blk-mq: avoid sysfs buffer overflow with too many CPU cores
[platform/kernel/linux-rpi.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-mq-sched.h"
38 #include "blk-rq-qos.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46         int ddir, bytes, bucket;
47
48         ddir = rq_data_dir(rq);
49         bytes = blk_rq_bytes(rq);
50
51         bucket = ddir + 2*(ilog2(bytes) - 9);
52
53         if (bucket < 0)
54                 return -1;
55         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58         return bucket;
59 }
60
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66         return !list_empty_careful(&hctx->dispatch) ||
67                 sbitmap_any_bit_set(&hctx->ctx_map) ||
68                         blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75                                      struct blk_mq_ctx *ctx)
76 {
77         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82                                       struct blk_mq_ctx *ctx)
83 {
84         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88         struct hd_struct *part;
89         unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93                                   struct request *rq, void *priv,
94                                   bool reserved)
95 {
96         struct mq_inflight *mi = priv;
97
98         /*
99          * index[0] counts the specific partition that was asked for. index[1]
100          * counts the ones that are active on the whole device, so increment
101          * that if mi->part is indeed a partition, and not a whole device.
102          */
103         if (rq->part == mi->part)
104                 mi->inflight[0]++;
105         if (mi->part->partno)
106                 mi->inflight[1]++;
107 }
108
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110                       unsigned int inflight[2])
111 {
112         struct mq_inflight mi = { .part = part, .inflight = inflight, };
113
114         inflight[0] = inflight[1] = 0;
115         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 }
117
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119                                      struct request *rq, void *priv,
120                                      bool reserved)
121 {
122         struct mq_inflight *mi = priv;
123
124         if (rq->part == mi->part)
125                 mi->inflight[rq_data_dir(rq)]++;
126 }
127
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129                          unsigned int inflight[2])
130 {
131         struct mq_inflight mi = { .part = part, .inflight = inflight, };
132
133         inflight[0] = inflight[1] = 0;
134         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
135 }
136
137 void blk_freeze_queue_start(struct request_queue *q)
138 {
139         int freeze_depth;
140
141         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142         if (freeze_depth == 1) {
143                 percpu_ref_kill(&q->q_usage_counter);
144                 if (q->mq_ops)
145                         blk_mq_run_hw_queues(q, false);
146         }
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157                                      unsigned long timeout)
158 {
159         return wait_event_timeout(q->mq_freeze_wq,
160                                         percpu_ref_is_zero(&q->q_usage_counter),
161                                         timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
169 void blk_freeze_queue(struct request_queue *q)
170 {
171         /*
172          * In the !blk_mq case we are only calling this to kill the
173          * q_usage_counter, otherwise this increases the freeze depth
174          * and waits for it to return to zero.  For this reason there is
175          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176          * exported to drivers as the only user for unfreeze is blk_mq.
177          */
178         blk_freeze_queue_start(q);
179         if (!q->mq_ops)
180                 blk_drain_queue(q);
181         blk_mq_freeze_queue_wait(q);
182 }
183
184 void blk_mq_freeze_queue(struct request_queue *q)
185 {
186         /*
187          * ...just an alias to keep freeze and unfreeze actions balanced
188          * in the blk_mq_* namespace
189          */
190         blk_freeze_queue(q);
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196         int freeze_depth;
197
198         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199         WARN_ON_ONCE(freeze_depth < 0);
200         if (!freeze_depth) {
201                 percpu_ref_reinit(&q->q_usage_counter);
202                 wake_up_all(&q->mq_freeze_wq);
203         }
204 }
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206
207 /*
208  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209  * mpt3sas driver such that this function can be removed.
210  */
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 {
213         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
216
217 /**
218  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219  * @q: request queue.
220  *
221  * Note: this function does not prevent that the struct request end_io()
222  * callback function is invoked. Once this function is returned, we make
223  * sure no dispatch can happen until the queue is unquiesced via
224  * blk_mq_unquiesce_queue().
225  */
226 void blk_mq_quiesce_queue(struct request_queue *q)
227 {
228         struct blk_mq_hw_ctx *hctx;
229         unsigned int i;
230         bool rcu = false;
231
232         blk_mq_quiesce_queue_nowait(q);
233
234         queue_for_each_hw_ctx(q, hctx, i) {
235                 if (hctx->flags & BLK_MQ_F_BLOCKING)
236                         synchronize_srcu(hctx->srcu);
237                 else
238                         rcu = true;
239         }
240         if (rcu)
241                 synchronize_rcu();
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
244
245 /*
246  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247  * @q: request queue.
248  *
249  * This function recovers queue into the state before quiescing
250  * which is done by blk_mq_quiesce_queue.
251  */
252 void blk_mq_unquiesce_queue(struct request_queue *q)
253 {
254         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255
256         /* dispatch requests which are inserted during quiescing */
257         blk_mq_run_hw_queues(q, true);
258 }
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260
261 void blk_mq_wake_waiters(struct request_queue *q)
262 {
263         struct blk_mq_hw_ctx *hctx;
264         unsigned int i;
265
266         queue_for_each_hw_ctx(q, hctx, i)
267                 if (blk_mq_hw_queue_mapped(hctx))
268                         blk_mq_tag_wakeup_all(hctx->tags, true);
269 }
270
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 {
273         return blk_mq_has_free_tags(hctx->tags);
274 }
275 EXPORT_SYMBOL(blk_mq_can_queue);
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278                 unsigned int tag, unsigned int op)
279 {
280         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281         struct request *rq = tags->static_rqs[tag];
282         req_flags_t rq_flags = 0;
283
284         if (data->flags & BLK_MQ_REQ_INTERNAL) {
285                 rq->tag = -1;
286                 rq->internal_tag = tag;
287         } else {
288                 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
289                         rq_flags = RQF_MQ_INFLIGHT;
290                         atomic_inc(&data->hctx->nr_active);
291                 }
292                 rq->tag = tag;
293                 rq->internal_tag = -1;
294                 data->hctx->tags->rqs[rq->tag] = rq;
295         }
296
297         /* csd/requeue_work/fifo_time is initialized before use */
298         rq->q = data->q;
299         rq->mq_ctx = data->ctx;
300         rq->rq_flags = rq_flags;
301         rq->cpu = -1;
302         rq->cmd_flags = op;
303         if (data->flags & BLK_MQ_REQ_PREEMPT)
304                 rq->rq_flags |= RQF_PREEMPT;
305         if (blk_queue_io_stat(data->q))
306                 rq->rq_flags |= RQF_IO_STAT;
307         INIT_LIST_HEAD(&rq->queuelist);
308         INIT_HLIST_NODE(&rq->hash);
309         RB_CLEAR_NODE(&rq->rb_node);
310         rq->rq_disk = NULL;
311         rq->part = NULL;
312         rq->start_time_ns = ktime_get_ns();
313         rq->io_start_time_ns = 0;
314         rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316         rq->nr_integrity_segments = 0;
317 #endif
318         rq->special = NULL;
319         /* tag was already set */
320         rq->extra_len = 0;
321         rq->__deadline = 0;
322
323         INIT_LIST_HEAD(&rq->timeout_list);
324         rq->timeout = 0;
325
326         rq->end_io = NULL;
327         rq->end_io_data = NULL;
328         rq->next_rq = NULL;
329
330 #ifdef CONFIG_BLK_CGROUP
331         rq->rl = NULL;
332 #endif
333
334         data->ctx->rq_dispatched[op_is_sync(op)]++;
335         refcount_set(&rq->ref, 1);
336         return rq;
337 }
338
339 static struct request *blk_mq_get_request(struct request_queue *q,
340                 struct bio *bio, unsigned int op,
341                 struct blk_mq_alloc_data *data)
342 {
343         struct elevator_queue *e = q->elevator;
344         struct request *rq;
345         unsigned int tag;
346         bool put_ctx_on_error = false;
347
348         blk_queue_enter_live(q);
349         data->q = q;
350         if (likely(!data->ctx)) {
351                 data->ctx = blk_mq_get_ctx(q);
352                 put_ctx_on_error = true;
353         }
354         if (likely(!data->hctx))
355                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356         if (op & REQ_NOWAIT)
357                 data->flags |= BLK_MQ_REQ_NOWAIT;
358
359         if (e) {
360                 data->flags |= BLK_MQ_REQ_INTERNAL;
361
362                 /*
363                  * Flush requests are special and go directly to the
364                  * dispatch list. Don't include reserved tags in the
365                  * limiting, as it isn't useful.
366                  */
367                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
368                     !(data->flags & BLK_MQ_REQ_RESERVED))
369                         e->type->ops.mq.limit_depth(op, data);
370         } else {
371                 blk_mq_tag_busy(data->hctx);
372         }
373
374         tag = blk_mq_get_tag(data);
375         if (tag == BLK_MQ_TAG_FAIL) {
376                 if (put_ctx_on_error) {
377                         blk_mq_put_ctx(data->ctx);
378                         data->ctx = NULL;
379                 }
380                 blk_queue_exit(q);
381                 return NULL;
382         }
383
384         rq = blk_mq_rq_ctx_init(data, tag, op);
385         if (!op_is_flush(op)) {
386                 rq->elv.icq = NULL;
387                 if (e && e->type->ops.mq.prepare_request) {
388                         if (e->type->icq_cache && rq_ioc(bio))
389                                 blk_mq_sched_assign_ioc(rq, bio);
390
391                         e->type->ops.mq.prepare_request(rq, bio);
392                         rq->rq_flags |= RQF_ELVPRIV;
393                 }
394         }
395         data->hctx->queued++;
396         return rq;
397 }
398
399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400                 blk_mq_req_flags_t flags)
401 {
402         struct blk_mq_alloc_data alloc_data = { .flags = flags };
403         struct request *rq;
404         int ret;
405
406         ret = blk_queue_enter(q, flags);
407         if (ret)
408                 return ERR_PTR(ret);
409
410         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
411         blk_queue_exit(q);
412
413         if (!rq)
414                 return ERR_PTR(-EWOULDBLOCK);
415
416         blk_mq_put_ctx(alloc_data.ctx);
417
418         rq->__data_len = 0;
419         rq->__sector = (sector_t) -1;
420         rq->bio = rq->biotail = NULL;
421         return rq;
422 }
423 EXPORT_SYMBOL(blk_mq_alloc_request);
424
425 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
426         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
427 {
428         struct blk_mq_alloc_data alloc_data = { .flags = flags };
429         struct request *rq;
430         unsigned int cpu;
431         int ret;
432
433         /*
434          * If the tag allocator sleeps we could get an allocation for a
435          * different hardware context.  No need to complicate the low level
436          * allocator for this for the rare use case of a command tied to
437          * a specific queue.
438          */
439         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
440                 return ERR_PTR(-EINVAL);
441
442         if (hctx_idx >= q->nr_hw_queues)
443                 return ERR_PTR(-EIO);
444
445         ret = blk_queue_enter(q, flags);
446         if (ret)
447                 return ERR_PTR(ret);
448
449         /*
450          * Check if the hardware context is actually mapped to anything.
451          * If not tell the caller that it should skip this queue.
452          */
453         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
454         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
455                 blk_queue_exit(q);
456                 return ERR_PTR(-EXDEV);
457         }
458         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
459         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
460
461         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
462         blk_queue_exit(q);
463
464         if (!rq)
465                 return ERR_PTR(-EWOULDBLOCK);
466
467         return rq;
468 }
469 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
470
471 static void __blk_mq_free_request(struct request *rq)
472 {
473         struct request_queue *q = rq->q;
474         struct blk_mq_ctx *ctx = rq->mq_ctx;
475         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
476         const int sched_tag = rq->internal_tag;
477
478         if (rq->tag != -1)
479                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
480         if (sched_tag != -1)
481                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
482         blk_mq_sched_restart(hctx);
483         blk_queue_exit(q);
484 }
485
486 void blk_mq_free_request(struct request *rq)
487 {
488         struct request_queue *q = rq->q;
489         struct elevator_queue *e = q->elevator;
490         struct blk_mq_ctx *ctx = rq->mq_ctx;
491         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
492
493         if (rq->rq_flags & RQF_ELVPRIV) {
494                 if (e && e->type->ops.mq.finish_request)
495                         e->type->ops.mq.finish_request(rq);
496                 if (rq->elv.icq) {
497                         put_io_context(rq->elv.icq->ioc);
498                         rq->elv.icq = NULL;
499                 }
500         }
501
502         ctx->rq_completed[rq_is_sync(rq)]++;
503         if (rq->rq_flags & RQF_MQ_INFLIGHT)
504                 atomic_dec(&hctx->nr_active);
505
506         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
507                 laptop_io_completion(q->backing_dev_info);
508
509         rq_qos_done(q, rq);
510
511         if (blk_rq_rl(rq))
512                 blk_put_rl(blk_rq_rl(rq));
513
514         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
515         if (refcount_dec_and_test(&rq->ref))
516                 __blk_mq_free_request(rq);
517 }
518 EXPORT_SYMBOL_GPL(blk_mq_free_request);
519
520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
521 {
522         u64 now = ktime_get_ns();
523
524         if (rq->rq_flags & RQF_STATS) {
525                 blk_mq_poll_stats_start(rq->q);
526                 blk_stat_add(rq, now);
527         }
528
529         blk_account_io_done(rq, now);
530
531         if (rq->end_io) {
532                 rq_qos_done(rq->q, rq);
533                 rq->end_io(rq, error);
534         } else {
535                 if (unlikely(blk_bidi_rq(rq)))
536                         blk_mq_free_request(rq->next_rq);
537                 blk_mq_free_request(rq);
538         }
539 }
540 EXPORT_SYMBOL(__blk_mq_end_request);
541
542 void blk_mq_end_request(struct request *rq, blk_status_t error)
543 {
544         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
545                 BUG();
546         __blk_mq_end_request(rq, error);
547 }
548 EXPORT_SYMBOL(blk_mq_end_request);
549
550 static void __blk_mq_complete_request_remote(void *data)
551 {
552         struct request *rq = data;
553
554         rq->q->softirq_done_fn(rq);
555 }
556
557 static void __blk_mq_complete_request(struct request *rq)
558 {
559         struct blk_mq_ctx *ctx = rq->mq_ctx;
560         bool shared = false;
561         int cpu;
562
563         if (!blk_mq_mark_complete(rq))
564                 return;
565         if (rq->internal_tag != -1)
566                 blk_mq_sched_completed_request(rq);
567
568         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569                 rq->q->softirq_done_fn(rq);
570                 return;
571         }
572
573         cpu = get_cpu();
574         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
575                 shared = cpus_share_cache(cpu, ctx->cpu);
576
577         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578                 rq->csd.func = __blk_mq_complete_request_remote;
579                 rq->csd.info = rq;
580                 rq->csd.flags = 0;
581                 smp_call_function_single_async(ctx->cpu, &rq->csd);
582         } else {
583                 rq->q->softirq_done_fn(rq);
584         }
585         put_cpu();
586 }
587
588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589         __releases(hctx->srcu)
590 {
591         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
592                 rcu_read_unlock();
593         else
594                 srcu_read_unlock(hctx->srcu, srcu_idx);
595 }
596
597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598         __acquires(hctx->srcu)
599 {
600         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
601                 /* shut up gcc false positive */
602                 *srcu_idx = 0;
603                 rcu_read_lock();
604         } else
605                 *srcu_idx = srcu_read_lock(hctx->srcu);
606 }
607
608 /**
609  * blk_mq_complete_request - end I/O on a request
610  * @rq:         the request being processed
611  *
612  * Description:
613  *      Ends all I/O on a request. It does not handle partial completions.
614  *      The actual completion happens out-of-order, through a IPI handler.
615  **/
616 void blk_mq_complete_request(struct request *rq)
617 {
618         if (unlikely(blk_should_fake_timeout(rq->q)))
619                 return;
620         __blk_mq_complete_request(rq);
621 }
622 EXPORT_SYMBOL(blk_mq_complete_request);
623
624 int blk_mq_request_started(struct request *rq)
625 {
626         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
627 }
628 EXPORT_SYMBOL_GPL(blk_mq_request_started);
629
630 void blk_mq_start_request(struct request *rq)
631 {
632         struct request_queue *q = rq->q;
633
634         blk_mq_sched_started_request(rq);
635
636         trace_block_rq_issue(q, rq);
637
638         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639                 rq->io_start_time_ns = ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641                 rq->throtl_size = blk_rq_sectors(rq);
642 #endif
643                 rq->rq_flags |= RQF_STATS;
644                 rq_qos_issue(q, rq);
645         }
646
647         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
648
649         blk_add_timer(rq);
650         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
651
652         if (q->dma_drain_size && blk_rq_bytes(rq)) {
653                 /*
654                  * Make sure space for the drain appears.  We know we can do
655                  * this because max_hw_segments has been adjusted to be one
656                  * fewer than the device can handle.
657                  */
658                 rq->nr_phys_segments++;
659         }
660 }
661 EXPORT_SYMBOL(blk_mq_start_request);
662
663 static void __blk_mq_requeue_request(struct request *rq)
664 {
665         struct request_queue *q = rq->q;
666
667         blk_mq_put_driver_tag(rq);
668
669         trace_block_rq_requeue(q, rq);
670         rq_qos_requeue(q, rq);
671
672         if (blk_mq_request_started(rq)) {
673                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674                 rq->rq_flags &= ~RQF_TIMED_OUT;
675                 if (q->dma_drain_size && blk_rq_bytes(rq))
676                         rq->nr_phys_segments--;
677         }
678 }
679
680 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
681 {
682         __blk_mq_requeue_request(rq);
683
684         /* this request will be re-inserted to io scheduler queue */
685         blk_mq_sched_requeue_request(rq);
686
687         BUG_ON(blk_queued_rq(rq));
688         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
689 }
690 EXPORT_SYMBOL(blk_mq_requeue_request);
691
692 static void blk_mq_requeue_work(struct work_struct *work)
693 {
694         struct request_queue *q =
695                 container_of(work, struct request_queue, requeue_work.work);
696         LIST_HEAD(rq_list);
697         struct request *rq, *next;
698
699         spin_lock_irq(&q->requeue_lock);
700         list_splice_init(&q->requeue_list, &rq_list);
701         spin_unlock_irq(&q->requeue_lock);
702
703         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
705                         continue;
706
707                 rq->rq_flags &= ~RQF_SOFTBARRIER;
708                 list_del_init(&rq->queuelist);
709                 /*
710                  * If RQF_DONTPREP, rq has contained some driver specific
711                  * data, so insert it to hctx dispatch list to avoid any
712                  * merge.
713                  */
714                 if (rq->rq_flags & RQF_DONTPREP)
715                         blk_mq_request_bypass_insert(rq, false);
716                 else
717                         blk_mq_sched_insert_request(rq, true, false, false);
718         }
719
720         while (!list_empty(&rq_list)) {
721                 rq = list_entry(rq_list.next, struct request, queuelist);
722                 list_del_init(&rq->queuelist);
723                 blk_mq_sched_insert_request(rq, false, false, false);
724         }
725
726         blk_mq_run_hw_queues(q, false);
727 }
728
729 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
730                                 bool kick_requeue_list)
731 {
732         struct request_queue *q = rq->q;
733         unsigned long flags;
734
735         /*
736          * We abuse this flag that is otherwise used by the I/O scheduler to
737          * request head insertion from the workqueue.
738          */
739         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
740
741         spin_lock_irqsave(&q->requeue_lock, flags);
742         if (at_head) {
743                 rq->rq_flags |= RQF_SOFTBARRIER;
744                 list_add(&rq->queuelist, &q->requeue_list);
745         } else {
746                 list_add_tail(&rq->queuelist, &q->requeue_list);
747         }
748         spin_unlock_irqrestore(&q->requeue_lock, flags);
749
750         if (kick_requeue_list)
751                 blk_mq_kick_requeue_list(q);
752 }
753 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
754
755 void blk_mq_kick_requeue_list(struct request_queue *q)
756 {
757         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
758 }
759 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
760
761 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
762                                     unsigned long msecs)
763 {
764         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
765                                     msecs_to_jiffies(msecs));
766 }
767 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
768
769 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
770 {
771         if (tag < tags->nr_tags) {
772                 prefetch(tags->rqs[tag]);
773                 return tags->rqs[tag];
774         }
775
776         return NULL;
777 }
778 EXPORT_SYMBOL(blk_mq_tag_to_rq);
779
780 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
781 {
782         req->rq_flags |= RQF_TIMED_OUT;
783         if (req->q->mq_ops->timeout) {
784                 enum blk_eh_timer_return ret;
785
786                 ret = req->q->mq_ops->timeout(req, reserved);
787                 if (ret == BLK_EH_DONE)
788                         return;
789                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
790         }
791
792         blk_add_timer(req);
793 }
794
795 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
796 {
797         unsigned long deadline;
798
799         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
800                 return false;
801         if (rq->rq_flags & RQF_TIMED_OUT)
802                 return false;
803
804         deadline = blk_rq_deadline(rq);
805         if (time_after_eq(jiffies, deadline))
806                 return true;
807
808         if (*next == 0)
809                 *next = deadline;
810         else if (time_after(*next, deadline))
811                 *next = deadline;
812         return false;
813 }
814
815 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
816                 struct request *rq, void *priv, bool reserved)
817 {
818         unsigned long *next = priv;
819
820         /*
821          * Just do a quick check if it is expired before locking the request in
822          * so we're not unnecessarilly synchronizing across CPUs.
823          */
824         if (!blk_mq_req_expired(rq, next))
825                 return;
826
827         /*
828          * We have reason to believe the request may be expired. Take a
829          * reference on the request to lock this request lifetime into its
830          * currently allocated context to prevent it from being reallocated in
831          * the event the completion by-passes this timeout handler.
832          *
833          * If the reference was already released, then the driver beat the
834          * timeout handler to posting a natural completion.
835          */
836         if (!refcount_inc_not_zero(&rq->ref))
837                 return;
838
839         /*
840          * The request is now locked and cannot be reallocated underneath the
841          * timeout handler's processing. Re-verify this exact request is truly
842          * expired; if it is not expired, then the request was completed and
843          * reallocated as a new request.
844          */
845         if (blk_mq_req_expired(rq, next))
846                 blk_mq_rq_timed_out(rq, reserved);
847
848         if (is_flush_rq(rq, hctx))
849                 rq->end_io(rq, 0);
850         else if (refcount_dec_and_test(&rq->ref))
851                 __blk_mq_free_request(rq);
852 }
853
854 static void blk_mq_timeout_work(struct work_struct *work)
855 {
856         struct request_queue *q =
857                 container_of(work, struct request_queue, timeout_work);
858         unsigned long next = 0;
859         struct blk_mq_hw_ctx *hctx;
860         int i;
861
862         /* A deadlock might occur if a request is stuck requiring a
863          * timeout at the same time a queue freeze is waiting
864          * completion, since the timeout code would not be able to
865          * acquire the queue reference here.
866          *
867          * That's why we don't use blk_queue_enter here; instead, we use
868          * percpu_ref_tryget directly, because we need to be able to
869          * obtain a reference even in the short window between the queue
870          * starting to freeze, by dropping the first reference in
871          * blk_freeze_queue_start, and the moment the last request is
872          * consumed, marked by the instant q_usage_counter reaches
873          * zero.
874          */
875         if (!percpu_ref_tryget(&q->q_usage_counter))
876                 return;
877
878         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
879
880         if (next != 0) {
881                 mod_timer(&q->timeout, next);
882         } else {
883                 /*
884                  * Request timeouts are handled as a forward rolling timer. If
885                  * we end up here it means that no requests are pending and
886                  * also that no request has been pending for a while. Mark
887                  * each hctx as idle.
888                  */
889                 queue_for_each_hw_ctx(q, hctx, i) {
890                         /* the hctx may be unmapped, so check it here */
891                         if (blk_mq_hw_queue_mapped(hctx))
892                                 blk_mq_tag_idle(hctx);
893                 }
894         }
895         blk_queue_exit(q);
896 }
897
898 struct flush_busy_ctx_data {
899         struct blk_mq_hw_ctx *hctx;
900         struct list_head *list;
901 };
902
903 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
904 {
905         struct flush_busy_ctx_data *flush_data = data;
906         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
907         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
908
909         spin_lock(&ctx->lock);
910         list_splice_tail_init(&ctx->rq_list, flush_data->list);
911         sbitmap_clear_bit(sb, bitnr);
912         spin_unlock(&ctx->lock);
913         return true;
914 }
915
916 /*
917  * Process software queues that have been marked busy, splicing them
918  * to the for-dispatch
919  */
920 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
921 {
922         struct flush_busy_ctx_data data = {
923                 .hctx = hctx,
924                 .list = list,
925         };
926
927         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
928 }
929 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
930
931 struct dispatch_rq_data {
932         struct blk_mq_hw_ctx *hctx;
933         struct request *rq;
934 };
935
936 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
937                 void *data)
938 {
939         struct dispatch_rq_data *dispatch_data = data;
940         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
941         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
942
943         spin_lock(&ctx->lock);
944         if (!list_empty(&ctx->rq_list)) {
945                 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
946                 list_del_init(&dispatch_data->rq->queuelist);
947                 if (list_empty(&ctx->rq_list))
948                         sbitmap_clear_bit(sb, bitnr);
949         }
950         spin_unlock(&ctx->lock);
951
952         return !dispatch_data->rq;
953 }
954
955 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
956                                         struct blk_mq_ctx *start)
957 {
958         unsigned off = start ? start->index_hw : 0;
959         struct dispatch_rq_data data = {
960                 .hctx = hctx,
961                 .rq   = NULL,
962         };
963
964         __sbitmap_for_each_set(&hctx->ctx_map, off,
965                                dispatch_rq_from_ctx, &data);
966
967         return data.rq;
968 }
969
970 static inline unsigned int queued_to_index(unsigned int queued)
971 {
972         if (!queued)
973                 return 0;
974
975         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
976 }
977
978 bool blk_mq_get_driver_tag(struct request *rq)
979 {
980         struct blk_mq_alloc_data data = {
981                 .q = rq->q,
982                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
983                 .flags = BLK_MQ_REQ_NOWAIT,
984         };
985         bool shared;
986
987         if (rq->tag != -1)
988                 goto done;
989
990         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
991                 data.flags |= BLK_MQ_REQ_RESERVED;
992
993         shared = blk_mq_tag_busy(data.hctx);
994         rq->tag = blk_mq_get_tag(&data);
995         if (rq->tag >= 0) {
996                 if (shared) {
997                         rq->rq_flags |= RQF_MQ_INFLIGHT;
998                         atomic_inc(&data.hctx->nr_active);
999                 }
1000                 data.hctx->tags->rqs[rq->tag] = rq;
1001         }
1002
1003 done:
1004         return rq->tag != -1;
1005 }
1006
1007 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1008                                 int flags, void *key)
1009 {
1010         struct blk_mq_hw_ctx *hctx;
1011
1012         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1013
1014         spin_lock(&hctx->dispatch_wait_lock);
1015         list_del_init(&wait->entry);
1016         spin_unlock(&hctx->dispatch_wait_lock);
1017
1018         blk_mq_run_hw_queue(hctx, true);
1019         return 1;
1020 }
1021
1022 /*
1023  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1024  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1025  * restart. For both cases, take care to check the condition again after
1026  * marking us as waiting.
1027  */
1028 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1029                                  struct request *rq)
1030 {
1031         struct wait_queue_head *wq;
1032         wait_queue_entry_t *wait;
1033         bool ret;
1034
1035         if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1036                 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1037                         set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1038
1039                 /*
1040                  * It's possible that a tag was freed in the window between the
1041                  * allocation failure and adding the hardware queue to the wait
1042                  * queue.
1043                  *
1044                  * Don't clear RESTART here, someone else could have set it.
1045                  * At most this will cost an extra queue run.
1046                  */
1047                 return blk_mq_get_driver_tag(rq);
1048         }
1049
1050         wait = &hctx->dispatch_wait;
1051         if (!list_empty_careful(&wait->entry))
1052                 return false;
1053
1054         wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1055
1056         spin_lock_irq(&wq->lock);
1057         spin_lock(&hctx->dispatch_wait_lock);
1058         if (!list_empty(&wait->entry)) {
1059                 spin_unlock(&hctx->dispatch_wait_lock);
1060                 spin_unlock_irq(&wq->lock);
1061                 return false;
1062         }
1063
1064         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1065         __add_wait_queue(wq, wait);
1066
1067         /*
1068          * It's possible that a tag was freed in the window between the
1069          * allocation failure and adding the hardware queue to the wait
1070          * queue.
1071          */
1072         ret = blk_mq_get_driver_tag(rq);
1073         if (!ret) {
1074                 spin_unlock(&hctx->dispatch_wait_lock);
1075                 spin_unlock_irq(&wq->lock);
1076                 return false;
1077         }
1078
1079         /*
1080          * We got a tag, remove ourselves from the wait queue to ensure
1081          * someone else gets the wakeup.
1082          */
1083         list_del_init(&wait->entry);
1084         spin_unlock(&hctx->dispatch_wait_lock);
1085         spin_unlock_irq(&wq->lock);
1086
1087         return true;
1088 }
1089
1090 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1091 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1092 /*
1093  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1094  * - EWMA is one simple way to compute running average value
1095  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1096  * - take 4 as factor for avoiding to get too small(0) result, and this
1097  *   factor doesn't matter because EWMA decreases exponentially
1098  */
1099 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1100 {
1101         unsigned int ewma;
1102
1103         if (hctx->queue->elevator)
1104                 return;
1105
1106         ewma = hctx->dispatch_busy;
1107
1108         if (!ewma && !busy)
1109                 return;
1110
1111         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1112         if (busy)
1113                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1114         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1115
1116         hctx->dispatch_busy = ewma;
1117 }
1118
1119 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1120
1121 /*
1122  * Returns true if we did some work AND can potentially do more.
1123  */
1124 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1125                              bool got_budget)
1126 {
1127         struct blk_mq_hw_ctx *hctx;
1128         struct request *rq, *nxt;
1129         bool no_tag = false;
1130         int errors, queued;
1131         blk_status_t ret = BLK_STS_OK;
1132
1133         if (list_empty(list))
1134                 return false;
1135
1136         WARN_ON(!list_is_singular(list) && got_budget);
1137
1138         /*
1139          * Now process all the entries, sending them to the driver.
1140          */
1141         errors = queued = 0;
1142         do {
1143                 struct blk_mq_queue_data bd;
1144
1145                 rq = list_first_entry(list, struct request, queuelist);
1146
1147                 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1148                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1149                         break;
1150
1151                 if (!blk_mq_get_driver_tag(rq)) {
1152                         /*
1153                          * The initial allocation attempt failed, so we need to
1154                          * rerun the hardware queue when a tag is freed. The
1155                          * waitqueue takes care of that. If the queue is run
1156                          * before we add this entry back on the dispatch list,
1157                          * we'll re-run it below.
1158                          */
1159                         if (!blk_mq_mark_tag_wait(hctx, rq)) {
1160                                 blk_mq_put_dispatch_budget(hctx);
1161                                 /*
1162                                  * For non-shared tags, the RESTART check
1163                                  * will suffice.
1164                                  */
1165                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1166                                         no_tag = true;
1167                                 break;
1168                         }
1169                 }
1170
1171                 list_del_init(&rq->queuelist);
1172
1173                 bd.rq = rq;
1174
1175                 /*
1176                  * Flag last if we have no more requests, or if we have more
1177                  * but can't assign a driver tag to it.
1178                  */
1179                 if (list_empty(list))
1180                         bd.last = true;
1181                 else {
1182                         nxt = list_first_entry(list, struct request, queuelist);
1183                         bd.last = !blk_mq_get_driver_tag(nxt);
1184                 }
1185
1186                 ret = q->mq_ops->queue_rq(hctx, &bd);
1187                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1188                         /*
1189                          * If an I/O scheduler has been configured and we got a
1190                          * driver tag for the next request already, free it
1191                          * again.
1192                          */
1193                         if (!list_empty(list)) {
1194                                 nxt = list_first_entry(list, struct request, queuelist);
1195                                 blk_mq_put_driver_tag(nxt);
1196                         }
1197                         list_add(&rq->queuelist, list);
1198                         __blk_mq_requeue_request(rq);
1199                         break;
1200                 }
1201
1202                 if (unlikely(ret != BLK_STS_OK)) {
1203                         errors++;
1204                         blk_mq_end_request(rq, BLK_STS_IOERR);
1205                         continue;
1206                 }
1207
1208                 queued++;
1209         } while (!list_empty(list));
1210
1211         hctx->dispatched[queued_to_index(queued)]++;
1212
1213         /*
1214          * Any items that need requeuing? Stuff them into hctx->dispatch,
1215          * that is where we will continue on next queue run.
1216          */
1217         if (!list_empty(list)) {
1218                 bool needs_restart;
1219
1220                 spin_lock(&hctx->lock);
1221                 list_splice_init(list, &hctx->dispatch);
1222                 spin_unlock(&hctx->lock);
1223
1224                 /*
1225                  * If SCHED_RESTART was set by the caller of this function and
1226                  * it is no longer set that means that it was cleared by another
1227                  * thread and hence that a queue rerun is needed.
1228                  *
1229                  * If 'no_tag' is set, that means that we failed getting
1230                  * a driver tag with an I/O scheduler attached. If our dispatch
1231                  * waitqueue is no longer active, ensure that we run the queue
1232                  * AFTER adding our entries back to the list.
1233                  *
1234                  * If no I/O scheduler has been configured it is possible that
1235                  * the hardware queue got stopped and restarted before requests
1236                  * were pushed back onto the dispatch list. Rerun the queue to
1237                  * avoid starvation. Notes:
1238                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1239                  *   been stopped before rerunning a queue.
1240                  * - Some but not all block drivers stop a queue before
1241                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1242                  *   and dm-rq.
1243                  *
1244                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1245                  * bit is set, run queue after a delay to avoid IO stalls
1246                  * that could otherwise occur if the queue is idle.
1247                  */
1248                 needs_restart = blk_mq_sched_needs_restart(hctx);
1249                 if (!needs_restart ||
1250                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1251                         blk_mq_run_hw_queue(hctx, true);
1252                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1253                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1254
1255                 blk_mq_update_dispatch_busy(hctx, true);
1256                 return false;
1257         } else
1258                 blk_mq_update_dispatch_busy(hctx, false);
1259
1260         /*
1261          * If the host/device is unable to accept more work, inform the
1262          * caller of that.
1263          */
1264         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1265                 return false;
1266
1267         return (queued + errors) != 0;
1268 }
1269
1270 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1271 {
1272         int srcu_idx;
1273
1274         /*
1275          * We should be running this queue from one of the CPUs that
1276          * are mapped to it.
1277          *
1278          * There are at least two related races now between setting
1279          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1280          * __blk_mq_run_hw_queue():
1281          *
1282          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1283          *   but later it becomes online, then this warning is harmless
1284          *   at all
1285          *
1286          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1287          *   but later it becomes offline, then the warning can't be
1288          *   triggered, and we depend on blk-mq timeout handler to
1289          *   handle dispatched requests to this hctx
1290          */
1291         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1292                 cpu_online(hctx->next_cpu)) {
1293                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1294                         raw_smp_processor_id(),
1295                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1296                 dump_stack();
1297         }
1298
1299         /*
1300          * We can't run the queue inline with ints disabled. Ensure that
1301          * we catch bad users of this early.
1302          */
1303         WARN_ON_ONCE(in_interrupt());
1304
1305         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1306
1307         hctx_lock(hctx, &srcu_idx);
1308         blk_mq_sched_dispatch_requests(hctx);
1309         hctx_unlock(hctx, srcu_idx);
1310 }
1311
1312 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1313 {
1314         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1315
1316         if (cpu >= nr_cpu_ids)
1317                 cpu = cpumask_first(hctx->cpumask);
1318         return cpu;
1319 }
1320
1321 /*
1322  * It'd be great if the workqueue API had a way to pass
1323  * in a mask and had some smarts for more clever placement.
1324  * For now we just round-robin here, switching for every
1325  * BLK_MQ_CPU_WORK_BATCH queued items.
1326  */
1327 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1328 {
1329         bool tried = false;
1330         int next_cpu = hctx->next_cpu;
1331
1332         if (hctx->queue->nr_hw_queues == 1)
1333                 return WORK_CPU_UNBOUND;
1334
1335         if (--hctx->next_cpu_batch <= 0) {
1336 select_cpu:
1337                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1338                                 cpu_online_mask);
1339                 if (next_cpu >= nr_cpu_ids)
1340                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1341                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1342         }
1343
1344         /*
1345          * Do unbound schedule if we can't find a online CPU for this hctx,
1346          * and it should only happen in the path of handling CPU DEAD.
1347          */
1348         if (!cpu_online(next_cpu)) {
1349                 if (!tried) {
1350                         tried = true;
1351                         goto select_cpu;
1352                 }
1353
1354                 /*
1355                  * Make sure to re-select CPU next time once after CPUs
1356                  * in hctx->cpumask become online again.
1357                  */
1358                 hctx->next_cpu = next_cpu;
1359                 hctx->next_cpu_batch = 1;
1360                 return WORK_CPU_UNBOUND;
1361         }
1362
1363         hctx->next_cpu = next_cpu;
1364         return next_cpu;
1365 }
1366
1367 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1368                                         unsigned long msecs)
1369 {
1370         if (unlikely(blk_mq_hctx_stopped(hctx)))
1371                 return;
1372
1373         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1374                 int cpu = get_cpu();
1375                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1376                         __blk_mq_run_hw_queue(hctx);
1377                         put_cpu();
1378                         return;
1379                 }
1380
1381                 put_cpu();
1382         }
1383
1384         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1385                                     msecs_to_jiffies(msecs));
1386 }
1387
1388 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1389 {
1390         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1391 }
1392 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1393
1394 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1395 {
1396         int srcu_idx;
1397         bool need_run;
1398
1399         /*
1400          * When queue is quiesced, we may be switching io scheduler, or
1401          * updating nr_hw_queues, or other things, and we can't run queue
1402          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1403          *
1404          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1405          * quiesced.
1406          */
1407         hctx_lock(hctx, &srcu_idx);
1408         need_run = !blk_queue_quiesced(hctx->queue) &&
1409                 blk_mq_hctx_has_pending(hctx);
1410         hctx_unlock(hctx, srcu_idx);
1411
1412         if (need_run) {
1413                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1414                 return true;
1415         }
1416
1417         return false;
1418 }
1419 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1420
1421 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1422 {
1423         struct blk_mq_hw_ctx *hctx;
1424         int i;
1425
1426         queue_for_each_hw_ctx(q, hctx, i) {
1427                 if (blk_mq_hctx_stopped(hctx))
1428                         continue;
1429
1430                 blk_mq_run_hw_queue(hctx, async);
1431         }
1432 }
1433 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1434
1435 /**
1436  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1437  * @q: request queue.
1438  *
1439  * The caller is responsible for serializing this function against
1440  * blk_mq_{start,stop}_hw_queue().
1441  */
1442 bool blk_mq_queue_stopped(struct request_queue *q)
1443 {
1444         struct blk_mq_hw_ctx *hctx;
1445         int i;
1446
1447         queue_for_each_hw_ctx(q, hctx, i)
1448                 if (blk_mq_hctx_stopped(hctx))
1449                         return true;
1450
1451         return false;
1452 }
1453 EXPORT_SYMBOL(blk_mq_queue_stopped);
1454
1455 /*
1456  * This function is often used for pausing .queue_rq() by driver when
1457  * there isn't enough resource or some conditions aren't satisfied, and
1458  * BLK_STS_RESOURCE is usually returned.
1459  *
1460  * We do not guarantee that dispatch can be drained or blocked
1461  * after blk_mq_stop_hw_queue() returns. Please use
1462  * blk_mq_quiesce_queue() for that requirement.
1463  */
1464 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1465 {
1466         cancel_delayed_work(&hctx->run_work);
1467
1468         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1469 }
1470 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1471
1472 /*
1473  * This function is often used for pausing .queue_rq() by driver when
1474  * there isn't enough resource or some conditions aren't satisfied, and
1475  * BLK_STS_RESOURCE is usually returned.
1476  *
1477  * We do not guarantee that dispatch can be drained or blocked
1478  * after blk_mq_stop_hw_queues() returns. Please use
1479  * blk_mq_quiesce_queue() for that requirement.
1480  */
1481 void blk_mq_stop_hw_queues(struct request_queue *q)
1482 {
1483         struct blk_mq_hw_ctx *hctx;
1484         int i;
1485
1486         queue_for_each_hw_ctx(q, hctx, i)
1487                 blk_mq_stop_hw_queue(hctx);
1488 }
1489 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1490
1491 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1492 {
1493         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1494
1495         blk_mq_run_hw_queue(hctx, false);
1496 }
1497 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1498
1499 void blk_mq_start_hw_queues(struct request_queue *q)
1500 {
1501         struct blk_mq_hw_ctx *hctx;
1502         int i;
1503
1504         queue_for_each_hw_ctx(q, hctx, i)
1505                 blk_mq_start_hw_queue(hctx);
1506 }
1507 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1508
1509 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1510 {
1511         if (!blk_mq_hctx_stopped(hctx))
1512                 return;
1513
1514         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1515         blk_mq_run_hw_queue(hctx, async);
1516 }
1517 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1518
1519 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1520 {
1521         struct blk_mq_hw_ctx *hctx;
1522         int i;
1523
1524         queue_for_each_hw_ctx(q, hctx, i)
1525                 blk_mq_start_stopped_hw_queue(hctx, async);
1526 }
1527 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1528
1529 static void blk_mq_run_work_fn(struct work_struct *work)
1530 {
1531         struct blk_mq_hw_ctx *hctx;
1532
1533         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1534
1535         /*
1536          * If we are stopped, don't run the queue.
1537          */
1538         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1539                 return;
1540
1541         __blk_mq_run_hw_queue(hctx);
1542 }
1543
1544 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1545                                             struct request *rq,
1546                                             bool at_head)
1547 {
1548         struct blk_mq_ctx *ctx = rq->mq_ctx;
1549
1550         lockdep_assert_held(&ctx->lock);
1551
1552         trace_block_rq_insert(hctx->queue, rq);
1553
1554         if (at_head)
1555                 list_add(&rq->queuelist, &ctx->rq_list);
1556         else
1557                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1558 }
1559
1560 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1561                              bool at_head)
1562 {
1563         struct blk_mq_ctx *ctx = rq->mq_ctx;
1564
1565         lockdep_assert_held(&ctx->lock);
1566
1567         __blk_mq_insert_req_list(hctx, rq, at_head);
1568         blk_mq_hctx_mark_pending(hctx, ctx);
1569 }
1570
1571 /*
1572  * Should only be used carefully, when the caller knows we want to
1573  * bypass a potential IO scheduler on the target device.
1574  */
1575 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1576 {
1577         struct blk_mq_ctx *ctx = rq->mq_ctx;
1578         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1579
1580         spin_lock(&hctx->lock);
1581         list_add_tail(&rq->queuelist, &hctx->dispatch);
1582         spin_unlock(&hctx->lock);
1583
1584         if (run_queue)
1585                 blk_mq_run_hw_queue(hctx, false);
1586 }
1587
1588 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1589                             struct list_head *list)
1590
1591 {
1592         struct request *rq;
1593
1594         /*
1595          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1596          * offline now
1597          */
1598         list_for_each_entry(rq, list, queuelist) {
1599                 BUG_ON(rq->mq_ctx != ctx);
1600                 trace_block_rq_insert(hctx->queue, rq);
1601         }
1602
1603         spin_lock(&ctx->lock);
1604         list_splice_tail_init(list, &ctx->rq_list);
1605         blk_mq_hctx_mark_pending(hctx, ctx);
1606         spin_unlock(&ctx->lock);
1607 }
1608
1609 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1610 {
1611         struct request *rqa = container_of(a, struct request, queuelist);
1612         struct request *rqb = container_of(b, struct request, queuelist);
1613
1614         return !(rqa->mq_ctx < rqb->mq_ctx ||
1615                  (rqa->mq_ctx == rqb->mq_ctx &&
1616                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1617 }
1618
1619 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1620 {
1621         struct blk_mq_ctx *this_ctx;
1622         struct request_queue *this_q;
1623         struct request *rq;
1624         LIST_HEAD(list);
1625         LIST_HEAD(ctx_list);
1626         unsigned int depth;
1627
1628         list_splice_init(&plug->mq_list, &list);
1629
1630         list_sort(NULL, &list, plug_ctx_cmp);
1631
1632         this_q = NULL;
1633         this_ctx = NULL;
1634         depth = 0;
1635
1636         while (!list_empty(&list)) {
1637                 rq = list_entry_rq(list.next);
1638                 list_del_init(&rq->queuelist);
1639                 BUG_ON(!rq->q);
1640                 if (rq->mq_ctx != this_ctx) {
1641                         if (this_ctx) {
1642                                 trace_block_unplug(this_q, depth, !from_schedule);
1643                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1644                                                                 &ctx_list,
1645                                                                 from_schedule);
1646                         }
1647
1648                         this_ctx = rq->mq_ctx;
1649                         this_q = rq->q;
1650                         depth = 0;
1651                 }
1652
1653                 depth++;
1654                 list_add_tail(&rq->queuelist, &ctx_list);
1655         }
1656
1657         /*
1658          * If 'this_ctx' is set, we know we have entries to complete
1659          * on 'ctx_list'. Do those.
1660          */
1661         if (this_ctx) {
1662                 trace_block_unplug(this_q, depth, !from_schedule);
1663                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1664                                                 from_schedule);
1665         }
1666 }
1667
1668 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1669 {
1670         blk_init_request_from_bio(rq, bio);
1671
1672         blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1673
1674         blk_account_io_start(rq, true);
1675 }
1676
1677 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1678 {
1679         if (rq->tag != -1)
1680                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1681
1682         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1683 }
1684
1685 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1686                                             struct request *rq,
1687                                             blk_qc_t *cookie)
1688 {
1689         struct request_queue *q = rq->q;
1690         struct blk_mq_queue_data bd = {
1691                 .rq = rq,
1692                 .last = true,
1693         };
1694         blk_qc_t new_cookie;
1695         blk_status_t ret;
1696
1697         new_cookie = request_to_qc_t(hctx, rq);
1698
1699         /*
1700          * For OK queue, we are done. For error, caller may kill it.
1701          * Any other error (busy), just add it to our list as we
1702          * previously would have done.
1703          */
1704         ret = q->mq_ops->queue_rq(hctx, &bd);
1705         switch (ret) {
1706         case BLK_STS_OK:
1707                 blk_mq_update_dispatch_busy(hctx, false);
1708                 *cookie = new_cookie;
1709                 break;
1710         case BLK_STS_RESOURCE:
1711         case BLK_STS_DEV_RESOURCE:
1712                 blk_mq_update_dispatch_busy(hctx, true);
1713                 __blk_mq_requeue_request(rq);
1714                 break;
1715         default:
1716                 blk_mq_update_dispatch_busy(hctx, false);
1717                 *cookie = BLK_QC_T_NONE;
1718                 break;
1719         }
1720
1721         return ret;
1722 }
1723
1724 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1725                                                 struct request *rq,
1726                                                 blk_qc_t *cookie,
1727                                                 bool bypass_insert)
1728 {
1729         struct request_queue *q = rq->q;
1730         bool run_queue = true;
1731
1732         /*
1733          * RCU or SRCU read lock is needed before checking quiesced flag.
1734          *
1735          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1736          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1737          * and avoid driver to try to dispatch again.
1738          */
1739         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1740                 run_queue = false;
1741                 bypass_insert = false;
1742                 goto insert;
1743         }
1744
1745         if (q->elevator && !bypass_insert)
1746                 goto insert;
1747
1748         if (!blk_mq_get_dispatch_budget(hctx))
1749                 goto insert;
1750
1751         if (!blk_mq_get_driver_tag(rq)) {
1752                 blk_mq_put_dispatch_budget(hctx);
1753                 goto insert;
1754         }
1755
1756         return __blk_mq_issue_directly(hctx, rq, cookie);
1757 insert:
1758         if (bypass_insert)
1759                 return BLK_STS_RESOURCE;
1760
1761         blk_mq_request_bypass_insert(rq, run_queue);
1762         return BLK_STS_OK;
1763 }
1764
1765 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1766                 struct request *rq, blk_qc_t *cookie)
1767 {
1768         blk_status_t ret;
1769         int srcu_idx;
1770
1771         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1772
1773         hctx_lock(hctx, &srcu_idx);
1774
1775         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1776         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1777                 blk_mq_request_bypass_insert(rq, true);
1778         else if (ret != BLK_STS_OK)
1779                 blk_mq_end_request(rq, ret);
1780
1781         hctx_unlock(hctx, srcu_idx);
1782 }
1783
1784 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1785 {
1786         blk_status_t ret;
1787         int srcu_idx;
1788         blk_qc_t unused_cookie;
1789         struct blk_mq_ctx *ctx = rq->mq_ctx;
1790         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1791
1792         hctx_lock(hctx, &srcu_idx);
1793         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1794         hctx_unlock(hctx, srcu_idx);
1795
1796         return ret;
1797 }
1798
1799 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1800                 struct list_head *list)
1801 {
1802         while (!list_empty(list)) {
1803                 blk_status_t ret;
1804                 struct request *rq = list_first_entry(list, struct request,
1805                                 queuelist);
1806
1807                 list_del_init(&rq->queuelist);
1808                 ret = blk_mq_request_issue_directly(rq);
1809                 if (ret != BLK_STS_OK) {
1810                         if (ret == BLK_STS_RESOURCE ||
1811                                         ret == BLK_STS_DEV_RESOURCE) {
1812                                 blk_mq_request_bypass_insert(rq,
1813                                                         list_empty(list));
1814                                 break;
1815                         }
1816                         blk_mq_end_request(rq, ret);
1817                 }
1818         }
1819 }
1820
1821 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1822 {
1823         const int is_sync = op_is_sync(bio->bi_opf);
1824         const int is_flush_fua = op_is_flush(bio->bi_opf);
1825         struct blk_mq_alloc_data data = { .flags = 0 };
1826         struct request *rq;
1827         unsigned int request_count = 0;
1828         struct blk_plug *plug;
1829         struct request *same_queue_rq = NULL;
1830         blk_qc_t cookie;
1831
1832         blk_queue_bounce(q, &bio);
1833
1834         blk_queue_split(q, &bio);
1835
1836         if (!bio_integrity_prep(bio))
1837                 return BLK_QC_T_NONE;
1838
1839         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1840             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1841                 return BLK_QC_T_NONE;
1842
1843         if (blk_mq_sched_bio_merge(q, bio))
1844                 return BLK_QC_T_NONE;
1845
1846         rq_qos_throttle(q, bio, NULL);
1847
1848         trace_block_getrq(q, bio, bio->bi_opf);
1849
1850         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1851         if (unlikely(!rq)) {
1852                 rq_qos_cleanup(q, bio);
1853                 if (bio->bi_opf & REQ_NOWAIT)
1854                         bio_wouldblock_error(bio);
1855                 return BLK_QC_T_NONE;
1856         }
1857
1858         rq_qos_track(q, rq, bio);
1859
1860         cookie = request_to_qc_t(data.hctx, rq);
1861
1862         plug = current->plug;
1863         if (unlikely(is_flush_fua)) {
1864                 blk_mq_put_ctx(data.ctx);
1865                 blk_mq_bio_to_request(rq, bio);
1866
1867                 /* bypass scheduler for flush rq */
1868                 blk_insert_flush(rq);
1869                 blk_mq_run_hw_queue(data.hctx, true);
1870         } else if (plug && q->nr_hw_queues == 1) {
1871                 struct request *last = NULL;
1872
1873                 blk_mq_put_ctx(data.ctx);
1874                 blk_mq_bio_to_request(rq, bio);
1875
1876                 /*
1877                  * @request_count may become stale because of schedule
1878                  * out, so check the list again.
1879                  */
1880                 if (list_empty(&plug->mq_list))
1881                         request_count = 0;
1882                 else if (blk_queue_nomerges(q))
1883                         request_count = blk_plug_queued_count(q);
1884
1885                 if (!request_count)
1886                         trace_block_plug(q);
1887                 else
1888                         last = list_entry_rq(plug->mq_list.prev);
1889
1890                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1891                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1892                         blk_flush_plug_list(plug, false);
1893                         trace_block_plug(q);
1894                 }
1895
1896                 list_add_tail(&rq->queuelist, &plug->mq_list);
1897         } else if (plug && !blk_queue_nomerges(q)) {
1898                 blk_mq_bio_to_request(rq, bio);
1899
1900                 /*
1901                  * We do limited plugging. If the bio can be merged, do that.
1902                  * Otherwise the existing request in the plug list will be
1903                  * issued. So the plug list will have one request at most
1904                  * The plug list might get flushed before this. If that happens,
1905                  * the plug list is empty, and same_queue_rq is invalid.
1906                  */
1907                 if (list_empty(&plug->mq_list))
1908                         same_queue_rq = NULL;
1909                 if (same_queue_rq)
1910                         list_del_init(&same_queue_rq->queuelist);
1911                 list_add_tail(&rq->queuelist, &plug->mq_list);
1912
1913                 blk_mq_put_ctx(data.ctx);
1914
1915                 if (same_queue_rq) {
1916                         data.hctx = blk_mq_map_queue(q,
1917                                         same_queue_rq->mq_ctx->cpu);
1918                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1919                                         &cookie);
1920                 }
1921         } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1922                         !data.hctx->dispatch_busy)) {
1923                 blk_mq_put_ctx(data.ctx);
1924                 blk_mq_bio_to_request(rq, bio);
1925                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1926         } else {
1927                 blk_mq_put_ctx(data.ctx);
1928                 blk_mq_bio_to_request(rq, bio);
1929                 blk_mq_sched_insert_request(rq, false, true, true);
1930         }
1931
1932         return cookie;
1933 }
1934
1935 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1936                      unsigned int hctx_idx)
1937 {
1938         struct page *page;
1939
1940         if (tags->rqs && set->ops->exit_request) {
1941                 int i;
1942
1943                 for (i = 0; i < tags->nr_tags; i++) {
1944                         struct request *rq = tags->static_rqs[i];
1945
1946                         if (!rq)
1947                                 continue;
1948                         set->ops->exit_request(set, rq, hctx_idx);
1949                         tags->static_rqs[i] = NULL;
1950                 }
1951         }
1952
1953         while (!list_empty(&tags->page_list)) {
1954                 page = list_first_entry(&tags->page_list, struct page, lru);
1955                 list_del_init(&page->lru);
1956                 /*
1957                  * Remove kmemleak object previously allocated in
1958                  * blk_mq_init_rq_map().
1959                  */
1960                 kmemleak_free(page_address(page));
1961                 __free_pages(page, page->private);
1962         }
1963 }
1964
1965 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1966 {
1967         kfree(tags->rqs);
1968         tags->rqs = NULL;
1969         kfree(tags->static_rqs);
1970         tags->static_rqs = NULL;
1971
1972         blk_mq_free_tags(tags);
1973 }
1974
1975 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1976                                         unsigned int hctx_idx,
1977                                         unsigned int nr_tags,
1978                                         unsigned int reserved_tags)
1979 {
1980         struct blk_mq_tags *tags;
1981         int node;
1982
1983         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1984         if (node == NUMA_NO_NODE)
1985                 node = set->numa_node;
1986
1987         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1988                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1989         if (!tags)
1990                 return NULL;
1991
1992         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1993                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1994                                  node);
1995         if (!tags->rqs) {
1996                 blk_mq_free_tags(tags);
1997                 return NULL;
1998         }
1999
2000         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2001                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2002                                         node);
2003         if (!tags->static_rqs) {
2004                 kfree(tags->rqs);
2005                 blk_mq_free_tags(tags);
2006                 return NULL;
2007         }
2008
2009         return tags;
2010 }
2011
2012 static size_t order_to_size(unsigned int order)
2013 {
2014         return (size_t)PAGE_SIZE << order;
2015 }
2016
2017 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2018                                unsigned int hctx_idx, int node)
2019 {
2020         int ret;
2021
2022         if (set->ops->init_request) {
2023                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2024                 if (ret)
2025                         return ret;
2026         }
2027
2028         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2029         return 0;
2030 }
2031
2032 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2033                      unsigned int hctx_idx, unsigned int depth)
2034 {
2035         unsigned int i, j, entries_per_page, max_order = 4;
2036         size_t rq_size, left;
2037         int node;
2038
2039         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2040         if (node == NUMA_NO_NODE)
2041                 node = set->numa_node;
2042
2043         INIT_LIST_HEAD(&tags->page_list);
2044
2045         /*
2046          * rq_size is the size of the request plus driver payload, rounded
2047          * to the cacheline size
2048          */
2049         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2050                                 cache_line_size());
2051         left = rq_size * depth;
2052
2053         for (i = 0; i < depth; ) {
2054                 int this_order = max_order;
2055                 struct page *page;
2056                 int to_do;
2057                 void *p;
2058
2059                 while (this_order && left < order_to_size(this_order - 1))
2060                         this_order--;
2061
2062                 do {
2063                         page = alloc_pages_node(node,
2064                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2065                                 this_order);
2066                         if (page)
2067                                 break;
2068                         if (!this_order--)
2069                                 break;
2070                         if (order_to_size(this_order) < rq_size)
2071                                 break;
2072                 } while (1);
2073
2074                 if (!page)
2075                         goto fail;
2076
2077                 page->private = this_order;
2078                 list_add_tail(&page->lru, &tags->page_list);
2079
2080                 p = page_address(page);
2081                 /*
2082                  * Allow kmemleak to scan these pages as they contain pointers
2083                  * to additional allocations like via ops->init_request().
2084                  */
2085                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2086                 entries_per_page = order_to_size(this_order) / rq_size;
2087                 to_do = min(entries_per_page, depth - i);
2088                 left -= to_do * rq_size;
2089                 for (j = 0; j < to_do; j++) {
2090                         struct request *rq = p;
2091
2092                         tags->static_rqs[i] = rq;
2093                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2094                                 tags->static_rqs[i] = NULL;
2095                                 goto fail;
2096                         }
2097
2098                         p += rq_size;
2099                         i++;
2100                 }
2101         }
2102         return 0;
2103
2104 fail:
2105         blk_mq_free_rqs(set, tags, hctx_idx);
2106         return -ENOMEM;
2107 }
2108
2109 /*
2110  * 'cpu' is going away. splice any existing rq_list entries from this
2111  * software queue to the hw queue dispatch list, and ensure that it
2112  * gets run.
2113  */
2114 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2115 {
2116         struct blk_mq_hw_ctx *hctx;
2117         struct blk_mq_ctx *ctx;
2118         LIST_HEAD(tmp);
2119
2120         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2121         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2122
2123         spin_lock(&ctx->lock);
2124         if (!list_empty(&ctx->rq_list)) {
2125                 list_splice_init(&ctx->rq_list, &tmp);
2126                 blk_mq_hctx_clear_pending(hctx, ctx);
2127         }
2128         spin_unlock(&ctx->lock);
2129
2130         if (list_empty(&tmp))
2131                 return 0;
2132
2133         spin_lock(&hctx->lock);
2134         list_splice_tail_init(&tmp, &hctx->dispatch);
2135         spin_unlock(&hctx->lock);
2136
2137         blk_mq_run_hw_queue(hctx, true);
2138         return 0;
2139 }
2140
2141 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2142 {
2143         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2144                                             &hctx->cpuhp_dead);
2145 }
2146
2147 /* hctx->ctxs will be freed in queue's release handler */
2148 static void blk_mq_exit_hctx(struct request_queue *q,
2149                 struct blk_mq_tag_set *set,
2150                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2151 {
2152         blk_mq_debugfs_unregister_hctx(hctx);
2153
2154         if (blk_mq_hw_queue_mapped(hctx))
2155                 blk_mq_tag_idle(hctx);
2156
2157         if (set->ops->exit_request)
2158                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2159
2160         if (set->ops->exit_hctx)
2161                 set->ops->exit_hctx(hctx, hctx_idx);
2162
2163         blk_mq_remove_cpuhp(hctx);
2164 }
2165
2166 static void blk_mq_exit_hw_queues(struct request_queue *q,
2167                 struct blk_mq_tag_set *set, int nr_queue)
2168 {
2169         struct blk_mq_hw_ctx *hctx;
2170         unsigned int i;
2171
2172         queue_for_each_hw_ctx(q, hctx, i) {
2173                 if (i == nr_queue)
2174                         break;
2175                 blk_mq_exit_hctx(q, set, hctx, i);
2176         }
2177 }
2178
2179 static int blk_mq_init_hctx(struct request_queue *q,
2180                 struct blk_mq_tag_set *set,
2181                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2182 {
2183         int node;
2184
2185         node = hctx->numa_node;
2186         if (node == NUMA_NO_NODE)
2187                 node = hctx->numa_node = set->numa_node;
2188
2189         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2190         spin_lock_init(&hctx->lock);
2191         INIT_LIST_HEAD(&hctx->dispatch);
2192         hctx->queue = q;
2193         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2194
2195         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2196
2197         hctx->tags = set->tags[hctx_idx];
2198
2199         /*
2200          * Allocate space for all possible cpus to avoid allocation at
2201          * runtime
2202          */
2203         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2204                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2205         if (!hctx->ctxs)
2206                 goto unregister_cpu_notifier;
2207
2208         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2209                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2210                 goto free_ctxs;
2211
2212         hctx->nr_ctx = 0;
2213
2214         spin_lock_init(&hctx->dispatch_wait_lock);
2215         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2216         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2217
2218         if (set->ops->init_hctx &&
2219             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2220                 goto free_bitmap;
2221
2222         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2223                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2224         if (!hctx->fq)
2225                 goto exit_hctx;
2226
2227         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2228                 goto free_fq;
2229
2230         if (hctx->flags & BLK_MQ_F_BLOCKING)
2231                 init_srcu_struct(hctx->srcu);
2232
2233         blk_mq_debugfs_register_hctx(q, hctx);
2234
2235         return 0;
2236
2237  free_fq:
2238         blk_free_flush_queue(hctx->fq);
2239  exit_hctx:
2240         if (set->ops->exit_hctx)
2241                 set->ops->exit_hctx(hctx, hctx_idx);
2242  free_bitmap:
2243         sbitmap_free(&hctx->ctx_map);
2244  free_ctxs:
2245         kfree(hctx->ctxs);
2246  unregister_cpu_notifier:
2247         blk_mq_remove_cpuhp(hctx);
2248         return -1;
2249 }
2250
2251 static void blk_mq_init_cpu_queues(struct request_queue *q,
2252                                    unsigned int nr_hw_queues)
2253 {
2254         unsigned int i;
2255
2256         for_each_possible_cpu(i) {
2257                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2258                 struct blk_mq_hw_ctx *hctx;
2259
2260                 __ctx->cpu = i;
2261                 spin_lock_init(&__ctx->lock);
2262                 INIT_LIST_HEAD(&__ctx->rq_list);
2263                 __ctx->queue = q;
2264
2265                 /*
2266                  * Set local node, IFF we have more than one hw queue. If
2267                  * not, we remain on the home node of the device
2268                  */
2269                 hctx = blk_mq_map_queue(q, i);
2270                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2271                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2272         }
2273 }
2274
2275 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2276 {
2277         int ret = 0;
2278
2279         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2280                                         set->queue_depth, set->reserved_tags);
2281         if (!set->tags[hctx_idx])
2282                 return false;
2283
2284         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2285                                 set->queue_depth);
2286         if (!ret)
2287                 return true;
2288
2289         blk_mq_free_rq_map(set->tags[hctx_idx]);
2290         set->tags[hctx_idx] = NULL;
2291         return false;
2292 }
2293
2294 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2295                                          unsigned int hctx_idx)
2296 {
2297         if (set->tags[hctx_idx]) {
2298                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2299                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2300                 set->tags[hctx_idx] = NULL;
2301         }
2302 }
2303
2304 static void blk_mq_map_swqueue(struct request_queue *q)
2305 {
2306         unsigned int i, hctx_idx;
2307         struct blk_mq_hw_ctx *hctx;
2308         struct blk_mq_ctx *ctx;
2309         struct blk_mq_tag_set *set = q->tag_set;
2310
2311         /*
2312          * Avoid others reading imcomplete hctx->cpumask through sysfs
2313          */
2314         mutex_lock(&q->sysfs_lock);
2315
2316         queue_for_each_hw_ctx(q, hctx, i) {
2317                 cpumask_clear(hctx->cpumask);
2318                 hctx->nr_ctx = 0;
2319                 hctx->dispatch_from = NULL;
2320         }
2321
2322         /*
2323          * Map software to hardware queues.
2324          *
2325          * If the cpu isn't present, the cpu is mapped to first hctx.
2326          */
2327         for_each_possible_cpu(i) {
2328                 hctx_idx = q->mq_map[i];
2329                 /* unmapped hw queue can be remapped after CPU topo changed */
2330                 if (!set->tags[hctx_idx] &&
2331                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2332                         /*
2333                          * If tags initialization fail for some hctx,
2334                          * that hctx won't be brought online.  In this
2335                          * case, remap the current ctx to hctx[0] which
2336                          * is guaranteed to always have tags allocated
2337                          */
2338                         q->mq_map[i] = 0;
2339                 }
2340
2341                 ctx = per_cpu_ptr(q->queue_ctx, i);
2342                 hctx = blk_mq_map_queue(q, i);
2343
2344                 cpumask_set_cpu(i, hctx->cpumask);
2345                 ctx->index_hw = hctx->nr_ctx;
2346                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2347         }
2348
2349         mutex_unlock(&q->sysfs_lock);
2350
2351         queue_for_each_hw_ctx(q, hctx, i) {
2352                 /*
2353                  * If no software queues are mapped to this hardware queue,
2354                  * disable it and free the request entries.
2355                  */
2356                 if (!hctx->nr_ctx) {
2357                         /* Never unmap queue 0.  We need it as a
2358                          * fallback in case of a new remap fails
2359                          * allocation
2360                          */
2361                         if (i && set->tags[i])
2362                                 blk_mq_free_map_and_requests(set, i);
2363
2364                         hctx->tags = NULL;
2365                         continue;
2366                 }
2367
2368                 hctx->tags = set->tags[i];
2369                 WARN_ON(!hctx->tags);
2370
2371                 /*
2372                  * Set the map size to the number of mapped software queues.
2373                  * This is more accurate and more efficient than looping
2374                  * over all possibly mapped software queues.
2375                  */
2376                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2377
2378                 /*
2379                  * Initialize batch roundrobin counts
2380                  */
2381                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2382                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2383         }
2384 }
2385
2386 /*
2387  * Caller needs to ensure that we're either frozen/quiesced, or that
2388  * the queue isn't live yet.
2389  */
2390 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2391 {
2392         struct blk_mq_hw_ctx *hctx;
2393         int i;
2394
2395         queue_for_each_hw_ctx(q, hctx, i) {
2396                 if (shared)
2397                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2398                 else
2399                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2400         }
2401 }
2402
2403 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2404                                         bool shared)
2405 {
2406         struct request_queue *q;
2407
2408         lockdep_assert_held(&set->tag_list_lock);
2409
2410         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2411                 blk_mq_freeze_queue(q);
2412                 queue_set_hctx_shared(q, shared);
2413                 blk_mq_unfreeze_queue(q);
2414         }
2415 }
2416
2417 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2418 {
2419         struct blk_mq_tag_set *set = q->tag_set;
2420
2421         mutex_lock(&set->tag_list_lock);
2422         list_del_rcu(&q->tag_set_list);
2423         if (list_is_singular(&set->tag_list)) {
2424                 /* just transitioned to unshared */
2425                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2426                 /* update existing queue */
2427                 blk_mq_update_tag_set_depth(set, false);
2428         }
2429         mutex_unlock(&set->tag_list_lock);
2430         INIT_LIST_HEAD(&q->tag_set_list);
2431 }
2432
2433 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2434                                      struct request_queue *q)
2435 {
2436         q->tag_set = set;
2437
2438         mutex_lock(&set->tag_list_lock);
2439
2440         /*
2441          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2442          */
2443         if (!list_empty(&set->tag_list) &&
2444             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2445                 set->flags |= BLK_MQ_F_TAG_SHARED;
2446                 /* update existing queue */
2447                 blk_mq_update_tag_set_depth(set, true);
2448         }
2449         if (set->flags & BLK_MQ_F_TAG_SHARED)
2450                 queue_set_hctx_shared(q, true);
2451         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2452
2453         mutex_unlock(&set->tag_list_lock);
2454 }
2455
2456 /*
2457  * It is the actual release handler for mq, but we do it from
2458  * request queue's release handler for avoiding use-after-free
2459  * and headache because q->mq_kobj shouldn't have been introduced,
2460  * but we can't group ctx/kctx kobj without it.
2461  */
2462 void blk_mq_release(struct request_queue *q)
2463 {
2464         struct blk_mq_hw_ctx *hctx;
2465         unsigned int i;
2466
2467         /* hctx kobj stays in hctx */
2468         queue_for_each_hw_ctx(q, hctx, i) {
2469                 if (!hctx)
2470                         continue;
2471                 kobject_put(&hctx->kobj);
2472         }
2473
2474         q->mq_map = NULL;
2475
2476         kfree(q->queue_hw_ctx);
2477
2478         /*
2479          * release .mq_kobj and sw queue's kobject now because
2480          * both share lifetime with request queue.
2481          */
2482         blk_mq_sysfs_deinit(q);
2483
2484         free_percpu(q->queue_ctx);
2485 }
2486
2487 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2488 {
2489         struct request_queue *uninit_q, *q;
2490
2491         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2492         if (!uninit_q)
2493                 return ERR_PTR(-ENOMEM);
2494
2495         q = blk_mq_init_allocated_queue(set, uninit_q);
2496         if (IS_ERR(q))
2497                 blk_cleanup_queue(uninit_q);
2498
2499         return q;
2500 }
2501 EXPORT_SYMBOL(blk_mq_init_queue);
2502
2503 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2504 {
2505         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2506
2507         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2508                            __alignof__(struct blk_mq_hw_ctx)) !=
2509                      sizeof(struct blk_mq_hw_ctx));
2510
2511         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2512                 hw_ctx_size += sizeof(struct srcu_struct);
2513
2514         return hw_ctx_size;
2515 }
2516
2517 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2518                                                 struct request_queue *q)
2519 {
2520         int i, j;
2521         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2522
2523         blk_mq_sysfs_unregister(q);
2524
2525         /* protect against switching io scheduler  */
2526         mutex_lock(&q->sysfs_lock);
2527         for (i = 0; i < set->nr_hw_queues; i++) {
2528                 int node;
2529
2530                 if (hctxs[i])
2531                         continue;
2532
2533                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2534                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2535                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2536                                 node);
2537                 if (!hctxs[i])
2538                         break;
2539
2540                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask,
2541                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2542                                         node)) {
2543                         kfree(hctxs[i]);
2544                         hctxs[i] = NULL;
2545                         break;
2546                 }
2547
2548                 atomic_set(&hctxs[i]->nr_active, 0);
2549                 hctxs[i]->numa_node = node;
2550                 hctxs[i]->queue_num = i;
2551
2552                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2553                         free_cpumask_var(hctxs[i]->cpumask);
2554                         kfree(hctxs[i]);
2555                         hctxs[i] = NULL;
2556                         break;
2557                 }
2558                 blk_mq_hctx_kobj_init(hctxs[i]);
2559         }
2560         for (j = i; j < q->nr_hw_queues; j++) {
2561                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2562
2563                 if (hctx) {
2564                         if (hctx->tags)
2565                                 blk_mq_free_map_and_requests(set, j);
2566                         blk_mq_exit_hctx(q, set, hctx, j);
2567                         kobject_put(&hctx->kobj);
2568                         hctxs[j] = NULL;
2569
2570                 }
2571         }
2572         q->nr_hw_queues = i;
2573         mutex_unlock(&q->sysfs_lock);
2574         blk_mq_sysfs_register(q);
2575 }
2576
2577 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2578                                                   struct request_queue *q)
2579 {
2580         /* mark the queue as mq asap */
2581         q->mq_ops = set->ops;
2582
2583         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2584                                              blk_mq_poll_stats_bkt,
2585                                              BLK_MQ_POLL_STATS_BKTS, q);
2586         if (!q->poll_cb)
2587                 goto err_exit;
2588
2589         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2590         if (!q->queue_ctx)
2591                 goto err_exit;
2592
2593         /* init q->mq_kobj and sw queues' kobjects */
2594         blk_mq_sysfs_init(q);
2595
2596         q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2597                                                 GFP_KERNEL, set->numa_node);
2598         if (!q->queue_hw_ctx)
2599                 goto err_percpu;
2600
2601         q->mq_map = set->mq_map;
2602
2603         blk_mq_realloc_hw_ctxs(set, q);
2604         if (!q->nr_hw_queues)
2605                 goto err_hctxs;
2606
2607         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2608         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2609
2610         q->nr_queues = nr_cpu_ids;
2611
2612         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2613
2614         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2615                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2616
2617         q->sg_reserved_size = INT_MAX;
2618
2619         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2620         INIT_LIST_HEAD(&q->requeue_list);
2621         spin_lock_init(&q->requeue_lock);
2622
2623         blk_queue_make_request(q, blk_mq_make_request);
2624         if (q->mq_ops->poll)
2625                 q->poll_fn = blk_mq_poll;
2626
2627         /*
2628          * Do this after blk_queue_make_request() overrides it...
2629          */
2630         q->nr_requests = set->queue_depth;
2631
2632         /*
2633          * Default to classic polling
2634          */
2635         q->poll_nsec = -1;
2636
2637         if (set->ops->complete)
2638                 blk_queue_softirq_done(q, set->ops->complete);
2639
2640         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2641         blk_mq_add_queue_tag_set(set, q);
2642         blk_mq_map_swqueue(q);
2643
2644         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2645                 int ret;
2646
2647                 ret = elevator_init_mq(q);
2648                 if (ret)
2649                         return ERR_PTR(ret);
2650         }
2651
2652         return q;
2653
2654 err_hctxs:
2655         kfree(q->queue_hw_ctx);
2656 err_percpu:
2657         free_percpu(q->queue_ctx);
2658 err_exit:
2659         q->mq_ops = NULL;
2660         return ERR_PTR(-ENOMEM);
2661 }
2662 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2663
2664 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2665 void blk_mq_exit_queue(struct request_queue *q)
2666 {
2667         struct blk_mq_tag_set   *set = q->tag_set;
2668
2669         blk_mq_del_queue_tag_set(q);
2670         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2671 }
2672
2673 /* Basically redo blk_mq_init_queue with queue frozen */
2674 static void blk_mq_queue_reinit(struct request_queue *q)
2675 {
2676         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2677
2678         blk_mq_debugfs_unregister_hctxs(q);
2679         blk_mq_sysfs_unregister(q);
2680
2681         /*
2682          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2683          * we should change hctx numa_node according to the new topology (this
2684          * involves freeing and re-allocating memory, worth doing?)
2685          */
2686         blk_mq_map_swqueue(q);
2687
2688         blk_mq_sysfs_register(q);
2689         blk_mq_debugfs_register_hctxs(q);
2690 }
2691
2692 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2693 {
2694         int i;
2695
2696         for (i = 0; i < set->nr_hw_queues; i++)
2697                 if (!__blk_mq_alloc_rq_map(set, i))
2698                         goto out_unwind;
2699
2700         return 0;
2701
2702 out_unwind:
2703         while (--i >= 0)
2704                 blk_mq_free_rq_map(set->tags[i]);
2705
2706         return -ENOMEM;
2707 }
2708
2709 /*
2710  * Allocate the request maps associated with this tag_set. Note that this
2711  * may reduce the depth asked for, if memory is tight. set->queue_depth
2712  * will be updated to reflect the allocated depth.
2713  */
2714 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2715 {
2716         unsigned int depth;
2717         int err;
2718
2719         depth = set->queue_depth;
2720         do {
2721                 err = __blk_mq_alloc_rq_maps(set);
2722                 if (!err)
2723                         break;
2724
2725                 set->queue_depth >>= 1;
2726                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2727                         err = -ENOMEM;
2728                         break;
2729                 }
2730         } while (set->queue_depth);
2731
2732         if (!set->queue_depth || err) {
2733                 pr_err("blk-mq: failed to allocate request map\n");
2734                 return -ENOMEM;
2735         }
2736
2737         if (depth != set->queue_depth)
2738                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2739                                                 depth, set->queue_depth);
2740
2741         return 0;
2742 }
2743
2744 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2745 {
2746         if (set->ops->map_queues) {
2747                 /*
2748                  * transport .map_queues is usually done in the following
2749                  * way:
2750                  *
2751                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2752                  *      mask = get_cpu_mask(queue)
2753                  *      for_each_cpu(cpu, mask)
2754                  *              set->mq_map[cpu] = queue;
2755                  * }
2756                  *
2757                  * When we need to remap, the table has to be cleared for
2758                  * killing stale mapping since one CPU may not be mapped
2759                  * to any hw queue.
2760                  */
2761                 blk_mq_clear_mq_map(set);
2762
2763                 return set->ops->map_queues(set);
2764         } else
2765                 return blk_mq_map_queues(set);
2766 }
2767
2768 /*
2769  * Alloc a tag set to be associated with one or more request queues.
2770  * May fail with EINVAL for various error conditions. May adjust the
2771  * requested depth down, if it's too large. In that case, the set
2772  * value will be stored in set->queue_depth.
2773  */
2774 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2775 {
2776         int ret;
2777
2778         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2779
2780         if (!set->nr_hw_queues)
2781                 return -EINVAL;
2782         if (!set->queue_depth)
2783                 return -EINVAL;
2784         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2785                 return -EINVAL;
2786
2787         if (!set->ops->queue_rq)
2788                 return -EINVAL;
2789
2790         if (!set->ops->get_budget ^ !set->ops->put_budget)
2791                 return -EINVAL;
2792
2793         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2794                 pr_info("blk-mq: reduced tag depth to %u\n",
2795                         BLK_MQ_MAX_DEPTH);
2796                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2797         }
2798
2799         /*
2800          * If a crashdump is active, then we are potentially in a very
2801          * memory constrained environment. Limit us to 1 queue and
2802          * 64 tags to prevent using too much memory.
2803          */
2804         if (is_kdump_kernel()) {
2805                 set->nr_hw_queues = 1;
2806                 set->queue_depth = min(64U, set->queue_depth);
2807         }
2808         /*
2809          * There is no use for more h/w queues than cpus.
2810          */
2811         if (set->nr_hw_queues > nr_cpu_ids)
2812                 set->nr_hw_queues = nr_cpu_ids;
2813
2814         set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2815                                  GFP_KERNEL, set->numa_node);
2816         if (!set->tags)
2817                 return -ENOMEM;
2818
2819         ret = -ENOMEM;
2820         set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2821                                    GFP_KERNEL, set->numa_node);
2822         if (!set->mq_map)
2823                 goto out_free_tags;
2824
2825         ret = blk_mq_update_queue_map(set);
2826         if (ret)
2827                 goto out_free_mq_map;
2828
2829         ret = blk_mq_alloc_rq_maps(set);
2830         if (ret)
2831                 goto out_free_mq_map;
2832
2833         mutex_init(&set->tag_list_lock);
2834         INIT_LIST_HEAD(&set->tag_list);
2835
2836         return 0;
2837
2838 out_free_mq_map:
2839         kfree(set->mq_map);
2840         set->mq_map = NULL;
2841 out_free_tags:
2842         kfree(set->tags);
2843         set->tags = NULL;
2844         return ret;
2845 }
2846 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2847
2848 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2849 {
2850         int i;
2851
2852         for (i = 0; i < nr_cpu_ids; i++)
2853                 blk_mq_free_map_and_requests(set, i);
2854
2855         kfree(set->mq_map);
2856         set->mq_map = NULL;
2857
2858         kfree(set->tags);
2859         set->tags = NULL;
2860 }
2861 EXPORT_SYMBOL(blk_mq_free_tag_set);
2862
2863 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2864 {
2865         struct blk_mq_tag_set *set = q->tag_set;
2866         struct blk_mq_hw_ctx *hctx;
2867         int i, ret;
2868
2869         if (!set)
2870                 return -EINVAL;
2871
2872         blk_mq_freeze_queue(q);
2873         blk_mq_quiesce_queue(q);
2874
2875         ret = 0;
2876         queue_for_each_hw_ctx(q, hctx, i) {
2877                 if (!hctx->tags)
2878                         continue;
2879                 /*
2880                  * If we're using an MQ scheduler, just update the scheduler
2881                  * queue depth. This is similar to what the old code would do.
2882                  */
2883                 if (!hctx->sched_tags) {
2884                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2885                                                         false);
2886                 } else {
2887                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2888                                                         nr, true);
2889                 }
2890                 if (ret)
2891                         break;
2892                 if (q->elevator && q->elevator->type->ops.mq.depth_updated)
2893                         q->elevator->type->ops.mq.depth_updated(hctx);
2894         }
2895
2896         if (!ret)
2897                 q->nr_requests = nr;
2898
2899         blk_mq_unquiesce_queue(q);
2900         blk_mq_unfreeze_queue(q);
2901
2902         return ret;
2903 }
2904
2905 /*
2906  * request_queue and elevator_type pair.
2907  * It is just used by __blk_mq_update_nr_hw_queues to cache
2908  * the elevator_type associated with a request_queue.
2909  */
2910 struct blk_mq_qe_pair {
2911         struct list_head node;
2912         struct request_queue *q;
2913         struct elevator_type *type;
2914 };
2915
2916 /*
2917  * Cache the elevator_type in qe pair list and switch the
2918  * io scheduler to 'none'
2919  */
2920 static bool blk_mq_elv_switch_none(struct list_head *head,
2921                 struct request_queue *q)
2922 {
2923         struct blk_mq_qe_pair *qe;
2924
2925         if (!q->elevator)
2926                 return true;
2927
2928         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2929         if (!qe)
2930                 return false;
2931
2932         INIT_LIST_HEAD(&qe->node);
2933         qe->q = q;
2934         qe->type = q->elevator->type;
2935         list_add(&qe->node, head);
2936
2937         mutex_lock(&q->sysfs_lock);
2938         /*
2939          * After elevator_switch_mq, the previous elevator_queue will be
2940          * released by elevator_release. The reference of the io scheduler
2941          * module get by elevator_get will also be put. So we need to get
2942          * a reference of the io scheduler module here to prevent it to be
2943          * removed.
2944          */
2945         __module_get(qe->type->elevator_owner);
2946         elevator_switch_mq(q, NULL);
2947         mutex_unlock(&q->sysfs_lock);
2948
2949         return true;
2950 }
2951
2952 static void blk_mq_elv_switch_back(struct list_head *head,
2953                 struct request_queue *q)
2954 {
2955         struct blk_mq_qe_pair *qe;
2956         struct elevator_type *t = NULL;
2957
2958         list_for_each_entry(qe, head, node)
2959                 if (qe->q == q) {
2960                         t = qe->type;
2961                         break;
2962                 }
2963
2964         if (!t)
2965                 return;
2966
2967         list_del(&qe->node);
2968         kfree(qe);
2969
2970         mutex_lock(&q->sysfs_lock);
2971         elevator_switch_mq(q, t);
2972         mutex_unlock(&q->sysfs_lock);
2973 }
2974
2975 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2976                                                         int nr_hw_queues)
2977 {
2978         struct request_queue *q;
2979         LIST_HEAD(head);
2980
2981         lockdep_assert_held(&set->tag_list_lock);
2982
2983         if (nr_hw_queues > nr_cpu_ids)
2984                 nr_hw_queues = nr_cpu_ids;
2985         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2986                 return;
2987
2988         list_for_each_entry(q, &set->tag_list, tag_set_list)
2989                 blk_mq_freeze_queue(q);
2990         /*
2991          * Sync with blk_mq_queue_tag_busy_iter.
2992          */
2993         synchronize_rcu();
2994         /*
2995          * Switch IO scheduler to 'none', cleaning up the data associated
2996          * with the previous scheduler. We will switch back once we are done
2997          * updating the new sw to hw queue mappings.
2998          */
2999         list_for_each_entry(q, &set->tag_list, tag_set_list)
3000                 if (!blk_mq_elv_switch_none(&head, q))
3001                         goto switch_back;
3002
3003         set->nr_hw_queues = nr_hw_queues;
3004         blk_mq_update_queue_map(set);
3005         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3006                 blk_mq_realloc_hw_ctxs(set, q);
3007                 blk_mq_queue_reinit(q);
3008         }
3009
3010 switch_back:
3011         list_for_each_entry(q, &set->tag_list, tag_set_list)
3012                 blk_mq_elv_switch_back(&head, q);
3013
3014         list_for_each_entry(q, &set->tag_list, tag_set_list)
3015                 blk_mq_unfreeze_queue(q);
3016 }
3017
3018 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3019 {
3020         mutex_lock(&set->tag_list_lock);
3021         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3022         mutex_unlock(&set->tag_list_lock);
3023 }
3024 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3025
3026 /* Enable polling stats and return whether they were already enabled. */
3027 static bool blk_poll_stats_enable(struct request_queue *q)
3028 {
3029         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3030             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3031                 return true;
3032         blk_stat_add_callback(q, q->poll_cb);
3033         return false;
3034 }
3035
3036 static void blk_mq_poll_stats_start(struct request_queue *q)
3037 {
3038         /*
3039          * We don't arm the callback if polling stats are not enabled or the
3040          * callback is already active.
3041          */
3042         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3043             blk_stat_is_active(q->poll_cb))
3044                 return;
3045
3046         blk_stat_activate_msecs(q->poll_cb, 100);
3047 }
3048
3049 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3050 {
3051         struct request_queue *q = cb->data;
3052         int bucket;
3053
3054         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3055                 if (cb->stat[bucket].nr_samples)
3056                         q->poll_stat[bucket] = cb->stat[bucket];
3057         }
3058 }
3059
3060 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3061                                        struct blk_mq_hw_ctx *hctx,
3062                                        struct request *rq)
3063 {
3064         unsigned long ret = 0;
3065         int bucket;
3066
3067         /*
3068          * If stats collection isn't on, don't sleep but turn it on for
3069          * future users
3070          */
3071         if (!blk_poll_stats_enable(q))
3072                 return 0;
3073
3074         /*
3075          * As an optimistic guess, use half of the mean service time
3076          * for this type of request. We can (and should) make this smarter.
3077          * For instance, if the completion latencies are tight, we can
3078          * get closer than just half the mean. This is especially
3079          * important on devices where the completion latencies are longer
3080          * than ~10 usec. We do use the stats for the relevant IO size
3081          * if available which does lead to better estimates.
3082          */
3083         bucket = blk_mq_poll_stats_bkt(rq);
3084         if (bucket < 0)
3085                 return ret;
3086
3087         if (q->poll_stat[bucket].nr_samples)
3088                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3089
3090         return ret;
3091 }
3092
3093 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3094                                      struct blk_mq_hw_ctx *hctx,
3095                                      struct request *rq)
3096 {
3097         struct hrtimer_sleeper hs;
3098         enum hrtimer_mode mode;
3099         unsigned int nsecs;
3100         ktime_t kt;
3101
3102         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3103                 return false;
3104
3105         /*
3106          * poll_nsec can be:
3107          *
3108          * -1:  don't ever hybrid sleep
3109          *  0:  use half of prev avg
3110          * >0:  use this specific value
3111          */
3112         if (q->poll_nsec == -1)
3113                 return false;
3114         else if (q->poll_nsec > 0)
3115                 nsecs = q->poll_nsec;
3116         else
3117                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3118
3119         if (!nsecs)
3120                 return false;
3121
3122         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3123
3124         /*
3125          * This will be replaced with the stats tracking code, using
3126          * 'avg_completion_time / 2' as the pre-sleep target.
3127          */
3128         kt = nsecs;
3129
3130         mode = HRTIMER_MODE_REL;
3131         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3132         hrtimer_set_expires(&hs.timer, kt);
3133
3134         hrtimer_init_sleeper(&hs, current);
3135         do {
3136                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3137                         break;
3138                 set_current_state(TASK_UNINTERRUPTIBLE);
3139                 hrtimer_start_expires(&hs.timer, mode);
3140                 if (hs.task)
3141                         io_schedule();
3142                 hrtimer_cancel(&hs.timer);
3143                 mode = HRTIMER_MODE_ABS;
3144         } while (hs.task && !signal_pending(current));
3145
3146         __set_current_state(TASK_RUNNING);
3147         destroy_hrtimer_on_stack(&hs.timer);
3148         return true;
3149 }
3150
3151 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3152 {
3153         struct request_queue *q = hctx->queue;
3154         long state;
3155
3156         /*
3157          * If we sleep, have the caller restart the poll loop to reset
3158          * the state. Like for the other success return cases, the
3159          * caller is responsible for checking if the IO completed. If
3160          * the IO isn't complete, we'll get called again and will go
3161          * straight to the busy poll loop.
3162          */
3163         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3164                 return true;
3165
3166         hctx->poll_considered++;
3167
3168         state = current->state;
3169         while (!need_resched()) {
3170                 int ret;
3171
3172                 hctx->poll_invoked++;
3173
3174                 ret = q->mq_ops->poll(hctx, rq->tag);
3175                 if (ret > 0) {
3176                         hctx->poll_success++;
3177                         set_current_state(TASK_RUNNING);
3178                         return true;
3179                 }
3180
3181                 if (signal_pending_state(state, current))
3182                         set_current_state(TASK_RUNNING);
3183
3184                 if (current->state == TASK_RUNNING)
3185                         return true;
3186                 if (ret < 0)
3187                         break;
3188                 cpu_relax();
3189         }
3190
3191         __set_current_state(TASK_RUNNING);
3192         return false;
3193 }
3194
3195 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3196 {
3197         struct blk_mq_hw_ctx *hctx;
3198         struct request *rq;
3199
3200         if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3201                 return false;
3202
3203         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3204         if (!blk_qc_t_is_internal(cookie))
3205                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3206         else {
3207                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3208                 /*
3209                  * With scheduling, if the request has completed, we'll
3210                  * get a NULL return here, as we clear the sched tag when
3211                  * that happens. The request still remains valid, like always,
3212                  * so we should be safe with just the NULL check.
3213                  */
3214                 if (!rq)
3215                         return false;
3216         }
3217
3218         return __blk_mq_poll(hctx, rq);
3219 }
3220
3221 static int __init blk_mq_init(void)
3222 {
3223         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3224                                 blk_mq_hctx_notify_dead);
3225         return 0;
3226 }
3227 subsys_initcall(blk_mq_init);