block: ensure we hold a queue reference when using queue limits
[platform/kernel/linux-rpi.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50                 blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52                 struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54                          struct io_comp_batch *iob, unsigned int flags);
55
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62         return !list_empty_careful(&hctx->dispatch) ||
63                 sbitmap_any_bit_set(&hctx->ctx_map) ||
64                         blk_mq_sched_has_work(hctx);
65 }
66
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71                                      struct blk_mq_ctx *ctx)
72 {
73         const int bit = ctx->index_hw[hctx->type];
74
75         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76                 sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80                                       struct blk_mq_ctx *ctx)
81 {
82         const int bit = ctx->index_hw[hctx->type];
83
84         sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86
87 struct mq_inflight {
88         struct block_device *part;
89         unsigned int inflight[2];
90 };
91
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94         struct mq_inflight *mi = priv;
95
96         if (rq->part && blk_do_io_stat(rq) &&
97             (!mi->part->bd_partno || rq->part == mi->part) &&
98             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99                 mi->inflight[rq_data_dir(rq)]++;
100
101         return true;
102 }
103
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105                 struct block_device *part)
106 {
107         struct mq_inflight mi = { .part = part };
108
109         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110
111         return mi.inflight[0] + mi.inflight[1];
112 }
113
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115                 unsigned int inflight[2])
116 {
117         struct mq_inflight mi = { .part = part };
118
119         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120         inflight[0] = mi.inflight[0];
121         inflight[1] = mi.inflight[1];
122 }
123
124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126         mutex_lock(&q->mq_freeze_lock);
127         if (++q->mq_freeze_depth == 1) {
128                 percpu_ref_kill(&q->q_usage_counter);
129                 mutex_unlock(&q->mq_freeze_lock);
130                 if (queue_is_mq(q))
131                         blk_mq_run_hw_queues(q, false);
132         } else {
133                 mutex_unlock(&q->mq_freeze_lock);
134         }
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137
138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143
144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145                                      unsigned long timeout)
146 {
147         return wait_event_timeout(q->mq_freeze_wq,
148                                         percpu_ref_is_zero(&q->q_usage_counter),
149                                         timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152
153 /*
154  * Guarantee no request is in use, so we can change any data structure of
155  * the queue afterward.
156  */
157 void blk_freeze_queue(struct request_queue *q)
158 {
159         /*
160          * In the !blk_mq case we are only calling this to kill the
161          * q_usage_counter, otherwise this increases the freeze depth
162          * and waits for it to return to zero.  For this reason there is
163          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164          * exported to drivers as the only user for unfreeze is blk_mq.
165          */
166         blk_freeze_queue_start(q);
167         blk_mq_freeze_queue_wait(q);
168 }
169
170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172         /*
173          * ...just an alias to keep freeze and unfreeze actions balanced
174          * in the blk_mq_* namespace
175          */
176         blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179
180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182         mutex_lock(&q->mq_freeze_lock);
183         if (force_atomic)
184                 q->q_usage_counter.data->force_atomic = true;
185         q->mq_freeze_depth--;
186         WARN_ON_ONCE(q->mq_freeze_depth < 0);
187         if (!q->mq_freeze_depth) {
188                 percpu_ref_resurrect(&q->q_usage_counter);
189                 wake_up_all(&q->mq_freeze_wq);
190         }
191         mutex_unlock(&q->mq_freeze_lock);
192 }
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196         __blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206         unsigned long flags;
207
208         spin_lock_irqsave(&q->queue_lock, flags);
209         if (!q->quiesce_depth++)
210                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211         spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214
215 /**
216  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217  * @set: tag_set to wait on
218  *
219  * Note: it is driver's responsibility for making sure that quiesce has
220  * been started on or more of the request_queues of the tag_set.  This
221  * function only waits for the quiesce on those request_queues that had
222  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223  */
224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226         if (set->flags & BLK_MQ_F_BLOCKING)
227                 synchronize_srcu(set->srcu);
228         else
229                 synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232
233 /**
234  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235  * @q: request queue.
236  *
237  * Note: this function does not prevent that the struct request end_io()
238  * callback function is invoked. Once this function is returned, we make
239  * sure no dispatch can happen until the queue is unquiesced via
240  * blk_mq_unquiesce_queue().
241  */
242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244         blk_mq_quiesce_queue_nowait(q);
245         /* nothing to wait for non-mq queues */
246         if (queue_is_mq(q))
247                 blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250
251 /*
252  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253  * @q: request queue.
254  *
255  * This function recovers queue into the state before quiescing
256  * which is done by blk_mq_quiesce_queue.
257  */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260         unsigned long flags;
261         bool run_queue = false;
262
263         spin_lock_irqsave(&q->queue_lock, flags);
264         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265                 ;
266         } else if (!--q->quiesce_depth) {
267                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268                 run_queue = true;
269         }
270         spin_unlock_irqrestore(&q->queue_lock, flags);
271
272         /* dispatch requests which are inserted during quiescing */
273         if (run_queue)
274                 blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277
278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280         struct request_queue *q;
281
282         mutex_lock(&set->tag_list_lock);
283         list_for_each_entry(q, &set->tag_list, tag_set_list) {
284                 if (!blk_queue_skip_tagset_quiesce(q))
285                         blk_mq_quiesce_queue_nowait(q);
286         }
287         blk_mq_wait_quiesce_done(set);
288         mutex_unlock(&set->tag_list_lock);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291
292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294         struct request_queue *q;
295
296         mutex_lock(&set->tag_list_lock);
297         list_for_each_entry(q, &set->tag_list, tag_set_list) {
298                 if (!blk_queue_skip_tagset_quiesce(q))
299                         blk_mq_unquiesce_queue(q);
300         }
301         mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304
305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307         struct blk_mq_hw_ctx *hctx;
308         unsigned long i;
309
310         queue_for_each_hw_ctx(q, hctx, i)
311                 if (blk_mq_hw_queue_mapped(hctx))
312                         blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314
315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317         memset(rq, 0, sizeof(*rq));
318
319         INIT_LIST_HEAD(&rq->queuelist);
320         rq->q = q;
321         rq->__sector = (sector_t) -1;
322         INIT_HLIST_NODE(&rq->hash);
323         RB_CLEAR_NODE(&rq->rb_node);
324         rq->tag = BLK_MQ_NO_TAG;
325         rq->internal_tag = BLK_MQ_NO_TAG;
326         rq->start_time_ns = ktime_get_ns();
327         rq->part = NULL;
328         blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331
332 /* Set start and alloc time when the allocated request is actually used */
333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335         if (blk_mq_need_time_stamp(rq))
336                 rq->start_time_ns = ktime_get_ns();
337         else
338                 rq->start_time_ns = 0;
339
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341         if (blk_queue_rq_alloc_time(rq->q))
342                 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343         else
344                 rq->alloc_time_ns = 0;
345 #endif
346 }
347
348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349                 struct blk_mq_tags *tags, unsigned int tag)
350 {
351         struct blk_mq_ctx *ctx = data->ctx;
352         struct blk_mq_hw_ctx *hctx = data->hctx;
353         struct request_queue *q = data->q;
354         struct request *rq = tags->static_rqs[tag];
355
356         rq->q = q;
357         rq->mq_ctx = ctx;
358         rq->mq_hctx = hctx;
359         rq->cmd_flags = data->cmd_flags;
360
361         if (data->flags & BLK_MQ_REQ_PM)
362                 data->rq_flags |= RQF_PM;
363         if (blk_queue_io_stat(q))
364                 data->rq_flags |= RQF_IO_STAT;
365         rq->rq_flags = data->rq_flags;
366
367         if (data->rq_flags & RQF_SCHED_TAGS) {
368                 rq->tag = BLK_MQ_NO_TAG;
369                 rq->internal_tag = tag;
370         } else {
371                 rq->tag = tag;
372                 rq->internal_tag = BLK_MQ_NO_TAG;
373         }
374         rq->timeout = 0;
375
376         rq->part = NULL;
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_USE_SCHED) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (e->type->ops.prepare_request)
399                         e->type->ops.prepare_request(rq);
400         }
401
402         return rq;
403 }
404
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408         unsigned int tag, tag_offset;
409         struct blk_mq_tags *tags;
410         struct request *rq;
411         unsigned long tag_mask;
412         int i, nr = 0;
413
414         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415         if (unlikely(!tag_mask))
416                 return NULL;
417
418         tags = blk_mq_tags_from_data(data);
419         for (i = 0; tag_mask; i++) {
420                 if (!(tag_mask & (1UL << i)))
421                         continue;
422                 tag = tag_offset + i;
423                 prefetch(tags->static_rqs[tag]);
424                 tag_mask &= ~(1UL << i);
425                 rq = blk_mq_rq_ctx_init(data, tags, tag);
426                 rq_list_add(data->cached_rq, rq);
427                 nr++;
428         }
429         /* caller already holds a reference, add for remainder */
430         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431         data->nr_tags -= nr;
432
433         return rq_list_pop(data->cached_rq);
434 }
435
436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 {
438         struct request_queue *q = data->q;
439         u64 alloc_time_ns = 0;
440         struct request *rq;
441         unsigned int tag;
442
443         /* alloc_time includes depth and tag waits */
444         if (blk_queue_rq_alloc_time(q))
445                 alloc_time_ns = ktime_get_ns();
446
447         if (data->cmd_flags & REQ_NOWAIT)
448                 data->flags |= BLK_MQ_REQ_NOWAIT;
449
450         if (q->elevator) {
451                 /*
452                  * All requests use scheduler tags when an I/O scheduler is
453                  * enabled for the queue.
454                  */
455                 data->rq_flags |= RQF_SCHED_TAGS;
456
457                 /*
458                  * Flush/passthrough requests are special and go directly to the
459                  * dispatch list.
460                  */
461                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
462                     !blk_op_is_passthrough(data->cmd_flags)) {
463                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
464
465                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
466
467                         data->rq_flags |= RQF_USE_SCHED;
468                         if (ops->limit_depth)
469                                 ops->limit_depth(data->cmd_flags, data);
470                 }
471         }
472
473 retry:
474         data->ctx = blk_mq_get_ctx(q);
475         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
476         if (!(data->rq_flags & RQF_SCHED_TAGS))
477                 blk_mq_tag_busy(data->hctx);
478
479         if (data->flags & BLK_MQ_REQ_RESERVED)
480                 data->rq_flags |= RQF_RESV;
481
482         /*
483          * Try batched alloc if we want more than 1 tag.
484          */
485         if (data->nr_tags > 1) {
486                 rq = __blk_mq_alloc_requests_batch(data);
487                 if (rq) {
488                         blk_mq_rq_time_init(rq, alloc_time_ns);
489                         return rq;
490                 }
491                 data->nr_tags = 1;
492         }
493
494         /*
495          * Waiting allocations only fail because of an inactive hctx.  In that
496          * case just retry the hctx assignment and tag allocation as CPU hotplug
497          * should have migrated us to an online CPU by now.
498          */
499         tag = blk_mq_get_tag(data);
500         if (tag == BLK_MQ_NO_TAG) {
501                 if (data->flags & BLK_MQ_REQ_NOWAIT)
502                         return NULL;
503                 /*
504                  * Give up the CPU and sleep for a random short time to
505                  * ensure that thread using a realtime scheduling class
506                  * are migrated off the CPU, and thus off the hctx that
507                  * is going away.
508                  */
509                 msleep(3);
510                 goto retry;
511         }
512
513         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
514         blk_mq_rq_time_init(rq, alloc_time_ns);
515         return rq;
516 }
517
518 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
519                                             struct blk_plug *plug,
520                                             blk_opf_t opf,
521                                             blk_mq_req_flags_t flags)
522 {
523         struct blk_mq_alloc_data data = {
524                 .q              = q,
525                 .flags          = flags,
526                 .cmd_flags      = opf,
527                 .nr_tags        = plug->nr_ios,
528                 .cached_rq      = &plug->cached_rq,
529         };
530         struct request *rq;
531
532         if (blk_queue_enter(q, flags))
533                 return NULL;
534
535         plug->nr_ios = 1;
536
537         rq = __blk_mq_alloc_requests(&data);
538         if (unlikely(!rq))
539                 blk_queue_exit(q);
540         return rq;
541 }
542
543 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
544                                                    blk_opf_t opf,
545                                                    blk_mq_req_flags_t flags)
546 {
547         struct blk_plug *plug = current->plug;
548         struct request *rq;
549
550         if (!plug)
551                 return NULL;
552
553         if (rq_list_empty(plug->cached_rq)) {
554                 if (plug->nr_ios == 1)
555                         return NULL;
556                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
557                 if (!rq)
558                         return NULL;
559         } else {
560                 rq = rq_list_peek(&plug->cached_rq);
561                 if (!rq || rq->q != q)
562                         return NULL;
563
564                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
565                         return NULL;
566                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
567                         return NULL;
568
569                 plug->cached_rq = rq_list_next(rq);
570                 blk_mq_rq_time_init(rq, 0);
571         }
572
573         rq->cmd_flags = opf;
574         INIT_LIST_HEAD(&rq->queuelist);
575         return rq;
576 }
577
578 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
579                 blk_mq_req_flags_t flags)
580 {
581         struct request *rq;
582
583         rq = blk_mq_alloc_cached_request(q, opf, flags);
584         if (!rq) {
585                 struct blk_mq_alloc_data data = {
586                         .q              = q,
587                         .flags          = flags,
588                         .cmd_flags      = opf,
589                         .nr_tags        = 1,
590                 };
591                 int ret;
592
593                 ret = blk_queue_enter(q, flags);
594                 if (ret)
595                         return ERR_PTR(ret);
596
597                 rq = __blk_mq_alloc_requests(&data);
598                 if (!rq)
599                         goto out_queue_exit;
600         }
601         rq->__data_len = 0;
602         rq->__sector = (sector_t) -1;
603         rq->bio = rq->biotail = NULL;
604         return rq;
605 out_queue_exit:
606         blk_queue_exit(q);
607         return ERR_PTR(-EWOULDBLOCK);
608 }
609 EXPORT_SYMBOL(blk_mq_alloc_request);
610
611 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
612         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
613 {
614         struct blk_mq_alloc_data data = {
615                 .q              = q,
616                 .flags          = flags,
617                 .cmd_flags      = opf,
618                 .nr_tags        = 1,
619         };
620         u64 alloc_time_ns = 0;
621         struct request *rq;
622         unsigned int cpu;
623         unsigned int tag;
624         int ret;
625
626         /* alloc_time includes depth and tag waits */
627         if (blk_queue_rq_alloc_time(q))
628                 alloc_time_ns = ktime_get_ns();
629
630         /*
631          * If the tag allocator sleeps we could get an allocation for a
632          * different hardware context.  No need to complicate the low level
633          * allocator for this for the rare use case of a command tied to
634          * a specific queue.
635          */
636         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
637             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
638                 return ERR_PTR(-EINVAL);
639
640         if (hctx_idx >= q->nr_hw_queues)
641                 return ERR_PTR(-EIO);
642
643         ret = blk_queue_enter(q, flags);
644         if (ret)
645                 return ERR_PTR(ret);
646
647         /*
648          * Check if the hardware context is actually mapped to anything.
649          * If not tell the caller that it should skip this queue.
650          */
651         ret = -EXDEV;
652         data.hctx = xa_load(&q->hctx_table, hctx_idx);
653         if (!blk_mq_hw_queue_mapped(data.hctx))
654                 goto out_queue_exit;
655         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
656         if (cpu >= nr_cpu_ids)
657                 goto out_queue_exit;
658         data.ctx = __blk_mq_get_ctx(q, cpu);
659
660         if (q->elevator)
661                 data.rq_flags |= RQF_SCHED_TAGS;
662         else
663                 blk_mq_tag_busy(data.hctx);
664
665         if (flags & BLK_MQ_REQ_RESERVED)
666                 data.rq_flags |= RQF_RESV;
667
668         ret = -EWOULDBLOCK;
669         tag = blk_mq_get_tag(&data);
670         if (tag == BLK_MQ_NO_TAG)
671                 goto out_queue_exit;
672         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
673         blk_mq_rq_time_init(rq, alloc_time_ns);
674         rq->__data_len = 0;
675         rq->__sector = (sector_t) -1;
676         rq->bio = rq->biotail = NULL;
677         return rq;
678
679 out_queue_exit:
680         blk_queue_exit(q);
681         return ERR_PTR(ret);
682 }
683 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
684
685 static void blk_mq_finish_request(struct request *rq)
686 {
687         struct request_queue *q = rq->q;
688
689         if (rq->rq_flags & RQF_USE_SCHED) {
690                 q->elevator->type->ops.finish_request(rq);
691                 /*
692                  * For postflush request that may need to be
693                  * completed twice, we should clear this flag
694                  * to avoid double finish_request() on the rq.
695                  */
696                 rq->rq_flags &= ~RQF_USE_SCHED;
697         }
698 }
699
700 static void __blk_mq_free_request(struct request *rq)
701 {
702         struct request_queue *q = rq->q;
703         struct blk_mq_ctx *ctx = rq->mq_ctx;
704         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
705         const int sched_tag = rq->internal_tag;
706
707         blk_crypto_free_request(rq);
708         blk_pm_mark_last_busy(rq);
709         rq->mq_hctx = NULL;
710
711         if (rq->rq_flags & RQF_MQ_INFLIGHT)
712                 __blk_mq_dec_active_requests(hctx);
713
714         if (rq->tag != BLK_MQ_NO_TAG)
715                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
716         if (sched_tag != BLK_MQ_NO_TAG)
717                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
718         blk_mq_sched_restart(hctx);
719         blk_queue_exit(q);
720 }
721
722 void blk_mq_free_request(struct request *rq)
723 {
724         struct request_queue *q = rq->q;
725
726         blk_mq_finish_request(rq);
727
728         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
729                 laptop_io_completion(q->disk->bdi);
730
731         rq_qos_done(q, rq);
732
733         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
734         if (req_ref_put_and_test(rq))
735                 __blk_mq_free_request(rq);
736 }
737 EXPORT_SYMBOL_GPL(blk_mq_free_request);
738
739 void blk_mq_free_plug_rqs(struct blk_plug *plug)
740 {
741         struct request *rq;
742
743         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
744                 blk_mq_free_request(rq);
745 }
746
747 void blk_dump_rq_flags(struct request *rq, char *msg)
748 {
749         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
750                 rq->q->disk ? rq->q->disk->disk_name : "?",
751                 (__force unsigned long long) rq->cmd_flags);
752
753         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
754                (unsigned long long)blk_rq_pos(rq),
755                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
756         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
757                rq->bio, rq->biotail, blk_rq_bytes(rq));
758 }
759 EXPORT_SYMBOL(blk_dump_rq_flags);
760
761 static void req_bio_endio(struct request *rq, struct bio *bio,
762                           unsigned int nbytes, blk_status_t error)
763 {
764         if (unlikely(error)) {
765                 bio->bi_status = error;
766         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
767                 /*
768                  * Partial zone append completions cannot be supported as the
769                  * BIO fragments may end up not being written sequentially.
770                  */
771                 if (bio->bi_iter.bi_size != nbytes)
772                         bio->bi_status = BLK_STS_IOERR;
773                 else
774                         bio->bi_iter.bi_sector = rq->__sector;
775         }
776
777         bio_advance(bio, nbytes);
778
779         if (unlikely(rq->rq_flags & RQF_QUIET))
780                 bio_set_flag(bio, BIO_QUIET);
781         /* don't actually finish bio if it's part of flush sequence */
782         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
783                 bio_endio(bio);
784 }
785
786 static void blk_account_io_completion(struct request *req, unsigned int bytes)
787 {
788         if (req->part && blk_do_io_stat(req)) {
789                 const int sgrp = op_stat_group(req_op(req));
790
791                 part_stat_lock();
792                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
793                 part_stat_unlock();
794         }
795 }
796
797 static void blk_print_req_error(struct request *req, blk_status_t status)
798 {
799         printk_ratelimited(KERN_ERR
800                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
801                 "phys_seg %u prio class %u\n",
802                 blk_status_to_str(status),
803                 req->q->disk ? req->q->disk->disk_name : "?",
804                 blk_rq_pos(req), (__force u32)req_op(req),
805                 blk_op_str(req_op(req)),
806                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
807                 req->nr_phys_segments,
808                 IOPRIO_PRIO_CLASS(req->ioprio));
809 }
810
811 /*
812  * Fully end IO on a request. Does not support partial completions, or
813  * errors.
814  */
815 static void blk_complete_request(struct request *req)
816 {
817         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
818         int total_bytes = blk_rq_bytes(req);
819         struct bio *bio = req->bio;
820
821         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
822
823         if (!bio)
824                 return;
825
826 #ifdef CONFIG_BLK_DEV_INTEGRITY
827         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
828                 req->q->integrity.profile->complete_fn(req, total_bytes);
829 #endif
830
831         /*
832          * Upper layers may call blk_crypto_evict_key() anytime after the last
833          * bio_endio().  Therefore, the keyslot must be released before that.
834          */
835         blk_crypto_rq_put_keyslot(req);
836
837         blk_account_io_completion(req, total_bytes);
838
839         do {
840                 struct bio *next = bio->bi_next;
841
842                 /* Completion has already been traced */
843                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
844
845                 if (req_op(req) == REQ_OP_ZONE_APPEND)
846                         bio->bi_iter.bi_sector = req->__sector;
847
848                 if (!is_flush)
849                         bio_endio(bio);
850                 bio = next;
851         } while (bio);
852
853         /*
854          * Reset counters so that the request stacking driver
855          * can find how many bytes remain in the request
856          * later.
857          */
858         if (!req->end_io) {
859                 req->bio = NULL;
860                 req->__data_len = 0;
861         }
862 }
863
864 /**
865  * blk_update_request - Complete multiple bytes without completing the request
866  * @req:      the request being processed
867  * @error:    block status code
868  * @nr_bytes: number of bytes to complete for @req
869  *
870  * Description:
871  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
872  *     the request structure even if @req doesn't have leftover.
873  *     If @req has leftover, sets it up for the next range of segments.
874  *
875  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
876  *     %false return from this function.
877  *
878  * Note:
879  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
880  *      except in the consistency check at the end of this function.
881  *
882  * Return:
883  *     %false - this request doesn't have any more data
884  *     %true  - this request has more data
885  **/
886 bool blk_update_request(struct request *req, blk_status_t error,
887                 unsigned int nr_bytes)
888 {
889         int total_bytes;
890
891         trace_block_rq_complete(req, error, nr_bytes);
892
893         if (!req->bio)
894                 return false;
895
896 #ifdef CONFIG_BLK_DEV_INTEGRITY
897         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
898             error == BLK_STS_OK)
899                 req->q->integrity.profile->complete_fn(req, nr_bytes);
900 #endif
901
902         /*
903          * Upper layers may call blk_crypto_evict_key() anytime after the last
904          * bio_endio().  Therefore, the keyslot must be released before that.
905          */
906         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
907                 __blk_crypto_rq_put_keyslot(req);
908
909         if (unlikely(error && !blk_rq_is_passthrough(req) &&
910                      !(req->rq_flags & RQF_QUIET)) &&
911                      !test_bit(GD_DEAD, &req->q->disk->state)) {
912                 blk_print_req_error(req, error);
913                 trace_block_rq_error(req, error, nr_bytes);
914         }
915
916         blk_account_io_completion(req, nr_bytes);
917
918         total_bytes = 0;
919         while (req->bio) {
920                 struct bio *bio = req->bio;
921                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
922
923                 if (bio_bytes == bio->bi_iter.bi_size)
924                         req->bio = bio->bi_next;
925
926                 /* Completion has already been traced */
927                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
928                 req_bio_endio(req, bio, bio_bytes, error);
929
930                 total_bytes += bio_bytes;
931                 nr_bytes -= bio_bytes;
932
933                 if (!nr_bytes)
934                         break;
935         }
936
937         /*
938          * completely done
939          */
940         if (!req->bio) {
941                 /*
942                  * Reset counters so that the request stacking driver
943                  * can find how many bytes remain in the request
944                  * later.
945                  */
946                 req->__data_len = 0;
947                 return false;
948         }
949
950         req->__data_len -= total_bytes;
951
952         /* update sector only for requests with clear definition of sector */
953         if (!blk_rq_is_passthrough(req))
954                 req->__sector += total_bytes >> 9;
955
956         /* mixed attributes always follow the first bio */
957         if (req->rq_flags & RQF_MIXED_MERGE) {
958                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
959                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
960         }
961
962         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
963                 /*
964                  * If total number of sectors is less than the first segment
965                  * size, something has gone terribly wrong.
966                  */
967                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
968                         blk_dump_rq_flags(req, "request botched");
969                         req->__data_len = blk_rq_cur_bytes(req);
970                 }
971
972                 /* recalculate the number of segments */
973                 req->nr_phys_segments = blk_recalc_rq_segments(req);
974         }
975
976         return true;
977 }
978 EXPORT_SYMBOL_GPL(blk_update_request);
979
980 static inline void blk_account_io_done(struct request *req, u64 now)
981 {
982         trace_block_io_done(req);
983
984         /*
985          * Account IO completion.  flush_rq isn't accounted as a
986          * normal IO on queueing nor completion.  Accounting the
987          * containing request is enough.
988          */
989         if (blk_do_io_stat(req) && req->part &&
990             !(req->rq_flags & RQF_FLUSH_SEQ)) {
991                 const int sgrp = op_stat_group(req_op(req));
992
993                 part_stat_lock();
994                 update_io_ticks(req->part, jiffies, true);
995                 part_stat_inc(req->part, ios[sgrp]);
996                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
997                 part_stat_unlock();
998         }
999 }
1000
1001 static inline void blk_account_io_start(struct request *req)
1002 {
1003         trace_block_io_start(req);
1004
1005         if (blk_do_io_stat(req)) {
1006                 /*
1007                  * All non-passthrough requests are created from a bio with one
1008                  * exception: when a flush command that is part of a flush sequence
1009                  * generated by the state machine in blk-flush.c is cloned onto the
1010                  * lower device by dm-multipath we can get here without a bio.
1011                  */
1012                 if (req->bio)
1013                         req->part = req->bio->bi_bdev;
1014                 else
1015                         req->part = req->q->disk->part0;
1016
1017                 part_stat_lock();
1018                 update_io_ticks(req->part, jiffies, false);
1019                 part_stat_unlock();
1020         }
1021 }
1022
1023 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1024 {
1025         if (rq->rq_flags & RQF_STATS)
1026                 blk_stat_add(rq, now);
1027
1028         blk_mq_sched_completed_request(rq, now);
1029         blk_account_io_done(rq, now);
1030 }
1031
1032 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1033 {
1034         if (blk_mq_need_time_stamp(rq))
1035                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1036
1037         blk_mq_finish_request(rq);
1038
1039         if (rq->end_io) {
1040                 rq_qos_done(rq->q, rq);
1041                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1042                         blk_mq_free_request(rq);
1043         } else {
1044                 blk_mq_free_request(rq);
1045         }
1046 }
1047 EXPORT_SYMBOL(__blk_mq_end_request);
1048
1049 void blk_mq_end_request(struct request *rq, blk_status_t error)
1050 {
1051         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1052                 BUG();
1053         __blk_mq_end_request(rq, error);
1054 }
1055 EXPORT_SYMBOL(blk_mq_end_request);
1056
1057 #define TAG_COMP_BATCH          32
1058
1059 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1060                                           int *tag_array, int nr_tags)
1061 {
1062         struct request_queue *q = hctx->queue;
1063
1064         /*
1065          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1066          * update hctx->nr_active in batch
1067          */
1068         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1069                 __blk_mq_sub_active_requests(hctx, nr_tags);
1070
1071         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1072         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1073 }
1074
1075 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1076 {
1077         int tags[TAG_COMP_BATCH], nr_tags = 0;
1078         struct blk_mq_hw_ctx *cur_hctx = NULL;
1079         struct request *rq;
1080         u64 now = 0;
1081
1082         if (iob->need_ts)
1083                 now = ktime_get_ns();
1084
1085         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1086                 prefetch(rq->bio);
1087                 prefetch(rq->rq_next);
1088
1089                 blk_complete_request(rq);
1090                 if (iob->need_ts)
1091                         __blk_mq_end_request_acct(rq, now);
1092
1093                 blk_mq_finish_request(rq);
1094
1095                 rq_qos_done(rq->q, rq);
1096
1097                 /*
1098                  * If end_io handler returns NONE, then it still has
1099                  * ownership of the request.
1100                  */
1101                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1102                         continue;
1103
1104                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105                 if (!req_ref_put_and_test(rq))
1106                         continue;
1107
1108                 blk_crypto_free_request(rq);
1109                 blk_pm_mark_last_busy(rq);
1110
1111                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1112                         if (cur_hctx)
1113                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1114                         nr_tags = 0;
1115                         cur_hctx = rq->mq_hctx;
1116                 }
1117                 tags[nr_tags++] = rq->tag;
1118         }
1119
1120         if (nr_tags)
1121                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1122 }
1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1124
1125 static void blk_complete_reqs(struct llist_head *list)
1126 {
1127         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128         struct request *rq, *next;
1129
1130         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131                 rq->q->mq_ops->complete(rq);
1132 }
1133
1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1135 {
1136         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1137 }
1138
1139 static int blk_softirq_cpu_dead(unsigned int cpu)
1140 {
1141         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1142         return 0;
1143 }
1144
1145 static void __blk_mq_complete_request_remote(void *data)
1146 {
1147         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1148 }
1149
1150 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1151 {
1152         int cpu = raw_smp_processor_id();
1153
1154         if (!IS_ENABLED(CONFIG_SMP) ||
1155             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1156                 return false;
1157         /*
1158          * With force threaded interrupts enabled, raising softirq from an SMP
1159          * function call will always result in waking the ksoftirqd thread.
1160          * This is probably worse than completing the request on a different
1161          * cache domain.
1162          */
1163         if (force_irqthreads())
1164                 return false;
1165
1166         /* same CPU or cache domain?  Complete locally */
1167         if (cpu == rq->mq_ctx->cpu ||
1168             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1170                 return false;
1171
1172         /* don't try to IPI to an offline CPU */
1173         return cpu_online(rq->mq_ctx->cpu);
1174 }
1175
1176 static void blk_mq_complete_send_ipi(struct request *rq)
1177 {
1178         unsigned int cpu;
1179
1180         cpu = rq->mq_ctx->cpu;
1181         if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1182                 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1183 }
1184
1185 static void blk_mq_raise_softirq(struct request *rq)
1186 {
1187         struct llist_head *list;
1188
1189         preempt_disable();
1190         list = this_cpu_ptr(&blk_cpu_done);
1191         if (llist_add(&rq->ipi_list, list))
1192                 raise_softirq(BLOCK_SOFTIRQ);
1193         preempt_enable();
1194 }
1195
1196 bool blk_mq_complete_request_remote(struct request *rq)
1197 {
1198         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1199
1200         /*
1201          * For request which hctx has only one ctx mapping,
1202          * or a polled request, always complete locally,
1203          * it's pointless to redirect the completion.
1204          */
1205         if ((rq->mq_hctx->nr_ctx == 1 &&
1206              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1207              rq->cmd_flags & REQ_POLLED)
1208                 return false;
1209
1210         if (blk_mq_complete_need_ipi(rq)) {
1211                 blk_mq_complete_send_ipi(rq);
1212                 return true;
1213         }
1214
1215         if (rq->q->nr_hw_queues == 1) {
1216                 blk_mq_raise_softirq(rq);
1217                 return true;
1218         }
1219         return false;
1220 }
1221 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1222
1223 /**
1224  * blk_mq_complete_request - end I/O on a request
1225  * @rq:         the request being processed
1226  *
1227  * Description:
1228  *      Complete a request by scheduling the ->complete_rq operation.
1229  **/
1230 void blk_mq_complete_request(struct request *rq)
1231 {
1232         if (!blk_mq_complete_request_remote(rq))
1233                 rq->q->mq_ops->complete(rq);
1234 }
1235 EXPORT_SYMBOL(blk_mq_complete_request);
1236
1237 /**
1238  * blk_mq_start_request - Start processing a request
1239  * @rq: Pointer to request to be started
1240  *
1241  * Function used by device drivers to notify the block layer that a request
1242  * is going to be processed now, so blk layer can do proper initializations
1243  * such as starting the timeout timer.
1244  */
1245 void blk_mq_start_request(struct request *rq)
1246 {
1247         struct request_queue *q = rq->q;
1248
1249         trace_block_rq_issue(rq);
1250
1251         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1252                 rq->io_start_time_ns = ktime_get_ns();
1253                 rq->stats_sectors = blk_rq_sectors(rq);
1254                 rq->rq_flags |= RQF_STATS;
1255                 rq_qos_issue(q, rq);
1256         }
1257
1258         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1259
1260         blk_add_timer(rq);
1261         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1262
1263 #ifdef CONFIG_BLK_DEV_INTEGRITY
1264         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1265                 q->integrity.profile->prepare_fn(rq);
1266 #endif
1267         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1268                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1269 }
1270 EXPORT_SYMBOL(blk_mq_start_request);
1271
1272 /*
1273  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1274  * queues. This is important for md arrays to benefit from merging
1275  * requests.
1276  */
1277 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1278 {
1279         if (plug->multiple_queues)
1280                 return BLK_MAX_REQUEST_COUNT * 2;
1281         return BLK_MAX_REQUEST_COUNT;
1282 }
1283
1284 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1285 {
1286         struct request *last = rq_list_peek(&plug->mq_list);
1287
1288         if (!plug->rq_count) {
1289                 trace_block_plug(rq->q);
1290         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1291                    (!blk_queue_nomerges(rq->q) &&
1292                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1293                 blk_mq_flush_plug_list(plug, false);
1294                 last = NULL;
1295                 trace_block_plug(rq->q);
1296         }
1297
1298         if (!plug->multiple_queues && last && last->q != rq->q)
1299                 plug->multiple_queues = true;
1300         /*
1301          * Any request allocated from sched tags can't be issued to
1302          * ->queue_rqs() directly
1303          */
1304         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1305                 plug->has_elevator = true;
1306         rq->rq_next = NULL;
1307         rq_list_add(&plug->mq_list, rq);
1308         plug->rq_count++;
1309 }
1310
1311 /**
1312  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1313  * @rq:         request to insert
1314  * @at_head:    insert request at head or tail of queue
1315  *
1316  * Description:
1317  *    Insert a fully prepared request at the back of the I/O scheduler queue
1318  *    for execution.  Don't wait for completion.
1319  *
1320  * Note:
1321  *    This function will invoke @done directly if the queue is dead.
1322  */
1323 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1324 {
1325         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1326
1327         WARN_ON(irqs_disabled());
1328         WARN_ON(!blk_rq_is_passthrough(rq));
1329
1330         blk_account_io_start(rq);
1331
1332         /*
1333          * As plugging can be enabled for passthrough requests on a zoned
1334          * device, directly accessing the plug instead of using blk_mq_plug()
1335          * should not have any consequences.
1336          */
1337         if (current->plug && !at_head) {
1338                 blk_add_rq_to_plug(current->plug, rq);
1339                 return;
1340         }
1341
1342         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1343         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1344 }
1345 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1346
1347 struct blk_rq_wait {
1348         struct completion done;
1349         blk_status_t ret;
1350 };
1351
1352 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1353 {
1354         struct blk_rq_wait *wait = rq->end_io_data;
1355
1356         wait->ret = ret;
1357         complete(&wait->done);
1358         return RQ_END_IO_NONE;
1359 }
1360
1361 bool blk_rq_is_poll(struct request *rq)
1362 {
1363         if (!rq->mq_hctx)
1364                 return false;
1365         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1366                 return false;
1367         return true;
1368 }
1369 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1370
1371 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1372 {
1373         do {
1374                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1375                 cond_resched();
1376         } while (!completion_done(wait));
1377 }
1378
1379 /**
1380  * blk_execute_rq - insert a request into queue for execution
1381  * @rq:         request to insert
1382  * @at_head:    insert request at head or tail of queue
1383  *
1384  * Description:
1385  *    Insert a fully prepared request at the back of the I/O scheduler queue
1386  *    for execution and wait for completion.
1387  * Return: The blk_status_t result provided to blk_mq_end_request().
1388  */
1389 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1390 {
1391         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1392         struct blk_rq_wait wait = {
1393                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1394         };
1395
1396         WARN_ON(irqs_disabled());
1397         WARN_ON(!blk_rq_is_passthrough(rq));
1398
1399         rq->end_io_data = &wait;
1400         rq->end_io = blk_end_sync_rq;
1401
1402         blk_account_io_start(rq);
1403         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1404         blk_mq_run_hw_queue(hctx, false);
1405
1406         if (blk_rq_is_poll(rq)) {
1407                 blk_rq_poll_completion(rq, &wait.done);
1408         } else {
1409                 /*
1410                  * Prevent hang_check timer from firing at us during very long
1411                  * I/O
1412                  */
1413                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1414
1415                 if (hang_check)
1416                         while (!wait_for_completion_io_timeout(&wait.done,
1417                                         hang_check * (HZ/2)))
1418                                 ;
1419                 else
1420                         wait_for_completion_io(&wait.done);
1421         }
1422
1423         return wait.ret;
1424 }
1425 EXPORT_SYMBOL(blk_execute_rq);
1426
1427 static void __blk_mq_requeue_request(struct request *rq)
1428 {
1429         struct request_queue *q = rq->q;
1430
1431         blk_mq_put_driver_tag(rq);
1432
1433         trace_block_rq_requeue(rq);
1434         rq_qos_requeue(q, rq);
1435
1436         if (blk_mq_request_started(rq)) {
1437                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1438                 rq->rq_flags &= ~RQF_TIMED_OUT;
1439         }
1440 }
1441
1442 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1443 {
1444         struct request_queue *q = rq->q;
1445         unsigned long flags;
1446
1447         __blk_mq_requeue_request(rq);
1448
1449         /* this request will be re-inserted to io scheduler queue */
1450         blk_mq_sched_requeue_request(rq);
1451
1452         spin_lock_irqsave(&q->requeue_lock, flags);
1453         list_add_tail(&rq->queuelist, &q->requeue_list);
1454         spin_unlock_irqrestore(&q->requeue_lock, flags);
1455
1456         if (kick_requeue_list)
1457                 blk_mq_kick_requeue_list(q);
1458 }
1459 EXPORT_SYMBOL(blk_mq_requeue_request);
1460
1461 static void blk_mq_requeue_work(struct work_struct *work)
1462 {
1463         struct request_queue *q =
1464                 container_of(work, struct request_queue, requeue_work.work);
1465         LIST_HEAD(rq_list);
1466         LIST_HEAD(flush_list);
1467         struct request *rq;
1468
1469         spin_lock_irq(&q->requeue_lock);
1470         list_splice_init(&q->requeue_list, &rq_list);
1471         list_splice_init(&q->flush_list, &flush_list);
1472         spin_unlock_irq(&q->requeue_lock);
1473
1474         while (!list_empty(&rq_list)) {
1475                 rq = list_entry(rq_list.next, struct request, queuelist);
1476                 /*
1477                  * If RQF_DONTPREP ist set, the request has been started by the
1478                  * driver already and might have driver-specific data allocated
1479                  * already.  Insert it into the hctx dispatch list to avoid
1480                  * block layer merges for the request.
1481                  */
1482                 if (rq->rq_flags & RQF_DONTPREP) {
1483                         list_del_init(&rq->queuelist);
1484                         blk_mq_request_bypass_insert(rq, 0);
1485                 } else {
1486                         list_del_init(&rq->queuelist);
1487                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1488                 }
1489         }
1490
1491         while (!list_empty(&flush_list)) {
1492                 rq = list_entry(flush_list.next, struct request, queuelist);
1493                 list_del_init(&rq->queuelist);
1494                 blk_mq_insert_request(rq, 0);
1495         }
1496
1497         blk_mq_run_hw_queues(q, false);
1498 }
1499
1500 void blk_mq_kick_requeue_list(struct request_queue *q)
1501 {
1502         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1503 }
1504 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1505
1506 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1507                                     unsigned long msecs)
1508 {
1509         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1510                                     msecs_to_jiffies(msecs));
1511 }
1512 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1513
1514 static bool blk_is_flush_data_rq(struct request *rq)
1515 {
1516         return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1517 }
1518
1519 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1520 {
1521         /*
1522          * If we find a request that isn't idle we know the queue is busy
1523          * as it's checked in the iter.
1524          * Return false to stop the iteration.
1525          *
1526          * In case of queue quiesce, if one flush data request is completed,
1527          * don't count it as inflight given the flush sequence is suspended,
1528          * and the original flush data request is invisible to driver, just
1529          * like other pending requests because of quiesce
1530          */
1531         if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1532                                 blk_is_flush_data_rq(rq) &&
1533                                 blk_mq_request_completed(rq))) {
1534                 bool *busy = priv;
1535
1536                 *busy = true;
1537                 return false;
1538         }
1539
1540         return true;
1541 }
1542
1543 bool blk_mq_queue_inflight(struct request_queue *q)
1544 {
1545         bool busy = false;
1546
1547         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1548         return busy;
1549 }
1550 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1551
1552 static void blk_mq_rq_timed_out(struct request *req)
1553 {
1554         req->rq_flags |= RQF_TIMED_OUT;
1555         if (req->q->mq_ops->timeout) {
1556                 enum blk_eh_timer_return ret;
1557
1558                 ret = req->q->mq_ops->timeout(req);
1559                 if (ret == BLK_EH_DONE)
1560                         return;
1561                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1562         }
1563
1564         blk_add_timer(req);
1565 }
1566
1567 struct blk_expired_data {
1568         bool has_timedout_rq;
1569         unsigned long next;
1570         unsigned long timeout_start;
1571 };
1572
1573 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1574 {
1575         unsigned long deadline;
1576
1577         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1578                 return false;
1579         if (rq->rq_flags & RQF_TIMED_OUT)
1580                 return false;
1581
1582         deadline = READ_ONCE(rq->deadline);
1583         if (time_after_eq(expired->timeout_start, deadline))
1584                 return true;
1585
1586         if (expired->next == 0)
1587                 expired->next = deadline;
1588         else if (time_after(expired->next, deadline))
1589                 expired->next = deadline;
1590         return false;
1591 }
1592
1593 void blk_mq_put_rq_ref(struct request *rq)
1594 {
1595         if (is_flush_rq(rq)) {
1596                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1597                         blk_mq_free_request(rq);
1598         } else if (req_ref_put_and_test(rq)) {
1599                 __blk_mq_free_request(rq);
1600         }
1601 }
1602
1603 static bool blk_mq_check_expired(struct request *rq, void *priv)
1604 {
1605         struct blk_expired_data *expired = priv;
1606
1607         /*
1608          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1609          * be reallocated underneath the timeout handler's processing, then
1610          * the expire check is reliable. If the request is not expired, then
1611          * it was completed and reallocated as a new request after returning
1612          * from blk_mq_check_expired().
1613          */
1614         if (blk_mq_req_expired(rq, expired)) {
1615                 expired->has_timedout_rq = true;
1616                 return false;
1617         }
1618         return true;
1619 }
1620
1621 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1622 {
1623         struct blk_expired_data *expired = priv;
1624
1625         if (blk_mq_req_expired(rq, expired))
1626                 blk_mq_rq_timed_out(rq);
1627         return true;
1628 }
1629
1630 static void blk_mq_timeout_work(struct work_struct *work)
1631 {
1632         struct request_queue *q =
1633                 container_of(work, struct request_queue, timeout_work);
1634         struct blk_expired_data expired = {
1635                 .timeout_start = jiffies,
1636         };
1637         struct blk_mq_hw_ctx *hctx;
1638         unsigned long i;
1639
1640         /* A deadlock might occur if a request is stuck requiring a
1641          * timeout at the same time a queue freeze is waiting
1642          * completion, since the timeout code would not be able to
1643          * acquire the queue reference here.
1644          *
1645          * That's why we don't use blk_queue_enter here; instead, we use
1646          * percpu_ref_tryget directly, because we need to be able to
1647          * obtain a reference even in the short window between the queue
1648          * starting to freeze, by dropping the first reference in
1649          * blk_freeze_queue_start, and the moment the last request is
1650          * consumed, marked by the instant q_usage_counter reaches
1651          * zero.
1652          */
1653         if (!percpu_ref_tryget(&q->q_usage_counter))
1654                 return;
1655
1656         /* check if there is any timed-out request */
1657         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1658         if (expired.has_timedout_rq) {
1659                 /*
1660                  * Before walking tags, we must ensure any submit started
1661                  * before the current time has finished. Since the submit
1662                  * uses srcu or rcu, wait for a synchronization point to
1663                  * ensure all running submits have finished
1664                  */
1665                 blk_mq_wait_quiesce_done(q->tag_set);
1666
1667                 expired.next = 0;
1668                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1669         }
1670
1671         if (expired.next != 0) {
1672                 mod_timer(&q->timeout, expired.next);
1673         } else {
1674                 /*
1675                  * Request timeouts are handled as a forward rolling timer. If
1676                  * we end up here it means that no requests are pending and
1677                  * also that no request has been pending for a while. Mark
1678                  * each hctx as idle.
1679                  */
1680                 queue_for_each_hw_ctx(q, hctx, i) {
1681                         /* the hctx may be unmapped, so check it here */
1682                         if (blk_mq_hw_queue_mapped(hctx))
1683                                 blk_mq_tag_idle(hctx);
1684                 }
1685         }
1686         blk_queue_exit(q);
1687 }
1688
1689 struct flush_busy_ctx_data {
1690         struct blk_mq_hw_ctx *hctx;
1691         struct list_head *list;
1692 };
1693
1694 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1695 {
1696         struct flush_busy_ctx_data *flush_data = data;
1697         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1698         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1699         enum hctx_type type = hctx->type;
1700
1701         spin_lock(&ctx->lock);
1702         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1703         sbitmap_clear_bit(sb, bitnr);
1704         spin_unlock(&ctx->lock);
1705         return true;
1706 }
1707
1708 /*
1709  * Process software queues that have been marked busy, splicing them
1710  * to the for-dispatch
1711  */
1712 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1713 {
1714         struct flush_busy_ctx_data data = {
1715                 .hctx = hctx,
1716                 .list = list,
1717         };
1718
1719         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1720 }
1721 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1722
1723 struct dispatch_rq_data {
1724         struct blk_mq_hw_ctx *hctx;
1725         struct request *rq;
1726 };
1727
1728 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1729                 void *data)
1730 {
1731         struct dispatch_rq_data *dispatch_data = data;
1732         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1733         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1734         enum hctx_type type = hctx->type;
1735
1736         spin_lock(&ctx->lock);
1737         if (!list_empty(&ctx->rq_lists[type])) {
1738                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1739                 list_del_init(&dispatch_data->rq->queuelist);
1740                 if (list_empty(&ctx->rq_lists[type]))
1741                         sbitmap_clear_bit(sb, bitnr);
1742         }
1743         spin_unlock(&ctx->lock);
1744
1745         return !dispatch_data->rq;
1746 }
1747
1748 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1749                                         struct blk_mq_ctx *start)
1750 {
1751         unsigned off = start ? start->index_hw[hctx->type] : 0;
1752         struct dispatch_rq_data data = {
1753                 .hctx = hctx,
1754                 .rq   = NULL,
1755         };
1756
1757         __sbitmap_for_each_set(&hctx->ctx_map, off,
1758                                dispatch_rq_from_ctx, &data);
1759
1760         return data.rq;
1761 }
1762
1763 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1764 {
1765         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1766         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1767         int tag;
1768
1769         blk_mq_tag_busy(rq->mq_hctx);
1770
1771         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1772                 bt = &rq->mq_hctx->tags->breserved_tags;
1773                 tag_offset = 0;
1774         } else {
1775                 if (!hctx_may_queue(rq->mq_hctx, bt))
1776                         return false;
1777         }
1778
1779         tag = __sbitmap_queue_get(bt);
1780         if (tag == BLK_MQ_NO_TAG)
1781                 return false;
1782
1783         rq->tag = tag + tag_offset;
1784         return true;
1785 }
1786
1787 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1788 {
1789         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1790                 return false;
1791
1792         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1793                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1794                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1795                 __blk_mq_inc_active_requests(hctx);
1796         }
1797         hctx->tags->rqs[rq->tag] = rq;
1798         return true;
1799 }
1800
1801 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1802                                 int flags, void *key)
1803 {
1804         struct blk_mq_hw_ctx *hctx;
1805
1806         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1807
1808         spin_lock(&hctx->dispatch_wait_lock);
1809         if (!list_empty(&wait->entry)) {
1810                 struct sbitmap_queue *sbq;
1811
1812                 list_del_init(&wait->entry);
1813                 sbq = &hctx->tags->bitmap_tags;
1814                 atomic_dec(&sbq->ws_active);
1815         }
1816         spin_unlock(&hctx->dispatch_wait_lock);
1817
1818         blk_mq_run_hw_queue(hctx, true);
1819         return 1;
1820 }
1821
1822 /*
1823  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1824  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1825  * restart. For both cases, take care to check the condition again after
1826  * marking us as waiting.
1827  */
1828 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1829                                  struct request *rq)
1830 {
1831         struct sbitmap_queue *sbq;
1832         struct wait_queue_head *wq;
1833         wait_queue_entry_t *wait;
1834         bool ret;
1835
1836         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1837             !(blk_mq_is_shared_tags(hctx->flags))) {
1838                 blk_mq_sched_mark_restart_hctx(hctx);
1839
1840                 /*
1841                  * It's possible that a tag was freed in the window between the
1842                  * allocation failure and adding the hardware queue to the wait
1843                  * queue.
1844                  *
1845                  * Don't clear RESTART here, someone else could have set it.
1846                  * At most this will cost an extra queue run.
1847                  */
1848                 return blk_mq_get_driver_tag(rq);
1849         }
1850
1851         wait = &hctx->dispatch_wait;
1852         if (!list_empty_careful(&wait->entry))
1853                 return false;
1854
1855         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1856                 sbq = &hctx->tags->breserved_tags;
1857         else
1858                 sbq = &hctx->tags->bitmap_tags;
1859         wq = &bt_wait_ptr(sbq, hctx)->wait;
1860
1861         spin_lock_irq(&wq->lock);
1862         spin_lock(&hctx->dispatch_wait_lock);
1863         if (!list_empty(&wait->entry)) {
1864                 spin_unlock(&hctx->dispatch_wait_lock);
1865                 spin_unlock_irq(&wq->lock);
1866                 return false;
1867         }
1868
1869         atomic_inc(&sbq->ws_active);
1870         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1871         __add_wait_queue(wq, wait);
1872
1873         /*
1874          * It's possible that a tag was freed in the window between the
1875          * allocation failure and adding the hardware queue to the wait
1876          * queue.
1877          */
1878         ret = blk_mq_get_driver_tag(rq);
1879         if (!ret) {
1880                 spin_unlock(&hctx->dispatch_wait_lock);
1881                 spin_unlock_irq(&wq->lock);
1882                 return false;
1883         }
1884
1885         /*
1886          * We got a tag, remove ourselves from the wait queue to ensure
1887          * someone else gets the wakeup.
1888          */
1889         list_del_init(&wait->entry);
1890         atomic_dec(&sbq->ws_active);
1891         spin_unlock(&hctx->dispatch_wait_lock);
1892         spin_unlock_irq(&wq->lock);
1893
1894         return true;
1895 }
1896
1897 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1898 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1899 /*
1900  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1901  * - EWMA is one simple way to compute running average value
1902  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1903  * - take 4 as factor for avoiding to get too small(0) result, and this
1904  *   factor doesn't matter because EWMA decreases exponentially
1905  */
1906 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1907 {
1908         unsigned int ewma;
1909
1910         ewma = hctx->dispatch_busy;
1911
1912         if (!ewma && !busy)
1913                 return;
1914
1915         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1916         if (busy)
1917                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1918         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1919
1920         hctx->dispatch_busy = ewma;
1921 }
1922
1923 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1924
1925 static void blk_mq_handle_dev_resource(struct request *rq,
1926                                        struct list_head *list)
1927 {
1928         list_add(&rq->queuelist, list);
1929         __blk_mq_requeue_request(rq);
1930 }
1931
1932 static void blk_mq_handle_zone_resource(struct request *rq,
1933                                         struct list_head *zone_list)
1934 {
1935         /*
1936          * If we end up here it is because we cannot dispatch a request to a
1937          * specific zone due to LLD level zone-write locking or other zone
1938          * related resource not being available. In this case, set the request
1939          * aside in zone_list for retrying it later.
1940          */
1941         list_add(&rq->queuelist, zone_list);
1942         __blk_mq_requeue_request(rq);
1943 }
1944
1945 enum prep_dispatch {
1946         PREP_DISPATCH_OK,
1947         PREP_DISPATCH_NO_TAG,
1948         PREP_DISPATCH_NO_BUDGET,
1949 };
1950
1951 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1952                                                   bool need_budget)
1953 {
1954         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1955         int budget_token = -1;
1956
1957         if (need_budget) {
1958                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1959                 if (budget_token < 0) {
1960                         blk_mq_put_driver_tag(rq);
1961                         return PREP_DISPATCH_NO_BUDGET;
1962                 }
1963                 blk_mq_set_rq_budget_token(rq, budget_token);
1964         }
1965
1966         if (!blk_mq_get_driver_tag(rq)) {
1967                 /*
1968                  * The initial allocation attempt failed, so we need to
1969                  * rerun the hardware queue when a tag is freed. The
1970                  * waitqueue takes care of that. If the queue is run
1971                  * before we add this entry back on the dispatch list,
1972                  * we'll re-run it below.
1973                  */
1974                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1975                         /*
1976                          * All budgets not got from this function will be put
1977                          * together during handling partial dispatch
1978                          */
1979                         if (need_budget)
1980                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1981                         return PREP_DISPATCH_NO_TAG;
1982                 }
1983         }
1984
1985         return PREP_DISPATCH_OK;
1986 }
1987
1988 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1989 static void blk_mq_release_budgets(struct request_queue *q,
1990                 struct list_head *list)
1991 {
1992         struct request *rq;
1993
1994         list_for_each_entry(rq, list, queuelist) {
1995                 int budget_token = blk_mq_get_rq_budget_token(rq);
1996
1997                 if (budget_token >= 0)
1998                         blk_mq_put_dispatch_budget(q, budget_token);
1999         }
2000 }
2001
2002 /*
2003  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2004  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2005  * details)
2006  * Attention, we should explicitly call this in unusual cases:
2007  *  1) did not queue everything initially scheduled to queue
2008  *  2) the last attempt to queue a request failed
2009  */
2010 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2011                               bool from_schedule)
2012 {
2013         if (hctx->queue->mq_ops->commit_rqs && queued) {
2014                 trace_block_unplug(hctx->queue, queued, !from_schedule);
2015                 hctx->queue->mq_ops->commit_rqs(hctx);
2016         }
2017 }
2018
2019 /*
2020  * Returns true if we did some work AND can potentially do more.
2021  */
2022 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2023                              unsigned int nr_budgets)
2024 {
2025         enum prep_dispatch prep;
2026         struct request_queue *q = hctx->queue;
2027         struct request *rq;
2028         int queued;
2029         blk_status_t ret = BLK_STS_OK;
2030         LIST_HEAD(zone_list);
2031         bool needs_resource = false;
2032
2033         if (list_empty(list))
2034                 return false;
2035
2036         /*
2037          * Now process all the entries, sending them to the driver.
2038          */
2039         queued = 0;
2040         do {
2041                 struct blk_mq_queue_data bd;
2042
2043                 rq = list_first_entry(list, struct request, queuelist);
2044
2045                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2046                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2047                 if (prep != PREP_DISPATCH_OK)
2048                         break;
2049
2050                 list_del_init(&rq->queuelist);
2051
2052                 bd.rq = rq;
2053                 bd.last = list_empty(list);
2054
2055                 /*
2056                  * once the request is queued to lld, no need to cover the
2057                  * budget any more
2058                  */
2059                 if (nr_budgets)
2060                         nr_budgets--;
2061                 ret = q->mq_ops->queue_rq(hctx, &bd);
2062                 switch (ret) {
2063                 case BLK_STS_OK:
2064                         queued++;
2065                         break;
2066                 case BLK_STS_RESOURCE:
2067                         needs_resource = true;
2068                         fallthrough;
2069                 case BLK_STS_DEV_RESOURCE:
2070                         blk_mq_handle_dev_resource(rq, list);
2071                         goto out;
2072                 case BLK_STS_ZONE_RESOURCE:
2073                         /*
2074                          * Move the request to zone_list and keep going through
2075                          * the dispatch list to find more requests the drive can
2076                          * accept.
2077                          */
2078                         blk_mq_handle_zone_resource(rq, &zone_list);
2079                         needs_resource = true;
2080                         break;
2081                 default:
2082                         blk_mq_end_request(rq, ret);
2083                 }
2084         } while (!list_empty(list));
2085 out:
2086         if (!list_empty(&zone_list))
2087                 list_splice_tail_init(&zone_list, list);
2088
2089         /* If we didn't flush the entire list, we could have told the driver
2090          * there was more coming, but that turned out to be a lie.
2091          */
2092         if (!list_empty(list) || ret != BLK_STS_OK)
2093                 blk_mq_commit_rqs(hctx, queued, false);
2094
2095         /*
2096          * Any items that need requeuing? Stuff them into hctx->dispatch,
2097          * that is where we will continue on next queue run.
2098          */
2099         if (!list_empty(list)) {
2100                 bool needs_restart;
2101                 /* For non-shared tags, the RESTART check will suffice */
2102                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2103                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2104                         blk_mq_is_shared_tags(hctx->flags));
2105
2106                 if (nr_budgets)
2107                         blk_mq_release_budgets(q, list);
2108
2109                 spin_lock(&hctx->lock);
2110                 list_splice_tail_init(list, &hctx->dispatch);
2111                 spin_unlock(&hctx->lock);
2112
2113                 /*
2114                  * Order adding requests to hctx->dispatch and checking
2115                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2116                  * in blk_mq_sched_restart(). Avoid restart code path to
2117                  * miss the new added requests to hctx->dispatch, meantime
2118                  * SCHED_RESTART is observed here.
2119                  */
2120                 smp_mb();
2121
2122                 /*
2123                  * If SCHED_RESTART was set by the caller of this function and
2124                  * it is no longer set that means that it was cleared by another
2125                  * thread and hence that a queue rerun is needed.
2126                  *
2127                  * If 'no_tag' is set, that means that we failed getting
2128                  * a driver tag with an I/O scheduler attached. If our dispatch
2129                  * waitqueue is no longer active, ensure that we run the queue
2130                  * AFTER adding our entries back to the list.
2131                  *
2132                  * If no I/O scheduler has been configured it is possible that
2133                  * the hardware queue got stopped and restarted before requests
2134                  * were pushed back onto the dispatch list. Rerun the queue to
2135                  * avoid starvation. Notes:
2136                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2137                  *   been stopped before rerunning a queue.
2138                  * - Some but not all block drivers stop a queue before
2139                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2140                  *   and dm-rq.
2141                  *
2142                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2143                  * bit is set, run queue after a delay to avoid IO stalls
2144                  * that could otherwise occur if the queue is idle.  We'll do
2145                  * similar if we couldn't get budget or couldn't lock a zone
2146                  * and SCHED_RESTART is set.
2147                  */
2148                 needs_restart = blk_mq_sched_needs_restart(hctx);
2149                 if (prep == PREP_DISPATCH_NO_BUDGET)
2150                         needs_resource = true;
2151                 if (!needs_restart ||
2152                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2153                         blk_mq_run_hw_queue(hctx, true);
2154                 else if (needs_resource)
2155                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2156
2157                 blk_mq_update_dispatch_busy(hctx, true);
2158                 return false;
2159         }
2160
2161         blk_mq_update_dispatch_busy(hctx, false);
2162         return true;
2163 }
2164
2165 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2166 {
2167         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2168
2169         if (cpu >= nr_cpu_ids)
2170                 cpu = cpumask_first(hctx->cpumask);
2171         return cpu;
2172 }
2173
2174 /*
2175  * It'd be great if the workqueue API had a way to pass
2176  * in a mask and had some smarts for more clever placement.
2177  * For now we just round-robin here, switching for every
2178  * BLK_MQ_CPU_WORK_BATCH queued items.
2179  */
2180 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2181 {
2182         bool tried = false;
2183         int next_cpu = hctx->next_cpu;
2184
2185         if (hctx->queue->nr_hw_queues == 1)
2186                 return WORK_CPU_UNBOUND;
2187
2188         if (--hctx->next_cpu_batch <= 0) {
2189 select_cpu:
2190                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2191                                 cpu_online_mask);
2192                 if (next_cpu >= nr_cpu_ids)
2193                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2194                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2195         }
2196
2197         /*
2198          * Do unbound schedule if we can't find a online CPU for this hctx,
2199          * and it should only happen in the path of handling CPU DEAD.
2200          */
2201         if (!cpu_online(next_cpu)) {
2202                 if (!tried) {
2203                         tried = true;
2204                         goto select_cpu;
2205                 }
2206
2207                 /*
2208                  * Make sure to re-select CPU next time once after CPUs
2209                  * in hctx->cpumask become online again.
2210                  */
2211                 hctx->next_cpu = next_cpu;
2212                 hctx->next_cpu_batch = 1;
2213                 return WORK_CPU_UNBOUND;
2214         }
2215
2216         hctx->next_cpu = next_cpu;
2217         return next_cpu;
2218 }
2219
2220 /**
2221  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2222  * @hctx: Pointer to the hardware queue to run.
2223  * @msecs: Milliseconds of delay to wait before running the queue.
2224  *
2225  * Run a hardware queue asynchronously with a delay of @msecs.
2226  */
2227 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2228 {
2229         if (unlikely(blk_mq_hctx_stopped(hctx)))
2230                 return;
2231         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2232                                     msecs_to_jiffies(msecs));
2233 }
2234 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2235
2236 /**
2237  * blk_mq_run_hw_queue - Start to run a hardware queue.
2238  * @hctx: Pointer to the hardware queue to run.
2239  * @async: If we want to run the queue asynchronously.
2240  *
2241  * Check if the request queue is not in a quiesced state and if there are
2242  * pending requests to be sent. If this is true, run the queue to send requests
2243  * to hardware.
2244  */
2245 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2246 {
2247         bool need_run;
2248
2249         /*
2250          * We can't run the queue inline with interrupts disabled.
2251          */
2252         WARN_ON_ONCE(!async && in_interrupt());
2253
2254         might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2255
2256         /*
2257          * When queue is quiesced, we may be switching io scheduler, or
2258          * updating nr_hw_queues, or other things, and we can't run queue
2259          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2260          *
2261          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2262          * quiesced.
2263          */
2264         __blk_mq_run_dispatch_ops(hctx->queue, false,
2265                 need_run = !blk_queue_quiesced(hctx->queue) &&
2266                 blk_mq_hctx_has_pending(hctx));
2267
2268         if (!need_run)
2269                 return;
2270
2271         if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2272                 blk_mq_delay_run_hw_queue(hctx, 0);
2273                 return;
2274         }
2275
2276         blk_mq_run_dispatch_ops(hctx->queue,
2277                                 blk_mq_sched_dispatch_requests(hctx));
2278 }
2279 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2280
2281 /*
2282  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2283  * scheduler.
2284  */
2285 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2286 {
2287         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2288         /*
2289          * If the IO scheduler does not respect hardware queues when
2290          * dispatching, we just don't bother with multiple HW queues and
2291          * dispatch from hctx for the current CPU since running multiple queues
2292          * just causes lock contention inside the scheduler and pointless cache
2293          * bouncing.
2294          */
2295         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2296
2297         if (!blk_mq_hctx_stopped(hctx))
2298                 return hctx;
2299         return NULL;
2300 }
2301
2302 /**
2303  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2304  * @q: Pointer to the request queue to run.
2305  * @async: If we want to run the queue asynchronously.
2306  */
2307 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2308 {
2309         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2310         unsigned long i;
2311
2312         sq_hctx = NULL;
2313         if (blk_queue_sq_sched(q))
2314                 sq_hctx = blk_mq_get_sq_hctx(q);
2315         queue_for_each_hw_ctx(q, hctx, i) {
2316                 if (blk_mq_hctx_stopped(hctx))
2317                         continue;
2318                 /*
2319                  * Dispatch from this hctx either if there's no hctx preferred
2320                  * by IO scheduler or if it has requests that bypass the
2321                  * scheduler.
2322                  */
2323                 if (!sq_hctx || sq_hctx == hctx ||
2324                     !list_empty_careful(&hctx->dispatch))
2325                         blk_mq_run_hw_queue(hctx, async);
2326         }
2327 }
2328 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2329
2330 /**
2331  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2332  * @q: Pointer to the request queue to run.
2333  * @msecs: Milliseconds of delay to wait before running the queues.
2334  */
2335 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2336 {
2337         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2338         unsigned long i;
2339
2340         sq_hctx = NULL;
2341         if (blk_queue_sq_sched(q))
2342                 sq_hctx = blk_mq_get_sq_hctx(q);
2343         queue_for_each_hw_ctx(q, hctx, i) {
2344                 if (blk_mq_hctx_stopped(hctx))
2345                         continue;
2346                 /*
2347                  * If there is already a run_work pending, leave the
2348                  * pending delay untouched. Otherwise, a hctx can stall
2349                  * if another hctx is re-delaying the other's work
2350                  * before the work executes.
2351                  */
2352                 if (delayed_work_pending(&hctx->run_work))
2353                         continue;
2354                 /*
2355                  * Dispatch from this hctx either if there's no hctx preferred
2356                  * by IO scheduler or if it has requests that bypass the
2357                  * scheduler.
2358                  */
2359                 if (!sq_hctx || sq_hctx == hctx ||
2360                     !list_empty_careful(&hctx->dispatch))
2361                         blk_mq_delay_run_hw_queue(hctx, msecs);
2362         }
2363 }
2364 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2365
2366 /*
2367  * This function is often used for pausing .queue_rq() by driver when
2368  * there isn't enough resource or some conditions aren't satisfied, and
2369  * BLK_STS_RESOURCE is usually returned.
2370  *
2371  * We do not guarantee that dispatch can be drained or blocked
2372  * after blk_mq_stop_hw_queue() returns. Please use
2373  * blk_mq_quiesce_queue() for that requirement.
2374  */
2375 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2376 {
2377         cancel_delayed_work(&hctx->run_work);
2378
2379         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2380 }
2381 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2382
2383 /*
2384  * This function is often used for pausing .queue_rq() by driver when
2385  * there isn't enough resource or some conditions aren't satisfied, and
2386  * BLK_STS_RESOURCE is usually returned.
2387  *
2388  * We do not guarantee that dispatch can be drained or blocked
2389  * after blk_mq_stop_hw_queues() returns. Please use
2390  * blk_mq_quiesce_queue() for that requirement.
2391  */
2392 void blk_mq_stop_hw_queues(struct request_queue *q)
2393 {
2394         struct blk_mq_hw_ctx *hctx;
2395         unsigned long i;
2396
2397         queue_for_each_hw_ctx(q, hctx, i)
2398                 blk_mq_stop_hw_queue(hctx);
2399 }
2400 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2401
2402 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2403 {
2404         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2405
2406         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2407 }
2408 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2409
2410 void blk_mq_start_hw_queues(struct request_queue *q)
2411 {
2412         struct blk_mq_hw_ctx *hctx;
2413         unsigned long i;
2414
2415         queue_for_each_hw_ctx(q, hctx, i)
2416                 blk_mq_start_hw_queue(hctx);
2417 }
2418 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2419
2420 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2421 {
2422         if (!blk_mq_hctx_stopped(hctx))
2423                 return;
2424
2425         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2426         blk_mq_run_hw_queue(hctx, async);
2427 }
2428 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2429
2430 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2431 {
2432         struct blk_mq_hw_ctx *hctx;
2433         unsigned long i;
2434
2435         queue_for_each_hw_ctx(q, hctx, i)
2436                 blk_mq_start_stopped_hw_queue(hctx, async ||
2437                                         (hctx->flags & BLK_MQ_F_BLOCKING));
2438 }
2439 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2440
2441 static void blk_mq_run_work_fn(struct work_struct *work)
2442 {
2443         struct blk_mq_hw_ctx *hctx =
2444                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2445
2446         blk_mq_run_dispatch_ops(hctx->queue,
2447                                 blk_mq_sched_dispatch_requests(hctx));
2448 }
2449
2450 /**
2451  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2452  * @rq: Pointer to request to be inserted.
2453  * @flags: BLK_MQ_INSERT_*
2454  *
2455  * Should only be used carefully, when the caller knows we want to
2456  * bypass a potential IO scheduler on the target device.
2457  */
2458 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2459 {
2460         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2461
2462         spin_lock(&hctx->lock);
2463         if (flags & BLK_MQ_INSERT_AT_HEAD)
2464                 list_add(&rq->queuelist, &hctx->dispatch);
2465         else
2466                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2467         spin_unlock(&hctx->lock);
2468 }
2469
2470 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2471                 struct blk_mq_ctx *ctx, struct list_head *list,
2472                 bool run_queue_async)
2473 {
2474         struct request *rq;
2475         enum hctx_type type = hctx->type;
2476
2477         /*
2478          * Try to issue requests directly if the hw queue isn't busy to save an
2479          * extra enqueue & dequeue to the sw queue.
2480          */
2481         if (!hctx->dispatch_busy && !run_queue_async) {
2482                 blk_mq_run_dispatch_ops(hctx->queue,
2483                         blk_mq_try_issue_list_directly(hctx, list));
2484                 if (list_empty(list))
2485                         goto out;
2486         }
2487
2488         /*
2489          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2490          * offline now
2491          */
2492         list_for_each_entry(rq, list, queuelist) {
2493                 BUG_ON(rq->mq_ctx != ctx);
2494                 trace_block_rq_insert(rq);
2495                 if (rq->cmd_flags & REQ_NOWAIT)
2496                         run_queue_async = true;
2497         }
2498
2499         spin_lock(&ctx->lock);
2500         list_splice_tail_init(list, &ctx->rq_lists[type]);
2501         blk_mq_hctx_mark_pending(hctx, ctx);
2502         spin_unlock(&ctx->lock);
2503 out:
2504         blk_mq_run_hw_queue(hctx, run_queue_async);
2505 }
2506
2507 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2508 {
2509         struct request_queue *q = rq->q;
2510         struct blk_mq_ctx *ctx = rq->mq_ctx;
2511         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2512
2513         if (blk_rq_is_passthrough(rq)) {
2514                 /*
2515                  * Passthrough request have to be added to hctx->dispatch
2516                  * directly.  The device may be in a situation where it can't
2517                  * handle FS request, and always returns BLK_STS_RESOURCE for
2518                  * them, which gets them added to hctx->dispatch.
2519                  *
2520                  * If a passthrough request is required to unblock the queues,
2521                  * and it is added to the scheduler queue, there is no chance to
2522                  * dispatch it given we prioritize requests in hctx->dispatch.
2523                  */
2524                 blk_mq_request_bypass_insert(rq, flags);
2525         } else if (req_op(rq) == REQ_OP_FLUSH) {
2526                 /*
2527                  * Firstly normal IO request is inserted to scheduler queue or
2528                  * sw queue, meantime we add flush request to dispatch queue(
2529                  * hctx->dispatch) directly and there is at most one in-flight
2530                  * flush request for each hw queue, so it doesn't matter to add
2531                  * flush request to tail or front of the dispatch queue.
2532                  *
2533                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2534                  * command, and queueing it will fail when there is any
2535                  * in-flight normal IO request(NCQ command). When adding flush
2536                  * rq to the front of hctx->dispatch, it is easier to introduce
2537                  * extra time to flush rq's latency because of S_SCHED_RESTART
2538                  * compared with adding to the tail of dispatch queue, then
2539                  * chance of flush merge is increased, and less flush requests
2540                  * will be issued to controller. It is observed that ~10% time
2541                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2542                  * drive when adding flush rq to the front of hctx->dispatch.
2543                  *
2544                  * Simply queue flush rq to the front of hctx->dispatch so that
2545                  * intensive flush workloads can benefit in case of NCQ HW.
2546                  */
2547                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2548         } else if (q->elevator) {
2549                 LIST_HEAD(list);
2550
2551                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2552
2553                 list_add(&rq->queuelist, &list);
2554                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2555         } else {
2556                 trace_block_rq_insert(rq);
2557
2558                 spin_lock(&ctx->lock);
2559                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2560                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2561                 else
2562                         list_add_tail(&rq->queuelist,
2563                                       &ctx->rq_lists[hctx->type]);
2564                 blk_mq_hctx_mark_pending(hctx, ctx);
2565                 spin_unlock(&ctx->lock);
2566         }
2567 }
2568
2569 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2570                 unsigned int nr_segs)
2571 {
2572         int err;
2573
2574         if (bio->bi_opf & REQ_RAHEAD)
2575                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2576
2577         rq->__sector = bio->bi_iter.bi_sector;
2578         blk_rq_bio_prep(rq, bio, nr_segs);
2579
2580         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2581         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2582         WARN_ON_ONCE(err);
2583
2584         blk_account_io_start(rq);
2585 }
2586
2587 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2588                                             struct request *rq, bool last)
2589 {
2590         struct request_queue *q = rq->q;
2591         struct blk_mq_queue_data bd = {
2592                 .rq = rq,
2593                 .last = last,
2594         };
2595         blk_status_t ret;
2596
2597         /*
2598          * For OK queue, we are done. For error, caller may kill it.
2599          * Any other error (busy), just add it to our list as we
2600          * previously would have done.
2601          */
2602         ret = q->mq_ops->queue_rq(hctx, &bd);
2603         switch (ret) {
2604         case BLK_STS_OK:
2605                 blk_mq_update_dispatch_busy(hctx, false);
2606                 break;
2607         case BLK_STS_RESOURCE:
2608         case BLK_STS_DEV_RESOURCE:
2609                 blk_mq_update_dispatch_busy(hctx, true);
2610                 __blk_mq_requeue_request(rq);
2611                 break;
2612         default:
2613                 blk_mq_update_dispatch_busy(hctx, false);
2614                 break;
2615         }
2616
2617         return ret;
2618 }
2619
2620 static bool blk_mq_get_budget_and_tag(struct request *rq)
2621 {
2622         int budget_token;
2623
2624         budget_token = blk_mq_get_dispatch_budget(rq->q);
2625         if (budget_token < 0)
2626                 return false;
2627         blk_mq_set_rq_budget_token(rq, budget_token);
2628         if (!blk_mq_get_driver_tag(rq)) {
2629                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2630                 return false;
2631         }
2632         return true;
2633 }
2634
2635 /**
2636  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2637  * @hctx: Pointer of the associated hardware queue.
2638  * @rq: Pointer to request to be sent.
2639  *
2640  * If the device has enough resources to accept a new request now, send the
2641  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2642  * we can try send it another time in the future. Requests inserted at this
2643  * queue have higher priority.
2644  */
2645 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2646                 struct request *rq)
2647 {
2648         blk_status_t ret;
2649
2650         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2651                 blk_mq_insert_request(rq, 0);
2652                 return;
2653         }
2654
2655         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2656                 blk_mq_insert_request(rq, 0);
2657                 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2658                 return;
2659         }
2660
2661         ret = __blk_mq_issue_directly(hctx, rq, true);
2662         switch (ret) {
2663         case BLK_STS_OK:
2664                 break;
2665         case BLK_STS_RESOURCE:
2666         case BLK_STS_DEV_RESOURCE:
2667                 blk_mq_request_bypass_insert(rq, 0);
2668                 blk_mq_run_hw_queue(hctx, false);
2669                 break;
2670         default:
2671                 blk_mq_end_request(rq, ret);
2672                 break;
2673         }
2674 }
2675
2676 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2677 {
2678         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2679
2680         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2681                 blk_mq_insert_request(rq, 0);
2682                 return BLK_STS_OK;
2683         }
2684
2685         if (!blk_mq_get_budget_and_tag(rq))
2686                 return BLK_STS_RESOURCE;
2687         return __blk_mq_issue_directly(hctx, rq, last);
2688 }
2689
2690 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2691 {
2692         struct blk_mq_hw_ctx *hctx = NULL;
2693         struct request *rq;
2694         int queued = 0;
2695         blk_status_t ret = BLK_STS_OK;
2696
2697         while ((rq = rq_list_pop(&plug->mq_list))) {
2698                 bool last = rq_list_empty(plug->mq_list);
2699
2700                 if (hctx != rq->mq_hctx) {
2701                         if (hctx) {
2702                                 blk_mq_commit_rqs(hctx, queued, false);
2703                                 queued = 0;
2704                         }
2705                         hctx = rq->mq_hctx;
2706                 }
2707
2708                 ret = blk_mq_request_issue_directly(rq, last);
2709                 switch (ret) {
2710                 case BLK_STS_OK:
2711                         queued++;
2712                         break;
2713                 case BLK_STS_RESOURCE:
2714                 case BLK_STS_DEV_RESOURCE:
2715                         blk_mq_request_bypass_insert(rq, 0);
2716                         blk_mq_run_hw_queue(hctx, false);
2717                         goto out;
2718                 default:
2719                         blk_mq_end_request(rq, ret);
2720                         break;
2721                 }
2722         }
2723
2724 out:
2725         if (ret != BLK_STS_OK)
2726                 blk_mq_commit_rqs(hctx, queued, false);
2727 }
2728
2729 static void __blk_mq_flush_plug_list(struct request_queue *q,
2730                                      struct blk_plug *plug)
2731 {
2732         if (blk_queue_quiesced(q))
2733                 return;
2734         q->mq_ops->queue_rqs(&plug->mq_list);
2735 }
2736
2737 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2738 {
2739         struct blk_mq_hw_ctx *this_hctx = NULL;
2740         struct blk_mq_ctx *this_ctx = NULL;
2741         struct request *requeue_list = NULL;
2742         struct request **requeue_lastp = &requeue_list;
2743         unsigned int depth = 0;
2744         bool is_passthrough = false;
2745         LIST_HEAD(list);
2746
2747         do {
2748                 struct request *rq = rq_list_pop(&plug->mq_list);
2749
2750                 if (!this_hctx) {
2751                         this_hctx = rq->mq_hctx;
2752                         this_ctx = rq->mq_ctx;
2753                         is_passthrough = blk_rq_is_passthrough(rq);
2754                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2755                            is_passthrough != blk_rq_is_passthrough(rq)) {
2756                         rq_list_add_tail(&requeue_lastp, rq);
2757                         continue;
2758                 }
2759                 list_add(&rq->queuelist, &list);
2760                 depth++;
2761         } while (!rq_list_empty(plug->mq_list));
2762
2763         plug->mq_list = requeue_list;
2764         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2765
2766         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2767         /* passthrough requests should never be issued to the I/O scheduler */
2768         if (is_passthrough) {
2769                 spin_lock(&this_hctx->lock);
2770                 list_splice_tail_init(&list, &this_hctx->dispatch);
2771                 spin_unlock(&this_hctx->lock);
2772                 blk_mq_run_hw_queue(this_hctx, from_sched);
2773         } else if (this_hctx->queue->elevator) {
2774                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2775                                 &list, 0);
2776                 blk_mq_run_hw_queue(this_hctx, from_sched);
2777         } else {
2778                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2779         }
2780         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2781 }
2782
2783 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2784 {
2785         struct request *rq;
2786
2787         /*
2788          * We may have been called recursively midway through handling
2789          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2790          * To avoid mq_list changing under our feet, clear rq_count early and
2791          * bail out specifically if rq_count is 0 rather than checking
2792          * whether the mq_list is empty.
2793          */
2794         if (plug->rq_count == 0)
2795                 return;
2796         plug->rq_count = 0;
2797
2798         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2799                 struct request_queue *q;
2800
2801                 rq = rq_list_peek(&plug->mq_list);
2802                 q = rq->q;
2803
2804                 /*
2805                  * Peek first request and see if we have a ->queue_rqs() hook.
2806                  * If we do, we can dispatch the whole plug list in one go. We
2807                  * already know at this point that all requests belong to the
2808                  * same queue, caller must ensure that's the case.
2809                  *
2810                  * Since we pass off the full list to the driver at this point,
2811                  * we do not increment the active request count for the queue.
2812                  * Bypass shared tags for now because of that.
2813                  */
2814                 if (q->mq_ops->queue_rqs &&
2815                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2816                         blk_mq_run_dispatch_ops(q,
2817                                 __blk_mq_flush_plug_list(q, plug));
2818                         if (rq_list_empty(plug->mq_list))
2819                                 return;
2820                 }
2821
2822                 blk_mq_run_dispatch_ops(q,
2823                                 blk_mq_plug_issue_direct(plug));
2824                 if (rq_list_empty(plug->mq_list))
2825                         return;
2826         }
2827
2828         do {
2829                 blk_mq_dispatch_plug_list(plug, from_schedule);
2830         } while (!rq_list_empty(plug->mq_list));
2831 }
2832
2833 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2834                 struct list_head *list)
2835 {
2836         int queued = 0;
2837         blk_status_t ret = BLK_STS_OK;
2838
2839         while (!list_empty(list)) {
2840                 struct request *rq = list_first_entry(list, struct request,
2841                                 queuelist);
2842
2843                 list_del_init(&rq->queuelist);
2844                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2845                 switch (ret) {
2846                 case BLK_STS_OK:
2847                         queued++;
2848                         break;
2849                 case BLK_STS_RESOURCE:
2850                 case BLK_STS_DEV_RESOURCE:
2851                         blk_mq_request_bypass_insert(rq, 0);
2852                         if (list_empty(list))
2853                                 blk_mq_run_hw_queue(hctx, false);
2854                         goto out;
2855                 default:
2856                         blk_mq_end_request(rq, ret);
2857                         break;
2858                 }
2859         }
2860
2861 out:
2862         if (ret != BLK_STS_OK)
2863                 blk_mq_commit_rqs(hctx, queued, false);
2864 }
2865
2866 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2867                                      struct bio *bio, unsigned int nr_segs)
2868 {
2869         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2870                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2871                         return true;
2872                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2873                         return true;
2874         }
2875         return false;
2876 }
2877
2878 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2879                                                struct blk_plug *plug,
2880                                                struct bio *bio,
2881                                                unsigned int nsegs)
2882 {
2883         struct blk_mq_alloc_data data = {
2884                 .q              = q,
2885                 .nr_tags        = 1,
2886                 .cmd_flags      = bio->bi_opf,
2887         };
2888         struct request *rq;
2889
2890         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2891                 return NULL;
2892
2893         rq_qos_throttle(q, bio);
2894
2895         if (plug) {
2896                 data.nr_tags = plug->nr_ios;
2897                 plug->nr_ios = 1;
2898                 data.cached_rq = &plug->cached_rq;
2899         }
2900
2901         rq = __blk_mq_alloc_requests(&data);
2902         if (rq)
2903                 return rq;
2904         rq_qos_cleanup(q, bio);
2905         if (bio->bi_opf & REQ_NOWAIT)
2906                 bio_wouldblock_error(bio);
2907         return NULL;
2908 }
2909
2910 /* return true if this @rq can be used for @bio */
2911 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2912                 struct bio *bio)
2913 {
2914         enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2915         enum hctx_type hctx_type = rq->mq_hctx->type;
2916
2917         WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2918
2919         if (type != hctx_type &&
2920             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2921                 return false;
2922         if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2923                 return false;
2924
2925         /*
2926          * If any qos ->throttle() end up blocking, we will have flushed the
2927          * plug and hence killed the cached_rq list as well. Pop this entry
2928          * before we throttle.
2929          */
2930         plug->cached_rq = rq_list_next(rq);
2931         rq_qos_throttle(rq->q, bio);
2932
2933         blk_mq_rq_time_init(rq, 0);
2934         rq->cmd_flags = bio->bi_opf;
2935         INIT_LIST_HEAD(&rq->queuelist);
2936         return true;
2937 }
2938
2939 static void bio_set_ioprio(struct bio *bio)
2940 {
2941         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2942         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2943                 bio->bi_ioprio = get_current_ioprio();
2944         blkcg_set_ioprio(bio);
2945 }
2946
2947 /**
2948  * blk_mq_submit_bio - Create and send a request to block device.
2949  * @bio: Bio pointer.
2950  *
2951  * Builds up a request structure from @q and @bio and send to the device. The
2952  * request may not be queued directly to hardware if:
2953  * * This request can be merged with another one
2954  * * We want to place request at plug queue for possible future merging
2955  * * There is an IO scheduler active at this queue
2956  *
2957  * It will not queue the request if there is an error with the bio, or at the
2958  * request creation.
2959  */
2960 void blk_mq_submit_bio(struct bio *bio)
2961 {
2962         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2963         struct blk_plug *plug = blk_mq_plug(bio);
2964         const int is_sync = op_is_sync(bio->bi_opf);
2965         struct blk_mq_hw_ctx *hctx;
2966         struct request *rq = NULL;
2967         unsigned int nr_segs = 1;
2968         blk_status_t ret;
2969
2970         bio = blk_queue_bounce(bio, q);
2971         bio_set_ioprio(bio);
2972
2973         if (plug) {
2974                 rq = rq_list_peek(&plug->cached_rq);
2975                 if (rq && rq->q != q)
2976                         rq = NULL;
2977         }
2978         if (rq) {
2979                 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2980                         bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2981                         if (!bio)
2982                                 return;
2983                 }
2984                 if (!bio_integrity_prep(bio))
2985                         return;
2986                 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2987                         return;
2988                 if (blk_mq_can_use_cached_rq(rq, plug, bio))
2989                         goto done;
2990                 percpu_ref_get(&q->q_usage_counter);
2991         } else {
2992                 if (unlikely(bio_queue_enter(bio)))
2993                         return;
2994                 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2995                         bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2996                         if (!bio)
2997                                 goto fail;
2998                 }
2999                 if (!bio_integrity_prep(bio))
3000                         goto fail;
3001         }
3002
3003         rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3004         if (unlikely(!rq)) {
3005 fail:
3006                 blk_queue_exit(q);
3007                 return;
3008         }
3009
3010 done:
3011         trace_block_getrq(bio);
3012
3013         rq_qos_track(q, rq, bio);
3014
3015         blk_mq_bio_to_request(rq, bio, nr_segs);
3016
3017         ret = blk_crypto_rq_get_keyslot(rq);
3018         if (ret != BLK_STS_OK) {
3019                 bio->bi_status = ret;
3020                 bio_endio(bio);
3021                 blk_mq_free_request(rq);
3022                 return;
3023         }
3024
3025         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3026                 return;
3027
3028         if (plug) {
3029                 blk_add_rq_to_plug(plug, rq);
3030                 return;
3031         }
3032
3033         hctx = rq->mq_hctx;
3034         if ((rq->rq_flags & RQF_USE_SCHED) ||
3035             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3036                 blk_mq_insert_request(rq, 0);
3037                 blk_mq_run_hw_queue(hctx, true);
3038         } else {
3039                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3040         }
3041 }
3042
3043 #ifdef CONFIG_BLK_MQ_STACKING
3044 /**
3045  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3046  * @rq: the request being queued
3047  */
3048 blk_status_t blk_insert_cloned_request(struct request *rq)
3049 {
3050         struct request_queue *q = rq->q;
3051         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3052         unsigned int max_segments = blk_rq_get_max_segments(rq);
3053         blk_status_t ret;
3054
3055         if (blk_rq_sectors(rq) > max_sectors) {
3056                 /*
3057                  * SCSI device does not have a good way to return if
3058                  * Write Same/Zero is actually supported. If a device rejects
3059                  * a non-read/write command (discard, write same,etc.) the
3060                  * low-level device driver will set the relevant queue limit to
3061                  * 0 to prevent blk-lib from issuing more of the offending
3062                  * operations. Commands queued prior to the queue limit being
3063                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3064                  * errors being propagated to upper layers.
3065                  */
3066                 if (max_sectors == 0)
3067                         return BLK_STS_NOTSUPP;
3068
3069                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3070                         __func__, blk_rq_sectors(rq), max_sectors);
3071                 return BLK_STS_IOERR;
3072         }
3073
3074         /*
3075          * The queue settings related to segment counting may differ from the
3076          * original queue.
3077          */
3078         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3079         if (rq->nr_phys_segments > max_segments) {
3080                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3081                         __func__, rq->nr_phys_segments, max_segments);
3082                 return BLK_STS_IOERR;
3083         }
3084
3085         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3086                 return BLK_STS_IOERR;
3087
3088         ret = blk_crypto_rq_get_keyslot(rq);
3089         if (ret != BLK_STS_OK)
3090                 return ret;
3091
3092         blk_account_io_start(rq);
3093
3094         /*
3095          * Since we have a scheduler attached on the top device,
3096          * bypass a potential scheduler on the bottom device for
3097          * insert.
3098          */
3099         blk_mq_run_dispatch_ops(q,
3100                         ret = blk_mq_request_issue_directly(rq, true));
3101         if (ret)
3102                 blk_account_io_done(rq, ktime_get_ns());
3103         return ret;
3104 }
3105 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3106
3107 /**
3108  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3109  * @rq: the clone request to be cleaned up
3110  *
3111  * Description:
3112  *     Free all bios in @rq for a cloned request.
3113  */
3114 void blk_rq_unprep_clone(struct request *rq)
3115 {
3116         struct bio *bio;
3117
3118         while ((bio = rq->bio) != NULL) {
3119                 rq->bio = bio->bi_next;
3120
3121                 bio_put(bio);
3122         }
3123 }
3124 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3125
3126 /**
3127  * blk_rq_prep_clone - Helper function to setup clone request
3128  * @rq: the request to be setup
3129  * @rq_src: original request to be cloned
3130  * @bs: bio_set that bios for clone are allocated from
3131  * @gfp_mask: memory allocation mask for bio
3132  * @bio_ctr: setup function to be called for each clone bio.
3133  *           Returns %0 for success, non %0 for failure.
3134  * @data: private data to be passed to @bio_ctr
3135  *
3136  * Description:
3137  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3138  *     Also, pages which the original bios are pointing to are not copied
3139  *     and the cloned bios just point same pages.
3140  *     So cloned bios must be completed before original bios, which means
3141  *     the caller must complete @rq before @rq_src.
3142  */
3143 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3144                       struct bio_set *bs, gfp_t gfp_mask,
3145                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3146                       void *data)
3147 {
3148         struct bio *bio, *bio_src;
3149
3150         if (!bs)
3151                 bs = &fs_bio_set;
3152
3153         __rq_for_each_bio(bio_src, rq_src) {
3154                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3155                                       bs);
3156                 if (!bio)
3157                         goto free_and_out;
3158
3159                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3160                         goto free_and_out;
3161
3162                 if (rq->bio) {
3163                         rq->biotail->bi_next = bio;
3164                         rq->biotail = bio;
3165                 } else {
3166                         rq->bio = rq->biotail = bio;
3167                 }
3168                 bio = NULL;
3169         }
3170
3171         /* Copy attributes of the original request to the clone request. */
3172         rq->__sector = blk_rq_pos(rq_src);
3173         rq->__data_len = blk_rq_bytes(rq_src);
3174         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3175                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3176                 rq->special_vec = rq_src->special_vec;
3177         }
3178         rq->nr_phys_segments = rq_src->nr_phys_segments;
3179         rq->ioprio = rq_src->ioprio;
3180
3181         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3182                 goto free_and_out;
3183
3184         return 0;
3185
3186 free_and_out:
3187         if (bio)
3188                 bio_put(bio);
3189         blk_rq_unprep_clone(rq);
3190
3191         return -ENOMEM;
3192 }
3193 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3194 #endif /* CONFIG_BLK_MQ_STACKING */
3195
3196 /*
3197  * Steal bios from a request and add them to a bio list.
3198  * The request must not have been partially completed before.
3199  */
3200 void blk_steal_bios(struct bio_list *list, struct request *rq)
3201 {
3202         if (rq->bio) {
3203                 if (list->tail)
3204                         list->tail->bi_next = rq->bio;
3205                 else
3206                         list->head = rq->bio;
3207                 list->tail = rq->biotail;
3208
3209                 rq->bio = NULL;
3210                 rq->biotail = NULL;
3211         }
3212
3213         rq->__data_len = 0;
3214 }
3215 EXPORT_SYMBOL_GPL(blk_steal_bios);
3216
3217 static size_t order_to_size(unsigned int order)
3218 {
3219         return (size_t)PAGE_SIZE << order;
3220 }
3221
3222 /* called before freeing request pool in @tags */
3223 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3224                                     struct blk_mq_tags *tags)
3225 {
3226         struct page *page;
3227         unsigned long flags;
3228
3229         /*
3230          * There is no need to clear mapping if driver tags is not initialized
3231          * or the mapping belongs to the driver tags.
3232          */
3233         if (!drv_tags || drv_tags == tags)
3234                 return;
3235
3236         list_for_each_entry(page, &tags->page_list, lru) {
3237                 unsigned long start = (unsigned long)page_address(page);
3238                 unsigned long end = start + order_to_size(page->private);
3239                 int i;
3240
3241                 for (i = 0; i < drv_tags->nr_tags; i++) {
3242                         struct request *rq = drv_tags->rqs[i];
3243                         unsigned long rq_addr = (unsigned long)rq;
3244
3245                         if (rq_addr >= start && rq_addr < end) {
3246                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3247                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3248                         }
3249                 }
3250         }
3251
3252         /*
3253          * Wait until all pending iteration is done.
3254          *
3255          * Request reference is cleared and it is guaranteed to be observed
3256          * after the ->lock is released.
3257          */
3258         spin_lock_irqsave(&drv_tags->lock, flags);
3259         spin_unlock_irqrestore(&drv_tags->lock, flags);
3260 }
3261
3262 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3263                      unsigned int hctx_idx)
3264 {
3265         struct blk_mq_tags *drv_tags;
3266         struct page *page;
3267
3268         if (list_empty(&tags->page_list))
3269                 return;
3270
3271         if (blk_mq_is_shared_tags(set->flags))
3272                 drv_tags = set->shared_tags;
3273         else
3274                 drv_tags = set->tags[hctx_idx];
3275
3276         if (tags->static_rqs && set->ops->exit_request) {
3277                 int i;
3278
3279                 for (i = 0; i < tags->nr_tags; i++) {
3280                         struct request *rq = tags->static_rqs[i];
3281
3282                         if (!rq)
3283                                 continue;
3284                         set->ops->exit_request(set, rq, hctx_idx);
3285                         tags->static_rqs[i] = NULL;
3286                 }
3287         }
3288
3289         blk_mq_clear_rq_mapping(drv_tags, tags);
3290
3291         while (!list_empty(&tags->page_list)) {
3292                 page = list_first_entry(&tags->page_list, struct page, lru);
3293                 list_del_init(&page->lru);
3294                 /*
3295                  * Remove kmemleak object previously allocated in
3296                  * blk_mq_alloc_rqs().
3297                  */
3298                 kmemleak_free(page_address(page));
3299                 __free_pages(page, page->private);
3300         }
3301 }
3302
3303 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3304 {
3305         kfree(tags->rqs);
3306         tags->rqs = NULL;
3307         kfree(tags->static_rqs);
3308         tags->static_rqs = NULL;
3309
3310         blk_mq_free_tags(tags);
3311 }
3312
3313 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3314                 unsigned int hctx_idx)
3315 {
3316         int i;
3317
3318         for (i = 0; i < set->nr_maps; i++) {
3319                 unsigned int start = set->map[i].queue_offset;
3320                 unsigned int end = start + set->map[i].nr_queues;
3321
3322                 if (hctx_idx >= start && hctx_idx < end)
3323                         break;
3324         }
3325
3326         if (i >= set->nr_maps)
3327                 i = HCTX_TYPE_DEFAULT;
3328
3329         return i;
3330 }
3331
3332 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3333                 unsigned int hctx_idx)
3334 {
3335         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3336
3337         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3338 }
3339
3340 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3341                                                unsigned int hctx_idx,
3342                                                unsigned int nr_tags,
3343                                                unsigned int reserved_tags)
3344 {
3345         int node = blk_mq_get_hctx_node(set, hctx_idx);
3346         struct blk_mq_tags *tags;
3347
3348         if (node == NUMA_NO_NODE)
3349                 node = set->numa_node;
3350
3351         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3352                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3353         if (!tags)
3354                 return NULL;
3355
3356         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3357                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3358                                  node);
3359         if (!tags->rqs)
3360                 goto err_free_tags;
3361
3362         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3363                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3364                                         node);
3365         if (!tags->static_rqs)
3366                 goto err_free_rqs;
3367
3368         return tags;
3369
3370 err_free_rqs:
3371         kfree(tags->rqs);
3372 err_free_tags:
3373         blk_mq_free_tags(tags);
3374         return NULL;
3375 }
3376
3377 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3378                                unsigned int hctx_idx, int node)
3379 {
3380         int ret;
3381
3382         if (set->ops->init_request) {
3383                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3384                 if (ret)
3385                         return ret;
3386         }
3387
3388         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3389         return 0;
3390 }
3391
3392 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3393                             struct blk_mq_tags *tags,
3394                             unsigned int hctx_idx, unsigned int depth)
3395 {
3396         unsigned int i, j, entries_per_page, max_order = 4;
3397         int node = blk_mq_get_hctx_node(set, hctx_idx);
3398         size_t rq_size, left;
3399
3400         if (node == NUMA_NO_NODE)
3401                 node = set->numa_node;
3402
3403         INIT_LIST_HEAD(&tags->page_list);
3404
3405         /*
3406          * rq_size is the size of the request plus driver payload, rounded
3407          * to the cacheline size
3408          */
3409         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3410                                 cache_line_size());
3411         left = rq_size * depth;
3412
3413         for (i = 0; i < depth; ) {
3414                 int this_order = max_order;
3415                 struct page *page;
3416                 int to_do;
3417                 void *p;
3418
3419                 while (this_order && left < order_to_size(this_order - 1))
3420                         this_order--;
3421
3422                 do {
3423                         page = alloc_pages_node(node,
3424                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3425                                 this_order);
3426                         if (page)
3427                                 break;
3428                         if (!this_order--)
3429                                 break;
3430                         if (order_to_size(this_order) < rq_size)
3431                                 break;
3432                 } while (1);
3433
3434                 if (!page)
3435                         goto fail;
3436
3437                 page->private = this_order;
3438                 list_add_tail(&page->lru, &tags->page_list);
3439
3440                 p = page_address(page);
3441                 /*
3442                  * Allow kmemleak to scan these pages as they contain pointers
3443                  * to additional allocations like via ops->init_request().
3444                  */
3445                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3446                 entries_per_page = order_to_size(this_order) / rq_size;
3447                 to_do = min(entries_per_page, depth - i);
3448                 left -= to_do * rq_size;
3449                 for (j = 0; j < to_do; j++) {
3450                         struct request *rq = p;
3451
3452                         tags->static_rqs[i] = rq;
3453                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3454                                 tags->static_rqs[i] = NULL;
3455                                 goto fail;
3456                         }
3457
3458                         p += rq_size;
3459                         i++;
3460                 }
3461         }
3462         return 0;
3463
3464 fail:
3465         blk_mq_free_rqs(set, tags, hctx_idx);
3466         return -ENOMEM;
3467 }
3468
3469 struct rq_iter_data {
3470         struct blk_mq_hw_ctx *hctx;
3471         bool has_rq;
3472 };
3473
3474 static bool blk_mq_has_request(struct request *rq, void *data)
3475 {
3476         struct rq_iter_data *iter_data = data;
3477
3478         if (rq->mq_hctx != iter_data->hctx)
3479                 return true;
3480         iter_data->has_rq = true;
3481         return false;
3482 }
3483
3484 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3485 {
3486         struct blk_mq_tags *tags = hctx->sched_tags ?
3487                         hctx->sched_tags : hctx->tags;
3488         struct rq_iter_data data = {
3489                 .hctx   = hctx,
3490         };
3491
3492         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3493         return data.has_rq;
3494 }
3495
3496 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3497                 struct blk_mq_hw_ctx *hctx)
3498 {
3499         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3500                 return false;
3501         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3502                 return false;
3503         return true;
3504 }
3505
3506 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3507 {
3508         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3509                         struct blk_mq_hw_ctx, cpuhp_online);
3510
3511         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3512             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3513                 return 0;
3514
3515         /*
3516          * Prevent new request from being allocated on the current hctx.
3517          *
3518          * The smp_mb__after_atomic() Pairs with the implied barrier in
3519          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3520          * seen once we return from the tag allocator.
3521          */
3522         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3523         smp_mb__after_atomic();
3524
3525         /*
3526          * Try to grab a reference to the queue and wait for any outstanding
3527          * requests.  If we could not grab a reference the queue has been
3528          * frozen and there are no requests.
3529          */
3530         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3531                 while (blk_mq_hctx_has_requests(hctx))
3532                         msleep(5);
3533                 percpu_ref_put(&hctx->queue->q_usage_counter);
3534         }
3535
3536         return 0;
3537 }
3538
3539 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3540 {
3541         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3542                         struct blk_mq_hw_ctx, cpuhp_online);
3543
3544         if (cpumask_test_cpu(cpu, hctx->cpumask))
3545                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3546         return 0;
3547 }
3548
3549 /*
3550  * 'cpu' is going away. splice any existing rq_list entries from this
3551  * software queue to the hw queue dispatch list, and ensure that it
3552  * gets run.
3553  */
3554 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3555 {
3556         struct blk_mq_hw_ctx *hctx;
3557         struct blk_mq_ctx *ctx;
3558         LIST_HEAD(tmp);
3559         enum hctx_type type;
3560
3561         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3562         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3563                 return 0;
3564
3565         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3566         type = hctx->type;
3567
3568         spin_lock(&ctx->lock);
3569         if (!list_empty(&ctx->rq_lists[type])) {
3570                 list_splice_init(&ctx->rq_lists[type], &tmp);
3571                 blk_mq_hctx_clear_pending(hctx, ctx);
3572         }
3573         spin_unlock(&ctx->lock);
3574
3575         if (list_empty(&tmp))
3576                 return 0;
3577
3578         spin_lock(&hctx->lock);
3579         list_splice_tail_init(&tmp, &hctx->dispatch);
3580         spin_unlock(&hctx->lock);
3581
3582         blk_mq_run_hw_queue(hctx, true);
3583         return 0;
3584 }
3585
3586 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3587 {
3588         if (!(hctx->flags & BLK_MQ_F_STACKING))
3589                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3590                                                     &hctx->cpuhp_online);
3591         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3592                                             &hctx->cpuhp_dead);
3593 }
3594
3595 /*
3596  * Before freeing hw queue, clearing the flush request reference in
3597  * tags->rqs[] for avoiding potential UAF.
3598  */
3599 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3600                 unsigned int queue_depth, struct request *flush_rq)
3601 {
3602         int i;
3603         unsigned long flags;
3604
3605         /* The hw queue may not be mapped yet */
3606         if (!tags)
3607                 return;
3608
3609         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3610
3611         for (i = 0; i < queue_depth; i++)
3612                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3613
3614         /*
3615          * Wait until all pending iteration is done.
3616          *
3617          * Request reference is cleared and it is guaranteed to be observed
3618          * after the ->lock is released.
3619          */
3620         spin_lock_irqsave(&tags->lock, flags);
3621         spin_unlock_irqrestore(&tags->lock, flags);
3622 }
3623
3624 /* hctx->ctxs will be freed in queue's release handler */
3625 static void blk_mq_exit_hctx(struct request_queue *q,
3626                 struct blk_mq_tag_set *set,
3627                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3628 {
3629         struct request *flush_rq = hctx->fq->flush_rq;
3630
3631         if (blk_mq_hw_queue_mapped(hctx))
3632                 blk_mq_tag_idle(hctx);
3633
3634         if (blk_queue_init_done(q))
3635                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3636                                 set->queue_depth, flush_rq);
3637         if (set->ops->exit_request)
3638                 set->ops->exit_request(set, flush_rq, hctx_idx);
3639
3640         if (set->ops->exit_hctx)
3641                 set->ops->exit_hctx(hctx, hctx_idx);
3642
3643         blk_mq_remove_cpuhp(hctx);
3644
3645         xa_erase(&q->hctx_table, hctx_idx);
3646
3647         spin_lock(&q->unused_hctx_lock);
3648         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3649         spin_unlock(&q->unused_hctx_lock);
3650 }
3651
3652 static void blk_mq_exit_hw_queues(struct request_queue *q,
3653                 struct blk_mq_tag_set *set, int nr_queue)
3654 {
3655         struct blk_mq_hw_ctx *hctx;
3656         unsigned long i;
3657
3658         queue_for_each_hw_ctx(q, hctx, i) {
3659                 if (i == nr_queue)
3660                         break;
3661                 blk_mq_exit_hctx(q, set, hctx, i);
3662         }
3663 }
3664
3665 static int blk_mq_init_hctx(struct request_queue *q,
3666                 struct blk_mq_tag_set *set,
3667                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3668 {
3669         hctx->queue_num = hctx_idx;
3670
3671         if (!(hctx->flags & BLK_MQ_F_STACKING))
3672                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3673                                 &hctx->cpuhp_online);
3674         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3675
3676         hctx->tags = set->tags[hctx_idx];
3677
3678         if (set->ops->init_hctx &&
3679             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3680                 goto unregister_cpu_notifier;
3681
3682         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3683                                 hctx->numa_node))
3684                 goto exit_hctx;
3685
3686         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3687                 goto exit_flush_rq;
3688
3689         return 0;
3690
3691  exit_flush_rq:
3692         if (set->ops->exit_request)
3693                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3694  exit_hctx:
3695         if (set->ops->exit_hctx)
3696                 set->ops->exit_hctx(hctx, hctx_idx);
3697  unregister_cpu_notifier:
3698         blk_mq_remove_cpuhp(hctx);
3699         return -1;
3700 }
3701
3702 static struct blk_mq_hw_ctx *
3703 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3704                 int node)
3705 {
3706         struct blk_mq_hw_ctx *hctx;
3707         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3708
3709         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3710         if (!hctx)
3711                 goto fail_alloc_hctx;
3712
3713         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3714                 goto free_hctx;
3715
3716         atomic_set(&hctx->nr_active, 0);
3717         if (node == NUMA_NO_NODE)
3718                 node = set->numa_node;
3719         hctx->numa_node = node;
3720
3721         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3722         spin_lock_init(&hctx->lock);
3723         INIT_LIST_HEAD(&hctx->dispatch);
3724         hctx->queue = q;
3725         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3726
3727         INIT_LIST_HEAD(&hctx->hctx_list);
3728
3729         /*
3730          * Allocate space for all possible cpus to avoid allocation at
3731          * runtime
3732          */
3733         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3734                         gfp, node);
3735         if (!hctx->ctxs)
3736                 goto free_cpumask;
3737
3738         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3739                                 gfp, node, false, false))
3740                 goto free_ctxs;
3741         hctx->nr_ctx = 0;
3742
3743         spin_lock_init(&hctx->dispatch_wait_lock);
3744         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3745         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3746
3747         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3748         if (!hctx->fq)
3749                 goto free_bitmap;
3750
3751         blk_mq_hctx_kobj_init(hctx);
3752
3753         return hctx;
3754
3755  free_bitmap:
3756         sbitmap_free(&hctx->ctx_map);
3757  free_ctxs:
3758         kfree(hctx->ctxs);
3759  free_cpumask:
3760         free_cpumask_var(hctx->cpumask);
3761  free_hctx:
3762         kfree(hctx);
3763  fail_alloc_hctx:
3764         return NULL;
3765 }
3766
3767 static void blk_mq_init_cpu_queues(struct request_queue *q,
3768                                    unsigned int nr_hw_queues)
3769 {
3770         struct blk_mq_tag_set *set = q->tag_set;
3771         unsigned int i, j;
3772
3773         for_each_possible_cpu(i) {
3774                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3775                 struct blk_mq_hw_ctx *hctx;
3776                 int k;
3777
3778                 __ctx->cpu = i;
3779                 spin_lock_init(&__ctx->lock);
3780                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3781                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3782
3783                 __ctx->queue = q;
3784
3785                 /*
3786                  * Set local node, IFF we have more than one hw queue. If
3787                  * not, we remain on the home node of the device
3788                  */
3789                 for (j = 0; j < set->nr_maps; j++) {
3790                         hctx = blk_mq_map_queue_type(q, j, i);
3791                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3792                                 hctx->numa_node = cpu_to_node(i);
3793                 }
3794         }
3795 }
3796
3797 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3798                                              unsigned int hctx_idx,
3799                                              unsigned int depth)
3800 {
3801         struct blk_mq_tags *tags;
3802         int ret;
3803
3804         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3805         if (!tags)
3806                 return NULL;
3807
3808         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3809         if (ret) {
3810                 blk_mq_free_rq_map(tags);
3811                 return NULL;
3812         }
3813
3814         return tags;
3815 }
3816
3817 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3818                                        int hctx_idx)
3819 {
3820         if (blk_mq_is_shared_tags(set->flags)) {
3821                 set->tags[hctx_idx] = set->shared_tags;
3822
3823                 return true;
3824         }
3825
3826         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3827                                                        set->queue_depth);
3828
3829         return set->tags[hctx_idx];
3830 }
3831
3832 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3833                              struct blk_mq_tags *tags,
3834                              unsigned int hctx_idx)
3835 {
3836         if (tags) {
3837                 blk_mq_free_rqs(set, tags, hctx_idx);
3838                 blk_mq_free_rq_map(tags);
3839         }
3840 }
3841
3842 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3843                                       unsigned int hctx_idx)
3844 {
3845         if (!blk_mq_is_shared_tags(set->flags))
3846                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3847
3848         set->tags[hctx_idx] = NULL;
3849 }
3850
3851 static void blk_mq_map_swqueue(struct request_queue *q)
3852 {
3853         unsigned int j, hctx_idx;
3854         unsigned long i;
3855         struct blk_mq_hw_ctx *hctx;
3856         struct blk_mq_ctx *ctx;
3857         struct blk_mq_tag_set *set = q->tag_set;
3858
3859         queue_for_each_hw_ctx(q, hctx, i) {
3860                 cpumask_clear(hctx->cpumask);
3861                 hctx->nr_ctx = 0;
3862                 hctx->dispatch_from = NULL;
3863         }
3864
3865         /*
3866          * Map software to hardware queues.
3867          *
3868          * If the cpu isn't present, the cpu is mapped to first hctx.
3869          */
3870         for_each_possible_cpu(i) {
3871
3872                 ctx = per_cpu_ptr(q->queue_ctx, i);
3873                 for (j = 0; j < set->nr_maps; j++) {
3874                         if (!set->map[j].nr_queues) {
3875                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3876                                                 HCTX_TYPE_DEFAULT, i);
3877                                 continue;
3878                         }
3879                         hctx_idx = set->map[j].mq_map[i];
3880                         /* unmapped hw queue can be remapped after CPU topo changed */
3881                         if (!set->tags[hctx_idx] &&
3882                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3883                                 /*
3884                                  * If tags initialization fail for some hctx,
3885                                  * that hctx won't be brought online.  In this
3886                                  * case, remap the current ctx to hctx[0] which
3887                                  * is guaranteed to always have tags allocated
3888                                  */
3889                                 set->map[j].mq_map[i] = 0;
3890                         }
3891
3892                         hctx = blk_mq_map_queue_type(q, j, i);
3893                         ctx->hctxs[j] = hctx;
3894                         /*
3895                          * If the CPU is already set in the mask, then we've
3896                          * mapped this one already. This can happen if
3897                          * devices share queues across queue maps.
3898                          */
3899                         if (cpumask_test_cpu(i, hctx->cpumask))
3900                                 continue;
3901
3902                         cpumask_set_cpu(i, hctx->cpumask);
3903                         hctx->type = j;
3904                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3905                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3906
3907                         /*
3908                          * If the nr_ctx type overflows, we have exceeded the
3909                          * amount of sw queues we can support.
3910                          */
3911                         BUG_ON(!hctx->nr_ctx);
3912                 }
3913
3914                 for (; j < HCTX_MAX_TYPES; j++)
3915                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3916                                         HCTX_TYPE_DEFAULT, i);
3917         }
3918
3919         queue_for_each_hw_ctx(q, hctx, i) {
3920                 /*
3921                  * If no software queues are mapped to this hardware queue,
3922                  * disable it and free the request entries.
3923                  */
3924                 if (!hctx->nr_ctx) {
3925                         /* Never unmap queue 0.  We need it as a
3926                          * fallback in case of a new remap fails
3927                          * allocation
3928                          */
3929                         if (i)
3930                                 __blk_mq_free_map_and_rqs(set, i);
3931
3932                         hctx->tags = NULL;
3933                         continue;
3934                 }
3935
3936                 hctx->tags = set->tags[i];
3937                 WARN_ON(!hctx->tags);
3938
3939                 /*
3940                  * Set the map size to the number of mapped software queues.
3941                  * This is more accurate and more efficient than looping
3942                  * over all possibly mapped software queues.
3943                  */
3944                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3945
3946                 /*
3947                  * Initialize batch roundrobin counts
3948                  */
3949                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3950                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3951         }
3952 }
3953
3954 /*
3955  * Caller needs to ensure that we're either frozen/quiesced, or that
3956  * the queue isn't live yet.
3957  */
3958 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3959 {
3960         struct blk_mq_hw_ctx *hctx;
3961         unsigned long i;
3962
3963         queue_for_each_hw_ctx(q, hctx, i) {
3964                 if (shared) {
3965                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3966                 } else {
3967                         blk_mq_tag_idle(hctx);
3968                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3969                 }
3970         }
3971 }
3972
3973 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3974                                          bool shared)
3975 {
3976         struct request_queue *q;
3977
3978         lockdep_assert_held(&set->tag_list_lock);
3979
3980         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3981                 blk_mq_freeze_queue(q);
3982                 queue_set_hctx_shared(q, shared);
3983                 blk_mq_unfreeze_queue(q);
3984         }
3985 }
3986
3987 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3988 {
3989         struct blk_mq_tag_set *set = q->tag_set;
3990
3991         mutex_lock(&set->tag_list_lock);
3992         list_del(&q->tag_set_list);
3993         if (list_is_singular(&set->tag_list)) {
3994                 /* just transitioned to unshared */
3995                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3996                 /* update existing queue */
3997                 blk_mq_update_tag_set_shared(set, false);
3998         }
3999         mutex_unlock(&set->tag_list_lock);
4000         INIT_LIST_HEAD(&q->tag_set_list);
4001 }
4002
4003 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4004                                      struct request_queue *q)
4005 {
4006         mutex_lock(&set->tag_list_lock);
4007
4008         /*
4009          * Check to see if we're transitioning to shared (from 1 to 2 queues).
4010          */
4011         if (!list_empty(&set->tag_list) &&
4012             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4013                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4014                 /* update existing queue */
4015                 blk_mq_update_tag_set_shared(set, true);
4016         }
4017         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4018                 queue_set_hctx_shared(q, true);
4019         list_add_tail(&q->tag_set_list, &set->tag_list);
4020
4021         mutex_unlock(&set->tag_list_lock);
4022 }
4023
4024 /* All allocations will be freed in release handler of q->mq_kobj */
4025 static int blk_mq_alloc_ctxs(struct request_queue *q)
4026 {
4027         struct blk_mq_ctxs *ctxs;
4028         int cpu;
4029
4030         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4031         if (!ctxs)
4032                 return -ENOMEM;
4033
4034         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4035         if (!ctxs->queue_ctx)
4036                 goto fail;
4037
4038         for_each_possible_cpu(cpu) {
4039                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4040                 ctx->ctxs = ctxs;
4041         }
4042
4043         q->mq_kobj = &ctxs->kobj;
4044         q->queue_ctx = ctxs->queue_ctx;
4045
4046         return 0;
4047  fail:
4048         kfree(ctxs);
4049         return -ENOMEM;
4050 }
4051
4052 /*
4053  * It is the actual release handler for mq, but we do it from
4054  * request queue's release handler for avoiding use-after-free
4055  * and headache because q->mq_kobj shouldn't have been introduced,
4056  * but we can't group ctx/kctx kobj without it.
4057  */
4058 void blk_mq_release(struct request_queue *q)
4059 {
4060         struct blk_mq_hw_ctx *hctx, *next;
4061         unsigned long i;
4062
4063         queue_for_each_hw_ctx(q, hctx, i)
4064                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4065
4066         /* all hctx are in .unused_hctx_list now */
4067         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4068                 list_del_init(&hctx->hctx_list);
4069                 kobject_put(&hctx->kobj);
4070         }
4071
4072         xa_destroy(&q->hctx_table);
4073
4074         /*
4075          * release .mq_kobj and sw queue's kobject now because
4076          * both share lifetime with request queue.
4077          */
4078         blk_mq_sysfs_deinit(q);
4079 }
4080
4081 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4082                 void *queuedata)
4083 {
4084         struct request_queue *q;
4085         int ret;
4086
4087         q = blk_alloc_queue(set->numa_node);
4088         if (!q)
4089                 return ERR_PTR(-ENOMEM);
4090         q->queuedata = queuedata;
4091         ret = blk_mq_init_allocated_queue(set, q);
4092         if (ret) {
4093                 blk_put_queue(q);
4094                 return ERR_PTR(ret);
4095         }
4096         return q;
4097 }
4098
4099 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4100 {
4101         return blk_mq_init_queue_data(set, NULL);
4102 }
4103 EXPORT_SYMBOL(blk_mq_init_queue);
4104
4105 /**
4106  * blk_mq_destroy_queue - shutdown a request queue
4107  * @q: request queue to shutdown
4108  *
4109  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4110  * requests will be failed with -ENODEV. The caller is responsible for dropping
4111  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4112  *
4113  * Context: can sleep
4114  */
4115 void blk_mq_destroy_queue(struct request_queue *q)
4116 {
4117         WARN_ON_ONCE(!queue_is_mq(q));
4118         WARN_ON_ONCE(blk_queue_registered(q));
4119
4120         might_sleep();
4121
4122         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4123         blk_queue_start_drain(q);
4124         blk_mq_freeze_queue_wait(q);
4125
4126         blk_sync_queue(q);
4127         blk_mq_cancel_work_sync(q);
4128         blk_mq_exit_queue(q);
4129 }
4130 EXPORT_SYMBOL(blk_mq_destroy_queue);
4131
4132 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4133                 struct lock_class_key *lkclass)
4134 {
4135         struct request_queue *q;
4136         struct gendisk *disk;
4137
4138         q = blk_mq_init_queue_data(set, queuedata);
4139         if (IS_ERR(q))
4140                 return ERR_CAST(q);
4141
4142         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4143         if (!disk) {
4144                 blk_mq_destroy_queue(q);
4145                 blk_put_queue(q);
4146                 return ERR_PTR(-ENOMEM);
4147         }
4148         set_bit(GD_OWNS_QUEUE, &disk->state);
4149         return disk;
4150 }
4151 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4152
4153 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4154                 struct lock_class_key *lkclass)
4155 {
4156         struct gendisk *disk;
4157
4158         if (!blk_get_queue(q))
4159                 return NULL;
4160         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4161         if (!disk)
4162                 blk_put_queue(q);
4163         return disk;
4164 }
4165 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4166
4167 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4168                 struct blk_mq_tag_set *set, struct request_queue *q,
4169                 int hctx_idx, int node)
4170 {
4171         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4172
4173         /* reuse dead hctx first */
4174         spin_lock(&q->unused_hctx_lock);
4175         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4176                 if (tmp->numa_node == node) {
4177                         hctx = tmp;
4178                         break;
4179                 }
4180         }
4181         if (hctx)
4182                 list_del_init(&hctx->hctx_list);
4183         spin_unlock(&q->unused_hctx_lock);
4184
4185         if (!hctx)
4186                 hctx = blk_mq_alloc_hctx(q, set, node);
4187         if (!hctx)
4188                 goto fail;
4189
4190         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4191                 goto free_hctx;
4192
4193         return hctx;
4194
4195  free_hctx:
4196         kobject_put(&hctx->kobj);
4197  fail:
4198         return NULL;
4199 }
4200
4201 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4202                                                 struct request_queue *q)
4203 {
4204         struct blk_mq_hw_ctx *hctx;
4205         unsigned long i, j;
4206
4207         /* protect against switching io scheduler  */
4208         mutex_lock(&q->sysfs_lock);
4209         for (i = 0; i < set->nr_hw_queues; i++) {
4210                 int old_node;
4211                 int node = blk_mq_get_hctx_node(set, i);
4212                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4213
4214                 if (old_hctx) {
4215                         old_node = old_hctx->numa_node;
4216                         blk_mq_exit_hctx(q, set, old_hctx, i);
4217                 }
4218
4219                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4220                         if (!old_hctx)
4221                                 break;
4222                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4223                                         node, old_node);
4224                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4225                         WARN_ON_ONCE(!hctx);
4226                 }
4227         }
4228         /*
4229          * Increasing nr_hw_queues fails. Free the newly allocated
4230          * hctxs and keep the previous q->nr_hw_queues.
4231          */
4232         if (i != set->nr_hw_queues) {
4233                 j = q->nr_hw_queues;
4234         } else {
4235                 j = i;
4236                 q->nr_hw_queues = set->nr_hw_queues;
4237         }
4238
4239         xa_for_each_start(&q->hctx_table, j, hctx, j)
4240                 blk_mq_exit_hctx(q, set, hctx, j);
4241         mutex_unlock(&q->sysfs_lock);
4242 }
4243
4244 static void blk_mq_update_poll_flag(struct request_queue *q)
4245 {
4246         struct blk_mq_tag_set *set = q->tag_set;
4247
4248         if (set->nr_maps > HCTX_TYPE_POLL &&
4249             set->map[HCTX_TYPE_POLL].nr_queues)
4250                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4251         else
4252                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4253 }
4254
4255 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4256                 struct request_queue *q)
4257 {
4258         /* mark the queue as mq asap */
4259         q->mq_ops = set->ops;
4260
4261         if (blk_mq_alloc_ctxs(q))
4262                 goto err_exit;
4263
4264         /* init q->mq_kobj and sw queues' kobjects */
4265         blk_mq_sysfs_init(q);
4266
4267         INIT_LIST_HEAD(&q->unused_hctx_list);
4268         spin_lock_init(&q->unused_hctx_lock);
4269
4270         xa_init(&q->hctx_table);
4271
4272         blk_mq_realloc_hw_ctxs(set, q);
4273         if (!q->nr_hw_queues)
4274                 goto err_hctxs;
4275
4276         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4277         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4278
4279         q->tag_set = set;
4280
4281         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4282         blk_mq_update_poll_flag(q);
4283
4284         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4285         INIT_LIST_HEAD(&q->flush_list);
4286         INIT_LIST_HEAD(&q->requeue_list);
4287         spin_lock_init(&q->requeue_lock);
4288
4289         q->nr_requests = set->queue_depth;
4290
4291         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4292         blk_mq_add_queue_tag_set(set, q);
4293         blk_mq_map_swqueue(q);
4294         return 0;
4295
4296 err_hctxs:
4297         blk_mq_release(q);
4298 err_exit:
4299         q->mq_ops = NULL;
4300         return -ENOMEM;
4301 }
4302 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4303
4304 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4305 void blk_mq_exit_queue(struct request_queue *q)
4306 {
4307         struct blk_mq_tag_set *set = q->tag_set;
4308
4309         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4310         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4311         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4312         blk_mq_del_queue_tag_set(q);
4313 }
4314
4315 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4316 {
4317         int i;
4318
4319         if (blk_mq_is_shared_tags(set->flags)) {
4320                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4321                                                 BLK_MQ_NO_HCTX_IDX,
4322                                                 set->queue_depth);
4323                 if (!set->shared_tags)
4324                         return -ENOMEM;
4325         }
4326
4327         for (i = 0; i < set->nr_hw_queues; i++) {
4328                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4329                         goto out_unwind;
4330                 cond_resched();
4331         }
4332
4333         return 0;
4334
4335 out_unwind:
4336         while (--i >= 0)
4337                 __blk_mq_free_map_and_rqs(set, i);
4338
4339         if (blk_mq_is_shared_tags(set->flags)) {
4340                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4341                                         BLK_MQ_NO_HCTX_IDX);
4342         }
4343
4344         return -ENOMEM;
4345 }
4346
4347 /*
4348  * Allocate the request maps associated with this tag_set. Note that this
4349  * may reduce the depth asked for, if memory is tight. set->queue_depth
4350  * will be updated to reflect the allocated depth.
4351  */
4352 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4353 {
4354         unsigned int depth;
4355         int err;
4356
4357         depth = set->queue_depth;
4358         do {
4359                 err = __blk_mq_alloc_rq_maps(set);
4360                 if (!err)
4361                         break;
4362
4363                 set->queue_depth >>= 1;
4364                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4365                         err = -ENOMEM;
4366                         break;
4367                 }
4368         } while (set->queue_depth);
4369
4370         if (!set->queue_depth || err) {
4371                 pr_err("blk-mq: failed to allocate request map\n");
4372                 return -ENOMEM;
4373         }
4374
4375         if (depth != set->queue_depth)
4376                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4377                                                 depth, set->queue_depth);
4378
4379         return 0;
4380 }
4381
4382 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4383 {
4384         /*
4385          * blk_mq_map_queues() and multiple .map_queues() implementations
4386          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4387          * number of hardware queues.
4388          */
4389         if (set->nr_maps == 1)
4390                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4391
4392         if (set->ops->map_queues && !is_kdump_kernel()) {
4393                 int i;
4394
4395                 /*
4396                  * transport .map_queues is usually done in the following
4397                  * way:
4398                  *
4399                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4400                  *      mask = get_cpu_mask(queue)
4401                  *      for_each_cpu(cpu, mask)
4402                  *              set->map[x].mq_map[cpu] = queue;
4403                  * }
4404                  *
4405                  * When we need to remap, the table has to be cleared for
4406                  * killing stale mapping since one CPU may not be mapped
4407                  * to any hw queue.
4408                  */
4409                 for (i = 0; i < set->nr_maps; i++)
4410                         blk_mq_clear_mq_map(&set->map[i]);
4411
4412                 set->ops->map_queues(set);
4413         } else {
4414                 BUG_ON(set->nr_maps > 1);
4415                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4416         }
4417 }
4418
4419 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4420                                        int new_nr_hw_queues)
4421 {
4422         struct blk_mq_tags **new_tags;
4423         int i;
4424
4425         if (set->nr_hw_queues >= new_nr_hw_queues)
4426                 goto done;
4427
4428         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4429                                 GFP_KERNEL, set->numa_node);
4430         if (!new_tags)
4431                 return -ENOMEM;
4432
4433         if (set->tags)
4434                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4435                        sizeof(*set->tags));
4436         kfree(set->tags);
4437         set->tags = new_tags;
4438
4439         for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4440                 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4441                         while (--i >= set->nr_hw_queues)
4442                                 __blk_mq_free_map_and_rqs(set, i);
4443                         return -ENOMEM;
4444                 }
4445                 cond_resched();
4446         }
4447
4448 done:
4449         set->nr_hw_queues = new_nr_hw_queues;
4450         return 0;
4451 }
4452
4453 /*
4454  * Alloc a tag set to be associated with one or more request queues.
4455  * May fail with EINVAL for various error conditions. May adjust the
4456  * requested depth down, if it's too large. In that case, the set
4457  * value will be stored in set->queue_depth.
4458  */
4459 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4460 {
4461         int i, ret;
4462
4463         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4464
4465         if (!set->nr_hw_queues)
4466                 return -EINVAL;
4467         if (!set->queue_depth)
4468                 return -EINVAL;
4469         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4470                 return -EINVAL;
4471
4472         if (!set->ops->queue_rq)
4473                 return -EINVAL;
4474
4475         if (!set->ops->get_budget ^ !set->ops->put_budget)
4476                 return -EINVAL;
4477
4478         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4479                 pr_info("blk-mq: reduced tag depth to %u\n",
4480                         BLK_MQ_MAX_DEPTH);
4481                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4482         }
4483
4484         if (!set->nr_maps)
4485                 set->nr_maps = 1;
4486         else if (set->nr_maps > HCTX_MAX_TYPES)
4487                 return -EINVAL;
4488
4489         /*
4490          * If a crashdump is active, then we are potentially in a very
4491          * memory constrained environment. Limit us to 1 queue and
4492          * 64 tags to prevent using too much memory.
4493          */
4494         if (is_kdump_kernel()) {
4495                 set->nr_hw_queues = 1;
4496                 set->nr_maps = 1;
4497                 set->queue_depth = min(64U, set->queue_depth);
4498         }
4499         /*
4500          * There is no use for more h/w queues than cpus if we just have
4501          * a single map
4502          */
4503         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4504                 set->nr_hw_queues = nr_cpu_ids;
4505
4506         if (set->flags & BLK_MQ_F_BLOCKING) {
4507                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4508                 if (!set->srcu)
4509                         return -ENOMEM;
4510                 ret = init_srcu_struct(set->srcu);
4511                 if (ret)
4512                         goto out_free_srcu;
4513         }
4514
4515         ret = -ENOMEM;
4516         set->tags = kcalloc_node(set->nr_hw_queues,
4517                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4518                                  set->numa_node);
4519         if (!set->tags)
4520                 goto out_cleanup_srcu;
4521
4522         for (i = 0; i < set->nr_maps; i++) {
4523                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4524                                                   sizeof(set->map[i].mq_map[0]),
4525                                                   GFP_KERNEL, set->numa_node);
4526                 if (!set->map[i].mq_map)
4527                         goto out_free_mq_map;
4528                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4529         }
4530
4531         blk_mq_update_queue_map(set);
4532
4533         ret = blk_mq_alloc_set_map_and_rqs(set);
4534         if (ret)
4535                 goto out_free_mq_map;
4536
4537         mutex_init(&set->tag_list_lock);
4538         INIT_LIST_HEAD(&set->tag_list);
4539
4540         return 0;
4541
4542 out_free_mq_map:
4543         for (i = 0; i < set->nr_maps; i++) {
4544                 kfree(set->map[i].mq_map);
4545                 set->map[i].mq_map = NULL;
4546         }
4547         kfree(set->tags);
4548         set->tags = NULL;
4549 out_cleanup_srcu:
4550         if (set->flags & BLK_MQ_F_BLOCKING)
4551                 cleanup_srcu_struct(set->srcu);
4552 out_free_srcu:
4553         if (set->flags & BLK_MQ_F_BLOCKING)
4554                 kfree(set->srcu);
4555         return ret;
4556 }
4557 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4558
4559 /* allocate and initialize a tagset for a simple single-queue device */
4560 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4561                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4562                 unsigned int set_flags)
4563 {
4564         memset(set, 0, sizeof(*set));
4565         set->ops = ops;
4566         set->nr_hw_queues = 1;
4567         set->nr_maps = 1;
4568         set->queue_depth = queue_depth;
4569         set->numa_node = NUMA_NO_NODE;
4570         set->flags = set_flags;
4571         return blk_mq_alloc_tag_set(set);
4572 }
4573 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4574
4575 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4576 {
4577         int i, j;
4578
4579         for (i = 0; i < set->nr_hw_queues; i++)
4580                 __blk_mq_free_map_and_rqs(set, i);
4581
4582         if (blk_mq_is_shared_tags(set->flags)) {
4583                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4584                                         BLK_MQ_NO_HCTX_IDX);
4585         }
4586
4587         for (j = 0; j < set->nr_maps; j++) {
4588                 kfree(set->map[j].mq_map);
4589                 set->map[j].mq_map = NULL;
4590         }
4591
4592         kfree(set->tags);
4593         set->tags = NULL;
4594         if (set->flags & BLK_MQ_F_BLOCKING) {
4595                 cleanup_srcu_struct(set->srcu);
4596                 kfree(set->srcu);
4597         }
4598 }
4599 EXPORT_SYMBOL(blk_mq_free_tag_set);
4600
4601 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4602 {
4603         struct blk_mq_tag_set *set = q->tag_set;
4604         struct blk_mq_hw_ctx *hctx;
4605         int ret;
4606         unsigned long i;
4607
4608         if (!set)
4609                 return -EINVAL;
4610
4611         if (q->nr_requests == nr)
4612                 return 0;
4613
4614         blk_mq_freeze_queue(q);
4615         blk_mq_quiesce_queue(q);
4616
4617         ret = 0;
4618         queue_for_each_hw_ctx(q, hctx, i) {
4619                 if (!hctx->tags)
4620                         continue;
4621                 /*
4622                  * If we're using an MQ scheduler, just update the scheduler
4623                  * queue depth. This is similar to what the old code would do.
4624                  */
4625                 if (hctx->sched_tags) {
4626                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4627                                                       nr, true);
4628                 } else {
4629                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4630                                                       false);
4631                 }
4632                 if (ret)
4633                         break;
4634                 if (q->elevator && q->elevator->type->ops.depth_updated)
4635                         q->elevator->type->ops.depth_updated(hctx);
4636         }
4637         if (!ret) {
4638                 q->nr_requests = nr;
4639                 if (blk_mq_is_shared_tags(set->flags)) {
4640                         if (q->elevator)
4641                                 blk_mq_tag_update_sched_shared_tags(q);
4642                         else
4643                                 blk_mq_tag_resize_shared_tags(set, nr);
4644                 }
4645         }
4646
4647         blk_mq_unquiesce_queue(q);
4648         blk_mq_unfreeze_queue(q);
4649
4650         return ret;
4651 }
4652
4653 /*
4654  * request_queue and elevator_type pair.
4655  * It is just used by __blk_mq_update_nr_hw_queues to cache
4656  * the elevator_type associated with a request_queue.
4657  */
4658 struct blk_mq_qe_pair {
4659         struct list_head node;
4660         struct request_queue *q;
4661         struct elevator_type *type;
4662 };
4663
4664 /*
4665  * Cache the elevator_type in qe pair list and switch the
4666  * io scheduler to 'none'
4667  */
4668 static bool blk_mq_elv_switch_none(struct list_head *head,
4669                 struct request_queue *q)
4670 {
4671         struct blk_mq_qe_pair *qe;
4672
4673         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4674         if (!qe)
4675                 return false;
4676
4677         /* q->elevator needs protection from ->sysfs_lock */
4678         mutex_lock(&q->sysfs_lock);
4679
4680         /* the check has to be done with holding sysfs_lock */
4681         if (!q->elevator) {
4682                 kfree(qe);
4683                 goto unlock;
4684         }
4685
4686         INIT_LIST_HEAD(&qe->node);
4687         qe->q = q;
4688         qe->type = q->elevator->type;
4689         /* keep a reference to the elevator module as we'll switch back */
4690         __elevator_get(qe->type);
4691         list_add(&qe->node, head);
4692         elevator_disable(q);
4693 unlock:
4694         mutex_unlock(&q->sysfs_lock);
4695
4696         return true;
4697 }
4698
4699 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4700                                                 struct request_queue *q)
4701 {
4702         struct blk_mq_qe_pair *qe;
4703
4704         list_for_each_entry(qe, head, node)
4705                 if (qe->q == q)
4706                         return qe;
4707
4708         return NULL;
4709 }
4710
4711 static void blk_mq_elv_switch_back(struct list_head *head,
4712                                   struct request_queue *q)
4713 {
4714         struct blk_mq_qe_pair *qe;
4715         struct elevator_type *t;
4716
4717         qe = blk_lookup_qe_pair(head, q);
4718         if (!qe)
4719                 return;
4720         t = qe->type;
4721         list_del(&qe->node);
4722         kfree(qe);
4723
4724         mutex_lock(&q->sysfs_lock);
4725         elevator_switch(q, t);
4726         /* drop the reference acquired in blk_mq_elv_switch_none */
4727         elevator_put(t);
4728         mutex_unlock(&q->sysfs_lock);
4729 }
4730
4731 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4732                                                         int nr_hw_queues)
4733 {
4734         struct request_queue *q;
4735         LIST_HEAD(head);
4736         int prev_nr_hw_queues = set->nr_hw_queues;
4737         int i;
4738
4739         lockdep_assert_held(&set->tag_list_lock);
4740
4741         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4742                 nr_hw_queues = nr_cpu_ids;
4743         if (nr_hw_queues < 1)
4744                 return;
4745         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4746                 return;
4747
4748         list_for_each_entry(q, &set->tag_list, tag_set_list)
4749                 blk_mq_freeze_queue(q);
4750         /*
4751          * Switch IO scheduler to 'none', cleaning up the data associated
4752          * with the previous scheduler. We will switch back once we are done
4753          * updating the new sw to hw queue mappings.
4754          */
4755         list_for_each_entry(q, &set->tag_list, tag_set_list)
4756                 if (!blk_mq_elv_switch_none(&head, q))
4757                         goto switch_back;
4758
4759         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4760                 blk_mq_debugfs_unregister_hctxs(q);
4761                 blk_mq_sysfs_unregister_hctxs(q);
4762         }
4763
4764         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4765                 goto reregister;
4766
4767 fallback:
4768         blk_mq_update_queue_map(set);
4769         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4770                 blk_mq_realloc_hw_ctxs(set, q);
4771                 blk_mq_update_poll_flag(q);
4772                 if (q->nr_hw_queues != set->nr_hw_queues) {
4773                         int i = prev_nr_hw_queues;
4774
4775                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4776                                         nr_hw_queues, prev_nr_hw_queues);
4777                         for (; i < set->nr_hw_queues; i++)
4778                                 __blk_mq_free_map_and_rqs(set, i);
4779
4780                         set->nr_hw_queues = prev_nr_hw_queues;
4781                         goto fallback;
4782                 }
4783                 blk_mq_map_swqueue(q);
4784         }
4785
4786 reregister:
4787         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4788                 blk_mq_sysfs_register_hctxs(q);
4789                 blk_mq_debugfs_register_hctxs(q);
4790         }
4791
4792 switch_back:
4793         list_for_each_entry(q, &set->tag_list, tag_set_list)
4794                 blk_mq_elv_switch_back(&head, q);
4795
4796         list_for_each_entry(q, &set->tag_list, tag_set_list)
4797                 blk_mq_unfreeze_queue(q);
4798
4799         /* Free the excess tags when nr_hw_queues shrink. */
4800         for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4801                 __blk_mq_free_map_and_rqs(set, i);
4802 }
4803
4804 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4805 {
4806         mutex_lock(&set->tag_list_lock);
4807         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4808         mutex_unlock(&set->tag_list_lock);
4809 }
4810 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4811
4812 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4813                          struct io_comp_batch *iob, unsigned int flags)
4814 {
4815         long state = get_current_state();
4816         int ret;
4817
4818         do {
4819                 ret = q->mq_ops->poll(hctx, iob);
4820                 if (ret > 0) {
4821                         __set_current_state(TASK_RUNNING);
4822                         return ret;
4823                 }
4824
4825                 if (signal_pending_state(state, current))
4826                         __set_current_state(TASK_RUNNING);
4827                 if (task_is_running(current))
4828                         return 1;
4829
4830                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4831                         break;
4832                 cpu_relax();
4833         } while (!need_resched());
4834
4835         __set_current_state(TASK_RUNNING);
4836         return 0;
4837 }
4838
4839 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4840                 struct io_comp_batch *iob, unsigned int flags)
4841 {
4842         struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4843
4844         return blk_hctx_poll(q, hctx, iob, flags);
4845 }
4846
4847 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4848                 unsigned int poll_flags)
4849 {
4850         struct request_queue *q = rq->q;
4851         int ret;
4852
4853         if (!blk_rq_is_poll(rq))
4854                 return 0;
4855         if (!percpu_ref_tryget(&q->q_usage_counter))
4856                 return 0;
4857
4858         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4859         blk_queue_exit(q);
4860
4861         return ret;
4862 }
4863 EXPORT_SYMBOL_GPL(blk_rq_poll);
4864
4865 unsigned int blk_mq_rq_cpu(struct request *rq)
4866 {
4867         return rq->mq_ctx->cpu;
4868 }
4869 EXPORT_SYMBOL(blk_mq_rq_cpu);
4870
4871 void blk_mq_cancel_work_sync(struct request_queue *q)
4872 {
4873         struct blk_mq_hw_ctx *hctx;
4874         unsigned long i;
4875
4876         cancel_delayed_work_sync(&q->requeue_work);
4877
4878         queue_for_each_hw_ctx(q, hctx, i)
4879                 cancel_delayed_work_sync(&hctx->run_work);
4880 }
4881
4882 static int __init blk_mq_init(void)
4883 {
4884         int i;
4885
4886         for_each_possible_cpu(i)
4887                 init_llist_head(&per_cpu(blk_cpu_done, i));
4888         for_each_possible_cpu(i)
4889                 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4890                          __blk_mq_complete_request_remote, NULL);
4891         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4892
4893         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4894                                   "block/softirq:dead", NULL,
4895                                   blk_softirq_cpu_dead);
4896         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4897                                 blk_mq_hctx_notify_dead);
4898         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4899                                 blk_mq_hctx_notify_online,
4900                                 blk_mq_hctx_notify_offline);
4901         return 0;
4902 }
4903 subsys_initcall(blk_mq_init);