reset: Create subdirectory for StarFive drivers
[platform/kernel/linux-starfive.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54         int ddir, sectors, bucket;
55
56         ddir = rq_data_dir(rq);
57         sectors = blk_rq_stats_sectors(rq);
58
59         bucket = ddir + 2 * ilog2(sectors);
60
61         if (bucket < 0)
62                 return -1;
63         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65
66         return bucket;
67 }
68
69 #define BLK_QC_T_SHIFT          16
70 #define BLK_QC_T_INTERNAL       (1U << 31)
71
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73                 blk_qc_t qc)
74 {
75         return xa_load(&q->hctx_table,
76                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80                 blk_qc_t qc)
81 {
82         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83
84         if (qc & BLK_QC_T_INTERNAL)
85                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86         return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92                 (rq->tag != -1 ?
93                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102         return !list_empty_careful(&hctx->dispatch) ||
103                 sbitmap_any_bit_set(&hctx->ctx_map) ||
104                         blk_mq_sched_has_work(hctx);
105 }
106
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111                                      struct blk_mq_ctx *ctx)
112 {
113         const int bit = ctx->index_hw[hctx->type];
114
115         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116                 sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120                                       struct blk_mq_ctx *ctx)
121 {
122         const int bit = ctx->index_hw[hctx->type];
123
124         sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126
127 struct mq_inflight {
128         struct block_device *part;
129         unsigned int inflight[2];
130 };
131
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264         if (blk_queue_has_srcu(q))
265                 synchronize_srcu(q->srcu);
266         else
267                 synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282         blk_mq_quiesce_queue_nowait(q);
283         blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296         unsigned long flags;
297         bool run_queue = false;
298
299         spin_lock_irqsave(&q->queue_lock, flags);
300         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301                 ;
302         } else if (!--q->quiesce_depth) {
303                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304                 run_queue = true;
305         }
306         spin_unlock_irqrestore(&q->queue_lock, flags);
307
308         /* dispatch requests which are inserted during quiescing */
309         if (run_queue)
310                 blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316         struct blk_mq_hw_ctx *hctx;
317         unsigned long i;
318
319         queue_for_each_hw_ctx(q, hctx, i)
320                 if (blk_mq_hw_queue_mapped(hctx))
321                         blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326         memset(rq, 0, sizeof(*rq));
327
328         INIT_LIST_HEAD(&rq->queuelist);
329         rq->q = q;
330         rq->__sector = (sector_t) -1;
331         INIT_HLIST_NODE(&rq->hash);
332         RB_CLEAR_NODE(&rq->rb_node);
333         rq->tag = BLK_MQ_NO_TAG;
334         rq->internal_tag = BLK_MQ_NO_TAG;
335         rq->start_time_ns = ktime_get_ns();
336         rq->part = NULL;
337         blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344         struct blk_mq_ctx *ctx = data->ctx;
345         struct blk_mq_hw_ctx *hctx = data->hctx;
346         struct request_queue *q = data->q;
347         struct request *rq = tags->static_rqs[tag];
348
349         rq->q = q;
350         rq->mq_ctx = ctx;
351         rq->mq_hctx = hctx;
352         rq->cmd_flags = data->cmd_flags;
353
354         if (data->flags & BLK_MQ_REQ_PM)
355                 data->rq_flags |= RQF_PM;
356         if (blk_queue_io_stat(q))
357                 data->rq_flags |= RQF_IO_STAT;
358         rq->rq_flags = data->rq_flags;
359
360         if (!(data->rq_flags & RQF_ELV)) {
361                 rq->tag = tag;
362                 rq->internal_tag = BLK_MQ_NO_TAG;
363         } else {
364                 rq->tag = BLK_MQ_NO_TAG;
365                 rq->internal_tag = tag;
366         }
367         rq->timeout = 0;
368
369         if (blk_mq_need_time_stamp(rq))
370                 rq->start_time_ns = ktime_get_ns();
371         else
372                 rq->start_time_ns = 0;
373         rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375         rq->alloc_time_ns = alloc_time_ns;
376 #endif
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_ELV) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (!op_is_flush(data->cmd_flags) &&
399                     e->type->ops.prepare_request) {
400                         e->type->ops.prepare_request(rq);
401                         rq->rq_flags |= RQF_ELVPRIV;
402                 }
403         }
404
405         return rq;
406 }
407
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410                 u64 alloc_time_ns)
411 {
412         unsigned int tag, tag_offset;
413         struct blk_mq_tags *tags;
414         struct request *rq;
415         unsigned long tag_mask;
416         int i, nr = 0;
417
418         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419         if (unlikely(!tag_mask))
420                 return NULL;
421
422         tags = blk_mq_tags_from_data(data);
423         for (i = 0; tag_mask; i++) {
424                 if (!(tag_mask & (1UL << i)))
425                         continue;
426                 tag = tag_offset + i;
427                 prefetch(tags->static_rqs[tag]);
428                 tag_mask &= ~(1UL << i);
429                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430                 rq_list_add(data->cached_rq, rq);
431                 nr++;
432         }
433         /* caller already holds a reference, add for remainder */
434         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435         data->nr_tags -= nr;
436
437         return rq_list_pop(data->cached_rq);
438 }
439
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442         struct request_queue *q = data->q;
443         u64 alloc_time_ns = 0;
444         struct request *rq;
445         unsigned int tag;
446
447         /* alloc_time includes depth and tag waits */
448         if (blk_queue_rq_alloc_time(q))
449                 alloc_time_ns = ktime_get_ns();
450
451         if (data->cmd_flags & REQ_NOWAIT)
452                 data->flags |= BLK_MQ_REQ_NOWAIT;
453
454         if (q->elevator) {
455                 struct elevator_queue *e = q->elevator;
456
457                 data->rq_flags |= RQF_ELV;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list. Don't include reserved tags in the
462                  * limiting, as it isn't useful.
463                  */
464                 if (!op_is_flush(data->cmd_flags) &&
465                     !blk_op_is_passthrough(data->cmd_flags) &&
466                     e->type->ops.limit_depth &&
467                     !(data->flags & BLK_MQ_REQ_RESERVED))
468                         e->type->ops.limit_depth(data->cmd_flags, data);
469         }
470
471 retry:
472         data->ctx = blk_mq_get_ctx(q);
473         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474         if (!(data->rq_flags & RQF_ELV))
475                 blk_mq_tag_busy(data->hctx);
476
477         if (data->flags & BLK_MQ_REQ_RESERVED)
478                 data->rq_flags |= RQF_RESV;
479
480         /*
481          * Try batched alloc if we want more than 1 tag.
482          */
483         if (data->nr_tags > 1) {
484                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
485                 if (rq)
486                         return rq;
487                 data->nr_tags = 1;
488         }
489
490         /*
491          * Waiting allocations only fail because of an inactive hctx.  In that
492          * case just retry the hctx assignment and tag allocation as CPU hotplug
493          * should have migrated us to an online CPU by now.
494          */
495         tag = blk_mq_get_tag(data);
496         if (tag == BLK_MQ_NO_TAG) {
497                 if (data->flags & BLK_MQ_REQ_NOWAIT)
498                         return NULL;
499                 /*
500                  * Give up the CPU and sleep for a random short time to
501                  * ensure that thread using a realtime scheduling class
502                  * are migrated off the CPU, and thus off the hctx that
503                  * is going away.
504                  */
505                 msleep(3);
506                 goto retry;
507         }
508
509         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
510                                         alloc_time_ns);
511 }
512
513 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
514                                             struct blk_plug *plug,
515                                             blk_opf_t opf,
516                                             blk_mq_req_flags_t flags)
517 {
518         struct blk_mq_alloc_data data = {
519                 .q              = q,
520                 .flags          = flags,
521                 .cmd_flags      = opf,
522                 .nr_tags        = plug->nr_ios,
523                 .cached_rq      = &plug->cached_rq,
524         };
525         struct request *rq;
526
527         if (blk_queue_enter(q, flags))
528                 return NULL;
529
530         plug->nr_ios = 1;
531
532         rq = __blk_mq_alloc_requests(&data);
533         if (unlikely(!rq))
534                 blk_queue_exit(q);
535         return rq;
536 }
537
538 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
539                                                    blk_opf_t opf,
540                                                    blk_mq_req_flags_t flags)
541 {
542         struct blk_plug *plug = current->plug;
543         struct request *rq;
544
545         if (!plug)
546                 return NULL;
547         if (rq_list_empty(plug->cached_rq)) {
548                 if (plug->nr_ios == 1)
549                         return NULL;
550                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
551                 if (rq)
552                         goto got_it;
553                 return NULL;
554         }
555         rq = rq_list_peek(&plug->cached_rq);
556         if (!rq || rq->q != q)
557                 return NULL;
558
559         if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
560                 return NULL;
561         if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
562                 return NULL;
563
564         plug->cached_rq = rq_list_next(rq);
565 got_it:
566         rq->cmd_flags = opf;
567         INIT_LIST_HEAD(&rq->queuelist);
568         return rq;
569 }
570
571 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
572                 blk_mq_req_flags_t flags)
573 {
574         struct request *rq;
575
576         rq = blk_mq_alloc_cached_request(q, opf, flags);
577         if (!rq) {
578                 struct blk_mq_alloc_data data = {
579                         .q              = q,
580                         .flags          = flags,
581                         .cmd_flags      = opf,
582                         .nr_tags        = 1,
583                 };
584                 int ret;
585
586                 ret = blk_queue_enter(q, flags);
587                 if (ret)
588                         return ERR_PTR(ret);
589
590                 rq = __blk_mq_alloc_requests(&data);
591                 if (!rq)
592                         goto out_queue_exit;
593         }
594         rq->__data_len = 0;
595         rq->__sector = (sector_t) -1;
596         rq->bio = rq->biotail = NULL;
597         return rq;
598 out_queue_exit:
599         blk_queue_exit(q);
600         return ERR_PTR(-EWOULDBLOCK);
601 }
602 EXPORT_SYMBOL(blk_mq_alloc_request);
603
604 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
605         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
606 {
607         struct blk_mq_alloc_data data = {
608                 .q              = q,
609                 .flags          = flags,
610                 .cmd_flags      = opf,
611                 .nr_tags        = 1,
612         };
613         u64 alloc_time_ns = 0;
614         struct request *rq;
615         unsigned int cpu;
616         unsigned int tag;
617         int ret;
618
619         /* alloc_time includes depth and tag waits */
620         if (blk_queue_rq_alloc_time(q))
621                 alloc_time_ns = ktime_get_ns();
622
623         /*
624          * If the tag allocator sleeps we could get an allocation for a
625          * different hardware context.  No need to complicate the low level
626          * allocator for this for the rare use case of a command tied to
627          * a specific queue.
628          */
629         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
630                 return ERR_PTR(-EINVAL);
631
632         if (hctx_idx >= q->nr_hw_queues)
633                 return ERR_PTR(-EIO);
634
635         ret = blk_queue_enter(q, flags);
636         if (ret)
637                 return ERR_PTR(ret);
638
639         /*
640          * Check if the hardware context is actually mapped to anything.
641          * If not tell the caller that it should skip this queue.
642          */
643         ret = -EXDEV;
644         data.hctx = xa_load(&q->hctx_table, hctx_idx);
645         if (!blk_mq_hw_queue_mapped(data.hctx))
646                 goto out_queue_exit;
647         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
648         if (cpu >= nr_cpu_ids)
649                 goto out_queue_exit;
650         data.ctx = __blk_mq_get_ctx(q, cpu);
651
652         if (!q->elevator)
653                 blk_mq_tag_busy(data.hctx);
654         else
655                 data.rq_flags |= RQF_ELV;
656
657         if (flags & BLK_MQ_REQ_RESERVED)
658                 data.rq_flags |= RQF_RESV;
659
660         ret = -EWOULDBLOCK;
661         tag = blk_mq_get_tag(&data);
662         if (tag == BLK_MQ_NO_TAG)
663                 goto out_queue_exit;
664         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
665                                         alloc_time_ns);
666         rq->__data_len = 0;
667         rq->__sector = (sector_t) -1;
668         rq->bio = rq->biotail = NULL;
669         return rq;
670
671 out_queue_exit:
672         blk_queue_exit(q);
673         return ERR_PTR(ret);
674 }
675 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
676
677 static void __blk_mq_free_request(struct request *rq)
678 {
679         struct request_queue *q = rq->q;
680         struct blk_mq_ctx *ctx = rq->mq_ctx;
681         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
682         const int sched_tag = rq->internal_tag;
683
684         blk_crypto_free_request(rq);
685         blk_pm_mark_last_busy(rq);
686         rq->mq_hctx = NULL;
687         if (rq->tag != BLK_MQ_NO_TAG)
688                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
689         if (sched_tag != BLK_MQ_NO_TAG)
690                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
691         blk_mq_sched_restart(hctx);
692         blk_queue_exit(q);
693 }
694
695 void blk_mq_free_request(struct request *rq)
696 {
697         struct request_queue *q = rq->q;
698         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
699
700         if ((rq->rq_flags & RQF_ELVPRIV) &&
701             q->elevator->type->ops.finish_request)
702                 q->elevator->type->ops.finish_request(rq);
703
704         if (rq->rq_flags & RQF_MQ_INFLIGHT)
705                 __blk_mq_dec_active_requests(hctx);
706
707         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
708                 laptop_io_completion(q->disk->bdi);
709
710         rq_qos_done(q, rq);
711
712         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
713         if (req_ref_put_and_test(rq))
714                 __blk_mq_free_request(rq);
715 }
716 EXPORT_SYMBOL_GPL(blk_mq_free_request);
717
718 void blk_mq_free_plug_rqs(struct blk_plug *plug)
719 {
720         struct request *rq;
721
722         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
723                 blk_mq_free_request(rq);
724 }
725
726 void blk_dump_rq_flags(struct request *rq, char *msg)
727 {
728         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
729                 rq->q->disk ? rq->q->disk->disk_name : "?",
730                 (__force unsigned long long) rq->cmd_flags);
731
732         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
733                (unsigned long long)blk_rq_pos(rq),
734                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
735         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
736                rq->bio, rq->biotail, blk_rq_bytes(rq));
737 }
738 EXPORT_SYMBOL(blk_dump_rq_flags);
739
740 static void req_bio_endio(struct request *rq, struct bio *bio,
741                           unsigned int nbytes, blk_status_t error)
742 {
743         if (unlikely(error)) {
744                 bio->bi_status = error;
745         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
746                 /*
747                  * Partial zone append completions cannot be supported as the
748                  * BIO fragments may end up not being written sequentially.
749                  */
750                 if (bio->bi_iter.bi_size != nbytes)
751                         bio->bi_status = BLK_STS_IOERR;
752                 else
753                         bio->bi_iter.bi_sector = rq->__sector;
754         }
755
756         bio_advance(bio, nbytes);
757
758         if (unlikely(rq->rq_flags & RQF_QUIET))
759                 bio_set_flag(bio, BIO_QUIET);
760         /* don't actually finish bio if it's part of flush sequence */
761         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
762                 bio_endio(bio);
763 }
764
765 static void blk_account_io_completion(struct request *req, unsigned int bytes)
766 {
767         if (req->part && blk_do_io_stat(req)) {
768                 const int sgrp = op_stat_group(req_op(req));
769
770                 part_stat_lock();
771                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
772                 part_stat_unlock();
773         }
774 }
775
776 static void blk_print_req_error(struct request *req, blk_status_t status)
777 {
778         printk_ratelimited(KERN_ERR
779                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
780                 "phys_seg %u prio class %u\n",
781                 blk_status_to_str(status),
782                 req->q->disk ? req->q->disk->disk_name : "?",
783                 blk_rq_pos(req), (__force u32)req_op(req),
784                 blk_op_str(req_op(req)),
785                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
786                 req->nr_phys_segments,
787                 IOPRIO_PRIO_CLASS(req->ioprio));
788 }
789
790 /*
791  * Fully end IO on a request. Does not support partial completions, or
792  * errors.
793  */
794 static void blk_complete_request(struct request *req)
795 {
796         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
797         int total_bytes = blk_rq_bytes(req);
798         struct bio *bio = req->bio;
799
800         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
801
802         if (!bio)
803                 return;
804
805 #ifdef CONFIG_BLK_DEV_INTEGRITY
806         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
807                 req->q->integrity.profile->complete_fn(req, total_bytes);
808 #endif
809
810         blk_account_io_completion(req, total_bytes);
811
812         do {
813                 struct bio *next = bio->bi_next;
814
815                 /* Completion has already been traced */
816                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
817
818                 if (req_op(req) == REQ_OP_ZONE_APPEND)
819                         bio->bi_iter.bi_sector = req->__sector;
820
821                 if (!is_flush)
822                         bio_endio(bio);
823                 bio = next;
824         } while (bio);
825
826         /*
827          * Reset counters so that the request stacking driver
828          * can find how many bytes remain in the request
829          * later.
830          */
831         if (!req->end_io) {
832                 req->bio = NULL;
833                 req->__data_len = 0;
834         }
835 }
836
837 /**
838  * blk_update_request - Complete multiple bytes without completing the request
839  * @req:      the request being processed
840  * @error:    block status code
841  * @nr_bytes: number of bytes to complete for @req
842  *
843  * Description:
844  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
845  *     the request structure even if @req doesn't have leftover.
846  *     If @req has leftover, sets it up for the next range of segments.
847  *
848  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
849  *     %false return from this function.
850  *
851  * Note:
852  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
853  *      except in the consistency check at the end of this function.
854  *
855  * Return:
856  *     %false - this request doesn't have any more data
857  *     %true  - this request has more data
858  **/
859 bool blk_update_request(struct request *req, blk_status_t error,
860                 unsigned int nr_bytes)
861 {
862         int total_bytes;
863
864         trace_block_rq_complete(req, error, nr_bytes);
865
866         if (!req->bio)
867                 return false;
868
869 #ifdef CONFIG_BLK_DEV_INTEGRITY
870         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
871             error == BLK_STS_OK)
872                 req->q->integrity.profile->complete_fn(req, nr_bytes);
873 #endif
874
875         if (unlikely(error && !blk_rq_is_passthrough(req) &&
876                      !(req->rq_flags & RQF_QUIET)) &&
877                      !test_bit(GD_DEAD, &req->q->disk->state)) {
878                 blk_print_req_error(req, error);
879                 trace_block_rq_error(req, error, nr_bytes);
880         }
881
882         blk_account_io_completion(req, nr_bytes);
883
884         total_bytes = 0;
885         while (req->bio) {
886                 struct bio *bio = req->bio;
887                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
888
889                 if (bio_bytes == bio->bi_iter.bi_size)
890                         req->bio = bio->bi_next;
891
892                 /* Completion has already been traced */
893                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
894                 req_bio_endio(req, bio, bio_bytes, error);
895
896                 total_bytes += bio_bytes;
897                 nr_bytes -= bio_bytes;
898
899                 if (!nr_bytes)
900                         break;
901         }
902
903         /*
904          * completely done
905          */
906         if (!req->bio) {
907                 /*
908                  * Reset counters so that the request stacking driver
909                  * can find how many bytes remain in the request
910                  * later.
911                  */
912                 req->__data_len = 0;
913                 return false;
914         }
915
916         req->__data_len -= total_bytes;
917
918         /* update sector only for requests with clear definition of sector */
919         if (!blk_rq_is_passthrough(req))
920                 req->__sector += total_bytes >> 9;
921
922         /* mixed attributes always follow the first bio */
923         if (req->rq_flags & RQF_MIXED_MERGE) {
924                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
925                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
926         }
927
928         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
929                 /*
930                  * If total number of sectors is less than the first segment
931                  * size, something has gone terribly wrong.
932                  */
933                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
934                         blk_dump_rq_flags(req, "request botched");
935                         req->__data_len = blk_rq_cur_bytes(req);
936                 }
937
938                 /* recalculate the number of segments */
939                 req->nr_phys_segments = blk_recalc_rq_segments(req);
940         }
941
942         return true;
943 }
944 EXPORT_SYMBOL_GPL(blk_update_request);
945
946 static void __blk_account_io_done(struct request *req, u64 now)
947 {
948         const int sgrp = op_stat_group(req_op(req));
949
950         part_stat_lock();
951         update_io_ticks(req->part, jiffies, true);
952         part_stat_inc(req->part, ios[sgrp]);
953         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
954         part_stat_unlock();
955 }
956
957 static inline void blk_account_io_done(struct request *req, u64 now)
958 {
959         /*
960          * Account IO completion.  flush_rq isn't accounted as a
961          * normal IO on queueing nor completion.  Accounting the
962          * containing request is enough.
963          */
964         if (blk_do_io_stat(req) && req->part &&
965             !(req->rq_flags & RQF_FLUSH_SEQ))
966                 __blk_account_io_done(req, now);
967 }
968
969 static void __blk_account_io_start(struct request *rq)
970 {
971         /*
972          * All non-passthrough requests are created from a bio with one
973          * exception: when a flush command that is part of a flush sequence
974          * generated by the state machine in blk-flush.c is cloned onto the
975          * lower device by dm-multipath we can get here without a bio.
976          */
977         if (rq->bio)
978                 rq->part = rq->bio->bi_bdev;
979         else
980                 rq->part = rq->q->disk->part0;
981
982         part_stat_lock();
983         update_io_ticks(rq->part, jiffies, false);
984         part_stat_unlock();
985 }
986
987 static inline void blk_account_io_start(struct request *req)
988 {
989         if (blk_do_io_stat(req))
990                 __blk_account_io_start(req);
991 }
992
993 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
994 {
995         if (rq->rq_flags & RQF_STATS) {
996                 blk_mq_poll_stats_start(rq->q);
997                 blk_stat_add(rq, now);
998         }
999
1000         blk_mq_sched_completed_request(rq, now);
1001         blk_account_io_done(rq, now);
1002 }
1003
1004 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1005 {
1006         if (blk_mq_need_time_stamp(rq))
1007                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1008
1009         if (rq->end_io) {
1010                 rq_qos_done(rq->q, rq);
1011                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1012                         blk_mq_free_request(rq);
1013         } else {
1014                 blk_mq_free_request(rq);
1015         }
1016 }
1017 EXPORT_SYMBOL(__blk_mq_end_request);
1018
1019 void blk_mq_end_request(struct request *rq, blk_status_t error)
1020 {
1021         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1022                 BUG();
1023         __blk_mq_end_request(rq, error);
1024 }
1025 EXPORT_SYMBOL(blk_mq_end_request);
1026
1027 #define TAG_COMP_BATCH          32
1028
1029 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1030                                           int *tag_array, int nr_tags)
1031 {
1032         struct request_queue *q = hctx->queue;
1033
1034         /*
1035          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1036          * update hctx->nr_active in batch
1037          */
1038         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1039                 __blk_mq_sub_active_requests(hctx, nr_tags);
1040
1041         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1042         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1043 }
1044
1045 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1046 {
1047         int tags[TAG_COMP_BATCH], nr_tags = 0;
1048         struct blk_mq_hw_ctx *cur_hctx = NULL;
1049         struct request *rq;
1050         u64 now = 0;
1051
1052         if (iob->need_ts)
1053                 now = ktime_get_ns();
1054
1055         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1056                 prefetch(rq->bio);
1057                 prefetch(rq->rq_next);
1058
1059                 blk_complete_request(rq);
1060                 if (iob->need_ts)
1061                         __blk_mq_end_request_acct(rq, now);
1062
1063                 rq_qos_done(rq->q, rq);
1064
1065                 /*
1066                  * If end_io handler returns NONE, then it still has
1067                  * ownership of the request.
1068                  */
1069                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1070                         continue;
1071
1072                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1073                 if (!req_ref_put_and_test(rq))
1074                         continue;
1075
1076                 blk_crypto_free_request(rq);
1077                 blk_pm_mark_last_busy(rq);
1078
1079                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1080                         if (cur_hctx)
1081                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1082                         nr_tags = 0;
1083                         cur_hctx = rq->mq_hctx;
1084                 }
1085                 tags[nr_tags++] = rq->tag;
1086         }
1087
1088         if (nr_tags)
1089                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1090 }
1091 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1092
1093 static void blk_complete_reqs(struct llist_head *list)
1094 {
1095         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1096         struct request *rq, *next;
1097
1098         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1099                 rq->q->mq_ops->complete(rq);
1100 }
1101
1102 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1103 {
1104         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1105 }
1106
1107 static int blk_softirq_cpu_dead(unsigned int cpu)
1108 {
1109         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1110         return 0;
1111 }
1112
1113 static void __blk_mq_complete_request_remote(void *data)
1114 {
1115         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1116 }
1117
1118 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1119 {
1120         int cpu = raw_smp_processor_id();
1121
1122         if (!IS_ENABLED(CONFIG_SMP) ||
1123             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1124                 return false;
1125         /*
1126          * With force threaded interrupts enabled, raising softirq from an SMP
1127          * function call will always result in waking the ksoftirqd thread.
1128          * This is probably worse than completing the request on a different
1129          * cache domain.
1130          */
1131         if (force_irqthreads())
1132                 return false;
1133
1134         /* same CPU or cache domain?  Complete locally */
1135         if (cpu == rq->mq_ctx->cpu ||
1136             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1137              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1138                 return false;
1139
1140         /* don't try to IPI to an offline CPU */
1141         return cpu_online(rq->mq_ctx->cpu);
1142 }
1143
1144 static void blk_mq_complete_send_ipi(struct request *rq)
1145 {
1146         struct llist_head *list;
1147         unsigned int cpu;
1148
1149         cpu = rq->mq_ctx->cpu;
1150         list = &per_cpu(blk_cpu_done, cpu);
1151         if (llist_add(&rq->ipi_list, list)) {
1152                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1153                 smp_call_function_single_async(cpu, &rq->csd);
1154         }
1155 }
1156
1157 static void blk_mq_raise_softirq(struct request *rq)
1158 {
1159         struct llist_head *list;
1160
1161         preempt_disable();
1162         list = this_cpu_ptr(&blk_cpu_done);
1163         if (llist_add(&rq->ipi_list, list))
1164                 raise_softirq(BLOCK_SOFTIRQ);
1165         preempt_enable();
1166 }
1167
1168 bool blk_mq_complete_request_remote(struct request *rq)
1169 {
1170         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1171
1172         /*
1173          * For request which hctx has only one ctx mapping,
1174          * or a polled request, always complete locally,
1175          * it's pointless to redirect the completion.
1176          */
1177         if (rq->mq_hctx->nr_ctx == 1 ||
1178                 rq->cmd_flags & REQ_POLLED)
1179                 return false;
1180
1181         if (blk_mq_complete_need_ipi(rq)) {
1182                 blk_mq_complete_send_ipi(rq);
1183                 return true;
1184         }
1185
1186         if (rq->q->nr_hw_queues == 1) {
1187                 blk_mq_raise_softirq(rq);
1188                 return true;
1189         }
1190         return false;
1191 }
1192 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1193
1194 /**
1195  * blk_mq_complete_request - end I/O on a request
1196  * @rq:         the request being processed
1197  *
1198  * Description:
1199  *      Complete a request by scheduling the ->complete_rq operation.
1200  **/
1201 void blk_mq_complete_request(struct request *rq)
1202 {
1203         if (!blk_mq_complete_request_remote(rq))
1204                 rq->q->mq_ops->complete(rq);
1205 }
1206 EXPORT_SYMBOL(blk_mq_complete_request);
1207
1208 /**
1209  * blk_mq_start_request - Start processing a request
1210  * @rq: Pointer to request to be started
1211  *
1212  * Function used by device drivers to notify the block layer that a request
1213  * is going to be processed now, so blk layer can do proper initializations
1214  * such as starting the timeout timer.
1215  */
1216 void blk_mq_start_request(struct request *rq)
1217 {
1218         struct request_queue *q = rq->q;
1219
1220         trace_block_rq_issue(rq);
1221
1222         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1223                 rq->io_start_time_ns = ktime_get_ns();
1224                 rq->stats_sectors = blk_rq_sectors(rq);
1225                 rq->rq_flags |= RQF_STATS;
1226                 rq_qos_issue(q, rq);
1227         }
1228
1229         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1230
1231         blk_add_timer(rq);
1232         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1233
1234 #ifdef CONFIG_BLK_DEV_INTEGRITY
1235         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1236                 q->integrity.profile->prepare_fn(rq);
1237 #endif
1238         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1239                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1240 }
1241 EXPORT_SYMBOL(blk_mq_start_request);
1242
1243 /*
1244  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1245  * queues. This is important for md arrays to benefit from merging
1246  * requests.
1247  */
1248 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1249 {
1250         if (plug->multiple_queues)
1251                 return BLK_MAX_REQUEST_COUNT * 2;
1252         return BLK_MAX_REQUEST_COUNT;
1253 }
1254
1255 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1256 {
1257         struct request *last = rq_list_peek(&plug->mq_list);
1258
1259         if (!plug->rq_count) {
1260                 trace_block_plug(rq->q);
1261         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1262                    (!blk_queue_nomerges(rq->q) &&
1263                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1264                 blk_mq_flush_plug_list(plug, false);
1265                 last = NULL;
1266                 trace_block_plug(rq->q);
1267         }
1268
1269         if (!plug->multiple_queues && last && last->q != rq->q)
1270                 plug->multiple_queues = true;
1271         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1272                 plug->has_elevator = true;
1273         rq->rq_next = NULL;
1274         rq_list_add(&plug->mq_list, rq);
1275         plug->rq_count++;
1276 }
1277
1278 /**
1279  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1280  * @rq:         request to insert
1281  * @at_head:    insert request at head or tail of queue
1282  *
1283  * Description:
1284  *    Insert a fully prepared request at the back of the I/O scheduler queue
1285  *    for execution.  Don't wait for completion.
1286  *
1287  * Note:
1288  *    This function will invoke @done directly if the queue is dead.
1289  */
1290 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1291 {
1292         WARN_ON(irqs_disabled());
1293         WARN_ON(!blk_rq_is_passthrough(rq));
1294
1295         blk_account_io_start(rq);
1296
1297         /*
1298          * As plugging can be enabled for passthrough requests on a zoned
1299          * device, directly accessing the plug instead of using blk_mq_plug()
1300          * should not have any consequences.
1301          */
1302         if (current->plug)
1303                 blk_add_rq_to_plug(current->plug, rq);
1304         else
1305                 blk_mq_sched_insert_request(rq, at_head, true, false);
1306 }
1307 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1308
1309 struct blk_rq_wait {
1310         struct completion done;
1311         blk_status_t ret;
1312 };
1313
1314 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1315 {
1316         struct blk_rq_wait *wait = rq->end_io_data;
1317
1318         wait->ret = ret;
1319         complete(&wait->done);
1320         return RQ_END_IO_NONE;
1321 }
1322
1323 bool blk_rq_is_poll(struct request *rq)
1324 {
1325         if (!rq->mq_hctx)
1326                 return false;
1327         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1328                 return false;
1329         if (WARN_ON_ONCE(!rq->bio))
1330                 return false;
1331         return true;
1332 }
1333 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1334
1335 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1336 {
1337         do {
1338                 bio_poll(rq->bio, NULL, 0);
1339                 cond_resched();
1340         } while (!completion_done(wait));
1341 }
1342
1343 /**
1344  * blk_execute_rq - insert a request into queue for execution
1345  * @rq:         request to insert
1346  * @at_head:    insert request at head or tail of queue
1347  *
1348  * Description:
1349  *    Insert a fully prepared request at the back of the I/O scheduler queue
1350  *    for execution and wait for completion.
1351  * Return: The blk_status_t result provided to blk_mq_end_request().
1352  */
1353 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1354 {
1355         struct blk_rq_wait wait = {
1356                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1357         };
1358
1359         WARN_ON(irqs_disabled());
1360         WARN_ON(!blk_rq_is_passthrough(rq));
1361
1362         rq->end_io_data = &wait;
1363         rq->end_io = blk_end_sync_rq;
1364
1365         blk_account_io_start(rq);
1366         blk_mq_sched_insert_request(rq, at_head, true, false);
1367
1368         if (blk_rq_is_poll(rq)) {
1369                 blk_rq_poll_completion(rq, &wait.done);
1370         } else {
1371                 /*
1372                  * Prevent hang_check timer from firing at us during very long
1373                  * I/O
1374                  */
1375                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1376
1377                 if (hang_check)
1378                         while (!wait_for_completion_io_timeout(&wait.done,
1379                                         hang_check * (HZ/2)))
1380                                 ;
1381                 else
1382                         wait_for_completion_io(&wait.done);
1383         }
1384
1385         return wait.ret;
1386 }
1387 EXPORT_SYMBOL(blk_execute_rq);
1388
1389 static void __blk_mq_requeue_request(struct request *rq)
1390 {
1391         struct request_queue *q = rq->q;
1392
1393         blk_mq_put_driver_tag(rq);
1394
1395         trace_block_rq_requeue(rq);
1396         rq_qos_requeue(q, rq);
1397
1398         if (blk_mq_request_started(rq)) {
1399                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1400                 rq->rq_flags &= ~RQF_TIMED_OUT;
1401         }
1402 }
1403
1404 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1405 {
1406         __blk_mq_requeue_request(rq);
1407
1408         /* this request will be re-inserted to io scheduler queue */
1409         blk_mq_sched_requeue_request(rq);
1410
1411         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1412 }
1413 EXPORT_SYMBOL(blk_mq_requeue_request);
1414
1415 static void blk_mq_requeue_work(struct work_struct *work)
1416 {
1417         struct request_queue *q =
1418                 container_of(work, struct request_queue, requeue_work.work);
1419         LIST_HEAD(rq_list);
1420         struct request *rq, *next;
1421
1422         spin_lock_irq(&q->requeue_lock);
1423         list_splice_init(&q->requeue_list, &rq_list);
1424         spin_unlock_irq(&q->requeue_lock);
1425
1426         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1427                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1428                         continue;
1429
1430                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1431                 list_del_init(&rq->queuelist);
1432                 /*
1433                  * If RQF_DONTPREP, rq has contained some driver specific
1434                  * data, so insert it to hctx dispatch list to avoid any
1435                  * merge.
1436                  */
1437                 if (rq->rq_flags & RQF_DONTPREP)
1438                         blk_mq_request_bypass_insert(rq, false, false);
1439                 else
1440                         blk_mq_sched_insert_request(rq, true, false, false);
1441         }
1442
1443         while (!list_empty(&rq_list)) {
1444                 rq = list_entry(rq_list.next, struct request, queuelist);
1445                 list_del_init(&rq->queuelist);
1446                 blk_mq_sched_insert_request(rq, false, false, false);
1447         }
1448
1449         blk_mq_run_hw_queues(q, false);
1450 }
1451
1452 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1453                                 bool kick_requeue_list)
1454 {
1455         struct request_queue *q = rq->q;
1456         unsigned long flags;
1457
1458         /*
1459          * We abuse this flag that is otherwise used by the I/O scheduler to
1460          * request head insertion from the workqueue.
1461          */
1462         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1463
1464         spin_lock_irqsave(&q->requeue_lock, flags);
1465         if (at_head) {
1466                 rq->rq_flags |= RQF_SOFTBARRIER;
1467                 list_add(&rq->queuelist, &q->requeue_list);
1468         } else {
1469                 list_add_tail(&rq->queuelist, &q->requeue_list);
1470         }
1471         spin_unlock_irqrestore(&q->requeue_lock, flags);
1472
1473         if (kick_requeue_list)
1474                 blk_mq_kick_requeue_list(q);
1475 }
1476
1477 void blk_mq_kick_requeue_list(struct request_queue *q)
1478 {
1479         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1480 }
1481 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1482
1483 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1484                                     unsigned long msecs)
1485 {
1486         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1487                                     msecs_to_jiffies(msecs));
1488 }
1489 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1490
1491 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1492 {
1493         /*
1494          * If we find a request that isn't idle we know the queue is busy
1495          * as it's checked in the iter.
1496          * Return false to stop the iteration.
1497          */
1498         if (blk_mq_request_started(rq)) {
1499                 bool *busy = priv;
1500
1501                 *busy = true;
1502                 return false;
1503         }
1504
1505         return true;
1506 }
1507
1508 bool blk_mq_queue_inflight(struct request_queue *q)
1509 {
1510         bool busy = false;
1511
1512         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1513         return busy;
1514 }
1515 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1516
1517 static void blk_mq_rq_timed_out(struct request *req)
1518 {
1519         req->rq_flags |= RQF_TIMED_OUT;
1520         if (req->q->mq_ops->timeout) {
1521                 enum blk_eh_timer_return ret;
1522
1523                 ret = req->q->mq_ops->timeout(req);
1524                 if (ret == BLK_EH_DONE)
1525                         return;
1526                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1527         }
1528
1529         blk_add_timer(req);
1530 }
1531
1532 struct blk_expired_data {
1533         bool has_timedout_rq;
1534         unsigned long next;
1535         unsigned long timeout_start;
1536 };
1537
1538 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1539 {
1540         unsigned long deadline;
1541
1542         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1543                 return false;
1544         if (rq->rq_flags & RQF_TIMED_OUT)
1545                 return false;
1546
1547         deadline = READ_ONCE(rq->deadline);
1548         if (time_after_eq(expired->timeout_start, deadline))
1549                 return true;
1550
1551         if (expired->next == 0)
1552                 expired->next = deadline;
1553         else if (time_after(expired->next, deadline))
1554                 expired->next = deadline;
1555         return false;
1556 }
1557
1558 void blk_mq_put_rq_ref(struct request *rq)
1559 {
1560         if (is_flush_rq(rq)) {
1561                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1562                         blk_mq_free_request(rq);
1563         } else if (req_ref_put_and_test(rq)) {
1564                 __blk_mq_free_request(rq);
1565         }
1566 }
1567
1568 static bool blk_mq_check_expired(struct request *rq, void *priv)
1569 {
1570         struct blk_expired_data *expired = priv;
1571
1572         /*
1573          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1574          * be reallocated underneath the timeout handler's processing, then
1575          * the expire check is reliable. If the request is not expired, then
1576          * it was completed and reallocated as a new request after returning
1577          * from blk_mq_check_expired().
1578          */
1579         if (blk_mq_req_expired(rq, expired)) {
1580                 expired->has_timedout_rq = true;
1581                 return false;
1582         }
1583         return true;
1584 }
1585
1586 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1587 {
1588         struct blk_expired_data *expired = priv;
1589
1590         if (blk_mq_req_expired(rq, expired))
1591                 blk_mq_rq_timed_out(rq);
1592         return true;
1593 }
1594
1595 static void blk_mq_timeout_work(struct work_struct *work)
1596 {
1597         struct request_queue *q =
1598                 container_of(work, struct request_queue, timeout_work);
1599         struct blk_expired_data expired = {
1600                 .timeout_start = jiffies,
1601         };
1602         struct blk_mq_hw_ctx *hctx;
1603         unsigned long i;
1604
1605         /* A deadlock might occur if a request is stuck requiring a
1606          * timeout at the same time a queue freeze is waiting
1607          * completion, since the timeout code would not be able to
1608          * acquire the queue reference here.
1609          *
1610          * That's why we don't use blk_queue_enter here; instead, we use
1611          * percpu_ref_tryget directly, because we need to be able to
1612          * obtain a reference even in the short window between the queue
1613          * starting to freeze, by dropping the first reference in
1614          * blk_freeze_queue_start, and the moment the last request is
1615          * consumed, marked by the instant q_usage_counter reaches
1616          * zero.
1617          */
1618         if (!percpu_ref_tryget(&q->q_usage_counter))
1619                 return;
1620
1621         /* check if there is any timed-out request */
1622         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1623         if (expired.has_timedout_rq) {
1624                 /*
1625                  * Before walking tags, we must ensure any submit started
1626                  * before the current time has finished. Since the submit
1627                  * uses srcu or rcu, wait for a synchronization point to
1628                  * ensure all running submits have finished
1629                  */
1630                 blk_mq_wait_quiesce_done(q);
1631
1632                 expired.next = 0;
1633                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1634         }
1635
1636         if (expired.next != 0) {
1637                 mod_timer(&q->timeout, expired.next);
1638         } else {
1639                 /*
1640                  * Request timeouts are handled as a forward rolling timer. If
1641                  * we end up here it means that no requests are pending and
1642                  * also that no request has been pending for a while. Mark
1643                  * each hctx as idle.
1644                  */
1645                 queue_for_each_hw_ctx(q, hctx, i) {
1646                         /* the hctx may be unmapped, so check it here */
1647                         if (blk_mq_hw_queue_mapped(hctx))
1648                                 blk_mq_tag_idle(hctx);
1649                 }
1650         }
1651         blk_queue_exit(q);
1652 }
1653
1654 struct flush_busy_ctx_data {
1655         struct blk_mq_hw_ctx *hctx;
1656         struct list_head *list;
1657 };
1658
1659 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1660 {
1661         struct flush_busy_ctx_data *flush_data = data;
1662         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1663         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1664         enum hctx_type type = hctx->type;
1665
1666         spin_lock(&ctx->lock);
1667         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1668         sbitmap_clear_bit(sb, bitnr);
1669         spin_unlock(&ctx->lock);
1670         return true;
1671 }
1672
1673 /*
1674  * Process software queues that have been marked busy, splicing them
1675  * to the for-dispatch
1676  */
1677 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1678 {
1679         struct flush_busy_ctx_data data = {
1680                 .hctx = hctx,
1681                 .list = list,
1682         };
1683
1684         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1685 }
1686 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1687
1688 struct dispatch_rq_data {
1689         struct blk_mq_hw_ctx *hctx;
1690         struct request *rq;
1691 };
1692
1693 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1694                 void *data)
1695 {
1696         struct dispatch_rq_data *dispatch_data = data;
1697         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1698         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1699         enum hctx_type type = hctx->type;
1700
1701         spin_lock(&ctx->lock);
1702         if (!list_empty(&ctx->rq_lists[type])) {
1703                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1704                 list_del_init(&dispatch_data->rq->queuelist);
1705                 if (list_empty(&ctx->rq_lists[type]))
1706                         sbitmap_clear_bit(sb, bitnr);
1707         }
1708         spin_unlock(&ctx->lock);
1709
1710         return !dispatch_data->rq;
1711 }
1712
1713 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1714                                         struct blk_mq_ctx *start)
1715 {
1716         unsigned off = start ? start->index_hw[hctx->type] : 0;
1717         struct dispatch_rq_data data = {
1718                 .hctx = hctx,
1719                 .rq   = NULL,
1720         };
1721
1722         __sbitmap_for_each_set(&hctx->ctx_map, off,
1723                                dispatch_rq_from_ctx, &data);
1724
1725         return data.rq;
1726 }
1727
1728 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1729 {
1730         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1731         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1732         int tag;
1733
1734         blk_mq_tag_busy(rq->mq_hctx);
1735
1736         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1737                 bt = &rq->mq_hctx->tags->breserved_tags;
1738                 tag_offset = 0;
1739         } else {
1740                 if (!hctx_may_queue(rq->mq_hctx, bt))
1741                         return false;
1742         }
1743
1744         tag = __sbitmap_queue_get(bt);
1745         if (tag == BLK_MQ_NO_TAG)
1746                 return false;
1747
1748         rq->tag = tag + tag_offset;
1749         return true;
1750 }
1751
1752 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1753 {
1754         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1755                 return false;
1756
1757         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1758                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1759                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1760                 __blk_mq_inc_active_requests(hctx);
1761         }
1762         hctx->tags->rqs[rq->tag] = rq;
1763         return true;
1764 }
1765
1766 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1767                                 int flags, void *key)
1768 {
1769         struct blk_mq_hw_ctx *hctx;
1770
1771         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1772
1773         spin_lock(&hctx->dispatch_wait_lock);
1774         if (!list_empty(&wait->entry)) {
1775                 struct sbitmap_queue *sbq;
1776
1777                 list_del_init(&wait->entry);
1778                 sbq = &hctx->tags->bitmap_tags;
1779                 atomic_dec(&sbq->ws_active);
1780         }
1781         spin_unlock(&hctx->dispatch_wait_lock);
1782
1783         blk_mq_run_hw_queue(hctx, true);
1784         return 1;
1785 }
1786
1787 /*
1788  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1789  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1790  * restart. For both cases, take care to check the condition again after
1791  * marking us as waiting.
1792  */
1793 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1794                                  struct request *rq)
1795 {
1796         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1797         struct wait_queue_head *wq;
1798         wait_queue_entry_t *wait;
1799         bool ret;
1800
1801         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1802                 blk_mq_sched_mark_restart_hctx(hctx);
1803
1804                 /*
1805                  * It's possible that a tag was freed in the window between the
1806                  * allocation failure and adding the hardware queue to the wait
1807                  * queue.
1808                  *
1809                  * Don't clear RESTART here, someone else could have set it.
1810                  * At most this will cost an extra queue run.
1811                  */
1812                 return blk_mq_get_driver_tag(rq);
1813         }
1814
1815         wait = &hctx->dispatch_wait;
1816         if (!list_empty_careful(&wait->entry))
1817                 return false;
1818
1819         wq = &bt_wait_ptr(sbq, hctx)->wait;
1820
1821         spin_lock_irq(&wq->lock);
1822         spin_lock(&hctx->dispatch_wait_lock);
1823         if (!list_empty(&wait->entry)) {
1824                 spin_unlock(&hctx->dispatch_wait_lock);
1825                 spin_unlock_irq(&wq->lock);
1826                 return false;
1827         }
1828
1829         atomic_inc(&sbq->ws_active);
1830         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1831         __add_wait_queue(wq, wait);
1832
1833         /*
1834          * It's possible that a tag was freed in the window between the
1835          * allocation failure and adding the hardware queue to the wait
1836          * queue.
1837          */
1838         ret = blk_mq_get_driver_tag(rq);
1839         if (!ret) {
1840                 spin_unlock(&hctx->dispatch_wait_lock);
1841                 spin_unlock_irq(&wq->lock);
1842                 return false;
1843         }
1844
1845         /*
1846          * We got a tag, remove ourselves from the wait queue to ensure
1847          * someone else gets the wakeup.
1848          */
1849         list_del_init(&wait->entry);
1850         atomic_dec(&sbq->ws_active);
1851         spin_unlock(&hctx->dispatch_wait_lock);
1852         spin_unlock_irq(&wq->lock);
1853
1854         return true;
1855 }
1856
1857 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1858 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1859 /*
1860  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1861  * - EWMA is one simple way to compute running average value
1862  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1863  * - take 4 as factor for avoiding to get too small(0) result, and this
1864  *   factor doesn't matter because EWMA decreases exponentially
1865  */
1866 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1867 {
1868         unsigned int ewma;
1869
1870         ewma = hctx->dispatch_busy;
1871
1872         if (!ewma && !busy)
1873                 return;
1874
1875         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1876         if (busy)
1877                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1878         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1879
1880         hctx->dispatch_busy = ewma;
1881 }
1882
1883 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1884
1885 static void blk_mq_handle_dev_resource(struct request *rq,
1886                                        struct list_head *list)
1887 {
1888         struct request *next =
1889                 list_first_entry_or_null(list, struct request, queuelist);
1890
1891         /*
1892          * If an I/O scheduler has been configured and we got a driver tag for
1893          * the next request already, free it.
1894          */
1895         if (next)
1896                 blk_mq_put_driver_tag(next);
1897
1898         list_add(&rq->queuelist, list);
1899         __blk_mq_requeue_request(rq);
1900 }
1901
1902 static void blk_mq_handle_zone_resource(struct request *rq,
1903                                         struct list_head *zone_list)
1904 {
1905         /*
1906          * If we end up here it is because we cannot dispatch a request to a
1907          * specific zone due to LLD level zone-write locking or other zone
1908          * related resource not being available. In this case, set the request
1909          * aside in zone_list for retrying it later.
1910          */
1911         list_add(&rq->queuelist, zone_list);
1912         __blk_mq_requeue_request(rq);
1913 }
1914
1915 enum prep_dispatch {
1916         PREP_DISPATCH_OK,
1917         PREP_DISPATCH_NO_TAG,
1918         PREP_DISPATCH_NO_BUDGET,
1919 };
1920
1921 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1922                                                   bool need_budget)
1923 {
1924         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1925         int budget_token = -1;
1926
1927         if (need_budget) {
1928                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1929                 if (budget_token < 0) {
1930                         blk_mq_put_driver_tag(rq);
1931                         return PREP_DISPATCH_NO_BUDGET;
1932                 }
1933                 blk_mq_set_rq_budget_token(rq, budget_token);
1934         }
1935
1936         if (!blk_mq_get_driver_tag(rq)) {
1937                 /*
1938                  * The initial allocation attempt failed, so we need to
1939                  * rerun the hardware queue when a tag is freed. The
1940                  * waitqueue takes care of that. If the queue is run
1941                  * before we add this entry back on the dispatch list,
1942                  * we'll re-run it below.
1943                  */
1944                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1945                         /*
1946                          * All budgets not got from this function will be put
1947                          * together during handling partial dispatch
1948                          */
1949                         if (need_budget)
1950                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1951                         return PREP_DISPATCH_NO_TAG;
1952                 }
1953         }
1954
1955         return PREP_DISPATCH_OK;
1956 }
1957
1958 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1959 static void blk_mq_release_budgets(struct request_queue *q,
1960                 struct list_head *list)
1961 {
1962         struct request *rq;
1963
1964         list_for_each_entry(rq, list, queuelist) {
1965                 int budget_token = blk_mq_get_rq_budget_token(rq);
1966
1967                 if (budget_token >= 0)
1968                         blk_mq_put_dispatch_budget(q, budget_token);
1969         }
1970 }
1971
1972 /*
1973  * Returns true if we did some work AND can potentially do more.
1974  */
1975 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1976                              unsigned int nr_budgets)
1977 {
1978         enum prep_dispatch prep;
1979         struct request_queue *q = hctx->queue;
1980         struct request *rq, *nxt;
1981         int errors, queued;
1982         blk_status_t ret = BLK_STS_OK;
1983         LIST_HEAD(zone_list);
1984         bool needs_resource = false;
1985
1986         if (list_empty(list))
1987                 return false;
1988
1989         /*
1990          * Now process all the entries, sending them to the driver.
1991          */
1992         errors = queued = 0;
1993         do {
1994                 struct blk_mq_queue_data bd;
1995
1996                 rq = list_first_entry(list, struct request, queuelist);
1997
1998                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1999                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2000                 if (prep != PREP_DISPATCH_OK)
2001                         break;
2002
2003                 list_del_init(&rq->queuelist);
2004
2005                 bd.rq = rq;
2006
2007                 /*
2008                  * Flag last if we have no more requests, or if we have more
2009                  * but can't assign a driver tag to it.
2010                  */
2011                 if (list_empty(list))
2012                         bd.last = true;
2013                 else {
2014                         nxt = list_first_entry(list, struct request, queuelist);
2015                         bd.last = !blk_mq_get_driver_tag(nxt);
2016                 }
2017
2018                 /*
2019                  * once the request is queued to lld, no need to cover the
2020                  * budget any more
2021                  */
2022                 if (nr_budgets)
2023                         nr_budgets--;
2024                 ret = q->mq_ops->queue_rq(hctx, &bd);
2025                 switch (ret) {
2026                 case BLK_STS_OK:
2027                         queued++;
2028                         break;
2029                 case BLK_STS_RESOURCE:
2030                         needs_resource = true;
2031                         fallthrough;
2032                 case BLK_STS_DEV_RESOURCE:
2033                         blk_mq_handle_dev_resource(rq, list);
2034                         goto out;
2035                 case BLK_STS_ZONE_RESOURCE:
2036                         /*
2037                          * Move the request to zone_list and keep going through
2038                          * the dispatch list to find more requests the drive can
2039                          * accept.
2040                          */
2041                         blk_mq_handle_zone_resource(rq, &zone_list);
2042                         needs_resource = true;
2043                         break;
2044                 default:
2045                         errors++;
2046                         blk_mq_end_request(rq, ret);
2047                 }
2048         } while (!list_empty(list));
2049 out:
2050         if (!list_empty(&zone_list))
2051                 list_splice_tail_init(&zone_list, list);
2052
2053         /* If we didn't flush the entire list, we could have told the driver
2054          * there was more coming, but that turned out to be a lie.
2055          */
2056         if ((!list_empty(list) || errors || needs_resource ||
2057              ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
2058                 q->mq_ops->commit_rqs(hctx);
2059         /*
2060          * Any items that need requeuing? Stuff them into hctx->dispatch,
2061          * that is where we will continue on next queue run.
2062          */
2063         if (!list_empty(list)) {
2064                 bool needs_restart;
2065                 /* For non-shared tags, the RESTART check will suffice */
2066                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2067                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
2068
2069                 if (nr_budgets)
2070                         blk_mq_release_budgets(q, list);
2071
2072                 spin_lock(&hctx->lock);
2073                 list_splice_tail_init(list, &hctx->dispatch);
2074                 spin_unlock(&hctx->lock);
2075
2076                 /*
2077                  * Order adding requests to hctx->dispatch and checking
2078                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2079                  * in blk_mq_sched_restart(). Avoid restart code path to
2080                  * miss the new added requests to hctx->dispatch, meantime
2081                  * SCHED_RESTART is observed here.
2082                  */
2083                 smp_mb();
2084
2085                 /*
2086                  * If SCHED_RESTART was set by the caller of this function and
2087                  * it is no longer set that means that it was cleared by another
2088                  * thread and hence that a queue rerun is needed.
2089                  *
2090                  * If 'no_tag' is set, that means that we failed getting
2091                  * a driver tag with an I/O scheduler attached. If our dispatch
2092                  * waitqueue is no longer active, ensure that we run the queue
2093                  * AFTER adding our entries back to the list.
2094                  *
2095                  * If no I/O scheduler has been configured it is possible that
2096                  * the hardware queue got stopped and restarted before requests
2097                  * were pushed back onto the dispatch list. Rerun the queue to
2098                  * avoid starvation. Notes:
2099                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2100                  *   been stopped before rerunning a queue.
2101                  * - Some but not all block drivers stop a queue before
2102                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2103                  *   and dm-rq.
2104                  *
2105                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2106                  * bit is set, run queue after a delay to avoid IO stalls
2107                  * that could otherwise occur if the queue is idle.  We'll do
2108                  * similar if we couldn't get budget or couldn't lock a zone
2109                  * and SCHED_RESTART is set.
2110                  */
2111                 needs_restart = blk_mq_sched_needs_restart(hctx);
2112                 if (prep == PREP_DISPATCH_NO_BUDGET)
2113                         needs_resource = true;
2114                 if (!needs_restart ||
2115                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2116                         blk_mq_run_hw_queue(hctx, true);
2117                 else if (needs_resource)
2118                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2119
2120                 blk_mq_update_dispatch_busy(hctx, true);
2121                 return false;
2122         } else
2123                 blk_mq_update_dispatch_busy(hctx, false);
2124
2125         return (queued + errors) != 0;
2126 }
2127
2128 /**
2129  * __blk_mq_run_hw_queue - Run a hardware queue.
2130  * @hctx: Pointer to the hardware queue to run.
2131  *
2132  * Send pending requests to the hardware.
2133  */
2134 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2135 {
2136         /*
2137          * We can't run the queue inline with ints disabled. Ensure that
2138          * we catch bad users of this early.
2139          */
2140         WARN_ON_ONCE(in_interrupt());
2141
2142         blk_mq_run_dispatch_ops(hctx->queue,
2143                         blk_mq_sched_dispatch_requests(hctx));
2144 }
2145
2146 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2147 {
2148         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2149
2150         if (cpu >= nr_cpu_ids)
2151                 cpu = cpumask_first(hctx->cpumask);
2152         return cpu;
2153 }
2154
2155 /*
2156  * It'd be great if the workqueue API had a way to pass
2157  * in a mask and had some smarts for more clever placement.
2158  * For now we just round-robin here, switching for every
2159  * BLK_MQ_CPU_WORK_BATCH queued items.
2160  */
2161 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2162 {
2163         bool tried = false;
2164         int next_cpu = hctx->next_cpu;
2165
2166         if (hctx->queue->nr_hw_queues == 1)
2167                 return WORK_CPU_UNBOUND;
2168
2169         if (--hctx->next_cpu_batch <= 0) {
2170 select_cpu:
2171                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2172                                 cpu_online_mask);
2173                 if (next_cpu >= nr_cpu_ids)
2174                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2175                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2176         }
2177
2178         /*
2179          * Do unbound schedule if we can't find a online CPU for this hctx,
2180          * and it should only happen in the path of handling CPU DEAD.
2181          */
2182         if (!cpu_online(next_cpu)) {
2183                 if (!tried) {
2184                         tried = true;
2185                         goto select_cpu;
2186                 }
2187
2188                 /*
2189                  * Make sure to re-select CPU next time once after CPUs
2190                  * in hctx->cpumask become online again.
2191                  */
2192                 hctx->next_cpu = next_cpu;
2193                 hctx->next_cpu_batch = 1;
2194                 return WORK_CPU_UNBOUND;
2195         }
2196
2197         hctx->next_cpu = next_cpu;
2198         return next_cpu;
2199 }
2200
2201 /**
2202  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2203  * @hctx: Pointer to the hardware queue to run.
2204  * @async: If we want to run the queue asynchronously.
2205  * @msecs: Milliseconds of delay to wait before running the queue.
2206  *
2207  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2208  * with a delay of @msecs.
2209  */
2210 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2211                                         unsigned long msecs)
2212 {
2213         if (unlikely(blk_mq_hctx_stopped(hctx)))
2214                 return;
2215
2216         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2217                 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2218                         __blk_mq_run_hw_queue(hctx);
2219                         return;
2220                 }
2221         }
2222
2223         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2224                                     msecs_to_jiffies(msecs));
2225 }
2226
2227 /**
2228  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2229  * @hctx: Pointer to the hardware queue to run.
2230  * @msecs: Milliseconds of delay to wait before running the queue.
2231  *
2232  * Run a hardware queue asynchronously with a delay of @msecs.
2233  */
2234 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2235 {
2236         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2237 }
2238 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2239
2240 /**
2241  * blk_mq_run_hw_queue - Start to run a hardware queue.
2242  * @hctx: Pointer to the hardware queue to run.
2243  * @async: If we want to run the queue asynchronously.
2244  *
2245  * Check if the request queue is not in a quiesced state and if there are
2246  * pending requests to be sent. If this is true, run the queue to send requests
2247  * to hardware.
2248  */
2249 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2250 {
2251         bool need_run;
2252
2253         /*
2254          * When queue is quiesced, we may be switching io scheduler, or
2255          * updating nr_hw_queues, or other things, and we can't run queue
2256          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2257          *
2258          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2259          * quiesced.
2260          */
2261         __blk_mq_run_dispatch_ops(hctx->queue, false,
2262                 need_run = !blk_queue_quiesced(hctx->queue) &&
2263                 blk_mq_hctx_has_pending(hctx));
2264
2265         if (need_run)
2266                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2267 }
2268 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2269
2270 /*
2271  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2272  * scheduler.
2273  */
2274 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2275 {
2276         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2277         /*
2278          * If the IO scheduler does not respect hardware queues when
2279          * dispatching, we just don't bother with multiple HW queues and
2280          * dispatch from hctx for the current CPU since running multiple queues
2281          * just causes lock contention inside the scheduler and pointless cache
2282          * bouncing.
2283          */
2284         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2285
2286         if (!blk_mq_hctx_stopped(hctx))
2287                 return hctx;
2288         return NULL;
2289 }
2290
2291 /**
2292  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2293  * @q: Pointer to the request queue to run.
2294  * @async: If we want to run the queue asynchronously.
2295  */
2296 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2297 {
2298         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2299         unsigned long i;
2300
2301         sq_hctx = NULL;
2302         if (blk_queue_sq_sched(q))
2303                 sq_hctx = blk_mq_get_sq_hctx(q);
2304         queue_for_each_hw_ctx(q, hctx, i) {
2305                 if (blk_mq_hctx_stopped(hctx))
2306                         continue;
2307                 /*
2308                  * Dispatch from this hctx either if there's no hctx preferred
2309                  * by IO scheduler or if it has requests that bypass the
2310                  * scheduler.
2311                  */
2312                 if (!sq_hctx || sq_hctx == hctx ||
2313                     !list_empty_careful(&hctx->dispatch))
2314                         blk_mq_run_hw_queue(hctx, async);
2315         }
2316 }
2317 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2318
2319 /**
2320  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2321  * @q: Pointer to the request queue to run.
2322  * @msecs: Milliseconds of delay to wait before running the queues.
2323  */
2324 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2325 {
2326         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2327         unsigned long i;
2328
2329         sq_hctx = NULL;
2330         if (blk_queue_sq_sched(q))
2331                 sq_hctx = blk_mq_get_sq_hctx(q);
2332         queue_for_each_hw_ctx(q, hctx, i) {
2333                 if (blk_mq_hctx_stopped(hctx))
2334                         continue;
2335                 /*
2336                  * If there is already a run_work pending, leave the
2337                  * pending delay untouched. Otherwise, a hctx can stall
2338                  * if another hctx is re-delaying the other's work
2339                  * before the work executes.
2340                  */
2341                 if (delayed_work_pending(&hctx->run_work))
2342                         continue;
2343                 /*
2344                  * Dispatch from this hctx either if there's no hctx preferred
2345                  * by IO scheduler or if it has requests that bypass the
2346                  * scheduler.
2347                  */
2348                 if (!sq_hctx || sq_hctx == hctx ||
2349                     !list_empty_careful(&hctx->dispatch))
2350                         blk_mq_delay_run_hw_queue(hctx, msecs);
2351         }
2352 }
2353 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2354
2355 /*
2356  * This function is often used for pausing .queue_rq() by driver when
2357  * there isn't enough resource or some conditions aren't satisfied, and
2358  * BLK_STS_RESOURCE is usually returned.
2359  *
2360  * We do not guarantee that dispatch can be drained or blocked
2361  * after blk_mq_stop_hw_queue() returns. Please use
2362  * blk_mq_quiesce_queue() for that requirement.
2363  */
2364 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2365 {
2366         cancel_delayed_work(&hctx->run_work);
2367
2368         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2369 }
2370 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2371
2372 /*
2373  * This function is often used for pausing .queue_rq() by driver when
2374  * there isn't enough resource or some conditions aren't satisfied, and
2375  * BLK_STS_RESOURCE is usually returned.
2376  *
2377  * We do not guarantee that dispatch can be drained or blocked
2378  * after blk_mq_stop_hw_queues() returns. Please use
2379  * blk_mq_quiesce_queue() for that requirement.
2380  */
2381 void blk_mq_stop_hw_queues(struct request_queue *q)
2382 {
2383         struct blk_mq_hw_ctx *hctx;
2384         unsigned long i;
2385
2386         queue_for_each_hw_ctx(q, hctx, i)
2387                 blk_mq_stop_hw_queue(hctx);
2388 }
2389 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2390
2391 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2392 {
2393         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2394
2395         blk_mq_run_hw_queue(hctx, false);
2396 }
2397 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2398
2399 void blk_mq_start_hw_queues(struct request_queue *q)
2400 {
2401         struct blk_mq_hw_ctx *hctx;
2402         unsigned long i;
2403
2404         queue_for_each_hw_ctx(q, hctx, i)
2405                 blk_mq_start_hw_queue(hctx);
2406 }
2407 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2408
2409 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2410 {
2411         if (!blk_mq_hctx_stopped(hctx))
2412                 return;
2413
2414         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2415         blk_mq_run_hw_queue(hctx, async);
2416 }
2417 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2418
2419 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2420 {
2421         struct blk_mq_hw_ctx *hctx;
2422         unsigned long i;
2423
2424         queue_for_each_hw_ctx(q, hctx, i)
2425                 blk_mq_start_stopped_hw_queue(hctx, async);
2426 }
2427 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2428
2429 static void blk_mq_run_work_fn(struct work_struct *work)
2430 {
2431         struct blk_mq_hw_ctx *hctx;
2432
2433         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2434
2435         /*
2436          * If we are stopped, don't run the queue.
2437          */
2438         if (blk_mq_hctx_stopped(hctx))
2439                 return;
2440
2441         __blk_mq_run_hw_queue(hctx);
2442 }
2443
2444 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2445                                             struct request *rq,
2446                                             bool at_head)
2447 {
2448         struct blk_mq_ctx *ctx = rq->mq_ctx;
2449         enum hctx_type type = hctx->type;
2450
2451         lockdep_assert_held(&ctx->lock);
2452
2453         trace_block_rq_insert(rq);
2454
2455         if (at_head)
2456                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2457         else
2458                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2459 }
2460
2461 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2462                              bool at_head)
2463 {
2464         struct blk_mq_ctx *ctx = rq->mq_ctx;
2465
2466         lockdep_assert_held(&ctx->lock);
2467
2468         __blk_mq_insert_req_list(hctx, rq, at_head);
2469         blk_mq_hctx_mark_pending(hctx, ctx);
2470 }
2471
2472 /**
2473  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2474  * @rq: Pointer to request to be inserted.
2475  * @at_head: true if the request should be inserted at the head of the list.
2476  * @run_queue: If we should run the hardware queue after inserting the request.
2477  *
2478  * Should only be used carefully, when the caller knows we want to
2479  * bypass a potential IO scheduler on the target device.
2480  */
2481 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2482                                   bool run_queue)
2483 {
2484         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2485
2486         spin_lock(&hctx->lock);
2487         if (at_head)
2488                 list_add(&rq->queuelist, &hctx->dispatch);
2489         else
2490                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2491         spin_unlock(&hctx->lock);
2492
2493         if (run_queue)
2494                 blk_mq_run_hw_queue(hctx, false);
2495 }
2496
2497 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2498                             struct list_head *list)
2499
2500 {
2501         struct request *rq;
2502         enum hctx_type type = hctx->type;
2503
2504         /*
2505          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2506          * offline now
2507          */
2508         list_for_each_entry(rq, list, queuelist) {
2509                 BUG_ON(rq->mq_ctx != ctx);
2510                 trace_block_rq_insert(rq);
2511         }
2512
2513         spin_lock(&ctx->lock);
2514         list_splice_tail_init(list, &ctx->rq_lists[type]);
2515         blk_mq_hctx_mark_pending(hctx, ctx);
2516         spin_unlock(&ctx->lock);
2517 }
2518
2519 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2520                               bool from_schedule)
2521 {
2522         if (hctx->queue->mq_ops->commit_rqs) {
2523                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2524                 hctx->queue->mq_ops->commit_rqs(hctx);
2525         }
2526         *queued = 0;
2527 }
2528
2529 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2530                 unsigned int nr_segs)
2531 {
2532         int err;
2533
2534         if (bio->bi_opf & REQ_RAHEAD)
2535                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2536
2537         rq->__sector = bio->bi_iter.bi_sector;
2538         blk_rq_bio_prep(rq, bio, nr_segs);
2539
2540         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2541         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2542         WARN_ON_ONCE(err);
2543
2544         blk_account_io_start(rq);
2545 }
2546
2547 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2548                                             struct request *rq, bool last)
2549 {
2550         struct request_queue *q = rq->q;
2551         struct blk_mq_queue_data bd = {
2552                 .rq = rq,
2553                 .last = last,
2554         };
2555         blk_status_t ret;
2556
2557         /*
2558          * For OK queue, we are done. For error, caller may kill it.
2559          * Any other error (busy), just add it to our list as we
2560          * previously would have done.
2561          */
2562         ret = q->mq_ops->queue_rq(hctx, &bd);
2563         switch (ret) {
2564         case BLK_STS_OK:
2565                 blk_mq_update_dispatch_busy(hctx, false);
2566                 break;
2567         case BLK_STS_RESOURCE:
2568         case BLK_STS_DEV_RESOURCE:
2569                 blk_mq_update_dispatch_busy(hctx, true);
2570                 __blk_mq_requeue_request(rq);
2571                 break;
2572         default:
2573                 blk_mq_update_dispatch_busy(hctx, false);
2574                 break;
2575         }
2576
2577         return ret;
2578 }
2579
2580 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2581                                                 struct request *rq,
2582                                                 bool bypass_insert, bool last)
2583 {
2584         struct request_queue *q = rq->q;
2585         bool run_queue = true;
2586         int budget_token;
2587
2588         /*
2589          * RCU or SRCU read lock is needed before checking quiesced flag.
2590          *
2591          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2592          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2593          * and avoid driver to try to dispatch again.
2594          */
2595         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2596                 run_queue = false;
2597                 bypass_insert = false;
2598                 goto insert;
2599         }
2600
2601         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2602                 goto insert;
2603
2604         budget_token = blk_mq_get_dispatch_budget(q);
2605         if (budget_token < 0)
2606                 goto insert;
2607
2608         blk_mq_set_rq_budget_token(rq, budget_token);
2609
2610         if (!blk_mq_get_driver_tag(rq)) {
2611                 blk_mq_put_dispatch_budget(q, budget_token);
2612                 goto insert;
2613         }
2614
2615         return __blk_mq_issue_directly(hctx, rq, last);
2616 insert:
2617         if (bypass_insert)
2618                 return BLK_STS_RESOURCE;
2619
2620         blk_mq_sched_insert_request(rq, false, run_queue, false);
2621
2622         return BLK_STS_OK;
2623 }
2624
2625 /**
2626  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2627  * @hctx: Pointer of the associated hardware queue.
2628  * @rq: Pointer to request to be sent.
2629  *
2630  * If the device has enough resources to accept a new request now, send the
2631  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2632  * we can try send it another time in the future. Requests inserted at this
2633  * queue have higher priority.
2634  */
2635 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2636                 struct request *rq)
2637 {
2638         blk_status_t ret =
2639                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2640
2641         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2642                 blk_mq_request_bypass_insert(rq, false, true);
2643         else if (ret != BLK_STS_OK)
2644                 blk_mq_end_request(rq, ret);
2645 }
2646
2647 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2648 {
2649         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2650 }
2651
2652 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2653 {
2654         struct blk_mq_hw_ctx *hctx = NULL;
2655         struct request *rq;
2656         int queued = 0;
2657         int errors = 0;
2658
2659         while ((rq = rq_list_pop(&plug->mq_list))) {
2660                 bool last = rq_list_empty(plug->mq_list);
2661                 blk_status_t ret;
2662
2663                 if (hctx != rq->mq_hctx) {
2664                         if (hctx)
2665                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2666                         hctx = rq->mq_hctx;
2667                 }
2668
2669                 ret = blk_mq_request_issue_directly(rq, last);
2670                 switch (ret) {
2671                 case BLK_STS_OK:
2672                         queued++;
2673                         break;
2674                 case BLK_STS_RESOURCE:
2675                 case BLK_STS_DEV_RESOURCE:
2676                         blk_mq_request_bypass_insert(rq, false, true);
2677                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2678                         return;
2679                 default:
2680                         blk_mq_end_request(rq, ret);
2681                         errors++;
2682                         break;
2683                 }
2684         }
2685
2686         /*
2687          * If we didn't flush the entire list, we could have told the driver
2688          * there was more coming, but that turned out to be a lie.
2689          */
2690         if (errors)
2691                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2692 }
2693
2694 static void __blk_mq_flush_plug_list(struct request_queue *q,
2695                                      struct blk_plug *plug)
2696 {
2697         if (blk_queue_quiesced(q))
2698                 return;
2699         q->mq_ops->queue_rqs(&plug->mq_list);
2700 }
2701
2702 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2703 {
2704         struct blk_mq_hw_ctx *this_hctx = NULL;
2705         struct blk_mq_ctx *this_ctx = NULL;
2706         struct request *requeue_list = NULL;
2707         unsigned int depth = 0;
2708         LIST_HEAD(list);
2709
2710         do {
2711                 struct request *rq = rq_list_pop(&plug->mq_list);
2712
2713                 if (!this_hctx) {
2714                         this_hctx = rq->mq_hctx;
2715                         this_ctx = rq->mq_ctx;
2716                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2717                         rq_list_add(&requeue_list, rq);
2718                         continue;
2719                 }
2720                 list_add_tail(&rq->queuelist, &list);
2721                 depth++;
2722         } while (!rq_list_empty(plug->mq_list));
2723
2724         plug->mq_list = requeue_list;
2725         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2726         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2727 }
2728
2729 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2730 {
2731         struct request *rq;
2732
2733         if (rq_list_empty(plug->mq_list))
2734                 return;
2735         plug->rq_count = 0;
2736
2737         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2738                 struct request_queue *q;
2739
2740                 rq = rq_list_peek(&plug->mq_list);
2741                 q = rq->q;
2742
2743                 /*
2744                  * Peek first request and see if we have a ->queue_rqs() hook.
2745                  * If we do, we can dispatch the whole plug list in one go. We
2746                  * already know at this point that all requests belong to the
2747                  * same queue, caller must ensure that's the case.
2748                  *
2749                  * Since we pass off the full list to the driver at this point,
2750                  * we do not increment the active request count for the queue.
2751                  * Bypass shared tags for now because of that.
2752                  */
2753                 if (q->mq_ops->queue_rqs &&
2754                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2755                         blk_mq_run_dispatch_ops(q,
2756                                 __blk_mq_flush_plug_list(q, plug));
2757                         if (rq_list_empty(plug->mq_list))
2758                                 return;
2759                 }
2760
2761                 blk_mq_run_dispatch_ops(q,
2762                                 blk_mq_plug_issue_direct(plug, false));
2763                 if (rq_list_empty(plug->mq_list))
2764                         return;
2765         }
2766
2767         do {
2768                 blk_mq_dispatch_plug_list(plug, from_schedule);
2769         } while (!rq_list_empty(plug->mq_list));
2770 }
2771
2772 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2773                 struct list_head *list)
2774 {
2775         int queued = 0;
2776         int errors = 0;
2777
2778         while (!list_empty(list)) {
2779                 blk_status_t ret;
2780                 struct request *rq = list_first_entry(list, struct request,
2781                                 queuelist);
2782
2783                 list_del_init(&rq->queuelist);
2784                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2785                 if (ret != BLK_STS_OK) {
2786                         errors++;
2787                         if (ret == BLK_STS_RESOURCE ||
2788                                         ret == BLK_STS_DEV_RESOURCE) {
2789                                 blk_mq_request_bypass_insert(rq, false,
2790                                                         list_empty(list));
2791                                 break;
2792                         }
2793                         blk_mq_end_request(rq, ret);
2794                 } else
2795                         queued++;
2796         }
2797
2798         /*
2799          * If we didn't flush the entire list, we could have told
2800          * the driver there was more coming, but that turned out to
2801          * be a lie.
2802          */
2803         if ((!list_empty(list) || errors) &&
2804              hctx->queue->mq_ops->commit_rqs && queued)
2805                 hctx->queue->mq_ops->commit_rqs(hctx);
2806 }
2807
2808 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2809                                      struct bio *bio, unsigned int nr_segs)
2810 {
2811         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2812                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2813                         return true;
2814                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2815                         return true;
2816         }
2817         return false;
2818 }
2819
2820 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2821                                                struct blk_plug *plug,
2822                                                struct bio *bio,
2823                                                unsigned int nsegs)
2824 {
2825         struct blk_mq_alloc_data data = {
2826                 .q              = q,
2827                 .nr_tags        = 1,
2828                 .cmd_flags      = bio->bi_opf,
2829         };
2830         struct request *rq;
2831
2832         if (unlikely(bio_queue_enter(bio)))
2833                 return NULL;
2834
2835         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2836                 goto queue_exit;
2837
2838         rq_qos_throttle(q, bio);
2839
2840         if (plug) {
2841                 data.nr_tags = plug->nr_ios;
2842                 plug->nr_ios = 1;
2843                 data.cached_rq = &plug->cached_rq;
2844         }
2845
2846         rq = __blk_mq_alloc_requests(&data);
2847         if (rq)
2848                 return rq;
2849         rq_qos_cleanup(q, bio);
2850         if (bio->bi_opf & REQ_NOWAIT)
2851                 bio_wouldblock_error(bio);
2852 queue_exit:
2853         blk_queue_exit(q);
2854         return NULL;
2855 }
2856
2857 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2858                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2859 {
2860         struct request *rq;
2861
2862         if (!plug)
2863                 return NULL;
2864         rq = rq_list_peek(&plug->cached_rq);
2865         if (!rq || rq->q != q)
2866                 return NULL;
2867
2868         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2869                 *bio = NULL;
2870                 return NULL;
2871         }
2872
2873         if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2874                 return NULL;
2875         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2876                 return NULL;
2877
2878         /*
2879          * If any qos ->throttle() end up blocking, we will have flushed the
2880          * plug and hence killed the cached_rq list as well. Pop this entry
2881          * before we throttle.
2882          */
2883         plug->cached_rq = rq_list_next(rq);
2884         rq_qos_throttle(q, *bio);
2885
2886         rq->cmd_flags = (*bio)->bi_opf;
2887         INIT_LIST_HEAD(&rq->queuelist);
2888         return rq;
2889 }
2890
2891 static void bio_set_ioprio(struct bio *bio)
2892 {
2893         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2894         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2895                 bio->bi_ioprio = get_current_ioprio();
2896         blkcg_set_ioprio(bio);
2897 }
2898
2899 /**
2900  * blk_mq_submit_bio - Create and send a request to block device.
2901  * @bio: Bio pointer.
2902  *
2903  * Builds up a request structure from @q and @bio and send to the device. The
2904  * request may not be queued directly to hardware if:
2905  * * This request can be merged with another one
2906  * * We want to place request at plug queue for possible future merging
2907  * * There is an IO scheduler active at this queue
2908  *
2909  * It will not queue the request if there is an error with the bio, or at the
2910  * request creation.
2911  */
2912 void blk_mq_submit_bio(struct bio *bio)
2913 {
2914         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2915         struct blk_plug *plug = blk_mq_plug(bio);
2916         const int is_sync = op_is_sync(bio->bi_opf);
2917         struct request *rq;
2918         unsigned int nr_segs = 1;
2919         blk_status_t ret;
2920
2921         bio = blk_queue_bounce(bio, q);
2922         if (bio_may_exceed_limits(bio, &q->limits)) {
2923                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2924                 if (!bio)
2925                         return;
2926         }
2927
2928         if (!bio_integrity_prep(bio))
2929                 return;
2930
2931         bio_set_ioprio(bio);
2932
2933         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2934         if (!rq) {
2935                 if (!bio)
2936                         return;
2937                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2938                 if (unlikely(!rq))
2939                         return;
2940         }
2941
2942         trace_block_getrq(bio);
2943
2944         rq_qos_track(q, rq, bio);
2945
2946         blk_mq_bio_to_request(rq, bio, nr_segs);
2947
2948         ret = blk_crypto_init_request(rq);
2949         if (ret != BLK_STS_OK) {
2950                 bio->bi_status = ret;
2951                 bio_endio(bio);
2952                 blk_mq_free_request(rq);
2953                 return;
2954         }
2955
2956         if (op_is_flush(bio->bi_opf)) {
2957                 blk_insert_flush(rq);
2958                 return;
2959         }
2960
2961         if (plug)
2962                 blk_add_rq_to_plug(plug, rq);
2963         else if ((rq->rq_flags & RQF_ELV) ||
2964                  (rq->mq_hctx->dispatch_busy &&
2965                   (q->nr_hw_queues == 1 || !is_sync)))
2966                 blk_mq_sched_insert_request(rq, false, true, true);
2967         else
2968                 blk_mq_run_dispatch_ops(rq->q,
2969                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2970 }
2971
2972 #ifdef CONFIG_BLK_MQ_STACKING
2973 /**
2974  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2975  * @rq: the request being queued
2976  */
2977 blk_status_t blk_insert_cloned_request(struct request *rq)
2978 {
2979         struct request_queue *q = rq->q;
2980         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2981         blk_status_t ret;
2982
2983         if (blk_rq_sectors(rq) > max_sectors) {
2984                 /*
2985                  * SCSI device does not have a good way to return if
2986                  * Write Same/Zero is actually supported. If a device rejects
2987                  * a non-read/write command (discard, write same,etc.) the
2988                  * low-level device driver will set the relevant queue limit to
2989                  * 0 to prevent blk-lib from issuing more of the offending
2990                  * operations. Commands queued prior to the queue limit being
2991                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2992                  * errors being propagated to upper layers.
2993                  */
2994                 if (max_sectors == 0)
2995                         return BLK_STS_NOTSUPP;
2996
2997                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2998                         __func__, blk_rq_sectors(rq), max_sectors);
2999                 return BLK_STS_IOERR;
3000         }
3001
3002         /*
3003          * The queue settings related to segment counting may differ from the
3004          * original queue.
3005          */
3006         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3007         if (rq->nr_phys_segments > queue_max_segments(q)) {
3008                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
3009                         __func__, rq->nr_phys_segments, queue_max_segments(q));
3010                 return BLK_STS_IOERR;
3011         }
3012
3013         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3014                 return BLK_STS_IOERR;
3015
3016         if (blk_crypto_insert_cloned_request(rq))
3017                 return BLK_STS_IOERR;
3018
3019         blk_account_io_start(rq);
3020
3021         /*
3022          * Since we have a scheduler attached on the top device,
3023          * bypass a potential scheduler on the bottom device for
3024          * insert.
3025          */
3026         blk_mq_run_dispatch_ops(q,
3027                         ret = blk_mq_request_issue_directly(rq, true));
3028         if (ret)
3029                 blk_account_io_done(rq, ktime_get_ns());
3030         return ret;
3031 }
3032 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3033
3034 /**
3035  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3036  * @rq: the clone request to be cleaned up
3037  *
3038  * Description:
3039  *     Free all bios in @rq for a cloned request.
3040  */
3041 void blk_rq_unprep_clone(struct request *rq)
3042 {
3043         struct bio *bio;
3044
3045         while ((bio = rq->bio) != NULL) {
3046                 rq->bio = bio->bi_next;
3047
3048                 bio_put(bio);
3049         }
3050 }
3051 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3052
3053 /**
3054  * blk_rq_prep_clone - Helper function to setup clone request
3055  * @rq: the request to be setup
3056  * @rq_src: original request to be cloned
3057  * @bs: bio_set that bios for clone are allocated from
3058  * @gfp_mask: memory allocation mask for bio
3059  * @bio_ctr: setup function to be called for each clone bio.
3060  *           Returns %0 for success, non %0 for failure.
3061  * @data: private data to be passed to @bio_ctr
3062  *
3063  * Description:
3064  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3065  *     Also, pages which the original bios are pointing to are not copied
3066  *     and the cloned bios just point same pages.
3067  *     So cloned bios must be completed before original bios, which means
3068  *     the caller must complete @rq before @rq_src.
3069  */
3070 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3071                       struct bio_set *bs, gfp_t gfp_mask,
3072                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3073                       void *data)
3074 {
3075         struct bio *bio, *bio_src;
3076
3077         if (!bs)
3078                 bs = &fs_bio_set;
3079
3080         __rq_for_each_bio(bio_src, rq_src) {
3081                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3082                                       bs);
3083                 if (!bio)
3084                         goto free_and_out;
3085
3086                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3087                         goto free_and_out;
3088
3089                 if (rq->bio) {
3090                         rq->biotail->bi_next = bio;
3091                         rq->biotail = bio;
3092                 } else {
3093                         rq->bio = rq->biotail = bio;
3094                 }
3095                 bio = NULL;
3096         }
3097
3098         /* Copy attributes of the original request to the clone request. */
3099         rq->__sector = blk_rq_pos(rq_src);
3100         rq->__data_len = blk_rq_bytes(rq_src);
3101         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3102                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3103                 rq->special_vec = rq_src->special_vec;
3104         }
3105         rq->nr_phys_segments = rq_src->nr_phys_segments;
3106         rq->ioprio = rq_src->ioprio;
3107
3108         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3109                 goto free_and_out;
3110
3111         return 0;
3112
3113 free_and_out:
3114         if (bio)
3115                 bio_put(bio);
3116         blk_rq_unprep_clone(rq);
3117
3118         return -ENOMEM;
3119 }
3120 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3121 #endif /* CONFIG_BLK_MQ_STACKING */
3122
3123 /*
3124  * Steal bios from a request and add them to a bio list.
3125  * The request must not have been partially completed before.
3126  */
3127 void blk_steal_bios(struct bio_list *list, struct request *rq)
3128 {
3129         if (rq->bio) {
3130                 if (list->tail)
3131                         list->tail->bi_next = rq->bio;
3132                 else
3133                         list->head = rq->bio;
3134                 list->tail = rq->biotail;
3135
3136                 rq->bio = NULL;
3137                 rq->biotail = NULL;
3138         }
3139
3140         rq->__data_len = 0;
3141 }
3142 EXPORT_SYMBOL_GPL(blk_steal_bios);
3143
3144 static size_t order_to_size(unsigned int order)
3145 {
3146         return (size_t)PAGE_SIZE << order;
3147 }
3148
3149 /* called before freeing request pool in @tags */
3150 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3151                                     struct blk_mq_tags *tags)
3152 {
3153         struct page *page;
3154         unsigned long flags;
3155
3156         /*
3157          * There is no need to clear mapping if driver tags is not initialized
3158          * or the mapping belongs to the driver tags.
3159          */
3160         if (!drv_tags || drv_tags == tags)
3161                 return;
3162
3163         list_for_each_entry(page, &tags->page_list, lru) {
3164                 unsigned long start = (unsigned long)page_address(page);
3165                 unsigned long end = start + order_to_size(page->private);
3166                 int i;
3167
3168                 for (i = 0; i < drv_tags->nr_tags; i++) {
3169                         struct request *rq = drv_tags->rqs[i];
3170                         unsigned long rq_addr = (unsigned long)rq;
3171
3172                         if (rq_addr >= start && rq_addr < end) {
3173                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3174                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3175                         }
3176                 }
3177         }
3178
3179         /*
3180          * Wait until all pending iteration is done.
3181          *
3182          * Request reference is cleared and it is guaranteed to be observed
3183          * after the ->lock is released.
3184          */
3185         spin_lock_irqsave(&drv_tags->lock, flags);
3186         spin_unlock_irqrestore(&drv_tags->lock, flags);
3187 }
3188
3189 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3190                      unsigned int hctx_idx)
3191 {
3192         struct blk_mq_tags *drv_tags;
3193         struct page *page;
3194
3195         if (list_empty(&tags->page_list))
3196                 return;
3197
3198         if (blk_mq_is_shared_tags(set->flags))
3199                 drv_tags = set->shared_tags;
3200         else
3201                 drv_tags = set->tags[hctx_idx];
3202
3203         if (tags->static_rqs && set->ops->exit_request) {
3204                 int i;
3205
3206                 for (i = 0; i < tags->nr_tags; i++) {
3207                         struct request *rq = tags->static_rqs[i];
3208
3209                         if (!rq)
3210                                 continue;
3211                         set->ops->exit_request(set, rq, hctx_idx);
3212                         tags->static_rqs[i] = NULL;
3213                 }
3214         }
3215
3216         blk_mq_clear_rq_mapping(drv_tags, tags);
3217
3218         while (!list_empty(&tags->page_list)) {
3219                 page = list_first_entry(&tags->page_list, struct page, lru);
3220                 list_del_init(&page->lru);
3221                 /*
3222                  * Remove kmemleak object previously allocated in
3223                  * blk_mq_alloc_rqs().
3224                  */
3225                 kmemleak_free(page_address(page));
3226                 __free_pages(page, page->private);
3227         }
3228 }
3229
3230 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3231 {
3232         kfree(tags->rqs);
3233         tags->rqs = NULL;
3234         kfree(tags->static_rqs);
3235         tags->static_rqs = NULL;
3236
3237         blk_mq_free_tags(tags);
3238 }
3239
3240 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3241                 unsigned int hctx_idx)
3242 {
3243         int i;
3244
3245         for (i = 0; i < set->nr_maps; i++) {
3246                 unsigned int start = set->map[i].queue_offset;
3247                 unsigned int end = start + set->map[i].nr_queues;
3248
3249                 if (hctx_idx >= start && hctx_idx < end)
3250                         break;
3251         }
3252
3253         if (i >= set->nr_maps)
3254                 i = HCTX_TYPE_DEFAULT;
3255
3256         return i;
3257 }
3258
3259 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3260                 unsigned int hctx_idx)
3261 {
3262         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3263
3264         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3265 }
3266
3267 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3268                                                unsigned int hctx_idx,
3269                                                unsigned int nr_tags,
3270                                                unsigned int reserved_tags)
3271 {
3272         int node = blk_mq_get_hctx_node(set, hctx_idx);
3273         struct blk_mq_tags *tags;
3274
3275         if (node == NUMA_NO_NODE)
3276                 node = set->numa_node;
3277
3278         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3279                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3280         if (!tags)
3281                 return NULL;
3282
3283         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3284                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3285                                  node);
3286         if (!tags->rqs) {
3287                 blk_mq_free_tags(tags);
3288                 return NULL;
3289         }
3290
3291         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3292                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3293                                         node);
3294         if (!tags->static_rqs) {
3295                 kfree(tags->rqs);
3296                 blk_mq_free_tags(tags);
3297                 return NULL;
3298         }
3299
3300         return tags;
3301 }
3302
3303 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3304                                unsigned int hctx_idx, int node)
3305 {
3306         int ret;
3307
3308         if (set->ops->init_request) {
3309                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3310                 if (ret)
3311                         return ret;
3312         }
3313
3314         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3315         return 0;
3316 }
3317
3318 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3319                             struct blk_mq_tags *tags,
3320                             unsigned int hctx_idx, unsigned int depth)
3321 {
3322         unsigned int i, j, entries_per_page, max_order = 4;
3323         int node = blk_mq_get_hctx_node(set, hctx_idx);
3324         size_t rq_size, left;
3325
3326         if (node == NUMA_NO_NODE)
3327                 node = set->numa_node;
3328
3329         INIT_LIST_HEAD(&tags->page_list);
3330
3331         /*
3332          * rq_size is the size of the request plus driver payload, rounded
3333          * to the cacheline size
3334          */
3335         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3336                                 cache_line_size());
3337         left = rq_size * depth;
3338
3339         for (i = 0; i < depth; ) {
3340                 int this_order = max_order;
3341                 struct page *page;
3342                 int to_do;
3343                 void *p;
3344
3345                 while (this_order && left < order_to_size(this_order - 1))
3346                         this_order--;
3347
3348                 do {
3349                         page = alloc_pages_node(node,
3350                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3351                                 this_order);
3352                         if (page)
3353                                 break;
3354                         if (!this_order--)
3355                                 break;
3356                         if (order_to_size(this_order) < rq_size)
3357                                 break;
3358                 } while (1);
3359
3360                 if (!page)
3361                         goto fail;
3362
3363                 page->private = this_order;
3364                 list_add_tail(&page->lru, &tags->page_list);
3365
3366                 p = page_address(page);
3367                 /*
3368                  * Allow kmemleak to scan these pages as they contain pointers
3369                  * to additional allocations like via ops->init_request().
3370                  */
3371                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3372                 entries_per_page = order_to_size(this_order) / rq_size;
3373                 to_do = min(entries_per_page, depth - i);
3374                 left -= to_do * rq_size;
3375                 for (j = 0; j < to_do; j++) {
3376                         struct request *rq = p;
3377
3378                         tags->static_rqs[i] = rq;
3379                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3380                                 tags->static_rqs[i] = NULL;
3381                                 goto fail;
3382                         }
3383
3384                         p += rq_size;
3385                         i++;
3386                 }
3387         }
3388         return 0;
3389
3390 fail:
3391         blk_mq_free_rqs(set, tags, hctx_idx);
3392         return -ENOMEM;
3393 }
3394
3395 struct rq_iter_data {
3396         struct blk_mq_hw_ctx *hctx;
3397         bool has_rq;
3398 };
3399
3400 static bool blk_mq_has_request(struct request *rq, void *data)
3401 {
3402         struct rq_iter_data *iter_data = data;
3403
3404         if (rq->mq_hctx != iter_data->hctx)
3405                 return true;
3406         iter_data->has_rq = true;
3407         return false;
3408 }
3409
3410 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3411 {
3412         struct blk_mq_tags *tags = hctx->sched_tags ?
3413                         hctx->sched_tags : hctx->tags;
3414         struct rq_iter_data data = {
3415                 .hctx   = hctx,
3416         };
3417
3418         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3419         return data.has_rq;
3420 }
3421
3422 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3423                 struct blk_mq_hw_ctx *hctx)
3424 {
3425         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3426                 return false;
3427         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3428                 return false;
3429         return true;
3430 }
3431
3432 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3433 {
3434         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3435                         struct blk_mq_hw_ctx, cpuhp_online);
3436
3437         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3438             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3439                 return 0;
3440
3441         /*
3442          * Prevent new request from being allocated on the current hctx.
3443          *
3444          * The smp_mb__after_atomic() Pairs with the implied barrier in
3445          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3446          * seen once we return from the tag allocator.
3447          */
3448         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3449         smp_mb__after_atomic();
3450
3451         /*
3452          * Try to grab a reference to the queue and wait for any outstanding
3453          * requests.  If we could not grab a reference the queue has been
3454          * frozen and there are no requests.
3455          */
3456         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3457                 while (blk_mq_hctx_has_requests(hctx))
3458                         msleep(5);
3459                 percpu_ref_put(&hctx->queue->q_usage_counter);
3460         }
3461
3462         return 0;
3463 }
3464
3465 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3466 {
3467         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3468                         struct blk_mq_hw_ctx, cpuhp_online);
3469
3470         if (cpumask_test_cpu(cpu, hctx->cpumask))
3471                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3472         return 0;
3473 }
3474
3475 /*
3476  * 'cpu' is going away. splice any existing rq_list entries from this
3477  * software queue to the hw queue dispatch list, and ensure that it
3478  * gets run.
3479  */
3480 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3481 {
3482         struct blk_mq_hw_ctx *hctx;
3483         struct blk_mq_ctx *ctx;
3484         LIST_HEAD(tmp);
3485         enum hctx_type type;
3486
3487         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3488         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3489                 return 0;
3490
3491         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3492         type = hctx->type;
3493
3494         spin_lock(&ctx->lock);
3495         if (!list_empty(&ctx->rq_lists[type])) {
3496                 list_splice_init(&ctx->rq_lists[type], &tmp);
3497                 blk_mq_hctx_clear_pending(hctx, ctx);
3498         }
3499         spin_unlock(&ctx->lock);
3500
3501         if (list_empty(&tmp))
3502                 return 0;
3503
3504         spin_lock(&hctx->lock);
3505         list_splice_tail_init(&tmp, &hctx->dispatch);
3506         spin_unlock(&hctx->lock);
3507
3508         blk_mq_run_hw_queue(hctx, true);
3509         return 0;
3510 }
3511
3512 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3513 {
3514         if (!(hctx->flags & BLK_MQ_F_STACKING))
3515                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3516                                                     &hctx->cpuhp_online);
3517         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3518                                             &hctx->cpuhp_dead);
3519 }
3520
3521 /*
3522  * Before freeing hw queue, clearing the flush request reference in
3523  * tags->rqs[] for avoiding potential UAF.
3524  */
3525 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3526                 unsigned int queue_depth, struct request *flush_rq)
3527 {
3528         int i;
3529         unsigned long flags;
3530
3531         /* The hw queue may not be mapped yet */
3532         if (!tags)
3533                 return;
3534
3535         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3536
3537         for (i = 0; i < queue_depth; i++)
3538                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3539
3540         /*
3541          * Wait until all pending iteration is done.
3542          *
3543          * Request reference is cleared and it is guaranteed to be observed
3544          * after the ->lock is released.
3545          */
3546         spin_lock_irqsave(&tags->lock, flags);
3547         spin_unlock_irqrestore(&tags->lock, flags);
3548 }
3549
3550 /* hctx->ctxs will be freed in queue's release handler */
3551 static void blk_mq_exit_hctx(struct request_queue *q,
3552                 struct blk_mq_tag_set *set,
3553                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3554 {
3555         struct request *flush_rq = hctx->fq->flush_rq;
3556
3557         if (blk_mq_hw_queue_mapped(hctx))
3558                 blk_mq_tag_idle(hctx);
3559
3560         if (blk_queue_init_done(q))
3561                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3562                                 set->queue_depth, flush_rq);
3563         if (set->ops->exit_request)
3564                 set->ops->exit_request(set, flush_rq, hctx_idx);
3565
3566         if (set->ops->exit_hctx)
3567                 set->ops->exit_hctx(hctx, hctx_idx);
3568
3569         blk_mq_remove_cpuhp(hctx);
3570
3571         xa_erase(&q->hctx_table, hctx_idx);
3572
3573         spin_lock(&q->unused_hctx_lock);
3574         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3575         spin_unlock(&q->unused_hctx_lock);
3576 }
3577
3578 static void blk_mq_exit_hw_queues(struct request_queue *q,
3579                 struct blk_mq_tag_set *set, int nr_queue)
3580 {
3581         struct blk_mq_hw_ctx *hctx;
3582         unsigned long i;
3583
3584         queue_for_each_hw_ctx(q, hctx, i) {
3585                 if (i == nr_queue)
3586                         break;
3587                 blk_mq_exit_hctx(q, set, hctx, i);
3588         }
3589 }
3590
3591 static int blk_mq_init_hctx(struct request_queue *q,
3592                 struct blk_mq_tag_set *set,
3593                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3594 {
3595         hctx->queue_num = hctx_idx;
3596
3597         if (!(hctx->flags & BLK_MQ_F_STACKING))
3598                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3599                                 &hctx->cpuhp_online);
3600         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3601
3602         hctx->tags = set->tags[hctx_idx];
3603
3604         if (set->ops->init_hctx &&
3605             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3606                 goto unregister_cpu_notifier;
3607
3608         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3609                                 hctx->numa_node))
3610                 goto exit_hctx;
3611
3612         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3613                 goto exit_flush_rq;
3614
3615         return 0;
3616
3617  exit_flush_rq:
3618         if (set->ops->exit_request)
3619                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3620  exit_hctx:
3621         if (set->ops->exit_hctx)
3622                 set->ops->exit_hctx(hctx, hctx_idx);
3623  unregister_cpu_notifier:
3624         blk_mq_remove_cpuhp(hctx);
3625         return -1;
3626 }
3627
3628 static struct blk_mq_hw_ctx *
3629 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3630                 int node)
3631 {
3632         struct blk_mq_hw_ctx *hctx;
3633         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3634
3635         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3636         if (!hctx)
3637                 goto fail_alloc_hctx;
3638
3639         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3640                 goto free_hctx;
3641
3642         atomic_set(&hctx->nr_active, 0);
3643         if (node == NUMA_NO_NODE)
3644                 node = set->numa_node;
3645         hctx->numa_node = node;
3646
3647         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3648         spin_lock_init(&hctx->lock);
3649         INIT_LIST_HEAD(&hctx->dispatch);
3650         hctx->queue = q;
3651         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3652
3653         INIT_LIST_HEAD(&hctx->hctx_list);
3654
3655         /*
3656          * Allocate space for all possible cpus to avoid allocation at
3657          * runtime
3658          */
3659         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3660                         gfp, node);
3661         if (!hctx->ctxs)
3662                 goto free_cpumask;
3663
3664         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3665                                 gfp, node, false, false))
3666                 goto free_ctxs;
3667         hctx->nr_ctx = 0;
3668
3669         spin_lock_init(&hctx->dispatch_wait_lock);
3670         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3671         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3672
3673         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3674         if (!hctx->fq)
3675                 goto free_bitmap;
3676
3677         blk_mq_hctx_kobj_init(hctx);
3678
3679         return hctx;
3680
3681  free_bitmap:
3682         sbitmap_free(&hctx->ctx_map);
3683  free_ctxs:
3684         kfree(hctx->ctxs);
3685  free_cpumask:
3686         free_cpumask_var(hctx->cpumask);
3687  free_hctx:
3688         kfree(hctx);
3689  fail_alloc_hctx:
3690         return NULL;
3691 }
3692
3693 static void blk_mq_init_cpu_queues(struct request_queue *q,
3694                                    unsigned int nr_hw_queues)
3695 {
3696         struct blk_mq_tag_set *set = q->tag_set;
3697         unsigned int i, j;
3698
3699         for_each_possible_cpu(i) {
3700                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3701                 struct blk_mq_hw_ctx *hctx;
3702                 int k;
3703
3704                 __ctx->cpu = i;
3705                 spin_lock_init(&__ctx->lock);
3706                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3707                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3708
3709                 __ctx->queue = q;
3710
3711                 /*
3712                  * Set local node, IFF we have more than one hw queue. If
3713                  * not, we remain on the home node of the device
3714                  */
3715                 for (j = 0; j < set->nr_maps; j++) {
3716                         hctx = blk_mq_map_queue_type(q, j, i);
3717                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3718                                 hctx->numa_node = cpu_to_node(i);
3719                 }
3720         }
3721 }
3722
3723 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3724                                              unsigned int hctx_idx,
3725                                              unsigned int depth)
3726 {
3727         struct blk_mq_tags *tags;
3728         int ret;
3729
3730         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3731         if (!tags)
3732                 return NULL;
3733
3734         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3735         if (ret) {
3736                 blk_mq_free_rq_map(tags);
3737                 return NULL;
3738         }
3739
3740         return tags;
3741 }
3742
3743 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3744                                        int hctx_idx)
3745 {
3746         if (blk_mq_is_shared_tags(set->flags)) {
3747                 set->tags[hctx_idx] = set->shared_tags;
3748
3749                 return true;
3750         }
3751
3752         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3753                                                        set->queue_depth);
3754
3755         return set->tags[hctx_idx];
3756 }
3757
3758 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3759                              struct blk_mq_tags *tags,
3760                              unsigned int hctx_idx)
3761 {
3762         if (tags) {
3763                 blk_mq_free_rqs(set, tags, hctx_idx);
3764                 blk_mq_free_rq_map(tags);
3765         }
3766 }
3767
3768 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3769                                       unsigned int hctx_idx)
3770 {
3771         if (!blk_mq_is_shared_tags(set->flags))
3772                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3773
3774         set->tags[hctx_idx] = NULL;
3775 }
3776
3777 static void blk_mq_map_swqueue(struct request_queue *q)
3778 {
3779         unsigned int j, hctx_idx;
3780         unsigned long i;
3781         struct blk_mq_hw_ctx *hctx;
3782         struct blk_mq_ctx *ctx;
3783         struct blk_mq_tag_set *set = q->tag_set;
3784
3785         queue_for_each_hw_ctx(q, hctx, i) {
3786                 cpumask_clear(hctx->cpumask);
3787                 hctx->nr_ctx = 0;
3788                 hctx->dispatch_from = NULL;
3789         }
3790
3791         /*
3792          * Map software to hardware queues.
3793          *
3794          * If the cpu isn't present, the cpu is mapped to first hctx.
3795          */
3796         for_each_possible_cpu(i) {
3797
3798                 ctx = per_cpu_ptr(q->queue_ctx, i);
3799                 for (j = 0; j < set->nr_maps; j++) {
3800                         if (!set->map[j].nr_queues) {
3801                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3802                                                 HCTX_TYPE_DEFAULT, i);
3803                                 continue;
3804                         }
3805                         hctx_idx = set->map[j].mq_map[i];
3806                         /* unmapped hw queue can be remapped after CPU topo changed */
3807                         if (!set->tags[hctx_idx] &&
3808                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3809                                 /*
3810                                  * If tags initialization fail for some hctx,
3811                                  * that hctx won't be brought online.  In this
3812                                  * case, remap the current ctx to hctx[0] which
3813                                  * is guaranteed to always have tags allocated
3814                                  */
3815                                 set->map[j].mq_map[i] = 0;
3816                         }
3817
3818                         hctx = blk_mq_map_queue_type(q, j, i);
3819                         ctx->hctxs[j] = hctx;
3820                         /*
3821                          * If the CPU is already set in the mask, then we've
3822                          * mapped this one already. This can happen if
3823                          * devices share queues across queue maps.
3824                          */
3825                         if (cpumask_test_cpu(i, hctx->cpumask))
3826                                 continue;
3827
3828                         cpumask_set_cpu(i, hctx->cpumask);
3829                         hctx->type = j;
3830                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3831                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3832
3833                         /*
3834                          * If the nr_ctx type overflows, we have exceeded the
3835                          * amount of sw queues we can support.
3836                          */
3837                         BUG_ON(!hctx->nr_ctx);
3838                 }
3839
3840                 for (; j < HCTX_MAX_TYPES; j++)
3841                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3842                                         HCTX_TYPE_DEFAULT, i);
3843         }
3844
3845         queue_for_each_hw_ctx(q, hctx, i) {
3846                 /*
3847                  * If no software queues are mapped to this hardware queue,
3848                  * disable it and free the request entries.
3849                  */
3850                 if (!hctx->nr_ctx) {
3851                         /* Never unmap queue 0.  We need it as a
3852                          * fallback in case of a new remap fails
3853                          * allocation
3854                          */
3855                         if (i)
3856                                 __blk_mq_free_map_and_rqs(set, i);
3857
3858                         hctx->tags = NULL;
3859                         continue;
3860                 }
3861
3862                 hctx->tags = set->tags[i];
3863                 WARN_ON(!hctx->tags);
3864
3865                 /*
3866                  * Set the map size to the number of mapped software queues.
3867                  * This is more accurate and more efficient than looping
3868                  * over all possibly mapped software queues.
3869                  */
3870                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3871
3872                 /*
3873                  * Initialize batch roundrobin counts
3874                  */
3875                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3876                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3877         }
3878 }
3879
3880 /*
3881  * Caller needs to ensure that we're either frozen/quiesced, or that
3882  * the queue isn't live yet.
3883  */
3884 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3885 {
3886         struct blk_mq_hw_ctx *hctx;
3887         unsigned long i;
3888
3889         queue_for_each_hw_ctx(q, hctx, i) {
3890                 if (shared) {
3891                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3892                 } else {
3893                         blk_mq_tag_idle(hctx);
3894                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3895                 }
3896         }
3897 }
3898
3899 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3900                                          bool shared)
3901 {
3902         struct request_queue *q;
3903
3904         lockdep_assert_held(&set->tag_list_lock);
3905
3906         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3907                 blk_mq_freeze_queue(q);
3908                 queue_set_hctx_shared(q, shared);
3909                 blk_mq_unfreeze_queue(q);
3910         }
3911 }
3912
3913 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3914 {
3915         struct blk_mq_tag_set *set = q->tag_set;
3916
3917         mutex_lock(&set->tag_list_lock);
3918         list_del(&q->tag_set_list);
3919         if (list_is_singular(&set->tag_list)) {
3920                 /* just transitioned to unshared */
3921                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3922                 /* update existing queue */
3923                 blk_mq_update_tag_set_shared(set, false);
3924         }
3925         mutex_unlock(&set->tag_list_lock);
3926         INIT_LIST_HEAD(&q->tag_set_list);
3927 }
3928
3929 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3930                                      struct request_queue *q)
3931 {
3932         mutex_lock(&set->tag_list_lock);
3933
3934         /*
3935          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3936          */
3937         if (!list_empty(&set->tag_list) &&
3938             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3939                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3940                 /* update existing queue */
3941                 blk_mq_update_tag_set_shared(set, true);
3942         }
3943         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3944                 queue_set_hctx_shared(q, true);
3945         list_add_tail(&q->tag_set_list, &set->tag_list);
3946
3947         mutex_unlock(&set->tag_list_lock);
3948 }
3949
3950 /* All allocations will be freed in release handler of q->mq_kobj */
3951 static int blk_mq_alloc_ctxs(struct request_queue *q)
3952 {
3953         struct blk_mq_ctxs *ctxs;
3954         int cpu;
3955
3956         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3957         if (!ctxs)
3958                 return -ENOMEM;
3959
3960         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3961         if (!ctxs->queue_ctx)
3962                 goto fail;
3963
3964         for_each_possible_cpu(cpu) {
3965                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3966                 ctx->ctxs = ctxs;
3967         }
3968
3969         q->mq_kobj = &ctxs->kobj;
3970         q->queue_ctx = ctxs->queue_ctx;
3971
3972         return 0;
3973  fail:
3974         kfree(ctxs);
3975         return -ENOMEM;
3976 }
3977
3978 /*
3979  * It is the actual release handler for mq, but we do it from
3980  * request queue's release handler for avoiding use-after-free
3981  * and headache because q->mq_kobj shouldn't have been introduced,
3982  * but we can't group ctx/kctx kobj without it.
3983  */
3984 void blk_mq_release(struct request_queue *q)
3985 {
3986         struct blk_mq_hw_ctx *hctx, *next;
3987         unsigned long i;
3988
3989         queue_for_each_hw_ctx(q, hctx, i)
3990                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3991
3992         /* all hctx are in .unused_hctx_list now */
3993         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3994                 list_del_init(&hctx->hctx_list);
3995                 kobject_put(&hctx->kobj);
3996         }
3997
3998         xa_destroy(&q->hctx_table);
3999
4000         /*
4001          * release .mq_kobj and sw queue's kobject now because
4002          * both share lifetime with request queue.
4003          */
4004         blk_mq_sysfs_deinit(q);
4005 }
4006
4007 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4008                 void *queuedata)
4009 {
4010         struct request_queue *q;
4011         int ret;
4012
4013         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
4014         if (!q)
4015                 return ERR_PTR(-ENOMEM);
4016         q->queuedata = queuedata;
4017         ret = blk_mq_init_allocated_queue(set, q);
4018         if (ret) {
4019                 blk_put_queue(q);
4020                 return ERR_PTR(ret);
4021         }
4022         return q;
4023 }
4024
4025 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4026 {
4027         return blk_mq_init_queue_data(set, NULL);
4028 }
4029 EXPORT_SYMBOL(blk_mq_init_queue);
4030
4031 /**
4032  * blk_mq_destroy_queue - shutdown a request queue
4033  * @q: request queue to shutdown
4034  *
4035  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
4036  * the initial reference.  All future requests will failed with -ENODEV.
4037  *
4038  * Context: can sleep
4039  */
4040 void blk_mq_destroy_queue(struct request_queue *q)
4041 {
4042         WARN_ON_ONCE(!queue_is_mq(q));
4043         WARN_ON_ONCE(blk_queue_registered(q));
4044
4045         might_sleep();
4046
4047         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4048         blk_queue_start_drain(q);
4049         blk_freeze_queue(q);
4050
4051         blk_sync_queue(q);
4052         blk_mq_cancel_work_sync(q);
4053         blk_mq_exit_queue(q);
4054
4055         /* @q is and will stay empty, shutdown and put */
4056         blk_put_queue(q);
4057 }
4058 EXPORT_SYMBOL(blk_mq_destroy_queue);
4059
4060 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4061                 struct lock_class_key *lkclass)
4062 {
4063         struct request_queue *q;
4064         struct gendisk *disk;
4065
4066         q = blk_mq_init_queue_data(set, queuedata);
4067         if (IS_ERR(q))
4068                 return ERR_CAST(q);
4069
4070         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4071         if (!disk) {
4072                 blk_mq_destroy_queue(q);
4073                 return ERR_PTR(-ENOMEM);
4074         }
4075         set_bit(GD_OWNS_QUEUE, &disk->state);
4076         return disk;
4077 }
4078 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4079
4080 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4081                 struct lock_class_key *lkclass)
4082 {
4083         struct gendisk *disk;
4084
4085         if (!blk_get_queue(q))
4086                 return NULL;
4087         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4088         if (!disk)
4089                 blk_put_queue(q);
4090         return disk;
4091 }
4092 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4093
4094 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4095                 struct blk_mq_tag_set *set, struct request_queue *q,
4096                 int hctx_idx, int node)
4097 {
4098         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4099
4100         /* reuse dead hctx first */
4101         spin_lock(&q->unused_hctx_lock);
4102         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4103                 if (tmp->numa_node == node) {
4104                         hctx = tmp;
4105                         break;
4106                 }
4107         }
4108         if (hctx)
4109                 list_del_init(&hctx->hctx_list);
4110         spin_unlock(&q->unused_hctx_lock);
4111
4112         if (!hctx)
4113                 hctx = blk_mq_alloc_hctx(q, set, node);
4114         if (!hctx)
4115                 goto fail;
4116
4117         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4118                 goto free_hctx;
4119
4120         return hctx;
4121
4122  free_hctx:
4123         kobject_put(&hctx->kobj);
4124  fail:
4125         return NULL;
4126 }
4127
4128 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4129                                                 struct request_queue *q)
4130 {
4131         struct blk_mq_hw_ctx *hctx;
4132         unsigned long i, j;
4133
4134         /* protect against switching io scheduler  */
4135         mutex_lock(&q->sysfs_lock);
4136         for (i = 0; i < set->nr_hw_queues; i++) {
4137                 int old_node;
4138                 int node = blk_mq_get_hctx_node(set, i);
4139                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4140
4141                 if (old_hctx) {
4142                         old_node = old_hctx->numa_node;
4143                         blk_mq_exit_hctx(q, set, old_hctx, i);
4144                 }
4145
4146                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4147                         if (!old_hctx)
4148                                 break;
4149                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4150                                         node, old_node);
4151                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4152                         WARN_ON_ONCE(!hctx);
4153                 }
4154         }
4155         /*
4156          * Increasing nr_hw_queues fails. Free the newly allocated
4157          * hctxs and keep the previous q->nr_hw_queues.
4158          */
4159         if (i != set->nr_hw_queues) {
4160                 j = q->nr_hw_queues;
4161         } else {
4162                 j = i;
4163                 q->nr_hw_queues = set->nr_hw_queues;
4164         }
4165
4166         xa_for_each_start(&q->hctx_table, j, hctx, j)
4167                 blk_mq_exit_hctx(q, set, hctx, j);
4168         mutex_unlock(&q->sysfs_lock);
4169 }
4170
4171 static void blk_mq_update_poll_flag(struct request_queue *q)
4172 {
4173         struct blk_mq_tag_set *set = q->tag_set;
4174
4175         if (set->nr_maps > HCTX_TYPE_POLL &&
4176             set->map[HCTX_TYPE_POLL].nr_queues)
4177                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4178         else
4179                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4180 }
4181
4182 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4183                 struct request_queue *q)
4184 {
4185         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4186                         !!(set->flags & BLK_MQ_F_BLOCKING));
4187
4188         /* mark the queue as mq asap */
4189         q->mq_ops = set->ops;
4190
4191         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4192                                              blk_mq_poll_stats_bkt,
4193                                              BLK_MQ_POLL_STATS_BKTS, q);
4194         if (!q->poll_cb)
4195                 goto err_exit;
4196
4197         if (blk_mq_alloc_ctxs(q))
4198                 goto err_poll;
4199
4200         /* init q->mq_kobj and sw queues' kobjects */
4201         blk_mq_sysfs_init(q);
4202
4203         INIT_LIST_HEAD(&q->unused_hctx_list);
4204         spin_lock_init(&q->unused_hctx_lock);
4205
4206         xa_init(&q->hctx_table);
4207
4208         blk_mq_realloc_hw_ctxs(set, q);
4209         if (!q->nr_hw_queues)
4210                 goto err_hctxs;
4211
4212         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4213         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4214
4215         q->tag_set = set;
4216
4217         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4218         blk_mq_update_poll_flag(q);
4219
4220         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4221         INIT_LIST_HEAD(&q->requeue_list);
4222         spin_lock_init(&q->requeue_lock);
4223
4224         q->nr_requests = set->queue_depth;
4225
4226         /*
4227          * Default to classic polling
4228          */
4229         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4230
4231         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4232         blk_mq_add_queue_tag_set(set, q);
4233         blk_mq_map_swqueue(q);
4234         return 0;
4235
4236 err_hctxs:
4237         blk_mq_release(q);
4238 err_poll:
4239         blk_stat_free_callback(q->poll_cb);
4240         q->poll_cb = NULL;
4241 err_exit:
4242         q->mq_ops = NULL;
4243         return -ENOMEM;
4244 }
4245 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4246
4247 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4248 void blk_mq_exit_queue(struct request_queue *q)
4249 {
4250         struct blk_mq_tag_set *set = q->tag_set;
4251
4252         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4253         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4254         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4255         blk_mq_del_queue_tag_set(q);
4256 }
4257
4258 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4259 {
4260         int i;
4261
4262         if (blk_mq_is_shared_tags(set->flags)) {
4263                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4264                                                 BLK_MQ_NO_HCTX_IDX,
4265                                                 set->queue_depth);
4266                 if (!set->shared_tags)
4267                         return -ENOMEM;
4268         }
4269
4270         for (i = 0; i < set->nr_hw_queues; i++) {
4271                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4272                         goto out_unwind;
4273                 cond_resched();
4274         }
4275
4276         return 0;
4277
4278 out_unwind:
4279         while (--i >= 0)
4280                 __blk_mq_free_map_and_rqs(set, i);
4281
4282         if (blk_mq_is_shared_tags(set->flags)) {
4283                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4284                                         BLK_MQ_NO_HCTX_IDX);
4285         }
4286
4287         return -ENOMEM;
4288 }
4289
4290 /*
4291  * Allocate the request maps associated with this tag_set. Note that this
4292  * may reduce the depth asked for, if memory is tight. set->queue_depth
4293  * will be updated to reflect the allocated depth.
4294  */
4295 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4296 {
4297         unsigned int depth;
4298         int err;
4299
4300         depth = set->queue_depth;
4301         do {
4302                 err = __blk_mq_alloc_rq_maps(set);
4303                 if (!err)
4304                         break;
4305
4306                 set->queue_depth >>= 1;
4307                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4308                         err = -ENOMEM;
4309                         break;
4310                 }
4311         } while (set->queue_depth);
4312
4313         if (!set->queue_depth || err) {
4314                 pr_err("blk-mq: failed to allocate request map\n");
4315                 return -ENOMEM;
4316         }
4317
4318         if (depth != set->queue_depth)
4319                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4320                                                 depth, set->queue_depth);
4321
4322         return 0;
4323 }
4324
4325 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4326 {
4327         /*
4328          * blk_mq_map_queues() and multiple .map_queues() implementations
4329          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4330          * number of hardware queues.
4331          */
4332         if (set->nr_maps == 1)
4333                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4334
4335         if (set->ops->map_queues && !is_kdump_kernel()) {
4336                 int i;
4337
4338                 /*
4339                  * transport .map_queues is usually done in the following
4340                  * way:
4341                  *
4342                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4343                  *      mask = get_cpu_mask(queue)
4344                  *      for_each_cpu(cpu, mask)
4345                  *              set->map[x].mq_map[cpu] = queue;
4346                  * }
4347                  *
4348                  * When we need to remap, the table has to be cleared for
4349                  * killing stale mapping since one CPU may not be mapped
4350                  * to any hw queue.
4351                  */
4352                 for (i = 0; i < set->nr_maps; i++)
4353                         blk_mq_clear_mq_map(&set->map[i]);
4354
4355                 set->ops->map_queues(set);
4356         } else {
4357                 BUG_ON(set->nr_maps > 1);
4358                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4359         }
4360 }
4361
4362 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4363                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4364 {
4365         struct blk_mq_tags **new_tags;
4366
4367         if (cur_nr_hw_queues >= new_nr_hw_queues)
4368                 return 0;
4369
4370         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4371                                 GFP_KERNEL, set->numa_node);
4372         if (!new_tags)
4373                 return -ENOMEM;
4374
4375         if (set->tags)
4376                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4377                        sizeof(*set->tags));
4378         kfree(set->tags);
4379         set->tags = new_tags;
4380         set->nr_hw_queues = new_nr_hw_queues;
4381
4382         return 0;
4383 }
4384
4385 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4386                                 int new_nr_hw_queues)
4387 {
4388         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4389 }
4390
4391 /*
4392  * Alloc a tag set to be associated with one or more request queues.
4393  * May fail with EINVAL for various error conditions. May adjust the
4394  * requested depth down, if it's too large. In that case, the set
4395  * value will be stored in set->queue_depth.
4396  */
4397 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4398 {
4399         int i, ret;
4400
4401         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4402
4403         if (!set->nr_hw_queues)
4404                 return -EINVAL;
4405         if (!set->queue_depth)
4406                 return -EINVAL;
4407         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4408                 return -EINVAL;
4409
4410         if (!set->ops->queue_rq)
4411                 return -EINVAL;
4412
4413         if (!set->ops->get_budget ^ !set->ops->put_budget)
4414                 return -EINVAL;
4415
4416         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4417                 pr_info("blk-mq: reduced tag depth to %u\n",
4418                         BLK_MQ_MAX_DEPTH);
4419                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4420         }
4421
4422         if (!set->nr_maps)
4423                 set->nr_maps = 1;
4424         else if (set->nr_maps > HCTX_MAX_TYPES)
4425                 return -EINVAL;
4426
4427         /*
4428          * If a crashdump is active, then we are potentially in a very
4429          * memory constrained environment. Limit us to 1 queue and
4430          * 64 tags to prevent using too much memory.
4431          */
4432         if (is_kdump_kernel()) {
4433                 set->nr_hw_queues = 1;
4434                 set->nr_maps = 1;
4435                 set->queue_depth = min(64U, set->queue_depth);
4436         }
4437         /*
4438          * There is no use for more h/w queues than cpus if we just have
4439          * a single map
4440          */
4441         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4442                 set->nr_hw_queues = nr_cpu_ids;
4443
4444         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4445                 return -ENOMEM;
4446
4447         ret = -ENOMEM;
4448         for (i = 0; i < set->nr_maps; i++) {
4449                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4450                                                   sizeof(set->map[i].mq_map[0]),
4451                                                   GFP_KERNEL, set->numa_node);
4452                 if (!set->map[i].mq_map)
4453                         goto out_free_mq_map;
4454                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4455         }
4456
4457         blk_mq_update_queue_map(set);
4458
4459         ret = blk_mq_alloc_set_map_and_rqs(set);
4460         if (ret)
4461                 goto out_free_mq_map;
4462
4463         mutex_init(&set->tag_list_lock);
4464         INIT_LIST_HEAD(&set->tag_list);
4465
4466         return 0;
4467
4468 out_free_mq_map:
4469         for (i = 0; i < set->nr_maps; i++) {
4470                 kfree(set->map[i].mq_map);
4471                 set->map[i].mq_map = NULL;
4472         }
4473         kfree(set->tags);
4474         set->tags = NULL;
4475         return ret;
4476 }
4477 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4478
4479 /* allocate and initialize a tagset for a simple single-queue device */
4480 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4481                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4482                 unsigned int set_flags)
4483 {
4484         memset(set, 0, sizeof(*set));
4485         set->ops = ops;
4486         set->nr_hw_queues = 1;
4487         set->nr_maps = 1;
4488         set->queue_depth = queue_depth;
4489         set->numa_node = NUMA_NO_NODE;
4490         set->flags = set_flags;
4491         return blk_mq_alloc_tag_set(set);
4492 }
4493 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4494
4495 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4496 {
4497         int i, j;
4498
4499         for (i = 0; i < set->nr_hw_queues; i++)
4500                 __blk_mq_free_map_and_rqs(set, i);
4501
4502         if (blk_mq_is_shared_tags(set->flags)) {
4503                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4504                                         BLK_MQ_NO_HCTX_IDX);
4505         }
4506
4507         for (j = 0; j < set->nr_maps; j++) {
4508                 kfree(set->map[j].mq_map);
4509                 set->map[j].mq_map = NULL;
4510         }
4511
4512         kfree(set->tags);
4513         set->tags = NULL;
4514 }
4515 EXPORT_SYMBOL(blk_mq_free_tag_set);
4516
4517 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4518 {
4519         struct blk_mq_tag_set *set = q->tag_set;
4520         struct blk_mq_hw_ctx *hctx;
4521         int ret;
4522         unsigned long i;
4523
4524         if (!set)
4525                 return -EINVAL;
4526
4527         if (q->nr_requests == nr)
4528                 return 0;
4529
4530         blk_mq_freeze_queue(q);
4531         blk_mq_quiesce_queue(q);
4532
4533         ret = 0;
4534         queue_for_each_hw_ctx(q, hctx, i) {
4535                 if (!hctx->tags)
4536                         continue;
4537                 /*
4538                  * If we're using an MQ scheduler, just update the scheduler
4539                  * queue depth. This is similar to what the old code would do.
4540                  */
4541                 if (hctx->sched_tags) {
4542                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4543                                                       nr, true);
4544                 } else {
4545                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4546                                                       false);
4547                 }
4548                 if (ret)
4549                         break;
4550                 if (q->elevator && q->elevator->type->ops.depth_updated)
4551                         q->elevator->type->ops.depth_updated(hctx);
4552         }
4553         if (!ret) {
4554                 q->nr_requests = nr;
4555                 if (blk_mq_is_shared_tags(set->flags)) {
4556                         if (q->elevator)
4557                                 blk_mq_tag_update_sched_shared_tags(q);
4558                         else
4559                                 blk_mq_tag_resize_shared_tags(set, nr);
4560                 }
4561         }
4562
4563         blk_mq_unquiesce_queue(q);
4564         blk_mq_unfreeze_queue(q);
4565
4566         return ret;
4567 }
4568
4569 /*
4570  * request_queue and elevator_type pair.
4571  * It is just used by __blk_mq_update_nr_hw_queues to cache
4572  * the elevator_type associated with a request_queue.
4573  */
4574 struct blk_mq_qe_pair {
4575         struct list_head node;
4576         struct request_queue *q;
4577         struct elevator_type *type;
4578 };
4579
4580 /*
4581  * Cache the elevator_type in qe pair list and switch the
4582  * io scheduler to 'none'
4583  */
4584 static bool blk_mq_elv_switch_none(struct list_head *head,
4585                 struct request_queue *q)
4586 {
4587         struct blk_mq_qe_pair *qe;
4588
4589         if (!q->elevator)
4590                 return true;
4591
4592         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4593         if (!qe)
4594                 return false;
4595
4596         /* q->elevator needs protection from ->sysfs_lock */
4597         mutex_lock(&q->sysfs_lock);
4598
4599         INIT_LIST_HEAD(&qe->node);
4600         qe->q = q;
4601         qe->type = q->elevator->type;
4602         list_add(&qe->node, head);
4603
4604         /*
4605          * After elevator_switch, the previous elevator_queue will be
4606          * released by elevator_release. The reference of the io scheduler
4607          * module get by elevator_get will also be put. So we need to get
4608          * a reference of the io scheduler module here to prevent it to be
4609          * removed.
4610          */
4611         __module_get(qe->type->elevator_owner);
4612         elevator_switch(q, NULL);
4613         mutex_unlock(&q->sysfs_lock);
4614
4615         return true;
4616 }
4617
4618 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4619                                                 struct request_queue *q)
4620 {
4621         struct blk_mq_qe_pair *qe;
4622
4623         list_for_each_entry(qe, head, node)
4624                 if (qe->q == q)
4625                         return qe;
4626
4627         return NULL;
4628 }
4629
4630 static void blk_mq_elv_switch_back(struct list_head *head,
4631                                   struct request_queue *q)
4632 {
4633         struct blk_mq_qe_pair *qe;
4634         struct elevator_type *t;
4635
4636         qe = blk_lookup_qe_pair(head, q);
4637         if (!qe)
4638                 return;
4639         t = qe->type;
4640         list_del(&qe->node);
4641         kfree(qe);
4642
4643         mutex_lock(&q->sysfs_lock);
4644         elevator_switch(q, t);
4645         mutex_unlock(&q->sysfs_lock);
4646 }
4647
4648 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4649                                                         int nr_hw_queues)
4650 {
4651         struct request_queue *q;
4652         LIST_HEAD(head);
4653         int prev_nr_hw_queues;
4654
4655         lockdep_assert_held(&set->tag_list_lock);
4656
4657         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4658                 nr_hw_queues = nr_cpu_ids;
4659         if (nr_hw_queues < 1)
4660                 return;
4661         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4662                 return;
4663
4664         list_for_each_entry(q, &set->tag_list, tag_set_list)
4665                 blk_mq_freeze_queue(q);
4666         /*
4667          * Switch IO scheduler to 'none', cleaning up the data associated
4668          * with the previous scheduler. We will switch back once we are done
4669          * updating the new sw to hw queue mappings.
4670          */
4671         list_for_each_entry(q, &set->tag_list, tag_set_list)
4672                 if (!blk_mq_elv_switch_none(&head, q))
4673                         goto switch_back;
4674
4675         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4676                 blk_mq_debugfs_unregister_hctxs(q);
4677                 blk_mq_sysfs_unregister_hctxs(q);
4678         }
4679
4680         prev_nr_hw_queues = set->nr_hw_queues;
4681         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4682             0)
4683                 goto reregister;
4684
4685         set->nr_hw_queues = nr_hw_queues;
4686 fallback:
4687         blk_mq_update_queue_map(set);
4688         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4689                 blk_mq_realloc_hw_ctxs(set, q);
4690                 blk_mq_update_poll_flag(q);
4691                 if (q->nr_hw_queues != set->nr_hw_queues) {
4692                         int i = prev_nr_hw_queues;
4693
4694                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4695                                         nr_hw_queues, prev_nr_hw_queues);
4696                         for (; i < set->nr_hw_queues; i++)
4697                                 __blk_mq_free_map_and_rqs(set, i);
4698
4699                         set->nr_hw_queues = prev_nr_hw_queues;
4700                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4701                         goto fallback;
4702                 }
4703                 blk_mq_map_swqueue(q);
4704         }
4705
4706 reregister:
4707         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4708                 blk_mq_sysfs_register_hctxs(q);
4709                 blk_mq_debugfs_register_hctxs(q);
4710         }
4711
4712 switch_back:
4713         list_for_each_entry(q, &set->tag_list, tag_set_list)
4714                 blk_mq_elv_switch_back(&head, q);
4715
4716         list_for_each_entry(q, &set->tag_list, tag_set_list)
4717                 blk_mq_unfreeze_queue(q);
4718 }
4719
4720 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4721 {
4722         mutex_lock(&set->tag_list_lock);
4723         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4724         mutex_unlock(&set->tag_list_lock);
4725 }
4726 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4727
4728 /* Enable polling stats and return whether they were already enabled. */
4729 static bool blk_poll_stats_enable(struct request_queue *q)
4730 {
4731         if (q->poll_stat)
4732                 return true;
4733
4734         return blk_stats_alloc_enable(q);
4735 }
4736
4737 static void blk_mq_poll_stats_start(struct request_queue *q)
4738 {
4739         /*
4740          * We don't arm the callback if polling stats are not enabled or the
4741          * callback is already active.
4742          */
4743         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4744                 return;
4745
4746         blk_stat_activate_msecs(q->poll_cb, 100);
4747 }
4748
4749 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4750 {
4751         struct request_queue *q = cb->data;
4752         int bucket;
4753
4754         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4755                 if (cb->stat[bucket].nr_samples)
4756                         q->poll_stat[bucket] = cb->stat[bucket];
4757         }
4758 }
4759
4760 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4761                                        struct request *rq)
4762 {
4763         unsigned long ret = 0;
4764         int bucket;
4765
4766         /*
4767          * If stats collection isn't on, don't sleep but turn it on for
4768          * future users
4769          */
4770         if (!blk_poll_stats_enable(q))
4771                 return 0;
4772
4773         /*
4774          * As an optimistic guess, use half of the mean service time
4775          * for this type of request. We can (and should) make this smarter.
4776          * For instance, if the completion latencies are tight, we can
4777          * get closer than just half the mean. This is especially
4778          * important on devices where the completion latencies are longer
4779          * than ~10 usec. We do use the stats for the relevant IO size
4780          * if available which does lead to better estimates.
4781          */
4782         bucket = blk_mq_poll_stats_bkt(rq);
4783         if (bucket < 0)
4784                 return ret;
4785
4786         if (q->poll_stat[bucket].nr_samples)
4787                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4788
4789         return ret;
4790 }
4791
4792 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4793 {
4794         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4795         struct request *rq = blk_qc_to_rq(hctx, qc);
4796         struct hrtimer_sleeper hs;
4797         enum hrtimer_mode mode;
4798         unsigned int nsecs;
4799         ktime_t kt;
4800
4801         /*
4802          * If a request has completed on queue that uses an I/O scheduler, we
4803          * won't get back a request from blk_qc_to_rq.
4804          */
4805         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4806                 return false;
4807
4808         /*
4809          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4810          *
4811          *  0:  use half of prev avg
4812          * >0:  use this specific value
4813          */
4814         if (q->poll_nsec > 0)
4815                 nsecs = q->poll_nsec;
4816         else
4817                 nsecs = blk_mq_poll_nsecs(q, rq);
4818
4819         if (!nsecs)
4820                 return false;
4821
4822         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4823
4824         /*
4825          * This will be replaced with the stats tracking code, using
4826          * 'avg_completion_time / 2' as the pre-sleep target.
4827          */
4828         kt = nsecs;
4829
4830         mode = HRTIMER_MODE_REL;
4831         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4832         hrtimer_set_expires(&hs.timer, kt);
4833
4834         do {
4835                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4836                         break;
4837                 set_current_state(TASK_UNINTERRUPTIBLE);
4838                 hrtimer_sleeper_start_expires(&hs, mode);
4839                 if (hs.task)
4840                         io_schedule();
4841                 hrtimer_cancel(&hs.timer);
4842                 mode = HRTIMER_MODE_ABS;
4843         } while (hs.task && !signal_pending(current));
4844
4845         __set_current_state(TASK_RUNNING);
4846         destroy_hrtimer_on_stack(&hs.timer);
4847
4848         /*
4849          * If we sleep, have the caller restart the poll loop to reset the
4850          * state.  Like for the other success return cases, the caller is
4851          * responsible for checking if the IO completed.  If the IO isn't
4852          * complete, we'll get called again and will go straight to the busy
4853          * poll loop.
4854          */
4855         return true;
4856 }
4857
4858 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4859                                struct io_comp_batch *iob, unsigned int flags)
4860 {
4861         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4862         long state = get_current_state();
4863         int ret;
4864
4865         do {
4866                 ret = q->mq_ops->poll(hctx, iob);
4867                 if (ret > 0) {
4868                         __set_current_state(TASK_RUNNING);
4869                         return ret;
4870                 }
4871
4872                 if (signal_pending_state(state, current))
4873                         __set_current_state(TASK_RUNNING);
4874                 if (task_is_running(current))
4875                         return 1;
4876
4877                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4878                         break;
4879                 cpu_relax();
4880         } while (!need_resched());
4881
4882         __set_current_state(TASK_RUNNING);
4883         return 0;
4884 }
4885
4886 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4887                 unsigned int flags)
4888 {
4889         if (!(flags & BLK_POLL_NOSLEEP) &&
4890             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4891                 if (blk_mq_poll_hybrid(q, cookie))
4892                         return 1;
4893         }
4894         return blk_mq_poll_classic(q, cookie, iob, flags);
4895 }
4896
4897 unsigned int blk_mq_rq_cpu(struct request *rq)
4898 {
4899         return rq->mq_ctx->cpu;
4900 }
4901 EXPORT_SYMBOL(blk_mq_rq_cpu);
4902
4903 void blk_mq_cancel_work_sync(struct request_queue *q)
4904 {
4905         if (queue_is_mq(q)) {
4906                 struct blk_mq_hw_ctx *hctx;
4907                 unsigned long i;
4908
4909                 cancel_delayed_work_sync(&q->requeue_work);
4910
4911                 queue_for_each_hw_ctx(q, hctx, i)
4912                         cancel_delayed_work_sync(&hctx->run_work);
4913         }
4914 }
4915
4916 static int __init blk_mq_init(void)
4917 {
4918         int i;
4919
4920         for_each_possible_cpu(i)
4921                 init_llist_head(&per_cpu(blk_cpu_done, i));
4922         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4923
4924         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4925                                   "block/softirq:dead", NULL,
4926                                   blk_softirq_cpu_dead);
4927         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4928                                 blk_mq_hctx_notify_dead);
4929         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4930                                 blk_mq_hctx_notify_online,
4931                                 blk_mq_hctx_notify_offline);
4932         return 0;
4933 }
4934 subsys_initcall(blk_mq_init);