629cf421417f0669062b64d0fb0bd47112814c2d
[platform/kernel/linux-starfive.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31
32 #include <trace/events/block.h>
33
34 #include <linux/blk-mq.h>
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-mq-tag.h"
40 #include "blk-pm.h"
41 #include "blk-stat.h"
42 #include "blk-mq-sched.h"
43 #include "blk-rq-qos.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46
47 static void blk_mq_poll_stats_start(struct request_queue *q);
48 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
49
50 static int blk_mq_poll_stats_bkt(const struct request *rq)
51 {
52         int ddir, sectors, bucket;
53
54         ddir = rq_data_dir(rq);
55         sectors = blk_rq_stats_sectors(rq);
56
57         bucket = ddir + 2 * ilog2(sectors);
58
59         if (bucket < 0)
60                 return -1;
61         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
62                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
63
64         return bucket;
65 }
66
67 #define BLK_QC_T_SHIFT          16
68 #define BLK_QC_T_INTERNAL       (1U << 31)
69
70 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
71                 blk_qc_t qc)
72 {
73         return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
74 }
75
76 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
77                 blk_qc_t qc)
78 {
79         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
80
81         if (qc & BLK_QC_T_INTERNAL)
82                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
83         return blk_mq_tag_to_rq(hctx->tags, tag);
84 }
85
86 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
87 {
88         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
89                 (rq->tag != -1 ?
90                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
91 }
92
93 /*
94  * Check if any of the ctx, dispatch list or elevator
95  * have pending work in this hardware queue.
96  */
97 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
98 {
99         return !list_empty_careful(&hctx->dispatch) ||
100                 sbitmap_any_bit_set(&hctx->ctx_map) ||
101                         blk_mq_sched_has_work(hctx);
102 }
103
104 /*
105  * Mark this ctx as having pending work in this hardware queue
106  */
107 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
108                                      struct blk_mq_ctx *ctx)
109 {
110         const int bit = ctx->index_hw[hctx->type];
111
112         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
113                 sbitmap_set_bit(&hctx->ctx_map, bit);
114 }
115
116 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
117                                       struct blk_mq_ctx *ctx)
118 {
119         const int bit = ctx->index_hw[hctx->type];
120
121         sbitmap_clear_bit(&hctx->ctx_map, bit);
122 }
123
124 struct mq_inflight {
125         struct block_device *part;
126         unsigned int inflight[2];
127 };
128
129 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
130                                   struct request *rq, void *priv,
131                                   bool reserved)
132 {
133         struct mq_inflight *mi = priv;
134
135         if ((!mi->part->bd_partno || rq->part == mi->part) &&
136             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
137                 mi->inflight[rq_data_dir(rq)]++;
138
139         return true;
140 }
141
142 unsigned int blk_mq_in_flight(struct request_queue *q,
143                 struct block_device *part)
144 {
145         struct mq_inflight mi = { .part = part };
146
147         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
148
149         return mi.inflight[0] + mi.inflight[1];
150 }
151
152 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
153                 unsigned int inflight[2])
154 {
155         struct mq_inflight mi = { .part = part };
156
157         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
158         inflight[0] = mi.inflight[0];
159         inflight[1] = mi.inflight[1];
160 }
161
162 void blk_freeze_queue_start(struct request_queue *q)
163 {
164         mutex_lock(&q->mq_freeze_lock);
165         if (++q->mq_freeze_depth == 1) {
166                 percpu_ref_kill(&q->q_usage_counter);
167                 mutex_unlock(&q->mq_freeze_lock);
168                 if (queue_is_mq(q))
169                         blk_mq_run_hw_queues(q, false);
170         } else {
171                 mutex_unlock(&q->mq_freeze_lock);
172         }
173 }
174 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
175
176 void blk_mq_freeze_queue_wait(struct request_queue *q)
177 {
178         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
179 }
180 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
181
182 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
183                                      unsigned long timeout)
184 {
185         return wait_event_timeout(q->mq_freeze_wq,
186                                         percpu_ref_is_zero(&q->q_usage_counter),
187                                         timeout);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
190
191 /*
192  * Guarantee no request is in use, so we can change any data structure of
193  * the queue afterward.
194  */
195 void blk_freeze_queue(struct request_queue *q)
196 {
197         /*
198          * In the !blk_mq case we are only calling this to kill the
199          * q_usage_counter, otherwise this increases the freeze depth
200          * and waits for it to return to zero.  For this reason there is
201          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
202          * exported to drivers as the only user for unfreeze is blk_mq.
203          */
204         blk_freeze_queue_start(q);
205         blk_mq_freeze_queue_wait(q);
206 }
207
208 void blk_mq_freeze_queue(struct request_queue *q)
209 {
210         /*
211          * ...just an alias to keep freeze and unfreeze actions balanced
212          * in the blk_mq_* namespace
213          */
214         blk_freeze_queue(q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
217
218 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
219 {
220         mutex_lock(&q->mq_freeze_lock);
221         if (force_atomic)
222                 q->q_usage_counter.data->force_atomic = true;
223         q->mq_freeze_depth--;
224         WARN_ON_ONCE(q->mq_freeze_depth < 0);
225         if (!q->mq_freeze_depth) {
226                 percpu_ref_resurrect(&q->q_usage_counter);
227                 wake_up_all(&q->mq_freeze_wq);
228         }
229         mutex_unlock(&q->mq_freeze_lock);
230 }
231
232 void blk_mq_unfreeze_queue(struct request_queue *q)
233 {
234         __blk_mq_unfreeze_queue(q, false);
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
237
238 /*
239  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
240  * mpt3sas driver such that this function can be removed.
241  */
242 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
243 {
244         unsigned long flags;
245
246         spin_lock_irqsave(&q->queue_lock, flags);
247         if (!q->quiesce_depth++)
248                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
249         spin_unlock_irqrestore(&q->queue_lock, flags);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
252
253 /**
254  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
255  * @q: request queue.
256  *
257  * Note: it is driver's responsibility for making sure that quiesce has
258  * been started.
259  */
260 void blk_mq_wait_quiesce_done(struct request_queue *q)
261 {
262         struct blk_mq_hw_ctx *hctx;
263         unsigned int i;
264         bool rcu = false;
265
266         queue_for_each_hw_ctx(q, hctx, i) {
267                 if (hctx->flags & BLK_MQ_F_BLOCKING)
268                         synchronize_srcu(hctx->srcu);
269                 else
270                         rcu = true;
271         }
272         if (rcu)
273                 synchronize_rcu();
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
276
277 /**
278  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
279  * @q: request queue.
280  *
281  * Note: this function does not prevent that the struct request end_io()
282  * callback function is invoked. Once this function is returned, we make
283  * sure no dispatch can happen until the queue is unquiesced via
284  * blk_mq_unquiesce_queue().
285  */
286 void blk_mq_quiesce_queue(struct request_queue *q)
287 {
288         blk_mq_quiesce_queue_nowait(q);
289         blk_mq_wait_quiesce_done(q);
290 }
291 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
292
293 /*
294  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
295  * @q: request queue.
296  *
297  * This function recovers queue into the state before quiescing
298  * which is done by blk_mq_quiesce_queue.
299  */
300 void blk_mq_unquiesce_queue(struct request_queue *q)
301 {
302         unsigned long flags;
303         bool run_queue = false;
304
305         spin_lock_irqsave(&q->queue_lock, flags);
306         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
307                 ;
308         } else if (!--q->quiesce_depth) {
309                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
310                 run_queue = true;
311         }
312         spin_unlock_irqrestore(&q->queue_lock, flags);
313
314         /* dispatch requests which are inserted during quiescing */
315         if (run_queue)
316                 blk_mq_run_hw_queues(q, true);
317 }
318 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
319
320 void blk_mq_wake_waiters(struct request_queue *q)
321 {
322         struct blk_mq_hw_ctx *hctx;
323         unsigned int i;
324
325         queue_for_each_hw_ctx(q, hctx, i)
326                 if (blk_mq_hw_queue_mapped(hctx))
327                         blk_mq_tag_wakeup_all(hctx->tags, true);
328 }
329
330 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
331                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
332 {
333         struct blk_mq_ctx *ctx = data->ctx;
334         struct blk_mq_hw_ctx *hctx = data->hctx;
335         struct request_queue *q = data->q;
336         struct request *rq = tags->static_rqs[tag];
337
338         rq->q = q;
339         rq->mq_ctx = ctx;
340         rq->mq_hctx = hctx;
341         rq->cmd_flags = data->cmd_flags;
342
343         if (data->flags & BLK_MQ_REQ_PM)
344                 data->rq_flags |= RQF_PM;
345         if (blk_queue_io_stat(q))
346                 data->rq_flags |= RQF_IO_STAT;
347         rq->rq_flags = data->rq_flags;
348
349         if (!(data->rq_flags & RQF_ELV)) {
350                 rq->tag = tag;
351                 rq->internal_tag = BLK_MQ_NO_TAG;
352         } else {
353                 rq->tag = BLK_MQ_NO_TAG;
354                 rq->internal_tag = tag;
355         }
356         rq->timeout = 0;
357
358         if (blk_mq_need_time_stamp(rq))
359                 rq->start_time_ns = ktime_get_ns();
360         else
361                 rq->start_time_ns = 0;
362         rq->rq_disk = NULL;
363         rq->part = NULL;
364 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
365         rq->alloc_time_ns = alloc_time_ns;
366 #endif
367         rq->io_start_time_ns = 0;
368         rq->stats_sectors = 0;
369         rq->nr_phys_segments = 0;
370 #if defined(CONFIG_BLK_DEV_INTEGRITY)
371         rq->nr_integrity_segments = 0;
372 #endif
373         rq->end_io = NULL;
374         rq->end_io_data = NULL;
375
376         blk_crypto_rq_set_defaults(rq);
377         INIT_LIST_HEAD(&rq->queuelist);
378         /* tag was already set */
379         WRITE_ONCE(rq->deadline, 0);
380         refcount_set(&rq->ref, 1);
381
382         if (rq->rq_flags & RQF_ELV) {
383                 struct elevator_queue *e = data->q->elevator;
384
385                 rq->elv.icq = NULL;
386                 INIT_HLIST_NODE(&rq->hash);
387                 RB_CLEAR_NODE(&rq->rb_node);
388
389                 if (!op_is_flush(data->cmd_flags) &&
390                     e->type->ops.prepare_request) {
391                         if (e->type->icq_cache)
392                                 blk_mq_sched_assign_ioc(rq);
393
394                         e->type->ops.prepare_request(rq);
395                         rq->rq_flags |= RQF_ELVPRIV;
396                 }
397         }
398
399         return rq;
400 }
401
402 static inline struct request *
403 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
404                 u64 alloc_time_ns)
405 {
406         unsigned int tag, tag_offset;
407         struct blk_mq_tags *tags;
408         struct request *rq;
409         unsigned long tag_mask;
410         int i, nr = 0;
411
412         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
413         if (unlikely(!tag_mask))
414                 return NULL;
415
416         tags = blk_mq_tags_from_data(data);
417         for (i = 0; tag_mask; i++) {
418                 if (!(tag_mask & (1UL << i)))
419                         continue;
420                 tag = tag_offset + i;
421                 prefetch(tags->static_rqs[tag]);
422                 tag_mask &= ~(1UL << i);
423                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
424                 rq_list_add(data->cached_rq, rq);
425                 nr++;
426         }
427         /* caller already holds a reference, add for remainder */
428         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
429         data->nr_tags -= nr;
430
431         return rq_list_pop(data->cached_rq);
432 }
433
434 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
435 {
436         struct request_queue *q = data->q;
437         u64 alloc_time_ns = 0;
438         struct request *rq;
439         unsigned int tag;
440
441         /* alloc_time includes depth and tag waits */
442         if (blk_queue_rq_alloc_time(q))
443                 alloc_time_ns = ktime_get_ns();
444
445         if (data->cmd_flags & REQ_NOWAIT)
446                 data->flags |= BLK_MQ_REQ_NOWAIT;
447
448         if (q->elevator) {
449                 struct elevator_queue *e = q->elevator;
450
451                 data->rq_flags |= RQF_ELV;
452
453                 /*
454                  * Flush/passthrough requests are special and go directly to the
455                  * dispatch list. Don't include reserved tags in the
456                  * limiting, as it isn't useful.
457                  */
458                 if (!op_is_flush(data->cmd_flags) &&
459                     !blk_op_is_passthrough(data->cmd_flags) &&
460                     e->type->ops.limit_depth &&
461                     !(data->flags & BLK_MQ_REQ_RESERVED))
462                         e->type->ops.limit_depth(data->cmd_flags, data);
463         }
464
465 retry:
466         data->ctx = blk_mq_get_ctx(q);
467         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
468         if (!(data->rq_flags & RQF_ELV))
469                 blk_mq_tag_busy(data->hctx);
470
471         /*
472          * Try batched alloc if we want more than 1 tag.
473          */
474         if (data->nr_tags > 1) {
475                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
476                 if (rq)
477                         return rq;
478                 data->nr_tags = 1;
479         }
480
481         /*
482          * Waiting allocations only fail because of an inactive hctx.  In that
483          * case just retry the hctx assignment and tag allocation as CPU hotplug
484          * should have migrated us to an online CPU by now.
485          */
486         tag = blk_mq_get_tag(data);
487         if (tag == BLK_MQ_NO_TAG) {
488                 if (data->flags & BLK_MQ_REQ_NOWAIT)
489                         return NULL;
490                 /*
491                  * Give up the CPU and sleep for a random short time to
492                  * ensure that thread using a realtime scheduling class
493                  * are migrated off the CPU, and thus off the hctx that
494                  * is going away.
495                  */
496                 msleep(3);
497                 goto retry;
498         }
499
500         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
501                                         alloc_time_ns);
502 }
503
504 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
505                 blk_mq_req_flags_t flags)
506 {
507         struct blk_mq_alloc_data data = {
508                 .q              = q,
509                 .flags          = flags,
510                 .cmd_flags      = op,
511                 .nr_tags        = 1,
512         };
513         struct request *rq;
514         int ret;
515
516         ret = blk_queue_enter(q, flags);
517         if (ret)
518                 return ERR_PTR(ret);
519
520         rq = __blk_mq_alloc_requests(&data);
521         if (!rq)
522                 goto out_queue_exit;
523         rq->__data_len = 0;
524         rq->__sector = (sector_t) -1;
525         rq->bio = rq->biotail = NULL;
526         return rq;
527 out_queue_exit:
528         blk_queue_exit(q);
529         return ERR_PTR(-EWOULDBLOCK);
530 }
531 EXPORT_SYMBOL(blk_mq_alloc_request);
532
533 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
534         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
535 {
536         struct blk_mq_alloc_data data = {
537                 .q              = q,
538                 .flags          = flags,
539                 .cmd_flags      = op,
540                 .nr_tags        = 1,
541         };
542         u64 alloc_time_ns = 0;
543         unsigned int cpu;
544         unsigned int tag;
545         int ret;
546
547         /* alloc_time includes depth and tag waits */
548         if (blk_queue_rq_alloc_time(q))
549                 alloc_time_ns = ktime_get_ns();
550
551         /*
552          * If the tag allocator sleeps we could get an allocation for a
553          * different hardware context.  No need to complicate the low level
554          * allocator for this for the rare use case of a command tied to
555          * a specific queue.
556          */
557         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
558                 return ERR_PTR(-EINVAL);
559
560         if (hctx_idx >= q->nr_hw_queues)
561                 return ERR_PTR(-EIO);
562
563         ret = blk_queue_enter(q, flags);
564         if (ret)
565                 return ERR_PTR(ret);
566
567         /*
568          * Check if the hardware context is actually mapped to anything.
569          * If not tell the caller that it should skip this queue.
570          */
571         ret = -EXDEV;
572         data.hctx = q->queue_hw_ctx[hctx_idx];
573         if (!blk_mq_hw_queue_mapped(data.hctx))
574                 goto out_queue_exit;
575         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
576         data.ctx = __blk_mq_get_ctx(q, cpu);
577
578         if (!q->elevator)
579                 blk_mq_tag_busy(data.hctx);
580         else
581                 data.rq_flags |= RQF_ELV;
582
583         ret = -EWOULDBLOCK;
584         tag = blk_mq_get_tag(&data);
585         if (tag == BLK_MQ_NO_TAG)
586                 goto out_queue_exit;
587         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
588                                         alloc_time_ns);
589
590 out_queue_exit:
591         blk_queue_exit(q);
592         return ERR_PTR(ret);
593 }
594 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
595
596 static void __blk_mq_free_request(struct request *rq)
597 {
598         struct request_queue *q = rq->q;
599         struct blk_mq_ctx *ctx = rq->mq_ctx;
600         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
601         const int sched_tag = rq->internal_tag;
602
603         blk_crypto_free_request(rq);
604         blk_pm_mark_last_busy(rq);
605         rq->mq_hctx = NULL;
606         if (rq->tag != BLK_MQ_NO_TAG)
607                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
608         if (sched_tag != BLK_MQ_NO_TAG)
609                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
610         blk_mq_sched_restart(hctx);
611         blk_queue_exit(q);
612 }
613
614 void blk_mq_free_request(struct request *rq)
615 {
616         struct request_queue *q = rq->q;
617         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
618
619         if (rq->rq_flags & RQF_ELVPRIV) {
620                 struct elevator_queue *e = q->elevator;
621
622                 if (e->type->ops.finish_request)
623                         e->type->ops.finish_request(rq);
624                 if (rq->elv.icq) {
625                         put_io_context(rq->elv.icq->ioc);
626                         rq->elv.icq = NULL;
627                 }
628         }
629
630         if (rq->rq_flags & RQF_MQ_INFLIGHT)
631                 __blk_mq_dec_active_requests(hctx);
632
633         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
634                 laptop_io_completion(q->disk->bdi);
635
636         rq_qos_done(q, rq);
637
638         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
639         if (refcount_dec_and_test(&rq->ref))
640                 __blk_mq_free_request(rq);
641 }
642 EXPORT_SYMBOL_GPL(blk_mq_free_request);
643
644 void blk_mq_free_plug_rqs(struct blk_plug *plug)
645 {
646         struct request *rq;
647
648         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
649                 blk_mq_free_request(rq);
650 }
651
652 static void req_bio_endio(struct request *rq, struct bio *bio,
653                           unsigned int nbytes, blk_status_t error)
654 {
655         if (unlikely(error)) {
656                 bio->bi_status = error;
657         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
658                 /*
659                  * Partial zone append completions cannot be supported as the
660                  * BIO fragments may end up not being written sequentially.
661                  */
662                 if (bio->bi_iter.bi_size != nbytes)
663                         bio->bi_status = BLK_STS_IOERR;
664                 else
665                         bio->bi_iter.bi_sector = rq->__sector;
666         }
667
668         bio_advance(bio, nbytes);
669
670         if (unlikely(rq->rq_flags & RQF_QUIET))
671                 bio_set_flag(bio, BIO_QUIET);
672         /* don't actually finish bio if it's part of flush sequence */
673         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
674                 bio_endio(bio);
675 }
676
677 static void blk_account_io_completion(struct request *req, unsigned int bytes)
678 {
679         if (req->part && blk_do_io_stat(req)) {
680                 const int sgrp = op_stat_group(req_op(req));
681
682                 part_stat_lock();
683                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
684                 part_stat_unlock();
685         }
686 }
687
688 /**
689  * blk_update_request - Complete multiple bytes without completing the request
690  * @req:      the request being processed
691  * @error:    block status code
692  * @nr_bytes: number of bytes to complete for @req
693  *
694  * Description:
695  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
696  *     the request structure even if @req doesn't have leftover.
697  *     If @req has leftover, sets it up for the next range of segments.
698  *
699  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
700  *     %false return from this function.
701  *
702  * Note:
703  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
704  *      except in the consistency check at the end of this function.
705  *
706  * Return:
707  *     %false - this request doesn't have any more data
708  *     %true  - this request has more data
709  **/
710 bool blk_update_request(struct request *req, blk_status_t error,
711                 unsigned int nr_bytes)
712 {
713         int total_bytes;
714
715         trace_block_rq_complete(req, error, nr_bytes);
716
717         if (!req->bio)
718                 return false;
719
720 #ifdef CONFIG_BLK_DEV_INTEGRITY
721         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
722             error == BLK_STS_OK)
723                 req->q->integrity.profile->complete_fn(req, nr_bytes);
724 #endif
725
726         if (unlikely(error && !blk_rq_is_passthrough(req) &&
727                      !(req->rq_flags & RQF_QUIET)))
728                 blk_print_req_error(req, error);
729
730         blk_account_io_completion(req, nr_bytes);
731
732         total_bytes = 0;
733         while (req->bio) {
734                 struct bio *bio = req->bio;
735                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
736
737                 if (bio_bytes == bio->bi_iter.bi_size)
738                         req->bio = bio->bi_next;
739
740                 /* Completion has already been traced */
741                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
742                 req_bio_endio(req, bio, bio_bytes, error);
743
744                 total_bytes += bio_bytes;
745                 nr_bytes -= bio_bytes;
746
747                 if (!nr_bytes)
748                         break;
749         }
750
751         /*
752          * completely done
753          */
754         if (!req->bio) {
755                 /*
756                  * Reset counters so that the request stacking driver
757                  * can find how many bytes remain in the request
758                  * later.
759                  */
760                 req->__data_len = 0;
761                 return false;
762         }
763
764         req->__data_len -= total_bytes;
765
766         /* update sector only for requests with clear definition of sector */
767         if (!blk_rq_is_passthrough(req))
768                 req->__sector += total_bytes >> 9;
769
770         /* mixed attributes always follow the first bio */
771         if (req->rq_flags & RQF_MIXED_MERGE) {
772                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
773                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
774         }
775
776         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
777                 /*
778                  * If total number of sectors is less than the first segment
779                  * size, something has gone terribly wrong.
780                  */
781                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
782                         blk_dump_rq_flags(req, "request botched");
783                         req->__data_len = blk_rq_cur_bytes(req);
784                 }
785
786                 /* recalculate the number of segments */
787                 req->nr_phys_segments = blk_recalc_rq_segments(req);
788         }
789
790         return true;
791 }
792 EXPORT_SYMBOL_GPL(blk_update_request);
793
794 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
795 {
796         if (rq->rq_flags & RQF_STATS) {
797                 blk_mq_poll_stats_start(rq->q);
798                 blk_stat_add(rq, now);
799         }
800
801         blk_mq_sched_completed_request(rq, now);
802         blk_account_io_done(rq, now);
803 }
804
805 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
806 {
807         if (blk_mq_need_time_stamp(rq))
808                 __blk_mq_end_request_acct(rq, ktime_get_ns());
809
810         if (rq->end_io) {
811                 rq_qos_done(rq->q, rq);
812                 rq->end_io(rq, error);
813         } else {
814                 blk_mq_free_request(rq);
815         }
816 }
817 EXPORT_SYMBOL(__blk_mq_end_request);
818
819 void blk_mq_end_request(struct request *rq, blk_status_t error)
820 {
821         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
822                 BUG();
823         __blk_mq_end_request(rq, error);
824 }
825 EXPORT_SYMBOL(blk_mq_end_request);
826
827 #define TAG_COMP_BATCH          32
828
829 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
830                                           int *tag_array, int nr_tags)
831 {
832         struct request_queue *q = hctx->queue;
833
834         /*
835          * All requests should have been marked as RQF_MQ_INFLIGHT, so
836          * update hctx->nr_active in batch
837          */
838         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
839                 __blk_mq_sub_active_requests(hctx, nr_tags);
840
841         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
842         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
843 }
844
845 void blk_mq_end_request_batch(struct io_comp_batch *iob)
846 {
847         int tags[TAG_COMP_BATCH], nr_tags = 0;
848         struct blk_mq_hw_ctx *cur_hctx = NULL;
849         struct request *rq;
850         u64 now = 0;
851
852         if (iob->need_ts)
853                 now = ktime_get_ns();
854
855         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
856                 prefetch(rq->bio);
857                 prefetch(rq->rq_next);
858
859                 blk_update_request(rq, BLK_STS_OK, blk_rq_bytes(rq));
860                 if (iob->need_ts)
861                         __blk_mq_end_request_acct(rq, now);
862
863                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
864                 if (!refcount_dec_and_test(&rq->ref))
865                         continue;
866
867                 blk_crypto_free_request(rq);
868                 blk_pm_mark_last_busy(rq);
869                 rq_qos_done(rq->q, rq);
870
871                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
872                         if (cur_hctx)
873                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
874                         nr_tags = 0;
875                         cur_hctx = rq->mq_hctx;
876                 }
877                 tags[nr_tags++] = rq->tag;
878         }
879
880         if (nr_tags)
881                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
882 }
883 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
884
885 static void blk_complete_reqs(struct llist_head *list)
886 {
887         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
888         struct request *rq, *next;
889
890         llist_for_each_entry_safe(rq, next, entry, ipi_list)
891                 rq->q->mq_ops->complete(rq);
892 }
893
894 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
895 {
896         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
897 }
898
899 static int blk_softirq_cpu_dead(unsigned int cpu)
900 {
901         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
902         return 0;
903 }
904
905 static void __blk_mq_complete_request_remote(void *data)
906 {
907         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
908 }
909
910 static inline bool blk_mq_complete_need_ipi(struct request *rq)
911 {
912         int cpu = raw_smp_processor_id();
913
914         if (!IS_ENABLED(CONFIG_SMP) ||
915             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
916                 return false;
917         /*
918          * With force threaded interrupts enabled, raising softirq from an SMP
919          * function call will always result in waking the ksoftirqd thread.
920          * This is probably worse than completing the request on a different
921          * cache domain.
922          */
923         if (force_irqthreads())
924                 return false;
925
926         /* same CPU or cache domain?  Complete locally */
927         if (cpu == rq->mq_ctx->cpu ||
928             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
929              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
930                 return false;
931
932         /* don't try to IPI to an offline CPU */
933         return cpu_online(rq->mq_ctx->cpu);
934 }
935
936 static void blk_mq_complete_send_ipi(struct request *rq)
937 {
938         struct llist_head *list;
939         unsigned int cpu;
940
941         cpu = rq->mq_ctx->cpu;
942         list = &per_cpu(blk_cpu_done, cpu);
943         if (llist_add(&rq->ipi_list, list)) {
944                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
945                 smp_call_function_single_async(cpu, &rq->csd);
946         }
947 }
948
949 static void blk_mq_raise_softirq(struct request *rq)
950 {
951         struct llist_head *list;
952
953         preempt_disable();
954         list = this_cpu_ptr(&blk_cpu_done);
955         if (llist_add(&rq->ipi_list, list))
956                 raise_softirq(BLOCK_SOFTIRQ);
957         preempt_enable();
958 }
959
960 bool blk_mq_complete_request_remote(struct request *rq)
961 {
962         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
963
964         /*
965          * For a polled request, always complete locallly, it's pointless
966          * to redirect the completion.
967          */
968         if (rq->cmd_flags & REQ_POLLED)
969                 return false;
970
971         if (blk_mq_complete_need_ipi(rq)) {
972                 blk_mq_complete_send_ipi(rq);
973                 return true;
974         }
975
976         if (rq->q->nr_hw_queues == 1) {
977                 blk_mq_raise_softirq(rq);
978                 return true;
979         }
980         return false;
981 }
982 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
983
984 /**
985  * blk_mq_complete_request - end I/O on a request
986  * @rq:         the request being processed
987  *
988  * Description:
989  *      Complete a request by scheduling the ->complete_rq operation.
990  **/
991 void blk_mq_complete_request(struct request *rq)
992 {
993         if (!blk_mq_complete_request_remote(rq))
994                 rq->q->mq_ops->complete(rq);
995 }
996 EXPORT_SYMBOL(blk_mq_complete_request);
997
998 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
999         __releases(hctx->srcu)
1000 {
1001         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
1002                 rcu_read_unlock();
1003         else
1004                 srcu_read_unlock(hctx->srcu, srcu_idx);
1005 }
1006
1007 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
1008         __acquires(hctx->srcu)
1009 {
1010         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1011                 /* shut up gcc false positive */
1012                 *srcu_idx = 0;
1013                 rcu_read_lock();
1014         } else
1015                 *srcu_idx = srcu_read_lock(hctx->srcu);
1016 }
1017
1018 /**
1019  * blk_mq_start_request - Start processing a request
1020  * @rq: Pointer to request to be started
1021  *
1022  * Function used by device drivers to notify the block layer that a request
1023  * is going to be processed now, so blk layer can do proper initializations
1024  * such as starting the timeout timer.
1025  */
1026 void blk_mq_start_request(struct request *rq)
1027 {
1028         struct request_queue *q = rq->q;
1029
1030         trace_block_rq_issue(rq);
1031
1032         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1033                 u64 start_time;
1034 #ifdef CONFIG_BLK_CGROUP
1035                 if (rq->bio)
1036                         start_time = bio_issue_time(&rq->bio->bi_issue);
1037                 else
1038 #endif
1039                         start_time = ktime_get_ns();
1040                 rq->io_start_time_ns = start_time;
1041                 rq->stats_sectors = blk_rq_sectors(rq);
1042                 rq->rq_flags |= RQF_STATS;
1043                 rq_qos_issue(q, rq);
1044         }
1045
1046         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1047
1048         blk_add_timer(rq);
1049         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1050
1051 #ifdef CONFIG_BLK_DEV_INTEGRITY
1052         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1053                 q->integrity.profile->prepare_fn(rq);
1054 #endif
1055         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1056                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1057 }
1058 EXPORT_SYMBOL(blk_mq_start_request);
1059
1060 static void __blk_mq_requeue_request(struct request *rq)
1061 {
1062         struct request_queue *q = rq->q;
1063
1064         blk_mq_put_driver_tag(rq);
1065
1066         trace_block_rq_requeue(rq);
1067         rq_qos_requeue(q, rq);
1068
1069         if (blk_mq_request_started(rq)) {
1070                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1071                 rq->rq_flags &= ~RQF_TIMED_OUT;
1072         }
1073 }
1074
1075 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1076 {
1077         __blk_mq_requeue_request(rq);
1078
1079         /* this request will be re-inserted to io scheduler queue */
1080         blk_mq_sched_requeue_request(rq);
1081
1082         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1083 }
1084 EXPORT_SYMBOL(blk_mq_requeue_request);
1085
1086 static void blk_mq_requeue_work(struct work_struct *work)
1087 {
1088         struct request_queue *q =
1089                 container_of(work, struct request_queue, requeue_work.work);
1090         LIST_HEAD(rq_list);
1091         struct request *rq, *next;
1092
1093         spin_lock_irq(&q->requeue_lock);
1094         list_splice_init(&q->requeue_list, &rq_list);
1095         spin_unlock_irq(&q->requeue_lock);
1096
1097         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1098                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1099                         continue;
1100
1101                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1102                 list_del_init(&rq->queuelist);
1103                 /*
1104                  * If RQF_DONTPREP, rq has contained some driver specific
1105                  * data, so insert it to hctx dispatch list to avoid any
1106                  * merge.
1107                  */
1108                 if (rq->rq_flags & RQF_DONTPREP)
1109                         blk_mq_request_bypass_insert(rq, false, false);
1110                 else
1111                         blk_mq_sched_insert_request(rq, true, false, false);
1112         }
1113
1114         while (!list_empty(&rq_list)) {
1115                 rq = list_entry(rq_list.next, struct request, queuelist);
1116                 list_del_init(&rq->queuelist);
1117                 blk_mq_sched_insert_request(rq, false, false, false);
1118         }
1119
1120         blk_mq_run_hw_queues(q, false);
1121 }
1122
1123 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1124                                 bool kick_requeue_list)
1125 {
1126         struct request_queue *q = rq->q;
1127         unsigned long flags;
1128
1129         /*
1130          * We abuse this flag that is otherwise used by the I/O scheduler to
1131          * request head insertion from the workqueue.
1132          */
1133         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1134
1135         spin_lock_irqsave(&q->requeue_lock, flags);
1136         if (at_head) {
1137                 rq->rq_flags |= RQF_SOFTBARRIER;
1138                 list_add(&rq->queuelist, &q->requeue_list);
1139         } else {
1140                 list_add_tail(&rq->queuelist, &q->requeue_list);
1141         }
1142         spin_unlock_irqrestore(&q->requeue_lock, flags);
1143
1144         if (kick_requeue_list)
1145                 blk_mq_kick_requeue_list(q);
1146 }
1147
1148 void blk_mq_kick_requeue_list(struct request_queue *q)
1149 {
1150         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1151 }
1152 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1153
1154 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1155                                     unsigned long msecs)
1156 {
1157         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1158                                     msecs_to_jiffies(msecs));
1159 }
1160 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1161
1162 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
1163                                void *priv, bool reserved)
1164 {
1165         /*
1166          * If we find a request that isn't idle and the queue matches,
1167          * we know the queue is busy. Return false to stop the iteration.
1168          */
1169         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
1170                 bool *busy = priv;
1171
1172                 *busy = true;
1173                 return false;
1174         }
1175
1176         return true;
1177 }
1178
1179 bool blk_mq_queue_inflight(struct request_queue *q)
1180 {
1181         bool busy = false;
1182
1183         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1184         return busy;
1185 }
1186 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1187
1188 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1189 {
1190         req->rq_flags |= RQF_TIMED_OUT;
1191         if (req->q->mq_ops->timeout) {
1192                 enum blk_eh_timer_return ret;
1193
1194                 ret = req->q->mq_ops->timeout(req, reserved);
1195                 if (ret == BLK_EH_DONE)
1196                         return;
1197                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1198         }
1199
1200         blk_add_timer(req);
1201 }
1202
1203 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1204 {
1205         unsigned long deadline;
1206
1207         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1208                 return false;
1209         if (rq->rq_flags & RQF_TIMED_OUT)
1210                 return false;
1211
1212         deadline = READ_ONCE(rq->deadline);
1213         if (time_after_eq(jiffies, deadline))
1214                 return true;
1215
1216         if (*next == 0)
1217                 *next = deadline;
1218         else if (time_after(*next, deadline))
1219                 *next = deadline;
1220         return false;
1221 }
1222
1223 void blk_mq_put_rq_ref(struct request *rq)
1224 {
1225         if (is_flush_rq(rq))
1226                 rq->end_io(rq, 0);
1227         else if (refcount_dec_and_test(&rq->ref))
1228                 __blk_mq_free_request(rq);
1229 }
1230
1231 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1232                 struct request *rq, void *priv, bool reserved)
1233 {
1234         unsigned long *next = priv;
1235
1236         /*
1237          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1238          * be reallocated underneath the timeout handler's processing, then
1239          * the expire check is reliable. If the request is not expired, then
1240          * it was completed and reallocated as a new request after returning
1241          * from blk_mq_check_expired().
1242          */
1243         if (blk_mq_req_expired(rq, next))
1244                 blk_mq_rq_timed_out(rq, reserved);
1245         return true;
1246 }
1247
1248 static void blk_mq_timeout_work(struct work_struct *work)
1249 {
1250         struct request_queue *q =
1251                 container_of(work, struct request_queue, timeout_work);
1252         unsigned long next = 0;
1253         struct blk_mq_hw_ctx *hctx;
1254         int i;
1255
1256         /* A deadlock might occur if a request is stuck requiring a
1257          * timeout at the same time a queue freeze is waiting
1258          * completion, since the timeout code would not be able to
1259          * acquire the queue reference here.
1260          *
1261          * That's why we don't use blk_queue_enter here; instead, we use
1262          * percpu_ref_tryget directly, because we need to be able to
1263          * obtain a reference even in the short window between the queue
1264          * starting to freeze, by dropping the first reference in
1265          * blk_freeze_queue_start, and the moment the last request is
1266          * consumed, marked by the instant q_usage_counter reaches
1267          * zero.
1268          */
1269         if (!percpu_ref_tryget(&q->q_usage_counter))
1270                 return;
1271
1272         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1273
1274         if (next != 0) {
1275                 mod_timer(&q->timeout, next);
1276         } else {
1277                 /*
1278                  * Request timeouts are handled as a forward rolling timer. If
1279                  * we end up here it means that no requests are pending and
1280                  * also that no request has been pending for a while. Mark
1281                  * each hctx as idle.
1282                  */
1283                 queue_for_each_hw_ctx(q, hctx, i) {
1284                         /* the hctx may be unmapped, so check it here */
1285                         if (blk_mq_hw_queue_mapped(hctx))
1286                                 blk_mq_tag_idle(hctx);
1287                 }
1288         }
1289         blk_queue_exit(q);
1290 }
1291
1292 struct flush_busy_ctx_data {
1293         struct blk_mq_hw_ctx *hctx;
1294         struct list_head *list;
1295 };
1296
1297 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1298 {
1299         struct flush_busy_ctx_data *flush_data = data;
1300         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1301         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1302         enum hctx_type type = hctx->type;
1303
1304         spin_lock(&ctx->lock);
1305         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1306         sbitmap_clear_bit(sb, bitnr);
1307         spin_unlock(&ctx->lock);
1308         return true;
1309 }
1310
1311 /*
1312  * Process software queues that have been marked busy, splicing them
1313  * to the for-dispatch
1314  */
1315 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1316 {
1317         struct flush_busy_ctx_data data = {
1318                 .hctx = hctx,
1319                 .list = list,
1320         };
1321
1322         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1323 }
1324 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1325
1326 struct dispatch_rq_data {
1327         struct blk_mq_hw_ctx *hctx;
1328         struct request *rq;
1329 };
1330
1331 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1332                 void *data)
1333 {
1334         struct dispatch_rq_data *dispatch_data = data;
1335         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1336         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1337         enum hctx_type type = hctx->type;
1338
1339         spin_lock(&ctx->lock);
1340         if (!list_empty(&ctx->rq_lists[type])) {
1341                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1342                 list_del_init(&dispatch_data->rq->queuelist);
1343                 if (list_empty(&ctx->rq_lists[type]))
1344                         sbitmap_clear_bit(sb, bitnr);
1345         }
1346         spin_unlock(&ctx->lock);
1347
1348         return !dispatch_data->rq;
1349 }
1350
1351 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1352                                         struct blk_mq_ctx *start)
1353 {
1354         unsigned off = start ? start->index_hw[hctx->type] : 0;
1355         struct dispatch_rq_data data = {
1356                 .hctx = hctx,
1357                 .rq   = NULL,
1358         };
1359
1360         __sbitmap_for_each_set(&hctx->ctx_map, off,
1361                                dispatch_rq_from_ctx, &data);
1362
1363         return data.rq;
1364 }
1365
1366 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1367 {
1368         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1369         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1370         int tag;
1371
1372         blk_mq_tag_busy(rq->mq_hctx);
1373
1374         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1375                 bt = &rq->mq_hctx->tags->breserved_tags;
1376                 tag_offset = 0;
1377         } else {
1378                 if (!hctx_may_queue(rq->mq_hctx, bt))
1379                         return false;
1380         }
1381
1382         tag = __sbitmap_queue_get(bt);
1383         if (tag == BLK_MQ_NO_TAG)
1384                 return false;
1385
1386         rq->tag = tag + tag_offset;
1387         return true;
1388 }
1389
1390 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1391 {
1392         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1393                 return false;
1394
1395         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1396                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1397                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1398                 __blk_mq_inc_active_requests(hctx);
1399         }
1400         hctx->tags->rqs[rq->tag] = rq;
1401         return true;
1402 }
1403
1404 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1405                                 int flags, void *key)
1406 {
1407         struct blk_mq_hw_ctx *hctx;
1408
1409         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1410
1411         spin_lock(&hctx->dispatch_wait_lock);
1412         if (!list_empty(&wait->entry)) {
1413                 struct sbitmap_queue *sbq;
1414
1415                 list_del_init(&wait->entry);
1416                 sbq = &hctx->tags->bitmap_tags;
1417                 atomic_dec(&sbq->ws_active);
1418         }
1419         spin_unlock(&hctx->dispatch_wait_lock);
1420
1421         blk_mq_run_hw_queue(hctx, true);
1422         return 1;
1423 }
1424
1425 /*
1426  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1427  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1428  * restart. For both cases, take care to check the condition again after
1429  * marking us as waiting.
1430  */
1431 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1432                                  struct request *rq)
1433 {
1434         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1435         struct wait_queue_head *wq;
1436         wait_queue_entry_t *wait;
1437         bool ret;
1438
1439         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1440                 blk_mq_sched_mark_restart_hctx(hctx);
1441
1442                 /*
1443                  * It's possible that a tag was freed in the window between the
1444                  * allocation failure and adding the hardware queue to the wait
1445                  * queue.
1446                  *
1447                  * Don't clear RESTART here, someone else could have set it.
1448                  * At most this will cost an extra queue run.
1449                  */
1450                 return blk_mq_get_driver_tag(rq);
1451         }
1452
1453         wait = &hctx->dispatch_wait;
1454         if (!list_empty_careful(&wait->entry))
1455                 return false;
1456
1457         wq = &bt_wait_ptr(sbq, hctx)->wait;
1458
1459         spin_lock_irq(&wq->lock);
1460         spin_lock(&hctx->dispatch_wait_lock);
1461         if (!list_empty(&wait->entry)) {
1462                 spin_unlock(&hctx->dispatch_wait_lock);
1463                 spin_unlock_irq(&wq->lock);
1464                 return false;
1465         }
1466
1467         atomic_inc(&sbq->ws_active);
1468         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1469         __add_wait_queue(wq, wait);
1470
1471         /*
1472          * It's possible that a tag was freed in the window between the
1473          * allocation failure and adding the hardware queue to the wait
1474          * queue.
1475          */
1476         ret = blk_mq_get_driver_tag(rq);
1477         if (!ret) {
1478                 spin_unlock(&hctx->dispatch_wait_lock);
1479                 spin_unlock_irq(&wq->lock);
1480                 return false;
1481         }
1482
1483         /*
1484          * We got a tag, remove ourselves from the wait queue to ensure
1485          * someone else gets the wakeup.
1486          */
1487         list_del_init(&wait->entry);
1488         atomic_dec(&sbq->ws_active);
1489         spin_unlock(&hctx->dispatch_wait_lock);
1490         spin_unlock_irq(&wq->lock);
1491
1492         return true;
1493 }
1494
1495 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1496 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1497 /*
1498  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1499  * - EWMA is one simple way to compute running average value
1500  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1501  * - take 4 as factor for avoiding to get too small(0) result, and this
1502  *   factor doesn't matter because EWMA decreases exponentially
1503  */
1504 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1505 {
1506         unsigned int ewma;
1507
1508         ewma = hctx->dispatch_busy;
1509
1510         if (!ewma && !busy)
1511                 return;
1512
1513         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1514         if (busy)
1515                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1516         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1517
1518         hctx->dispatch_busy = ewma;
1519 }
1520
1521 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1522
1523 static void blk_mq_handle_dev_resource(struct request *rq,
1524                                        struct list_head *list)
1525 {
1526         struct request *next =
1527                 list_first_entry_or_null(list, struct request, queuelist);
1528
1529         /*
1530          * If an I/O scheduler has been configured and we got a driver tag for
1531          * the next request already, free it.
1532          */
1533         if (next)
1534                 blk_mq_put_driver_tag(next);
1535
1536         list_add(&rq->queuelist, list);
1537         __blk_mq_requeue_request(rq);
1538 }
1539
1540 static void blk_mq_handle_zone_resource(struct request *rq,
1541                                         struct list_head *zone_list)
1542 {
1543         /*
1544          * If we end up here it is because we cannot dispatch a request to a
1545          * specific zone due to LLD level zone-write locking or other zone
1546          * related resource not being available. In this case, set the request
1547          * aside in zone_list for retrying it later.
1548          */
1549         list_add(&rq->queuelist, zone_list);
1550         __blk_mq_requeue_request(rq);
1551 }
1552
1553 enum prep_dispatch {
1554         PREP_DISPATCH_OK,
1555         PREP_DISPATCH_NO_TAG,
1556         PREP_DISPATCH_NO_BUDGET,
1557 };
1558
1559 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1560                                                   bool need_budget)
1561 {
1562         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1563         int budget_token = -1;
1564
1565         if (need_budget) {
1566                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1567                 if (budget_token < 0) {
1568                         blk_mq_put_driver_tag(rq);
1569                         return PREP_DISPATCH_NO_BUDGET;
1570                 }
1571                 blk_mq_set_rq_budget_token(rq, budget_token);
1572         }
1573
1574         if (!blk_mq_get_driver_tag(rq)) {
1575                 /*
1576                  * The initial allocation attempt failed, so we need to
1577                  * rerun the hardware queue when a tag is freed. The
1578                  * waitqueue takes care of that. If the queue is run
1579                  * before we add this entry back on the dispatch list,
1580                  * we'll re-run it below.
1581                  */
1582                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1583                         /*
1584                          * All budgets not got from this function will be put
1585                          * together during handling partial dispatch
1586                          */
1587                         if (need_budget)
1588                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1589                         return PREP_DISPATCH_NO_TAG;
1590                 }
1591         }
1592
1593         return PREP_DISPATCH_OK;
1594 }
1595
1596 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1597 static void blk_mq_release_budgets(struct request_queue *q,
1598                 struct list_head *list)
1599 {
1600         struct request *rq;
1601
1602         list_for_each_entry(rq, list, queuelist) {
1603                 int budget_token = blk_mq_get_rq_budget_token(rq);
1604
1605                 if (budget_token >= 0)
1606                         blk_mq_put_dispatch_budget(q, budget_token);
1607         }
1608 }
1609
1610 /*
1611  * Returns true if we did some work AND can potentially do more.
1612  */
1613 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1614                              unsigned int nr_budgets)
1615 {
1616         enum prep_dispatch prep;
1617         struct request_queue *q = hctx->queue;
1618         struct request *rq, *nxt;
1619         int errors, queued;
1620         blk_status_t ret = BLK_STS_OK;
1621         LIST_HEAD(zone_list);
1622         bool needs_resource = false;
1623
1624         if (list_empty(list))
1625                 return false;
1626
1627         /*
1628          * Now process all the entries, sending them to the driver.
1629          */
1630         errors = queued = 0;
1631         do {
1632                 struct blk_mq_queue_data bd;
1633
1634                 rq = list_first_entry(list, struct request, queuelist);
1635
1636                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1637                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1638                 if (prep != PREP_DISPATCH_OK)
1639                         break;
1640
1641                 list_del_init(&rq->queuelist);
1642
1643                 bd.rq = rq;
1644
1645                 /*
1646                  * Flag last if we have no more requests, or if we have more
1647                  * but can't assign a driver tag to it.
1648                  */
1649                 if (list_empty(list))
1650                         bd.last = true;
1651                 else {
1652                         nxt = list_first_entry(list, struct request, queuelist);
1653                         bd.last = !blk_mq_get_driver_tag(nxt);
1654                 }
1655
1656                 /*
1657                  * once the request is queued to lld, no need to cover the
1658                  * budget any more
1659                  */
1660                 if (nr_budgets)
1661                         nr_budgets--;
1662                 ret = q->mq_ops->queue_rq(hctx, &bd);
1663                 switch (ret) {
1664                 case BLK_STS_OK:
1665                         queued++;
1666                         break;
1667                 case BLK_STS_RESOURCE:
1668                         needs_resource = true;
1669                         fallthrough;
1670                 case BLK_STS_DEV_RESOURCE:
1671                         blk_mq_handle_dev_resource(rq, list);
1672                         goto out;
1673                 case BLK_STS_ZONE_RESOURCE:
1674                         /*
1675                          * Move the request to zone_list and keep going through
1676                          * the dispatch list to find more requests the drive can
1677                          * accept.
1678                          */
1679                         blk_mq_handle_zone_resource(rq, &zone_list);
1680                         needs_resource = true;
1681                         break;
1682                 default:
1683                         errors++;
1684                         blk_mq_end_request(rq, ret);
1685                 }
1686         } while (!list_empty(list));
1687 out:
1688         if (!list_empty(&zone_list))
1689                 list_splice_tail_init(&zone_list, list);
1690
1691         /* If we didn't flush the entire list, we could have told the driver
1692          * there was more coming, but that turned out to be a lie.
1693          */
1694         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1695                 q->mq_ops->commit_rqs(hctx);
1696         /*
1697          * Any items that need requeuing? Stuff them into hctx->dispatch,
1698          * that is where we will continue on next queue run.
1699          */
1700         if (!list_empty(list)) {
1701                 bool needs_restart;
1702                 /* For non-shared tags, the RESTART check will suffice */
1703                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1704                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1705
1706                 if (nr_budgets)
1707                         blk_mq_release_budgets(q, list);
1708
1709                 spin_lock(&hctx->lock);
1710                 list_splice_tail_init(list, &hctx->dispatch);
1711                 spin_unlock(&hctx->lock);
1712
1713                 /*
1714                  * Order adding requests to hctx->dispatch and checking
1715                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1716                  * in blk_mq_sched_restart(). Avoid restart code path to
1717                  * miss the new added requests to hctx->dispatch, meantime
1718                  * SCHED_RESTART is observed here.
1719                  */
1720                 smp_mb();
1721
1722                 /*
1723                  * If SCHED_RESTART was set by the caller of this function and
1724                  * it is no longer set that means that it was cleared by another
1725                  * thread and hence that a queue rerun is needed.
1726                  *
1727                  * If 'no_tag' is set, that means that we failed getting
1728                  * a driver tag with an I/O scheduler attached. If our dispatch
1729                  * waitqueue is no longer active, ensure that we run the queue
1730                  * AFTER adding our entries back to the list.
1731                  *
1732                  * If no I/O scheduler has been configured it is possible that
1733                  * the hardware queue got stopped and restarted before requests
1734                  * were pushed back onto the dispatch list. Rerun the queue to
1735                  * avoid starvation. Notes:
1736                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1737                  *   been stopped before rerunning a queue.
1738                  * - Some but not all block drivers stop a queue before
1739                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1740                  *   and dm-rq.
1741                  *
1742                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1743                  * bit is set, run queue after a delay to avoid IO stalls
1744                  * that could otherwise occur if the queue is idle.  We'll do
1745                  * similar if we couldn't get budget or couldn't lock a zone
1746                  * and SCHED_RESTART is set.
1747                  */
1748                 needs_restart = blk_mq_sched_needs_restart(hctx);
1749                 if (prep == PREP_DISPATCH_NO_BUDGET)
1750                         needs_resource = true;
1751                 if (!needs_restart ||
1752                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1753                         blk_mq_run_hw_queue(hctx, true);
1754                 else if (needs_restart && needs_resource)
1755                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1756
1757                 blk_mq_update_dispatch_busy(hctx, true);
1758                 return false;
1759         } else
1760                 blk_mq_update_dispatch_busy(hctx, false);
1761
1762         return (queued + errors) != 0;
1763 }
1764
1765 /**
1766  * __blk_mq_run_hw_queue - Run a hardware queue.
1767  * @hctx: Pointer to the hardware queue to run.
1768  *
1769  * Send pending requests to the hardware.
1770  */
1771 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1772 {
1773         int srcu_idx;
1774
1775         /*
1776          * We can't run the queue inline with ints disabled. Ensure that
1777          * we catch bad users of this early.
1778          */
1779         WARN_ON_ONCE(in_interrupt());
1780
1781         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1782
1783         hctx_lock(hctx, &srcu_idx);
1784         blk_mq_sched_dispatch_requests(hctx);
1785         hctx_unlock(hctx, srcu_idx);
1786 }
1787
1788 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1789 {
1790         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1791
1792         if (cpu >= nr_cpu_ids)
1793                 cpu = cpumask_first(hctx->cpumask);
1794         return cpu;
1795 }
1796
1797 /*
1798  * It'd be great if the workqueue API had a way to pass
1799  * in a mask and had some smarts for more clever placement.
1800  * For now we just round-robin here, switching for every
1801  * BLK_MQ_CPU_WORK_BATCH queued items.
1802  */
1803 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1804 {
1805         bool tried = false;
1806         int next_cpu = hctx->next_cpu;
1807
1808         if (hctx->queue->nr_hw_queues == 1)
1809                 return WORK_CPU_UNBOUND;
1810
1811         if (--hctx->next_cpu_batch <= 0) {
1812 select_cpu:
1813                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1814                                 cpu_online_mask);
1815                 if (next_cpu >= nr_cpu_ids)
1816                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1817                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1818         }
1819
1820         /*
1821          * Do unbound schedule if we can't find a online CPU for this hctx,
1822          * and it should only happen in the path of handling CPU DEAD.
1823          */
1824         if (!cpu_online(next_cpu)) {
1825                 if (!tried) {
1826                         tried = true;
1827                         goto select_cpu;
1828                 }
1829
1830                 /*
1831                  * Make sure to re-select CPU next time once after CPUs
1832                  * in hctx->cpumask become online again.
1833                  */
1834                 hctx->next_cpu = next_cpu;
1835                 hctx->next_cpu_batch = 1;
1836                 return WORK_CPU_UNBOUND;
1837         }
1838
1839         hctx->next_cpu = next_cpu;
1840         return next_cpu;
1841 }
1842
1843 /**
1844  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1845  * @hctx: Pointer to the hardware queue to run.
1846  * @async: If we want to run the queue asynchronously.
1847  * @msecs: Milliseconds of delay to wait before running the queue.
1848  *
1849  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1850  * with a delay of @msecs.
1851  */
1852 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1853                                         unsigned long msecs)
1854 {
1855         if (unlikely(blk_mq_hctx_stopped(hctx)))
1856                 return;
1857
1858         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1859                 int cpu = get_cpu();
1860                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1861                         __blk_mq_run_hw_queue(hctx);
1862                         put_cpu();
1863                         return;
1864                 }
1865
1866                 put_cpu();
1867         }
1868
1869         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1870                                     msecs_to_jiffies(msecs));
1871 }
1872
1873 /**
1874  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1875  * @hctx: Pointer to the hardware queue to run.
1876  * @msecs: Milliseconds of delay to wait before running the queue.
1877  *
1878  * Run a hardware queue asynchronously with a delay of @msecs.
1879  */
1880 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1881 {
1882         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1883 }
1884 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1885
1886 /**
1887  * blk_mq_run_hw_queue - Start to run a hardware queue.
1888  * @hctx: Pointer to the hardware queue to run.
1889  * @async: If we want to run the queue asynchronously.
1890  *
1891  * Check if the request queue is not in a quiesced state and if there are
1892  * pending requests to be sent. If this is true, run the queue to send requests
1893  * to hardware.
1894  */
1895 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1896 {
1897         int srcu_idx;
1898         bool need_run;
1899
1900         /*
1901          * When queue is quiesced, we may be switching io scheduler, or
1902          * updating nr_hw_queues, or other things, and we can't run queue
1903          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1904          *
1905          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1906          * quiesced.
1907          */
1908         hctx_lock(hctx, &srcu_idx);
1909         need_run = !blk_queue_quiesced(hctx->queue) &&
1910                 blk_mq_hctx_has_pending(hctx);
1911         hctx_unlock(hctx, srcu_idx);
1912
1913         if (need_run)
1914                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1915 }
1916 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1917
1918 /*
1919  * Is the request queue handled by an IO scheduler that does not respect
1920  * hardware queues when dispatching?
1921  */
1922 static bool blk_mq_has_sqsched(struct request_queue *q)
1923 {
1924         struct elevator_queue *e = q->elevator;
1925
1926         if (e && e->type->ops.dispatch_request &&
1927             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1928                 return true;
1929         return false;
1930 }
1931
1932 /*
1933  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1934  * scheduler.
1935  */
1936 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1937 {
1938         struct blk_mq_hw_ctx *hctx;
1939
1940         /*
1941          * If the IO scheduler does not respect hardware queues when
1942          * dispatching, we just don't bother with multiple HW queues and
1943          * dispatch from hctx for the current CPU since running multiple queues
1944          * just causes lock contention inside the scheduler and pointless cache
1945          * bouncing.
1946          */
1947         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1948                                      raw_smp_processor_id());
1949         if (!blk_mq_hctx_stopped(hctx))
1950                 return hctx;
1951         return NULL;
1952 }
1953
1954 /**
1955  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1956  * @q: Pointer to the request queue to run.
1957  * @async: If we want to run the queue asynchronously.
1958  */
1959 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1960 {
1961         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1962         int i;
1963
1964         sq_hctx = NULL;
1965         if (blk_mq_has_sqsched(q))
1966                 sq_hctx = blk_mq_get_sq_hctx(q);
1967         queue_for_each_hw_ctx(q, hctx, i) {
1968                 if (blk_mq_hctx_stopped(hctx))
1969                         continue;
1970                 /*
1971                  * Dispatch from this hctx either if there's no hctx preferred
1972                  * by IO scheduler or if it has requests that bypass the
1973                  * scheduler.
1974                  */
1975                 if (!sq_hctx || sq_hctx == hctx ||
1976                     !list_empty_careful(&hctx->dispatch))
1977                         blk_mq_run_hw_queue(hctx, async);
1978         }
1979 }
1980 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1981
1982 /**
1983  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1984  * @q: Pointer to the request queue to run.
1985  * @msecs: Milliseconds of delay to wait before running the queues.
1986  */
1987 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1988 {
1989         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1990         int i;
1991
1992         sq_hctx = NULL;
1993         if (blk_mq_has_sqsched(q))
1994                 sq_hctx = blk_mq_get_sq_hctx(q);
1995         queue_for_each_hw_ctx(q, hctx, i) {
1996                 if (blk_mq_hctx_stopped(hctx))
1997                         continue;
1998                 /*
1999                  * Dispatch from this hctx either if there's no hctx preferred
2000                  * by IO scheduler or if it has requests that bypass the
2001                  * scheduler.
2002                  */
2003                 if (!sq_hctx || sq_hctx == hctx ||
2004                     !list_empty_careful(&hctx->dispatch))
2005                         blk_mq_delay_run_hw_queue(hctx, msecs);
2006         }
2007 }
2008 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2009
2010 /**
2011  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2012  * @q: request queue.
2013  *
2014  * The caller is responsible for serializing this function against
2015  * blk_mq_{start,stop}_hw_queue().
2016  */
2017 bool blk_mq_queue_stopped(struct request_queue *q)
2018 {
2019         struct blk_mq_hw_ctx *hctx;
2020         int i;
2021
2022         queue_for_each_hw_ctx(q, hctx, i)
2023                 if (blk_mq_hctx_stopped(hctx))
2024                         return true;
2025
2026         return false;
2027 }
2028 EXPORT_SYMBOL(blk_mq_queue_stopped);
2029
2030 /*
2031  * This function is often used for pausing .queue_rq() by driver when
2032  * there isn't enough resource or some conditions aren't satisfied, and
2033  * BLK_STS_RESOURCE is usually returned.
2034  *
2035  * We do not guarantee that dispatch can be drained or blocked
2036  * after blk_mq_stop_hw_queue() returns. Please use
2037  * blk_mq_quiesce_queue() for that requirement.
2038  */
2039 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2040 {
2041         cancel_delayed_work(&hctx->run_work);
2042
2043         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2044 }
2045 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2046
2047 /*
2048  * This function is often used for pausing .queue_rq() by driver when
2049  * there isn't enough resource or some conditions aren't satisfied, and
2050  * BLK_STS_RESOURCE is usually returned.
2051  *
2052  * We do not guarantee that dispatch can be drained or blocked
2053  * after blk_mq_stop_hw_queues() returns. Please use
2054  * blk_mq_quiesce_queue() for that requirement.
2055  */
2056 void blk_mq_stop_hw_queues(struct request_queue *q)
2057 {
2058         struct blk_mq_hw_ctx *hctx;
2059         int i;
2060
2061         queue_for_each_hw_ctx(q, hctx, i)
2062                 blk_mq_stop_hw_queue(hctx);
2063 }
2064 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2065
2066 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2067 {
2068         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2069
2070         blk_mq_run_hw_queue(hctx, false);
2071 }
2072 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2073
2074 void blk_mq_start_hw_queues(struct request_queue *q)
2075 {
2076         struct blk_mq_hw_ctx *hctx;
2077         int i;
2078
2079         queue_for_each_hw_ctx(q, hctx, i)
2080                 blk_mq_start_hw_queue(hctx);
2081 }
2082 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2083
2084 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2085 {
2086         if (!blk_mq_hctx_stopped(hctx))
2087                 return;
2088
2089         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2090         blk_mq_run_hw_queue(hctx, async);
2091 }
2092 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2093
2094 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2095 {
2096         struct blk_mq_hw_ctx *hctx;
2097         int i;
2098
2099         queue_for_each_hw_ctx(q, hctx, i)
2100                 blk_mq_start_stopped_hw_queue(hctx, async);
2101 }
2102 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2103
2104 static void blk_mq_run_work_fn(struct work_struct *work)
2105 {
2106         struct blk_mq_hw_ctx *hctx;
2107
2108         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2109
2110         /*
2111          * If we are stopped, don't run the queue.
2112          */
2113         if (blk_mq_hctx_stopped(hctx))
2114                 return;
2115
2116         __blk_mq_run_hw_queue(hctx);
2117 }
2118
2119 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2120                                             struct request *rq,
2121                                             bool at_head)
2122 {
2123         struct blk_mq_ctx *ctx = rq->mq_ctx;
2124         enum hctx_type type = hctx->type;
2125
2126         lockdep_assert_held(&ctx->lock);
2127
2128         trace_block_rq_insert(rq);
2129
2130         if (at_head)
2131                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2132         else
2133                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2134 }
2135
2136 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2137                              bool at_head)
2138 {
2139         struct blk_mq_ctx *ctx = rq->mq_ctx;
2140
2141         lockdep_assert_held(&ctx->lock);
2142
2143         __blk_mq_insert_req_list(hctx, rq, at_head);
2144         blk_mq_hctx_mark_pending(hctx, ctx);
2145 }
2146
2147 /**
2148  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2149  * @rq: Pointer to request to be inserted.
2150  * @at_head: true if the request should be inserted at the head of the list.
2151  * @run_queue: If we should run the hardware queue after inserting the request.
2152  *
2153  * Should only be used carefully, when the caller knows we want to
2154  * bypass a potential IO scheduler on the target device.
2155  */
2156 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2157                                   bool run_queue)
2158 {
2159         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2160
2161         spin_lock(&hctx->lock);
2162         if (at_head)
2163                 list_add(&rq->queuelist, &hctx->dispatch);
2164         else
2165                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2166         spin_unlock(&hctx->lock);
2167
2168         if (run_queue)
2169                 blk_mq_run_hw_queue(hctx, false);
2170 }
2171
2172 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2173                             struct list_head *list)
2174
2175 {
2176         struct request *rq;
2177         enum hctx_type type = hctx->type;
2178
2179         /*
2180          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2181          * offline now
2182          */
2183         list_for_each_entry(rq, list, queuelist) {
2184                 BUG_ON(rq->mq_ctx != ctx);
2185                 trace_block_rq_insert(rq);
2186         }
2187
2188         spin_lock(&ctx->lock);
2189         list_splice_tail_init(list, &ctx->rq_lists[type]);
2190         blk_mq_hctx_mark_pending(hctx, ctx);
2191         spin_unlock(&ctx->lock);
2192 }
2193
2194 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2195                               bool from_schedule)
2196 {
2197         if (hctx->queue->mq_ops->commit_rqs) {
2198                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2199                 hctx->queue->mq_ops->commit_rqs(hctx);
2200         }
2201         *queued = 0;
2202 }
2203
2204 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2205 {
2206         struct blk_mq_hw_ctx *hctx = NULL;
2207         struct request *rq;
2208         int queued = 0;
2209         int errors = 0;
2210
2211         while ((rq = rq_list_pop(&plug->mq_list))) {
2212                 bool last = rq_list_empty(plug->mq_list);
2213                 blk_status_t ret;
2214
2215                 if (hctx != rq->mq_hctx) {
2216                         if (hctx)
2217                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2218                         hctx = rq->mq_hctx;
2219                 }
2220
2221                 ret = blk_mq_request_issue_directly(rq, last);
2222                 switch (ret) {
2223                 case BLK_STS_OK:
2224                         queued++;
2225                         break;
2226                 case BLK_STS_RESOURCE:
2227                 case BLK_STS_DEV_RESOURCE:
2228                         blk_mq_request_bypass_insert(rq, false, last);
2229                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2230                         return;
2231                 default:
2232                         blk_mq_end_request(rq, ret);
2233                         errors++;
2234                         break;
2235                 }
2236         }
2237
2238         /*
2239          * If we didn't flush the entire list, we could have told the driver
2240          * there was more coming, but that turned out to be a lie.
2241          */
2242         if (errors)
2243                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2244 }
2245
2246 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2247 {
2248         struct blk_mq_hw_ctx *this_hctx;
2249         struct blk_mq_ctx *this_ctx;
2250         unsigned int depth;
2251         LIST_HEAD(list);
2252
2253         if (rq_list_empty(plug->mq_list))
2254                 return;
2255         plug->rq_count = 0;
2256
2257         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2258                 blk_mq_plug_issue_direct(plug, false);
2259                 if (rq_list_empty(plug->mq_list))
2260                         return;
2261         }
2262
2263         this_hctx = NULL;
2264         this_ctx = NULL;
2265         depth = 0;
2266         do {
2267                 struct request *rq;
2268
2269                 rq = rq_list_pop(&plug->mq_list);
2270
2271                 if (!this_hctx) {
2272                         this_hctx = rq->mq_hctx;
2273                         this_ctx = rq->mq_ctx;
2274                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2275                         trace_block_unplug(this_hctx->queue, depth,
2276                                                 !from_schedule);
2277                         blk_mq_sched_insert_requests(this_hctx, this_ctx,
2278                                                 &list, from_schedule);
2279                         depth = 0;
2280                         this_hctx = rq->mq_hctx;
2281                         this_ctx = rq->mq_ctx;
2282
2283                 }
2284
2285                 list_add(&rq->queuelist, &list);
2286                 depth++;
2287         } while (!rq_list_empty(plug->mq_list));
2288
2289         if (!list_empty(&list)) {
2290                 trace_block_unplug(this_hctx->queue, depth, !from_schedule);
2291                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list,
2292                                                 from_schedule);
2293         }
2294 }
2295
2296 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2297                 unsigned int nr_segs)
2298 {
2299         int err;
2300
2301         if (bio->bi_opf & REQ_RAHEAD)
2302                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2303
2304         rq->__sector = bio->bi_iter.bi_sector;
2305         rq->write_hint = bio->bi_write_hint;
2306         blk_rq_bio_prep(rq, bio, nr_segs);
2307
2308         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2309         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2310         WARN_ON_ONCE(err);
2311
2312         blk_account_io_start(rq);
2313 }
2314
2315 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2316                                             struct request *rq, bool last)
2317 {
2318         struct request_queue *q = rq->q;
2319         struct blk_mq_queue_data bd = {
2320                 .rq = rq,
2321                 .last = last,
2322         };
2323         blk_status_t ret;
2324
2325         /*
2326          * For OK queue, we are done. For error, caller may kill it.
2327          * Any other error (busy), just add it to our list as we
2328          * previously would have done.
2329          */
2330         ret = q->mq_ops->queue_rq(hctx, &bd);
2331         switch (ret) {
2332         case BLK_STS_OK:
2333                 blk_mq_update_dispatch_busy(hctx, false);
2334                 break;
2335         case BLK_STS_RESOURCE:
2336         case BLK_STS_DEV_RESOURCE:
2337                 blk_mq_update_dispatch_busy(hctx, true);
2338                 __blk_mq_requeue_request(rq);
2339                 break;
2340         default:
2341                 blk_mq_update_dispatch_busy(hctx, false);
2342                 break;
2343         }
2344
2345         return ret;
2346 }
2347
2348 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2349                                                 struct request *rq,
2350                                                 bool bypass_insert, bool last)
2351 {
2352         struct request_queue *q = rq->q;
2353         bool run_queue = true;
2354         int budget_token;
2355
2356         /*
2357          * RCU or SRCU read lock is needed before checking quiesced flag.
2358          *
2359          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2360          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2361          * and avoid driver to try to dispatch again.
2362          */
2363         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2364                 run_queue = false;
2365                 bypass_insert = false;
2366                 goto insert;
2367         }
2368
2369         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2370                 goto insert;
2371
2372         budget_token = blk_mq_get_dispatch_budget(q);
2373         if (budget_token < 0)
2374                 goto insert;
2375
2376         blk_mq_set_rq_budget_token(rq, budget_token);
2377
2378         if (!blk_mq_get_driver_tag(rq)) {
2379                 blk_mq_put_dispatch_budget(q, budget_token);
2380                 goto insert;
2381         }
2382
2383         return __blk_mq_issue_directly(hctx, rq, last);
2384 insert:
2385         if (bypass_insert)
2386                 return BLK_STS_RESOURCE;
2387
2388         blk_mq_sched_insert_request(rq, false, run_queue, false);
2389
2390         return BLK_STS_OK;
2391 }
2392
2393 /**
2394  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2395  * @hctx: Pointer of the associated hardware queue.
2396  * @rq: Pointer to request to be sent.
2397  *
2398  * If the device has enough resources to accept a new request now, send the
2399  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2400  * we can try send it another time in the future. Requests inserted at this
2401  * queue have higher priority.
2402  */
2403 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2404                 struct request *rq)
2405 {
2406         blk_status_t ret;
2407         int srcu_idx;
2408
2409         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2410
2411         hctx_lock(hctx, &srcu_idx);
2412
2413         ret = __blk_mq_try_issue_directly(hctx, rq, false, true);
2414         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2415                 blk_mq_request_bypass_insert(rq, false, true);
2416         else if (ret != BLK_STS_OK)
2417                 blk_mq_end_request(rq, ret);
2418
2419         hctx_unlock(hctx, srcu_idx);
2420 }
2421
2422 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2423 {
2424         blk_status_t ret;
2425         int srcu_idx;
2426         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2427
2428         hctx_lock(hctx, &srcu_idx);
2429         ret = __blk_mq_try_issue_directly(hctx, rq, true, last);
2430         hctx_unlock(hctx, srcu_idx);
2431
2432         return ret;
2433 }
2434
2435 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2436                 struct list_head *list)
2437 {
2438         int queued = 0;
2439         int errors = 0;
2440
2441         while (!list_empty(list)) {
2442                 blk_status_t ret;
2443                 struct request *rq = list_first_entry(list, struct request,
2444                                 queuelist);
2445
2446                 list_del_init(&rq->queuelist);
2447                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2448                 if (ret != BLK_STS_OK) {
2449                         if (ret == BLK_STS_RESOURCE ||
2450                                         ret == BLK_STS_DEV_RESOURCE) {
2451                                 blk_mq_request_bypass_insert(rq, false,
2452                                                         list_empty(list));
2453                                 break;
2454                         }
2455                         blk_mq_end_request(rq, ret);
2456                         errors++;
2457                 } else
2458                         queued++;
2459         }
2460
2461         /*
2462          * If we didn't flush the entire list, we could have told
2463          * the driver there was more coming, but that turned out to
2464          * be a lie.
2465          */
2466         if ((!list_empty(list) || errors) &&
2467              hctx->queue->mq_ops->commit_rqs && queued)
2468                 hctx->queue->mq_ops->commit_rqs(hctx);
2469 }
2470
2471 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2472 {
2473         if (!plug->multiple_queues) {
2474                 struct request *nxt = rq_list_peek(&plug->mq_list);
2475
2476                 if (nxt && nxt->q != rq->q)
2477                         plug->multiple_queues = true;
2478         }
2479         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2480                 plug->has_elevator = true;
2481         rq->rq_next = NULL;
2482         rq_list_add(&plug->mq_list, rq);
2483         plug->rq_count++;
2484 }
2485
2486 /*
2487  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2488  * queues. This is important for md arrays to benefit from merging
2489  * requests.
2490  */
2491 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2492 {
2493         if (plug->multiple_queues)
2494                 return BLK_MAX_REQUEST_COUNT * 2;
2495         return BLK_MAX_REQUEST_COUNT;
2496 }
2497
2498 static bool blk_attempt_bio_merge(struct request_queue *q, struct bio *bio,
2499                                   unsigned int nr_segs, bool *same_queue_rq)
2500 {
2501         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2502                 if (blk_attempt_plug_merge(q, bio, nr_segs, same_queue_rq))
2503                         return true;
2504                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2505                         return true;
2506         }
2507         return false;
2508 }
2509
2510 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2511                                                struct blk_plug *plug,
2512                                                struct bio *bio,
2513                                                unsigned int nsegs,
2514                                                bool *same_queue_rq)
2515 {
2516         struct blk_mq_alloc_data data = {
2517                 .q              = q,
2518                 .nr_tags        = 1,
2519                 .cmd_flags      = bio->bi_opf,
2520         };
2521         struct request *rq;
2522
2523         if (unlikely(bio_queue_enter(bio)))
2524                 return NULL;
2525         if (unlikely(!submit_bio_checks(bio)))
2526                 goto put_exit;
2527         if (blk_attempt_bio_merge(q, bio, nsegs, same_queue_rq))
2528                 goto put_exit;
2529
2530         rq_qos_throttle(q, bio);
2531
2532         if (plug) {
2533                 data.nr_tags = plug->nr_ios;
2534                 plug->nr_ios = 1;
2535                 data.cached_rq = &plug->cached_rq;
2536         }
2537
2538         rq = __blk_mq_alloc_requests(&data);
2539         if (rq)
2540                 return rq;
2541
2542         rq_qos_cleanup(q, bio);
2543         if (bio->bi_opf & REQ_NOWAIT)
2544                 bio_wouldblock_error(bio);
2545 put_exit:
2546         blk_queue_exit(q);
2547         return NULL;
2548 }
2549
2550 static inline struct request *blk_mq_get_request(struct request_queue *q,
2551                                                  struct blk_plug *plug,
2552                                                  struct bio *bio,
2553                                                  unsigned int nsegs,
2554                                                  bool *same_queue_rq)
2555 {
2556         if (plug) {
2557                 struct request *rq;
2558
2559                 rq = rq_list_peek(&plug->cached_rq);
2560                 if (rq && rq->q == q) {
2561                         if (unlikely(!submit_bio_checks(bio)))
2562                                 return NULL;
2563                         if (blk_attempt_bio_merge(q, bio, nsegs, same_queue_rq))
2564                                 return NULL;
2565                         plug->cached_rq = rq_list_next(rq);
2566                         INIT_LIST_HEAD(&rq->queuelist);
2567                         rq_qos_throttle(q, bio);
2568                         return rq;
2569                 }
2570         }
2571
2572         return blk_mq_get_new_requests(q, plug, bio, nsegs, same_queue_rq);
2573 }
2574
2575 /**
2576  * blk_mq_submit_bio - Create and send a request to block device.
2577  * @bio: Bio pointer.
2578  *
2579  * Builds up a request structure from @q and @bio and send to the device. The
2580  * request may not be queued directly to hardware if:
2581  * * This request can be merged with another one
2582  * * We want to place request at plug queue for possible future merging
2583  * * There is an IO scheduler active at this queue
2584  *
2585  * It will not queue the request if there is an error with the bio, or at the
2586  * request creation.
2587  */
2588 void blk_mq_submit_bio(struct bio *bio)
2589 {
2590         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2591         const int is_sync = op_is_sync(bio->bi_opf);
2592         struct request *rq;
2593         struct blk_plug *plug;
2594         bool same_queue_rq = false;
2595         unsigned int nr_segs = 1;
2596         blk_status_t ret;
2597
2598         if (unlikely(!blk_crypto_bio_prep(&bio)))
2599                 return;
2600
2601         blk_queue_bounce(q, &bio);
2602         if (blk_may_split(q, bio))
2603                 __blk_queue_split(q, &bio, &nr_segs);
2604
2605         if (!bio_integrity_prep(bio))
2606                 return;
2607
2608         plug = blk_mq_plug(q, bio);
2609         rq = blk_mq_get_request(q, plug, bio, nr_segs, &same_queue_rq);
2610         if (unlikely(!rq))
2611                 return;
2612
2613         trace_block_getrq(bio);
2614
2615         rq_qos_track(q, rq, bio);
2616
2617         blk_mq_bio_to_request(rq, bio, nr_segs);
2618
2619         ret = blk_crypto_init_request(rq);
2620         if (ret != BLK_STS_OK) {
2621                 bio->bi_status = ret;
2622                 bio_endio(bio);
2623                 blk_mq_free_request(rq);
2624                 return;
2625         }
2626
2627         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
2628                 return;
2629
2630         if (plug && (q->nr_hw_queues == 1 ||
2631             blk_mq_is_shared_tags(rq->mq_hctx->flags) ||
2632             q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2633                 /*
2634                  * Use plugging if we have a ->commit_rqs() hook as well, as
2635                  * we know the driver uses bd->last in a smart fashion.
2636                  *
2637                  * Use normal plugging if this disk is slow HDD, as sequential
2638                  * IO may benefit a lot from plug merging.
2639                  */
2640                 unsigned int request_count = plug->rq_count;
2641                 struct request *last = NULL;
2642
2643                 if (!request_count) {
2644                         trace_block_plug(q);
2645                 } else if (!blk_queue_nomerges(q)) {
2646                         last = rq_list_peek(&plug->mq_list);
2647                         if (blk_rq_bytes(last) < BLK_PLUG_FLUSH_SIZE)
2648                                 last = NULL;
2649                 }
2650
2651                 if (request_count >= blk_plug_max_rq_count(plug) || last) {
2652                         blk_mq_flush_plug_list(plug, false);
2653                         trace_block_plug(q);
2654                 }
2655
2656                 blk_add_rq_to_plug(plug, rq);
2657         } else if (rq->rq_flags & RQF_ELV) {
2658                 /* Insert the request at the IO scheduler queue */
2659                 blk_mq_sched_insert_request(rq, false, true, true);
2660         } else if (plug && !blk_queue_nomerges(q)) {
2661                 struct request *next_rq = NULL;
2662
2663                 /*
2664                  * We do limited plugging. If the bio can be merged, do that.
2665                  * Otherwise the existing request in the plug list will be
2666                  * issued. So the plug list will have one request at most
2667                  * The plug list might get flushed before this. If that happens,
2668                  * the plug list is empty, and same_queue_rq is invalid.
2669                  */
2670                 if (same_queue_rq) {
2671                         next_rq = rq_list_pop(&plug->mq_list);
2672                         plug->rq_count--;
2673                 }
2674                 blk_add_rq_to_plug(plug, rq);
2675                 trace_block_plug(q);
2676
2677                 if (next_rq) {
2678                         trace_block_unplug(q, 1, true);
2679                         blk_mq_try_issue_directly(next_rq->mq_hctx, next_rq);
2680                 }
2681         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2682                    !rq->mq_hctx->dispatch_busy) {
2683                 /*
2684                  * There is no scheduler and we can try to send directly
2685                  * to the hardware.
2686                  */
2687                 blk_mq_try_issue_directly(rq->mq_hctx, rq);
2688         } else {
2689                 /* Default case. */
2690                 blk_mq_sched_insert_request(rq, false, true, true);
2691         }
2692 }
2693
2694 static size_t order_to_size(unsigned int order)
2695 {
2696         return (size_t)PAGE_SIZE << order;
2697 }
2698
2699 /* called before freeing request pool in @tags */
2700 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
2701                                     struct blk_mq_tags *tags)
2702 {
2703         struct page *page;
2704         unsigned long flags;
2705
2706         /* There is no need to clear a driver tags own mapping */
2707         if (drv_tags == tags)
2708                 return;
2709
2710         list_for_each_entry(page, &tags->page_list, lru) {
2711                 unsigned long start = (unsigned long)page_address(page);
2712                 unsigned long end = start + order_to_size(page->private);
2713                 int i;
2714
2715                 for (i = 0; i < drv_tags->nr_tags; i++) {
2716                         struct request *rq = drv_tags->rqs[i];
2717                         unsigned long rq_addr = (unsigned long)rq;
2718
2719                         if (rq_addr >= start && rq_addr < end) {
2720                                 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2721                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2722                         }
2723                 }
2724         }
2725
2726         /*
2727          * Wait until all pending iteration is done.
2728          *
2729          * Request reference is cleared and it is guaranteed to be observed
2730          * after the ->lock is released.
2731          */
2732         spin_lock_irqsave(&drv_tags->lock, flags);
2733         spin_unlock_irqrestore(&drv_tags->lock, flags);
2734 }
2735
2736 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2737                      unsigned int hctx_idx)
2738 {
2739         struct blk_mq_tags *drv_tags;
2740         struct page *page;
2741
2742         if (blk_mq_is_shared_tags(set->flags))
2743                 drv_tags = set->shared_tags;
2744         else
2745                 drv_tags = set->tags[hctx_idx];
2746
2747         if (tags->static_rqs && set->ops->exit_request) {
2748                 int i;
2749
2750                 for (i = 0; i < tags->nr_tags; i++) {
2751                         struct request *rq = tags->static_rqs[i];
2752
2753                         if (!rq)
2754                                 continue;
2755                         set->ops->exit_request(set, rq, hctx_idx);
2756                         tags->static_rqs[i] = NULL;
2757                 }
2758         }
2759
2760         blk_mq_clear_rq_mapping(drv_tags, tags);
2761
2762         while (!list_empty(&tags->page_list)) {
2763                 page = list_first_entry(&tags->page_list, struct page, lru);
2764                 list_del_init(&page->lru);
2765                 /*
2766                  * Remove kmemleak object previously allocated in
2767                  * blk_mq_alloc_rqs().
2768                  */
2769                 kmemleak_free(page_address(page));
2770                 __free_pages(page, page->private);
2771         }
2772 }
2773
2774 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2775 {
2776         kfree(tags->rqs);
2777         tags->rqs = NULL;
2778         kfree(tags->static_rqs);
2779         tags->static_rqs = NULL;
2780
2781         blk_mq_free_tags(tags);
2782 }
2783
2784 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2785                                                unsigned int hctx_idx,
2786                                                unsigned int nr_tags,
2787                                                unsigned int reserved_tags)
2788 {
2789         struct blk_mq_tags *tags;
2790         int node;
2791
2792         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2793         if (node == NUMA_NO_NODE)
2794                 node = set->numa_node;
2795
2796         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2797                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2798         if (!tags)
2799                 return NULL;
2800
2801         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2802                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2803                                  node);
2804         if (!tags->rqs) {
2805                 blk_mq_free_tags(tags);
2806                 return NULL;
2807         }
2808
2809         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2810                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2811                                         node);
2812         if (!tags->static_rqs) {
2813                 kfree(tags->rqs);
2814                 blk_mq_free_tags(tags);
2815                 return NULL;
2816         }
2817
2818         return tags;
2819 }
2820
2821 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2822                                unsigned int hctx_idx, int node)
2823 {
2824         int ret;
2825
2826         if (set->ops->init_request) {
2827                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2828                 if (ret)
2829                         return ret;
2830         }
2831
2832         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2833         return 0;
2834 }
2835
2836 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
2837                             struct blk_mq_tags *tags,
2838                             unsigned int hctx_idx, unsigned int depth)
2839 {
2840         unsigned int i, j, entries_per_page, max_order = 4;
2841         size_t rq_size, left;
2842         int node;
2843
2844         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2845         if (node == NUMA_NO_NODE)
2846                 node = set->numa_node;
2847
2848         INIT_LIST_HEAD(&tags->page_list);
2849
2850         /*
2851          * rq_size is the size of the request plus driver payload, rounded
2852          * to the cacheline size
2853          */
2854         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2855                                 cache_line_size());
2856         left = rq_size * depth;
2857
2858         for (i = 0; i < depth; ) {
2859                 int this_order = max_order;
2860                 struct page *page;
2861                 int to_do;
2862                 void *p;
2863
2864                 while (this_order && left < order_to_size(this_order - 1))
2865                         this_order--;
2866
2867                 do {
2868                         page = alloc_pages_node(node,
2869                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2870                                 this_order);
2871                         if (page)
2872                                 break;
2873                         if (!this_order--)
2874                                 break;
2875                         if (order_to_size(this_order) < rq_size)
2876                                 break;
2877                 } while (1);
2878
2879                 if (!page)
2880                         goto fail;
2881
2882                 page->private = this_order;
2883                 list_add_tail(&page->lru, &tags->page_list);
2884
2885                 p = page_address(page);
2886                 /*
2887                  * Allow kmemleak to scan these pages as they contain pointers
2888                  * to additional allocations like via ops->init_request().
2889                  */
2890                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2891                 entries_per_page = order_to_size(this_order) / rq_size;
2892                 to_do = min(entries_per_page, depth - i);
2893                 left -= to_do * rq_size;
2894                 for (j = 0; j < to_do; j++) {
2895                         struct request *rq = p;
2896
2897                         tags->static_rqs[i] = rq;
2898                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2899                                 tags->static_rqs[i] = NULL;
2900                                 goto fail;
2901                         }
2902
2903                         p += rq_size;
2904                         i++;
2905                 }
2906         }
2907         return 0;
2908
2909 fail:
2910         blk_mq_free_rqs(set, tags, hctx_idx);
2911         return -ENOMEM;
2912 }
2913
2914 struct rq_iter_data {
2915         struct blk_mq_hw_ctx *hctx;
2916         bool has_rq;
2917 };
2918
2919 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2920 {
2921         struct rq_iter_data *iter_data = data;
2922
2923         if (rq->mq_hctx != iter_data->hctx)
2924                 return true;
2925         iter_data->has_rq = true;
2926         return false;
2927 }
2928
2929 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2930 {
2931         struct blk_mq_tags *tags = hctx->sched_tags ?
2932                         hctx->sched_tags : hctx->tags;
2933         struct rq_iter_data data = {
2934                 .hctx   = hctx,
2935         };
2936
2937         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2938         return data.has_rq;
2939 }
2940
2941 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2942                 struct blk_mq_hw_ctx *hctx)
2943 {
2944         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2945                 return false;
2946         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2947                 return false;
2948         return true;
2949 }
2950
2951 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2952 {
2953         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2954                         struct blk_mq_hw_ctx, cpuhp_online);
2955
2956         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2957             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2958                 return 0;
2959
2960         /*
2961          * Prevent new request from being allocated on the current hctx.
2962          *
2963          * The smp_mb__after_atomic() Pairs with the implied barrier in
2964          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2965          * seen once we return from the tag allocator.
2966          */
2967         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2968         smp_mb__after_atomic();
2969
2970         /*
2971          * Try to grab a reference to the queue and wait for any outstanding
2972          * requests.  If we could not grab a reference the queue has been
2973          * frozen and there are no requests.
2974          */
2975         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2976                 while (blk_mq_hctx_has_requests(hctx))
2977                         msleep(5);
2978                 percpu_ref_put(&hctx->queue->q_usage_counter);
2979         }
2980
2981         return 0;
2982 }
2983
2984 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2985 {
2986         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2987                         struct blk_mq_hw_ctx, cpuhp_online);
2988
2989         if (cpumask_test_cpu(cpu, hctx->cpumask))
2990                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2991         return 0;
2992 }
2993
2994 /*
2995  * 'cpu' is going away. splice any existing rq_list entries from this
2996  * software queue to the hw queue dispatch list, and ensure that it
2997  * gets run.
2998  */
2999 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3000 {
3001         struct blk_mq_hw_ctx *hctx;
3002         struct blk_mq_ctx *ctx;
3003         LIST_HEAD(tmp);
3004         enum hctx_type type;
3005
3006         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3007         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3008                 return 0;
3009
3010         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3011         type = hctx->type;
3012
3013         spin_lock(&ctx->lock);
3014         if (!list_empty(&ctx->rq_lists[type])) {
3015                 list_splice_init(&ctx->rq_lists[type], &tmp);
3016                 blk_mq_hctx_clear_pending(hctx, ctx);
3017         }
3018         spin_unlock(&ctx->lock);
3019
3020         if (list_empty(&tmp))
3021                 return 0;
3022
3023         spin_lock(&hctx->lock);
3024         list_splice_tail_init(&tmp, &hctx->dispatch);
3025         spin_unlock(&hctx->lock);
3026
3027         blk_mq_run_hw_queue(hctx, true);
3028         return 0;
3029 }
3030
3031 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3032 {
3033         if (!(hctx->flags & BLK_MQ_F_STACKING))
3034                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3035                                                     &hctx->cpuhp_online);
3036         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3037                                             &hctx->cpuhp_dead);
3038 }
3039
3040 /*
3041  * Before freeing hw queue, clearing the flush request reference in
3042  * tags->rqs[] for avoiding potential UAF.
3043  */
3044 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3045                 unsigned int queue_depth, struct request *flush_rq)
3046 {
3047         int i;
3048         unsigned long flags;
3049
3050         /* The hw queue may not be mapped yet */
3051         if (!tags)
3052                 return;
3053
3054         WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
3055
3056         for (i = 0; i < queue_depth; i++)
3057                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3058
3059         /*
3060          * Wait until all pending iteration is done.
3061          *
3062          * Request reference is cleared and it is guaranteed to be observed
3063          * after the ->lock is released.
3064          */
3065         spin_lock_irqsave(&tags->lock, flags);
3066         spin_unlock_irqrestore(&tags->lock, flags);
3067 }
3068
3069 /* hctx->ctxs will be freed in queue's release handler */
3070 static void blk_mq_exit_hctx(struct request_queue *q,
3071                 struct blk_mq_tag_set *set,
3072                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3073 {
3074         struct request *flush_rq = hctx->fq->flush_rq;
3075
3076         if (blk_mq_hw_queue_mapped(hctx))
3077                 blk_mq_tag_idle(hctx);
3078
3079         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3080                         set->queue_depth, flush_rq);
3081         if (set->ops->exit_request)
3082                 set->ops->exit_request(set, flush_rq, hctx_idx);
3083
3084         if (set->ops->exit_hctx)
3085                 set->ops->exit_hctx(hctx, hctx_idx);
3086
3087         blk_mq_remove_cpuhp(hctx);
3088
3089         spin_lock(&q->unused_hctx_lock);
3090         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3091         spin_unlock(&q->unused_hctx_lock);
3092 }
3093
3094 static void blk_mq_exit_hw_queues(struct request_queue *q,
3095                 struct blk_mq_tag_set *set, int nr_queue)
3096 {
3097         struct blk_mq_hw_ctx *hctx;
3098         unsigned int i;
3099
3100         queue_for_each_hw_ctx(q, hctx, i) {
3101                 if (i == nr_queue)
3102                         break;
3103                 blk_mq_debugfs_unregister_hctx(hctx);
3104                 blk_mq_exit_hctx(q, set, hctx, i);
3105         }
3106 }
3107
3108 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
3109 {
3110         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
3111
3112         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
3113                            __alignof__(struct blk_mq_hw_ctx)) !=
3114                      sizeof(struct blk_mq_hw_ctx));
3115
3116         if (tag_set->flags & BLK_MQ_F_BLOCKING)
3117                 hw_ctx_size += sizeof(struct srcu_struct);
3118
3119         return hw_ctx_size;
3120 }
3121
3122 static int blk_mq_init_hctx(struct request_queue *q,
3123                 struct blk_mq_tag_set *set,
3124                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3125 {
3126         hctx->queue_num = hctx_idx;
3127
3128         if (!(hctx->flags & BLK_MQ_F_STACKING))
3129                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3130                                 &hctx->cpuhp_online);
3131         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3132
3133         hctx->tags = set->tags[hctx_idx];
3134
3135         if (set->ops->init_hctx &&
3136             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3137                 goto unregister_cpu_notifier;
3138
3139         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3140                                 hctx->numa_node))
3141                 goto exit_hctx;
3142         return 0;
3143
3144  exit_hctx:
3145         if (set->ops->exit_hctx)
3146                 set->ops->exit_hctx(hctx, hctx_idx);
3147  unregister_cpu_notifier:
3148         blk_mq_remove_cpuhp(hctx);
3149         return -1;
3150 }
3151
3152 static struct blk_mq_hw_ctx *
3153 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3154                 int node)
3155 {
3156         struct blk_mq_hw_ctx *hctx;
3157         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3158
3159         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
3160         if (!hctx)
3161                 goto fail_alloc_hctx;
3162
3163         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3164                 goto free_hctx;
3165
3166         atomic_set(&hctx->nr_active, 0);
3167         if (node == NUMA_NO_NODE)
3168                 node = set->numa_node;
3169         hctx->numa_node = node;
3170
3171         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3172         spin_lock_init(&hctx->lock);
3173         INIT_LIST_HEAD(&hctx->dispatch);
3174         hctx->queue = q;
3175         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3176
3177         INIT_LIST_HEAD(&hctx->hctx_list);
3178
3179         /*
3180          * Allocate space for all possible cpus to avoid allocation at
3181          * runtime
3182          */
3183         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3184                         gfp, node);
3185         if (!hctx->ctxs)
3186                 goto free_cpumask;
3187
3188         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3189                                 gfp, node, false, false))
3190                 goto free_ctxs;
3191         hctx->nr_ctx = 0;
3192
3193         spin_lock_init(&hctx->dispatch_wait_lock);
3194         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3195         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3196
3197         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3198         if (!hctx->fq)
3199                 goto free_bitmap;
3200
3201         if (hctx->flags & BLK_MQ_F_BLOCKING)
3202                 init_srcu_struct(hctx->srcu);
3203         blk_mq_hctx_kobj_init(hctx);
3204
3205         return hctx;
3206
3207  free_bitmap:
3208         sbitmap_free(&hctx->ctx_map);
3209  free_ctxs:
3210         kfree(hctx->ctxs);
3211  free_cpumask:
3212         free_cpumask_var(hctx->cpumask);
3213  free_hctx:
3214         kfree(hctx);
3215  fail_alloc_hctx:
3216         return NULL;
3217 }
3218
3219 static void blk_mq_init_cpu_queues(struct request_queue *q,
3220                                    unsigned int nr_hw_queues)
3221 {
3222         struct blk_mq_tag_set *set = q->tag_set;
3223         unsigned int i, j;
3224
3225         for_each_possible_cpu(i) {
3226                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3227                 struct blk_mq_hw_ctx *hctx;
3228                 int k;
3229
3230                 __ctx->cpu = i;
3231                 spin_lock_init(&__ctx->lock);
3232                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3233                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3234
3235                 __ctx->queue = q;
3236
3237                 /*
3238                  * Set local node, IFF we have more than one hw queue. If
3239                  * not, we remain on the home node of the device
3240                  */
3241                 for (j = 0; j < set->nr_maps; j++) {
3242                         hctx = blk_mq_map_queue_type(q, j, i);
3243                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3244                                 hctx->numa_node = cpu_to_node(i);
3245                 }
3246         }
3247 }
3248
3249 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3250                                              unsigned int hctx_idx,
3251                                              unsigned int depth)
3252 {
3253         struct blk_mq_tags *tags;
3254         int ret;
3255
3256         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3257         if (!tags)
3258                 return NULL;
3259
3260         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3261         if (ret) {
3262                 blk_mq_free_rq_map(tags);
3263                 return NULL;
3264         }
3265
3266         return tags;
3267 }
3268
3269 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3270                                        int hctx_idx)
3271 {
3272         if (blk_mq_is_shared_tags(set->flags)) {
3273                 set->tags[hctx_idx] = set->shared_tags;
3274
3275                 return true;
3276         }
3277
3278         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3279                                                        set->queue_depth);
3280
3281         return set->tags[hctx_idx];
3282 }
3283
3284 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3285                              struct blk_mq_tags *tags,
3286                              unsigned int hctx_idx)
3287 {
3288         if (tags) {
3289                 blk_mq_free_rqs(set, tags, hctx_idx);
3290                 blk_mq_free_rq_map(tags);
3291         }
3292 }
3293
3294 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3295                                       unsigned int hctx_idx)
3296 {
3297         if (!blk_mq_is_shared_tags(set->flags))
3298                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3299
3300         set->tags[hctx_idx] = NULL;
3301 }
3302
3303 static void blk_mq_map_swqueue(struct request_queue *q)
3304 {
3305         unsigned int i, j, hctx_idx;
3306         struct blk_mq_hw_ctx *hctx;
3307         struct blk_mq_ctx *ctx;
3308         struct blk_mq_tag_set *set = q->tag_set;
3309
3310         queue_for_each_hw_ctx(q, hctx, i) {
3311                 cpumask_clear(hctx->cpumask);
3312                 hctx->nr_ctx = 0;
3313                 hctx->dispatch_from = NULL;
3314         }
3315
3316         /*
3317          * Map software to hardware queues.
3318          *
3319          * If the cpu isn't present, the cpu is mapped to first hctx.
3320          */
3321         for_each_possible_cpu(i) {
3322
3323                 ctx = per_cpu_ptr(q->queue_ctx, i);
3324                 for (j = 0; j < set->nr_maps; j++) {
3325                         if (!set->map[j].nr_queues) {
3326                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3327                                                 HCTX_TYPE_DEFAULT, i);
3328                                 continue;
3329                         }
3330                         hctx_idx = set->map[j].mq_map[i];
3331                         /* unmapped hw queue can be remapped after CPU topo changed */
3332                         if (!set->tags[hctx_idx] &&
3333                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3334                                 /*
3335                                  * If tags initialization fail for some hctx,
3336                                  * that hctx won't be brought online.  In this
3337                                  * case, remap the current ctx to hctx[0] which
3338                                  * is guaranteed to always have tags allocated
3339                                  */
3340                                 set->map[j].mq_map[i] = 0;
3341                         }
3342
3343                         hctx = blk_mq_map_queue_type(q, j, i);
3344                         ctx->hctxs[j] = hctx;
3345                         /*
3346                          * If the CPU is already set in the mask, then we've
3347                          * mapped this one already. This can happen if
3348                          * devices share queues across queue maps.
3349                          */
3350                         if (cpumask_test_cpu(i, hctx->cpumask))
3351                                 continue;
3352
3353                         cpumask_set_cpu(i, hctx->cpumask);
3354                         hctx->type = j;
3355                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3356                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3357
3358                         /*
3359                          * If the nr_ctx type overflows, we have exceeded the
3360                          * amount of sw queues we can support.
3361                          */
3362                         BUG_ON(!hctx->nr_ctx);
3363                 }
3364
3365                 for (; j < HCTX_MAX_TYPES; j++)
3366                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3367                                         HCTX_TYPE_DEFAULT, i);
3368         }
3369
3370         queue_for_each_hw_ctx(q, hctx, i) {
3371                 /*
3372                  * If no software queues are mapped to this hardware queue,
3373                  * disable it and free the request entries.
3374                  */
3375                 if (!hctx->nr_ctx) {
3376                         /* Never unmap queue 0.  We need it as a
3377                          * fallback in case of a new remap fails
3378                          * allocation
3379                          */
3380                         if (i)
3381                                 __blk_mq_free_map_and_rqs(set, i);
3382
3383                         hctx->tags = NULL;
3384                         continue;
3385                 }
3386
3387                 hctx->tags = set->tags[i];
3388                 WARN_ON(!hctx->tags);
3389
3390                 /*
3391                  * Set the map size to the number of mapped software queues.
3392                  * This is more accurate and more efficient than looping
3393                  * over all possibly mapped software queues.
3394                  */
3395                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3396
3397                 /*
3398                  * Initialize batch roundrobin counts
3399                  */
3400                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3401                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3402         }
3403 }
3404
3405 /*
3406  * Caller needs to ensure that we're either frozen/quiesced, or that
3407  * the queue isn't live yet.
3408  */
3409 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3410 {
3411         struct blk_mq_hw_ctx *hctx;
3412         int i;
3413
3414         queue_for_each_hw_ctx(q, hctx, i) {
3415                 if (shared) {
3416                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3417                 } else {
3418                         blk_mq_tag_idle(hctx);
3419                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3420                 }
3421         }
3422 }
3423
3424 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3425                                          bool shared)
3426 {
3427         struct request_queue *q;
3428
3429         lockdep_assert_held(&set->tag_list_lock);
3430
3431         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3432                 blk_mq_freeze_queue(q);
3433                 queue_set_hctx_shared(q, shared);
3434                 blk_mq_unfreeze_queue(q);
3435         }
3436 }
3437
3438 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3439 {
3440         struct blk_mq_tag_set *set = q->tag_set;
3441
3442         mutex_lock(&set->tag_list_lock);
3443         list_del(&q->tag_set_list);
3444         if (list_is_singular(&set->tag_list)) {
3445                 /* just transitioned to unshared */
3446                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3447                 /* update existing queue */
3448                 blk_mq_update_tag_set_shared(set, false);
3449         }
3450         mutex_unlock(&set->tag_list_lock);
3451         INIT_LIST_HEAD(&q->tag_set_list);
3452 }
3453
3454 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3455                                      struct request_queue *q)
3456 {
3457         mutex_lock(&set->tag_list_lock);
3458
3459         /*
3460          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3461          */
3462         if (!list_empty(&set->tag_list) &&
3463             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3464                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3465                 /* update existing queue */
3466                 blk_mq_update_tag_set_shared(set, true);
3467         }
3468         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3469                 queue_set_hctx_shared(q, true);
3470         list_add_tail(&q->tag_set_list, &set->tag_list);
3471
3472         mutex_unlock(&set->tag_list_lock);
3473 }
3474
3475 /* All allocations will be freed in release handler of q->mq_kobj */
3476 static int blk_mq_alloc_ctxs(struct request_queue *q)
3477 {
3478         struct blk_mq_ctxs *ctxs;
3479         int cpu;
3480
3481         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3482         if (!ctxs)
3483                 return -ENOMEM;
3484
3485         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3486         if (!ctxs->queue_ctx)
3487                 goto fail;
3488
3489         for_each_possible_cpu(cpu) {
3490                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3491                 ctx->ctxs = ctxs;
3492         }
3493
3494         q->mq_kobj = &ctxs->kobj;
3495         q->queue_ctx = ctxs->queue_ctx;
3496
3497         return 0;
3498  fail:
3499         kfree(ctxs);
3500         return -ENOMEM;
3501 }
3502
3503 /*
3504  * It is the actual release handler for mq, but we do it from
3505  * request queue's release handler for avoiding use-after-free
3506  * and headache because q->mq_kobj shouldn't have been introduced,
3507  * but we can't group ctx/kctx kobj without it.
3508  */
3509 void blk_mq_release(struct request_queue *q)
3510 {
3511         struct blk_mq_hw_ctx *hctx, *next;
3512         int i;
3513
3514         queue_for_each_hw_ctx(q, hctx, i)
3515                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3516
3517         /* all hctx are in .unused_hctx_list now */
3518         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3519                 list_del_init(&hctx->hctx_list);
3520                 kobject_put(&hctx->kobj);
3521         }
3522
3523         kfree(q->queue_hw_ctx);
3524
3525         /*
3526          * release .mq_kobj and sw queue's kobject now because
3527          * both share lifetime with request queue.
3528          */
3529         blk_mq_sysfs_deinit(q);
3530 }
3531
3532 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3533                 void *queuedata)
3534 {
3535         struct request_queue *q;
3536         int ret;
3537
3538         q = blk_alloc_queue(set->numa_node);
3539         if (!q)
3540                 return ERR_PTR(-ENOMEM);
3541         q->queuedata = queuedata;
3542         ret = blk_mq_init_allocated_queue(set, q);
3543         if (ret) {
3544                 blk_cleanup_queue(q);
3545                 return ERR_PTR(ret);
3546         }
3547         return q;
3548 }
3549
3550 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3551 {
3552         return blk_mq_init_queue_data(set, NULL);
3553 }
3554 EXPORT_SYMBOL(blk_mq_init_queue);
3555
3556 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3557                 struct lock_class_key *lkclass)
3558 {
3559         struct request_queue *q;
3560         struct gendisk *disk;
3561
3562         q = blk_mq_init_queue_data(set, queuedata);
3563         if (IS_ERR(q))
3564                 return ERR_CAST(q);
3565
3566         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3567         if (!disk) {
3568                 blk_cleanup_queue(q);
3569                 return ERR_PTR(-ENOMEM);
3570         }
3571         return disk;
3572 }
3573 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3574
3575 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3576                 struct blk_mq_tag_set *set, struct request_queue *q,
3577                 int hctx_idx, int node)
3578 {
3579         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3580
3581         /* reuse dead hctx first */
3582         spin_lock(&q->unused_hctx_lock);
3583         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3584                 if (tmp->numa_node == node) {
3585                         hctx = tmp;
3586                         break;
3587                 }
3588         }
3589         if (hctx)
3590                 list_del_init(&hctx->hctx_list);
3591         spin_unlock(&q->unused_hctx_lock);
3592
3593         if (!hctx)
3594                 hctx = blk_mq_alloc_hctx(q, set, node);
3595         if (!hctx)
3596                 goto fail;
3597
3598         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3599                 goto free_hctx;
3600
3601         return hctx;
3602
3603  free_hctx:
3604         kobject_put(&hctx->kobj);
3605  fail:
3606         return NULL;
3607 }
3608
3609 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3610                                                 struct request_queue *q)
3611 {
3612         int i, j, end;
3613         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3614
3615         if (q->nr_hw_queues < set->nr_hw_queues) {
3616                 struct blk_mq_hw_ctx **new_hctxs;
3617
3618                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3619                                        sizeof(*new_hctxs), GFP_KERNEL,
3620                                        set->numa_node);
3621                 if (!new_hctxs)
3622                         return;
3623                 if (hctxs)
3624                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3625                                sizeof(*hctxs));
3626                 q->queue_hw_ctx = new_hctxs;
3627                 kfree(hctxs);
3628                 hctxs = new_hctxs;
3629         }
3630
3631         /* protect against switching io scheduler  */
3632         mutex_lock(&q->sysfs_lock);
3633         for (i = 0; i < set->nr_hw_queues; i++) {
3634                 int node;
3635                 struct blk_mq_hw_ctx *hctx;
3636
3637                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3638                 /*
3639                  * If the hw queue has been mapped to another numa node,
3640                  * we need to realloc the hctx. If allocation fails, fallback
3641                  * to use the previous one.
3642                  */
3643                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3644                         continue;
3645
3646                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3647                 if (hctx) {
3648                         if (hctxs[i])
3649                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3650                         hctxs[i] = hctx;
3651                 } else {
3652                         if (hctxs[i])
3653                                 pr_warn("Allocate new hctx on node %d fails,\
3654                                                 fallback to previous one on node %d\n",
3655                                                 node, hctxs[i]->numa_node);
3656                         else
3657                                 break;
3658                 }
3659         }
3660         /*
3661          * Increasing nr_hw_queues fails. Free the newly allocated
3662          * hctxs and keep the previous q->nr_hw_queues.
3663          */
3664         if (i != set->nr_hw_queues) {
3665                 j = q->nr_hw_queues;
3666                 end = i;
3667         } else {
3668                 j = i;
3669                 end = q->nr_hw_queues;
3670                 q->nr_hw_queues = set->nr_hw_queues;
3671         }
3672
3673         for (; j < end; j++) {
3674                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3675
3676                 if (hctx) {
3677                         blk_mq_exit_hctx(q, set, hctx, j);
3678                         hctxs[j] = NULL;
3679                 }
3680         }
3681         mutex_unlock(&q->sysfs_lock);
3682 }
3683
3684 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3685                 struct request_queue *q)
3686 {
3687         /* mark the queue as mq asap */
3688         q->mq_ops = set->ops;
3689
3690         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3691                                              blk_mq_poll_stats_bkt,
3692                                              BLK_MQ_POLL_STATS_BKTS, q);
3693         if (!q->poll_cb)
3694                 goto err_exit;
3695
3696         if (blk_mq_alloc_ctxs(q))
3697                 goto err_poll;
3698
3699         /* init q->mq_kobj and sw queues' kobjects */
3700         blk_mq_sysfs_init(q);
3701
3702         INIT_LIST_HEAD(&q->unused_hctx_list);
3703         spin_lock_init(&q->unused_hctx_lock);
3704
3705         blk_mq_realloc_hw_ctxs(set, q);
3706         if (!q->nr_hw_queues)
3707                 goto err_hctxs;
3708
3709         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3710         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3711
3712         q->tag_set = set;
3713
3714         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3715         if (set->nr_maps > HCTX_TYPE_POLL &&
3716             set->map[HCTX_TYPE_POLL].nr_queues)
3717                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3718
3719         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3720         INIT_LIST_HEAD(&q->requeue_list);
3721         spin_lock_init(&q->requeue_lock);
3722
3723         q->nr_requests = set->queue_depth;
3724
3725         /*
3726          * Default to classic polling
3727          */
3728         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3729
3730         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3731         blk_mq_add_queue_tag_set(set, q);
3732         blk_mq_map_swqueue(q);
3733         return 0;
3734
3735 err_hctxs:
3736         kfree(q->queue_hw_ctx);
3737         q->nr_hw_queues = 0;
3738         blk_mq_sysfs_deinit(q);
3739 err_poll:
3740         blk_stat_free_callback(q->poll_cb);
3741         q->poll_cb = NULL;
3742 err_exit:
3743         q->mq_ops = NULL;
3744         return -ENOMEM;
3745 }
3746 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3747
3748 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3749 void blk_mq_exit_queue(struct request_queue *q)
3750 {
3751         struct blk_mq_tag_set *set = q->tag_set;
3752
3753         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3754         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3755         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3756         blk_mq_del_queue_tag_set(q);
3757 }
3758
3759 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3760 {
3761         int i;
3762
3763         if (blk_mq_is_shared_tags(set->flags)) {
3764                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
3765                                                 BLK_MQ_NO_HCTX_IDX,
3766                                                 set->queue_depth);
3767                 if (!set->shared_tags)
3768                         return -ENOMEM;
3769         }
3770
3771         for (i = 0; i < set->nr_hw_queues; i++) {
3772                 if (!__blk_mq_alloc_map_and_rqs(set, i))
3773                         goto out_unwind;
3774                 cond_resched();
3775         }
3776
3777         return 0;
3778
3779 out_unwind:
3780         while (--i >= 0)
3781                 __blk_mq_free_map_and_rqs(set, i);
3782
3783         if (blk_mq_is_shared_tags(set->flags)) {
3784                 blk_mq_free_map_and_rqs(set, set->shared_tags,
3785                                         BLK_MQ_NO_HCTX_IDX);
3786         }
3787
3788         return -ENOMEM;
3789 }
3790
3791 /*
3792  * Allocate the request maps associated with this tag_set. Note that this
3793  * may reduce the depth asked for, if memory is tight. set->queue_depth
3794  * will be updated to reflect the allocated depth.
3795  */
3796 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
3797 {
3798         unsigned int depth;
3799         int err;
3800
3801         depth = set->queue_depth;
3802         do {
3803                 err = __blk_mq_alloc_rq_maps(set);
3804                 if (!err)
3805                         break;
3806
3807                 set->queue_depth >>= 1;
3808                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3809                         err = -ENOMEM;
3810                         break;
3811                 }
3812         } while (set->queue_depth);
3813
3814         if (!set->queue_depth || err) {
3815                 pr_err("blk-mq: failed to allocate request map\n");
3816                 return -ENOMEM;
3817         }
3818
3819         if (depth != set->queue_depth)
3820                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3821                                                 depth, set->queue_depth);
3822
3823         return 0;
3824 }
3825
3826 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3827 {
3828         /*
3829          * blk_mq_map_queues() and multiple .map_queues() implementations
3830          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3831          * number of hardware queues.
3832          */
3833         if (set->nr_maps == 1)
3834                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3835
3836         if (set->ops->map_queues && !is_kdump_kernel()) {
3837                 int i;
3838
3839                 /*
3840                  * transport .map_queues is usually done in the following
3841                  * way:
3842                  *
3843                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3844                  *      mask = get_cpu_mask(queue)
3845                  *      for_each_cpu(cpu, mask)
3846                  *              set->map[x].mq_map[cpu] = queue;
3847                  * }
3848                  *
3849                  * When we need to remap, the table has to be cleared for
3850                  * killing stale mapping since one CPU may not be mapped
3851                  * to any hw queue.
3852                  */
3853                 for (i = 0; i < set->nr_maps; i++)
3854                         blk_mq_clear_mq_map(&set->map[i]);
3855
3856                 return set->ops->map_queues(set);
3857         } else {
3858                 BUG_ON(set->nr_maps > 1);
3859                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3860         }
3861 }
3862
3863 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3864                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3865 {
3866         struct blk_mq_tags **new_tags;
3867
3868         if (cur_nr_hw_queues >= new_nr_hw_queues)
3869                 return 0;
3870
3871         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3872                                 GFP_KERNEL, set->numa_node);
3873         if (!new_tags)
3874                 return -ENOMEM;
3875
3876         if (set->tags)
3877                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3878                        sizeof(*set->tags));
3879         kfree(set->tags);
3880         set->tags = new_tags;
3881         set->nr_hw_queues = new_nr_hw_queues;
3882
3883         return 0;
3884 }
3885
3886 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3887                                 int new_nr_hw_queues)
3888 {
3889         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3890 }
3891
3892 /*
3893  * Alloc a tag set to be associated with one or more request queues.
3894  * May fail with EINVAL for various error conditions. May adjust the
3895  * requested depth down, if it's too large. In that case, the set
3896  * value will be stored in set->queue_depth.
3897  */
3898 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3899 {
3900         int i, ret;
3901
3902         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3903
3904         if (!set->nr_hw_queues)
3905                 return -EINVAL;
3906         if (!set->queue_depth)
3907                 return -EINVAL;
3908         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3909                 return -EINVAL;
3910
3911         if (!set->ops->queue_rq)
3912                 return -EINVAL;
3913
3914         if (!set->ops->get_budget ^ !set->ops->put_budget)
3915                 return -EINVAL;
3916
3917         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3918                 pr_info("blk-mq: reduced tag depth to %u\n",
3919                         BLK_MQ_MAX_DEPTH);
3920                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3921         }
3922
3923         if (!set->nr_maps)
3924                 set->nr_maps = 1;
3925         else if (set->nr_maps > HCTX_MAX_TYPES)
3926                 return -EINVAL;
3927
3928         /*
3929          * If a crashdump is active, then we are potentially in a very
3930          * memory constrained environment. Limit us to 1 queue and
3931          * 64 tags to prevent using too much memory.
3932          */
3933         if (is_kdump_kernel()) {
3934                 set->nr_hw_queues = 1;
3935                 set->nr_maps = 1;
3936                 set->queue_depth = min(64U, set->queue_depth);
3937         }
3938         /*
3939          * There is no use for more h/w queues than cpus if we just have
3940          * a single map
3941          */
3942         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3943                 set->nr_hw_queues = nr_cpu_ids;
3944
3945         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3946                 return -ENOMEM;
3947
3948         ret = -ENOMEM;
3949         for (i = 0; i < set->nr_maps; i++) {
3950                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3951                                                   sizeof(set->map[i].mq_map[0]),
3952                                                   GFP_KERNEL, set->numa_node);
3953                 if (!set->map[i].mq_map)
3954                         goto out_free_mq_map;
3955                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3956         }
3957
3958         ret = blk_mq_update_queue_map(set);
3959         if (ret)
3960                 goto out_free_mq_map;
3961
3962         ret = blk_mq_alloc_set_map_and_rqs(set);
3963         if (ret)
3964                 goto out_free_mq_map;
3965
3966         mutex_init(&set->tag_list_lock);
3967         INIT_LIST_HEAD(&set->tag_list);
3968
3969         return 0;
3970
3971 out_free_mq_map:
3972         for (i = 0; i < set->nr_maps; i++) {
3973                 kfree(set->map[i].mq_map);
3974                 set->map[i].mq_map = NULL;
3975         }
3976         kfree(set->tags);
3977         set->tags = NULL;
3978         return ret;
3979 }
3980 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3981
3982 /* allocate and initialize a tagset for a simple single-queue device */
3983 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3984                 const struct blk_mq_ops *ops, unsigned int queue_depth,
3985                 unsigned int set_flags)
3986 {
3987         memset(set, 0, sizeof(*set));
3988         set->ops = ops;
3989         set->nr_hw_queues = 1;
3990         set->nr_maps = 1;
3991         set->queue_depth = queue_depth;
3992         set->numa_node = NUMA_NO_NODE;
3993         set->flags = set_flags;
3994         return blk_mq_alloc_tag_set(set);
3995 }
3996 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3997
3998 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3999 {
4000         int i, j;
4001
4002         for (i = 0; i < set->nr_hw_queues; i++)
4003                 __blk_mq_free_map_and_rqs(set, i);
4004
4005         if (blk_mq_is_shared_tags(set->flags)) {
4006                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4007                                         BLK_MQ_NO_HCTX_IDX);
4008         }
4009
4010         for (j = 0; j < set->nr_maps; j++) {
4011                 kfree(set->map[j].mq_map);
4012                 set->map[j].mq_map = NULL;
4013         }
4014
4015         kfree(set->tags);
4016         set->tags = NULL;
4017 }
4018 EXPORT_SYMBOL(blk_mq_free_tag_set);
4019
4020 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4021 {
4022         struct blk_mq_tag_set *set = q->tag_set;
4023         struct blk_mq_hw_ctx *hctx;
4024         int i, ret;
4025
4026         if (!set)
4027                 return -EINVAL;
4028
4029         if (q->nr_requests == nr)
4030                 return 0;
4031
4032         blk_mq_freeze_queue(q);
4033         blk_mq_quiesce_queue(q);
4034
4035         ret = 0;
4036         queue_for_each_hw_ctx(q, hctx, i) {
4037                 if (!hctx->tags)
4038                         continue;
4039                 /*
4040                  * If we're using an MQ scheduler, just update the scheduler
4041                  * queue depth. This is similar to what the old code would do.
4042                  */
4043                 if (hctx->sched_tags) {
4044                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4045                                                       nr, true);
4046                 } else {
4047                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4048                                                       false);
4049                 }
4050                 if (ret)
4051                         break;
4052                 if (q->elevator && q->elevator->type->ops.depth_updated)
4053                         q->elevator->type->ops.depth_updated(hctx);
4054         }
4055         if (!ret) {
4056                 q->nr_requests = nr;
4057                 if (blk_mq_is_shared_tags(set->flags)) {
4058                         if (q->elevator)
4059                                 blk_mq_tag_update_sched_shared_tags(q);
4060                         else
4061                                 blk_mq_tag_resize_shared_tags(set, nr);
4062                 }
4063         }
4064
4065         blk_mq_unquiesce_queue(q);
4066         blk_mq_unfreeze_queue(q);
4067
4068         return ret;
4069 }
4070
4071 /*
4072  * request_queue and elevator_type pair.
4073  * It is just used by __blk_mq_update_nr_hw_queues to cache
4074  * the elevator_type associated with a request_queue.
4075  */
4076 struct blk_mq_qe_pair {
4077         struct list_head node;
4078         struct request_queue *q;
4079         struct elevator_type *type;
4080 };
4081
4082 /*
4083  * Cache the elevator_type in qe pair list and switch the
4084  * io scheduler to 'none'
4085  */
4086 static bool blk_mq_elv_switch_none(struct list_head *head,
4087                 struct request_queue *q)
4088 {
4089         struct blk_mq_qe_pair *qe;
4090
4091         if (!q->elevator)
4092                 return true;
4093
4094         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4095         if (!qe)
4096                 return false;
4097
4098         INIT_LIST_HEAD(&qe->node);
4099         qe->q = q;
4100         qe->type = q->elevator->type;
4101         list_add(&qe->node, head);
4102
4103         mutex_lock(&q->sysfs_lock);
4104         /*
4105          * After elevator_switch_mq, the previous elevator_queue will be
4106          * released by elevator_release. The reference of the io scheduler
4107          * module get by elevator_get will also be put. So we need to get
4108          * a reference of the io scheduler module here to prevent it to be
4109          * removed.
4110          */
4111         __module_get(qe->type->elevator_owner);
4112         elevator_switch_mq(q, NULL);
4113         mutex_unlock(&q->sysfs_lock);
4114
4115         return true;
4116 }
4117
4118 static void blk_mq_elv_switch_back(struct list_head *head,
4119                 struct request_queue *q)
4120 {
4121         struct blk_mq_qe_pair *qe;
4122         struct elevator_type *t = NULL;
4123
4124         list_for_each_entry(qe, head, node)
4125                 if (qe->q == q) {
4126                         t = qe->type;
4127                         break;
4128                 }
4129
4130         if (!t)
4131                 return;
4132
4133         list_del(&qe->node);
4134         kfree(qe);
4135
4136         mutex_lock(&q->sysfs_lock);
4137         elevator_switch_mq(q, t);
4138         mutex_unlock(&q->sysfs_lock);
4139 }
4140
4141 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4142                                                         int nr_hw_queues)
4143 {
4144         struct request_queue *q;
4145         LIST_HEAD(head);
4146         int prev_nr_hw_queues;
4147
4148         lockdep_assert_held(&set->tag_list_lock);
4149
4150         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4151                 nr_hw_queues = nr_cpu_ids;
4152         if (nr_hw_queues < 1)
4153                 return;
4154         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4155                 return;
4156
4157         list_for_each_entry(q, &set->tag_list, tag_set_list)
4158                 blk_mq_freeze_queue(q);
4159         /*
4160          * Switch IO scheduler to 'none', cleaning up the data associated
4161          * with the previous scheduler. We will switch back once we are done
4162          * updating the new sw to hw queue mappings.
4163          */
4164         list_for_each_entry(q, &set->tag_list, tag_set_list)
4165                 if (!blk_mq_elv_switch_none(&head, q))
4166                         goto switch_back;
4167
4168         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4169                 blk_mq_debugfs_unregister_hctxs(q);
4170                 blk_mq_sysfs_unregister(q);
4171         }
4172
4173         prev_nr_hw_queues = set->nr_hw_queues;
4174         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4175             0)
4176                 goto reregister;
4177
4178         set->nr_hw_queues = nr_hw_queues;
4179 fallback:
4180         blk_mq_update_queue_map(set);
4181         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4182                 blk_mq_realloc_hw_ctxs(set, q);
4183                 if (q->nr_hw_queues != set->nr_hw_queues) {
4184                         int i = prev_nr_hw_queues;
4185
4186                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4187                                         nr_hw_queues, prev_nr_hw_queues);
4188                         for (; i < set->nr_hw_queues; i++)
4189                                 __blk_mq_free_map_and_rqs(set, i);
4190
4191                         set->nr_hw_queues = prev_nr_hw_queues;
4192                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4193                         goto fallback;
4194                 }
4195                 blk_mq_map_swqueue(q);
4196         }
4197
4198 reregister:
4199         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4200                 blk_mq_sysfs_register(q);
4201                 blk_mq_debugfs_register_hctxs(q);
4202         }
4203
4204 switch_back:
4205         list_for_each_entry(q, &set->tag_list, tag_set_list)
4206                 blk_mq_elv_switch_back(&head, q);
4207
4208         list_for_each_entry(q, &set->tag_list, tag_set_list)
4209                 blk_mq_unfreeze_queue(q);
4210 }
4211
4212 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4213 {
4214         mutex_lock(&set->tag_list_lock);
4215         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4216         mutex_unlock(&set->tag_list_lock);
4217 }
4218 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4219
4220 /* Enable polling stats and return whether they were already enabled. */
4221 static bool blk_poll_stats_enable(struct request_queue *q)
4222 {
4223         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4224             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
4225                 return true;
4226         blk_stat_add_callback(q, q->poll_cb);
4227         return false;
4228 }
4229
4230 static void blk_mq_poll_stats_start(struct request_queue *q)
4231 {
4232         /*
4233          * We don't arm the callback if polling stats are not enabled or the
4234          * callback is already active.
4235          */
4236         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4237             blk_stat_is_active(q->poll_cb))
4238                 return;
4239
4240         blk_stat_activate_msecs(q->poll_cb, 100);
4241 }
4242
4243 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4244 {
4245         struct request_queue *q = cb->data;
4246         int bucket;
4247
4248         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4249                 if (cb->stat[bucket].nr_samples)
4250                         q->poll_stat[bucket] = cb->stat[bucket];
4251         }
4252 }
4253
4254 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4255                                        struct request *rq)
4256 {
4257         unsigned long ret = 0;
4258         int bucket;
4259
4260         /*
4261          * If stats collection isn't on, don't sleep but turn it on for
4262          * future users
4263          */
4264         if (!blk_poll_stats_enable(q))
4265                 return 0;
4266
4267         /*
4268          * As an optimistic guess, use half of the mean service time
4269          * for this type of request. We can (and should) make this smarter.
4270          * For instance, if the completion latencies are tight, we can
4271          * get closer than just half the mean. This is especially
4272          * important on devices where the completion latencies are longer
4273          * than ~10 usec. We do use the stats for the relevant IO size
4274          * if available which does lead to better estimates.
4275          */
4276         bucket = blk_mq_poll_stats_bkt(rq);
4277         if (bucket < 0)
4278                 return ret;
4279
4280         if (q->poll_stat[bucket].nr_samples)
4281                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4282
4283         return ret;
4284 }
4285
4286 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4287 {
4288         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4289         struct request *rq = blk_qc_to_rq(hctx, qc);
4290         struct hrtimer_sleeper hs;
4291         enum hrtimer_mode mode;
4292         unsigned int nsecs;
4293         ktime_t kt;
4294
4295         /*
4296          * If a request has completed on queue that uses an I/O scheduler, we
4297          * won't get back a request from blk_qc_to_rq.
4298          */
4299         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4300                 return false;
4301
4302         /*
4303          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4304          *
4305          *  0:  use half of prev avg
4306          * >0:  use this specific value
4307          */
4308         if (q->poll_nsec > 0)
4309                 nsecs = q->poll_nsec;
4310         else
4311                 nsecs = blk_mq_poll_nsecs(q, rq);
4312
4313         if (!nsecs)
4314                 return false;
4315
4316         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4317
4318         /*
4319          * This will be replaced with the stats tracking code, using
4320          * 'avg_completion_time / 2' as the pre-sleep target.
4321          */
4322         kt = nsecs;
4323
4324         mode = HRTIMER_MODE_REL;
4325         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4326         hrtimer_set_expires(&hs.timer, kt);
4327
4328         do {
4329                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4330                         break;
4331                 set_current_state(TASK_UNINTERRUPTIBLE);
4332                 hrtimer_sleeper_start_expires(&hs, mode);
4333                 if (hs.task)
4334                         io_schedule();
4335                 hrtimer_cancel(&hs.timer);
4336                 mode = HRTIMER_MODE_ABS;
4337         } while (hs.task && !signal_pending(current));
4338
4339         __set_current_state(TASK_RUNNING);
4340         destroy_hrtimer_on_stack(&hs.timer);
4341
4342         /*
4343          * If we sleep, have the caller restart the poll loop to reset the
4344          * state.  Like for the other success return cases, the caller is
4345          * responsible for checking if the IO completed.  If the IO isn't
4346          * complete, we'll get called again and will go straight to the busy
4347          * poll loop.
4348          */
4349         return true;
4350 }
4351
4352 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4353                                struct io_comp_batch *iob, unsigned int flags)
4354 {
4355         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4356         long state = get_current_state();
4357         int ret;
4358
4359         do {
4360                 ret = q->mq_ops->poll(hctx, iob);
4361                 if (ret > 0) {
4362                         __set_current_state(TASK_RUNNING);
4363                         return ret;
4364                 }
4365
4366                 if (signal_pending_state(state, current))
4367                         __set_current_state(TASK_RUNNING);
4368                 if (task_is_running(current))
4369                         return 1;
4370
4371                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4372                         break;
4373                 cpu_relax();
4374         } while (!need_resched());
4375
4376         __set_current_state(TASK_RUNNING);
4377         return 0;
4378 }
4379
4380 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4381                 unsigned int flags)
4382 {
4383         if (!(flags & BLK_POLL_NOSLEEP) &&
4384             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4385                 if (blk_mq_poll_hybrid(q, cookie))
4386                         return 1;
4387         }
4388         return blk_mq_poll_classic(q, cookie, iob, flags);
4389 }
4390
4391 unsigned int blk_mq_rq_cpu(struct request *rq)
4392 {
4393         return rq->mq_ctx->cpu;
4394 }
4395 EXPORT_SYMBOL(blk_mq_rq_cpu);
4396
4397 static int __init blk_mq_init(void)
4398 {
4399         int i;
4400
4401         for_each_possible_cpu(i)
4402                 init_llist_head(&per_cpu(blk_cpu_done, i));
4403         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4404
4405         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4406                                   "block/softirq:dead", NULL,
4407                                   blk_softirq_cpu_dead);
4408         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4409                                 blk_mq_hctx_notify_dead);
4410         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4411                                 blk_mq_hctx_notify_online,
4412                                 blk_mq_hctx_notify_offline);
4413         return 0;
4414 }
4415 subsys_initcall(blk_mq_init);