net/rds: An rds_sock is added too early to the hash table
[platform/kernel/linux-rpi.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-mq-sched.h"
38 #include "blk-rq-qos.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46         int ddir, bytes, bucket;
47
48         ddir = rq_data_dir(rq);
49         bytes = blk_rq_bytes(rq);
50
51         bucket = ddir + 2*(ilog2(bytes) - 9);
52
53         if (bucket < 0)
54                 return -1;
55         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58         return bucket;
59 }
60
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66         return !list_empty_careful(&hctx->dispatch) ||
67                 sbitmap_any_bit_set(&hctx->ctx_map) ||
68                         blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75                                      struct blk_mq_ctx *ctx)
76 {
77         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82                                       struct blk_mq_ctx *ctx)
83 {
84         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88         struct hd_struct *part;
89         unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93                                   struct request *rq, void *priv,
94                                   bool reserved)
95 {
96         struct mq_inflight *mi = priv;
97
98         /*
99          * index[0] counts the specific partition that was asked for. index[1]
100          * counts the ones that are active on the whole device, so increment
101          * that if mi->part is indeed a partition, and not a whole device.
102          */
103         if (rq->part == mi->part)
104                 mi->inflight[0]++;
105         if (mi->part->partno)
106                 mi->inflight[1]++;
107 }
108
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110                       unsigned int inflight[2])
111 {
112         struct mq_inflight mi = { .part = part, .inflight = inflight, };
113
114         inflight[0] = inflight[1] = 0;
115         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 }
117
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119                                      struct request *rq, void *priv,
120                                      bool reserved)
121 {
122         struct mq_inflight *mi = priv;
123
124         if (rq->part == mi->part)
125                 mi->inflight[rq_data_dir(rq)]++;
126 }
127
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129                          unsigned int inflight[2])
130 {
131         struct mq_inflight mi = { .part = part, .inflight = inflight, };
132
133         inflight[0] = inflight[1] = 0;
134         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
135 }
136
137 void blk_freeze_queue_start(struct request_queue *q)
138 {
139         int freeze_depth;
140
141         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142         if (freeze_depth == 1) {
143                 percpu_ref_kill(&q->q_usage_counter);
144                 if (q->mq_ops)
145                         blk_mq_run_hw_queues(q, false);
146         }
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157                                      unsigned long timeout)
158 {
159         return wait_event_timeout(q->mq_freeze_wq,
160                                         percpu_ref_is_zero(&q->q_usage_counter),
161                                         timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
169 void blk_freeze_queue(struct request_queue *q)
170 {
171         /*
172          * In the !blk_mq case we are only calling this to kill the
173          * q_usage_counter, otherwise this increases the freeze depth
174          * and waits for it to return to zero.  For this reason there is
175          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176          * exported to drivers as the only user for unfreeze is blk_mq.
177          */
178         blk_freeze_queue_start(q);
179         if (!q->mq_ops)
180                 blk_drain_queue(q);
181         blk_mq_freeze_queue_wait(q);
182 }
183
184 void blk_mq_freeze_queue(struct request_queue *q)
185 {
186         /*
187          * ...just an alias to keep freeze and unfreeze actions balanced
188          * in the blk_mq_* namespace
189          */
190         blk_freeze_queue(q);
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196         int freeze_depth;
197
198         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199         WARN_ON_ONCE(freeze_depth < 0);
200         if (!freeze_depth) {
201                 percpu_ref_reinit(&q->q_usage_counter);
202                 wake_up_all(&q->mq_freeze_wq);
203         }
204 }
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206
207 /*
208  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209  * mpt3sas driver such that this function can be removed.
210  */
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 {
213         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
216
217 /**
218  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219  * @q: request queue.
220  *
221  * Note: this function does not prevent that the struct request end_io()
222  * callback function is invoked. Once this function is returned, we make
223  * sure no dispatch can happen until the queue is unquiesced via
224  * blk_mq_unquiesce_queue().
225  */
226 void blk_mq_quiesce_queue(struct request_queue *q)
227 {
228         struct blk_mq_hw_ctx *hctx;
229         unsigned int i;
230         bool rcu = false;
231
232         blk_mq_quiesce_queue_nowait(q);
233
234         queue_for_each_hw_ctx(q, hctx, i) {
235                 if (hctx->flags & BLK_MQ_F_BLOCKING)
236                         synchronize_srcu(hctx->srcu);
237                 else
238                         rcu = true;
239         }
240         if (rcu)
241                 synchronize_rcu();
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
244
245 /*
246  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247  * @q: request queue.
248  *
249  * This function recovers queue into the state before quiescing
250  * which is done by blk_mq_quiesce_queue.
251  */
252 void blk_mq_unquiesce_queue(struct request_queue *q)
253 {
254         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255
256         /* dispatch requests which are inserted during quiescing */
257         blk_mq_run_hw_queues(q, true);
258 }
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260
261 void blk_mq_wake_waiters(struct request_queue *q)
262 {
263         struct blk_mq_hw_ctx *hctx;
264         unsigned int i;
265
266         queue_for_each_hw_ctx(q, hctx, i)
267                 if (blk_mq_hw_queue_mapped(hctx))
268                         blk_mq_tag_wakeup_all(hctx->tags, true);
269 }
270
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 {
273         return blk_mq_has_free_tags(hctx->tags);
274 }
275 EXPORT_SYMBOL(blk_mq_can_queue);
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278                 unsigned int tag, unsigned int op)
279 {
280         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281         struct request *rq = tags->static_rqs[tag];
282         req_flags_t rq_flags = 0;
283
284         if (data->flags & BLK_MQ_REQ_INTERNAL) {
285                 rq->tag = -1;
286                 rq->internal_tag = tag;
287         } else {
288                 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
289                         rq_flags = RQF_MQ_INFLIGHT;
290                         atomic_inc(&data->hctx->nr_active);
291                 }
292                 rq->tag = tag;
293                 rq->internal_tag = -1;
294                 data->hctx->tags->rqs[rq->tag] = rq;
295         }
296
297         /* csd/requeue_work/fifo_time is initialized before use */
298         rq->q = data->q;
299         rq->mq_ctx = data->ctx;
300         rq->rq_flags = rq_flags;
301         rq->cpu = -1;
302         rq->cmd_flags = op;
303         if (data->flags & BLK_MQ_REQ_PREEMPT)
304                 rq->rq_flags |= RQF_PREEMPT;
305         if (blk_queue_io_stat(data->q))
306                 rq->rq_flags |= RQF_IO_STAT;
307         INIT_LIST_HEAD(&rq->queuelist);
308         INIT_HLIST_NODE(&rq->hash);
309         RB_CLEAR_NODE(&rq->rb_node);
310         rq->rq_disk = NULL;
311         rq->part = NULL;
312         rq->start_time_ns = ktime_get_ns();
313         rq->io_start_time_ns = 0;
314         rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316         rq->nr_integrity_segments = 0;
317 #endif
318         rq->special = NULL;
319         /* tag was already set */
320         rq->extra_len = 0;
321         rq->__deadline = 0;
322
323         INIT_LIST_HEAD(&rq->timeout_list);
324         rq->timeout = 0;
325
326         rq->end_io = NULL;
327         rq->end_io_data = NULL;
328         rq->next_rq = NULL;
329
330 #ifdef CONFIG_BLK_CGROUP
331         rq->rl = NULL;
332 #endif
333
334         data->ctx->rq_dispatched[op_is_sync(op)]++;
335         refcount_set(&rq->ref, 1);
336         return rq;
337 }
338
339 static struct request *blk_mq_get_request(struct request_queue *q,
340                 struct bio *bio, unsigned int op,
341                 struct blk_mq_alloc_data *data)
342 {
343         struct elevator_queue *e = q->elevator;
344         struct request *rq;
345         unsigned int tag;
346         bool put_ctx_on_error = false;
347
348         blk_queue_enter_live(q);
349         data->q = q;
350         if (likely(!data->ctx)) {
351                 data->ctx = blk_mq_get_ctx(q);
352                 put_ctx_on_error = true;
353         }
354         if (likely(!data->hctx))
355                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356         if (op & REQ_NOWAIT)
357                 data->flags |= BLK_MQ_REQ_NOWAIT;
358
359         if (e) {
360                 data->flags |= BLK_MQ_REQ_INTERNAL;
361
362                 /*
363                  * Flush requests are special and go directly to the
364                  * dispatch list. Don't include reserved tags in the
365                  * limiting, as it isn't useful.
366                  */
367                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
368                     !(data->flags & BLK_MQ_REQ_RESERVED))
369                         e->type->ops.mq.limit_depth(op, data);
370         } else {
371                 blk_mq_tag_busy(data->hctx);
372         }
373
374         tag = blk_mq_get_tag(data);
375         if (tag == BLK_MQ_TAG_FAIL) {
376                 if (put_ctx_on_error) {
377                         blk_mq_put_ctx(data->ctx);
378                         data->ctx = NULL;
379                 }
380                 blk_queue_exit(q);
381                 return NULL;
382         }
383
384         rq = blk_mq_rq_ctx_init(data, tag, op);
385         if (!op_is_flush(op)) {
386                 rq->elv.icq = NULL;
387                 if (e && e->type->ops.mq.prepare_request) {
388                         if (e->type->icq_cache && rq_ioc(bio))
389                                 blk_mq_sched_assign_ioc(rq, bio);
390
391                         e->type->ops.mq.prepare_request(rq, bio);
392                         rq->rq_flags |= RQF_ELVPRIV;
393                 }
394         }
395         data->hctx->queued++;
396         return rq;
397 }
398
399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400                 blk_mq_req_flags_t flags)
401 {
402         struct blk_mq_alloc_data alloc_data = { .flags = flags };
403         struct request *rq;
404         int ret;
405
406         ret = blk_queue_enter(q, flags);
407         if (ret)
408                 return ERR_PTR(ret);
409
410         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
411         blk_queue_exit(q);
412
413         if (!rq)
414                 return ERR_PTR(-EWOULDBLOCK);
415
416         blk_mq_put_ctx(alloc_data.ctx);
417
418         rq->__data_len = 0;
419         rq->__sector = (sector_t) -1;
420         rq->bio = rq->biotail = NULL;
421         return rq;
422 }
423 EXPORT_SYMBOL(blk_mq_alloc_request);
424
425 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
426         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
427 {
428         struct blk_mq_alloc_data alloc_data = { .flags = flags };
429         struct request *rq;
430         unsigned int cpu;
431         int ret;
432
433         /*
434          * If the tag allocator sleeps we could get an allocation for a
435          * different hardware context.  No need to complicate the low level
436          * allocator for this for the rare use case of a command tied to
437          * a specific queue.
438          */
439         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
440                 return ERR_PTR(-EINVAL);
441
442         if (hctx_idx >= q->nr_hw_queues)
443                 return ERR_PTR(-EIO);
444
445         ret = blk_queue_enter(q, flags);
446         if (ret)
447                 return ERR_PTR(ret);
448
449         /*
450          * Check if the hardware context is actually mapped to anything.
451          * If not tell the caller that it should skip this queue.
452          */
453         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
454         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
455                 blk_queue_exit(q);
456                 return ERR_PTR(-EXDEV);
457         }
458         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
459         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
460
461         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
462         blk_queue_exit(q);
463
464         if (!rq)
465                 return ERR_PTR(-EWOULDBLOCK);
466
467         return rq;
468 }
469 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
470
471 static void __blk_mq_free_request(struct request *rq)
472 {
473         struct request_queue *q = rq->q;
474         struct blk_mq_ctx *ctx = rq->mq_ctx;
475         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
476         const int sched_tag = rq->internal_tag;
477
478         if (rq->tag != -1)
479                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
480         if (sched_tag != -1)
481                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
482         blk_mq_sched_restart(hctx);
483         blk_queue_exit(q);
484 }
485
486 void blk_mq_free_request(struct request *rq)
487 {
488         struct request_queue *q = rq->q;
489         struct elevator_queue *e = q->elevator;
490         struct blk_mq_ctx *ctx = rq->mq_ctx;
491         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
492
493         if (rq->rq_flags & RQF_ELVPRIV) {
494                 if (e && e->type->ops.mq.finish_request)
495                         e->type->ops.mq.finish_request(rq);
496                 if (rq->elv.icq) {
497                         put_io_context(rq->elv.icq->ioc);
498                         rq->elv.icq = NULL;
499                 }
500         }
501
502         ctx->rq_completed[rq_is_sync(rq)]++;
503         if (rq->rq_flags & RQF_MQ_INFLIGHT)
504                 atomic_dec(&hctx->nr_active);
505
506         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
507                 laptop_io_completion(q->backing_dev_info);
508
509         rq_qos_done(q, rq);
510
511         if (blk_rq_rl(rq))
512                 blk_put_rl(blk_rq_rl(rq));
513
514         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
515         if (refcount_dec_and_test(&rq->ref))
516                 __blk_mq_free_request(rq);
517 }
518 EXPORT_SYMBOL_GPL(blk_mq_free_request);
519
520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
521 {
522         u64 now = ktime_get_ns();
523
524         if (rq->rq_flags & RQF_STATS) {
525                 blk_mq_poll_stats_start(rq->q);
526                 blk_stat_add(rq, now);
527         }
528
529         blk_account_io_done(rq, now);
530
531         if (rq->end_io) {
532                 rq_qos_done(rq->q, rq);
533                 rq->end_io(rq, error);
534         } else {
535                 if (unlikely(blk_bidi_rq(rq)))
536                         blk_mq_free_request(rq->next_rq);
537                 blk_mq_free_request(rq);
538         }
539 }
540 EXPORT_SYMBOL(__blk_mq_end_request);
541
542 void blk_mq_end_request(struct request *rq, blk_status_t error)
543 {
544         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
545                 BUG();
546         __blk_mq_end_request(rq, error);
547 }
548 EXPORT_SYMBOL(blk_mq_end_request);
549
550 static void __blk_mq_complete_request_remote(void *data)
551 {
552         struct request *rq = data;
553
554         rq->q->softirq_done_fn(rq);
555 }
556
557 static void __blk_mq_complete_request(struct request *rq)
558 {
559         struct blk_mq_ctx *ctx = rq->mq_ctx;
560         bool shared = false;
561         int cpu;
562
563         if (!blk_mq_mark_complete(rq))
564                 return;
565         if (rq->internal_tag != -1)
566                 blk_mq_sched_completed_request(rq);
567
568         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569                 rq->q->softirq_done_fn(rq);
570                 return;
571         }
572
573         cpu = get_cpu();
574         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
575                 shared = cpus_share_cache(cpu, ctx->cpu);
576
577         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578                 rq->csd.func = __blk_mq_complete_request_remote;
579                 rq->csd.info = rq;
580                 rq->csd.flags = 0;
581                 smp_call_function_single_async(ctx->cpu, &rq->csd);
582         } else {
583                 rq->q->softirq_done_fn(rq);
584         }
585         put_cpu();
586 }
587
588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589         __releases(hctx->srcu)
590 {
591         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
592                 rcu_read_unlock();
593         else
594                 srcu_read_unlock(hctx->srcu, srcu_idx);
595 }
596
597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598         __acquires(hctx->srcu)
599 {
600         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
601                 /* shut up gcc false positive */
602                 *srcu_idx = 0;
603                 rcu_read_lock();
604         } else
605                 *srcu_idx = srcu_read_lock(hctx->srcu);
606 }
607
608 /**
609  * blk_mq_complete_request - end I/O on a request
610  * @rq:         the request being processed
611  *
612  * Description:
613  *      Ends all I/O on a request. It does not handle partial completions.
614  *      The actual completion happens out-of-order, through a IPI handler.
615  **/
616 void blk_mq_complete_request(struct request *rq)
617 {
618         if (unlikely(blk_should_fake_timeout(rq->q)))
619                 return;
620         __blk_mq_complete_request(rq);
621 }
622 EXPORT_SYMBOL(blk_mq_complete_request);
623
624 int blk_mq_request_started(struct request *rq)
625 {
626         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
627 }
628 EXPORT_SYMBOL_GPL(blk_mq_request_started);
629
630 void blk_mq_start_request(struct request *rq)
631 {
632         struct request_queue *q = rq->q;
633
634         blk_mq_sched_started_request(rq);
635
636         trace_block_rq_issue(q, rq);
637
638         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639                 rq->io_start_time_ns = ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641                 rq->throtl_size = blk_rq_sectors(rq);
642 #endif
643                 rq->rq_flags |= RQF_STATS;
644                 rq_qos_issue(q, rq);
645         }
646
647         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
648
649         blk_add_timer(rq);
650         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
651
652         if (q->dma_drain_size && blk_rq_bytes(rq)) {
653                 /*
654                  * Make sure space for the drain appears.  We know we can do
655                  * this because max_hw_segments has been adjusted to be one
656                  * fewer than the device can handle.
657                  */
658                 rq->nr_phys_segments++;
659         }
660 }
661 EXPORT_SYMBOL(blk_mq_start_request);
662
663 static void __blk_mq_requeue_request(struct request *rq)
664 {
665         struct request_queue *q = rq->q;
666
667         blk_mq_put_driver_tag(rq);
668
669         trace_block_rq_requeue(q, rq);
670         rq_qos_requeue(q, rq);
671
672         if (blk_mq_request_started(rq)) {
673                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674                 rq->rq_flags &= ~RQF_TIMED_OUT;
675                 if (q->dma_drain_size && blk_rq_bytes(rq))
676                         rq->nr_phys_segments--;
677         }
678 }
679
680 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
681 {
682         __blk_mq_requeue_request(rq);
683
684         /* this request will be re-inserted to io scheduler queue */
685         blk_mq_sched_requeue_request(rq);
686
687         BUG_ON(blk_queued_rq(rq));
688         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
689 }
690 EXPORT_SYMBOL(blk_mq_requeue_request);
691
692 static void blk_mq_requeue_work(struct work_struct *work)
693 {
694         struct request_queue *q =
695                 container_of(work, struct request_queue, requeue_work.work);
696         LIST_HEAD(rq_list);
697         struct request *rq, *next;
698
699         spin_lock_irq(&q->requeue_lock);
700         list_splice_init(&q->requeue_list, &rq_list);
701         spin_unlock_irq(&q->requeue_lock);
702
703         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
705                         continue;
706
707                 rq->rq_flags &= ~RQF_SOFTBARRIER;
708                 list_del_init(&rq->queuelist);
709                 /*
710                  * If RQF_DONTPREP, rq has contained some driver specific
711                  * data, so insert it to hctx dispatch list to avoid any
712                  * merge.
713                  */
714                 if (rq->rq_flags & RQF_DONTPREP)
715                         blk_mq_request_bypass_insert(rq, false);
716                 else
717                         blk_mq_sched_insert_request(rq, true, false, false);
718         }
719
720         while (!list_empty(&rq_list)) {
721                 rq = list_entry(rq_list.next, struct request, queuelist);
722                 list_del_init(&rq->queuelist);
723                 blk_mq_sched_insert_request(rq, false, false, false);
724         }
725
726         blk_mq_run_hw_queues(q, false);
727 }
728
729 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
730                                 bool kick_requeue_list)
731 {
732         struct request_queue *q = rq->q;
733         unsigned long flags;
734
735         /*
736          * We abuse this flag that is otherwise used by the I/O scheduler to
737          * request head insertion from the workqueue.
738          */
739         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
740
741         spin_lock_irqsave(&q->requeue_lock, flags);
742         if (at_head) {
743                 rq->rq_flags |= RQF_SOFTBARRIER;
744                 list_add(&rq->queuelist, &q->requeue_list);
745         } else {
746                 list_add_tail(&rq->queuelist, &q->requeue_list);
747         }
748         spin_unlock_irqrestore(&q->requeue_lock, flags);
749
750         if (kick_requeue_list)
751                 blk_mq_kick_requeue_list(q);
752 }
753 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
754
755 void blk_mq_kick_requeue_list(struct request_queue *q)
756 {
757         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
758 }
759 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
760
761 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
762                                     unsigned long msecs)
763 {
764         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
765                                     msecs_to_jiffies(msecs));
766 }
767 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
768
769 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
770 {
771         if (tag < tags->nr_tags) {
772                 prefetch(tags->rqs[tag]);
773                 return tags->rqs[tag];
774         }
775
776         return NULL;
777 }
778 EXPORT_SYMBOL(blk_mq_tag_to_rq);
779
780 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
781 {
782         req->rq_flags |= RQF_TIMED_OUT;
783         if (req->q->mq_ops->timeout) {
784                 enum blk_eh_timer_return ret;
785
786                 ret = req->q->mq_ops->timeout(req, reserved);
787                 if (ret == BLK_EH_DONE)
788                         return;
789                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
790         }
791
792         blk_add_timer(req);
793 }
794
795 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
796 {
797         unsigned long deadline;
798
799         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
800                 return false;
801         if (rq->rq_flags & RQF_TIMED_OUT)
802                 return false;
803
804         deadline = blk_rq_deadline(rq);
805         if (time_after_eq(jiffies, deadline))
806                 return true;
807
808         if (*next == 0)
809                 *next = deadline;
810         else if (time_after(*next, deadline))
811                 *next = deadline;
812         return false;
813 }
814
815 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
816                 struct request *rq, void *priv, bool reserved)
817 {
818         unsigned long *next = priv;
819
820         /*
821          * Just do a quick check if it is expired before locking the request in
822          * so we're not unnecessarilly synchronizing across CPUs.
823          */
824         if (!blk_mq_req_expired(rq, next))
825                 return;
826
827         /*
828          * We have reason to believe the request may be expired. Take a
829          * reference on the request to lock this request lifetime into its
830          * currently allocated context to prevent it from being reallocated in
831          * the event the completion by-passes this timeout handler.
832          *
833          * If the reference was already released, then the driver beat the
834          * timeout handler to posting a natural completion.
835          */
836         if (!refcount_inc_not_zero(&rq->ref))
837                 return;
838
839         /*
840          * The request is now locked and cannot be reallocated underneath the
841          * timeout handler's processing. Re-verify this exact request is truly
842          * expired; if it is not expired, then the request was completed and
843          * reallocated as a new request.
844          */
845         if (blk_mq_req_expired(rq, next))
846                 blk_mq_rq_timed_out(rq, reserved);
847         if (refcount_dec_and_test(&rq->ref))
848                 __blk_mq_free_request(rq);
849 }
850
851 static void blk_mq_timeout_work(struct work_struct *work)
852 {
853         struct request_queue *q =
854                 container_of(work, struct request_queue, timeout_work);
855         unsigned long next = 0;
856         struct blk_mq_hw_ctx *hctx;
857         int i;
858
859         /* A deadlock might occur if a request is stuck requiring a
860          * timeout at the same time a queue freeze is waiting
861          * completion, since the timeout code would not be able to
862          * acquire the queue reference here.
863          *
864          * That's why we don't use blk_queue_enter here; instead, we use
865          * percpu_ref_tryget directly, because we need to be able to
866          * obtain a reference even in the short window between the queue
867          * starting to freeze, by dropping the first reference in
868          * blk_freeze_queue_start, and the moment the last request is
869          * consumed, marked by the instant q_usage_counter reaches
870          * zero.
871          */
872         if (!percpu_ref_tryget(&q->q_usage_counter))
873                 return;
874
875         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
876
877         if (next != 0) {
878                 mod_timer(&q->timeout, next);
879         } else {
880                 /*
881                  * Request timeouts are handled as a forward rolling timer. If
882                  * we end up here it means that no requests are pending and
883                  * also that no request has been pending for a while. Mark
884                  * each hctx as idle.
885                  */
886                 queue_for_each_hw_ctx(q, hctx, i) {
887                         /* the hctx may be unmapped, so check it here */
888                         if (blk_mq_hw_queue_mapped(hctx))
889                                 blk_mq_tag_idle(hctx);
890                 }
891         }
892         blk_queue_exit(q);
893 }
894
895 struct flush_busy_ctx_data {
896         struct blk_mq_hw_ctx *hctx;
897         struct list_head *list;
898 };
899
900 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
901 {
902         struct flush_busy_ctx_data *flush_data = data;
903         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
904         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
905
906         spin_lock(&ctx->lock);
907         list_splice_tail_init(&ctx->rq_list, flush_data->list);
908         sbitmap_clear_bit(sb, bitnr);
909         spin_unlock(&ctx->lock);
910         return true;
911 }
912
913 /*
914  * Process software queues that have been marked busy, splicing them
915  * to the for-dispatch
916  */
917 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
918 {
919         struct flush_busy_ctx_data data = {
920                 .hctx = hctx,
921                 .list = list,
922         };
923
924         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
925 }
926 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
927
928 struct dispatch_rq_data {
929         struct blk_mq_hw_ctx *hctx;
930         struct request *rq;
931 };
932
933 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
934                 void *data)
935 {
936         struct dispatch_rq_data *dispatch_data = data;
937         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
938         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
939
940         spin_lock(&ctx->lock);
941         if (!list_empty(&ctx->rq_list)) {
942                 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
943                 list_del_init(&dispatch_data->rq->queuelist);
944                 if (list_empty(&ctx->rq_list))
945                         sbitmap_clear_bit(sb, bitnr);
946         }
947         spin_unlock(&ctx->lock);
948
949         return !dispatch_data->rq;
950 }
951
952 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
953                                         struct blk_mq_ctx *start)
954 {
955         unsigned off = start ? start->index_hw : 0;
956         struct dispatch_rq_data data = {
957                 .hctx = hctx,
958                 .rq   = NULL,
959         };
960
961         __sbitmap_for_each_set(&hctx->ctx_map, off,
962                                dispatch_rq_from_ctx, &data);
963
964         return data.rq;
965 }
966
967 static inline unsigned int queued_to_index(unsigned int queued)
968 {
969         if (!queued)
970                 return 0;
971
972         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
973 }
974
975 bool blk_mq_get_driver_tag(struct request *rq)
976 {
977         struct blk_mq_alloc_data data = {
978                 .q = rq->q,
979                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
980                 .flags = BLK_MQ_REQ_NOWAIT,
981         };
982         bool shared;
983
984         if (rq->tag != -1)
985                 goto done;
986
987         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
988                 data.flags |= BLK_MQ_REQ_RESERVED;
989
990         shared = blk_mq_tag_busy(data.hctx);
991         rq->tag = blk_mq_get_tag(&data);
992         if (rq->tag >= 0) {
993                 if (shared) {
994                         rq->rq_flags |= RQF_MQ_INFLIGHT;
995                         atomic_inc(&data.hctx->nr_active);
996                 }
997                 data.hctx->tags->rqs[rq->tag] = rq;
998         }
999
1000 done:
1001         return rq->tag != -1;
1002 }
1003
1004 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1005                                 int flags, void *key)
1006 {
1007         struct blk_mq_hw_ctx *hctx;
1008
1009         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1010
1011         spin_lock(&hctx->dispatch_wait_lock);
1012         list_del_init(&wait->entry);
1013         spin_unlock(&hctx->dispatch_wait_lock);
1014
1015         blk_mq_run_hw_queue(hctx, true);
1016         return 1;
1017 }
1018
1019 /*
1020  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1021  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1022  * restart. For both cases, take care to check the condition again after
1023  * marking us as waiting.
1024  */
1025 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1026                                  struct request *rq)
1027 {
1028         struct wait_queue_head *wq;
1029         wait_queue_entry_t *wait;
1030         bool ret;
1031
1032         if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1033                 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1034                         set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1035
1036                 /*
1037                  * It's possible that a tag was freed in the window between the
1038                  * allocation failure and adding the hardware queue to the wait
1039                  * queue.
1040                  *
1041                  * Don't clear RESTART here, someone else could have set it.
1042                  * At most this will cost an extra queue run.
1043                  */
1044                 return blk_mq_get_driver_tag(rq);
1045         }
1046
1047         wait = &hctx->dispatch_wait;
1048         if (!list_empty_careful(&wait->entry))
1049                 return false;
1050
1051         wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1052
1053         spin_lock_irq(&wq->lock);
1054         spin_lock(&hctx->dispatch_wait_lock);
1055         if (!list_empty(&wait->entry)) {
1056                 spin_unlock(&hctx->dispatch_wait_lock);
1057                 spin_unlock_irq(&wq->lock);
1058                 return false;
1059         }
1060
1061         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1062         __add_wait_queue(wq, wait);
1063
1064         /*
1065          * It's possible that a tag was freed in the window between the
1066          * allocation failure and adding the hardware queue to the wait
1067          * queue.
1068          */
1069         ret = blk_mq_get_driver_tag(rq);
1070         if (!ret) {
1071                 spin_unlock(&hctx->dispatch_wait_lock);
1072                 spin_unlock_irq(&wq->lock);
1073                 return false;
1074         }
1075
1076         /*
1077          * We got a tag, remove ourselves from the wait queue to ensure
1078          * someone else gets the wakeup.
1079          */
1080         list_del_init(&wait->entry);
1081         spin_unlock(&hctx->dispatch_wait_lock);
1082         spin_unlock_irq(&wq->lock);
1083
1084         return true;
1085 }
1086
1087 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1088 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1089 /*
1090  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1091  * - EWMA is one simple way to compute running average value
1092  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1093  * - take 4 as factor for avoiding to get too small(0) result, and this
1094  *   factor doesn't matter because EWMA decreases exponentially
1095  */
1096 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1097 {
1098         unsigned int ewma;
1099
1100         if (hctx->queue->elevator)
1101                 return;
1102
1103         ewma = hctx->dispatch_busy;
1104
1105         if (!ewma && !busy)
1106                 return;
1107
1108         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1109         if (busy)
1110                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1111         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1112
1113         hctx->dispatch_busy = ewma;
1114 }
1115
1116 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1117
1118 /*
1119  * Returns true if we did some work AND can potentially do more.
1120  */
1121 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1122                              bool got_budget)
1123 {
1124         struct blk_mq_hw_ctx *hctx;
1125         struct request *rq, *nxt;
1126         bool no_tag = false;
1127         int errors, queued;
1128         blk_status_t ret = BLK_STS_OK;
1129
1130         if (list_empty(list))
1131                 return false;
1132
1133         WARN_ON(!list_is_singular(list) && got_budget);
1134
1135         /*
1136          * Now process all the entries, sending them to the driver.
1137          */
1138         errors = queued = 0;
1139         do {
1140                 struct blk_mq_queue_data bd;
1141
1142                 rq = list_first_entry(list, struct request, queuelist);
1143
1144                 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1145                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1146                         break;
1147
1148                 if (!blk_mq_get_driver_tag(rq)) {
1149                         /*
1150                          * The initial allocation attempt failed, so we need to
1151                          * rerun the hardware queue when a tag is freed. The
1152                          * waitqueue takes care of that. If the queue is run
1153                          * before we add this entry back on the dispatch list,
1154                          * we'll re-run it below.
1155                          */
1156                         if (!blk_mq_mark_tag_wait(hctx, rq)) {
1157                                 blk_mq_put_dispatch_budget(hctx);
1158                                 /*
1159                                  * For non-shared tags, the RESTART check
1160                                  * will suffice.
1161                                  */
1162                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1163                                         no_tag = true;
1164                                 break;
1165                         }
1166                 }
1167
1168                 list_del_init(&rq->queuelist);
1169
1170                 bd.rq = rq;
1171
1172                 /*
1173                  * Flag last if we have no more requests, or if we have more
1174                  * but can't assign a driver tag to it.
1175                  */
1176                 if (list_empty(list))
1177                         bd.last = true;
1178                 else {
1179                         nxt = list_first_entry(list, struct request, queuelist);
1180                         bd.last = !blk_mq_get_driver_tag(nxt);
1181                 }
1182
1183                 ret = q->mq_ops->queue_rq(hctx, &bd);
1184                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1185                         /*
1186                          * If an I/O scheduler has been configured and we got a
1187                          * driver tag for the next request already, free it
1188                          * again.
1189                          */
1190                         if (!list_empty(list)) {
1191                                 nxt = list_first_entry(list, struct request, queuelist);
1192                                 blk_mq_put_driver_tag(nxt);
1193                         }
1194                         list_add(&rq->queuelist, list);
1195                         __blk_mq_requeue_request(rq);
1196                         break;
1197                 }
1198
1199                 if (unlikely(ret != BLK_STS_OK)) {
1200                         errors++;
1201                         blk_mq_end_request(rq, BLK_STS_IOERR);
1202                         continue;
1203                 }
1204
1205                 queued++;
1206         } while (!list_empty(list));
1207
1208         hctx->dispatched[queued_to_index(queued)]++;
1209
1210         /*
1211          * Any items that need requeuing? Stuff them into hctx->dispatch,
1212          * that is where we will continue on next queue run.
1213          */
1214         if (!list_empty(list)) {
1215                 bool needs_restart;
1216
1217                 spin_lock(&hctx->lock);
1218                 list_splice_init(list, &hctx->dispatch);
1219                 spin_unlock(&hctx->lock);
1220
1221                 /*
1222                  * If SCHED_RESTART was set by the caller of this function and
1223                  * it is no longer set that means that it was cleared by another
1224                  * thread and hence that a queue rerun is needed.
1225                  *
1226                  * If 'no_tag' is set, that means that we failed getting
1227                  * a driver tag with an I/O scheduler attached. If our dispatch
1228                  * waitqueue is no longer active, ensure that we run the queue
1229                  * AFTER adding our entries back to the list.
1230                  *
1231                  * If no I/O scheduler has been configured it is possible that
1232                  * the hardware queue got stopped and restarted before requests
1233                  * were pushed back onto the dispatch list. Rerun the queue to
1234                  * avoid starvation. Notes:
1235                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1236                  *   been stopped before rerunning a queue.
1237                  * - Some but not all block drivers stop a queue before
1238                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1239                  *   and dm-rq.
1240                  *
1241                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1242                  * bit is set, run queue after a delay to avoid IO stalls
1243                  * that could otherwise occur if the queue is idle.
1244                  */
1245                 needs_restart = blk_mq_sched_needs_restart(hctx);
1246                 if (!needs_restart ||
1247                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1248                         blk_mq_run_hw_queue(hctx, true);
1249                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1250                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1251
1252                 blk_mq_update_dispatch_busy(hctx, true);
1253                 return false;
1254         } else
1255                 blk_mq_update_dispatch_busy(hctx, false);
1256
1257         /*
1258          * If the host/device is unable to accept more work, inform the
1259          * caller of that.
1260          */
1261         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1262                 return false;
1263
1264         return (queued + errors) != 0;
1265 }
1266
1267 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1268 {
1269         int srcu_idx;
1270
1271         /*
1272          * We should be running this queue from one of the CPUs that
1273          * are mapped to it.
1274          *
1275          * There are at least two related races now between setting
1276          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1277          * __blk_mq_run_hw_queue():
1278          *
1279          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1280          *   but later it becomes online, then this warning is harmless
1281          *   at all
1282          *
1283          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1284          *   but later it becomes offline, then the warning can't be
1285          *   triggered, and we depend on blk-mq timeout handler to
1286          *   handle dispatched requests to this hctx
1287          */
1288         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1289                 cpu_online(hctx->next_cpu)) {
1290                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1291                         raw_smp_processor_id(),
1292                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1293                 dump_stack();
1294         }
1295
1296         /*
1297          * We can't run the queue inline with ints disabled. Ensure that
1298          * we catch bad users of this early.
1299          */
1300         WARN_ON_ONCE(in_interrupt());
1301
1302         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1303
1304         hctx_lock(hctx, &srcu_idx);
1305         blk_mq_sched_dispatch_requests(hctx);
1306         hctx_unlock(hctx, srcu_idx);
1307 }
1308
1309 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1310 {
1311         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1312
1313         if (cpu >= nr_cpu_ids)
1314                 cpu = cpumask_first(hctx->cpumask);
1315         return cpu;
1316 }
1317
1318 /*
1319  * It'd be great if the workqueue API had a way to pass
1320  * in a mask and had some smarts for more clever placement.
1321  * For now we just round-robin here, switching for every
1322  * BLK_MQ_CPU_WORK_BATCH queued items.
1323  */
1324 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1325 {
1326         bool tried = false;
1327         int next_cpu = hctx->next_cpu;
1328
1329         if (hctx->queue->nr_hw_queues == 1)
1330                 return WORK_CPU_UNBOUND;
1331
1332         if (--hctx->next_cpu_batch <= 0) {
1333 select_cpu:
1334                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1335                                 cpu_online_mask);
1336                 if (next_cpu >= nr_cpu_ids)
1337                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1338                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1339         }
1340
1341         /*
1342          * Do unbound schedule if we can't find a online CPU for this hctx,
1343          * and it should only happen in the path of handling CPU DEAD.
1344          */
1345         if (!cpu_online(next_cpu)) {
1346                 if (!tried) {
1347                         tried = true;
1348                         goto select_cpu;
1349                 }
1350
1351                 /*
1352                  * Make sure to re-select CPU next time once after CPUs
1353                  * in hctx->cpumask become online again.
1354                  */
1355                 hctx->next_cpu = next_cpu;
1356                 hctx->next_cpu_batch = 1;
1357                 return WORK_CPU_UNBOUND;
1358         }
1359
1360         hctx->next_cpu = next_cpu;
1361         return next_cpu;
1362 }
1363
1364 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1365                                         unsigned long msecs)
1366 {
1367         if (unlikely(blk_mq_hctx_stopped(hctx)))
1368                 return;
1369
1370         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1371                 int cpu = get_cpu();
1372                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1373                         __blk_mq_run_hw_queue(hctx);
1374                         put_cpu();
1375                         return;
1376                 }
1377
1378                 put_cpu();
1379         }
1380
1381         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1382                                     msecs_to_jiffies(msecs));
1383 }
1384
1385 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1386 {
1387         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1388 }
1389 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1390
1391 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1392 {
1393         int srcu_idx;
1394         bool need_run;
1395
1396         /*
1397          * When queue is quiesced, we may be switching io scheduler, or
1398          * updating nr_hw_queues, or other things, and we can't run queue
1399          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1400          *
1401          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1402          * quiesced.
1403          */
1404         hctx_lock(hctx, &srcu_idx);
1405         need_run = !blk_queue_quiesced(hctx->queue) &&
1406                 blk_mq_hctx_has_pending(hctx);
1407         hctx_unlock(hctx, srcu_idx);
1408
1409         if (need_run) {
1410                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1411                 return true;
1412         }
1413
1414         return false;
1415 }
1416 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1417
1418 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1419 {
1420         struct blk_mq_hw_ctx *hctx;
1421         int i;
1422
1423         queue_for_each_hw_ctx(q, hctx, i) {
1424                 if (blk_mq_hctx_stopped(hctx))
1425                         continue;
1426
1427                 blk_mq_run_hw_queue(hctx, async);
1428         }
1429 }
1430 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1431
1432 /**
1433  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1434  * @q: request queue.
1435  *
1436  * The caller is responsible for serializing this function against
1437  * blk_mq_{start,stop}_hw_queue().
1438  */
1439 bool blk_mq_queue_stopped(struct request_queue *q)
1440 {
1441         struct blk_mq_hw_ctx *hctx;
1442         int i;
1443
1444         queue_for_each_hw_ctx(q, hctx, i)
1445                 if (blk_mq_hctx_stopped(hctx))
1446                         return true;
1447
1448         return false;
1449 }
1450 EXPORT_SYMBOL(blk_mq_queue_stopped);
1451
1452 /*
1453  * This function is often used for pausing .queue_rq() by driver when
1454  * there isn't enough resource or some conditions aren't satisfied, and
1455  * BLK_STS_RESOURCE is usually returned.
1456  *
1457  * We do not guarantee that dispatch can be drained or blocked
1458  * after blk_mq_stop_hw_queue() returns. Please use
1459  * blk_mq_quiesce_queue() for that requirement.
1460  */
1461 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1462 {
1463         cancel_delayed_work(&hctx->run_work);
1464
1465         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1466 }
1467 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1468
1469 /*
1470  * This function is often used for pausing .queue_rq() by driver when
1471  * there isn't enough resource or some conditions aren't satisfied, and
1472  * BLK_STS_RESOURCE is usually returned.
1473  *
1474  * We do not guarantee that dispatch can be drained or blocked
1475  * after blk_mq_stop_hw_queues() returns. Please use
1476  * blk_mq_quiesce_queue() for that requirement.
1477  */
1478 void blk_mq_stop_hw_queues(struct request_queue *q)
1479 {
1480         struct blk_mq_hw_ctx *hctx;
1481         int i;
1482
1483         queue_for_each_hw_ctx(q, hctx, i)
1484                 blk_mq_stop_hw_queue(hctx);
1485 }
1486 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1487
1488 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1489 {
1490         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1491
1492         blk_mq_run_hw_queue(hctx, false);
1493 }
1494 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1495
1496 void blk_mq_start_hw_queues(struct request_queue *q)
1497 {
1498         struct blk_mq_hw_ctx *hctx;
1499         int i;
1500
1501         queue_for_each_hw_ctx(q, hctx, i)
1502                 blk_mq_start_hw_queue(hctx);
1503 }
1504 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1505
1506 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1507 {
1508         if (!blk_mq_hctx_stopped(hctx))
1509                 return;
1510
1511         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1512         blk_mq_run_hw_queue(hctx, async);
1513 }
1514 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1515
1516 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1517 {
1518         struct blk_mq_hw_ctx *hctx;
1519         int i;
1520
1521         queue_for_each_hw_ctx(q, hctx, i)
1522                 blk_mq_start_stopped_hw_queue(hctx, async);
1523 }
1524 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1525
1526 static void blk_mq_run_work_fn(struct work_struct *work)
1527 {
1528         struct blk_mq_hw_ctx *hctx;
1529
1530         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1531
1532         /*
1533          * If we are stopped, don't run the queue.
1534          */
1535         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1536                 return;
1537
1538         __blk_mq_run_hw_queue(hctx);
1539 }
1540
1541 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1542                                             struct request *rq,
1543                                             bool at_head)
1544 {
1545         struct blk_mq_ctx *ctx = rq->mq_ctx;
1546
1547         lockdep_assert_held(&ctx->lock);
1548
1549         trace_block_rq_insert(hctx->queue, rq);
1550
1551         if (at_head)
1552                 list_add(&rq->queuelist, &ctx->rq_list);
1553         else
1554                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1555 }
1556
1557 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1558                              bool at_head)
1559 {
1560         struct blk_mq_ctx *ctx = rq->mq_ctx;
1561
1562         lockdep_assert_held(&ctx->lock);
1563
1564         __blk_mq_insert_req_list(hctx, rq, at_head);
1565         blk_mq_hctx_mark_pending(hctx, ctx);
1566 }
1567
1568 /*
1569  * Should only be used carefully, when the caller knows we want to
1570  * bypass a potential IO scheduler on the target device.
1571  */
1572 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1573 {
1574         struct blk_mq_ctx *ctx = rq->mq_ctx;
1575         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1576
1577         spin_lock(&hctx->lock);
1578         list_add_tail(&rq->queuelist, &hctx->dispatch);
1579         spin_unlock(&hctx->lock);
1580
1581         if (run_queue)
1582                 blk_mq_run_hw_queue(hctx, false);
1583 }
1584
1585 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1586                             struct list_head *list)
1587
1588 {
1589         struct request *rq;
1590
1591         /*
1592          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1593          * offline now
1594          */
1595         list_for_each_entry(rq, list, queuelist) {
1596                 BUG_ON(rq->mq_ctx != ctx);
1597                 trace_block_rq_insert(hctx->queue, rq);
1598         }
1599
1600         spin_lock(&ctx->lock);
1601         list_splice_tail_init(list, &ctx->rq_list);
1602         blk_mq_hctx_mark_pending(hctx, ctx);
1603         spin_unlock(&ctx->lock);
1604 }
1605
1606 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1607 {
1608         struct request *rqa = container_of(a, struct request, queuelist);
1609         struct request *rqb = container_of(b, struct request, queuelist);
1610
1611         return !(rqa->mq_ctx < rqb->mq_ctx ||
1612                  (rqa->mq_ctx == rqb->mq_ctx &&
1613                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1614 }
1615
1616 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1617 {
1618         struct blk_mq_ctx *this_ctx;
1619         struct request_queue *this_q;
1620         struct request *rq;
1621         LIST_HEAD(list);
1622         LIST_HEAD(ctx_list);
1623         unsigned int depth;
1624
1625         list_splice_init(&plug->mq_list, &list);
1626
1627         list_sort(NULL, &list, plug_ctx_cmp);
1628
1629         this_q = NULL;
1630         this_ctx = NULL;
1631         depth = 0;
1632
1633         while (!list_empty(&list)) {
1634                 rq = list_entry_rq(list.next);
1635                 list_del_init(&rq->queuelist);
1636                 BUG_ON(!rq->q);
1637                 if (rq->mq_ctx != this_ctx) {
1638                         if (this_ctx) {
1639                                 trace_block_unplug(this_q, depth, !from_schedule);
1640                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1641                                                                 &ctx_list,
1642                                                                 from_schedule);
1643                         }
1644
1645                         this_ctx = rq->mq_ctx;
1646                         this_q = rq->q;
1647                         depth = 0;
1648                 }
1649
1650                 depth++;
1651                 list_add_tail(&rq->queuelist, &ctx_list);
1652         }
1653
1654         /*
1655          * If 'this_ctx' is set, we know we have entries to complete
1656          * on 'ctx_list'. Do those.
1657          */
1658         if (this_ctx) {
1659                 trace_block_unplug(this_q, depth, !from_schedule);
1660                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1661                                                 from_schedule);
1662         }
1663 }
1664
1665 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1666 {
1667         blk_init_request_from_bio(rq, bio);
1668
1669         blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1670
1671         blk_account_io_start(rq, true);
1672 }
1673
1674 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1675 {
1676         if (rq->tag != -1)
1677                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1678
1679         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1680 }
1681
1682 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1683                                             struct request *rq,
1684                                             blk_qc_t *cookie)
1685 {
1686         struct request_queue *q = rq->q;
1687         struct blk_mq_queue_data bd = {
1688                 .rq = rq,
1689                 .last = true,
1690         };
1691         blk_qc_t new_cookie;
1692         blk_status_t ret;
1693
1694         new_cookie = request_to_qc_t(hctx, rq);
1695
1696         /*
1697          * For OK queue, we are done. For error, caller may kill it.
1698          * Any other error (busy), just add it to our list as we
1699          * previously would have done.
1700          */
1701         ret = q->mq_ops->queue_rq(hctx, &bd);
1702         switch (ret) {
1703         case BLK_STS_OK:
1704                 blk_mq_update_dispatch_busy(hctx, false);
1705                 *cookie = new_cookie;
1706                 break;
1707         case BLK_STS_RESOURCE:
1708         case BLK_STS_DEV_RESOURCE:
1709                 blk_mq_update_dispatch_busy(hctx, true);
1710                 __blk_mq_requeue_request(rq);
1711                 break;
1712         default:
1713                 blk_mq_update_dispatch_busy(hctx, false);
1714                 *cookie = BLK_QC_T_NONE;
1715                 break;
1716         }
1717
1718         return ret;
1719 }
1720
1721 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1722                                                 struct request *rq,
1723                                                 blk_qc_t *cookie,
1724                                                 bool bypass_insert)
1725 {
1726         struct request_queue *q = rq->q;
1727         bool run_queue = true;
1728
1729         /*
1730          * RCU or SRCU read lock is needed before checking quiesced flag.
1731          *
1732          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1733          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1734          * and avoid driver to try to dispatch again.
1735          */
1736         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1737                 run_queue = false;
1738                 bypass_insert = false;
1739                 goto insert;
1740         }
1741
1742         if (q->elevator && !bypass_insert)
1743                 goto insert;
1744
1745         if (!blk_mq_get_dispatch_budget(hctx))
1746                 goto insert;
1747
1748         if (!blk_mq_get_driver_tag(rq)) {
1749                 blk_mq_put_dispatch_budget(hctx);
1750                 goto insert;
1751         }
1752
1753         return __blk_mq_issue_directly(hctx, rq, cookie);
1754 insert:
1755         if (bypass_insert)
1756                 return BLK_STS_RESOURCE;
1757
1758         blk_mq_request_bypass_insert(rq, run_queue);
1759         return BLK_STS_OK;
1760 }
1761
1762 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1763                 struct request *rq, blk_qc_t *cookie)
1764 {
1765         blk_status_t ret;
1766         int srcu_idx;
1767
1768         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1769
1770         hctx_lock(hctx, &srcu_idx);
1771
1772         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1773         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1774                 blk_mq_request_bypass_insert(rq, true);
1775         else if (ret != BLK_STS_OK)
1776                 blk_mq_end_request(rq, ret);
1777
1778         hctx_unlock(hctx, srcu_idx);
1779 }
1780
1781 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1782 {
1783         blk_status_t ret;
1784         int srcu_idx;
1785         blk_qc_t unused_cookie;
1786         struct blk_mq_ctx *ctx = rq->mq_ctx;
1787         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1788
1789         hctx_lock(hctx, &srcu_idx);
1790         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1791         hctx_unlock(hctx, srcu_idx);
1792
1793         return ret;
1794 }
1795
1796 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1797                 struct list_head *list)
1798 {
1799         while (!list_empty(list)) {
1800                 blk_status_t ret;
1801                 struct request *rq = list_first_entry(list, struct request,
1802                                 queuelist);
1803
1804                 list_del_init(&rq->queuelist);
1805                 ret = blk_mq_request_issue_directly(rq);
1806                 if (ret != BLK_STS_OK) {
1807                         if (ret == BLK_STS_RESOURCE ||
1808                                         ret == BLK_STS_DEV_RESOURCE) {
1809                                 blk_mq_request_bypass_insert(rq,
1810                                                         list_empty(list));
1811                                 break;
1812                         }
1813                         blk_mq_end_request(rq, ret);
1814                 }
1815         }
1816 }
1817
1818 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1819 {
1820         const int is_sync = op_is_sync(bio->bi_opf);
1821         const int is_flush_fua = op_is_flush(bio->bi_opf);
1822         struct blk_mq_alloc_data data = { .flags = 0 };
1823         struct request *rq;
1824         unsigned int request_count = 0;
1825         struct blk_plug *plug;
1826         struct request *same_queue_rq = NULL;
1827         blk_qc_t cookie;
1828
1829         blk_queue_bounce(q, &bio);
1830
1831         blk_queue_split(q, &bio);
1832
1833         if (!bio_integrity_prep(bio))
1834                 return BLK_QC_T_NONE;
1835
1836         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1837             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1838                 return BLK_QC_T_NONE;
1839
1840         if (blk_mq_sched_bio_merge(q, bio))
1841                 return BLK_QC_T_NONE;
1842
1843         rq_qos_throttle(q, bio, NULL);
1844
1845         trace_block_getrq(q, bio, bio->bi_opf);
1846
1847         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1848         if (unlikely(!rq)) {
1849                 rq_qos_cleanup(q, bio);
1850                 if (bio->bi_opf & REQ_NOWAIT)
1851                         bio_wouldblock_error(bio);
1852                 return BLK_QC_T_NONE;
1853         }
1854
1855         rq_qos_track(q, rq, bio);
1856
1857         cookie = request_to_qc_t(data.hctx, rq);
1858
1859         plug = current->plug;
1860         if (unlikely(is_flush_fua)) {
1861                 blk_mq_put_ctx(data.ctx);
1862                 blk_mq_bio_to_request(rq, bio);
1863
1864                 /* bypass scheduler for flush rq */
1865                 blk_insert_flush(rq);
1866                 blk_mq_run_hw_queue(data.hctx, true);
1867         } else if (plug && q->nr_hw_queues == 1) {
1868                 struct request *last = NULL;
1869
1870                 blk_mq_put_ctx(data.ctx);
1871                 blk_mq_bio_to_request(rq, bio);
1872
1873                 /*
1874                  * @request_count may become stale because of schedule
1875                  * out, so check the list again.
1876                  */
1877                 if (list_empty(&plug->mq_list))
1878                         request_count = 0;
1879                 else if (blk_queue_nomerges(q))
1880                         request_count = blk_plug_queued_count(q);
1881
1882                 if (!request_count)
1883                         trace_block_plug(q);
1884                 else
1885                         last = list_entry_rq(plug->mq_list.prev);
1886
1887                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1888                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1889                         blk_flush_plug_list(plug, false);
1890                         trace_block_plug(q);
1891                 }
1892
1893                 list_add_tail(&rq->queuelist, &plug->mq_list);
1894         } else if (plug && !blk_queue_nomerges(q)) {
1895                 blk_mq_bio_to_request(rq, bio);
1896
1897                 /*
1898                  * We do limited plugging. If the bio can be merged, do that.
1899                  * Otherwise the existing request in the plug list will be
1900                  * issued. So the plug list will have one request at most
1901                  * The plug list might get flushed before this. If that happens,
1902                  * the plug list is empty, and same_queue_rq is invalid.
1903                  */
1904                 if (list_empty(&plug->mq_list))
1905                         same_queue_rq = NULL;
1906                 if (same_queue_rq)
1907                         list_del_init(&same_queue_rq->queuelist);
1908                 list_add_tail(&rq->queuelist, &plug->mq_list);
1909
1910                 blk_mq_put_ctx(data.ctx);
1911
1912                 if (same_queue_rq) {
1913                         data.hctx = blk_mq_map_queue(q,
1914                                         same_queue_rq->mq_ctx->cpu);
1915                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1916                                         &cookie);
1917                 }
1918         } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1919                         !data.hctx->dispatch_busy)) {
1920                 blk_mq_put_ctx(data.ctx);
1921                 blk_mq_bio_to_request(rq, bio);
1922                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1923         } else {
1924                 blk_mq_put_ctx(data.ctx);
1925                 blk_mq_bio_to_request(rq, bio);
1926                 blk_mq_sched_insert_request(rq, false, true, true);
1927         }
1928
1929         return cookie;
1930 }
1931
1932 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1933                      unsigned int hctx_idx)
1934 {
1935         struct page *page;
1936
1937         if (tags->rqs && set->ops->exit_request) {
1938                 int i;
1939
1940                 for (i = 0; i < tags->nr_tags; i++) {
1941                         struct request *rq = tags->static_rqs[i];
1942
1943                         if (!rq)
1944                                 continue;
1945                         set->ops->exit_request(set, rq, hctx_idx);
1946                         tags->static_rqs[i] = NULL;
1947                 }
1948         }
1949
1950         while (!list_empty(&tags->page_list)) {
1951                 page = list_first_entry(&tags->page_list, struct page, lru);
1952                 list_del_init(&page->lru);
1953                 /*
1954                  * Remove kmemleak object previously allocated in
1955                  * blk_mq_init_rq_map().
1956                  */
1957                 kmemleak_free(page_address(page));
1958                 __free_pages(page, page->private);
1959         }
1960 }
1961
1962 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1963 {
1964         kfree(tags->rqs);
1965         tags->rqs = NULL;
1966         kfree(tags->static_rqs);
1967         tags->static_rqs = NULL;
1968
1969         blk_mq_free_tags(tags);
1970 }
1971
1972 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1973                                         unsigned int hctx_idx,
1974                                         unsigned int nr_tags,
1975                                         unsigned int reserved_tags)
1976 {
1977         struct blk_mq_tags *tags;
1978         int node;
1979
1980         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1981         if (node == NUMA_NO_NODE)
1982                 node = set->numa_node;
1983
1984         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1985                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1986         if (!tags)
1987                 return NULL;
1988
1989         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1990                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1991                                  node);
1992         if (!tags->rqs) {
1993                 blk_mq_free_tags(tags);
1994                 return NULL;
1995         }
1996
1997         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1998                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1999                                         node);
2000         if (!tags->static_rqs) {
2001                 kfree(tags->rqs);
2002                 blk_mq_free_tags(tags);
2003                 return NULL;
2004         }
2005
2006         return tags;
2007 }
2008
2009 static size_t order_to_size(unsigned int order)
2010 {
2011         return (size_t)PAGE_SIZE << order;
2012 }
2013
2014 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2015                                unsigned int hctx_idx, int node)
2016 {
2017         int ret;
2018
2019         if (set->ops->init_request) {
2020                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2021                 if (ret)
2022                         return ret;
2023         }
2024
2025         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2026         return 0;
2027 }
2028
2029 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2030                      unsigned int hctx_idx, unsigned int depth)
2031 {
2032         unsigned int i, j, entries_per_page, max_order = 4;
2033         size_t rq_size, left;
2034         int node;
2035
2036         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2037         if (node == NUMA_NO_NODE)
2038                 node = set->numa_node;
2039
2040         INIT_LIST_HEAD(&tags->page_list);
2041
2042         /*
2043          * rq_size is the size of the request plus driver payload, rounded
2044          * to the cacheline size
2045          */
2046         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2047                                 cache_line_size());
2048         left = rq_size * depth;
2049
2050         for (i = 0; i < depth; ) {
2051                 int this_order = max_order;
2052                 struct page *page;
2053                 int to_do;
2054                 void *p;
2055
2056                 while (this_order && left < order_to_size(this_order - 1))
2057                         this_order--;
2058
2059                 do {
2060                         page = alloc_pages_node(node,
2061                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2062                                 this_order);
2063                         if (page)
2064                                 break;
2065                         if (!this_order--)
2066                                 break;
2067                         if (order_to_size(this_order) < rq_size)
2068                                 break;
2069                 } while (1);
2070
2071                 if (!page)
2072                         goto fail;
2073
2074                 page->private = this_order;
2075                 list_add_tail(&page->lru, &tags->page_list);
2076
2077                 p = page_address(page);
2078                 /*
2079                  * Allow kmemleak to scan these pages as they contain pointers
2080                  * to additional allocations like via ops->init_request().
2081                  */
2082                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2083                 entries_per_page = order_to_size(this_order) / rq_size;
2084                 to_do = min(entries_per_page, depth - i);
2085                 left -= to_do * rq_size;
2086                 for (j = 0; j < to_do; j++) {
2087                         struct request *rq = p;
2088
2089                         tags->static_rqs[i] = rq;
2090                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2091                                 tags->static_rqs[i] = NULL;
2092                                 goto fail;
2093                         }
2094
2095                         p += rq_size;
2096                         i++;
2097                 }
2098         }
2099         return 0;
2100
2101 fail:
2102         blk_mq_free_rqs(set, tags, hctx_idx);
2103         return -ENOMEM;
2104 }
2105
2106 /*
2107  * 'cpu' is going away. splice any existing rq_list entries from this
2108  * software queue to the hw queue dispatch list, and ensure that it
2109  * gets run.
2110  */
2111 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2112 {
2113         struct blk_mq_hw_ctx *hctx;
2114         struct blk_mq_ctx *ctx;
2115         LIST_HEAD(tmp);
2116
2117         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2118         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2119
2120         spin_lock(&ctx->lock);
2121         if (!list_empty(&ctx->rq_list)) {
2122                 list_splice_init(&ctx->rq_list, &tmp);
2123                 blk_mq_hctx_clear_pending(hctx, ctx);
2124         }
2125         spin_unlock(&ctx->lock);
2126
2127         if (list_empty(&tmp))
2128                 return 0;
2129
2130         spin_lock(&hctx->lock);
2131         list_splice_tail_init(&tmp, &hctx->dispatch);
2132         spin_unlock(&hctx->lock);
2133
2134         blk_mq_run_hw_queue(hctx, true);
2135         return 0;
2136 }
2137
2138 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2139 {
2140         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2141                                             &hctx->cpuhp_dead);
2142 }
2143
2144 /* hctx->ctxs will be freed in queue's release handler */
2145 static void blk_mq_exit_hctx(struct request_queue *q,
2146                 struct blk_mq_tag_set *set,
2147                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2148 {
2149         blk_mq_debugfs_unregister_hctx(hctx);
2150
2151         if (blk_mq_hw_queue_mapped(hctx))
2152                 blk_mq_tag_idle(hctx);
2153
2154         if (set->ops->exit_request)
2155                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2156
2157         if (set->ops->exit_hctx)
2158                 set->ops->exit_hctx(hctx, hctx_idx);
2159
2160         blk_mq_remove_cpuhp(hctx);
2161 }
2162
2163 static void blk_mq_exit_hw_queues(struct request_queue *q,
2164                 struct blk_mq_tag_set *set, int nr_queue)
2165 {
2166         struct blk_mq_hw_ctx *hctx;
2167         unsigned int i;
2168
2169         queue_for_each_hw_ctx(q, hctx, i) {
2170                 if (i == nr_queue)
2171                         break;
2172                 blk_mq_exit_hctx(q, set, hctx, i);
2173         }
2174 }
2175
2176 static int blk_mq_init_hctx(struct request_queue *q,
2177                 struct blk_mq_tag_set *set,
2178                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2179 {
2180         int node;
2181
2182         node = hctx->numa_node;
2183         if (node == NUMA_NO_NODE)
2184                 node = hctx->numa_node = set->numa_node;
2185
2186         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2187         spin_lock_init(&hctx->lock);
2188         INIT_LIST_HEAD(&hctx->dispatch);
2189         hctx->queue = q;
2190         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2191
2192         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2193
2194         hctx->tags = set->tags[hctx_idx];
2195
2196         /*
2197          * Allocate space for all possible cpus to avoid allocation at
2198          * runtime
2199          */
2200         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2201                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2202         if (!hctx->ctxs)
2203                 goto unregister_cpu_notifier;
2204
2205         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2206                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2207                 goto free_ctxs;
2208
2209         hctx->nr_ctx = 0;
2210
2211         spin_lock_init(&hctx->dispatch_wait_lock);
2212         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2213         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2214
2215         if (set->ops->init_hctx &&
2216             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2217                 goto free_bitmap;
2218
2219         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2220                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2221         if (!hctx->fq)
2222                 goto exit_hctx;
2223
2224         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2225                 goto free_fq;
2226
2227         if (hctx->flags & BLK_MQ_F_BLOCKING)
2228                 init_srcu_struct(hctx->srcu);
2229
2230         blk_mq_debugfs_register_hctx(q, hctx);
2231
2232         return 0;
2233
2234  free_fq:
2235         blk_free_flush_queue(hctx->fq);
2236  exit_hctx:
2237         if (set->ops->exit_hctx)
2238                 set->ops->exit_hctx(hctx, hctx_idx);
2239  free_bitmap:
2240         sbitmap_free(&hctx->ctx_map);
2241  free_ctxs:
2242         kfree(hctx->ctxs);
2243  unregister_cpu_notifier:
2244         blk_mq_remove_cpuhp(hctx);
2245         return -1;
2246 }
2247
2248 static void blk_mq_init_cpu_queues(struct request_queue *q,
2249                                    unsigned int nr_hw_queues)
2250 {
2251         unsigned int i;
2252
2253         for_each_possible_cpu(i) {
2254                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2255                 struct blk_mq_hw_ctx *hctx;
2256
2257                 __ctx->cpu = i;
2258                 spin_lock_init(&__ctx->lock);
2259                 INIT_LIST_HEAD(&__ctx->rq_list);
2260                 __ctx->queue = q;
2261
2262                 /*
2263                  * Set local node, IFF we have more than one hw queue. If
2264                  * not, we remain on the home node of the device
2265                  */
2266                 hctx = blk_mq_map_queue(q, i);
2267                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2268                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2269         }
2270 }
2271
2272 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2273 {
2274         int ret = 0;
2275
2276         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2277                                         set->queue_depth, set->reserved_tags);
2278         if (!set->tags[hctx_idx])
2279                 return false;
2280
2281         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2282                                 set->queue_depth);
2283         if (!ret)
2284                 return true;
2285
2286         blk_mq_free_rq_map(set->tags[hctx_idx]);
2287         set->tags[hctx_idx] = NULL;
2288         return false;
2289 }
2290
2291 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2292                                          unsigned int hctx_idx)
2293 {
2294         if (set->tags[hctx_idx]) {
2295                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2296                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2297                 set->tags[hctx_idx] = NULL;
2298         }
2299 }
2300
2301 static void blk_mq_map_swqueue(struct request_queue *q)
2302 {
2303         unsigned int i, hctx_idx;
2304         struct blk_mq_hw_ctx *hctx;
2305         struct blk_mq_ctx *ctx;
2306         struct blk_mq_tag_set *set = q->tag_set;
2307
2308         /*
2309          * Avoid others reading imcomplete hctx->cpumask through sysfs
2310          */
2311         mutex_lock(&q->sysfs_lock);
2312
2313         queue_for_each_hw_ctx(q, hctx, i) {
2314                 cpumask_clear(hctx->cpumask);
2315                 hctx->nr_ctx = 0;
2316                 hctx->dispatch_from = NULL;
2317         }
2318
2319         /*
2320          * Map software to hardware queues.
2321          *
2322          * If the cpu isn't present, the cpu is mapped to first hctx.
2323          */
2324         for_each_possible_cpu(i) {
2325                 hctx_idx = q->mq_map[i];
2326                 /* unmapped hw queue can be remapped after CPU topo changed */
2327                 if (!set->tags[hctx_idx] &&
2328                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2329                         /*
2330                          * If tags initialization fail for some hctx,
2331                          * that hctx won't be brought online.  In this
2332                          * case, remap the current ctx to hctx[0] which
2333                          * is guaranteed to always have tags allocated
2334                          */
2335                         q->mq_map[i] = 0;
2336                 }
2337
2338                 ctx = per_cpu_ptr(q->queue_ctx, i);
2339                 hctx = blk_mq_map_queue(q, i);
2340
2341                 cpumask_set_cpu(i, hctx->cpumask);
2342                 ctx->index_hw = hctx->nr_ctx;
2343                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2344         }
2345
2346         mutex_unlock(&q->sysfs_lock);
2347
2348         queue_for_each_hw_ctx(q, hctx, i) {
2349                 /*
2350                  * If no software queues are mapped to this hardware queue,
2351                  * disable it and free the request entries.
2352                  */
2353                 if (!hctx->nr_ctx) {
2354                         /* Never unmap queue 0.  We need it as a
2355                          * fallback in case of a new remap fails
2356                          * allocation
2357                          */
2358                         if (i && set->tags[i])
2359                                 blk_mq_free_map_and_requests(set, i);
2360
2361                         hctx->tags = NULL;
2362                         continue;
2363                 }
2364
2365                 hctx->tags = set->tags[i];
2366                 WARN_ON(!hctx->tags);
2367
2368                 /*
2369                  * Set the map size to the number of mapped software queues.
2370                  * This is more accurate and more efficient than looping
2371                  * over all possibly mapped software queues.
2372                  */
2373                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2374
2375                 /*
2376                  * Initialize batch roundrobin counts
2377                  */
2378                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2379                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2380         }
2381 }
2382
2383 /*
2384  * Caller needs to ensure that we're either frozen/quiesced, or that
2385  * the queue isn't live yet.
2386  */
2387 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2388 {
2389         struct blk_mq_hw_ctx *hctx;
2390         int i;
2391
2392         queue_for_each_hw_ctx(q, hctx, i) {
2393                 if (shared)
2394                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2395                 else
2396                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2397         }
2398 }
2399
2400 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2401                                         bool shared)
2402 {
2403         struct request_queue *q;
2404
2405         lockdep_assert_held(&set->tag_list_lock);
2406
2407         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2408                 blk_mq_freeze_queue(q);
2409                 queue_set_hctx_shared(q, shared);
2410                 blk_mq_unfreeze_queue(q);
2411         }
2412 }
2413
2414 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2415 {
2416         struct blk_mq_tag_set *set = q->tag_set;
2417
2418         mutex_lock(&set->tag_list_lock);
2419         list_del_rcu(&q->tag_set_list);
2420         if (list_is_singular(&set->tag_list)) {
2421                 /* just transitioned to unshared */
2422                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2423                 /* update existing queue */
2424                 blk_mq_update_tag_set_depth(set, false);
2425         }
2426         mutex_unlock(&set->tag_list_lock);
2427         INIT_LIST_HEAD(&q->tag_set_list);
2428 }
2429
2430 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2431                                      struct request_queue *q)
2432 {
2433         q->tag_set = set;
2434
2435         mutex_lock(&set->tag_list_lock);
2436
2437         /*
2438          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2439          */
2440         if (!list_empty(&set->tag_list) &&
2441             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2442                 set->flags |= BLK_MQ_F_TAG_SHARED;
2443                 /* update existing queue */
2444                 blk_mq_update_tag_set_depth(set, true);
2445         }
2446         if (set->flags & BLK_MQ_F_TAG_SHARED)
2447                 queue_set_hctx_shared(q, true);
2448         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2449
2450         mutex_unlock(&set->tag_list_lock);
2451 }
2452
2453 /*
2454  * It is the actual release handler for mq, but we do it from
2455  * request queue's release handler for avoiding use-after-free
2456  * and headache because q->mq_kobj shouldn't have been introduced,
2457  * but we can't group ctx/kctx kobj without it.
2458  */
2459 void blk_mq_release(struct request_queue *q)
2460 {
2461         struct blk_mq_hw_ctx *hctx;
2462         unsigned int i;
2463
2464         /* hctx kobj stays in hctx */
2465         queue_for_each_hw_ctx(q, hctx, i) {
2466                 if (!hctx)
2467                         continue;
2468                 kobject_put(&hctx->kobj);
2469         }
2470
2471         q->mq_map = NULL;
2472
2473         kfree(q->queue_hw_ctx);
2474
2475         /*
2476          * release .mq_kobj and sw queue's kobject now because
2477          * both share lifetime with request queue.
2478          */
2479         blk_mq_sysfs_deinit(q);
2480
2481         free_percpu(q->queue_ctx);
2482 }
2483
2484 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2485 {
2486         struct request_queue *uninit_q, *q;
2487
2488         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2489         if (!uninit_q)
2490                 return ERR_PTR(-ENOMEM);
2491
2492         q = blk_mq_init_allocated_queue(set, uninit_q);
2493         if (IS_ERR(q))
2494                 blk_cleanup_queue(uninit_q);
2495
2496         return q;
2497 }
2498 EXPORT_SYMBOL(blk_mq_init_queue);
2499
2500 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2501 {
2502         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2503
2504         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2505                            __alignof__(struct blk_mq_hw_ctx)) !=
2506                      sizeof(struct blk_mq_hw_ctx));
2507
2508         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2509                 hw_ctx_size += sizeof(struct srcu_struct);
2510
2511         return hw_ctx_size;
2512 }
2513
2514 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2515                                                 struct request_queue *q)
2516 {
2517         int i, j;
2518         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2519
2520         blk_mq_sysfs_unregister(q);
2521
2522         /* protect against switching io scheduler  */
2523         mutex_lock(&q->sysfs_lock);
2524         for (i = 0; i < set->nr_hw_queues; i++) {
2525                 int node;
2526
2527                 if (hctxs[i])
2528                         continue;
2529
2530                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2531                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2532                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2533                                 node);
2534                 if (!hctxs[i])
2535                         break;
2536
2537                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask,
2538                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2539                                         node)) {
2540                         kfree(hctxs[i]);
2541                         hctxs[i] = NULL;
2542                         break;
2543                 }
2544
2545                 atomic_set(&hctxs[i]->nr_active, 0);
2546                 hctxs[i]->numa_node = node;
2547                 hctxs[i]->queue_num = i;
2548
2549                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2550                         free_cpumask_var(hctxs[i]->cpumask);
2551                         kfree(hctxs[i]);
2552                         hctxs[i] = NULL;
2553                         break;
2554                 }
2555                 blk_mq_hctx_kobj_init(hctxs[i]);
2556         }
2557         for (j = i; j < q->nr_hw_queues; j++) {
2558                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2559
2560                 if (hctx) {
2561                         if (hctx->tags)
2562                                 blk_mq_free_map_and_requests(set, j);
2563                         blk_mq_exit_hctx(q, set, hctx, j);
2564                         kobject_put(&hctx->kobj);
2565                         hctxs[j] = NULL;
2566
2567                 }
2568         }
2569         q->nr_hw_queues = i;
2570         mutex_unlock(&q->sysfs_lock);
2571         blk_mq_sysfs_register(q);
2572 }
2573
2574 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2575                                                   struct request_queue *q)
2576 {
2577         /* mark the queue as mq asap */
2578         q->mq_ops = set->ops;
2579
2580         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2581                                              blk_mq_poll_stats_bkt,
2582                                              BLK_MQ_POLL_STATS_BKTS, q);
2583         if (!q->poll_cb)
2584                 goto err_exit;
2585
2586         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2587         if (!q->queue_ctx)
2588                 goto err_exit;
2589
2590         /* init q->mq_kobj and sw queues' kobjects */
2591         blk_mq_sysfs_init(q);
2592
2593         q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2594                                                 GFP_KERNEL, set->numa_node);
2595         if (!q->queue_hw_ctx)
2596                 goto err_percpu;
2597
2598         q->mq_map = set->mq_map;
2599
2600         blk_mq_realloc_hw_ctxs(set, q);
2601         if (!q->nr_hw_queues)
2602                 goto err_hctxs;
2603
2604         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2605         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2606
2607         q->nr_queues = nr_cpu_ids;
2608
2609         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2610
2611         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2612                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2613
2614         q->sg_reserved_size = INT_MAX;
2615
2616         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2617         INIT_LIST_HEAD(&q->requeue_list);
2618         spin_lock_init(&q->requeue_lock);
2619
2620         blk_queue_make_request(q, blk_mq_make_request);
2621         if (q->mq_ops->poll)
2622                 q->poll_fn = blk_mq_poll;
2623
2624         /*
2625          * Do this after blk_queue_make_request() overrides it...
2626          */
2627         q->nr_requests = set->queue_depth;
2628
2629         /*
2630          * Default to classic polling
2631          */
2632         q->poll_nsec = -1;
2633
2634         if (set->ops->complete)
2635                 blk_queue_softirq_done(q, set->ops->complete);
2636
2637         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2638         blk_mq_add_queue_tag_set(set, q);
2639         blk_mq_map_swqueue(q);
2640
2641         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2642                 int ret;
2643
2644                 ret = elevator_init_mq(q);
2645                 if (ret)
2646                         return ERR_PTR(ret);
2647         }
2648
2649         return q;
2650
2651 err_hctxs:
2652         kfree(q->queue_hw_ctx);
2653 err_percpu:
2654         free_percpu(q->queue_ctx);
2655 err_exit:
2656         q->mq_ops = NULL;
2657         return ERR_PTR(-ENOMEM);
2658 }
2659 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2660
2661 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2662 void blk_mq_exit_queue(struct request_queue *q)
2663 {
2664         struct blk_mq_tag_set   *set = q->tag_set;
2665
2666         blk_mq_del_queue_tag_set(q);
2667         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2668 }
2669
2670 /* Basically redo blk_mq_init_queue with queue frozen */
2671 static void blk_mq_queue_reinit(struct request_queue *q)
2672 {
2673         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2674
2675         blk_mq_debugfs_unregister_hctxs(q);
2676         blk_mq_sysfs_unregister(q);
2677
2678         /*
2679          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2680          * we should change hctx numa_node according to the new topology (this
2681          * involves freeing and re-allocating memory, worth doing?)
2682          */
2683         blk_mq_map_swqueue(q);
2684
2685         blk_mq_sysfs_register(q);
2686         blk_mq_debugfs_register_hctxs(q);
2687 }
2688
2689 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2690 {
2691         int i;
2692
2693         for (i = 0; i < set->nr_hw_queues; i++)
2694                 if (!__blk_mq_alloc_rq_map(set, i))
2695                         goto out_unwind;
2696
2697         return 0;
2698
2699 out_unwind:
2700         while (--i >= 0)
2701                 blk_mq_free_rq_map(set->tags[i]);
2702
2703         return -ENOMEM;
2704 }
2705
2706 /*
2707  * Allocate the request maps associated with this tag_set. Note that this
2708  * may reduce the depth asked for, if memory is tight. set->queue_depth
2709  * will be updated to reflect the allocated depth.
2710  */
2711 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2712 {
2713         unsigned int depth;
2714         int err;
2715
2716         depth = set->queue_depth;
2717         do {
2718                 err = __blk_mq_alloc_rq_maps(set);
2719                 if (!err)
2720                         break;
2721
2722                 set->queue_depth >>= 1;
2723                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2724                         err = -ENOMEM;
2725                         break;
2726                 }
2727         } while (set->queue_depth);
2728
2729         if (!set->queue_depth || err) {
2730                 pr_err("blk-mq: failed to allocate request map\n");
2731                 return -ENOMEM;
2732         }
2733
2734         if (depth != set->queue_depth)
2735                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2736                                                 depth, set->queue_depth);
2737
2738         return 0;
2739 }
2740
2741 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2742 {
2743         if (set->ops->map_queues) {
2744                 /*
2745                  * transport .map_queues is usually done in the following
2746                  * way:
2747                  *
2748                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2749                  *      mask = get_cpu_mask(queue)
2750                  *      for_each_cpu(cpu, mask)
2751                  *              set->mq_map[cpu] = queue;
2752                  * }
2753                  *
2754                  * When we need to remap, the table has to be cleared for
2755                  * killing stale mapping since one CPU may not be mapped
2756                  * to any hw queue.
2757                  */
2758                 blk_mq_clear_mq_map(set);
2759
2760                 return set->ops->map_queues(set);
2761         } else
2762                 return blk_mq_map_queues(set);
2763 }
2764
2765 /*
2766  * Alloc a tag set to be associated with one or more request queues.
2767  * May fail with EINVAL for various error conditions. May adjust the
2768  * requested depth down, if it's too large. In that case, the set
2769  * value will be stored in set->queue_depth.
2770  */
2771 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2772 {
2773         int ret;
2774
2775         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2776
2777         if (!set->nr_hw_queues)
2778                 return -EINVAL;
2779         if (!set->queue_depth)
2780                 return -EINVAL;
2781         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2782                 return -EINVAL;
2783
2784         if (!set->ops->queue_rq)
2785                 return -EINVAL;
2786
2787         if (!set->ops->get_budget ^ !set->ops->put_budget)
2788                 return -EINVAL;
2789
2790         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2791                 pr_info("blk-mq: reduced tag depth to %u\n",
2792                         BLK_MQ_MAX_DEPTH);
2793                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2794         }
2795
2796         /*
2797          * If a crashdump is active, then we are potentially in a very
2798          * memory constrained environment. Limit us to 1 queue and
2799          * 64 tags to prevent using too much memory.
2800          */
2801         if (is_kdump_kernel()) {
2802                 set->nr_hw_queues = 1;
2803                 set->queue_depth = min(64U, set->queue_depth);
2804         }
2805         /*
2806          * There is no use for more h/w queues than cpus.
2807          */
2808         if (set->nr_hw_queues > nr_cpu_ids)
2809                 set->nr_hw_queues = nr_cpu_ids;
2810
2811         set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2812                                  GFP_KERNEL, set->numa_node);
2813         if (!set->tags)
2814                 return -ENOMEM;
2815
2816         ret = -ENOMEM;
2817         set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2818                                    GFP_KERNEL, set->numa_node);
2819         if (!set->mq_map)
2820                 goto out_free_tags;
2821
2822         ret = blk_mq_update_queue_map(set);
2823         if (ret)
2824                 goto out_free_mq_map;
2825
2826         ret = blk_mq_alloc_rq_maps(set);
2827         if (ret)
2828                 goto out_free_mq_map;
2829
2830         mutex_init(&set->tag_list_lock);
2831         INIT_LIST_HEAD(&set->tag_list);
2832
2833         return 0;
2834
2835 out_free_mq_map:
2836         kfree(set->mq_map);
2837         set->mq_map = NULL;
2838 out_free_tags:
2839         kfree(set->tags);
2840         set->tags = NULL;
2841         return ret;
2842 }
2843 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2844
2845 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2846 {
2847         int i;
2848
2849         for (i = 0; i < nr_cpu_ids; i++)
2850                 blk_mq_free_map_and_requests(set, i);
2851
2852         kfree(set->mq_map);
2853         set->mq_map = NULL;
2854
2855         kfree(set->tags);
2856         set->tags = NULL;
2857 }
2858 EXPORT_SYMBOL(blk_mq_free_tag_set);
2859
2860 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2861 {
2862         struct blk_mq_tag_set *set = q->tag_set;
2863         struct blk_mq_hw_ctx *hctx;
2864         int i, ret;
2865
2866         if (!set)
2867                 return -EINVAL;
2868
2869         blk_mq_freeze_queue(q);
2870         blk_mq_quiesce_queue(q);
2871
2872         ret = 0;
2873         queue_for_each_hw_ctx(q, hctx, i) {
2874                 if (!hctx->tags)
2875                         continue;
2876                 /*
2877                  * If we're using an MQ scheduler, just update the scheduler
2878                  * queue depth. This is similar to what the old code would do.
2879                  */
2880                 if (!hctx->sched_tags) {
2881                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2882                                                         false);
2883                 } else {
2884                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2885                                                         nr, true);
2886                 }
2887                 if (ret)
2888                         break;
2889                 if (q->elevator && q->elevator->type->ops.mq.depth_updated)
2890                         q->elevator->type->ops.mq.depth_updated(hctx);
2891         }
2892
2893         if (!ret)
2894                 q->nr_requests = nr;
2895
2896         blk_mq_unquiesce_queue(q);
2897         blk_mq_unfreeze_queue(q);
2898
2899         return ret;
2900 }
2901
2902 /*
2903  * request_queue and elevator_type pair.
2904  * It is just used by __blk_mq_update_nr_hw_queues to cache
2905  * the elevator_type associated with a request_queue.
2906  */
2907 struct blk_mq_qe_pair {
2908         struct list_head node;
2909         struct request_queue *q;
2910         struct elevator_type *type;
2911 };
2912
2913 /*
2914  * Cache the elevator_type in qe pair list and switch the
2915  * io scheduler to 'none'
2916  */
2917 static bool blk_mq_elv_switch_none(struct list_head *head,
2918                 struct request_queue *q)
2919 {
2920         struct blk_mq_qe_pair *qe;
2921
2922         if (!q->elevator)
2923                 return true;
2924
2925         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2926         if (!qe)
2927                 return false;
2928
2929         INIT_LIST_HEAD(&qe->node);
2930         qe->q = q;
2931         qe->type = q->elevator->type;
2932         list_add(&qe->node, head);
2933
2934         mutex_lock(&q->sysfs_lock);
2935         /*
2936          * After elevator_switch_mq, the previous elevator_queue will be
2937          * released by elevator_release. The reference of the io scheduler
2938          * module get by elevator_get will also be put. So we need to get
2939          * a reference of the io scheduler module here to prevent it to be
2940          * removed.
2941          */
2942         __module_get(qe->type->elevator_owner);
2943         elevator_switch_mq(q, NULL);
2944         mutex_unlock(&q->sysfs_lock);
2945
2946         return true;
2947 }
2948
2949 static void blk_mq_elv_switch_back(struct list_head *head,
2950                 struct request_queue *q)
2951 {
2952         struct blk_mq_qe_pair *qe;
2953         struct elevator_type *t = NULL;
2954
2955         list_for_each_entry(qe, head, node)
2956                 if (qe->q == q) {
2957                         t = qe->type;
2958                         break;
2959                 }
2960
2961         if (!t)
2962                 return;
2963
2964         list_del(&qe->node);
2965         kfree(qe);
2966
2967         mutex_lock(&q->sysfs_lock);
2968         elevator_switch_mq(q, t);
2969         mutex_unlock(&q->sysfs_lock);
2970 }
2971
2972 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2973                                                         int nr_hw_queues)
2974 {
2975         struct request_queue *q;
2976         LIST_HEAD(head);
2977
2978         lockdep_assert_held(&set->tag_list_lock);
2979
2980         if (nr_hw_queues > nr_cpu_ids)
2981                 nr_hw_queues = nr_cpu_ids;
2982         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2983                 return;
2984
2985         list_for_each_entry(q, &set->tag_list, tag_set_list)
2986                 blk_mq_freeze_queue(q);
2987         /*
2988          * Sync with blk_mq_queue_tag_busy_iter.
2989          */
2990         synchronize_rcu();
2991         /*
2992          * Switch IO scheduler to 'none', cleaning up the data associated
2993          * with the previous scheduler. We will switch back once we are done
2994          * updating the new sw to hw queue mappings.
2995          */
2996         list_for_each_entry(q, &set->tag_list, tag_set_list)
2997                 if (!blk_mq_elv_switch_none(&head, q))
2998                         goto switch_back;
2999
3000         set->nr_hw_queues = nr_hw_queues;
3001         blk_mq_update_queue_map(set);
3002         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3003                 blk_mq_realloc_hw_ctxs(set, q);
3004                 blk_mq_queue_reinit(q);
3005         }
3006
3007 switch_back:
3008         list_for_each_entry(q, &set->tag_list, tag_set_list)
3009                 blk_mq_elv_switch_back(&head, q);
3010
3011         list_for_each_entry(q, &set->tag_list, tag_set_list)
3012                 blk_mq_unfreeze_queue(q);
3013 }
3014
3015 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3016 {
3017         mutex_lock(&set->tag_list_lock);
3018         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3019         mutex_unlock(&set->tag_list_lock);
3020 }
3021 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3022
3023 /* Enable polling stats and return whether they were already enabled. */
3024 static bool blk_poll_stats_enable(struct request_queue *q)
3025 {
3026         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3027             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3028                 return true;
3029         blk_stat_add_callback(q, q->poll_cb);
3030         return false;
3031 }
3032
3033 static void blk_mq_poll_stats_start(struct request_queue *q)
3034 {
3035         /*
3036          * We don't arm the callback if polling stats are not enabled or the
3037          * callback is already active.
3038          */
3039         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3040             blk_stat_is_active(q->poll_cb))
3041                 return;
3042
3043         blk_stat_activate_msecs(q->poll_cb, 100);
3044 }
3045
3046 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3047 {
3048         struct request_queue *q = cb->data;
3049         int bucket;
3050
3051         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3052                 if (cb->stat[bucket].nr_samples)
3053                         q->poll_stat[bucket] = cb->stat[bucket];
3054         }
3055 }
3056
3057 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3058                                        struct blk_mq_hw_ctx *hctx,
3059                                        struct request *rq)
3060 {
3061         unsigned long ret = 0;
3062         int bucket;
3063
3064         /*
3065          * If stats collection isn't on, don't sleep but turn it on for
3066          * future users
3067          */
3068         if (!blk_poll_stats_enable(q))
3069                 return 0;
3070
3071         /*
3072          * As an optimistic guess, use half of the mean service time
3073          * for this type of request. We can (and should) make this smarter.
3074          * For instance, if the completion latencies are tight, we can
3075          * get closer than just half the mean. This is especially
3076          * important on devices where the completion latencies are longer
3077          * than ~10 usec. We do use the stats for the relevant IO size
3078          * if available which does lead to better estimates.
3079          */
3080         bucket = blk_mq_poll_stats_bkt(rq);
3081         if (bucket < 0)
3082                 return ret;
3083
3084         if (q->poll_stat[bucket].nr_samples)
3085                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3086
3087         return ret;
3088 }
3089
3090 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3091                                      struct blk_mq_hw_ctx *hctx,
3092                                      struct request *rq)
3093 {
3094         struct hrtimer_sleeper hs;
3095         enum hrtimer_mode mode;
3096         unsigned int nsecs;
3097         ktime_t kt;
3098
3099         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3100                 return false;
3101
3102         /*
3103          * poll_nsec can be:
3104          *
3105          * -1:  don't ever hybrid sleep
3106          *  0:  use half of prev avg
3107          * >0:  use this specific value
3108          */
3109         if (q->poll_nsec == -1)
3110                 return false;
3111         else if (q->poll_nsec > 0)
3112                 nsecs = q->poll_nsec;
3113         else
3114                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3115
3116         if (!nsecs)
3117                 return false;
3118
3119         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3120
3121         /*
3122          * This will be replaced with the stats tracking code, using
3123          * 'avg_completion_time / 2' as the pre-sleep target.
3124          */
3125         kt = nsecs;
3126
3127         mode = HRTIMER_MODE_REL;
3128         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3129         hrtimer_set_expires(&hs.timer, kt);
3130
3131         hrtimer_init_sleeper(&hs, current);
3132         do {
3133                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3134                         break;
3135                 set_current_state(TASK_UNINTERRUPTIBLE);
3136                 hrtimer_start_expires(&hs.timer, mode);
3137                 if (hs.task)
3138                         io_schedule();
3139                 hrtimer_cancel(&hs.timer);
3140                 mode = HRTIMER_MODE_ABS;
3141         } while (hs.task && !signal_pending(current));
3142
3143         __set_current_state(TASK_RUNNING);
3144         destroy_hrtimer_on_stack(&hs.timer);
3145         return true;
3146 }
3147
3148 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3149 {
3150         struct request_queue *q = hctx->queue;
3151         long state;
3152
3153         /*
3154          * If we sleep, have the caller restart the poll loop to reset
3155          * the state. Like for the other success return cases, the
3156          * caller is responsible for checking if the IO completed. If
3157          * the IO isn't complete, we'll get called again and will go
3158          * straight to the busy poll loop.
3159          */
3160         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3161                 return true;
3162
3163         hctx->poll_considered++;
3164
3165         state = current->state;
3166         while (!need_resched()) {
3167                 int ret;
3168
3169                 hctx->poll_invoked++;
3170
3171                 ret = q->mq_ops->poll(hctx, rq->tag);
3172                 if (ret > 0) {
3173                         hctx->poll_success++;
3174                         set_current_state(TASK_RUNNING);
3175                         return true;
3176                 }
3177
3178                 if (signal_pending_state(state, current))
3179                         set_current_state(TASK_RUNNING);
3180
3181                 if (current->state == TASK_RUNNING)
3182                         return true;
3183                 if (ret < 0)
3184                         break;
3185                 cpu_relax();
3186         }
3187
3188         __set_current_state(TASK_RUNNING);
3189         return false;
3190 }
3191
3192 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3193 {
3194         struct blk_mq_hw_ctx *hctx;
3195         struct request *rq;
3196
3197         if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3198                 return false;
3199
3200         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3201         if (!blk_qc_t_is_internal(cookie))
3202                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3203         else {
3204                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3205                 /*
3206                  * With scheduling, if the request has completed, we'll
3207                  * get a NULL return here, as we clear the sched tag when
3208                  * that happens. The request still remains valid, like always,
3209                  * so we should be safe with just the NULL check.
3210                  */
3211                 if (!rq)
3212                         return false;
3213         }
3214
3215         return __blk_mq_poll(hctx, rq);
3216 }
3217
3218 static int __init blk_mq_init(void)
3219 {
3220         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3221                                 blk_mq_hctx_notify_dead);
3222         return 0;
3223 }
3224 subsys_initcall(blk_mq_init);