4224                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4225                         goto out_unwind;
4226                 cond_resched();
4227         }
4228
4229         return 0;
4230
4231 out_unwind:
4232         while (--i >= 0)
4233                 __blk_mq_free_map_and_rqs(set, i);
4234
4235         if (blk_mq_is_shared_tags(set->flags)) {
4236                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4237                                         BLK_MQ_NO_HCTX_IDX);
4238         }
4239
4240         return -ENOMEM;
4241 }
4242
4243 /*
4244  * Allocate the request maps associated with this tag_set. Note that this
4245  * may reduce the depth asked for, if memory is tight. set->queue_depth
4246  * will be updated to reflect the allocated depth.
4247  */
4248 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4249 {
4250         unsigned int depth;
4251         int err;
4252
4253         depth = set->queue_depth;
4254         do {
4255                 err = __blk_mq_alloc_rq_maps(set);
4256                 if (!err)
4257                         break;
4258
4259                 set->queue_depth >>= 1;
4260                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4261                         err = -ENOMEM;
4262                         break;
4263                 }
4264         } while (set->queue_depth);
4265
4266         if (!set->queue_depth || err) {
4267                 pr_err("blk-mq: failed to allocate request map\n");
4268                 return -ENOMEM;
4269         }
4270
4271         if (depth != set->queue_depth)
4272                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4273                                                 depth, set->queue_depth);
4274
4275         return 0;
4276 }
4277
4278 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4279 {
4280         /*
4281          * blk_mq_map_queues() and multiple .map_queues() implementations
4282          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4283          * number of hardware queues.
4284          */
4285         if (set->nr_maps == 1)
4286                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4287
4288         if (set->ops->map_queues && !is_kdump_kernel()) {
4289                 int i;
4290
4291                 /*
4292                  * transport .map_queues is usually done in the following
4293                  * way:
4294                  *
4295                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4296                  *      mask = get_cpu_mask(queue)
4297                  *      for_each_cpu(cpu, mask)
4298                  *              set->map[x].mq_map[cpu] = queue;
4299                  * }
4300                  *
4301                  * When we need to remap, the table has to be cleared for
4302                  * killing stale mapping since one CPU may not be mapped
4303                  * to any hw queue.
4304                  */
4305                 for (i = 0; i < set->nr_maps; i++)
4306                         blk_mq_clear_mq_map(&set->map[i]);
4307
4308                 set->ops->map_queues(set);
4309         } else {
4310                 BUG_ON(set->nr_maps > 1);
4311                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4312         }
4313 }
4314
4315 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4316                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4317 {
4318         struct blk_mq_tags **new_tags;
4319
4320         if (cur_nr_hw_queues >= new_nr_hw_queues)
4321                 return 0;
4322
4323         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4324                                 GFP_KERNEL, set->numa_node);
4325         if (!new_tags)
4326                 return -ENOMEM;
4327
4328         if (set->tags)
4329                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4330                        sizeof(*set->tags));
4331         kfree(set->tags);
4332         set->tags = new_tags;
4333         set->nr_hw_queues = new_nr_hw_queues;
4334
4335         return 0;
4336 }
4337
4338 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4339                                 int new_nr_hw_queues)
4340 {
4341         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4342 }
4343
4344 /*
4345  * Alloc a tag set to be associated with one or more request queues.
4346  * May fail with EINVAL for various error conditions. May adjust the
4347  * requested depth down, if it's too large. In that case, the set
4348  * value will be stored in set->queue_depth.
4349  */
4350 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4351 {
4352         int i, ret;
4353
4354         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4355
4356         if (!set->nr_hw_queues)
4357                 return -EINVAL;
4358         if (!set->queue_depth)
4359                 return -EINVAL;
4360         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4361                 return -EINVAL;
4362
4363         if (!set->ops->queue_rq)
4364                 return -EINVAL;
4365
4366         if (!set->ops->get_budget ^ !set->ops->put_budget)
4367                 return -EINVAL;
4368
4369         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4370                 pr_info("blk-mq: reduced tag depth to %u\n",
4371                         BLK_MQ_MAX_DEPTH);
4372                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4373         }
4374
4375         if (!set->nr_maps)
4376                 set->nr_maps = 1;
4377         else if (set->nr_maps > HCTX_MAX_TYPES)
4378                 return -EINVAL;
4379
4380         /*
4381          * If a crashdump is active, then we are potentially in a very
4382          * memory constrained environment. Limit us to 1 queue and
4383          * 64 tags to prevent using too much memory.
4384          */
4385         if (is_kdump_kernel()) {
4386                 set->nr_hw_queues = 1;
4387                 set->nr_maps = 1;
4388                 set->queue_depth = min(64U, set->queue_depth);
4389         }
4390         /*
4391          * There is no use for more h/w queues than cpus if we just have
4392          * a single map
4393          */
4394         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4395                 set->nr_hw_queues = nr_cpu_ids;
4396
4397         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4398                 return -ENOMEM;
4399
4400         ret = -ENOMEM;
4401         for (i = 0; i < set->nr_maps; i++) {
4402                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4403                                                   sizeof(set->map[i].mq_map[0]),
4404                                                   GFP_KERNEL, set->numa_node);
4405                 if (!set->map[i].mq_map)
4406                         goto out_free_mq_map;
4407                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4408         }
4409
4410         blk_mq_update_queue_map(set);
4411
4412         ret = blk_mq_alloc_set_map_and_rqs(set);
4413         if (ret)
4414                 goto out_free_mq_map;
4415
4416         mutex_init(&set->tag_list_lock);
4417         INIT_LIST_HEAD(&set->tag_list);
4418
4419         return 0;
4420
4421 out_free_mq_map:
4422         for (i = 0; i < set->nr_maps; i++) {
4423                 kfree(set->map[i].mq_map);
4424                 set->map[i].mq_map = NULL;
4425         }
4426         kfree(set->tags);
4427         set->tags = NULL;
4428         return ret;
4429 }
4430 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4431
4432 /* allocate and initialize a tagset for a simple single-queue device */
4433 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4434                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4435                 unsigned int set_flags)
4436 {
4437         memset(set, 0, sizeof(*set));
4438         set->ops = ops;
4439         set->nr_hw_queues = 1;
4440         set->nr_maps = 1;
4441         set->queue_depth = queue_depth;
4442         set->numa_node = NUMA_NO_NODE;
4443         set->flags = set_flags;
4444         return blk_mq_alloc_tag_set(set);
4445 }
4446 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4447
4448 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4449 {
4450         int i, j;
4451
4452         for (i = 0; i < set->nr_hw_queues; i++)
4453                 __blk_mq_free_map_and_rqs(set, i);
4454
4455         if (blk_mq_is_shared_tags(set->flags)) {
4456                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4457                                         BLK_MQ_NO_HCTX_IDX);
4458         }
4459
4460         for (j = 0; j < set->nr_maps; j++) {
4461                 kfree(set->map[j].mq_map);
4462                 set->map[j].mq_map = NULL;
4463         }
4464
4465         kfree(set->tags);
4466         set->tags = NULL;
4467 }
4468 EXPORT_SYMBOL(blk_mq_free_tag_set);
4469
4470 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4471 {
4472         struct blk_mq_tag_set *set = q->tag_set;
4473         struct blk_mq_hw_ctx *hctx;
4474         int ret;
4475         unsigned long i;
4476
4477         if (!set)
4478                 return -EINVAL;
4479
4480         if (q->nr_requests == nr)
4481                 return 0;
4482
4483         blk_mq_freeze_queue(q);
4484         blk_mq_quiesce_queue(q);
4485
4486         ret = 0;
4487         queue_for_each_hw_ctx(q, hctx, i) {
4488                 if (!hctx->tags)
4489                         continue;
4490                 /*
4491                  * If we're using an MQ scheduler, just update the scheduler
4492                  * queue depth. This is similar to what the old code would do.
4493                  */
4494                 if (hctx->sched_tags) {
4495                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4496                                                       nr, true);
4497                 } else {
4498                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4499                                                       false);
4500                 }
4501                 if (ret)
4502                         break;
4503                 if (q->elevator && q->elevator->type->ops.depth_updated)
4504                         q->elevator->type->ops.depth_updated(hctx);
4505         }
4506         if (!ret) {
4507                 q->nr_requests = nr;
4508                 if (blk_mq_is_shared_tags(set->flags)) {
4509                         if (q->elevator)
4510                                 blk_mq_tag_update_sched_shared_tags(q);
4511                         else
4512                                 blk_mq_tag_resize_shared_tags(set, nr);
4513                 }
4514         }
4515
4516         blk_mq_unquiesce_queue(q);
4517         blk_mq_unfreeze_queue(q);
4518
4519         return ret;
4520 }
4521
4522 /*
4523  * request_queue and elevator_type pair.
4524  * It is just used by __blk_mq_update_nr_hw_queues to cache
4525  * the elevator_type associated with a request_queue.
4526  */
4527 struct blk_mq_qe_pair {
4528         struct list_head node;
4529         struct request_queue *q;
4530         struct elevator_type *type;
4531 };
4532
4533 /*
4534  * Cache the elevator_type in qe pair list and switch the
4535  * io scheduler to 'none'
4536  */
4537 static bool blk_mq_elv_switch_none(struct list_head *head,
4538                 struct request_queue *q)
4539 {
4540         struct blk_mq_qe_pair *qe;
4541
4542         if (!q->elevator)
4543                 return true;
4544
4545         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4546         if (!qe)
4547                 return false;
4548
4549         /* q->elevator needs protection from ->sysfs_lock */
4550         mutex_lock(&q->sysfs_lock);
4551
4552         INIT_LIST_HEAD(&qe->node);
4553         qe->q = q;
4554         qe->type = q->elevator->type;
4555         list_add(&qe->node, head);
4556
4557         /*
4558          * After elevator_switch, the previous elevator_queue will be
4559          * released by elevator_release. The reference of the io scheduler
4560          * module get by elevator_get will also be put. So we need to get
4561          * a reference of the io scheduler module here to prevent it to be
4562          * removed.
4563          */
4564         __module_get(qe->type->elevator_owner);
4565         elevator_switch(q, NULL);
4566         mutex_unlock(&q->sysfs_lock);
4567
4568         return true;
4569 }
4570
4571 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4572                                                 struct request_queue *q)
4573 {
4574         struct blk_mq_qe_pair *qe;
4575
4576         list_for_each_entry(qe, head, node)
4577                 if (qe->q == q)
4578                         return qe;
4579
4580         return NULL;
4581 }
4582
4583 static void blk_mq_elv_switch_back(struct list_head *head,
4584                                   struct request_queue *q)
4585 {
4586         struct blk_mq_qe_pair *qe;
4587         struct elevator_type *t;
4588
4589         qe = blk_lookup_qe_pair(head, q);
4590         if (!qe)
4591                 return;
4592         t = qe->type;
4593         list_del(&qe->node);
4594         kfree(qe);
4595
4596         mutex_lock(&q->sysfs_lock);
4597         elevator_switch(q, t);
4598         mutex_unlock(&q->sysfs_lock);
4599 }
4600
4601 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4602                                                         int nr_hw_queues)
4603 {
4604         struct request_queue *q;
4605         LIST_HEAD(head);
4606         int prev_nr_hw_queues;
4607
4608         lockdep_assert_held(&set->tag_list_lock);
4609
4610         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4611                 nr_hw_queues = nr_cpu_ids;
4612         if (nr_hw_queues < 1)
4613                 return;
4614         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4615                 return;
4616
4617         list_for_each_entry(q, &set->tag_list, tag_set_list)
4618                 blk_mq_freeze_queue(q);
4619         /*
4620          * Switch IO scheduler to 'none', cleaning up the data associated
4621          * with the previous scheduler. We will switch back once we are done
4622          * updating the new sw to hw queue mappings.
4623          */
4624         list_for_each_entry(q, &set->tag_list, tag_set_list)
4625                 if (!blk_mq_elv_switch_none(&head, q))
4626                         goto switch_back;
4627
4628         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4629                 blk_mq_debugfs_unregister_hctxs(q);
4630                 blk_mq_sysfs_unregister_hctxs(q);
4631         }
4632
4633         prev_nr_hw_queues = set->nr_hw_queues;
4634         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4635             0)
4636                 goto reregister;
4637
4638         set->nr_hw_queues = nr_hw_queues;
4639 fallback:
4640         blk_mq_update_queue_map(set);
4641         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4642                 blk_mq_realloc_hw_ctxs(set, q);
4643                 blk_mq_update_poll_flag(q);
4644                 if (q->nr_hw_queues != set->nr_hw_queues) {
4645                         int i = prev_nr_hw_queues;
4646
4647                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4648                                         nr_hw_queues, prev_nr_hw_queues);
4649                         for (; i < set->nr_hw_queues; i++)
4650                                 __blk_mq_free_map_and_rqs(set, i);
4651
4652                         set->nr_hw_queues = prev_nr_hw_queues;
4653                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4654                         goto fallback;
4655                 }
4656                 blk_mq_map_swqueue(q);
4657         }
4658
4659 reregister:
4660         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4661                 blk_mq_sysfs_register_hctxs(q);
4662                 blk_mq_debugfs_register_hctxs(q);
4663         }
4664
4665 switch_back:
4666         list_for_each_entry(q, &set->tag_list, tag_set_list)
4667                 blk_mq_elv_switch_back(&head, q);
4668
4669         list_for_each_entry(q, &set->tag_list, tag_set_list)
4670                 blk_mq_unfreeze_queue(q);
4671 }
4672
4673 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4674 {
4675         mutex_lock(&set->tag_list_lock);
4676         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4677         mutex_unlock(&set->tag_list_lock);
4678 }
4679 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4680
4681 /* Enable polling stats and return whether they were already enabled. */
4682 static bool blk_poll_stats_enable(struct request_queue *q)
4683 {
4684         if (q->poll_stat)
4685                 return true;
4686
4687         return blk_stats_alloc_enable(q);
4688 }
4689
4690 static void blk_mq_poll_stats_start(struct request_queue *q)
4691 {
4692         /*
4693          * We don't arm the callback if polling stats are not enabled or the
4694          * callback is already active.
4695          */
4696         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4697                 return;
4698
4699         blk_stat_activate_msecs(q->poll_cb, 100);
4700 }
4701
4702 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4703 {
4704         struct request_queue *q = cb->data;
4705         int bucket;
4706
4707         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4708                 if (cb->stat[bucket].nr_samples)
4709                         q->poll_stat[bucket] = cb->stat[bucket];
4710         }
4711 }
4712
4713 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4714                                        struct request *rq)
4715 {
4716         unsigned long ret = 0;
4717         int bucket;
4718
4719         /*
4720          * If stats collection isn't on, don't sleep but turn it on for
4721          * future users
4722          */
4723         if (!blk_poll_stats_enable(q))
4724                 return 0;
4725
4726         /*
4727          * As an optimistic guess, use half of the mean service time
4728          * for this type of request. We can (and should) make this smarter.
4729          * For instance, if the completion latencies are tight, we can
4730          * get closer than just half the mean. This is especially
4731          * important on devices where the completion latencies are longer
4732          * than ~10 usec. We do use the stats for the relevant IO size
4733          * if available which does lead to better estimates.
4734          */
4735         bucket = blk_mq_poll_stats_bkt(rq);
4736         if (bucket < 0)
4737                 return ret;
4738
4739         if (q->poll_stat[bucket].nr_samples)
4740                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4741
4742         return ret;
4743 }
4744
4745 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4746 {
4747         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4748         struct request *rq = blk_qc_to_rq(hctx, qc);
4749         struct hrtimer_sleeper hs;
4750         enum hrtimer_mode mode;
4751         unsigned int nsecs;
4752         ktime_t kt;
4753
4754         /*
4755          * If a request has completed on queue that uses an I/O scheduler, we
4756          * won't get back a request from blk_qc_to_rq.
4757          */
4758         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4759                 return false;
4760
4761         /*
4762          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4763          *
4764          *  0:  use half of prev avg
4765          * >0:  use this specific value
4766          */
4767         if (q->poll_nsec > 0)
4768                 nsecs = q->poll_nsec;
4769         else
4770                 nsecs = blk_mq_poll_nsecs(q, rq);
4771
4772         if (!nsecs)
4773                 return false;
4774
4775         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4776
4777         /*
4778          * This will be replaced with the stats tracking code, using
4779          * 'avg_completion_time / 2' as the pre-sleep target.
4780          */
4781         kt = nsecs;
4782
4783         mode = HRTIMER_MODE_REL;
4784         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4785         hrtimer_set_expires(&hs.timer, kt);
4786
4787         do {
4788                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4789                         break;
4790                 set_current_state(TASK_UNINTERRUPTIBLE);
4791                 hrtimer_sleeper_start_expires(&hs, mode);
4792                 if (hs.task)
4793                         io_schedule();
4794                 hrtimer_cancel(&hs.timer);
4795                 mode = HRTIMER_MODE_ABS;
4796         } while (hs.task && !signal_pending(current));
4797
4798         __set_current_state(TASK_RUNNING);
4799         destroy_hrtimer_on_stack(&hs.timer);
4800
4801         /*
4802          * If we sleep, have the caller restart the poll loop to reset the
4803          * state.  Like for the other success return cases, the caller is
4804          * responsible for checking if the IO completed.  If the IO isn't
4805          * complete, we'll get called again and will go straight to the busy
4806          * poll loop.
4807          */
4808         return true;
4809 }
4810
4811 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4812                                struct io_comp_batch *iob, unsigned int flags)
4813 {
4814         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4815         long state = get_current_state();
4816         int ret;
4817
4818         do {
4819                 ret = q->mq_ops->poll(hctx, iob);
4820                 if (ret > 0) {
4821                         __set_current_state(TASK_RUNNING);
4822                         return ret;
4823                 }
4824
4825                 if (signal_pending_state(state, current))
4826                         __set_current_state(TASK_RUNNING);
4827                 if (task_is_running(current))
4828                         return 1;
4829
4830                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4831                         break;
4832                 cpu_relax();
4833         } while (!need_resched());
4834
4835         __set_current_state(TASK_RUNNING);
4836         return 0;
4837 }
4838
4839 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4840                 unsigned int flags)
4841 {
4842         if (!(flags & BLK_POLL_NOSLEEP) &&
4843             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4844                 if (blk_mq_poll_hybrid(q, cookie))
4845                         return 1;
4846         }
4847         return blk_mq_poll_classic(q, cookie, iob, flags);
4848 }
4849
4850 unsigned int blk_mq_rq_cpu(struct request *rq)
4851 {
4852         return rq->mq_ctx->cpu;
4853 }
4854 EXPORT_SYMBOL(blk_mq_rq_cpu);
4855
4856 void blk_mq_cancel_work_sync(struct request_queue *q)
4857 {
4858         if (queue_is_mq(q)) {
4859                 struct blk_mq_hw_ctx *hctx;
4860                 unsigned long i;
4861
4862                 cancel_delayed_work_sync(&q->requeue_work);
4863
4864                 queue_for_each_hw_ctx(q, hctx, i)
4865                         cancel_delayed_work_sync(&hctx->run_work);
4866         }
4867 }
4868
4869 static int __init blk_mq_init(void)
4870 {
4871         int i;
4872
4873         for_each_possible_cpu(i)
4874                 init_llist_head(&per_cpu(blk_cpu_done, i));
4875         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4876
4877         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4878                                   "block/softirq:dead", NULL,
4879                                   blk_softirq_cpu_dead);
4880         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4881                                 blk_mq_hctx_notify_dead);
4882         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4883                                 blk_mq_hctx_notify_online,
4884                                 blk_mq_hctx_notify_offline);
4885         return 0;
4886 }
4887 subsys_initcall(blk_mq_init);