ASoC: mediatek: mt8192-mt6359: Make i2s9 share the clock from i2s8
[platform/kernel/linux-starfive.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54         int ddir, sectors, bucket;
55
56         ddir = rq_data_dir(rq);
57         sectors = blk_rq_stats_sectors(rq);
58
59         bucket = ddir + 2 * ilog2(sectors);
60
61         if (bucket < 0)
62                 return -1;
63         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65
66         return bucket;
67 }
68
69 #define BLK_QC_T_SHIFT          16
70 #define BLK_QC_T_INTERNAL       (1U << 31)
71
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73                 blk_qc_t qc)
74 {
75         return xa_load(&q->hctx_table,
76                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80                 blk_qc_t qc)
81 {
82         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83
84         if (qc & BLK_QC_T_INTERNAL)
85                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86         return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92                 (rq->tag != -1 ?
93                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102         return !list_empty_careful(&hctx->dispatch) ||
103                 sbitmap_any_bit_set(&hctx->ctx_map) ||
104                         blk_mq_sched_has_work(hctx);
105 }
106
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111                                      struct blk_mq_ctx *ctx)
112 {
113         const int bit = ctx->index_hw[hctx->type];
114
115         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116                 sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120                                       struct blk_mq_ctx *ctx)
121 {
122         const int bit = ctx->index_hw[hctx->type];
123
124         sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126
127 struct mq_inflight {
128         struct block_device *part;
129         unsigned int inflight[2];
130 };
131
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264         if (blk_queue_has_srcu(q))
265                 synchronize_srcu(q->srcu);
266         else
267                 synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282         blk_mq_quiesce_queue_nowait(q);
283         blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296         unsigned long flags;
297         bool run_queue = false;
298
299         spin_lock_irqsave(&q->queue_lock, flags);
300         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301                 ;
302         } else if (!--q->quiesce_depth) {
303                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304                 run_queue = true;
305         }
306         spin_unlock_irqrestore(&q->queue_lock, flags);
307
308         /* dispatch requests which are inserted during quiescing */
309         if (run_queue)
310                 blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316         struct blk_mq_hw_ctx *hctx;
317         unsigned long i;
318
319         queue_for_each_hw_ctx(q, hctx, i)
320                 if (blk_mq_hw_queue_mapped(hctx))
321                         blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326         memset(rq, 0, sizeof(*rq));
327
328         INIT_LIST_HEAD(&rq->queuelist);
329         rq->q = q;
330         rq->__sector = (sector_t) -1;
331         INIT_HLIST_NODE(&rq->hash);
332         RB_CLEAR_NODE(&rq->rb_node);
333         rq->tag = BLK_MQ_NO_TAG;
334         rq->internal_tag = BLK_MQ_NO_TAG;
335         rq->start_time_ns = ktime_get_ns();
336         rq->part = NULL;
337         blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344         struct blk_mq_ctx *ctx = data->ctx;
345         struct blk_mq_hw_ctx *hctx = data->hctx;
346         struct request_queue *q = data->q;
347         struct request *rq = tags->static_rqs[tag];
348
349         rq->q = q;
350         rq->mq_ctx = ctx;
351         rq->mq_hctx = hctx;
352         rq->cmd_flags = data->cmd_flags;
353
354         if (data->flags & BLK_MQ_REQ_PM)
355                 data->rq_flags |= RQF_PM;
356         if (blk_queue_io_stat(q))
357                 data->rq_flags |= RQF_IO_STAT;
358         rq->rq_flags = data->rq_flags;
359
360         if (!(data->rq_flags & RQF_ELV)) {
361                 rq->tag = tag;
362                 rq->internal_tag = BLK_MQ_NO_TAG;
363         } else {
364                 rq->tag = BLK_MQ_NO_TAG;
365                 rq->internal_tag = tag;
366         }
367         rq->timeout = 0;
368
369         if (blk_mq_need_time_stamp(rq))
370                 rq->start_time_ns = ktime_get_ns();
371         else
372                 rq->start_time_ns = 0;
373         rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375         rq->alloc_time_ns = alloc_time_ns;
376 #endif
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_ELV) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (!op_is_flush(data->cmd_flags) &&
399                     e->type->ops.prepare_request) {
400                         e->type->ops.prepare_request(rq);
401                         rq->rq_flags |= RQF_ELVPRIV;
402                 }
403         }
404
405         return rq;
406 }
407
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410                 u64 alloc_time_ns)
411 {
412         unsigned int tag, tag_offset;
413         struct blk_mq_tags *tags;
414         struct request *rq;
415         unsigned long tag_mask;
416         int i, nr = 0;
417
418         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419         if (unlikely(!tag_mask))
420                 return NULL;
421
422         tags = blk_mq_tags_from_data(data);
423         for (i = 0; tag_mask; i++) {
424                 if (!(tag_mask & (1UL << i)))
425                         continue;
426                 tag = tag_offset + i;
427                 prefetch(tags->static_rqs[tag]);
428                 tag_mask &= ~(1UL << i);
429                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430                 rq_list_add(data->cached_rq, rq);
431                 nr++;
432         }
433         /* caller already holds a reference, add for remainder */
434         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435         data->nr_tags -= nr;
436
437         return rq_list_pop(data->cached_rq);
438 }
439
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442         struct request_queue *q = data->q;
443         u64 alloc_time_ns = 0;
444         struct request *rq;
445         unsigned int tag;
446
447         /* alloc_time includes depth and tag waits */
448         if (blk_queue_rq_alloc_time(q))
449                 alloc_time_ns = ktime_get_ns();
450
451         if (data->cmd_flags & REQ_NOWAIT)
452                 data->flags |= BLK_MQ_REQ_NOWAIT;
453
454         if (q->elevator) {
455                 struct elevator_queue *e = q->elevator;
456
457                 data->rq_flags |= RQF_ELV;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list. Don't include reserved tags in the
462                  * limiting, as it isn't useful.
463                  */
464                 if (!op_is_flush(data->cmd_flags) &&
465                     !blk_op_is_passthrough(data->cmd_flags) &&
466                     e->type->ops.limit_depth &&
467                     !(data->flags & BLK_MQ_REQ_RESERVED))
468                         e->type->ops.limit_depth(data->cmd_flags, data);
469         }
470
471 retry:
472         data->ctx = blk_mq_get_ctx(q);
473         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474         if (!(data->rq_flags & RQF_ELV))
475                 blk_mq_tag_busy(data->hctx);
476
477         if (data->flags & BLK_MQ_REQ_RESERVED)
478                 data->rq_flags |= RQF_RESV;
479
480         /*
481          * Try batched alloc if we want more than 1 tag.
482          */
483         if (data->nr_tags > 1) {
484                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
485                 if (rq)
486                         return rq;
487                 data->nr_tags = 1;
488         }
489
490         /*
491          * Waiting allocations only fail because of an inactive hctx.  In that
492          * case just retry the hctx assignment and tag allocation as CPU hotplug
493          * should have migrated us to an online CPU by now.
494          */
495         tag = blk_mq_get_tag(data);
496         if (tag == BLK_MQ_NO_TAG) {
497                 if (data->flags & BLK_MQ_REQ_NOWAIT)
498                         return NULL;
499                 /*
500                  * Give up the CPU and sleep for a random short time to
501                  * ensure that thread using a realtime scheduling class
502                  * are migrated off the CPU, and thus off the hctx that
503                  * is going away.
504                  */
505                 msleep(3);
506                 goto retry;
507         }
508
509         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
510                                         alloc_time_ns);
511 }
512
513 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
514                 blk_mq_req_flags_t flags)
515 {
516         struct blk_mq_alloc_data data = {
517                 .q              = q,
518                 .flags          = flags,
519                 .cmd_flags      = opf,
520                 .nr_tags        = 1,
521         };
522         struct request *rq;
523         int ret;
524
525         ret = blk_queue_enter(q, flags);
526         if (ret)
527                 return ERR_PTR(ret);
528
529         rq = __blk_mq_alloc_requests(&data);
530         if (!rq)
531                 goto out_queue_exit;
532         rq->__data_len = 0;
533         rq->__sector = (sector_t) -1;
534         rq->bio = rq->biotail = NULL;
535         return rq;
536 out_queue_exit:
537         blk_queue_exit(q);
538         return ERR_PTR(-EWOULDBLOCK);
539 }
540 EXPORT_SYMBOL(blk_mq_alloc_request);
541
542 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
543         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
544 {
545         struct blk_mq_alloc_data data = {
546                 .q              = q,
547                 .flags          = flags,
548                 .cmd_flags      = opf,
549                 .nr_tags        = 1,
550         };
551         u64 alloc_time_ns = 0;
552         unsigned int cpu;
553         unsigned int tag;
554         int ret;
555
556         /* alloc_time includes depth and tag waits */
557         if (blk_queue_rq_alloc_time(q))
558                 alloc_time_ns = ktime_get_ns();
559
560         /*
561          * If the tag allocator sleeps we could get an allocation for a
562          * different hardware context.  No need to complicate the low level
563          * allocator for this for the rare use case of a command tied to
564          * a specific queue.
565          */
566         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
567                 return ERR_PTR(-EINVAL);
568
569         if (hctx_idx >= q->nr_hw_queues)
570                 return ERR_PTR(-EIO);
571
572         ret = blk_queue_enter(q, flags);
573         if (ret)
574                 return ERR_PTR(ret);
575
576         /*
577          * Check if the hardware context is actually mapped to anything.
578          * If not tell the caller that it should skip this queue.
579          */
580         ret = -EXDEV;
581         data.hctx = xa_load(&q->hctx_table, hctx_idx);
582         if (!blk_mq_hw_queue_mapped(data.hctx))
583                 goto out_queue_exit;
584         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
585         if (cpu >= nr_cpu_ids)
586                 goto out_queue_exit;
587         data.ctx = __blk_mq_get_ctx(q, cpu);
588
589         if (!q->elevator)
590                 blk_mq_tag_busy(data.hctx);
591         else
592                 data.rq_flags |= RQF_ELV;
593
594         if (flags & BLK_MQ_REQ_RESERVED)
595                 data.rq_flags |= RQF_RESV;
596
597         ret = -EWOULDBLOCK;
598         tag = blk_mq_get_tag(&data);
599         if (tag == BLK_MQ_NO_TAG)
600                 goto out_queue_exit;
601         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
602                                         alloc_time_ns);
603
604 out_queue_exit:
605         blk_queue_exit(q);
606         return ERR_PTR(ret);
607 }
608 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
609
610 static void __blk_mq_free_request(struct request *rq)
611 {
612         struct request_queue *q = rq->q;
613         struct blk_mq_ctx *ctx = rq->mq_ctx;
614         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
615         const int sched_tag = rq->internal_tag;
616
617         blk_crypto_free_request(rq);
618         blk_pm_mark_last_busy(rq);
619         rq->mq_hctx = NULL;
620         if (rq->tag != BLK_MQ_NO_TAG)
621                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
622         if (sched_tag != BLK_MQ_NO_TAG)
623                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
624         blk_mq_sched_restart(hctx);
625         blk_queue_exit(q);
626 }
627
628 void blk_mq_free_request(struct request *rq)
629 {
630         struct request_queue *q = rq->q;
631         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
632
633         if ((rq->rq_flags & RQF_ELVPRIV) &&
634             q->elevator->type->ops.finish_request)
635                 q->elevator->type->ops.finish_request(rq);
636
637         if (rq->rq_flags & RQF_MQ_INFLIGHT)
638                 __blk_mq_dec_active_requests(hctx);
639
640         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
641                 laptop_io_completion(q->disk->bdi);
642
643         rq_qos_done(q, rq);
644
645         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
646         if (req_ref_put_and_test(rq))
647                 __blk_mq_free_request(rq);
648 }
649 EXPORT_SYMBOL_GPL(blk_mq_free_request);
650
651 void blk_mq_free_plug_rqs(struct blk_plug *plug)
652 {
653         struct request *rq;
654
655         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
656                 blk_mq_free_request(rq);
657 }
658
659 void blk_dump_rq_flags(struct request *rq, char *msg)
660 {
661         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
662                 rq->q->disk ? rq->q->disk->disk_name : "?",
663                 (__force unsigned long long) rq->cmd_flags);
664
665         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
666                (unsigned long long)blk_rq_pos(rq),
667                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
668         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
669                rq->bio, rq->biotail, blk_rq_bytes(rq));
670 }
671 EXPORT_SYMBOL(blk_dump_rq_flags);
672
673 static void req_bio_endio(struct request *rq, struct bio *bio,
674                           unsigned int nbytes, blk_status_t error)
675 {
676         if (unlikely(error)) {
677                 bio->bi_status = error;
678         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
679                 /*
680                  * Partial zone append completions cannot be supported as the
681                  * BIO fragments may end up not being written sequentially.
682                  */
683                 if (bio->bi_iter.bi_size != nbytes)
684                         bio->bi_status = BLK_STS_IOERR;
685                 else
686                         bio->bi_iter.bi_sector = rq->__sector;
687         }
688
689         bio_advance(bio, nbytes);
690
691         if (unlikely(rq->rq_flags & RQF_QUIET))
692                 bio_set_flag(bio, BIO_QUIET);
693         /* don't actually finish bio if it's part of flush sequence */
694         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
695                 bio_endio(bio);
696 }
697
698 static void blk_account_io_completion(struct request *req, unsigned int bytes)
699 {
700         if (req->part && blk_do_io_stat(req)) {
701                 const int sgrp = op_stat_group(req_op(req));
702
703                 part_stat_lock();
704                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
705                 part_stat_unlock();
706         }
707 }
708
709 static void blk_print_req_error(struct request *req, blk_status_t status)
710 {
711         printk_ratelimited(KERN_ERR
712                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
713                 "phys_seg %u prio class %u\n",
714                 blk_status_to_str(status),
715                 req->q->disk ? req->q->disk->disk_name : "?",
716                 blk_rq_pos(req), (__force u32)req_op(req),
717                 blk_op_str(req_op(req)),
718                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
719                 req->nr_phys_segments,
720                 IOPRIO_PRIO_CLASS(req->ioprio));
721 }
722
723 /*
724  * Fully end IO on a request. Does not support partial completions, or
725  * errors.
726  */
727 static void blk_complete_request(struct request *req)
728 {
729         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
730         int total_bytes = blk_rq_bytes(req);
731         struct bio *bio = req->bio;
732
733         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
734
735         if (!bio)
736                 return;
737
738 #ifdef CONFIG_BLK_DEV_INTEGRITY
739         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
740                 req->q->integrity.profile->complete_fn(req, total_bytes);
741 #endif
742
743         blk_account_io_completion(req, total_bytes);
744
745         do {
746                 struct bio *next = bio->bi_next;
747
748                 /* Completion has already been traced */
749                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
750
751                 if (req_op(req) == REQ_OP_ZONE_APPEND)
752                         bio->bi_iter.bi_sector = req->__sector;
753
754                 if (!is_flush)
755                         bio_endio(bio);
756                 bio = next;
757         } while (bio);
758
759         /*
760          * Reset counters so that the request stacking driver
761          * can find how many bytes remain in the request
762          * later.
763          */
764         req->bio = NULL;
765         req->__data_len = 0;
766 }
767
768 /**
769  * blk_update_request - Complete multiple bytes without completing the request
770  * @req:      the request being processed
771  * @error:    block status code
772  * @nr_bytes: number of bytes to complete for @req
773  *
774  * Description:
775  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
776  *     the request structure even if @req doesn't have leftover.
777  *     If @req has leftover, sets it up for the next range of segments.
778  *
779  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
780  *     %false return from this function.
781  *
782  * Note:
783  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
784  *      except in the consistency check at the end of this function.
785  *
786  * Return:
787  *     %false - this request doesn't have any more data
788  *     %true  - this request has more data
789  **/
790 bool blk_update_request(struct request *req, blk_status_t error,
791                 unsigned int nr_bytes)
792 {
793         int total_bytes;
794
795         trace_block_rq_complete(req, error, nr_bytes);
796
797         if (!req->bio)
798                 return false;
799
800 #ifdef CONFIG_BLK_DEV_INTEGRITY
801         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
802             error == BLK_STS_OK)
803                 req->q->integrity.profile->complete_fn(req, nr_bytes);
804 #endif
805
806         if (unlikely(error && !blk_rq_is_passthrough(req) &&
807                      !(req->rq_flags & RQF_QUIET)) &&
808                      !test_bit(GD_DEAD, &req->q->disk->state)) {
809                 blk_print_req_error(req, error);
810                 trace_block_rq_error(req, error, nr_bytes);
811         }
812
813         blk_account_io_completion(req, nr_bytes);
814
815         total_bytes = 0;
816         while (req->bio) {
817                 struct bio *bio = req->bio;
818                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
819
820                 if (bio_bytes == bio->bi_iter.bi_size)
821                         req->bio = bio->bi_next;
822
823                 /* Completion has already been traced */
824                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
825                 req_bio_endio(req, bio, bio_bytes, error);
826
827                 total_bytes += bio_bytes;
828                 nr_bytes -= bio_bytes;
829
830                 if (!nr_bytes)
831                         break;
832         }
833
834         /*
835          * completely done
836          */
837         if (!req->bio) {
838                 /*
839                  * Reset counters so that the request stacking driver
840                  * can find how many bytes remain in the request
841                  * later.
842                  */
843                 req->__data_len = 0;
844                 return false;
845         }
846
847         req->__data_len -= total_bytes;
848
849         /* update sector only for requests with clear definition of sector */
850         if (!blk_rq_is_passthrough(req))
851                 req->__sector += total_bytes >> 9;
852
853         /* mixed attributes always follow the first bio */
854         if (req->rq_flags & RQF_MIXED_MERGE) {
855                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
856                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
857         }
858
859         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
860                 /*
861                  * If total number of sectors is less than the first segment
862                  * size, something has gone terribly wrong.
863                  */
864                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
865                         blk_dump_rq_flags(req, "request botched");
866                         req->__data_len = blk_rq_cur_bytes(req);
867                 }
868
869                 /* recalculate the number of segments */
870                 req->nr_phys_segments = blk_recalc_rq_segments(req);
871         }
872
873         return true;
874 }
875 EXPORT_SYMBOL_GPL(blk_update_request);
876
877 static void __blk_account_io_done(struct request *req, u64 now)
878 {
879         const int sgrp = op_stat_group(req_op(req));
880
881         part_stat_lock();
882         update_io_ticks(req->part, jiffies, true);
883         part_stat_inc(req->part, ios[sgrp]);
884         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
885         part_stat_unlock();
886 }
887
888 static inline void blk_account_io_done(struct request *req, u64 now)
889 {
890         /*
891          * Account IO completion.  flush_rq isn't accounted as a
892          * normal IO on queueing nor completion.  Accounting the
893          * containing request is enough.
894          */
895         if (blk_do_io_stat(req) && req->part &&
896             !(req->rq_flags & RQF_FLUSH_SEQ))
897                 __blk_account_io_done(req, now);
898 }
899
900 static void __blk_account_io_start(struct request *rq)
901 {
902         /*
903          * All non-passthrough requests are created from a bio with one
904          * exception: when a flush command that is part of a flush sequence
905          * generated by the state machine in blk-flush.c is cloned onto the
906          * lower device by dm-multipath we can get here without a bio.
907          */
908         if (rq->bio)
909                 rq->part = rq->bio->bi_bdev;
910         else
911                 rq->part = rq->q->disk->part0;
912
913         part_stat_lock();
914         update_io_ticks(rq->part, jiffies, false);
915         part_stat_unlock();
916 }
917
918 static inline void blk_account_io_start(struct request *req)
919 {
920         if (blk_do_io_stat(req))
921                 __blk_account_io_start(req);
922 }
923
924 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
925 {
926         if (rq->rq_flags & RQF_STATS) {
927                 blk_mq_poll_stats_start(rq->q);
928                 blk_stat_add(rq, now);
929         }
930
931         blk_mq_sched_completed_request(rq, now);
932         blk_account_io_done(rq, now);
933 }
934
935 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
936 {
937         if (blk_mq_need_time_stamp(rq))
938                 __blk_mq_end_request_acct(rq, ktime_get_ns());
939
940         if (rq->end_io) {
941                 rq_qos_done(rq->q, rq);
942                 rq->end_io(rq, error);
943         } else {
944                 blk_mq_free_request(rq);
945         }
946 }
947 EXPORT_SYMBOL(__blk_mq_end_request);
948
949 void blk_mq_end_request(struct request *rq, blk_status_t error)
950 {
951         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
952                 BUG();
953         __blk_mq_end_request(rq, error);
954 }
955 EXPORT_SYMBOL(blk_mq_end_request);
956
957 #define TAG_COMP_BATCH          32
958
959 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
960                                           int *tag_array, int nr_tags)
961 {
962         struct request_queue *q = hctx->queue;
963
964         /*
965          * All requests should have been marked as RQF_MQ_INFLIGHT, so
966          * update hctx->nr_active in batch
967          */
968         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
969                 __blk_mq_sub_active_requests(hctx, nr_tags);
970
971         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
972         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
973 }
974
975 void blk_mq_end_request_batch(struct io_comp_batch *iob)
976 {
977         int tags[TAG_COMP_BATCH], nr_tags = 0;
978         struct blk_mq_hw_ctx *cur_hctx = NULL;
979         struct request *rq;
980         u64 now = 0;
981
982         if (iob->need_ts)
983                 now = ktime_get_ns();
984
985         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
986                 prefetch(rq->bio);
987                 prefetch(rq->rq_next);
988
989                 blk_complete_request(rq);
990                 if (iob->need_ts)
991                         __blk_mq_end_request_acct(rq, now);
992
993                 rq_qos_done(rq->q, rq);
994
995                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
996                 if (!req_ref_put_and_test(rq))
997                         continue;
998
999                 blk_crypto_free_request(rq);
1000                 blk_pm_mark_last_busy(rq);
1001
1002                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1003                         if (cur_hctx)
1004                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1005                         nr_tags = 0;
1006                         cur_hctx = rq->mq_hctx;
1007                 }
1008                 tags[nr_tags++] = rq->tag;
1009         }
1010
1011         if (nr_tags)
1012                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1013 }
1014 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1015
1016 static void blk_complete_reqs(struct llist_head *list)
1017 {
1018         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1019         struct request *rq, *next;
1020
1021         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1022                 rq->q->mq_ops->complete(rq);
1023 }
1024
1025 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1026 {
1027         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1028 }
1029
1030 static int blk_softirq_cpu_dead(unsigned int cpu)
1031 {
1032         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1033         return 0;
1034 }
1035
1036 static void __blk_mq_complete_request_remote(void *data)
1037 {
1038         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1039 }
1040
1041 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1042 {
1043         int cpu = raw_smp_processor_id();
1044
1045         if (!IS_ENABLED(CONFIG_SMP) ||
1046             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1047                 return false;
1048         /*
1049          * With force threaded interrupts enabled, raising softirq from an SMP
1050          * function call will always result in waking the ksoftirqd thread.
1051          * This is probably worse than completing the request on a different
1052          * cache domain.
1053          */
1054         if (force_irqthreads())
1055                 return false;
1056
1057         /* same CPU or cache domain?  Complete locally */
1058         if (cpu == rq->mq_ctx->cpu ||
1059             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1060              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1061                 return false;
1062
1063         /* don't try to IPI to an offline CPU */
1064         return cpu_online(rq->mq_ctx->cpu);
1065 }
1066
1067 static void blk_mq_complete_send_ipi(struct request *rq)
1068 {
1069         struct llist_head *list;
1070         unsigned int cpu;
1071
1072         cpu = rq->mq_ctx->cpu;
1073         list = &per_cpu(blk_cpu_done, cpu);
1074         if (llist_add(&rq->ipi_list, list)) {
1075                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1076                 smp_call_function_single_async(cpu, &rq->csd);
1077         }
1078 }
1079
1080 static void blk_mq_raise_softirq(struct request *rq)
1081 {
1082         struct llist_head *list;
1083
1084         preempt_disable();
1085         list = this_cpu_ptr(&blk_cpu_done);
1086         if (llist_add(&rq->ipi_list, list))
1087                 raise_softirq(BLOCK_SOFTIRQ);
1088         preempt_enable();
1089 }
1090
1091 bool blk_mq_complete_request_remote(struct request *rq)
1092 {
1093         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1094
1095         /*
1096          * For a polled request, always complete locally, it's pointless
1097          * to redirect the completion.
1098          */
1099         if (rq->cmd_flags & REQ_POLLED)
1100                 return false;
1101
1102         if (blk_mq_complete_need_ipi(rq)) {
1103                 blk_mq_complete_send_ipi(rq);
1104                 return true;
1105         }
1106
1107         if (rq->q->nr_hw_queues == 1) {
1108                 blk_mq_raise_softirq(rq);
1109                 return true;
1110         }
1111         return false;
1112 }
1113 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1114
1115 /**
1116  * blk_mq_complete_request - end I/O on a request
1117  * @rq:         the request being processed
1118  *
1119  * Description:
1120  *      Complete a request by scheduling the ->complete_rq operation.
1121  **/
1122 void blk_mq_complete_request(struct request *rq)
1123 {
1124         if (!blk_mq_complete_request_remote(rq))
1125                 rq->q->mq_ops->complete(rq);
1126 }
1127 EXPORT_SYMBOL(blk_mq_complete_request);
1128
1129 /**
1130  * blk_mq_start_request - Start processing a request
1131  * @rq: Pointer to request to be started
1132  *
1133  * Function used by device drivers to notify the block layer that a request
1134  * is going to be processed now, so blk layer can do proper initializations
1135  * such as starting the timeout timer.
1136  */
1137 void blk_mq_start_request(struct request *rq)
1138 {
1139         struct request_queue *q = rq->q;
1140
1141         trace_block_rq_issue(rq);
1142
1143         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1144                 rq->io_start_time_ns = ktime_get_ns();
1145                 rq->stats_sectors = blk_rq_sectors(rq);
1146                 rq->rq_flags |= RQF_STATS;
1147                 rq_qos_issue(q, rq);
1148         }
1149
1150         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1151
1152         blk_add_timer(rq);
1153         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1154
1155 #ifdef CONFIG_BLK_DEV_INTEGRITY
1156         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1157                 q->integrity.profile->prepare_fn(rq);
1158 #endif
1159         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1160                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1161 }
1162 EXPORT_SYMBOL(blk_mq_start_request);
1163
1164 /*
1165  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1166  * queues. This is important for md arrays to benefit from merging
1167  * requests.
1168  */
1169 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1170 {
1171         if (plug->multiple_queues)
1172                 return BLK_MAX_REQUEST_COUNT * 2;
1173         return BLK_MAX_REQUEST_COUNT;
1174 }
1175
1176 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1177 {
1178         struct request *last = rq_list_peek(&plug->mq_list);
1179
1180         if (!plug->rq_count) {
1181                 trace_block_plug(rq->q);
1182         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1183                    (!blk_queue_nomerges(rq->q) &&
1184                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1185                 blk_mq_flush_plug_list(plug, false);
1186                 trace_block_plug(rq->q);
1187         }
1188
1189         if (!plug->multiple_queues && last && last->q != rq->q)
1190                 plug->multiple_queues = true;
1191         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1192                 plug->has_elevator = true;
1193         rq->rq_next = NULL;
1194         rq_list_add(&plug->mq_list, rq);
1195         plug->rq_count++;
1196 }
1197
1198 /**
1199  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1200  * @rq:         request to insert
1201  * @at_head:    insert request at head or tail of queue
1202  *
1203  * Description:
1204  *    Insert a fully prepared request at the back of the I/O scheduler queue
1205  *    for execution.  Don't wait for completion.
1206  *
1207  * Note:
1208  *    This function will invoke @done directly if the queue is dead.
1209  */
1210 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1211 {
1212         WARN_ON(irqs_disabled());
1213         WARN_ON(!blk_rq_is_passthrough(rq));
1214
1215         blk_account_io_start(rq);
1216         if (current->plug)
1217                 blk_add_rq_to_plug(current->plug, rq);
1218         else
1219                 blk_mq_sched_insert_request(rq, at_head, true, false);
1220 }
1221 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1222
1223 struct blk_rq_wait {
1224         struct completion done;
1225         blk_status_t ret;
1226 };
1227
1228 static void blk_end_sync_rq(struct request *rq, blk_status_t ret)
1229 {
1230         struct blk_rq_wait *wait = rq->end_io_data;
1231
1232         wait->ret = ret;
1233         complete(&wait->done);
1234 }
1235
1236 static bool blk_rq_is_poll(struct request *rq)
1237 {
1238         if (!rq->mq_hctx)
1239                 return false;
1240         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1241                 return false;
1242         if (WARN_ON_ONCE(!rq->bio))
1243                 return false;
1244         return true;
1245 }
1246
1247 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1248 {
1249         do {
1250                 bio_poll(rq->bio, NULL, 0);
1251                 cond_resched();
1252         } while (!completion_done(wait));
1253 }
1254
1255 /**
1256  * blk_execute_rq - insert a request into queue for execution
1257  * @rq:         request to insert
1258  * @at_head:    insert request at head or tail of queue
1259  *
1260  * Description:
1261  *    Insert a fully prepared request at the back of the I/O scheduler queue
1262  *    for execution and wait for completion.
1263  * Return: The blk_status_t result provided to blk_mq_end_request().
1264  */
1265 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1266 {
1267         struct blk_rq_wait wait = {
1268                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1269         };
1270
1271         WARN_ON(irqs_disabled());
1272         WARN_ON(!blk_rq_is_passthrough(rq));
1273
1274         rq->end_io_data = &wait;
1275         rq->end_io = blk_end_sync_rq;
1276
1277         blk_account_io_start(rq);
1278         blk_mq_sched_insert_request(rq, at_head, true, false);
1279
1280         if (blk_rq_is_poll(rq)) {
1281                 blk_rq_poll_completion(rq, &wait.done);
1282         } else {
1283                 /*
1284                  * Prevent hang_check timer from firing at us during very long
1285                  * I/O
1286                  */
1287                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1288
1289                 if (hang_check)
1290                         while (!wait_for_completion_io_timeout(&wait.done,
1291                                         hang_check * (HZ/2)))
1292                                 ;
1293                 else
1294                         wait_for_completion_io(&wait.done);
1295         }
1296
1297         return wait.ret;
1298 }
1299 EXPORT_SYMBOL(blk_execute_rq);
1300
1301 static void __blk_mq_requeue_request(struct request *rq)
1302 {
1303         struct request_queue *q = rq->q;
1304
1305         blk_mq_put_driver_tag(rq);
1306
1307         trace_block_rq_requeue(rq);
1308         rq_qos_requeue(q, rq);
1309
1310         if (blk_mq_request_started(rq)) {
1311                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1312                 rq->rq_flags &= ~RQF_TIMED_OUT;
1313         }
1314 }
1315
1316 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1317 {
1318         __blk_mq_requeue_request(rq);
1319
1320         /* this request will be re-inserted to io scheduler queue */
1321         blk_mq_sched_requeue_request(rq);
1322
1323         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1324 }
1325 EXPORT_SYMBOL(blk_mq_requeue_request);
1326
1327 static void blk_mq_requeue_work(struct work_struct *work)
1328 {
1329         struct request_queue *q =
1330                 container_of(work, struct request_queue, requeue_work.work);
1331         LIST_HEAD(rq_list);
1332         struct request *rq, *next;
1333
1334         spin_lock_irq(&q->requeue_lock);
1335         list_splice_init(&q->requeue_list, &rq_list);
1336         spin_unlock_irq(&q->requeue_lock);
1337
1338         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1339                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1340                         continue;
1341
1342                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1343                 list_del_init(&rq->queuelist);
1344                 /*
1345                  * If RQF_DONTPREP, rq has contained some driver specific
1346                  * data, so insert it to hctx dispatch list to avoid any
1347                  * merge.
1348                  */
1349                 if (rq->rq_flags & RQF_DONTPREP)
1350                         blk_mq_request_bypass_insert(rq, false, false);
1351                 else
1352                         blk_mq_sched_insert_request(rq, true, false, false);
1353         }
1354
1355         while (!list_empty(&rq_list)) {
1356                 rq = list_entry(rq_list.next, struct request, queuelist);
1357                 list_del_init(&rq->queuelist);
1358                 blk_mq_sched_insert_request(rq, false, false, false);
1359         }
1360
1361         blk_mq_run_hw_queues(q, false);
1362 }
1363
1364 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1365                                 bool kick_requeue_list)
1366 {
1367         struct request_queue *q = rq->q;
1368         unsigned long flags;
1369
1370         /*
1371          * We abuse this flag that is otherwise used by the I/O scheduler to
1372          * request head insertion from the workqueue.
1373          */
1374         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1375
1376         spin_lock_irqsave(&q->requeue_lock, flags);
1377         if (at_head) {
1378                 rq->rq_flags |= RQF_SOFTBARRIER;
1379                 list_add(&rq->queuelist, &q->requeue_list);
1380         } else {
1381                 list_add_tail(&rq->queuelist, &q->requeue_list);
1382         }
1383         spin_unlock_irqrestore(&q->requeue_lock, flags);
1384
1385         if (kick_requeue_list)
1386                 blk_mq_kick_requeue_list(q);
1387 }
1388
1389 void blk_mq_kick_requeue_list(struct request_queue *q)
1390 {
1391         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1392 }
1393 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1394
1395 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1396                                     unsigned long msecs)
1397 {
1398         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1399                                     msecs_to_jiffies(msecs));
1400 }
1401 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1402
1403 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1404 {
1405         /*
1406          * If we find a request that isn't idle we know the queue is busy
1407          * as it's checked in the iter.
1408          * Return false to stop the iteration.
1409          */
1410         if (blk_mq_request_started(rq)) {
1411                 bool *busy = priv;
1412
1413                 *busy = true;
1414                 return false;
1415         }
1416
1417         return true;
1418 }
1419
1420 bool blk_mq_queue_inflight(struct request_queue *q)
1421 {
1422         bool busy = false;
1423
1424         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1425         return busy;
1426 }
1427 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1428
1429 static void blk_mq_rq_timed_out(struct request *req)
1430 {
1431         req->rq_flags |= RQF_TIMED_OUT;
1432         if (req->q->mq_ops->timeout) {
1433                 enum blk_eh_timer_return ret;
1434
1435                 ret = req->q->mq_ops->timeout(req);
1436                 if (ret == BLK_EH_DONE)
1437                         return;
1438                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1439         }
1440
1441         blk_add_timer(req);
1442 }
1443
1444 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1445 {
1446         unsigned long deadline;
1447
1448         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1449                 return false;
1450         if (rq->rq_flags & RQF_TIMED_OUT)
1451                 return false;
1452
1453         deadline = READ_ONCE(rq->deadline);
1454         if (time_after_eq(jiffies, deadline))
1455                 return true;
1456
1457         if (*next == 0)
1458                 *next = deadline;
1459         else if (time_after(*next, deadline))
1460                 *next = deadline;
1461         return false;
1462 }
1463
1464 void blk_mq_put_rq_ref(struct request *rq)
1465 {
1466         if (is_flush_rq(rq))
1467                 rq->end_io(rq, 0);
1468         else if (req_ref_put_and_test(rq))
1469                 __blk_mq_free_request(rq);
1470 }
1471
1472 static bool blk_mq_check_expired(struct request *rq, void *priv)
1473 {
1474         unsigned long *next = priv;
1475
1476         /*
1477          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1478          * be reallocated underneath the timeout handler's processing, then
1479          * the expire check is reliable. If the request is not expired, then
1480          * it was completed and reallocated as a new request after returning
1481          * from blk_mq_check_expired().
1482          */
1483         if (blk_mq_req_expired(rq, next))
1484                 blk_mq_rq_timed_out(rq);
1485         return true;
1486 }
1487
1488 static void blk_mq_timeout_work(struct work_struct *work)
1489 {
1490         struct request_queue *q =
1491                 container_of(work, struct request_queue, timeout_work);
1492         unsigned long next = 0;
1493         struct blk_mq_hw_ctx *hctx;
1494         unsigned long i;
1495
1496         /* A deadlock might occur if a request is stuck requiring a
1497          * timeout at the same time a queue freeze is waiting
1498          * completion, since the timeout code would not be able to
1499          * acquire the queue reference here.
1500          *
1501          * That's why we don't use blk_queue_enter here; instead, we use
1502          * percpu_ref_tryget directly, because we need to be able to
1503          * obtain a reference even in the short window between the queue
1504          * starting to freeze, by dropping the first reference in
1505          * blk_freeze_queue_start, and the moment the last request is
1506          * consumed, marked by the instant q_usage_counter reaches
1507          * zero.
1508          */
1509         if (!percpu_ref_tryget(&q->q_usage_counter))
1510                 return;
1511
1512         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1513
1514         if (next != 0) {
1515                 mod_timer(&q->timeout, next);
1516         } else {
1517                 /*
1518                  * Request timeouts are handled as a forward rolling timer. If
1519                  * we end up here it means that no requests are pending and
1520                  * also that no request has been pending for a while. Mark
1521                  * each hctx as idle.
1522                  */
1523                 queue_for_each_hw_ctx(q, hctx, i) {
1524                         /* the hctx may be unmapped, so check it here */
1525                         if (blk_mq_hw_queue_mapped(hctx))
1526                                 blk_mq_tag_idle(hctx);
1527                 }
1528         }
1529         blk_queue_exit(q);
1530 }
1531
1532 struct flush_busy_ctx_data {
1533         struct blk_mq_hw_ctx *hctx;
1534         struct list_head *list;
1535 };
1536
1537 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1538 {
1539         struct flush_busy_ctx_data *flush_data = data;
1540         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1541         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1542         enum hctx_type type = hctx->type;
1543
1544         spin_lock(&ctx->lock);
1545         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1546         sbitmap_clear_bit(sb, bitnr);
1547         spin_unlock(&ctx->lock);
1548         return true;
1549 }
1550
1551 /*
1552  * Process software queues that have been marked busy, splicing them
1553  * to the for-dispatch
1554  */
1555 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1556 {
1557         struct flush_busy_ctx_data data = {
1558                 .hctx = hctx,
1559                 .list = list,
1560         };
1561
1562         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1563 }
1564 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1565
1566 struct dispatch_rq_data {
1567         struct blk_mq_hw_ctx *hctx;
1568         struct request *rq;
1569 };
1570
1571 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1572                 void *data)
1573 {
1574         struct dispatch_rq_data *dispatch_data = data;
1575         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1576         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1577         enum hctx_type type = hctx->type;
1578
1579         spin_lock(&ctx->lock);
1580         if (!list_empty(&ctx->rq_lists[type])) {
1581                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1582                 list_del_init(&dispatch_data->rq->queuelist);
1583                 if (list_empty(&ctx->rq_lists[type]))
1584                         sbitmap_clear_bit(sb, bitnr);
1585         }
1586         spin_unlock(&ctx->lock);
1587
1588         return !dispatch_data->rq;
1589 }
1590
1591 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1592                                         struct blk_mq_ctx *start)
1593 {
1594         unsigned off = start ? start->index_hw[hctx->type] : 0;
1595         struct dispatch_rq_data data = {
1596                 .hctx = hctx,
1597                 .rq   = NULL,
1598         };
1599
1600         __sbitmap_for_each_set(&hctx->ctx_map, off,
1601                                dispatch_rq_from_ctx, &data);
1602
1603         return data.rq;
1604 }
1605
1606 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1607 {
1608         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1609         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1610         int tag;
1611
1612         blk_mq_tag_busy(rq->mq_hctx);
1613
1614         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1615                 bt = &rq->mq_hctx->tags->breserved_tags;
1616                 tag_offset = 0;
1617         } else {
1618                 if (!hctx_may_queue(rq->mq_hctx, bt))
1619                         return false;
1620         }
1621
1622         tag = __sbitmap_queue_get(bt);
1623         if (tag == BLK_MQ_NO_TAG)
1624                 return false;
1625
1626         rq->tag = tag + tag_offset;
1627         return true;
1628 }
1629
1630 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1631 {
1632         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1633                 return false;
1634
1635         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1636                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1637                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1638                 __blk_mq_inc_active_requests(hctx);
1639         }
1640         hctx->tags->rqs[rq->tag] = rq;
1641         return true;
1642 }
1643
1644 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1645                                 int flags, void *key)
1646 {
1647         struct blk_mq_hw_ctx *hctx;
1648
1649         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1650
1651         spin_lock(&hctx->dispatch_wait_lock);
1652         if (!list_empty(&wait->entry)) {
1653                 struct sbitmap_queue *sbq;
1654
1655                 list_del_init(&wait->entry);
1656                 sbq = &hctx->tags->bitmap_tags;
1657                 atomic_dec(&sbq->ws_active);
1658         }
1659         spin_unlock(&hctx->dispatch_wait_lock);
1660
1661         blk_mq_run_hw_queue(hctx, true);
1662         return 1;
1663 }
1664
1665 /*
1666  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1667  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1668  * restart. For both cases, take care to check the condition again after
1669  * marking us as waiting.
1670  */
1671 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1672                                  struct request *rq)
1673 {
1674         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1675         struct wait_queue_head *wq;
1676         wait_queue_entry_t *wait;
1677         bool ret;
1678
1679         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1680                 blk_mq_sched_mark_restart_hctx(hctx);
1681
1682                 /*
1683                  * It's possible that a tag was freed in the window between the
1684                  * allocation failure and adding the hardware queue to the wait
1685                  * queue.
1686                  *
1687                  * Don't clear RESTART here, someone else could have set it.
1688                  * At most this will cost an extra queue run.
1689                  */
1690                 return blk_mq_get_driver_tag(rq);
1691         }
1692
1693         wait = &hctx->dispatch_wait;
1694         if (!list_empty_careful(&wait->entry))
1695                 return false;
1696
1697         wq = &bt_wait_ptr(sbq, hctx)->wait;
1698
1699         spin_lock_irq(&wq->lock);
1700         spin_lock(&hctx->dispatch_wait_lock);
1701         if (!list_empty(&wait->entry)) {
1702                 spin_unlock(&hctx->dispatch_wait_lock);
1703                 spin_unlock_irq(&wq->lock);
1704                 return false;
1705         }
1706
1707         atomic_inc(&sbq->ws_active);
1708         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1709         __add_wait_queue(wq, wait);
1710
1711         /*
1712          * It's possible that a tag was freed in the window between the
1713          * allocation failure and adding the hardware queue to the wait
1714          * queue.
1715          */
1716         ret = blk_mq_get_driver_tag(rq);
1717         if (!ret) {
1718                 spin_unlock(&hctx->dispatch_wait_lock);
1719                 spin_unlock_irq(&wq->lock);
1720                 return false;
1721         }
1722
1723         /*
1724          * We got a tag, remove ourselves from the wait queue to ensure
1725          * someone else gets the wakeup.
1726          */
1727         list_del_init(&wait->entry);
1728         atomic_dec(&sbq->ws_active);
1729         spin_unlock(&hctx->dispatch_wait_lock);
1730         spin_unlock_irq(&wq->lock);
1731
1732         return true;
1733 }
1734
1735 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1736 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1737 /*
1738  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1739  * - EWMA is one simple way to compute running average value
1740  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1741  * - take 4 as factor for avoiding to get too small(0) result, and this
1742  *   factor doesn't matter because EWMA decreases exponentially
1743  */
1744 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1745 {
1746         unsigned int ewma;
1747
1748         ewma = hctx->dispatch_busy;
1749
1750         if (!ewma && !busy)
1751                 return;
1752
1753         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1754         if (busy)
1755                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1756         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1757
1758         hctx->dispatch_busy = ewma;
1759 }
1760
1761 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1762
1763 static void blk_mq_handle_dev_resource(struct request *rq,
1764                                        struct list_head *list)
1765 {
1766         struct request *next =
1767                 list_first_entry_or_null(list, struct request, queuelist);
1768
1769         /*
1770          * If an I/O scheduler has been configured and we got a driver tag for
1771          * the next request already, free it.
1772          */
1773         if (next)
1774                 blk_mq_put_driver_tag(next);
1775
1776         list_add(&rq->queuelist, list);
1777         __blk_mq_requeue_request(rq);
1778 }
1779
1780 static void blk_mq_handle_zone_resource(struct request *rq,
1781                                         struct list_head *zone_list)
1782 {
1783         /*
1784          * If we end up here it is because we cannot dispatch a request to a
1785          * specific zone due to LLD level zone-write locking or other zone
1786          * related resource not being available. In this case, set the request
1787          * aside in zone_list for retrying it later.
1788          */
1789         list_add(&rq->queuelist, zone_list);
1790         __blk_mq_requeue_request(rq);
1791 }
1792
1793 enum prep_dispatch {
1794         PREP_DISPATCH_OK,
1795         PREP_DISPATCH_NO_TAG,
1796         PREP_DISPATCH_NO_BUDGET,
1797 };
1798
1799 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1800                                                   bool need_budget)
1801 {
1802         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1803         int budget_token = -1;
1804
1805         if (need_budget) {
1806                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1807                 if (budget_token < 0) {
1808                         blk_mq_put_driver_tag(rq);
1809                         return PREP_DISPATCH_NO_BUDGET;
1810                 }
1811                 blk_mq_set_rq_budget_token(rq, budget_token);
1812         }
1813
1814         if (!blk_mq_get_driver_tag(rq)) {
1815                 /*
1816                  * The initial allocation attempt failed, so we need to
1817                  * rerun the hardware queue when a tag is freed. The
1818                  * waitqueue takes care of that. If the queue is run
1819                  * before we add this entry back on the dispatch list,
1820                  * we'll re-run it below.
1821                  */
1822                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1823                         /*
1824                          * All budgets not got from this function will be put
1825                          * together during handling partial dispatch
1826                          */
1827                         if (need_budget)
1828                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1829                         return PREP_DISPATCH_NO_TAG;
1830                 }
1831         }
1832
1833         return PREP_DISPATCH_OK;
1834 }
1835
1836 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1837 static void blk_mq_release_budgets(struct request_queue *q,
1838                 struct list_head *list)
1839 {
1840         struct request *rq;
1841
1842         list_for_each_entry(rq, list, queuelist) {
1843                 int budget_token = blk_mq_get_rq_budget_token(rq);
1844
1845                 if (budget_token >= 0)
1846                         blk_mq_put_dispatch_budget(q, budget_token);
1847         }
1848 }
1849
1850 /*
1851  * Returns true if we did some work AND can potentially do more.
1852  */
1853 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1854                              unsigned int nr_budgets)
1855 {
1856         enum prep_dispatch prep;
1857         struct request_queue *q = hctx->queue;
1858         struct request *rq, *nxt;
1859         int errors, queued;
1860         blk_status_t ret = BLK_STS_OK;
1861         LIST_HEAD(zone_list);
1862         bool needs_resource = false;
1863
1864         if (list_empty(list))
1865                 return false;
1866
1867         /*
1868          * Now process all the entries, sending them to the driver.
1869          */
1870         errors = queued = 0;
1871         do {
1872                 struct blk_mq_queue_data bd;
1873
1874                 rq = list_first_entry(list, struct request, queuelist);
1875
1876                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1877                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1878                 if (prep != PREP_DISPATCH_OK)
1879                         break;
1880
1881                 list_del_init(&rq->queuelist);
1882
1883                 bd.rq = rq;
1884
1885                 /*
1886                  * Flag last if we have no more requests, or if we have more
1887                  * but can't assign a driver tag to it.
1888                  */
1889                 if (list_empty(list))
1890                         bd.last = true;
1891                 else {
1892                         nxt = list_first_entry(list, struct request, queuelist);
1893                         bd.last = !blk_mq_get_driver_tag(nxt);
1894                 }
1895
1896                 /*
1897                  * once the request is queued to lld, no need to cover the
1898                  * budget any more
1899                  */
1900                 if (nr_budgets)
1901                         nr_budgets--;
1902                 ret = q->mq_ops->queue_rq(hctx, &bd);
1903                 switch (ret) {
1904                 case BLK_STS_OK:
1905                         queued++;
1906                         break;
1907                 case BLK_STS_RESOURCE:
1908                         needs_resource = true;
1909                         fallthrough;
1910                 case BLK_STS_DEV_RESOURCE:
1911                         blk_mq_handle_dev_resource(rq, list);
1912                         goto out;
1913                 case BLK_STS_ZONE_RESOURCE:
1914                         /*
1915                          * Move the request to zone_list and keep going through
1916                          * the dispatch list to find more requests the drive can
1917                          * accept.
1918                          */
1919                         blk_mq_handle_zone_resource(rq, &zone_list);
1920                         needs_resource = true;
1921                         break;
1922                 default:
1923                         errors++;
1924                         blk_mq_end_request(rq, ret);
1925                 }
1926         } while (!list_empty(list));
1927 out:
1928         if (!list_empty(&zone_list))
1929                 list_splice_tail_init(&zone_list, list);
1930
1931         /* If we didn't flush the entire list, we could have told the driver
1932          * there was more coming, but that turned out to be a lie.
1933          */
1934         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1935                 q->mq_ops->commit_rqs(hctx);
1936         /*
1937          * Any items that need requeuing? Stuff them into hctx->dispatch,
1938          * that is where we will continue on next queue run.
1939          */
1940         if (!list_empty(list)) {
1941                 bool needs_restart;
1942                 /* For non-shared tags, the RESTART check will suffice */
1943                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1944                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1945
1946                 if (nr_budgets)
1947                         blk_mq_release_budgets(q, list);
1948
1949                 spin_lock(&hctx->lock);
1950                 list_splice_tail_init(list, &hctx->dispatch);
1951                 spin_unlock(&hctx->lock);
1952
1953                 /*
1954                  * Order adding requests to hctx->dispatch and checking
1955                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1956                  * in blk_mq_sched_restart(). Avoid restart code path to
1957                  * miss the new added requests to hctx->dispatch, meantime
1958                  * SCHED_RESTART is observed here.
1959                  */
1960                 smp_mb();
1961
1962                 /*
1963                  * If SCHED_RESTART was set by the caller of this function and
1964                  * it is no longer set that means that it was cleared by another
1965                  * thread and hence that a queue rerun is needed.
1966                  *
1967                  * If 'no_tag' is set, that means that we failed getting
1968                  * a driver tag with an I/O scheduler attached. If our dispatch
1969                  * waitqueue is no longer active, ensure that we run the queue
1970                  * AFTER adding our entries back to the list.
1971                  *
1972                  * If no I/O scheduler has been configured it is possible that
1973                  * the hardware queue got stopped and restarted before requests
1974                  * were pushed back onto the dispatch list. Rerun the queue to
1975                  * avoid starvation. Notes:
1976                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1977                  *   been stopped before rerunning a queue.
1978                  * - Some but not all block drivers stop a queue before
1979                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1980                  *   and dm-rq.
1981                  *
1982                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1983                  * bit is set, run queue after a delay to avoid IO stalls
1984                  * that could otherwise occur if the queue is idle.  We'll do
1985                  * similar if we couldn't get budget or couldn't lock a zone
1986                  * and SCHED_RESTART is set.
1987                  */
1988                 needs_restart = blk_mq_sched_needs_restart(hctx);
1989                 if (prep == PREP_DISPATCH_NO_BUDGET)
1990                         needs_resource = true;
1991                 if (!needs_restart ||
1992                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1993                         blk_mq_run_hw_queue(hctx, true);
1994                 else if (needs_restart && needs_resource)
1995                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1996
1997                 blk_mq_update_dispatch_busy(hctx, true);
1998                 return false;
1999         } else
2000                 blk_mq_update_dispatch_busy(hctx, false);
2001
2002         return (queued + errors) != 0;
2003 }
2004
2005 /**
2006  * __blk_mq_run_hw_queue - Run a hardware queue.
2007  * @hctx: Pointer to the hardware queue to run.
2008  *
2009  * Send pending requests to the hardware.
2010  */
2011 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2012 {
2013         /*
2014          * We can't run the queue inline with ints disabled. Ensure that
2015          * we catch bad users of this early.
2016          */
2017         WARN_ON_ONCE(in_interrupt());
2018
2019         blk_mq_run_dispatch_ops(hctx->queue,
2020                         blk_mq_sched_dispatch_requests(hctx));
2021 }
2022
2023 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2024 {
2025         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2026
2027         if (cpu >= nr_cpu_ids)
2028                 cpu = cpumask_first(hctx->cpumask);
2029         return cpu;
2030 }
2031
2032 /*
2033  * It'd be great if the workqueue API had a way to pass
2034  * in a mask and had some smarts for more clever placement.
2035  * For now we just round-robin here, switching for every
2036  * BLK_MQ_CPU_WORK_BATCH queued items.
2037  */
2038 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2039 {
2040         bool tried = false;
2041         int next_cpu = hctx->next_cpu;
2042
2043         if (hctx->queue->nr_hw_queues == 1)
2044                 return WORK_CPU_UNBOUND;
2045
2046         if (--hctx->next_cpu_batch <= 0) {
2047 select_cpu:
2048                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2049                                 cpu_online_mask);
2050                 if (next_cpu >= nr_cpu_ids)
2051                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2052                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2053         }
2054
2055         /*
2056          * Do unbound schedule if we can't find a online CPU for this hctx,
2057          * and it should only happen in the path of handling CPU DEAD.
2058          */
2059         if (!cpu_online(next_cpu)) {
2060                 if (!tried) {
2061                         tried = true;
2062                         goto select_cpu;
2063                 }
2064
2065                 /*
2066                  * Make sure to re-select CPU next time once after CPUs
2067                  * in hctx->cpumask become online again.
2068                  */
2069                 hctx->next_cpu = next_cpu;
2070                 hctx->next_cpu_batch = 1;
2071                 return WORK_CPU_UNBOUND;
2072         }
2073
2074         hctx->next_cpu = next_cpu;
2075         return next_cpu;
2076 }
2077
2078 /**
2079  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2080  * @hctx: Pointer to the hardware queue to run.
2081  * @async: If we want to run the queue asynchronously.
2082  * @msecs: Milliseconds of delay to wait before running the queue.
2083  *
2084  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2085  * with a delay of @msecs.
2086  */
2087 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2088                                         unsigned long msecs)
2089 {
2090         if (unlikely(blk_mq_hctx_stopped(hctx)))
2091                 return;
2092
2093         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2094                 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2095                         __blk_mq_run_hw_queue(hctx);
2096                         return;
2097                 }
2098         }
2099
2100         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2101                                     msecs_to_jiffies(msecs));
2102 }
2103
2104 /**
2105  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2106  * @hctx: Pointer to the hardware queue to run.
2107  * @msecs: Milliseconds of delay to wait before running the queue.
2108  *
2109  * Run a hardware queue asynchronously with a delay of @msecs.
2110  */
2111 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2112 {
2113         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2114 }
2115 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2116
2117 /**
2118  * blk_mq_run_hw_queue - Start to run a hardware queue.
2119  * @hctx: Pointer to the hardware queue to run.
2120  * @async: If we want to run the queue asynchronously.
2121  *
2122  * Check if the request queue is not in a quiesced state and if there are
2123  * pending requests to be sent. If this is true, run the queue to send requests
2124  * to hardware.
2125  */
2126 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2127 {
2128         bool need_run;
2129
2130         /*
2131          * When queue is quiesced, we may be switching io scheduler, or
2132          * updating nr_hw_queues, or other things, and we can't run queue
2133          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2134          *
2135          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2136          * quiesced.
2137          */
2138         __blk_mq_run_dispatch_ops(hctx->queue, false,
2139                 need_run = !blk_queue_quiesced(hctx->queue) &&
2140                 blk_mq_hctx_has_pending(hctx));
2141
2142         if (need_run)
2143                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2144 }
2145 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2146
2147 /*
2148  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2149  * scheduler.
2150  */
2151 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2152 {
2153         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2154         /*
2155          * If the IO scheduler does not respect hardware queues when
2156          * dispatching, we just don't bother with multiple HW queues and
2157          * dispatch from hctx for the current CPU since running multiple queues
2158          * just causes lock contention inside the scheduler and pointless cache
2159          * bouncing.
2160          */
2161         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2162
2163         if (!blk_mq_hctx_stopped(hctx))
2164                 return hctx;
2165         return NULL;
2166 }
2167
2168 /**
2169  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2170  * @q: Pointer to the request queue to run.
2171  * @async: If we want to run the queue asynchronously.
2172  */
2173 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2174 {
2175         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2176         unsigned long i;
2177
2178         sq_hctx = NULL;
2179         if (blk_queue_sq_sched(q))
2180                 sq_hctx = blk_mq_get_sq_hctx(q);
2181         queue_for_each_hw_ctx(q, hctx, i) {
2182                 if (blk_mq_hctx_stopped(hctx))
2183                         continue;
2184                 /*
2185                  * Dispatch from this hctx either if there's no hctx preferred
2186                  * by IO scheduler or if it has requests that bypass the
2187                  * scheduler.
2188                  */
2189                 if (!sq_hctx || sq_hctx == hctx ||
2190                     !list_empty_careful(&hctx->dispatch))
2191                         blk_mq_run_hw_queue(hctx, async);
2192         }
2193 }
2194 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2195
2196 /**
2197  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2198  * @q: Pointer to the request queue to run.
2199  * @msecs: Milliseconds of delay to wait before running the queues.
2200  */
2201 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2202 {
2203         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2204         unsigned long i;
2205
2206         sq_hctx = NULL;
2207         if (blk_queue_sq_sched(q))
2208                 sq_hctx = blk_mq_get_sq_hctx(q);
2209         queue_for_each_hw_ctx(q, hctx, i) {
2210                 if (blk_mq_hctx_stopped(hctx))
2211                         continue;
2212                 /*
2213                  * If there is already a run_work pending, leave the
2214                  * pending delay untouched. Otherwise, a hctx can stall
2215                  * if another hctx is re-delaying the other's work
2216                  * before the work executes.
2217                  */
2218                 if (delayed_work_pending(&hctx->run_work))
2219                         continue;
2220                 /*
2221                  * Dispatch from this hctx either if there's no hctx preferred
2222                  * by IO scheduler or if it has requests that bypass the
2223                  * scheduler.
2224                  */
2225                 if (!sq_hctx || sq_hctx == hctx ||
2226                     !list_empty_careful(&hctx->dispatch))
2227                         blk_mq_delay_run_hw_queue(hctx, msecs);
2228         }
2229 }
2230 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2231
2232 /**
2233  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2234  * @q: request queue.
2235  *
2236  * The caller is responsible for serializing this function against
2237  * blk_mq_{start,stop}_hw_queue().
2238  */
2239 bool blk_mq_queue_stopped(struct request_queue *q)
2240 {
2241         struct blk_mq_hw_ctx *hctx;
2242         unsigned long i;
2243
2244         queue_for_each_hw_ctx(q, hctx, i)
2245                 if (blk_mq_hctx_stopped(hctx))
2246                         return true;
2247
2248         return false;
2249 }
2250 EXPORT_SYMBOL(blk_mq_queue_stopped);
2251
2252 /*
2253  * This function is often used for pausing .queue_rq() by driver when
2254  * there isn't enough resource or some conditions aren't satisfied, and
2255  * BLK_STS_RESOURCE is usually returned.
2256  *
2257  * We do not guarantee that dispatch can be drained or blocked
2258  * after blk_mq_stop_hw_queue() returns. Please use
2259  * blk_mq_quiesce_queue() for that requirement.
2260  */
2261 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2262 {
2263         cancel_delayed_work(&hctx->run_work);
2264
2265         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2266 }
2267 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2268
2269 /*
2270  * This function is often used for pausing .queue_rq() by driver when
2271  * there isn't enough resource or some conditions aren't satisfied, and
2272  * BLK_STS_RESOURCE is usually returned.
2273  *
2274  * We do not guarantee that dispatch can be drained or blocked
2275  * after blk_mq_stop_hw_queues() returns. Please use
2276  * blk_mq_quiesce_queue() for that requirement.
2277  */
2278 void blk_mq_stop_hw_queues(struct request_queue *q)
2279 {
2280         struct blk_mq_hw_ctx *hctx;
2281         unsigned long i;
2282
2283         queue_for_each_hw_ctx(q, hctx, i)
2284                 blk_mq_stop_hw_queue(hctx);
2285 }
2286 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2287
2288 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2289 {
2290         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2291
2292         blk_mq_run_hw_queue(hctx, false);
2293 }
2294 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2295
2296 void blk_mq_start_hw_queues(struct request_queue *q)
2297 {
2298         struct blk_mq_hw_ctx *hctx;
2299         unsigned long i;
2300
2301         queue_for_each_hw_ctx(q, hctx, i)
2302                 blk_mq_start_hw_queue(hctx);
2303 }
2304 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2305
2306 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2307 {
2308         if (!blk_mq_hctx_stopped(hctx))
2309                 return;
2310
2311         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2312         blk_mq_run_hw_queue(hctx, async);
2313 }
2314 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2315
2316 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2317 {
2318         struct blk_mq_hw_ctx *hctx;
2319         unsigned long i;
2320
2321         queue_for_each_hw_ctx(q, hctx, i)
2322                 blk_mq_start_stopped_hw_queue(hctx, async);
2323 }
2324 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2325
2326 static void blk_mq_run_work_fn(struct work_struct *work)
2327 {
2328         struct blk_mq_hw_ctx *hctx;
2329
2330         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2331
2332         /*
2333          * If we are stopped, don't run the queue.
2334          */
2335         if (blk_mq_hctx_stopped(hctx))
2336                 return;
2337
2338         __blk_mq_run_hw_queue(hctx);
2339 }
2340
2341 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2342                                             struct request *rq,
2343                                             bool at_head)
2344 {
2345         struct blk_mq_ctx *ctx = rq->mq_ctx;
2346         enum hctx_type type = hctx->type;
2347
2348         lockdep_assert_held(&ctx->lock);
2349
2350         trace_block_rq_insert(rq);
2351
2352         if (at_head)
2353                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2354         else
2355                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2356 }
2357
2358 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2359                              bool at_head)
2360 {
2361         struct blk_mq_ctx *ctx = rq->mq_ctx;
2362
2363         lockdep_assert_held(&ctx->lock);
2364
2365         __blk_mq_insert_req_list(hctx, rq, at_head);
2366         blk_mq_hctx_mark_pending(hctx, ctx);
2367 }
2368
2369 /**
2370  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2371  * @rq: Pointer to request to be inserted.
2372  * @at_head: true if the request should be inserted at the head of the list.
2373  * @run_queue: If we should run the hardware queue after inserting the request.
2374  *
2375  * Should only be used carefully, when the caller knows we want to
2376  * bypass a potential IO scheduler on the target device.
2377  */
2378 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2379                                   bool run_queue)
2380 {
2381         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2382
2383         spin_lock(&hctx->lock);
2384         if (at_head)
2385                 list_add(&rq->queuelist, &hctx->dispatch);
2386         else
2387                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2388         spin_unlock(&hctx->lock);
2389
2390         if (run_queue)
2391                 blk_mq_run_hw_queue(hctx, false);
2392 }
2393
2394 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2395                             struct list_head *list)
2396
2397 {
2398         struct request *rq;
2399         enum hctx_type type = hctx->type;
2400
2401         /*
2402          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2403          * offline now
2404          */
2405         list_for_each_entry(rq, list, queuelist) {
2406                 BUG_ON(rq->mq_ctx != ctx);
2407                 trace_block_rq_insert(rq);
2408         }
2409
2410         spin_lock(&ctx->lock);
2411         list_splice_tail_init(list, &ctx->rq_lists[type]);
2412         blk_mq_hctx_mark_pending(hctx, ctx);
2413         spin_unlock(&ctx->lock);
2414 }
2415
2416 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2417                               bool from_schedule)
2418 {
2419         if (hctx->queue->mq_ops->commit_rqs) {
2420                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2421                 hctx->queue->mq_ops->commit_rqs(hctx);
2422         }
2423         *queued = 0;
2424 }
2425
2426 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2427                 unsigned int nr_segs)
2428 {
2429         int err;
2430
2431         if (bio->bi_opf & REQ_RAHEAD)
2432                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2433
2434         rq->__sector = bio->bi_iter.bi_sector;
2435         blk_rq_bio_prep(rq, bio, nr_segs);
2436
2437         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2438         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2439         WARN_ON_ONCE(err);
2440
2441         blk_account_io_start(rq);
2442 }
2443
2444 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2445                                             struct request *rq, bool last)
2446 {
2447         struct request_queue *q = rq->q;
2448         struct blk_mq_queue_data bd = {
2449                 .rq = rq,
2450                 .last = last,
2451         };
2452         blk_status_t ret;
2453
2454         /*
2455          * For OK queue, we are done. For error, caller may kill it.
2456          * Any other error (busy), just add it to our list as we
2457          * previously would have done.
2458          */
2459         ret = q->mq_ops->queue_rq(hctx, &bd);
2460         switch (ret) {
2461         case BLK_STS_OK:
2462                 blk_mq_update_dispatch_busy(hctx, false);
2463                 break;
2464         case BLK_STS_RESOURCE:
2465         case BLK_STS_DEV_RESOURCE:
2466                 blk_mq_update_dispatch_busy(hctx, true);
2467                 __blk_mq_requeue_request(rq);
2468                 break;
2469         default:
2470                 blk_mq_update_dispatch_busy(hctx, false);
2471                 break;
2472         }
2473
2474         return ret;
2475 }
2476
2477 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2478                                                 struct request *rq,
2479                                                 bool bypass_insert, bool last)
2480 {
2481         struct request_queue *q = rq->q;
2482         bool run_queue = true;
2483         int budget_token;
2484
2485         /*
2486          * RCU or SRCU read lock is needed before checking quiesced flag.
2487          *
2488          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2489          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2490          * and avoid driver to try to dispatch again.
2491          */
2492         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2493                 run_queue = false;
2494                 bypass_insert = false;
2495                 goto insert;
2496         }
2497
2498         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2499                 goto insert;
2500
2501         budget_token = blk_mq_get_dispatch_budget(q);
2502         if (budget_token < 0)
2503                 goto insert;
2504
2505         blk_mq_set_rq_budget_token(rq, budget_token);
2506
2507         if (!blk_mq_get_driver_tag(rq)) {
2508                 blk_mq_put_dispatch_budget(q, budget_token);
2509                 goto insert;
2510         }
2511
2512         return __blk_mq_issue_directly(hctx, rq, last);
2513 insert:
2514         if (bypass_insert)
2515                 return BLK_STS_RESOURCE;
2516
2517         blk_mq_sched_insert_request(rq, false, run_queue, false);
2518
2519         return BLK_STS_OK;
2520 }
2521
2522 /**
2523  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2524  * @hctx: Pointer of the associated hardware queue.
2525  * @rq: Pointer to request to be sent.
2526  *
2527  * If the device has enough resources to accept a new request now, send the
2528  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2529  * we can try send it another time in the future. Requests inserted at this
2530  * queue have higher priority.
2531  */
2532 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2533                 struct request *rq)
2534 {
2535         blk_status_t ret =
2536                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2537
2538         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2539                 blk_mq_request_bypass_insert(rq, false, true);
2540         else if (ret != BLK_STS_OK)
2541                 blk_mq_end_request(rq, ret);
2542 }
2543
2544 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2545 {
2546         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2547 }
2548
2549 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2550 {
2551         struct blk_mq_hw_ctx *hctx = NULL;
2552         struct request *rq;
2553         int queued = 0;
2554         int errors = 0;
2555
2556         while ((rq = rq_list_pop(&plug->mq_list))) {
2557                 bool last = rq_list_empty(plug->mq_list);
2558                 blk_status_t ret;
2559
2560                 if (hctx != rq->mq_hctx) {
2561                         if (hctx)
2562                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2563                         hctx = rq->mq_hctx;
2564                 }
2565
2566                 ret = blk_mq_request_issue_directly(rq, last);
2567                 switch (ret) {
2568                 case BLK_STS_OK:
2569                         queued++;
2570                         break;
2571                 case BLK_STS_RESOURCE:
2572                 case BLK_STS_DEV_RESOURCE:
2573                         blk_mq_request_bypass_insert(rq, false, last);
2574                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2575                         return;
2576                 default:
2577                         blk_mq_end_request(rq, ret);
2578                         errors++;
2579                         break;
2580                 }
2581         }
2582
2583         /*
2584          * If we didn't flush the entire list, we could have told the driver
2585          * there was more coming, but that turned out to be a lie.
2586          */
2587         if (errors)
2588                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2589 }
2590
2591 static void __blk_mq_flush_plug_list(struct request_queue *q,
2592                                      struct blk_plug *plug)
2593 {
2594         if (blk_queue_quiesced(q))
2595                 return;
2596         q->mq_ops->queue_rqs(&plug->mq_list);
2597 }
2598
2599 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2600 {
2601         struct blk_mq_hw_ctx *this_hctx = NULL;
2602         struct blk_mq_ctx *this_ctx = NULL;
2603         struct request *requeue_list = NULL;
2604         unsigned int depth = 0;
2605         LIST_HEAD(list);
2606
2607         do {
2608                 struct request *rq = rq_list_pop(&plug->mq_list);
2609
2610                 if (!this_hctx) {
2611                         this_hctx = rq->mq_hctx;
2612                         this_ctx = rq->mq_ctx;
2613                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2614                         rq_list_add(&requeue_list, rq);
2615                         continue;
2616                 }
2617                 list_add_tail(&rq->queuelist, &list);
2618                 depth++;
2619         } while (!rq_list_empty(plug->mq_list));
2620
2621         plug->mq_list = requeue_list;
2622         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2623         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2624 }
2625
2626 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2627 {
2628         struct request *rq;
2629
2630         if (rq_list_empty(plug->mq_list))
2631                 return;
2632         plug->rq_count = 0;
2633
2634         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2635                 struct request_queue *q;
2636
2637                 rq = rq_list_peek(&plug->mq_list);
2638                 q = rq->q;
2639
2640                 /*
2641                  * Peek first request and see if we have a ->queue_rqs() hook.
2642                  * If we do, we can dispatch the whole plug list in one go. We
2643                  * already know at this point that all requests belong to the
2644                  * same queue, caller must ensure that's the case.
2645                  *
2646                  * Since we pass off the full list to the driver at this point,
2647                  * we do not increment the active request count for the queue.
2648                  * Bypass shared tags for now because of that.
2649                  */
2650                 if (q->mq_ops->queue_rqs &&
2651                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2652                         blk_mq_run_dispatch_ops(q,
2653                                 __blk_mq_flush_plug_list(q, plug));
2654                         if (rq_list_empty(plug->mq_list))
2655                                 return;
2656                 }
2657
2658                 blk_mq_run_dispatch_ops(q,
2659                                 blk_mq_plug_issue_direct(plug, false));
2660                 if (rq_list_empty(plug->mq_list))
2661                         return;
2662         }
2663
2664         do {
2665                 blk_mq_dispatch_plug_list(plug, from_schedule);
2666         } while (!rq_list_empty(plug->mq_list));
2667 }
2668
2669 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2670                 struct list_head *list)
2671 {
2672         int queued = 0;
2673         int errors = 0;
2674
2675         while (!list_empty(list)) {
2676                 blk_status_t ret;
2677                 struct request *rq = list_first_entry(list, struct request,
2678                                 queuelist);
2679
2680                 list_del_init(&rq->queuelist);
2681                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2682                 if (ret != BLK_STS_OK) {
2683                         if (ret == BLK_STS_RESOURCE ||
2684                                         ret == BLK_STS_DEV_RESOURCE) {
2685                                 blk_mq_request_bypass_insert(rq, false,
2686                                                         list_empty(list));
2687                                 break;
2688                         }
2689                         blk_mq_end_request(rq, ret);
2690                         errors++;
2691                 } else
2692                         queued++;
2693         }
2694
2695         /*
2696          * If we didn't flush the entire list, we could have told
2697          * the driver there was more coming, but that turned out to
2698          * be a lie.
2699          */
2700         if ((!list_empty(list) || errors) &&
2701              hctx->queue->mq_ops->commit_rqs && queued)
2702                 hctx->queue->mq_ops->commit_rqs(hctx);
2703 }
2704
2705 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2706                                      struct bio *bio, unsigned int nr_segs)
2707 {
2708         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2709                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2710                         return true;
2711                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2712                         return true;
2713         }
2714         return false;
2715 }
2716
2717 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2718                                                struct blk_plug *plug,
2719                                                struct bio *bio,
2720                                                unsigned int nsegs)
2721 {
2722         struct blk_mq_alloc_data data = {
2723                 .q              = q,
2724                 .nr_tags        = 1,
2725                 .cmd_flags      = bio->bi_opf,
2726         };
2727         struct request *rq;
2728
2729         if (unlikely(bio_queue_enter(bio)))
2730                 return NULL;
2731
2732         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2733                 goto queue_exit;
2734
2735         rq_qos_throttle(q, bio);
2736
2737         if (plug) {
2738                 data.nr_tags = plug->nr_ios;
2739                 plug->nr_ios = 1;
2740                 data.cached_rq = &plug->cached_rq;
2741         }
2742
2743         rq = __blk_mq_alloc_requests(&data);
2744         if (rq)
2745                 return rq;
2746         rq_qos_cleanup(q, bio);
2747         if (bio->bi_opf & REQ_NOWAIT)
2748                 bio_wouldblock_error(bio);
2749 queue_exit:
2750         blk_queue_exit(q);
2751         return NULL;
2752 }
2753
2754 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2755                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2756 {
2757         struct request *rq;
2758
2759         if (!plug)
2760                 return NULL;
2761         rq = rq_list_peek(&plug->cached_rq);
2762         if (!rq || rq->q != q)
2763                 return NULL;
2764
2765         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2766                 *bio = NULL;
2767                 return NULL;
2768         }
2769
2770         if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2771                 return NULL;
2772         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2773                 return NULL;
2774
2775         /*
2776          * If any qos ->throttle() end up blocking, we will have flushed the
2777          * plug and hence killed the cached_rq list as well. Pop this entry
2778          * before we throttle.
2779          */
2780         plug->cached_rq = rq_list_next(rq);
2781         rq_qos_throttle(q, *bio);
2782
2783         rq->cmd_flags = (*bio)->bi_opf;
2784         INIT_LIST_HEAD(&rq->queuelist);
2785         return rq;
2786 }
2787
2788 static void bio_set_ioprio(struct bio *bio)
2789 {
2790         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2791         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2792                 bio->bi_ioprio = get_current_ioprio();
2793         blkcg_set_ioprio(bio);
2794 }
2795
2796 /**
2797  * blk_mq_submit_bio - Create and send a request to block device.
2798  * @bio: Bio pointer.
2799  *
2800  * Builds up a request structure from @q and @bio and send to the device. The
2801  * request may not be queued directly to hardware if:
2802  * * This request can be merged with another one
2803  * * We want to place request at plug queue for possible future merging
2804  * * There is an IO scheduler active at this queue
2805  *
2806  * It will not queue the request if there is an error with the bio, or at the
2807  * request creation.
2808  */
2809 void blk_mq_submit_bio(struct bio *bio)
2810 {
2811         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2812         struct blk_plug *plug = blk_mq_plug(bio);
2813         const int is_sync = op_is_sync(bio->bi_opf);
2814         struct request *rq;
2815         unsigned int nr_segs = 1;
2816         blk_status_t ret;
2817
2818         bio = blk_queue_bounce(bio, q);
2819         if (bio_may_exceed_limits(bio, &q->limits))
2820                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2821
2822         if (!bio_integrity_prep(bio))
2823                 return;
2824
2825         bio_set_ioprio(bio);
2826
2827         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2828         if (!rq) {
2829                 if (!bio)
2830                         return;
2831                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2832                 if (unlikely(!rq))
2833                         return;
2834         }
2835
2836         trace_block_getrq(bio);
2837
2838         rq_qos_track(q, rq, bio);
2839
2840         blk_mq_bio_to_request(rq, bio, nr_segs);
2841
2842         ret = blk_crypto_init_request(rq);
2843         if (ret != BLK_STS_OK) {
2844                 bio->bi_status = ret;
2845                 bio_endio(bio);
2846                 blk_mq_free_request(rq);
2847                 return;
2848         }
2849
2850         if (op_is_flush(bio->bi_opf)) {
2851                 blk_insert_flush(rq);
2852                 return;
2853         }
2854
2855         if (plug)
2856                 blk_add_rq_to_plug(plug, rq);
2857         else if ((rq->rq_flags & RQF_ELV) ||
2858                  (rq->mq_hctx->dispatch_busy &&
2859                   (q->nr_hw_queues == 1 || !is_sync)))
2860                 blk_mq_sched_insert_request(rq, false, true, true);
2861         else
2862                 blk_mq_run_dispatch_ops(rq->q,
2863                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2864 }
2865
2866 #ifdef CONFIG_BLK_MQ_STACKING
2867 /**
2868  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2869  * @rq: the request being queued
2870  */
2871 blk_status_t blk_insert_cloned_request(struct request *rq)
2872 {
2873         struct request_queue *q = rq->q;
2874         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2875         blk_status_t ret;
2876
2877         if (blk_rq_sectors(rq) > max_sectors) {
2878                 /*
2879                  * SCSI device does not have a good way to return if
2880                  * Write Same/Zero is actually supported. If a device rejects
2881                  * a non-read/write command (discard, write same,etc.) the
2882                  * low-level device driver will set the relevant queue limit to
2883                  * 0 to prevent blk-lib from issuing more of the offending
2884                  * operations. Commands queued prior to the queue limit being
2885                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2886                  * errors being propagated to upper layers.
2887                  */
2888                 if (max_sectors == 0)
2889                         return BLK_STS_NOTSUPP;
2890
2891                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2892                         __func__, blk_rq_sectors(rq), max_sectors);
2893                 return BLK_STS_IOERR;
2894         }
2895
2896         /*
2897          * The queue settings related to segment counting may differ from the
2898          * original queue.
2899          */
2900         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2901         if (rq->nr_phys_segments > queue_max_segments(q)) {
2902                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2903                         __func__, rq->nr_phys_segments, queue_max_segments(q));
2904                 return BLK_STS_IOERR;
2905         }
2906
2907         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2908                 return BLK_STS_IOERR;
2909
2910         if (blk_crypto_insert_cloned_request(rq))
2911                 return BLK_STS_IOERR;
2912
2913         blk_account_io_start(rq);
2914
2915         /*
2916          * Since we have a scheduler attached on the top device,
2917          * bypass a potential scheduler on the bottom device for
2918          * insert.
2919          */
2920         blk_mq_run_dispatch_ops(q,
2921                         ret = blk_mq_request_issue_directly(rq, true));
2922         if (ret)
2923                 blk_account_io_done(rq, ktime_get_ns());
2924         return ret;
2925 }
2926 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2927
2928 /**
2929  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2930  * @rq: the clone request to be cleaned up
2931  *
2932  * Description:
2933  *     Free all bios in @rq for a cloned request.
2934  */
2935 void blk_rq_unprep_clone(struct request *rq)
2936 {
2937         struct bio *bio;
2938
2939         while ((bio = rq->bio) != NULL) {
2940                 rq->bio = bio->bi_next;
2941
2942                 bio_put(bio);
2943         }
2944 }
2945 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2946
2947 /**
2948  * blk_rq_prep_clone - Helper function to setup clone request
2949  * @rq: the request to be setup
2950  * @rq_src: original request to be cloned
2951  * @bs: bio_set that bios for clone are allocated from
2952  * @gfp_mask: memory allocation mask for bio
2953  * @bio_ctr: setup function to be called for each clone bio.
2954  *           Returns %0 for success, non %0 for failure.
2955  * @data: private data to be passed to @bio_ctr
2956  *
2957  * Description:
2958  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2959  *     Also, pages which the original bios are pointing to are not copied
2960  *     and the cloned bios just point same pages.
2961  *     So cloned bios must be completed before original bios, which means
2962  *     the caller must complete @rq before @rq_src.
2963  */
2964 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2965                       struct bio_set *bs, gfp_t gfp_mask,
2966                       int (*bio_ctr)(struct bio *, struct bio *, void *),
2967                       void *data)
2968 {
2969         struct bio *bio, *bio_src;
2970
2971         if (!bs)
2972                 bs = &fs_bio_set;
2973
2974         __rq_for_each_bio(bio_src, rq_src) {
2975                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2976                                       bs);
2977                 if (!bio)
2978                         goto free_and_out;
2979
2980                 if (bio_ctr && bio_ctr(bio, bio_src, data))
2981                         goto free_and_out;
2982
2983                 if (rq->bio) {
2984                         rq->biotail->bi_next = bio;
2985                         rq->biotail = bio;
2986                 } else {
2987                         rq->bio = rq->biotail = bio;
2988                 }
2989                 bio = NULL;
2990         }
2991
2992         /* Copy attributes of the original request to the clone request. */
2993         rq->__sector = blk_rq_pos(rq_src);
2994         rq->__data_len = blk_rq_bytes(rq_src);
2995         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2996                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2997                 rq->special_vec = rq_src->special_vec;
2998         }
2999         rq->nr_phys_segments = rq_src->nr_phys_segments;
3000         rq->ioprio = rq_src->ioprio;
3001
3002         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3003                 goto free_and_out;
3004
3005         return 0;
3006
3007 free_and_out:
3008         if (bio)
3009                 bio_put(bio);
3010         blk_rq_unprep_clone(rq);
3011
3012         return -ENOMEM;
3013 }
3014 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3015 #endif /* CONFIG_BLK_MQ_STACKING */
3016
3017 /*
3018  * Steal bios from a request and add them to a bio list.
3019  * The request must not have been partially completed before.
3020  */
3021 void blk_steal_bios(struct bio_list *list, struct request *rq)
3022 {
3023         if (rq->bio) {
3024                 if (list->tail)
3025                         list->tail->bi_next = rq->bio;
3026                 else
3027                         list->head = rq->bio;
3028                 list->tail = rq->biotail;
3029
3030                 rq->bio = NULL;
3031                 rq->biotail = NULL;
3032         }
3033
3034         rq->__data_len = 0;
3035 }
3036 EXPORT_SYMBOL_GPL(blk_steal_bios);
3037
3038 static size_t order_to_size(unsigned int order)
3039 {
3040         return (size_t)PAGE_SIZE << order;
3041 }
3042
3043 /* called before freeing request pool in @tags */
3044 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3045                                     struct blk_mq_tags *tags)
3046 {
3047         struct page *page;
3048         unsigned long flags;
3049
3050         /* There is no need to clear a driver tags own mapping */
3051         if (drv_tags == tags)
3052                 return;
3053
3054         list_for_each_entry(page, &tags->page_list, lru) {
3055                 unsigned long start = (unsigned long)page_address(page);
3056                 unsigned long end = start + order_to_size(page->private);
3057                 int i;
3058
3059                 for (i = 0; i < drv_tags->nr_tags; i++) {
3060                         struct request *rq = drv_tags->rqs[i];
3061                         unsigned long rq_addr = (unsigned long)rq;
3062
3063                         if (rq_addr >= start && rq_addr < end) {
3064                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3065                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3066                         }
3067                 }
3068         }
3069
3070         /*
3071          * Wait until all pending iteration is done.
3072          *
3073          * Request reference is cleared and it is guaranteed to be observed
3074          * after the ->lock is released.
3075          */
3076         spin_lock_irqsave(&drv_tags->lock, flags);
3077         spin_unlock_irqrestore(&drv_tags->lock, flags);
3078 }
3079
3080 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3081                      unsigned int hctx_idx)
3082 {
3083         struct blk_mq_tags *drv_tags;
3084         struct page *page;
3085
3086         if (list_empty(&tags->page_list))
3087                 return;
3088
3089         if (blk_mq_is_shared_tags(set->flags))
3090                 drv_tags = set->shared_tags;
3091         else
3092                 drv_tags = set->tags[hctx_idx];
3093
3094         if (tags->static_rqs && set->ops->exit_request) {
3095                 int i;
3096
3097                 for (i = 0; i < tags->nr_tags; i++) {
3098                         struct request *rq = tags->static_rqs[i];
3099
3100                         if (!rq)
3101                                 continue;
3102                         set->ops->exit_request(set, rq, hctx_idx);
3103                         tags->static_rqs[i] = NULL;
3104                 }
3105         }
3106
3107         blk_mq_clear_rq_mapping(drv_tags, tags);
3108
3109         while (!list_empty(&tags->page_list)) {
3110                 page = list_first_entry(&tags->page_list, struct page, lru);
3111                 list_del_init(&page->lru);
3112                 /*
3113                  * Remove kmemleak object previously allocated in
3114                  * blk_mq_alloc_rqs().
3115                  */
3116                 kmemleak_free(page_address(page));
3117                 __free_pages(page, page->private);
3118         }
3119 }
3120
3121 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3122 {
3123         kfree(tags->rqs);
3124         tags->rqs = NULL;
3125         kfree(tags->static_rqs);
3126         tags->static_rqs = NULL;
3127
3128         blk_mq_free_tags(tags);
3129 }
3130
3131 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3132                 unsigned int hctx_idx)
3133 {
3134         int i;
3135
3136         for (i = 0; i < set->nr_maps; i++) {
3137                 unsigned int start = set->map[i].queue_offset;
3138                 unsigned int end = start + set->map[i].nr_queues;
3139
3140                 if (hctx_idx >= start && hctx_idx < end)
3141                         break;
3142         }
3143
3144         if (i >= set->nr_maps)
3145                 i = HCTX_TYPE_DEFAULT;
3146
3147         return i;
3148 }
3149
3150 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3151                 unsigned int hctx_idx)
3152 {
3153         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3154
3155         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3156 }
3157
3158 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3159                                                unsigned int hctx_idx,
3160                                                unsigned int nr_tags,
3161                                                unsigned int reserved_tags)
3162 {
3163         int node = blk_mq_get_hctx_node(set, hctx_idx);
3164         struct blk_mq_tags *tags;
3165
3166         if (node == NUMA_NO_NODE)
3167                 node = set->numa_node;
3168
3169         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3170                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3171         if (!tags)
3172                 return NULL;
3173
3174         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3175                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3176                                  node);
3177         if (!tags->rqs) {
3178                 blk_mq_free_tags(tags);
3179                 return NULL;
3180         }
3181
3182         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3183                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3184                                         node);
3185         if (!tags->static_rqs) {
3186                 kfree(tags->rqs);
3187                 blk_mq_free_tags(tags);
3188                 return NULL;
3189         }
3190
3191         return tags;
3192 }
3193
3194 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3195                                unsigned int hctx_idx, int node)
3196 {
3197         int ret;
3198
3199         if (set->ops->init_request) {
3200                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3201                 if (ret)
3202                         return ret;
3203         }
3204
3205         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3206         return 0;
3207 }
3208
3209 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3210                             struct blk_mq_tags *tags,
3211                             unsigned int hctx_idx, unsigned int depth)
3212 {
3213         unsigned int i, j, entries_per_page, max_order = 4;
3214         int node = blk_mq_get_hctx_node(set, hctx_idx);
3215         size_t rq_size, left;
3216
3217         if (node == NUMA_NO_NODE)
3218                 node = set->numa_node;
3219
3220         INIT_LIST_HEAD(&tags->page_list);
3221
3222         /*
3223          * rq_size is the size of the request plus driver payload, rounded
3224          * to the cacheline size
3225          */
3226         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3227                                 cache_line_size());
3228         left = rq_size * depth;
3229
3230         for (i = 0; i < depth; ) {
3231                 int this_order = max_order;
3232                 struct page *page;
3233                 int to_do;
3234                 void *p;
3235
3236                 while (this_order && left < order_to_size(this_order - 1))
3237                         this_order--;
3238
3239                 do {
3240                         page = alloc_pages_node(node,
3241                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3242                                 this_order);
3243                         if (page)
3244                                 break;
3245                         if (!this_order--)
3246                                 break;
3247                         if (order_to_size(this_order) < rq_size)
3248                                 break;
3249                 } while (1);
3250
3251                 if (!page)
3252                         goto fail;
3253
3254                 page->private = this_order;
3255                 list_add_tail(&page->lru, &tags->page_list);
3256
3257                 p = page_address(page);
3258                 /*
3259                  * Allow kmemleak to scan these pages as they contain pointers
3260                  * to additional allocations like via ops->init_request().
3261                  */
3262                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3263                 entries_per_page = order_to_size(this_order) / rq_size;
3264                 to_do = min(entries_per_page, depth - i);
3265                 left -= to_do * rq_size;
3266                 for (j = 0; j < to_do; j++) {
3267                         struct request *rq = p;
3268
3269                         tags->static_rqs[i] = rq;
3270                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3271                                 tags->static_rqs[i] = NULL;
3272                                 goto fail;
3273                         }
3274
3275                         p += rq_size;
3276                         i++;
3277                 }
3278         }
3279         return 0;
3280
3281 fail:
3282         blk_mq_free_rqs(set, tags, hctx_idx);
3283         return -ENOMEM;
3284 }
3285
3286 struct rq_iter_data {
3287         struct blk_mq_hw_ctx *hctx;
3288         bool has_rq;
3289 };
3290
3291 static bool blk_mq_has_request(struct request *rq, void *data)
3292 {
3293         struct rq_iter_data *iter_data = data;
3294
3295         if (rq->mq_hctx != iter_data->hctx)
3296                 return true;
3297         iter_data->has_rq = true;
3298         return false;
3299 }
3300
3301 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3302 {
3303         struct blk_mq_tags *tags = hctx->sched_tags ?
3304                         hctx->sched_tags : hctx->tags;
3305         struct rq_iter_data data = {
3306                 .hctx   = hctx,
3307         };
3308
3309         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3310         return data.has_rq;
3311 }
3312
3313 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3314                 struct blk_mq_hw_ctx *hctx)
3315 {
3316         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3317                 return false;
3318         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3319                 return false;
3320         return true;
3321 }
3322
3323 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3324 {
3325         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3326                         struct blk_mq_hw_ctx, cpuhp_online);
3327
3328         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3329             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3330                 return 0;
3331
3332         /*
3333          * Prevent new request from being allocated on the current hctx.
3334          *
3335          * The smp_mb__after_atomic() Pairs with the implied barrier in
3336          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3337          * seen once we return from the tag allocator.
3338          */
3339         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3340         smp_mb__after_atomic();
3341
3342         /*
3343          * Try to grab a reference to the queue and wait for any outstanding
3344          * requests.  If we could not grab a reference the queue has been
3345          * frozen and there are no requests.
3346          */
3347         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3348                 while (blk_mq_hctx_has_requests(hctx))
3349                         msleep(5);
3350                 percpu_ref_put(&hctx->queue->q_usage_counter);
3351         }
3352
3353         return 0;
3354 }
3355
3356 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3357 {
3358         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3359                         struct blk_mq_hw_ctx, cpuhp_online);
3360
3361         if (cpumask_test_cpu(cpu, hctx->cpumask))
3362                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3363         return 0;
3364 }
3365
3366 /*
3367  * 'cpu' is going away. splice any existing rq_list entries from this
3368  * software queue to the hw queue dispatch list, and ensure that it
3369  * gets run.
3370  */
3371 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3372 {
3373         struct blk_mq_hw_ctx *hctx;
3374         struct blk_mq_ctx *ctx;
3375         LIST_HEAD(tmp);
3376         enum hctx_type type;
3377
3378         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3379         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3380                 return 0;
3381
3382         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3383         type = hctx->type;
3384
3385         spin_lock(&ctx->lock);
3386         if (!list_empty(&ctx->rq_lists[type])) {
3387                 list_splice_init(&ctx->rq_lists[type], &tmp);
3388                 blk_mq_hctx_clear_pending(hctx, ctx);
3389         }
3390         spin_unlock(&ctx->lock);
3391
3392         if (list_empty(&tmp))
3393                 return 0;
3394
3395         spin_lock(&hctx->lock);
3396         list_splice_tail_init(&tmp, &hctx->dispatch);
3397         spin_unlock(&hctx->lock);
3398
3399         blk_mq_run_hw_queue(hctx, true);
3400         return 0;
3401 }
3402
3403 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3404 {
3405         if (!(hctx->flags & BLK_MQ_F_STACKING))
3406                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3407                                                     &hctx->cpuhp_online);
3408         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3409                                             &hctx->cpuhp_dead);
3410 }
3411
3412 /*
3413  * Before freeing hw queue, clearing the flush request reference in
3414  * tags->rqs[] for avoiding potential UAF.
3415  */
3416 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3417                 unsigned int queue_depth, struct request *flush_rq)
3418 {
3419         int i;
3420         unsigned long flags;
3421
3422         /* The hw queue may not be mapped yet */
3423         if (!tags)
3424                 return;
3425
3426         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3427
3428         for (i = 0; i < queue_depth; i++)
3429                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3430
3431         /*
3432          * Wait until all pending iteration is done.
3433          *
3434          * Request reference is cleared and it is guaranteed to be observed
3435          * after the ->lock is released.
3436          */
3437         spin_lock_irqsave(&tags->lock, flags);
3438         spin_unlock_irqrestore(&tags->lock, flags);
3439 }
3440
3441 /* hctx->ctxs will be freed in queue's release handler */
3442 static void blk_mq_exit_hctx(struct request_queue *q,
3443                 struct blk_mq_tag_set *set,
3444                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3445 {
3446         struct request *flush_rq = hctx->fq->flush_rq;
3447
3448         if (blk_mq_hw_queue_mapped(hctx))
3449                 blk_mq_tag_idle(hctx);
3450
3451         if (blk_queue_init_done(q))
3452                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3453                                 set->queue_depth, flush_rq);
3454         if (set->ops->exit_request)
3455                 set->ops->exit_request(set, flush_rq, hctx_idx);
3456
3457         if (set->ops->exit_hctx)
3458                 set->ops->exit_hctx(hctx, hctx_idx);
3459
3460         blk_mq_remove_cpuhp(hctx);
3461
3462         xa_erase(&q->hctx_table, hctx_idx);
3463
3464         spin_lock(&q->unused_hctx_lock);
3465         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3466         spin_unlock(&q->unused_hctx_lock);
3467 }
3468
3469 static void blk_mq_exit_hw_queues(struct request_queue *q,
3470                 struct blk_mq_tag_set *set, int nr_queue)
3471 {
3472         struct blk_mq_hw_ctx *hctx;
3473         unsigned long i;
3474
3475         queue_for_each_hw_ctx(q, hctx, i) {
3476                 if (i == nr_queue)
3477                         break;
3478                 blk_mq_exit_hctx(q, set, hctx, i);
3479         }
3480 }
3481
3482 static int blk_mq_init_hctx(struct request_queue *q,
3483                 struct blk_mq_tag_set *set,
3484                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3485 {
3486         hctx->queue_num = hctx_idx;
3487
3488         if (!(hctx->flags & BLK_MQ_F_STACKING))
3489                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3490                                 &hctx->cpuhp_online);
3491         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3492
3493         hctx->tags = set->tags[hctx_idx];
3494
3495         if (set->ops->init_hctx &&
3496             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3497                 goto unregister_cpu_notifier;
3498
3499         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3500                                 hctx->numa_node))
3501                 goto exit_hctx;
3502
3503         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3504                 goto exit_flush_rq;
3505
3506         return 0;
3507
3508  exit_flush_rq:
3509         if (set->ops->exit_request)
3510                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3511  exit_hctx:
3512         if (set->ops->exit_hctx)
3513                 set->ops->exit_hctx(hctx, hctx_idx);
3514  unregister_cpu_notifier:
3515         blk_mq_remove_cpuhp(hctx);
3516         return -1;
3517 }
3518
3519 static struct blk_mq_hw_ctx *
3520 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3521                 int node)
3522 {
3523         struct blk_mq_hw_ctx *hctx;
3524         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3525
3526         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3527         if (!hctx)
3528                 goto fail_alloc_hctx;
3529
3530         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3531                 goto free_hctx;
3532
3533         atomic_set(&hctx->nr_active, 0);
3534         if (node == NUMA_NO_NODE)
3535                 node = set->numa_node;
3536         hctx->numa_node = node;
3537
3538         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3539         spin_lock_init(&hctx->lock);
3540         INIT_LIST_HEAD(&hctx->dispatch);
3541         hctx->queue = q;
3542         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3543
3544         INIT_LIST_HEAD(&hctx->hctx_list);
3545
3546         /*
3547          * Allocate space for all possible cpus to avoid allocation at
3548          * runtime
3549          */
3550         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3551                         gfp, node);
3552         if (!hctx->ctxs)
3553                 goto free_cpumask;
3554
3555         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3556                                 gfp, node, false, false))
3557                 goto free_ctxs;
3558         hctx->nr_ctx = 0;
3559
3560         spin_lock_init(&hctx->dispatch_wait_lock);
3561         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3562         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3563
3564         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3565         if (!hctx->fq)
3566                 goto free_bitmap;
3567
3568         blk_mq_hctx_kobj_init(hctx);
3569
3570         return hctx;
3571
3572  free_bitmap:
3573         sbitmap_free(&hctx->ctx_map);
3574  free_ctxs:
3575         kfree(hctx->ctxs);
3576  free_cpumask:
3577         free_cpumask_var(hctx->cpumask);
3578  free_hctx:
3579         kfree(hctx);
3580  fail_alloc_hctx:
3581         return NULL;
3582 }
3583
3584 static void blk_mq_init_cpu_queues(struct request_queue *q,
3585                                    unsigned int nr_hw_queues)
3586 {
3587         struct blk_mq_tag_set *set = q->tag_set;
3588         unsigned int i, j;
3589
3590         for_each_possible_cpu(i) {
3591                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3592                 struct blk_mq_hw_ctx *hctx;
3593                 int k;
3594
3595                 __ctx->cpu = i;
3596                 spin_lock_init(&__ctx->lock);
3597                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3598                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3599
3600                 __ctx->queue = q;
3601
3602                 /*
3603                  * Set local node, IFF we have more than one hw queue. If
3604                  * not, we remain on the home node of the device
3605                  */
3606                 for (j = 0; j < set->nr_maps; j++) {
3607                         hctx = blk_mq_map_queue_type(q, j, i);
3608                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3609                                 hctx->numa_node = cpu_to_node(i);
3610                 }
3611         }
3612 }
3613
3614 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3615                                              unsigned int hctx_idx,
3616                                              unsigned int depth)
3617 {
3618         struct blk_mq_tags *tags;
3619         int ret;
3620
3621         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3622         if (!tags)
3623                 return NULL;
3624
3625         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3626         if (ret) {
3627                 blk_mq_free_rq_map(tags);
3628                 return NULL;
3629         }
3630
3631         return tags;
3632 }
3633
3634 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3635                                        int hctx_idx)
3636 {
3637         if (blk_mq_is_shared_tags(set->flags)) {
3638                 set->tags[hctx_idx] = set->shared_tags;
3639
3640                 return true;
3641         }
3642
3643         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3644                                                        set->queue_depth);
3645
3646         return set->tags[hctx_idx];
3647 }
3648
3649 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3650                              struct blk_mq_tags *tags,
3651                              unsigned int hctx_idx)
3652 {
3653         if (tags) {
3654                 blk_mq_free_rqs(set, tags, hctx_idx);
3655                 blk_mq_free_rq_map(tags);
3656         }
3657 }
3658
3659 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3660                                       unsigned int hctx_idx)
3661 {
3662         if (!blk_mq_is_shared_tags(set->flags))
3663                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3664
3665         set->tags[hctx_idx] = NULL;
3666 }
3667
3668 static void blk_mq_map_swqueue(struct request_queue *q)
3669 {
3670         unsigned int j, hctx_idx;
3671         unsigned long i;
3672         struct blk_mq_hw_ctx *hctx;
3673         struct blk_mq_ctx *ctx;
3674         struct blk_mq_tag_set *set = q->tag_set;
3675
3676         queue_for_each_hw_ctx(q, hctx, i) {
3677                 cpumask_clear(hctx->cpumask);
3678                 hctx->nr_ctx = 0;
3679                 hctx->dispatch_from = NULL;
3680         }
3681
3682         /*
3683          * Map software to hardware queues.
3684          *
3685          * If the cpu isn't present, the cpu is mapped to first hctx.
3686          */
3687         for_each_possible_cpu(i) {
3688
3689                 ctx = per_cpu_ptr(q->queue_ctx, i);
3690                 for (j = 0; j < set->nr_maps; j++) {
3691                         if (!set->map[j].nr_queues) {
3692                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3693                                                 HCTX_TYPE_DEFAULT, i);
3694                                 continue;
3695                         }
3696                         hctx_idx = set->map[j].mq_map[i];
3697                         /* unmapped hw queue can be remapped after CPU topo changed */
3698                         if (!set->tags[hctx_idx] &&
3699                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3700                                 /*
3701                                  * If tags initialization fail for some hctx,
3702                                  * that hctx won't be brought online.  In this
3703                                  * case, remap the current ctx to hctx[0] which
3704                                  * is guaranteed to always have tags allocated
3705                                  */
3706                                 set->map[j].mq_map[i] = 0;
3707                         }
3708
3709                         hctx = blk_mq_map_queue_type(q, j, i);
3710                         ctx->hctxs[j] = hctx;
3711                         /*
3712                          * If the CPU is already set in the mask, then we've
3713                          * mapped this one already. This can happen if
3714                          * devices share queues across queue maps.
3715                          */
3716                         if (cpumask_test_cpu(i, hctx->cpumask))
3717                                 continue;
3718
3719                         cpumask_set_cpu(i, hctx->cpumask);
3720                         hctx->type = j;
3721                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3722                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3723
3724                         /*
3725                          * If the nr_ctx type overflows, we have exceeded the
3726                          * amount of sw queues we can support.
3727                          */
3728                         BUG_ON(!hctx->nr_ctx);
3729                 }
3730
3731                 for (; j < HCTX_MAX_TYPES; j++)
3732                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3733                                         HCTX_TYPE_DEFAULT, i);
3734         }
3735
3736         queue_for_each_hw_ctx(q, hctx, i) {
3737                 /*
3738                  * If no software queues are mapped to this hardware queue,
3739                  * disable it and free the request entries.
3740                  */
3741                 if (!hctx->nr_ctx) {
3742                         /* Never unmap queue 0.  We need it as a
3743                          * fallback in case of a new remap fails
3744                          * allocation
3745                          */
3746                         if (i)
3747                                 __blk_mq_free_map_and_rqs(set, i);
3748
3749                         hctx->tags = NULL;
3750                         continue;
3751                 }
3752
3753                 hctx->tags = set->tags[i];
3754                 WARN_ON(!hctx->tags);
3755
3756                 /*
3757                  * Set the map size to the number of mapped software queues.
3758                  * This is more accurate and more efficient than looping
3759                  * over all possibly mapped software queues.
3760                  */
3761                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3762
3763                 /*
3764                  * Initialize batch roundrobin counts
3765                  */
3766                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3767                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3768         }
3769 }
3770
3771 /*
3772  * Caller needs to ensure that we're either frozen/quiesced, or that
3773  * the queue isn't live yet.
3774  */
3775 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3776 {
3777         struct blk_mq_hw_ctx *hctx;
3778         unsigned long i;
3779
3780         queue_for_each_hw_ctx(q, hctx, i) {
3781                 if (shared) {
3782                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3783                 } else {
3784                         blk_mq_tag_idle(hctx);
3785                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3786                 }
3787         }
3788 }
3789
3790 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3791                                          bool shared)
3792 {
3793         struct request_queue *q;
3794
3795         lockdep_assert_held(&set->tag_list_lock);
3796
3797         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3798                 blk_mq_freeze_queue(q);
3799                 queue_set_hctx_shared(q, shared);
3800                 blk_mq_unfreeze_queue(q);
3801         }
3802 }
3803
3804 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3805 {
3806         struct blk_mq_tag_set *set = q->tag_set;
3807
3808         mutex_lock(&set->tag_list_lock);
3809         list_del(&q->tag_set_list);
3810         if (list_is_singular(&set->tag_list)) {
3811                 /* just transitioned to unshared */
3812                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3813                 /* update existing queue */
3814                 blk_mq_update_tag_set_shared(set, false);
3815         }
3816         mutex_unlock(&set->tag_list_lock);
3817         INIT_LIST_HEAD(&q->tag_set_list);
3818 }
3819
3820 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3821                                      struct request_queue *q)
3822 {
3823         mutex_lock(&set->tag_list_lock);
3824
3825         /*
3826          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3827          */
3828         if (!list_empty(&set->tag_list) &&
3829             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3830                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3831                 /* update existing queue */
3832                 blk_mq_update_tag_set_shared(set, true);
3833         }
3834         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3835                 queue_set_hctx_shared(q, true);
3836         list_add_tail(&q->tag_set_list, &set->tag_list);
3837
3838         mutex_unlock(&set->tag_list_lock);
3839 }
3840
3841 /* All allocations will be freed in release handler of q->mq_kobj */
3842 static int blk_mq_alloc_ctxs(struct request_queue *q)
3843 {
3844         struct blk_mq_ctxs *ctxs;
3845         int cpu;
3846
3847         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3848         if (!ctxs)
3849                 return -ENOMEM;
3850
3851         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3852         if (!ctxs->queue_ctx)
3853                 goto fail;
3854
3855         for_each_possible_cpu(cpu) {
3856                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3857                 ctx->ctxs = ctxs;
3858         }
3859
3860         q->mq_kobj = &ctxs->kobj;
3861         q->queue_ctx = ctxs->queue_ctx;
3862
3863         return 0;
3864  fail:
3865         kfree(ctxs);
3866         return -ENOMEM;
3867 }
3868
3869 /*
3870  * It is the actual release handler for mq, but we do it from
3871  * request queue's release handler for avoiding use-after-free
3872  * and headache because q->mq_kobj shouldn't have been introduced,
3873  * but we can't group ctx/kctx kobj without it.
3874  */
3875 void blk_mq_release(struct request_queue *q)
3876 {
3877         struct blk_mq_hw_ctx *hctx, *next;
3878         unsigned long i;
3879
3880         queue_for_each_hw_ctx(q, hctx, i)
3881                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3882
3883         /* all hctx are in .unused_hctx_list now */
3884         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3885                 list_del_init(&hctx->hctx_list);
3886                 kobject_put(&hctx->kobj);
3887         }
3888
3889         xa_destroy(&q->hctx_table);
3890
3891         /*
3892          * release .mq_kobj and sw queue's kobject now because
3893          * both share lifetime with request queue.
3894          */
3895         blk_mq_sysfs_deinit(q);
3896 }
3897
3898 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3899                 void *queuedata)
3900 {
3901         struct request_queue *q;
3902         int ret;
3903
3904         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3905         if (!q)
3906                 return ERR_PTR(-ENOMEM);
3907         q->queuedata = queuedata;
3908         ret = blk_mq_init_allocated_queue(set, q);
3909         if (ret) {
3910                 blk_put_queue(q);
3911                 return ERR_PTR(ret);
3912         }
3913         return q;
3914 }
3915
3916 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3917 {
3918         return blk_mq_init_queue_data(set, NULL);
3919 }
3920 EXPORT_SYMBOL(blk_mq_init_queue);
3921
3922 /**
3923  * blk_mq_destroy_queue - shutdown a request queue
3924  * @q: request queue to shutdown
3925  *
3926  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
3927  * the initial reference.  All future requests will failed with -ENODEV.
3928  *
3929  * Context: can sleep
3930  */
3931 void blk_mq_destroy_queue(struct request_queue *q)
3932 {
3933         WARN_ON_ONCE(!queue_is_mq(q));
3934         WARN_ON_ONCE(blk_queue_registered(q));
3935
3936         might_sleep();
3937
3938         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
3939         blk_queue_start_drain(q);
3940         blk_freeze_queue(q);
3941
3942         blk_sync_queue(q);
3943         blk_mq_cancel_work_sync(q);
3944         blk_mq_exit_queue(q);
3945
3946         /* @q is and will stay empty, shutdown and put */
3947         blk_put_queue(q);
3948 }
3949 EXPORT_SYMBOL(blk_mq_destroy_queue);
3950
3951 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3952                 struct lock_class_key *lkclass)
3953 {
3954         struct request_queue *q;
3955         struct gendisk *disk;
3956
3957         q = blk_mq_init_queue_data(set, queuedata);
3958         if (IS_ERR(q))
3959                 return ERR_CAST(q);
3960
3961         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3962         if (!disk) {
3963                 blk_mq_destroy_queue(q);
3964                 return ERR_PTR(-ENOMEM);
3965         }
3966         set_bit(GD_OWNS_QUEUE, &disk->state);
3967         return disk;
3968 }
3969 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3970
3971 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
3972                 struct lock_class_key *lkclass)
3973 {
3974         if (!blk_get_queue(q))
3975                 return NULL;
3976         return __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
3977 }
3978 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
3979
3980 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3981                 struct blk_mq_tag_set *set, struct request_queue *q,
3982                 int hctx_idx, int node)
3983 {
3984         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3985
3986         /* reuse dead hctx first */
3987         spin_lock(&q->unused_hctx_lock);
3988         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3989                 if (tmp->numa_node == node) {
3990                         hctx = tmp;
3991                         break;
3992                 }
3993         }
3994         if (hctx)
3995                 list_del_init(&hctx->hctx_list);
3996         spin_unlock(&q->unused_hctx_lock);
3997
3998         if (!hctx)
3999                 hctx = blk_mq_alloc_hctx(q, set, node);
4000         if (!hctx)
4001                 goto fail;
4002
4003         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4004                 goto free_hctx;
4005
4006         return hctx;
4007
4008  free_hctx:
4009         kobject_put(&hctx->kobj);
4010  fail:
4011         return NULL;
4012 }
4013
4014 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4015                                                 struct request_queue *q)
4016 {
4017         struct blk_mq_hw_ctx *hctx;
4018         unsigned long i, j;
4019
4020         /* protect against switching io scheduler  */
4021         mutex_lock(&q->sysfs_lock);
4022         for (i = 0; i < set->nr_hw_queues; i++) {
4023                 int old_node;
4024                 int node = blk_mq_get_hctx_node(set, i);
4025                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4026
4027                 if (old_hctx) {
4028                         old_node = old_hctx->numa_node;
4029                         blk_mq_exit_hctx(q, set, old_hctx, i);
4030                 }
4031
4032                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4033                         if (!old_hctx)
4034                                 break;
4035                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4036                                         node, old_node);
4037                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4038                         WARN_ON_ONCE(!hctx);
4039                 }
4040         }
4041         /*
4042          * Increasing nr_hw_queues fails. Free the newly allocated
4043          * hctxs and keep the previous q->nr_hw_queues.
4044          */
4045         if (i != set->nr_hw_queues) {
4046                 j = q->nr_hw_queues;
4047         } else {
4048                 j = i;
4049                 q->nr_hw_queues = set->nr_hw_queues;
4050         }
4051
4052         xa_for_each_start(&q->hctx_table, j, hctx, j)
4053                 blk_mq_exit_hctx(q, set, hctx, j);
4054         mutex_unlock(&q->sysfs_lock);
4055 }
4056
4057 static void blk_mq_update_poll_flag(struct request_queue *q)
4058 {
4059         struct blk_mq_tag_set *set = q->tag_set;
4060
4061         if (set->nr_maps > HCTX_TYPE_POLL &&
4062             set->map[HCTX_TYPE_POLL].nr_queues)
4063                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4064         else
4065                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4066 }
4067
4068 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4069                 struct request_queue *q)
4070 {
4071         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4072                         !!(set->flags & BLK_MQ_F_BLOCKING));
4073
4074         /* mark the queue as mq asap */
4075         q->mq_ops = set->ops;
4076
4077         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4078                                              blk_mq_poll_stats_bkt,
4079                                              BLK_MQ_POLL_STATS_BKTS, q);
4080         if (!q->poll_cb)
4081                 goto err_exit;
4082
4083         if (blk_mq_alloc_ctxs(q))
4084                 goto err_poll;
4085
4086         /* init q->mq_kobj and sw queues' kobjects */
4087         blk_mq_sysfs_init(q);
4088
4089         INIT_LIST_HEAD(&q->unused_hctx_list);
4090         spin_lock_init(&q->unused_hctx_lock);
4091
4092         xa_init(&q->hctx_table);
4093
4094         blk_mq_realloc_hw_ctxs(set, q);
4095         if (!q->nr_hw_queues)
4096                 goto err_hctxs;
4097
4098         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4099         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4100
4101         q->tag_set = set;
4102
4103         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4104         blk_mq_update_poll_flag(q);
4105
4106         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4107         INIT_LIST_HEAD(&q->requeue_list);
4108         spin_lock_init(&q->requeue_lock);
4109
4110         q->nr_requests = set->queue_depth;
4111
4112         /*
4113          * Default to classic polling
4114          */
4115         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4116
4117         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4118         blk_mq_add_queue_tag_set(set, q);
4119         blk_mq_map_swqueue(q);
4120         return 0;
4121
4122 err_hctxs:
4123         xa_destroy(&q->hctx_table);
4124         q->nr_hw_queues = 0;
4125         blk_mq_sysfs_deinit(q);
4126 err_poll:
4127         blk_stat_free_callback(q->poll_cb);
4128         q->poll_cb = NULL;
4129 err_exit:
4130         q->mq_ops = NULL;
4131         return -ENOMEM;
4132 }
4133 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4134
4135 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4136 void blk_mq_exit_queue(struct request_queue *q)
4137 {
4138         struct blk_mq_tag_set *set = q->tag_set;
4139
4140         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4141         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4142         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4143         blk_mq_del_queue_tag_set(q);
4144 }
4145
4146 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4147 {
4148         int i;
4149
4150         if (blk_mq_is_shared_tags(set->flags)) {
4151                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4152                                                 BLK_MQ_NO_HCTX_IDX,
4153                                                 set->queue_depth);
4154                 if (!set->shared_tags)
4155                         return -ENOMEM;
4156         }
4157
4158         for (i = 0; i < set->nr_hw_queues; i++) {
4159                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4160                         goto out_unwind;
4161                 cond_resched();
4162         }
4163
4164         return 0;
4165
4166 out_unwind:
4167         while (--i >= 0)
4168                 __blk_mq_free_map_and_rqs(set, i);
4169
4170         if (blk_mq_is_shared_tags(set->flags)) {
4171                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4172                                         BLK_MQ_NO_HCTX_IDX);
4173         }
4174
4175         return -ENOMEM;
4176 }
4177
4178 /*
4179  * Allocate the request maps associated with this tag_set. Note that this
4180  * may reduce the depth asked for, if memory is tight. set->queue_depth
4181  * will be updated to reflect the allocated depth.
4182  */
4183 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4184 {
4185         unsigned int depth;
4186         int err;
4187
4188         depth = set->queue_depth;
4189         do {
4190                 err = __blk_mq_alloc_rq_maps(set);
4191                 if (!err)
4192                         break;
4193
4194                 set->queue_depth >>= 1;
4195                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4196                         err = -ENOMEM;
4197                         break;
4198                 }
4199         } while (set->queue_depth);
4200
4201         if (!set->queue_depth || err) {
4202                 pr_err("blk-mq: failed to allocate request map\n");
4203                 return -ENOMEM;
4204         }
4205
4206         if (depth != set->queue_depth)
4207                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4208                                                 depth, set->queue_depth);
4209
4210         return 0;
4211 }
4212
4213 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4214 {
4215         /*
4216          * blk_mq_map_queues() and multiple .map_queues() implementations
4217          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4218          * number of hardware queues.
4219          */
4220         if (set->nr_maps == 1)
4221                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4222
4223         if (set->ops->map_queues && !is_kdump_kernel()) {
4224                 int i;
4225
4226                 /*
4227                  * transport .map_queues is usually done in the following
4228                  * way:
4229                  *
4230                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4231                  *      mask = get_cpu_mask(queue)
4232                  *      for_each_cpu(cpu, mask)
4233                  *              set->map[x].mq_map[cpu] = queue;
4234                  * }
4235                  *
4236                  * When we need to remap, the table has to be cleared for
4237                  * killing stale mapping since one CPU may not be mapped
4238                  * to any hw queue.
4239                  */
4240                 for (i = 0; i < set->nr_maps; i++)
4241                         blk_mq_clear_mq_map(&set->map[i]);
4242
4243                 return set->ops->map_queues(set);
4244         } else {
4245                 BUG_ON(set->nr_maps > 1);
4246                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4247         }
4248 }
4249
4250 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4251                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4252 {
4253         struct blk_mq_tags **new_tags;
4254
4255         if (cur_nr_hw_queues >= new_nr_hw_queues)
4256                 return 0;
4257
4258         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4259                                 GFP_KERNEL, set->numa_node);
4260         if (!new_tags)
4261                 return -ENOMEM;
4262
4263         if (set->tags)
4264                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4265                        sizeof(*set->tags));
4266         kfree(set->tags);
4267         set->tags = new_tags;
4268         set->nr_hw_queues = new_nr_hw_queues;
4269
4270         return 0;
4271 }
4272
4273 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4274                                 int new_nr_hw_queues)
4275 {
4276         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4277 }
4278
4279 /*
4280  * Alloc a tag set to be associated with one or more request queues.
4281  * May fail with EINVAL for various error conditions. May adjust the
4282  * requested depth down, if it's too large. In that case, the set
4283  * value will be stored in set->queue_depth.
4284  */
4285 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4286 {
4287         int i, ret;
4288
4289         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4290
4291         if (!set->nr_hw_queues)
4292                 return -EINVAL;
4293         if (!set->queue_depth)
4294                 return -EINVAL;
4295         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4296                 return -EINVAL;
4297
4298         if (!set->ops->queue_rq)
4299                 return -EINVAL;
4300
4301         if (!set->ops->get_budget ^ !set->ops->put_budget)
4302                 return -EINVAL;
4303
4304         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4305                 pr_info("blk-mq: reduced tag depth to %u\n",
4306                         BLK_MQ_MAX_DEPTH);
4307                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4308         }
4309
4310         if (!set->nr_maps)
4311                 set->nr_maps = 1;
4312         else if (set->nr_maps > HCTX_MAX_TYPES)
4313                 return -EINVAL;
4314
4315         /*
4316          * If a crashdump is active, then we are potentially in a very
4317          * memory constrained environment. Limit us to 1 queue and
4318          * 64 tags to prevent using too much memory.
4319          */
4320         if (is_kdump_kernel()) {
4321                 set->nr_hw_queues = 1;
4322                 set->nr_maps = 1;
4323                 set->queue_depth = min(64U, set->queue_depth);
4324         }
4325         /*
4326          * There is no use for more h/w queues than cpus if we just have
4327          * a single map
4328          */
4329         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4330                 set->nr_hw_queues = nr_cpu_ids;
4331
4332         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4333                 return -ENOMEM;
4334
4335         ret = -ENOMEM;
4336         for (i = 0; i < set->nr_maps; i++) {
4337                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4338                                                   sizeof(set->map[i].mq_map[0]),
4339                                                   GFP_KERNEL, set->numa_node);
4340                 if (!set->map[i].mq_map)
4341                         goto out_free_mq_map;
4342                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4343         }
4344
4345         ret = blk_mq_update_queue_map(set);
4346         if (ret)
4347                 goto out_free_mq_map;
4348
4349         ret = blk_mq_alloc_set_map_and_rqs(set);
4350         if (ret)
4351                 goto out_free_mq_map;
4352
4353         mutex_init(&set->tag_list_lock);
4354         INIT_LIST_HEAD(&set->tag_list);
4355
4356         return 0;
4357
4358 out_free_mq_map:
4359         for (i = 0; i < set->nr_maps; i++) {
4360                 kfree(set->map[i].mq_map);
4361                 set->map[i].mq_map = NULL;
4362         }
4363         kfree(set->tags);
4364         set->tags = NULL;
4365         return ret;
4366 }
4367 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4368
4369 /* allocate and initialize a tagset for a simple single-queue device */
4370 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4371                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4372                 unsigned int set_flags)
4373 {
4374         memset(set, 0, sizeof(*set));
4375         set->ops = ops;
4376         set->nr_hw_queues = 1;
4377         set->nr_maps = 1;
4378         set->queue_depth = queue_depth;
4379         set->numa_node = NUMA_NO_NODE;
4380         set->flags = set_flags;
4381         return blk_mq_alloc_tag_set(set);
4382 }
4383 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4384
4385 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4386 {
4387         int i, j;
4388
4389         for (i = 0; i < set->nr_hw_queues; i++)
4390                 __blk_mq_free_map_and_rqs(set, i);
4391
4392         if (blk_mq_is_shared_tags(set->flags)) {
4393                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4394                                         BLK_MQ_NO_HCTX_IDX);
4395         }
4396
4397         for (j = 0; j < set->nr_maps; j++) {
4398                 kfree(set->map[j].mq_map);
4399                 set->map[j].mq_map = NULL;
4400         }
4401
4402         kfree(set->tags);
4403         set->tags = NULL;
4404 }
4405 EXPORT_SYMBOL(blk_mq_free_tag_set);
4406
4407 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4408 {
4409         struct blk_mq_tag_set *set = q->tag_set;
4410         struct blk_mq_hw_ctx *hctx;
4411         int ret;
4412         unsigned long i;
4413
4414         if (!set)
4415                 return -EINVAL;
4416
4417         if (q->nr_requests == nr)
4418                 return 0;
4419
4420         blk_mq_freeze_queue(q);
4421         blk_mq_quiesce_queue(q);
4422
4423         ret = 0;
4424         queue_for_each_hw_ctx(q, hctx, i) {
4425                 if (!hctx->tags)
4426                         continue;
4427                 /*
4428                  * If we're using an MQ scheduler, just update the scheduler
4429                  * queue depth. This is similar to what the old code would do.
4430                  */
4431                 if (hctx->sched_tags) {
4432                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4433                                                       nr, true);
4434                 } else {
4435                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4436                                                       false);
4437                 }
4438                 if (ret)
4439                         break;
4440                 if (q->elevator && q->elevator->type->ops.depth_updated)
4441                         q->elevator->type->ops.depth_updated(hctx);
4442         }
4443         if (!ret) {
4444                 q->nr_requests = nr;
4445                 if (blk_mq_is_shared_tags(set->flags)) {
4446                         if (q->elevator)
4447                                 blk_mq_tag_update_sched_shared_tags(q);
4448                         else
4449                                 blk_mq_tag_resize_shared_tags(set, nr);
4450                 }
4451         }
4452
4453         blk_mq_unquiesce_queue(q);
4454         blk_mq_unfreeze_queue(q);
4455
4456         return ret;
4457 }
4458
4459 /*
4460  * request_queue and elevator_type pair.
4461  * It is just used by __blk_mq_update_nr_hw_queues to cache
4462  * the elevator_type associated with a request_queue.
4463  */
4464 struct blk_mq_qe_pair {
4465         struct list_head node;
4466         struct request_queue *q;
4467         struct elevator_type *type;
4468 };
4469
4470 /*
4471  * Cache the elevator_type in qe pair list and switch the
4472  * io scheduler to 'none'
4473  */
4474 static bool blk_mq_elv_switch_none(struct list_head *head,
4475                 struct request_queue *q)
4476 {
4477         struct blk_mq_qe_pair *qe;
4478
4479         if (!q->elevator)
4480                 return true;
4481
4482         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4483         if (!qe)
4484                 return false;
4485
4486         /* q->elevator needs protection from ->sysfs_lock */
4487         mutex_lock(&q->sysfs_lock);
4488
4489         INIT_LIST_HEAD(&qe->node);
4490         qe->q = q;
4491         qe->type = q->elevator->type;
4492         list_add(&qe->node, head);
4493
4494         /*
4495          * After elevator_switch_mq, the previous elevator_queue will be
4496          * released by elevator_release. The reference of the io scheduler
4497          * module get by elevator_get will also be put. So we need to get
4498          * a reference of the io scheduler module here to prevent it to be
4499          * removed.
4500          */
4501         __module_get(qe->type->elevator_owner);
4502         elevator_switch_mq(q, NULL);
4503         mutex_unlock(&q->sysfs_lock);
4504
4505         return true;
4506 }
4507
4508 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4509                                                 struct request_queue *q)
4510 {
4511         struct blk_mq_qe_pair *qe;
4512
4513         list_for_each_entry(qe, head, node)
4514                 if (qe->q == q)
4515                         return qe;
4516
4517         return NULL;
4518 }
4519
4520 static void blk_mq_elv_switch_back(struct list_head *head,
4521                                   struct request_queue *q)
4522 {
4523         struct blk_mq_qe_pair *qe;
4524         struct elevator_type *t;
4525
4526         qe = blk_lookup_qe_pair(head, q);
4527         if (!qe)
4528                 return;
4529         t = qe->type;
4530         list_del(&qe->node);
4531         kfree(qe);
4532
4533         mutex_lock(&q->sysfs_lock);
4534         elevator_switch_mq(q, t);
4535         mutex_unlock(&q->sysfs_lock);
4536 }
4537
4538 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4539                                                         int nr_hw_queues)
4540 {
4541         struct request_queue *q;
4542         LIST_HEAD(head);
4543         int prev_nr_hw_queues;
4544
4545         lockdep_assert_held(&set->tag_list_lock);
4546
4547         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4548                 nr_hw_queues = nr_cpu_ids;
4549         if (nr_hw_queues < 1)
4550                 return;
4551         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4552                 return;
4553
4554         list_for_each_entry(q, &set->tag_list, tag_set_list)
4555                 blk_mq_freeze_queue(q);
4556         /*
4557          * Switch IO scheduler to 'none', cleaning up the data associated
4558          * with the previous scheduler. We will switch back once we are done
4559          * updating the new sw to hw queue mappings.
4560          */
4561         list_for_each_entry(q, &set->tag_list, tag_set_list)
4562                 if (!blk_mq_elv_switch_none(&head, q))
4563                         goto switch_back;
4564
4565         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4566                 blk_mq_debugfs_unregister_hctxs(q);
4567                 blk_mq_sysfs_unregister_hctxs(q);
4568         }
4569
4570         prev_nr_hw_queues = set->nr_hw_queues;
4571         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4572             0)
4573                 goto reregister;
4574
4575         set->nr_hw_queues = nr_hw_queues;
4576 fallback:
4577         blk_mq_update_queue_map(set);
4578         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4579                 blk_mq_realloc_hw_ctxs(set, q);
4580                 blk_mq_update_poll_flag(q);
4581                 if (q->nr_hw_queues != set->nr_hw_queues) {
4582                         int i = prev_nr_hw_queues;
4583
4584                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4585                                         nr_hw_queues, prev_nr_hw_queues);
4586                         for (; i < set->nr_hw_queues; i++)
4587                                 __blk_mq_free_map_and_rqs(set, i);
4588
4589                         set->nr_hw_queues = prev_nr_hw_queues;
4590                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4591                         goto fallback;
4592                 }
4593                 blk_mq_map_swqueue(q);
4594         }
4595
4596 reregister:
4597         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4598                 blk_mq_sysfs_register_hctxs(q);
4599                 blk_mq_debugfs_register_hctxs(q);
4600         }
4601
4602 switch_back:
4603         list_for_each_entry(q, &set->tag_list, tag_set_list)
4604                 blk_mq_elv_switch_back(&head, q);
4605
4606         list_for_each_entry(q, &set->tag_list, tag_set_list)
4607                 blk_mq_unfreeze_queue(q);
4608 }
4609
4610 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4611 {
4612         mutex_lock(&set->tag_list_lock);
4613         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4614         mutex_unlock(&set->tag_list_lock);
4615 }
4616 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4617
4618 /* Enable polling stats and return whether they were already enabled. */
4619 static bool blk_poll_stats_enable(struct request_queue *q)
4620 {
4621         if (q->poll_stat)
4622                 return true;
4623
4624         return blk_stats_alloc_enable(q);
4625 }
4626
4627 static void blk_mq_poll_stats_start(struct request_queue *q)
4628 {
4629         /*
4630          * We don't arm the callback if polling stats are not enabled or the
4631          * callback is already active.
4632          */
4633         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4634                 return;
4635
4636         blk_stat_activate_msecs(q->poll_cb, 100);
4637 }
4638
4639 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4640 {
4641         struct request_queue *q = cb->data;
4642         int bucket;
4643
4644         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4645                 if (cb->stat[bucket].nr_samples)
4646                         q->poll_stat[bucket] = cb->stat[bucket];
4647         }
4648 }
4649
4650 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4651                                        struct request *rq)
4652 {
4653         unsigned long ret = 0;
4654         int bucket;
4655
4656         /*
4657          * If stats collection isn't on, don't sleep but turn it on for
4658          * future users
4659          */
4660         if (!blk_poll_stats_enable(q))
4661                 return 0;
4662
4663         /*
4664          * As an optimistic guess, use half of the mean service time
4665          * for this type of request. We can (and should) make this smarter.
4666          * For instance, if the completion latencies are tight, we can
4667          * get closer than just half the mean. This is especially
4668          * important on devices where the completion latencies are longer
4669          * than ~10 usec. We do use the stats for the relevant IO size
4670          * if available which does lead to better estimates.
4671          */
4672         bucket = blk_mq_poll_stats_bkt(rq);
4673         if (bucket < 0)
4674                 return ret;
4675
4676         if (q->poll_stat[bucket].nr_samples)
4677                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4678
4679         return ret;
4680 }
4681
4682 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4683 {
4684         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4685         struct request *rq = blk_qc_to_rq(hctx, qc);
4686         struct hrtimer_sleeper hs;
4687         enum hrtimer_mode mode;
4688         unsigned int nsecs;
4689         ktime_t kt;
4690
4691         /*
4692          * If a request has completed on queue that uses an I/O scheduler, we
4693          * won't get back a request from blk_qc_to_rq.
4694          */
4695         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4696                 return false;
4697
4698         /*
4699          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4700          *
4701          *  0:  use half of prev avg
4702          * >0:  use this specific value
4703          */
4704         if (q->poll_nsec > 0)
4705                 nsecs = q->poll_nsec;
4706         else
4707                 nsecs = blk_mq_poll_nsecs(q, rq);
4708
4709         if (!nsecs)
4710                 return false;
4711
4712         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4713
4714         /*
4715          * This will be replaced with the stats tracking code, using
4716          * 'avg_completion_time / 2' as the pre-sleep target.
4717          */
4718         kt = nsecs;
4719
4720         mode = HRTIMER_MODE_REL;
4721         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4722         hrtimer_set_expires(&hs.timer, kt);
4723
4724         do {
4725                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4726                         break;
4727                 set_current_state(TASK_UNINTERRUPTIBLE);
4728                 hrtimer_sleeper_start_expires(&hs, mode);
4729                 if (hs.task)
4730                         io_schedule();
4731                 hrtimer_cancel(&hs.timer);
4732                 mode = HRTIMER_MODE_ABS;
4733         } while (hs.task && !signal_pending(current));
4734
4735         __set_current_state(TASK_RUNNING);
4736         destroy_hrtimer_on_stack(&hs.timer);
4737
4738         /*
4739          * If we sleep, have the caller restart the poll loop to reset the
4740          * state.  Like for the other success return cases, the caller is
4741          * responsible for checking if the IO completed.  If the IO isn't
4742          * complete, we'll get called again and will go straight to the busy
4743          * poll loop.
4744          */
4745         return true;
4746 }
4747
4748 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4749                                struct io_comp_batch *iob, unsigned int flags)
4750 {
4751         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4752         long state = get_current_state();
4753         int ret;
4754
4755         do {
4756                 ret = q->mq_ops->poll(hctx, iob);
4757                 if (ret > 0) {
4758                         __set_current_state(TASK_RUNNING);
4759                         return ret;
4760                 }
4761
4762                 if (signal_pending_state(state, current))
4763                         __set_current_state(TASK_RUNNING);
4764                 if (task_is_running(current))
4765                         return 1;
4766
4767                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4768                         break;
4769                 cpu_relax();
4770         } while (!need_resched());
4771
4772         __set_current_state(TASK_RUNNING);
4773         return 0;
4774 }
4775
4776 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4777                 unsigned int flags)
4778 {
4779         if (!(flags & BLK_POLL_NOSLEEP) &&
4780             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4781                 if (blk_mq_poll_hybrid(q, cookie))
4782                         return 1;
4783         }
4784         return blk_mq_poll_classic(q, cookie, iob, flags);
4785 }
4786
4787 unsigned int blk_mq_rq_cpu(struct request *rq)
4788 {
4789         return rq->mq_ctx->cpu;
4790 }
4791 EXPORT_SYMBOL(blk_mq_rq_cpu);
4792
4793 void blk_mq_cancel_work_sync(struct request_queue *q)
4794 {
4795         if (queue_is_mq(q)) {
4796                 struct blk_mq_hw_ctx *hctx;
4797                 unsigned long i;
4798
4799                 cancel_delayed_work_sync(&q->requeue_work);
4800
4801                 queue_for_each_hw_ctx(q, hctx, i)
4802                         cancel_delayed_work_sync(&hctx->run_work);
4803         }
4804 }
4805
4806 static int __init blk_mq_init(void)
4807 {
4808         int i;
4809
4810         for_each_possible_cpu(i)
4811                 init_llist_head(&per_cpu(blk_cpu_done, i));
4812         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4813
4814         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4815                                   "block/softirq:dead", NULL,
4816                                   blk_softirq_cpu_dead);
4817         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4818                                 blk_mq_hctx_notify_dead);
4819         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4820                                 blk_mq_hctx_notify_online,
4821                                 blk_mq_hctx_notify_offline);
4822         return 0;
4823 }
4824 subsys_initcall(blk_mq_init);