tizen: Use unique directory prefix for baselibs packages
[platform/kernel/linux-rpi.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50                 blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52                 struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54                          struct io_comp_batch *iob, unsigned int flags);
55
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62         return !list_empty_careful(&hctx->dispatch) ||
63                 sbitmap_any_bit_set(&hctx->ctx_map) ||
64                         blk_mq_sched_has_work(hctx);
65 }
66
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71                                      struct blk_mq_ctx *ctx)
72 {
73         const int bit = ctx->index_hw[hctx->type];
74
75         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76                 sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80                                       struct blk_mq_ctx *ctx)
81 {
82         const int bit = ctx->index_hw[hctx->type];
83
84         sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86
87 struct mq_inflight {
88         struct block_device *part;
89         unsigned int inflight[2];
90 };
91
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94         struct mq_inflight *mi = priv;
95
96         if (rq->part && blk_do_io_stat(rq) &&
97             (!mi->part->bd_partno || rq->part == mi->part) &&
98             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99                 mi->inflight[rq_data_dir(rq)]++;
100
101         return true;
102 }
103
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105                 struct block_device *part)
106 {
107         struct mq_inflight mi = { .part = part };
108
109         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110
111         return mi.inflight[0] + mi.inflight[1];
112 }
113
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115                 unsigned int inflight[2])
116 {
117         struct mq_inflight mi = { .part = part };
118
119         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120         inflight[0] = mi.inflight[0];
121         inflight[1] = mi.inflight[1];
122 }
123
124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126         mutex_lock(&q->mq_freeze_lock);
127         if (++q->mq_freeze_depth == 1) {
128                 percpu_ref_kill(&q->q_usage_counter);
129                 mutex_unlock(&q->mq_freeze_lock);
130                 if (queue_is_mq(q))
131                         blk_mq_run_hw_queues(q, false);
132         } else {
133                 mutex_unlock(&q->mq_freeze_lock);
134         }
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137
138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143
144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145                                      unsigned long timeout)
146 {
147         return wait_event_timeout(q->mq_freeze_wq,
148                                         percpu_ref_is_zero(&q->q_usage_counter),
149                                         timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152
153 /*
154  * Guarantee no request is in use, so we can change any data structure of
155  * the queue afterward.
156  */
157 void blk_freeze_queue(struct request_queue *q)
158 {
159         /*
160          * In the !blk_mq case we are only calling this to kill the
161          * q_usage_counter, otherwise this increases the freeze depth
162          * and waits for it to return to zero.  For this reason there is
163          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164          * exported to drivers as the only user for unfreeze is blk_mq.
165          */
166         blk_freeze_queue_start(q);
167         blk_mq_freeze_queue_wait(q);
168 }
169
170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172         /*
173          * ...just an alias to keep freeze and unfreeze actions balanced
174          * in the blk_mq_* namespace
175          */
176         blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179
180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182         mutex_lock(&q->mq_freeze_lock);
183         if (force_atomic)
184                 q->q_usage_counter.data->force_atomic = true;
185         q->mq_freeze_depth--;
186         WARN_ON_ONCE(q->mq_freeze_depth < 0);
187         if (!q->mq_freeze_depth) {
188                 percpu_ref_resurrect(&q->q_usage_counter);
189                 wake_up_all(&q->mq_freeze_wq);
190         }
191         mutex_unlock(&q->mq_freeze_lock);
192 }
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196         __blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206         unsigned long flags;
207
208         spin_lock_irqsave(&q->queue_lock, flags);
209         if (!q->quiesce_depth++)
210                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211         spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214
215 /**
216  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217  * @set: tag_set to wait on
218  *
219  * Note: it is driver's responsibility for making sure that quiesce has
220  * been started on or more of the request_queues of the tag_set.  This
221  * function only waits for the quiesce on those request_queues that had
222  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223  */
224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226         if (set->flags & BLK_MQ_F_BLOCKING)
227                 synchronize_srcu(set->srcu);
228         else
229                 synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232
233 /**
234  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235  * @q: request queue.
236  *
237  * Note: this function does not prevent that the struct request end_io()
238  * callback function is invoked. Once this function is returned, we make
239  * sure no dispatch can happen until the queue is unquiesced via
240  * blk_mq_unquiesce_queue().
241  */
242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244         blk_mq_quiesce_queue_nowait(q);
245         /* nothing to wait for non-mq queues */
246         if (queue_is_mq(q))
247                 blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250
251 /*
252  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253  * @q: request queue.
254  *
255  * This function recovers queue into the state before quiescing
256  * which is done by blk_mq_quiesce_queue.
257  */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260         unsigned long flags;
261         bool run_queue = false;
262
263         spin_lock_irqsave(&q->queue_lock, flags);
264         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265                 ;
266         } else if (!--q->quiesce_depth) {
267                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268                 run_queue = true;
269         }
270         spin_unlock_irqrestore(&q->queue_lock, flags);
271
272         /* dispatch requests which are inserted during quiescing */
273         if (run_queue)
274                 blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277
278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280         struct request_queue *q;
281
282         mutex_lock(&set->tag_list_lock);
283         list_for_each_entry(q, &set->tag_list, tag_set_list) {
284                 if (!blk_queue_skip_tagset_quiesce(q))
285                         blk_mq_quiesce_queue_nowait(q);
286         }
287         blk_mq_wait_quiesce_done(set);
288         mutex_unlock(&set->tag_list_lock);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291
292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294         struct request_queue *q;
295
296         mutex_lock(&set->tag_list_lock);
297         list_for_each_entry(q, &set->tag_list, tag_set_list) {
298                 if (!blk_queue_skip_tagset_quiesce(q))
299                         blk_mq_unquiesce_queue(q);
300         }
301         mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304
305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307         struct blk_mq_hw_ctx *hctx;
308         unsigned long i;
309
310         queue_for_each_hw_ctx(q, hctx, i)
311                 if (blk_mq_hw_queue_mapped(hctx))
312                         blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314
315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317         memset(rq, 0, sizeof(*rq));
318
319         INIT_LIST_HEAD(&rq->queuelist);
320         rq->q = q;
321         rq->__sector = (sector_t) -1;
322         INIT_HLIST_NODE(&rq->hash);
323         RB_CLEAR_NODE(&rq->rb_node);
324         rq->tag = BLK_MQ_NO_TAG;
325         rq->internal_tag = BLK_MQ_NO_TAG;
326         rq->start_time_ns = ktime_get_ns();
327         rq->part = NULL;
328         blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331
332 /* Set start and alloc time when the allocated request is actually used */
333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335         if (blk_mq_need_time_stamp(rq))
336                 rq->start_time_ns = ktime_get_ns();
337         else
338                 rq->start_time_ns = 0;
339
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341         if (blk_queue_rq_alloc_time(rq->q))
342                 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343         else
344                 rq->alloc_time_ns = 0;
345 #endif
346 }
347
348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349                 struct blk_mq_tags *tags, unsigned int tag)
350 {
351         struct blk_mq_ctx *ctx = data->ctx;
352         struct blk_mq_hw_ctx *hctx = data->hctx;
353         struct request_queue *q = data->q;
354         struct request *rq = tags->static_rqs[tag];
355
356         rq->q = q;
357         rq->mq_ctx = ctx;
358         rq->mq_hctx = hctx;
359         rq->cmd_flags = data->cmd_flags;
360
361         if (data->flags & BLK_MQ_REQ_PM)
362                 data->rq_flags |= RQF_PM;
363         if (blk_queue_io_stat(q))
364                 data->rq_flags |= RQF_IO_STAT;
365         rq->rq_flags = data->rq_flags;
366
367         if (data->rq_flags & RQF_SCHED_TAGS) {
368                 rq->tag = BLK_MQ_NO_TAG;
369                 rq->internal_tag = tag;
370         } else {
371                 rq->tag = tag;
372                 rq->internal_tag = BLK_MQ_NO_TAG;
373         }
374         rq->timeout = 0;
375
376         rq->part = NULL;
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_USE_SCHED) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (e->type->ops.prepare_request)
399                         e->type->ops.prepare_request(rq);
400         }
401
402         return rq;
403 }
404
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408         unsigned int tag, tag_offset;
409         struct blk_mq_tags *tags;
410         struct request *rq;
411         unsigned long tag_mask;
412         int i, nr = 0;
413
414         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415         if (unlikely(!tag_mask))
416                 return NULL;
417
418         tags = blk_mq_tags_from_data(data);
419         for (i = 0; tag_mask; i++) {
420                 if (!(tag_mask & (1UL << i)))
421                         continue;
422                 tag = tag_offset + i;
423                 prefetch(tags->static_rqs[tag]);
424                 tag_mask &= ~(1UL << i);
425                 rq = blk_mq_rq_ctx_init(data, tags, tag);
426                 rq_list_add(data->cached_rq, rq);
427                 nr++;
428         }
429         /* caller already holds a reference, add for remainder */
430         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431         data->nr_tags -= nr;
432
433         return rq_list_pop(data->cached_rq);
434 }
435
436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 {
438         struct request_queue *q = data->q;
439         u64 alloc_time_ns = 0;
440         struct request *rq;
441         unsigned int tag;
442
443         /* alloc_time includes depth and tag waits */
444         if (blk_queue_rq_alloc_time(q))
445                 alloc_time_ns = ktime_get_ns();
446
447         if (data->cmd_flags & REQ_NOWAIT)
448                 data->flags |= BLK_MQ_REQ_NOWAIT;
449
450         if (q->elevator) {
451                 /*
452                  * All requests use scheduler tags when an I/O scheduler is
453                  * enabled for the queue.
454                  */
455                 data->rq_flags |= RQF_SCHED_TAGS;
456
457                 /*
458                  * Flush/passthrough requests are special and go directly to the
459                  * dispatch list.
460                  */
461                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
462                     !blk_op_is_passthrough(data->cmd_flags)) {
463                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
464
465                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
466
467                         data->rq_flags |= RQF_USE_SCHED;
468                         if (ops->limit_depth)
469                                 ops->limit_depth(data->cmd_flags, data);
470                 }
471         }
472
473 retry:
474         data->ctx = blk_mq_get_ctx(q);
475         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
476         if (!(data->rq_flags & RQF_SCHED_TAGS))
477                 blk_mq_tag_busy(data->hctx);
478
479         if (data->flags & BLK_MQ_REQ_RESERVED)
480                 data->rq_flags |= RQF_RESV;
481
482         /*
483          * Try batched alloc if we want more than 1 tag.
484          */
485         if (data->nr_tags > 1) {
486                 rq = __blk_mq_alloc_requests_batch(data);
487                 if (rq) {
488                         blk_mq_rq_time_init(rq, alloc_time_ns);
489                         return rq;
490                 }
491                 data->nr_tags = 1;
492         }
493
494         /*
495          * Waiting allocations only fail because of an inactive hctx.  In that
496          * case just retry the hctx assignment and tag allocation as CPU hotplug
497          * should have migrated us to an online CPU by now.
498          */
499         tag = blk_mq_get_tag(data);
500         if (tag == BLK_MQ_NO_TAG) {
501                 if (data->flags & BLK_MQ_REQ_NOWAIT)
502                         return NULL;
503                 /*
504                  * Give up the CPU and sleep for a random short time to
505                  * ensure that thread using a realtime scheduling class
506                  * are migrated off the CPU, and thus off the hctx that
507                  * is going away.
508                  */
509                 msleep(3);
510                 goto retry;
511         }
512
513         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
514         blk_mq_rq_time_init(rq, alloc_time_ns);
515         return rq;
516 }
517
518 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
519                                             struct blk_plug *plug,
520                                             blk_opf_t opf,
521                                             blk_mq_req_flags_t flags)
522 {
523         struct blk_mq_alloc_data data = {
524                 .q              = q,
525                 .flags          = flags,
526                 .cmd_flags      = opf,
527                 .nr_tags        = plug->nr_ios,
528                 .cached_rq      = &plug->cached_rq,
529         };
530         struct request *rq;
531
532         if (blk_queue_enter(q, flags))
533                 return NULL;
534
535         plug->nr_ios = 1;
536
537         rq = __blk_mq_alloc_requests(&data);
538         if (unlikely(!rq))
539                 blk_queue_exit(q);
540         return rq;
541 }
542
543 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
544                                                    blk_opf_t opf,
545                                                    blk_mq_req_flags_t flags)
546 {
547         struct blk_plug *plug = current->plug;
548         struct request *rq;
549
550         if (!plug)
551                 return NULL;
552
553         if (rq_list_empty(plug->cached_rq)) {
554                 if (plug->nr_ios == 1)
555                         return NULL;
556                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
557                 if (!rq)
558                         return NULL;
559         } else {
560                 rq = rq_list_peek(&plug->cached_rq);
561                 if (!rq || rq->q != q)
562                         return NULL;
563
564                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
565                         return NULL;
566                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
567                         return NULL;
568
569                 plug->cached_rq = rq_list_next(rq);
570                 blk_mq_rq_time_init(rq, 0);
571         }
572
573         rq->cmd_flags = opf;
574         INIT_LIST_HEAD(&rq->queuelist);
575         return rq;
576 }
577
578 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
579                 blk_mq_req_flags_t flags)
580 {
581         struct request *rq;
582
583         rq = blk_mq_alloc_cached_request(q, opf, flags);
584         if (!rq) {
585                 struct blk_mq_alloc_data data = {
586                         .q              = q,
587                         .flags          = flags,
588                         .cmd_flags      = opf,
589                         .nr_tags        = 1,
590                 };
591                 int ret;
592
593                 ret = blk_queue_enter(q, flags);
594                 if (ret)
595                         return ERR_PTR(ret);
596
597                 rq = __blk_mq_alloc_requests(&data);
598                 if (!rq)
599                         goto out_queue_exit;
600         }
601         rq->__data_len = 0;
602         rq->__sector = (sector_t) -1;
603         rq->bio = rq->biotail = NULL;
604         return rq;
605 out_queue_exit:
606         blk_queue_exit(q);
607         return ERR_PTR(-EWOULDBLOCK);
608 }
609 EXPORT_SYMBOL(blk_mq_alloc_request);
610
611 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
612         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
613 {
614         struct blk_mq_alloc_data data = {
615                 .q              = q,
616                 .flags          = flags,
617                 .cmd_flags      = opf,
618                 .nr_tags        = 1,
619         };
620         u64 alloc_time_ns = 0;
621         struct request *rq;
622         unsigned int cpu;
623         unsigned int tag;
624         int ret;
625
626         /* alloc_time includes depth and tag waits */
627         if (blk_queue_rq_alloc_time(q))
628                 alloc_time_ns = ktime_get_ns();
629
630         /*
631          * If the tag allocator sleeps we could get an allocation for a
632          * different hardware context.  No need to complicate the low level
633          * allocator for this for the rare use case of a command tied to
634          * a specific queue.
635          */
636         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
637             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
638                 return ERR_PTR(-EINVAL);
639
640         if (hctx_idx >= q->nr_hw_queues)
641                 return ERR_PTR(-EIO);
642
643         ret = blk_queue_enter(q, flags);
644         if (ret)
645                 return ERR_PTR(ret);
646
647         /*
648          * Check if the hardware context is actually mapped to anything.
649          * If not tell the caller that it should skip this queue.
650          */
651         ret = -EXDEV;
652         data.hctx = xa_load(&q->hctx_table, hctx_idx);
653         if (!blk_mq_hw_queue_mapped(data.hctx))
654                 goto out_queue_exit;
655         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
656         if (cpu >= nr_cpu_ids)
657                 goto out_queue_exit;
658         data.ctx = __blk_mq_get_ctx(q, cpu);
659
660         if (q->elevator)
661                 data.rq_flags |= RQF_SCHED_TAGS;
662         else
663                 blk_mq_tag_busy(data.hctx);
664
665         if (flags & BLK_MQ_REQ_RESERVED)
666                 data.rq_flags |= RQF_RESV;
667
668         ret = -EWOULDBLOCK;
669         tag = blk_mq_get_tag(&data);
670         if (tag == BLK_MQ_NO_TAG)
671                 goto out_queue_exit;
672         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
673         blk_mq_rq_time_init(rq, alloc_time_ns);
674         rq->__data_len = 0;
675         rq->__sector = (sector_t) -1;
676         rq->bio = rq->biotail = NULL;
677         return rq;
678
679 out_queue_exit:
680         blk_queue_exit(q);
681         return ERR_PTR(ret);
682 }
683 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
684
685 static void blk_mq_finish_request(struct request *rq)
686 {
687         struct request_queue *q = rq->q;
688
689         if (rq->rq_flags & RQF_USE_SCHED) {
690                 q->elevator->type->ops.finish_request(rq);
691                 /*
692                  * For postflush request that may need to be
693                  * completed twice, we should clear this flag
694                  * to avoid double finish_request() on the rq.
695                  */
696                 rq->rq_flags &= ~RQF_USE_SCHED;
697         }
698 }
699
700 static void __blk_mq_free_request(struct request *rq)
701 {
702         struct request_queue *q = rq->q;
703         struct blk_mq_ctx *ctx = rq->mq_ctx;
704         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
705         const int sched_tag = rq->internal_tag;
706
707         blk_crypto_free_request(rq);
708         blk_pm_mark_last_busy(rq);
709         rq->mq_hctx = NULL;
710
711         if (rq->rq_flags & RQF_MQ_INFLIGHT)
712                 __blk_mq_dec_active_requests(hctx);
713
714         if (rq->tag != BLK_MQ_NO_TAG)
715                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
716         if (sched_tag != BLK_MQ_NO_TAG)
717                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
718         blk_mq_sched_restart(hctx);
719         blk_queue_exit(q);
720 }
721
722 void blk_mq_free_request(struct request *rq)
723 {
724         struct request_queue *q = rq->q;
725
726         blk_mq_finish_request(rq);
727
728         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
729                 laptop_io_completion(q->disk->bdi);
730
731         rq_qos_done(q, rq);
732
733         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
734         if (req_ref_put_and_test(rq))
735                 __blk_mq_free_request(rq);
736 }
737 EXPORT_SYMBOL_GPL(blk_mq_free_request);
738
739 void blk_mq_free_plug_rqs(struct blk_plug *plug)
740 {
741         struct request *rq;
742
743         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
744                 blk_mq_free_request(rq);
745 }
746
747 void blk_dump_rq_flags(struct request *rq, char *msg)
748 {
749         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
750                 rq->q->disk ? rq->q->disk->disk_name : "?",
751                 (__force unsigned long long) rq->cmd_flags);
752
753         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
754                (unsigned long long)blk_rq_pos(rq),
755                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
756         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
757                rq->bio, rq->biotail, blk_rq_bytes(rq));
758 }
759 EXPORT_SYMBOL(blk_dump_rq_flags);
760
761 static void req_bio_endio(struct request *rq, struct bio *bio,
762                           unsigned int nbytes, blk_status_t error)
763 {
764         if (unlikely(error)) {
765                 bio->bi_status = error;
766         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
767                 /*
768                  * Partial zone append completions cannot be supported as the
769                  * BIO fragments may end up not being written sequentially.
770                  */
771                 if (bio->bi_iter.bi_size != nbytes)
772                         bio->bi_status = BLK_STS_IOERR;
773                 else
774                         bio->bi_iter.bi_sector = rq->__sector;
775         }
776
777         bio_advance(bio, nbytes);
778
779         if (unlikely(rq->rq_flags & RQF_QUIET))
780                 bio_set_flag(bio, BIO_QUIET);
781         /* don't actually finish bio if it's part of flush sequence */
782         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
783                 bio_endio(bio);
784 }
785
786 static void blk_account_io_completion(struct request *req, unsigned int bytes)
787 {
788         if (req->part && blk_do_io_stat(req)) {
789                 const int sgrp = op_stat_group(req_op(req));
790
791                 part_stat_lock();
792                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
793                 part_stat_unlock();
794         }
795 }
796
797 static void blk_print_req_error(struct request *req, blk_status_t status)
798 {
799         printk_ratelimited(KERN_ERR
800                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
801                 "phys_seg %u prio class %u\n",
802                 blk_status_to_str(status),
803                 req->q->disk ? req->q->disk->disk_name : "?",
804                 blk_rq_pos(req), (__force u32)req_op(req),
805                 blk_op_str(req_op(req)),
806                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
807                 req->nr_phys_segments,
808                 IOPRIO_PRIO_CLASS(req->ioprio));
809 }
810
811 /*
812  * Fully end IO on a request. Does not support partial completions, or
813  * errors.
814  */
815 static void blk_complete_request(struct request *req)
816 {
817         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
818         int total_bytes = blk_rq_bytes(req);
819         struct bio *bio = req->bio;
820
821         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
822
823         if (!bio)
824                 return;
825
826 #ifdef CONFIG_BLK_DEV_INTEGRITY
827         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
828                 req->q->integrity.profile->complete_fn(req, total_bytes);
829 #endif
830
831         /*
832          * Upper layers may call blk_crypto_evict_key() anytime after the last
833          * bio_endio().  Therefore, the keyslot must be released before that.
834          */
835         blk_crypto_rq_put_keyslot(req);
836
837         blk_account_io_completion(req, total_bytes);
838
839         do {
840                 struct bio *next = bio->bi_next;
841
842                 /* Completion has already been traced */
843                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
844
845                 if (req_op(req) == REQ_OP_ZONE_APPEND)
846                         bio->bi_iter.bi_sector = req->__sector;
847
848                 if (!is_flush)
849                         bio_endio(bio);
850                 bio = next;
851         } while (bio);
852
853         /*
854          * Reset counters so that the request stacking driver
855          * can find how many bytes remain in the request
856          * later.
857          */
858         if (!req->end_io) {
859                 req->bio = NULL;
860                 req->__data_len = 0;
861         }
862 }
863
864 /**
865  * blk_update_request - Complete multiple bytes without completing the request
866  * @req:      the request being processed
867  * @error:    block status code
868  * @nr_bytes: number of bytes to complete for @req
869  *
870  * Description:
871  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
872  *     the request structure even if @req doesn't have leftover.
873  *     If @req has leftover, sets it up for the next range of segments.
874  *
875  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
876  *     %false return from this function.
877  *
878  * Note:
879  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
880  *      except in the consistency check at the end of this function.
881  *
882  * Return:
883  *     %false - this request doesn't have any more data
884  *     %true  - this request has more data
885  **/
886 bool blk_update_request(struct request *req, blk_status_t error,
887                 unsigned int nr_bytes)
888 {
889         int total_bytes;
890
891         trace_block_rq_complete(req, error, nr_bytes);
892
893         if (!req->bio)
894                 return false;
895
896 #ifdef CONFIG_BLK_DEV_INTEGRITY
897         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
898             error == BLK_STS_OK)
899                 req->q->integrity.profile->complete_fn(req, nr_bytes);
900 #endif
901
902         /*
903          * Upper layers may call blk_crypto_evict_key() anytime after the last
904          * bio_endio().  Therefore, the keyslot must be released before that.
905          */
906         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
907                 __blk_crypto_rq_put_keyslot(req);
908
909         if (unlikely(error && !blk_rq_is_passthrough(req) &&
910                      !(req->rq_flags & RQF_QUIET)) &&
911                      !test_bit(GD_DEAD, &req->q->disk->state)) {
912                 blk_print_req_error(req, error);
913                 trace_block_rq_error(req, error, nr_bytes);
914         }
915
916         blk_account_io_completion(req, nr_bytes);
917
918         total_bytes = 0;
919         while (req->bio) {
920                 struct bio *bio = req->bio;
921                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
922
923                 if (bio_bytes == bio->bi_iter.bi_size)
924                         req->bio = bio->bi_next;
925
926                 /* Completion has already been traced */
927                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
928                 req_bio_endio(req, bio, bio_bytes, error);
929
930                 total_bytes += bio_bytes;
931                 nr_bytes -= bio_bytes;
932
933                 if (!nr_bytes)
934                         break;
935         }
936
937         /*
938          * completely done
939          */
940         if (!req->bio) {
941                 /*
942                  * Reset counters so that the request stacking driver
943                  * can find how many bytes remain in the request
944                  * later.
945                  */
946                 req->__data_len = 0;
947                 return false;
948         }
949
950         req->__data_len -= total_bytes;
951
952         /* update sector only for requests with clear definition of sector */
953         if (!blk_rq_is_passthrough(req))
954                 req->__sector += total_bytes >> 9;
955
956         /* mixed attributes always follow the first bio */
957         if (req->rq_flags & RQF_MIXED_MERGE) {
958                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
959                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
960         }
961
962         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
963                 /*
964                  * If total number of sectors is less than the first segment
965                  * size, something has gone terribly wrong.
966                  */
967                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
968                         blk_dump_rq_flags(req, "request botched");
969                         req->__data_len = blk_rq_cur_bytes(req);
970                 }
971
972                 /* recalculate the number of segments */
973                 req->nr_phys_segments = blk_recalc_rq_segments(req);
974         }
975
976         return true;
977 }
978 EXPORT_SYMBOL_GPL(blk_update_request);
979
980 static inline void blk_account_io_done(struct request *req, u64 now)
981 {
982         trace_block_io_done(req);
983
984         /*
985          * Account IO completion.  flush_rq isn't accounted as a
986          * normal IO on queueing nor completion.  Accounting the
987          * containing request is enough.
988          */
989         if (blk_do_io_stat(req) && req->part &&
990             !(req->rq_flags & RQF_FLUSH_SEQ)) {
991                 const int sgrp = op_stat_group(req_op(req));
992
993                 part_stat_lock();
994                 update_io_ticks(req->part, jiffies, true);
995                 part_stat_inc(req->part, ios[sgrp]);
996                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
997                 part_stat_unlock();
998         }
999 }
1000
1001 static inline void blk_account_io_start(struct request *req)
1002 {
1003         trace_block_io_start(req);
1004
1005         if (blk_do_io_stat(req)) {
1006                 /*
1007                  * All non-passthrough requests are created from a bio with one
1008                  * exception: when a flush command that is part of a flush sequence
1009                  * generated by the state machine in blk-flush.c is cloned onto the
1010                  * lower device by dm-multipath we can get here without a bio.
1011                  */
1012                 if (req->bio)
1013                         req->part = req->bio->bi_bdev;
1014                 else
1015                         req->part = req->q->disk->part0;
1016
1017                 part_stat_lock();
1018                 update_io_ticks(req->part, jiffies, false);
1019                 part_stat_unlock();
1020         }
1021 }
1022
1023 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1024 {
1025         if (rq->rq_flags & RQF_STATS)
1026                 blk_stat_add(rq, now);
1027
1028         blk_mq_sched_completed_request(rq, now);
1029         blk_account_io_done(rq, now);
1030 }
1031
1032 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1033 {
1034         if (blk_mq_need_time_stamp(rq))
1035                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1036
1037         blk_mq_finish_request(rq);
1038
1039         if (rq->end_io) {
1040                 rq_qos_done(rq->q, rq);
1041                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1042                         blk_mq_free_request(rq);
1043         } else {
1044                 blk_mq_free_request(rq);
1045         }
1046 }
1047 EXPORT_SYMBOL(__blk_mq_end_request);
1048
1049 void blk_mq_end_request(struct request *rq, blk_status_t error)
1050 {
1051         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1052                 BUG();
1053         __blk_mq_end_request(rq, error);
1054 }
1055 EXPORT_SYMBOL(blk_mq_end_request);
1056
1057 #define TAG_COMP_BATCH          32
1058
1059 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1060                                           int *tag_array, int nr_tags)
1061 {
1062         struct request_queue *q = hctx->queue;
1063
1064         /*
1065          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1066          * update hctx->nr_active in batch
1067          */
1068         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1069                 __blk_mq_sub_active_requests(hctx, nr_tags);
1070
1071         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1072         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1073 }
1074
1075 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1076 {
1077         int tags[TAG_COMP_BATCH], nr_tags = 0;
1078         struct blk_mq_hw_ctx *cur_hctx = NULL;
1079         struct request *rq;
1080         u64 now = 0;
1081
1082         if (iob->need_ts)
1083                 now = ktime_get_ns();
1084
1085         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1086                 prefetch(rq->bio);
1087                 prefetch(rq->rq_next);
1088
1089                 blk_complete_request(rq);
1090                 if (iob->need_ts)
1091                         __blk_mq_end_request_acct(rq, now);
1092
1093                 blk_mq_finish_request(rq);
1094
1095                 rq_qos_done(rq->q, rq);
1096
1097                 /*
1098                  * If end_io handler returns NONE, then it still has
1099                  * ownership of the request.
1100                  */
1101                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1102                         continue;
1103
1104                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105                 if (!req_ref_put_and_test(rq))
1106                         continue;
1107
1108                 blk_crypto_free_request(rq);
1109                 blk_pm_mark_last_busy(rq);
1110
1111                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1112                         if (cur_hctx)
1113                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1114                         nr_tags = 0;
1115                         cur_hctx = rq->mq_hctx;
1116                 }
1117                 tags[nr_tags++] = rq->tag;
1118         }
1119
1120         if (nr_tags)
1121                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1122 }
1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1124
1125 static void blk_complete_reqs(struct llist_head *list)
1126 {
1127         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128         struct request *rq, *next;
1129
1130         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131                 rq->q->mq_ops->complete(rq);
1132 }
1133
1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1135 {
1136         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1137 }
1138
1139 static int blk_softirq_cpu_dead(unsigned int cpu)
1140 {
1141         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1142         return 0;
1143 }
1144
1145 static void __blk_mq_complete_request_remote(void *data)
1146 {
1147         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1148 }
1149
1150 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1151 {
1152         int cpu = raw_smp_processor_id();
1153
1154         if (!IS_ENABLED(CONFIG_SMP) ||
1155             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1156                 return false;
1157         /*
1158          * With force threaded interrupts enabled, raising softirq from an SMP
1159          * function call will always result in waking the ksoftirqd thread.
1160          * This is probably worse than completing the request on a different
1161          * cache domain.
1162          */
1163         if (force_irqthreads())
1164                 return false;
1165
1166         /* same CPU or cache domain?  Complete locally */
1167         if (cpu == rq->mq_ctx->cpu ||
1168             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1170                 return false;
1171
1172         /* don't try to IPI to an offline CPU */
1173         return cpu_online(rq->mq_ctx->cpu);
1174 }
1175
1176 static void blk_mq_complete_send_ipi(struct request *rq)
1177 {
1178         unsigned int cpu;
1179
1180         cpu = rq->mq_ctx->cpu;
1181         if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1182                 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1183 }
1184
1185 static void blk_mq_raise_softirq(struct request *rq)
1186 {
1187         struct llist_head *list;
1188
1189         preempt_disable();
1190         list = this_cpu_ptr(&blk_cpu_done);
1191         if (llist_add(&rq->ipi_list, list))
1192                 raise_softirq(BLOCK_SOFTIRQ);
1193         preempt_enable();
1194 }
1195
1196 bool blk_mq_complete_request_remote(struct request *rq)
1197 {
1198         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1199
1200         /*
1201          * For request which hctx has only one ctx mapping,
1202          * or a polled request, always complete locally,
1203          * it's pointless to redirect the completion.
1204          */
1205         if ((rq->mq_hctx->nr_ctx == 1 &&
1206              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1207              rq->cmd_flags & REQ_POLLED)
1208                 return false;
1209
1210         if (blk_mq_complete_need_ipi(rq)) {
1211                 blk_mq_complete_send_ipi(rq);
1212                 return true;
1213         }
1214
1215         if (rq->q->nr_hw_queues == 1) {
1216                 blk_mq_raise_softirq(rq);
1217                 return true;
1218         }
1219         return false;
1220 }
1221 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1222
1223 /**
1224  * blk_mq_complete_request - end I/O on a request
1225  * @rq:         the request being processed
1226  *
1227  * Description:
1228  *      Complete a request by scheduling the ->complete_rq operation.
1229  **/
1230 void blk_mq_complete_request(struct request *rq)
1231 {
1232         if (!blk_mq_complete_request_remote(rq))
1233                 rq->q->mq_ops->complete(rq);
1234 }
1235 EXPORT_SYMBOL(blk_mq_complete_request);
1236
1237 /**
1238  * blk_mq_start_request - Start processing a request
1239  * @rq: Pointer to request to be started
1240  *
1241  * Function used by device drivers to notify the block layer that a request
1242  * is going to be processed now, so blk layer can do proper initializations
1243  * such as starting the timeout timer.
1244  */
1245 void blk_mq_start_request(struct request *rq)
1246 {
1247         struct request_queue *q = rq->q;
1248
1249         trace_block_rq_issue(rq);
1250
1251         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1252                 rq->io_start_time_ns = ktime_get_ns();
1253                 rq->stats_sectors = blk_rq_sectors(rq);
1254                 rq->rq_flags |= RQF_STATS;
1255                 rq_qos_issue(q, rq);
1256         }
1257
1258         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1259
1260         blk_add_timer(rq);
1261         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1262
1263 #ifdef CONFIG_BLK_DEV_INTEGRITY
1264         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1265                 q->integrity.profile->prepare_fn(rq);
1266 #endif
1267         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1268                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1269 }
1270 EXPORT_SYMBOL(blk_mq_start_request);
1271
1272 /*
1273  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1274  * queues. This is important for md arrays to benefit from merging
1275  * requests.
1276  */
1277 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1278 {
1279         if (plug->multiple_queues)
1280                 return BLK_MAX_REQUEST_COUNT * 2;
1281         return BLK_MAX_REQUEST_COUNT;
1282 }
1283
1284 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1285 {
1286         struct request *last = rq_list_peek(&plug->mq_list);
1287
1288         if (!plug->rq_count) {
1289                 trace_block_plug(rq->q);
1290         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1291                    (!blk_queue_nomerges(rq->q) &&
1292                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1293                 blk_mq_flush_plug_list(plug, false);
1294                 last = NULL;
1295                 trace_block_plug(rq->q);
1296         }
1297
1298         if (!plug->multiple_queues && last && last->q != rq->q)
1299                 plug->multiple_queues = true;
1300         /*
1301          * Any request allocated from sched tags can't be issued to
1302          * ->queue_rqs() directly
1303          */
1304         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1305                 plug->has_elevator = true;
1306         rq->rq_next = NULL;
1307         rq_list_add(&plug->mq_list, rq);
1308         plug->rq_count++;
1309 }
1310
1311 /**
1312  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1313  * @rq:         request to insert
1314  * @at_head:    insert request at head or tail of queue
1315  *
1316  * Description:
1317  *    Insert a fully prepared request at the back of the I/O scheduler queue
1318  *    for execution.  Don't wait for completion.
1319  *
1320  * Note:
1321  *    This function will invoke @done directly if the queue is dead.
1322  */
1323 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1324 {
1325         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1326
1327         WARN_ON(irqs_disabled());
1328         WARN_ON(!blk_rq_is_passthrough(rq));
1329
1330         blk_account_io_start(rq);
1331
1332         /*
1333          * As plugging can be enabled for passthrough requests on a zoned
1334          * device, directly accessing the plug instead of using blk_mq_plug()
1335          * should not have any consequences.
1336          */
1337         if (current->plug && !at_head) {
1338                 blk_add_rq_to_plug(current->plug, rq);
1339                 return;
1340         }
1341
1342         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1343         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1344 }
1345 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1346
1347 struct blk_rq_wait {
1348         struct completion done;
1349         blk_status_t ret;
1350 };
1351
1352 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1353 {
1354         struct blk_rq_wait *wait = rq->end_io_data;
1355
1356         wait->ret = ret;
1357         complete(&wait->done);
1358         return RQ_END_IO_NONE;
1359 }
1360
1361 bool blk_rq_is_poll(struct request *rq)
1362 {
1363         if (!rq->mq_hctx)
1364                 return false;
1365         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1366                 return false;
1367         return true;
1368 }
1369 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1370
1371 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1372 {
1373         do {
1374                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1375                 cond_resched();
1376         } while (!completion_done(wait));
1377 }
1378
1379 /**
1380  * blk_execute_rq - insert a request into queue for execution
1381  * @rq:         request to insert
1382  * @at_head:    insert request at head or tail of queue
1383  *
1384  * Description:
1385  *    Insert a fully prepared request at the back of the I/O scheduler queue
1386  *    for execution and wait for completion.
1387  * Return: The blk_status_t result provided to blk_mq_end_request().
1388  */
1389 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1390 {
1391         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1392         struct blk_rq_wait wait = {
1393                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1394         };
1395
1396         WARN_ON(irqs_disabled());
1397         WARN_ON(!blk_rq_is_passthrough(rq));
1398
1399         rq->end_io_data = &wait;
1400         rq->end_io = blk_end_sync_rq;
1401
1402         blk_account_io_start(rq);
1403         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1404         blk_mq_run_hw_queue(hctx, false);
1405
1406         if (blk_rq_is_poll(rq)) {
1407                 blk_rq_poll_completion(rq, &wait.done);
1408         } else {
1409                 /*
1410                  * Prevent hang_check timer from firing at us during very long
1411                  * I/O
1412                  */
1413                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1414
1415                 if (hang_check)
1416                         while (!wait_for_completion_io_timeout(&wait.done,
1417                                         hang_check * (HZ/2)))
1418                                 ;
1419                 else
1420                         wait_for_completion_io(&wait.done);
1421         }
1422
1423         return wait.ret;
1424 }
1425 EXPORT_SYMBOL(blk_execute_rq);
1426
1427 static void __blk_mq_requeue_request(struct request *rq)
1428 {
1429         struct request_queue *q = rq->q;
1430
1431         blk_mq_put_driver_tag(rq);
1432
1433         trace_block_rq_requeue(rq);
1434         rq_qos_requeue(q, rq);
1435
1436         if (blk_mq_request_started(rq)) {
1437                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1438                 rq->rq_flags &= ~RQF_TIMED_OUT;
1439         }
1440 }
1441
1442 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1443 {
1444         struct request_queue *q = rq->q;
1445         unsigned long flags;
1446
1447         __blk_mq_requeue_request(rq);
1448
1449         /* this request will be re-inserted to io scheduler queue */
1450         blk_mq_sched_requeue_request(rq);
1451
1452         spin_lock_irqsave(&q->requeue_lock, flags);
1453         list_add_tail(&rq->queuelist, &q->requeue_list);
1454         spin_unlock_irqrestore(&q->requeue_lock, flags);
1455
1456         if (kick_requeue_list)
1457                 blk_mq_kick_requeue_list(q);
1458 }
1459 EXPORT_SYMBOL(blk_mq_requeue_request);
1460
1461 static void blk_mq_requeue_work(struct work_struct *work)
1462 {
1463         struct request_queue *q =
1464                 container_of(work, struct request_queue, requeue_work.work);
1465         LIST_HEAD(rq_list);
1466         LIST_HEAD(flush_list);
1467         struct request *rq;
1468
1469         spin_lock_irq(&q->requeue_lock);
1470         list_splice_init(&q->requeue_list, &rq_list);
1471         list_splice_init(&q->flush_list, &flush_list);
1472         spin_unlock_irq(&q->requeue_lock);
1473
1474         while (!list_empty(&rq_list)) {
1475                 rq = list_entry(rq_list.next, struct request, queuelist);
1476                 /*
1477                  * If RQF_DONTPREP ist set, the request has been started by the
1478                  * driver already and might have driver-specific data allocated
1479                  * already.  Insert it into the hctx dispatch list to avoid
1480                  * block layer merges for the request.
1481                  */
1482                 if (rq->rq_flags & RQF_DONTPREP) {
1483                         list_del_init(&rq->queuelist);
1484                         blk_mq_request_bypass_insert(rq, 0);
1485                 } else {
1486                         list_del_init(&rq->queuelist);
1487                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1488                 }
1489         }
1490
1491         while (!list_empty(&flush_list)) {
1492                 rq = list_entry(flush_list.next, struct request, queuelist);
1493                 list_del_init(&rq->queuelist);
1494                 blk_mq_insert_request(rq, 0);
1495         }
1496
1497         blk_mq_run_hw_queues(q, false);
1498 }
1499
1500 void blk_mq_kick_requeue_list(struct request_queue *q)
1501 {
1502         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1503 }
1504 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1505
1506 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1507                                     unsigned long msecs)
1508 {
1509         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1510                                     msecs_to_jiffies(msecs));
1511 }
1512 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1513
1514 static bool blk_is_flush_data_rq(struct request *rq)
1515 {
1516         return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1517 }
1518
1519 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1520 {
1521         /*
1522          * If we find a request that isn't idle we know the queue is busy
1523          * as it's checked in the iter.
1524          * Return false to stop the iteration.
1525          *
1526          * In case of queue quiesce, if one flush data request is completed,
1527          * don't count it as inflight given the flush sequence is suspended,
1528          * and the original flush data request is invisible to driver, just
1529          * like other pending requests because of quiesce
1530          */
1531         if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1532                                 blk_is_flush_data_rq(rq) &&
1533                                 blk_mq_request_completed(rq))) {
1534                 bool *busy = priv;
1535
1536                 *busy = true;
1537                 return false;
1538         }
1539
1540         return true;
1541 }
1542
1543 bool blk_mq_queue_inflight(struct request_queue *q)
1544 {
1545         bool busy = false;
1546
1547         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1548         return busy;
1549 }
1550 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1551
1552 static void blk_mq_rq_timed_out(struct request *req)
1553 {
1554         req->rq_flags |= RQF_TIMED_OUT;
1555         if (req->q->mq_ops->timeout) {
1556                 enum blk_eh_timer_return ret;
1557
1558                 ret = req->q->mq_ops->timeout(req);
1559                 if (ret == BLK_EH_DONE)
1560                         return;
1561                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1562         }
1563
1564         blk_add_timer(req);
1565 }
1566
1567 struct blk_expired_data {
1568         bool has_timedout_rq;
1569         unsigned long next;
1570         unsigned long timeout_start;
1571 };
1572
1573 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1574 {
1575         unsigned long deadline;
1576
1577         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1578                 return false;
1579         if (rq->rq_flags & RQF_TIMED_OUT)
1580                 return false;
1581
1582         deadline = READ_ONCE(rq->deadline);
1583         if (time_after_eq(expired->timeout_start, deadline))
1584                 return true;
1585
1586         if (expired->next == 0)
1587                 expired->next = deadline;
1588         else if (time_after(expired->next, deadline))
1589                 expired->next = deadline;
1590         return false;
1591 }
1592
1593 void blk_mq_put_rq_ref(struct request *rq)
1594 {
1595         if (is_flush_rq(rq)) {
1596                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1597                         blk_mq_free_request(rq);
1598         } else if (req_ref_put_and_test(rq)) {
1599                 __blk_mq_free_request(rq);
1600         }
1601 }
1602
1603 static bool blk_mq_check_expired(struct request *rq, void *priv)
1604 {
1605         struct blk_expired_data *expired = priv;
1606
1607         /*
1608          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1609          * be reallocated underneath the timeout handler's processing, then
1610          * the expire check is reliable. If the request is not expired, then
1611          * it was completed and reallocated as a new request after returning
1612          * from blk_mq_check_expired().
1613          */
1614         if (blk_mq_req_expired(rq, expired)) {
1615                 expired->has_timedout_rq = true;
1616                 return false;
1617         }
1618         return true;
1619 }
1620
1621 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1622 {
1623         struct blk_expired_data *expired = priv;
1624
1625         if (blk_mq_req_expired(rq, expired))
1626                 blk_mq_rq_timed_out(rq);
1627         return true;
1628 }
1629
1630 static void blk_mq_timeout_work(struct work_struct *work)
1631 {
1632         struct request_queue *q =
1633                 container_of(work, struct request_queue, timeout_work);
1634         struct blk_expired_data expired = {
1635                 .timeout_start = jiffies,
1636         };
1637         struct blk_mq_hw_ctx *hctx;
1638         unsigned long i;
1639
1640         /* A deadlock might occur if a request is stuck requiring a
1641          * timeout at the same time a queue freeze is waiting
1642          * completion, since the timeout code would not be able to
1643          * acquire the queue reference here.
1644          *
1645          * That's why we don't use blk_queue_enter here; instead, we use
1646          * percpu_ref_tryget directly, because we need to be able to
1647          * obtain a reference even in the short window between the queue
1648          * starting to freeze, by dropping the first reference in
1649          * blk_freeze_queue_start, and the moment the last request is
1650          * consumed, marked by the instant q_usage_counter reaches
1651          * zero.
1652          */
1653         if (!percpu_ref_tryget(&q->q_usage_counter))
1654                 return;
1655
1656         /* check if there is any timed-out request */
1657         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1658         if (expired.has_timedout_rq) {
1659                 /*
1660                  * Before walking tags, we must ensure any submit started
1661                  * before the current time has finished. Since the submit
1662                  * uses srcu or rcu, wait for a synchronization point to
1663                  * ensure all running submits have finished
1664                  */
1665                 blk_mq_wait_quiesce_done(q->tag_set);
1666
1667                 expired.next = 0;
1668                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1669         }
1670
1671         if (expired.next != 0) {
1672                 mod_timer(&q->timeout, expired.next);
1673         } else {
1674                 /*
1675                  * Request timeouts are handled as a forward rolling timer. If
1676                  * we end up here it means that no requests are pending and
1677                  * also that no request has been pending for a while. Mark
1678                  * each hctx as idle.
1679                  */
1680                 queue_for_each_hw_ctx(q, hctx, i) {
1681                         /* the hctx may be unmapped, so check it here */
1682                         if (blk_mq_hw_queue_mapped(hctx))
1683                                 blk_mq_tag_idle(hctx);
1684                 }
1685         }
1686         blk_queue_exit(q);
1687 }
1688
1689 struct flush_busy_ctx_data {
1690         struct blk_mq_hw_ctx *hctx;
1691         struct list_head *list;
1692 };
1693
1694 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1695 {
1696         struct flush_busy_ctx_data *flush_data = data;
1697         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1698         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1699         enum hctx_type type = hctx->type;
1700
1701         spin_lock(&ctx->lock);
1702         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1703         sbitmap_clear_bit(sb, bitnr);
1704         spin_unlock(&ctx->lock);
1705         return true;
1706 }
1707
1708 /*
1709  * Process software queues that have been marked busy, splicing them
1710  * to the for-dispatch
1711  */
1712 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1713 {
1714         struct flush_busy_ctx_data data = {
1715                 .hctx = hctx,
1716                 .list = list,
1717         };
1718
1719         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1720 }
1721 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1722
1723 struct dispatch_rq_data {
1724         struct blk_mq_hw_ctx *hctx;
1725         struct request *rq;
1726 };
1727
1728 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1729                 void *data)
1730 {
1731         struct dispatch_rq_data *dispatch_data = data;
1732         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1733         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1734         enum hctx_type type = hctx->type;
1735
1736         spin_lock(&ctx->lock);
1737         if (!list_empty(&ctx->rq_lists[type])) {
1738                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1739                 list_del_init(&dispatch_data->rq->queuelist);
1740                 if (list_empty(&ctx->rq_lists[type]))
1741                         sbitmap_clear_bit(sb, bitnr);
1742         }
1743         spin_unlock(&ctx->lock);
1744
1745         return !dispatch_data->rq;
1746 }
1747
1748 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1749                                         struct blk_mq_ctx *start)
1750 {
1751         unsigned off = start ? start->index_hw[hctx->type] : 0;
1752         struct dispatch_rq_data data = {
1753                 .hctx = hctx,
1754                 .rq   = NULL,
1755         };
1756
1757         __sbitmap_for_each_set(&hctx->ctx_map, off,
1758                                dispatch_rq_from_ctx, &data);
1759
1760         return data.rq;
1761 }
1762
1763 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1764 {
1765         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1766         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1767         int tag;
1768
1769         blk_mq_tag_busy(rq->mq_hctx);
1770
1771         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1772                 bt = &rq->mq_hctx->tags->breserved_tags;
1773                 tag_offset = 0;
1774         } else {
1775                 if (!hctx_may_queue(rq->mq_hctx, bt))
1776                         return false;
1777         }
1778
1779         tag = __sbitmap_queue_get(bt);
1780         if (tag == BLK_MQ_NO_TAG)
1781                 return false;
1782
1783         rq->tag = tag + tag_offset;
1784         return true;
1785 }
1786
1787 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1788 {
1789         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1790                 return false;
1791
1792         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1793                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1794                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1795                 __blk_mq_inc_active_requests(hctx);
1796         }
1797         hctx->tags->rqs[rq->tag] = rq;
1798         return true;
1799 }
1800
1801 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1802                                 int flags, void *key)
1803 {
1804         struct blk_mq_hw_ctx *hctx;
1805
1806         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1807
1808         spin_lock(&hctx->dispatch_wait_lock);
1809         if (!list_empty(&wait->entry)) {
1810                 struct sbitmap_queue *sbq;
1811
1812                 list_del_init(&wait->entry);
1813                 sbq = &hctx->tags->bitmap_tags;
1814                 atomic_dec(&sbq->ws_active);
1815         }
1816         spin_unlock(&hctx->dispatch_wait_lock);
1817
1818         blk_mq_run_hw_queue(hctx, true);
1819         return 1;
1820 }
1821
1822 /*
1823  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1824  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1825  * restart. For both cases, take care to check the condition again after
1826  * marking us as waiting.
1827  */
1828 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1829                                  struct request *rq)
1830 {
1831         struct sbitmap_queue *sbq;
1832         struct wait_queue_head *wq;
1833         wait_queue_entry_t *wait;
1834         bool ret;
1835
1836         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1837             !(blk_mq_is_shared_tags(hctx->flags))) {
1838                 blk_mq_sched_mark_restart_hctx(hctx);
1839
1840                 /*
1841                  * It's possible that a tag was freed in the window between the
1842                  * allocation failure and adding the hardware queue to the wait
1843                  * queue.
1844                  *
1845                  * Don't clear RESTART here, someone else could have set it.
1846                  * At most this will cost an extra queue run.
1847                  */
1848                 return blk_mq_get_driver_tag(rq);
1849         }
1850
1851         wait = &hctx->dispatch_wait;
1852         if (!list_empty_careful(&wait->entry))
1853                 return false;
1854
1855         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1856                 sbq = &hctx->tags->breserved_tags;
1857         else
1858                 sbq = &hctx->tags->bitmap_tags;
1859         wq = &bt_wait_ptr(sbq, hctx)->wait;
1860
1861         spin_lock_irq(&wq->lock);
1862         spin_lock(&hctx->dispatch_wait_lock);
1863         if (!list_empty(&wait->entry)) {
1864                 spin_unlock(&hctx->dispatch_wait_lock);
1865                 spin_unlock_irq(&wq->lock);
1866                 return false;
1867         }
1868
1869         atomic_inc(&sbq->ws_active);
1870         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1871         __add_wait_queue(wq, wait);
1872
1873         /*
1874          * Add one explicit barrier since blk_mq_get_driver_tag() may
1875          * not imply barrier in case of failure.
1876          *
1877          * Order adding us to wait queue and allocating driver tag.
1878          *
1879          * The pair is the one implied in sbitmap_queue_wake_up() which
1880          * orders clearing sbitmap tag bits and waitqueue_active() in
1881          * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1882          *
1883          * Otherwise, re-order of adding wait queue and getting driver tag
1884          * may cause __sbitmap_queue_wake_up() to wake up nothing because
1885          * the waitqueue_active() may not observe us in wait queue.
1886          */
1887         smp_mb();
1888
1889         /*
1890          * It's possible that a tag was freed in the window between the
1891          * allocation failure and adding the hardware queue to the wait
1892          * queue.
1893          */
1894         ret = blk_mq_get_driver_tag(rq);
1895         if (!ret) {
1896                 spin_unlock(&hctx->dispatch_wait_lock);
1897                 spin_unlock_irq(&wq->lock);
1898                 return false;
1899         }
1900
1901         /*
1902          * We got a tag, remove ourselves from the wait queue to ensure
1903          * someone else gets the wakeup.
1904          */
1905         list_del_init(&wait->entry);
1906         atomic_dec(&sbq->ws_active);
1907         spin_unlock(&hctx->dispatch_wait_lock);
1908         spin_unlock_irq(&wq->lock);
1909
1910         return true;
1911 }
1912
1913 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1914 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1915 /*
1916  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1917  * - EWMA is one simple way to compute running average value
1918  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1919  * - take 4 as factor for avoiding to get too small(0) result, and this
1920  *   factor doesn't matter because EWMA decreases exponentially
1921  */
1922 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1923 {
1924         unsigned int ewma;
1925
1926         ewma = hctx->dispatch_busy;
1927
1928         if (!ewma && !busy)
1929                 return;
1930
1931         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1932         if (busy)
1933                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1934         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1935
1936         hctx->dispatch_busy = ewma;
1937 }
1938
1939 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1940
1941 static void blk_mq_handle_dev_resource(struct request *rq,
1942                                        struct list_head *list)
1943 {
1944         list_add(&rq->queuelist, list);
1945         __blk_mq_requeue_request(rq);
1946 }
1947
1948 static void blk_mq_handle_zone_resource(struct request *rq,
1949                                         struct list_head *zone_list)
1950 {
1951         /*
1952          * If we end up here it is because we cannot dispatch a request to a
1953          * specific zone due to LLD level zone-write locking or other zone
1954          * related resource not being available. In this case, set the request
1955          * aside in zone_list for retrying it later.
1956          */
1957         list_add(&rq->queuelist, zone_list);
1958         __blk_mq_requeue_request(rq);
1959 }
1960
1961 enum prep_dispatch {
1962         PREP_DISPATCH_OK,
1963         PREP_DISPATCH_NO_TAG,
1964         PREP_DISPATCH_NO_BUDGET,
1965 };
1966
1967 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1968                                                   bool need_budget)
1969 {
1970         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1971         int budget_token = -1;
1972
1973         if (need_budget) {
1974                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1975                 if (budget_token < 0) {
1976                         blk_mq_put_driver_tag(rq);
1977                         return PREP_DISPATCH_NO_BUDGET;
1978                 }
1979                 blk_mq_set_rq_budget_token(rq, budget_token);
1980         }
1981
1982         if (!blk_mq_get_driver_tag(rq)) {
1983                 /*
1984                  * The initial allocation attempt failed, so we need to
1985                  * rerun the hardware queue when a tag is freed. The
1986                  * waitqueue takes care of that. If the queue is run
1987                  * before we add this entry back on the dispatch list,
1988                  * we'll re-run it below.
1989                  */
1990                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1991                         /*
1992                          * All budgets not got from this function will be put
1993                          * together during handling partial dispatch
1994                          */
1995                         if (need_budget)
1996                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1997                         return PREP_DISPATCH_NO_TAG;
1998                 }
1999         }
2000
2001         return PREP_DISPATCH_OK;
2002 }
2003
2004 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
2005 static void blk_mq_release_budgets(struct request_queue *q,
2006                 struct list_head *list)
2007 {
2008         struct request *rq;
2009
2010         list_for_each_entry(rq, list, queuelist) {
2011                 int budget_token = blk_mq_get_rq_budget_token(rq);
2012
2013                 if (budget_token >= 0)
2014                         blk_mq_put_dispatch_budget(q, budget_token);
2015         }
2016 }
2017
2018 /*
2019  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2020  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2021  * details)
2022  * Attention, we should explicitly call this in unusual cases:
2023  *  1) did not queue everything initially scheduled to queue
2024  *  2) the last attempt to queue a request failed
2025  */
2026 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2027                               bool from_schedule)
2028 {
2029         if (hctx->queue->mq_ops->commit_rqs && queued) {
2030                 trace_block_unplug(hctx->queue, queued, !from_schedule);
2031                 hctx->queue->mq_ops->commit_rqs(hctx);
2032         }
2033 }
2034
2035 /*
2036  * Returns true if we did some work AND can potentially do more.
2037  */
2038 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2039                              unsigned int nr_budgets)
2040 {
2041         enum prep_dispatch prep;
2042         struct request_queue *q = hctx->queue;
2043         struct request *rq;
2044         int queued;
2045         blk_status_t ret = BLK_STS_OK;
2046         LIST_HEAD(zone_list);
2047         bool needs_resource = false;
2048
2049         if (list_empty(list))
2050                 return false;
2051
2052         /*
2053          * Now process all the entries, sending them to the driver.
2054          */
2055         queued = 0;
2056         do {
2057                 struct blk_mq_queue_data bd;
2058
2059                 rq = list_first_entry(list, struct request, queuelist);
2060
2061                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2062                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2063                 if (prep != PREP_DISPATCH_OK)
2064                         break;
2065
2066                 list_del_init(&rq->queuelist);
2067
2068                 bd.rq = rq;
2069                 bd.last = list_empty(list);
2070
2071                 /*
2072                  * once the request is queued to lld, no need to cover the
2073                  * budget any more
2074                  */
2075                 if (nr_budgets)
2076                         nr_budgets--;
2077                 ret = q->mq_ops->queue_rq(hctx, &bd);
2078                 switch (ret) {
2079                 case BLK_STS_OK:
2080                         queued++;
2081                         break;
2082                 case BLK_STS_RESOURCE:
2083                         needs_resource = true;
2084                         fallthrough;
2085                 case BLK_STS_DEV_RESOURCE:
2086                         blk_mq_handle_dev_resource(rq, list);
2087                         goto out;
2088                 case BLK_STS_ZONE_RESOURCE:
2089                         /*
2090                          * Move the request to zone_list and keep going through
2091                          * the dispatch list to find more requests the drive can
2092                          * accept.
2093                          */
2094                         blk_mq_handle_zone_resource(rq, &zone_list);
2095                         needs_resource = true;
2096                         break;
2097                 default:
2098                         blk_mq_end_request(rq, ret);
2099                 }
2100         } while (!list_empty(list));
2101 out:
2102         if (!list_empty(&zone_list))
2103                 list_splice_tail_init(&zone_list, list);
2104
2105         /* If we didn't flush the entire list, we could have told the driver
2106          * there was more coming, but that turned out to be a lie.
2107          */
2108         if (!list_empty(list) || ret != BLK_STS_OK)
2109                 blk_mq_commit_rqs(hctx, queued, false);
2110
2111         /*
2112          * Any items that need requeuing? Stuff them into hctx->dispatch,
2113          * that is where we will continue on next queue run.
2114          */
2115         if (!list_empty(list)) {
2116                 bool needs_restart;
2117                 /* For non-shared tags, the RESTART check will suffice */
2118                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2119                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2120                         blk_mq_is_shared_tags(hctx->flags));
2121
2122                 if (nr_budgets)
2123                         blk_mq_release_budgets(q, list);
2124
2125                 spin_lock(&hctx->lock);
2126                 list_splice_tail_init(list, &hctx->dispatch);
2127                 spin_unlock(&hctx->lock);
2128
2129                 /*
2130                  * Order adding requests to hctx->dispatch and checking
2131                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2132                  * in blk_mq_sched_restart(). Avoid restart code path to
2133                  * miss the new added requests to hctx->dispatch, meantime
2134                  * SCHED_RESTART is observed here.
2135                  */
2136                 smp_mb();
2137
2138                 /*
2139                  * If SCHED_RESTART was set by the caller of this function and
2140                  * it is no longer set that means that it was cleared by another
2141                  * thread and hence that a queue rerun is needed.
2142                  *
2143                  * If 'no_tag' is set, that means that we failed getting
2144                  * a driver tag with an I/O scheduler attached. If our dispatch
2145                  * waitqueue is no longer active, ensure that we run the queue
2146                  * AFTER adding our entries back to the list.
2147                  *
2148                  * If no I/O scheduler has been configured it is possible that
2149                  * the hardware queue got stopped and restarted before requests
2150                  * were pushed back onto the dispatch list. Rerun the queue to
2151                  * avoid starvation. Notes:
2152                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2153                  *   been stopped before rerunning a queue.
2154                  * - Some but not all block drivers stop a queue before
2155                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2156                  *   and dm-rq.
2157                  *
2158                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2159                  * bit is set, run queue after a delay to avoid IO stalls
2160                  * that could otherwise occur if the queue is idle.  We'll do
2161                  * similar if we couldn't get budget or couldn't lock a zone
2162                  * and SCHED_RESTART is set.
2163                  */
2164                 needs_restart = blk_mq_sched_needs_restart(hctx);
2165                 if (prep == PREP_DISPATCH_NO_BUDGET)
2166                         needs_resource = true;
2167                 if (!needs_restart ||
2168                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2169                         blk_mq_run_hw_queue(hctx, true);
2170                 else if (needs_resource)
2171                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2172
2173                 blk_mq_update_dispatch_busy(hctx, true);
2174                 return false;
2175         }
2176
2177         blk_mq_update_dispatch_busy(hctx, false);
2178         return true;
2179 }
2180
2181 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2182 {
2183         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2184
2185         if (cpu >= nr_cpu_ids)
2186                 cpu = cpumask_first(hctx->cpumask);
2187         return cpu;
2188 }
2189
2190 /*
2191  * It'd be great if the workqueue API had a way to pass
2192  * in a mask and had some smarts for more clever placement.
2193  * For now we just round-robin here, switching for every
2194  * BLK_MQ_CPU_WORK_BATCH queued items.
2195  */
2196 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2197 {
2198         bool tried = false;
2199         int next_cpu = hctx->next_cpu;
2200
2201         if (hctx->queue->nr_hw_queues == 1)
2202                 return WORK_CPU_UNBOUND;
2203
2204         if (--hctx->next_cpu_batch <= 0) {
2205 select_cpu:
2206                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2207                                 cpu_online_mask);
2208                 if (next_cpu >= nr_cpu_ids)
2209                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2210                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2211         }
2212
2213         /*
2214          * Do unbound schedule if we can't find a online CPU for this hctx,
2215          * and it should only happen in the path of handling CPU DEAD.
2216          */
2217         if (!cpu_online(next_cpu)) {
2218                 if (!tried) {
2219                         tried = true;
2220                         goto select_cpu;
2221                 }
2222
2223                 /*
2224                  * Make sure to re-select CPU next time once after CPUs
2225                  * in hctx->cpumask become online again.
2226                  */
2227                 hctx->next_cpu = next_cpu;
2228                 hctx->next_cpu_batch = 1;
2229                 return WORK_CPU_UNBOUND;
2230         }
2231
2232         hctx->next_cpu = next_cpu;
2233         return next_cpu;
2234 }
2235
2236 /**
2237  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2238  * @hctx: Pointer to the hardware queue to run.
2239  * @msecs: Milliseconds of delay to wait before running the queue.
2240  *
2241  * Run a hardware queue asynchronously with a delay of @msecs.
2242  */
2243 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2244 {
2245         if (unlikely(blk_mq_hctx_stopped(hctx)))
2246                 return;
2247         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2248                                     msecs_to_jiffies(msecs));
2249 }
2250 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2251
2252 /**
2253  * blk_mq_run_hw_queue - Start to run a hardware queue.
2254  * @hctx: Pointer to the hardware queue to run.
2255  * @async: If we want to run the queue asynchronously.
2256  *
2257  * Check if the request queue is not in a quiesced state and if there are
2258  * pending requests to be sent. If this is true, run the queue to send requests
2259  * to hardware.
2260  */
2261 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2262 {
2263         bool need_run;
2264
2265         /*
2266          * We can't run the queue inline with interrupts disabled.
2267          */
2268         WARN_ON_ONCE(!async && in_interrupt());
2269
2270         might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2271
2272         /*
2273          * When queue is quiesced, we may be switching io scheduler, or
2274          * updating nr_hw_queues, or other things, and we can't run queue
2275          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2276          *
2277          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2278          * quiesced.
2279          */
2280         __blk_mq_run_dispatch_ops(hctx->queue, false,
2281                 need_run = !blk_queue_quiesced(hctx->queue) &&
2282                 blk_mq_hctx_has_pending(hctx));
2283
2284         if (!need_run)
2285                 return;
2286
2287         if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2288                 blk_mq_delay_run_hw_queue(hctx, 0);
2289                 return;
2290         }
2291
2292         blk_mq_run_dispatch_ops(hctx->queue,
2293                                 blk_mq_sched_dispatch_requests(hctx));
2294 }
2295 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2296
2297 /*
2298  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2299  * scheduler.
2300  */
2301 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2302 {
2303         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2304         /*
2305          * If the IO scheduler does not respect hardware queues when
2306          * dispatching, we just don't bother with multiple HW queues and
2307          * dispatch from hctx for the current CPU since running multiple queues
2308          * just causes lock contention inside the scheduler and pointless cache
2309          * bouncing.
2310          */
2311         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2312
2313         if (!blk_mq_hctx_stopped(hctx))
2314                 return hctx;
2315         return NULL;
2316 }
2317
2318 /**
2319  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2320  * @q: Pointer to the request queue to run.
2321  * @async: If we want to run the queue asynchronously.
2322  */
2323 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2324 {
2325         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2326         unsigned long i;
2327
2328         sq_hctx = NULL;
2329         if (blk_queue_sq_sched(q))
2330                 sq_hctx = blk_mq_get_sq_hctx(q);
2331         queue_for_each_hw_ctx(q, hctx, i) {
2332                 if (blk_mq_hctx_stopped(hctx))
2333                         continue;
2334                 /*
2335                  * Dispatch from this hctx either if there's no hctx preferred
2336                  * by IO scheduler or if it has requests that bypass the
2337                  * scheduler.
2338                  */
2339                 if (!sq_hctx || sq_hctx == hctx ||
2340                     !list_empty_careful(&hctx->dispatch))
2341                         blk_mq_run_hw_queue(hctx, async);
2342         }
2343 }
2344 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2345
2346 /**
2347  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2348  * @q: Pointer to the request queue to run.
2349  * @msecs: Milliseconds of delay to wait before running the queues.
2350  */
2351 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2352 {
2353         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2354         unsigned long i;
2355
2356         sq_hctx = NULL;
2357         if (blk_queue_sq_sched(q))
2358                 sq_hctx = blk_mq_get_sq_hctx(q);
2359         queue_for_each_hw_ctx(q, hctx, i) {
2360                 if (blk_mq_hctx_stopped(hctx))
2361                         continue;
2362                 /*
2363                  * If there is already a run_work pending, leave the
2364                  * pending delay untouched. Otherwise, a hctx can stall
2365                  * if another hctx is re-delaying the other's work
2366                  * before the work executes.
2367                  */
2368                 if (delayed_work_pending(&hctx->run_work))
2369                         continue;
2370                 /*
2371                  * Dispatch from this hctx either if there's no hctx preferred
2372                  * by IO scheduler or if it has requests that bypass the
2373                  * scheduler.
2374                  */
2375                 if (!sq_hctx || sq_hctx == hctx ||
2376                     !list_empty_careful(&hctx->dispatch))
2377                         blk_mq_delay_run_hw_queue(hctx, msecs);
2378         }
2379 }
2380 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2381
2382 /*
2383  * This function is often used for pausing .queue_rq() by driver when
2384  * there isn't enough resource or some conditions aren't satisfied, and
2385  * BLK_STS_RESOURCE is usually returned.
2386  *
2387  * We do not guarantee that dispatch can be drained or blocked
2388  * after blk_mq_stop_hw_queue() returns. Please use
2389  * blk_mq_quiesce_queue() for that requirement.
2390  */
2391 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2392 {
2393         cancel_delayed_work(&hctx->run_work);
2394
2395         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2396 }
2397 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2398
2399 /*
2400  * This function is often used for pausing .queue_rq() by driver when
2401  * there isn't enough resource or some conditions aren't satisfied, and
2402  * BLK_STS_RESOURCE is usually returned.
2403  *
2404  * We do not guarantee that dispatch can be drained or blocked
2405  * after blk_mq_stop_hw_queues() returns. Please use
2406  * blk_mq_quiesce_queue() for that requirement.
2407  */
2408 void blk_mq_stop_hw_queues(struct request_queue *q)
2409 {
2410         struct blk_mq_hw_ctx *hctx;
2411         unsigned long i;
2412
2413         queue_for_each_hw_ctx(q, hctx, i)
2414                 blk_mq_stop_hw_queue(hctx);
2415 }
2416 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2417
2418 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2419 {
2420         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2421
2422         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2423 }
2424 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2425
2426 void blk_mq_start_hw_queues(struct request_queue *q)
2427 {
2428         struct blk_mq_hw_ctx *hctx;
2429         unsigned long i;
2430
2431         queue_for_each_hw_ctx(q, hctx, i)
2432                 blk_mq_start_hw_queue(hctx);
2433 }
2434 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2435
2436 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2437 {
2438         if (!blk_mq_hctx_stopped(hctx))
2439                 return;
2440
2441         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2442         blk_mq_run_hw_queue(hctx, async);
2443 }
2444 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2445
2446 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2447 {
2448         struct blk_mq_hw_ctx *hctx;
2449         unsigned long i;
2450
2451         queue_for_each_hw_ctx(q, hctx, i)
2452                 blk_mq_start_stopped_hw_queue(hctx, async ||
2453                                         (hctx->flags & BLK_MQ_F_BLOCKING));
2454 }
2455 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2456
2457 static void blk_mq_run_work_fn(struct work_struct *work)
2458 {
2459         struct blk_mq_hw_ctx *hctx =
2460                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2461
2462         blk_mq_run_dispatch_ops(hctx->queue,
2463                                 blk_mq_sched_dispatch_requests(hctx));
2464 }
2465
2466 /**
2467  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2468  * @rq: Pointer to request to be inserted.
2469  * @flags: BLK_MQ_INSERT_*
2470  *
2471  * Should only be used carefully, when the caller knows we want to
2472  * bypass a potential IO scheduler on the target device.
2473  */
2474 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2475 {
2476         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2477
2478         spin_lock(&hctx->lock);
2479         if (flags & BLK_MQ_INSERT_AT_HEAD)
2480                 list_add(&rq->queuelist, &hctx->dispatch);
2481         else
2482                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2483         spin_unlock(&hctx->lock);
2484 }
2485
2486 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2487                 struct blk_mq_ctx *ctx, struct list_head *list,
2488                 bool run_queue_async)
2489 {
2490         struct request *rq;
2491         enum hctx_type type = hctx->type;
2492
2493         /*
2494          * Try to issue requests directly if the hw queue isn't busy to save an
2495          * extra enqueue & dequeue to the sw queue.
2496          */
2497         if (!hctx->dispatch_busy && !run_queue_async) {
2498                 blk_mq_run_dispatch_ops(hctx->queue,
2499                         blk_mq_try_issue_list_directly(hctx, list));
2500                 if (list_empty(list))
2501                         goto out;
2502         }
2503
2504         /*
2505          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2506          * offline now
2507          */
2508         list_for_each_entry(rq, list, queuelist) {
2509                 BUG_ON(rq->mq_ctx != ctx);
2510                 trace_block_rq_insert(rq);
2511                 if (rq->cmd_flags & REQ_NOWAIT)
2512                         run_queue_async = true;
2513         }
2514
2515         spin_lock(&ctx->lock);
2516         list_splice_tail_init(list, &ctx->rq_lists[type]);
2517         blk_mq_hctx_mark_pending(hctx, ctx);
2518         spin_unlock(&ctx->lock);
2519 out:
2520         blk_mq_run_hw_queue(hctx, run_queue_async);
2521 }
2522
2523 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2524 {
2525         struct request_queue *q = rq->q;
2526         struct blk_mq_ctx *ctx = rq->mq_ctx;
2527         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2528
2529         if (blk_rq_is_passthrough(rq)) {
2530                 /*
2531                  * Passthrough request have to be added to hctx->dispatch
2532                  * directly.  The device may be in a situation where it can't
2533                  * handle FS request, and always returns BLK_STS_RESOURCE for
2534                  * them, which gets them added to hctx->dispatch.
2535                  *
2536                  * If a passthrough request is required to unblock the queues,
2537                  * and it is added to the scheduler queue, there is no chance to
2538                  * dispatch it given we prioritize requests in hctx->dispatch.
2539                  */
2540                 blk_mq_request_bypass_insert(rq, flags);
2541         } else if (req_op(rq) == REQ_OP_FLUSH) {
2542                 /*
2543                  * Firstly normal IO request is inserted to scheduler queue or
2544                  * sw queue, meantime we add flush request to dispatch queue(
2545                  * hctx->dispatch) directly and there is at most one in-flight
2546                  * flush request for each hw queue, so it doesn't matter to add
2547                  * flush request to tail or front of the dispatch queue.
2548                  *
2549                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2550                  * command, and queueing it will fail when there is any
2551                  * in-flight normal IO request(NCQ command). When adding flush
2552                  * rq to the front of hctx->dispatch, it is easier to introduce
2553                  * extra time to flush rq's latency because of S_SCHED_RESTART
2554                  * compared with adding to the tail of dispatch queue, then
2555                  * chance of flush merge is increased, and less flush requests
2556                  * will be issued to controller. It is observed that ~10% time
2557                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2558                  * drive when adding flush rq to the front of hctx->dispatch.
2559                  *
2560                  * Simply queue flush rq to the front of hctx->dispatch so that
2561                  * intensive flush workloads can benefit in case of NCQ HW.
2562                  */
2563                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2564         } else if (q->elevator) {
2565                 LIST_HEAD(list);
2566
2567                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2568
2569                 list_add(&rq->queuelist, &list);
2570                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2571         } else {
2572                 trace_block_rq_insert(rq);
2573
2574                 spin_lock(&ctx->lock);
2575                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2576                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2577                 else
2578                         list_add_tail(&rq->queuelist,
2579                                       &ctx->rq_lists[hctx->type]);
2580                 blk_mq_hctx_mark_pending(hctx, ctx);
2581                 spin_unlock(&ctx->lock);
2582         }
2583 }
2584
2585 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2586                 unsigned int nr_segs)
2587 {
2588         int err;
2589
2590         if (bio->bi_opf & REQ_RAHEAD)
2591                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2592
2593         rq->__sector = bio->bi_iter.bi_sector;
2594         blk_rq_bio_prep(rq, bio, nr_segs);
2595
2596         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2597         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2598         WARN_ON_ONCE(err);
2599
2600         blk_account_io_start(rq);
2601 }
2602
2603 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2604                                             struct request *rq, bool last)
2605 {
2606         struct request_queue *q = rq->q;
2607         struct blk_mq_queue_data bd = {
2608                 .rq = rq,
2609                 .last = last,
2610         };
2611         blk_status_t ret;
2612
2613         /*
2614          * For OK queue, we are done. For error, caller may kill it.
2615          * Any other error (busy), just add it to our list as we
2616          * previously would have done.
2617          */
2618         ret = q->mq_ops->queue_rq(hctx, &bd);
2619         switch (ret) {
2620         case BLK_STS_OK:
2621                 blk_mq_update_dispatch_busy(hctx, false);
2622                 break;
2623         case BLK_STS_RESOURCE:
2624         case BLK_STS_DEV_RESOURCE:
2625                 blk_mq_update_dispatch_busy(hctx, true);
2626                 __blk_mq_requeue_request(rq);
2627                 break;
2628         default:
2629                 blk_mq_update_dispatch_busy(hctx, false);
2630                 break;
2631         }
2632
2633         return ret;
2634 }
2635
2636 static bool blk_mq_get_budget_and_tag(struct request *rq)
2637 {
2638         int budget_token;
2639
2640         budget_token = blk_mq_get_dispatch_budget(rq->q);
2641         if (budget_token < 0)
2642                 return false;
2643         blk_mq_set_rq_budget_token(rq, budget_token);
2644         if (!blk_mq_get_driver_tag(rq)) {
2645                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2646                 return false;
2647         }
2648         return true;
2649 }
2650
2651 /**
2652  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2653  * @hctx: Pointer of the associated hardware queue.
2654  * @rq: Pointer to request to be sent.
2655  *
2656  * If the device has enough resources to accept a new request now, send the
2657  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2658  * we can try send it another time in the future. Requests inserted at this
2659  * queue have higher priority.
2660  */
2661 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2662                 struct request *rq)
2663 {
2664         blk_status_t ret;
2665
2666         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2667                 blk_mq_insert_request(rq, 0);
2668                 return;
2669         }
2670
2671         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2672                 blk_mq_insert_request(rq, 0);
2673                 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2674                 return;
2675         }
2676
2677         ret = __blk_mq_issue_directly(hctx, rq, true);
2678         switch (ret) {
2679         case BLK_STS_OK:
2680                 break;
2681         case BLK_STS_RESOURCE:
2682         case BLK_STS_DEV_RESOURCE:
2683                 blk_mq_request_bypass_insert(rq, 0);
2684                 blk_mq_run_hw_queue(hctx, false);
2685                 break;
2686         default:
2687                 blk_mq_end_request(rq, ret);
2688                 break;
2689         }
2690 }
2691
2692 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2693 {
2694         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2695
2696         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2697                 blk_mq_insert_request(rq, 0);
2698                 return BLK_STS_OK;
2699         }
2700
2701         if (!blk_mq_get_budget_and_tag(rq))
2702                 return BLK_STS_RESOURCE;
2703         return __blk_mq_issue_directly(hctx, rq, last);
2704 }
2705
2706 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2707 {
2708         struct blk_mq_hw_ctx *hctx = NULL;
2709         struct request *rq;
2710         int queued = 0;
2711         blk_status_t ret = BLK_STS_OK;
2712
2713         while ((rq = rq_list_pop(&plug->mq_list))) {
2714                 bool last = rq_list_empty(plug->mq_list);
2715
2716                 if (hctx != rq->mq_hctx) {
2717                         if (hctx) {
2718                                 blk_mq_commit_rqs(hctx, queued, false);
2719                                 queued = 0;
2720                         }
2721                         hctx = rq->mq_hctx;
2722                 }
2723
2724                 ret = blk_mq_request_issue_directly(rq, last);
2725                 switch (ret) {
2726                 case BLK_STS_OK:
2727                         queued++;
2728                         break;
2729                 case BLK_STS_RESOURCE:
2730                 case BLK_STS_DEV_RESOURCE:
2731                         blk_mq_request_bypass_insert(rq, 0);
2732                         blk_mq_run_hw_queue(hctx, false);
2733                         goto out;
2734                 default:
2735                         blk_mq_end_request(rq, ret);
2736                         break;
2737                 }
2738         }
2739
2740 out:
2741         if (ret != BLK_STS_OK)
2742                 blk_mq_commit_rqs(hctx, queued, false);
2743 }
2744
2745 static void __blk_mq_flush_plug_list(struct request_queue *q,
2746                                      struct blk_plug *plug)
2747 {
2748         if (blk_queue_quiesced(q))
2749                 return;
2750         q->mq_ops->queue_rqs(&plug->mq_list);
2751 }
2752
2753 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2754 {
2755         struct blk_mq_hw_ctx *this_hctx = NULL;
2756         struct blk_mq_ctx *this_ctx = NULL;
2757         struct request *requeue_list = NULL;
2758         struct request **requeue_lastp = &requeue_list;
2759         unsigned int depth = 0;
2760         bool is_passthrough = false;
2761         LIST_HEAD(list);
2762
2763         do {
2764                 struct request *rq = rq_list_pop(&plug->mq_list);
2765
2766                 if (!this_hctx) {
2767                         this_hctx = rq->mq_hctx;
2768                         this_ctx = rq->mq_ctx;
2769                         is_passthrough = blk_rq_is_passthrough(rq);
2770                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2771                            is_passthrough != blk_rq_is_passthrough(rq)) {
2772                         rq_list_add_tail(&requeue_lastp, rq);
2773                         continue;
2774                 }
2775                 list_add(&rq->queuelist, &list);
2776                 depth++;
2777         } while (!rq_list_empty(plug->mq_list));
2778
2779         plug->mq_list = requeue_list;
2780         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2781
2782         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2783         /* passthrough requests should never be issued to the I/O scheduler */
2784         if (is_passthrough) {
2785                 spin_lock(&this_hctx->lock);
2786                 list_splice_tail_init(&list, &this_hctx->dispatch);
2787                 spin_unlock(&this_hctx->lock);
2788                 blk_mq_run_hw_queue(this_hctx, from_sched);
2789         } else if (this_hctx->queue->elevator) {
2790                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2791                                 &list, 0);
2792                 blk_mq_run_hw_queue(this_hctx, from_sched);
2793         } else {
2794                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2795         }
2796         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2797 }
2798
2799 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2800 {
2801         struct request *rq;
2802
2803         /*
2804          * We may have been called recursively midway through handling
2805          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2806          * To avoid mq_list changing under our feet, clear rq_count early and
2807          * bail out specifically if rq_count is 0 rather than checking
2808          * whether the mq_list is empty.
2809          */
2810         if (plug->rq_count == 0)
2811                 return;
2812         plug->rq_count = 0;
2813
2814         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2815                 struct request_queue *q;
2816
2817                 rq = rq_list_peek(&plug->mq_list);
2818                 q = rq->q;
2819
2820                 /*
2821                  * Peek first request and see if we have a ->queue_rqs() hook.
2822                  * If we do, we can dispatch the whole plug list in one go. We
2823                  * already know at this point that all requests belong to the
2824                  * same queue, caller must ensure that's the case.
2825                  *
2826                  * Since we pass off the full list to the driver at this point,
2827                  * we do not increment the active request count for the queue.
2828                  * Bypass shared tags for now because of that.
2829                  */
2830                 if (q->mq_ops->queue_rqs &&
2831                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2832                         blk_mq_run_dispatch_ops(q,
2833                                 __blk_mq_flush_plug_list(q, plug));
2834                         if (rq_list_empty(plug->mq_list))
2835                                 return;
2836                 }
2837
2838                 blk_mq_run_dispatch_ops(q,
2839                                 blk_mq_plug_issue_direct(plug));
2840                 if (rq_list_empty(plug->mq_list))
2841                         return;
2842         }
2843
2844         do {
2845                 blk_mq_dispatch_plug_list(plug, from_schedule);
2846         } while (!rq_list_empty(plug->mq_list));
2847 }
2848
2849 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2850                 struct list_head *list)
2851 {
2852         int queued = 0;
2853         blk_status_t ret = BLK_STS_OK;
2854
2855         while (!list_empty(list)) {
2856                 struct request *rq = list_first_entry(list, struct request,
2857                                 queuelist);
2858
2859                 list_del_init(&rq->queuelist);
2860                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2861                 switch (ret) {
2862                 case BLK_STS_OK:
2863                         queued++;
2864                         break;
2865                 case BLK_STS_RESOURCE:
2866                 case BLK_STS_DEV_RESOURCE:
2867                         blk_mq_request_bypass_insert(rq, 0);
2868                         if (list_empty(list))
2869                                 blk_mq_run_hw_queue(hctx, false);
2870                         goto out;
2871                 default:
2872                         blk_mq_end_request(rq, ret);
2873                         break;
2874                 }
2875         }
2876
2877 out:
2878         if (ret != BLK_STS_OK)
2879                 blk_mq_commit_rqs(hctx, queued, false);
2880 }
2881
2882 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2883                                      struct bio *bio, unsigned int nr_segs)
2884 {
2885         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2886                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2887                         return true;
2888                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2889                         return true;
2890         }
2891         return false;
2892 }
2893
2894 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2895                                                struct blk_plug *plug,
2896                                                struct bio *bio,
2897                                                unsigned int nsegs)
2898 {
2899         struct blk_mq_alloc_data data = {
2900                 .q              = q,
2901                 .nr_tags        = 1,
2902                 .cmd_flags      = bio->bi_opf,
2903         };
2904         struct request *rq;
2905
2906         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2907                 return NULL;
2908
2909         rq_qos_throttle(q, bio);
2910
2911         if (plug) {
2912                 data.nr_tags = plug->nr_ios;
2913                 plug->nr_ios = 1;
2914                 data.cached_rq = &plug->cached_rq;
2915         }
2916
2917         rq = __blk_mq_alloc_requests(&data);
2918         if (rq)
2919                 return rq;
2920         rq_qos_cleanup(q, bio);
2921         if (bio->bi_opf & REQ_NOWAIT)
2922                 bio_wouldblock_error(bio);
2923         return NULL;
2924 }
2925
2926 /* return true if this @rq can be used for @bio */
2927 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2928                 struct bio *bio)
2929 {
2930         enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2931         enum hctx_type hctx_type = rq->mq_hctx->type;
2932
2933         WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2934
2935         if (type != hctx_type &&
2936             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2937                 return false;
2938         if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2939                 return false;
2940
2941         /*
2942          * If any qos ->throttle() end up blocking, we will have flushed the
2943          * plug and hence killed the cached_rq list as well. Pop this entry
2944          * before we throttle.
2945          */
2946         plug->cached_rq = rq_list_next(rq);
2947         rq_qos_throttle(rq->q, bio);
2948
2949         blk_mq_rq_time_init(rq, 0);
2950         rq->cmd_flags = bio->bi_opf;
2951         INIT_LIST_HEAD(&rq->queuelist);
2952         return true;
2953 }
2954
2955 static void bio_set_ioprio(struct bio *bio)
2956 {
2957         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2958         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2959                 bio->bi_ioprio = get_current_ioprio();
2960         blkcg_set_ioprio(bio);
2961 }
2962
2963 /**
2964  * blk_mq_submit_bio - Create and send a request to block device.
2965  * @bio: Bio pointer.
2966  *
2967  * Builds up a request structure from @q and @bio and send to the device. The
2968  * request may not be queued directly to hardware if:
2969  * * This request can be merged with another one
2970  * * We want to place request at plug queue for possible future merging
2971  * * There is an IO scheduler active at this queue
2972  *
2973  * It will not queue the request if there is an error with the bio, or at the
2974  * request creation.
2975  */
2976 void blk_mq_submit_bio(struct bio *bio)
2977 {
2978         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2979         struct blk_plug *plug = blk_mq_plug(bio);
2980         const int is_sync = op_is_sync(bio->bi_opf);
2981         struct blk_mq_hw_ctx *hctx;
2982         struct request *rq = NULL;
2983         unsigned int nr_segs = 1;
2984         blk_status_t ret;
2985
2986         bio = blk_queue_bounce(bio, q);
2987         bio_set_ioprio(bio);
2988
2989         if (plug) {
2990                 rq = rq_list_peek(&plug->cached_rq);
2991                 if (rq && rq->q != q)
2992                         rq = NULL;
2993         }
2994         if (rq) {
2995                 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2996                         bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2997                         if (!bio)
2998                                 return;
2999                 }
3000                 if (!bio_integrity_prep(bio))
3001                         return;
3002                 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3003                         return;
3004                 if (blk_mq_can_use_cached_rq(rq, plug, bio))
3005                         goto done;
3006                 percpu_ref_get(&q->q_usage_counter);
3007         } else {
3008                 if (unlikely(bio_queue_enter(bio)))
3009                         return;
3010                 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
3011                         bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3012                         if (!bio)
3013                                 goto fail;
3014                 }
3015                 if (!bio_integrity_prep(bio))
3016                         goto fail;
3017         }
3018
3019         rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3020         if (unlikely(!rq)) {
3021 fail:
3022                 blk_queue_exit(q);
3023                 return;
3024         }
3025
3026 done:
3027         trace_block_getrq(bio);
3028
3029         rq_qos_track(q, rq, bio);
3030
3031         blk_mq_bio_to_request(rq, bio, nr_segs);
3032
3033         ret = blk_crypto_rq_get_keyslot(rq);
3034         if (ret != BLK_STS_OK) {
3035                 bio->bi_status = ret;
3036                 bio_endio(bio);
3037                 blk_mq_free_request(rq);
3038                 return;
3039         }
3040
3041         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3042                 return;
3043
3044         if (plug) {
3045                 blk_add_rq_to_plug(plug, rq);
3046                 return;
3047         }
3048
3049         hctx = rq->mq_hctx;
3050         if ((rq->rq_flags & RQF_USE_SCHED) ||
3051             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3052                 blk_mq_insert_request(rq, 0);
3053                 blk_mq_run_hw_queue(hctx, true);
3054         } else {
3055                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3056         }
3057 }
3058
3059 #ifdef CONFIG_BLK_MQ_STACKING
3060 /**
3061  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3062  * @rq: the request being queued
3063  */
3064 blk_status_t blk_insert_cloned_request(struct request *rq)
3065 {
3066         struct request_queue *q = rq->q;
3067         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3068         unsigned int max_segments = blk_rq_get_max_segments(rq);
3069         blk_status_t ret;
3070
3071         if (blk_rq_sectors(rq) > max_sectors) {
3072                 /*
3073                  * SCSI device does not have a good way to return if
3074                  * Write Same/Zero is actually supported. If a device rejects
3075                  * a non-read/write command (discard, write same,etc.) the
3076                  * low-level device driver will set the relevant queue limit to
3077                  * 0 to prevent blk-lib from issuing more of the offending
3078                  * operations. Commands queued prior to the queue limit being
3079                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3080                  * errors being propagated to upper layers.
3081                  */
3082                 if (max_sectors == 0)
3083                         return BLK_STS_NOTSUPP;
3084
3085                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3086                         __func__, blk_rq_sectors(rq), max_sectors);
3087                 return BLK_STS_IOERR;
3088         }
3089
3090         /*
3091          * The queue settings related to segment counting may differ from the
3092          * original queue.
3093          */
3094         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3095         if (rq->nr_phys_segments > max_segments) {
3096                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3097                         __func__, rq->nr_phys_segments, max_segments);
3098                 return BLK_STS_IOERR;
3099         }
3100
3101         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3102                 return BLK_STS_IOERR;
3103
3104         ret = blk_crypto_rq_get_keyslot(rq);
3105         if (ret != BLK_STS_OK)
3106                 return ret;
3107
3108         blk_account_io_start(rq);
3109
3110         /*
3111          * Since we have a scheduler attached on the top device,
3112          * bypass a potential scheduler on the bottom device for
3113          * insert.
3114          */
3115         blk_mq_run_dispatch_ops(q,
3116                         ret = blk_mq_request_issue_directly(rq, true));
3117         if (ret)
3118                 blk_account_io_done(rq, ktime_get_ns());
3119         return ret;
3120 }
3121 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3122
3123 /**
3124  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3125  * @rq: the clone request to be cleaned up
3126  *
3127  * Description:
3128  *     Free all bios in @rq for a cloned request.
3129  */
3130 void blk_rq_unprep_clone(struct request *rq)
3131 {
3132         struct bio *bio;
3133
3134         while ((bio = rq->bio) != NULL) {
3135                 rq->bio = bio->bi_next;
3136
3137                 bio_put(bio);
3138         }
3139 }
3140 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3141
3142 /**
3143  * blk_rq_prep_clone - Helper function to setup clone request
3144  * @rq: the request to be setup
3145  * @rq_src: original request to be cloned
3146  * @bs: bio_set that bios for clone are allocated from
3147  * @gfp_mask: memory allocation mask for bio
3148  * @bio_ctr: setup function to be called for each clone bio.
3149  *           Returns %0 for success, non %0 for failure.
3150  * @data: private data to be passed to @bio_ctr
3151  *
3152  * Description:
3153  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3154  *     Also, pages which the original bios are pointing to are not copied
3155  *     and the cloned bios just point same pages.
3156  *     So cloned bios must be completed before original bios, which means
3157  *     the caller must complete @rq before @rq_src.
3158  */
3159 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3160                       struct bio_set *bs, gfp_t gfp_mask,
3161                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3162                       void *data)
3163 {
3164         struct bio *bio, *bio_src;
3165
3166         if (!bs)
3167                 bs = &fs_bio_set;
3168
3169         __rq_for_each_bio(bio_src, rq_src) {
3170                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3171                                       bs);
3172                 if (!bio)
3173                         goto free_and_out;
3174
3175                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3176                         goto free_and_out;
3177
3178                 if (rq->bio) {
3179                         rq->biotail->bi_next = bio;
3180                         rq->biotail = bio;
3181                 } else {
3182                         rq->bio = rq->biotail = bio;
3183                 }
3184                 bio = NULL;
3185         }
3186
3187         /* Copy attributes of the original request to the clone request. */
3188         rq->__sector = blk_rq_pos(rq_src);
3189         rq->__data_len = blk_rq_bytes(rq_src);
3190         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3191                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3192                 rq->special_vec = rq_src->special_vec;
3193         }
3194         rq->nr_phys_segments = rq_src->nr_phys_segments;
3195         rq->ioprio = rq_src->ioprio;
3196
3197         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3198                 goto free_and_out;
3199
3200         return 0;
3201
3202 free_and_out:
3203         if (bio)
3204                 bio_put(bio);
3205         blk_rq_unprep_clone(rq);
3206
3207         return -ENOMEM;
3208 }
3209 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3210 #endif /* CONFIG_BLK_MQ_STACKING */
3211
3212 /*
3213  * Steal bios from a request and add them to a bio list.
3214  * The request must not have been partially completed before.
3215  */
3216 void blk_steal_bios(struct bio_list *list, struct request *rq)
3217 {
3218         if (rq->bio) {
3219                 if (list->tail)
3220                         list->tail->bi_next = rq->bio;
3221                 else
3222                         list->head = rq->bio;
3223                 list->tail = rq->biotail;
3224
3225                 rq->bio = NULL;
3226                 rq->biotail = NULL;
3227         }
3228
3229         rq->__data_len = 0;
3230 }
3231 EXPORT_SYMBOL_GPL(blk_steal_bios);
3232
3233 static size_t order_to_size(unsigned int order)
3234 {
3235         return (size_t)PAGE_SIZE << order;
3236 }
3237
3238 /* called before freeing request pool in @tags */
3239 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3240                                     struct blk_mq_tags *tags)
3241 {
3242         struct page *page;
3243         unsigned long flags;
3244
3245         /*
3246          * There is no need to clear mapping if driver tags is not initialized
3247          * or the mapping belongs to the driver tags.
3248          */
3249         if (!drv_tags || drv_tags == tags)
3250                 return;
3251
3252         list_for_each_entry(page, &tags->page_list, lru) {
3253                 unsigned long start = (unsigned long)page_address(page);
3254                 unsigned long end = start + order_to_size(page->private);
3255                 int i;
3256
3257                 for (i = 0; i < drv_tags->nr_tags; i++) {
3258                         struct request *rq = drv_tags->rqs[i];
3259                         unsigned long rq_addr = (unsigned long)rq;
3260
3261                         if (rq_addr >= start && rq_addr < end) {
3262                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3263                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3264                         }
3265                 }
3266         }
3267
3268         /*
3269          * Wait until all pending iteration is done.
3270          *
3271          * Request reference is cleared and it is guaranteed to be observed
3272          * after the ->lock is released.
3273          */
3274         spin_lock_irqsave(&drv_tags->lock, flags);
3275         spin_unlock_irqrestore(&drv_tags->lock, flags);
3276 }
3277
3278 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3279                      unsigned int hctx_idx)
3280 {
3281         struct blk_mq_tags *drv_tags;
3282         struct page *page;
3283
3284         if (list_empty(&tags->page_list))
3285                 return;
3286
3287         if (blk_mq_is_shared_tags(set->flags))
3288                 drv_tags = set->shared_tags;
3289         else
3290                 drv_tags = set->tags[hctx_idx];
3291
3292         if (tags->static_rqs && set->ops->exit_request) {
3293                 int i;
3294
3295                 for (i = 0; i < tags->nr_tags; i++) {
3296                         struct request *rq = tags->static_rqs[i];
3297
3298                         if (!rq)
3299                                 continue;
3300                         set->ops->exit_request(set, rq, hctx_idx);
3301                         tags->static_rqs[i] = NULL;
3302                 }
3303         }
3304
3305         blk_mq_clear_rq_mapping(drv_tags, tags);
3306
3307         while (!list_empty(&tags->page_list)) {
3308                 page = list_first_entry(&tags->page_list, struct page, lru);
3309                 list_del_init(&page->lru);
3310                 /*
3311                  * Remove kmemleak object previously allocated in
3312                  * blk_mq_alloc_rqs().
3313                  */
3314                 kmemleak_free(page_address(page));
3315                 __free_pages(page, page->private);
3316         }
3317 }
3318
3319 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3320 {
3321         kfree(tags->rqs);
3322         tags->rqs = NULL;
3323         kfree(tags->static_rqs);
3324         tags->static_rqs = NULL;
3325
3326         blk_mq_free_tags(tags);
3327 }
3328
3329 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3330                 unsigned int hctx_idx)
3331 {
3332         int i;
3333
3334         for (i = 0; i < set->nr_maps; i++) {
3335                 unsigned int start = set->map[i].queue_offset;
3336                 unsigned int end = start + set->map[i].nr_queues;
3337
3338                 if (hctx_idx >= start && hctx_idx < end)
3339                         break;
3340         }
3341
3342         if (i >= set->nr_maps)
3343                 i = HCTX_TYPE_DEFAULT;
3344
3345         return i;
3346 }
3347
3348 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3349                 unsigned int hctx_idx)
3350 {
3351         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3352
3353         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3354 }
3355
3356 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3357                                                unsigned int hctx_idx,
3358                                                unsigned int nr_tags,
3359                                                unsigned int reserved_tags)
3360 {
3361         int node = blk_mq_get_hctx_node(set, hctx_idx);
3362         struct blk_mq_tags *tags;
3363
3364         if (node == NUMA_NO_NODE)
3365                 node = set->numa_node;
3366
3367         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3368                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3369         if (!tags)
3370                 return NULL;
3371
3372         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3373                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3374                                  node);
3375         if (!tags->rqs)
3376                 goto err_free_tags;
3377
3378         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3379                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3380                                         node);
3381         if (!tags->static_rqs)
3382                 goto err_free_rqs;
3383
3384         return tags;
3385
3386 err_free_rqs:
3387         kfree(tags->rqs);
3388 err_free_tags:
3389         blk_mq_free_tags(tags);
3390         return NULL;
3391 }
3392
3393 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3394                                unsigned int hctx_idx, int node)
3395 {
3396         int ret;
3397
3398         if (set->ops->init_request) {
3399                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3400                 if (ret)
3401                         return ret;
3402         }
3403
3404         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3405         return 0;
3406 }
3407
3408 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3409                             struct blk_mq_tags *tags,
3410                             unsigned int hctx_idx, unsigned int depth)
3411 {
3412         unsigned int i, j, entries_per_page, max_order = 4;
3413         int node = blk_mq_get_hctx_node(set, hctx_idx);
3414         size_t rq_size, left;
3415
3416         if (node == NUMA_NO_NODE)
3417                 node = set->numa_node;
3418
3419         INIT_LIST_HEAD(&tags->page_list);
3420
3421         /*
3422          * rq_size is the size of the request plus driver payload, rounded
3423          * to the cacheline size
3424          */
3425         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3426                                 cache_line_size());
3427         left = rq_size * depth;
3428
3429         for (i = 0; i < depth; ) {
3430                 int this_order = max_order;
3431                 struct page *page;
3432                 int to_do;
3433                 void *p;
3434
3435                 while (this_order && left < order_to_size(this_order - 1))
3436                         this_order--;
3437
3438                 do {
3439                         page = alloc_pages_node(node,
3440                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3441                                 this_order);
3442                         if (page)
3443                                 break;
3444                         if (!this_order--)
3445                                 break;
3446                         if (order_to_size(this_order) < rq_size)
3447                                 break;
3448                 } while (1);
3449
3450                 if (!page)
3451                         goto fail;
3452
3453                 page->private = this_order;
3454                 list_add_tail(&page->lru, &tags->page_list);
3455
3456                 p = page_address(page);
3457                 /*
3458                  * Allow kmemleak to scan these pages as they contain pointers
3459                  * to additional allocations like via ops->init_request().
3460                  */
3461                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3462                 entries_per_page = order_to_size(this_order) / rq_size;
3463                 to_do = min(entries_per_page, depth - i);
3464                 left -= to_do * rq_size;
3465                 for (j = 0; j < to_do; j++) {
3466                         struct request *rq = p;
3467
3468                         tags->static_rqs[i] = rq;
3469                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3470                                 tags->static_rqs[i] = NULL;
3471                                 goto fail;
3472                         }
3473
3474                         p += rq_size;
3475                         i++;
3476                 }
3477         }
3478         return 0;
3479
3480 fail:
3481         blk_mq_free_rqs(set, tags, hctx_idx);
3482         return -ENOMEM;
3483 }
3484
3485 struct rq_iter_data {
3486         struct blk_mq_hw_ctx *hctx;
3487         bool has_rq;
3488 };
3489
3490 static bool blk_mq_has_request(struct request *rq, void *data)
3491 {
3492         struct rq_iter_data *iter_data = data;
3493
3494         if (rq->mq_hctx != iter_data->hctx)
3495                 return true;
3496         iter_data->has_rq = true;
3497         return false;
3498 }
3499
3500 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3501 {
3502         struct blk_mq_tags *tags = hctx->sched_tags ?
3503                         hctx->sched_tags : hctx->tags;
3504         struct rq_iter_data data = {
3505                 .hctx   = hctx,
3506         };
3507
3508         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3509         return data.has_rq;
3510 }
3511
3512 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3513                 struct blk_mq_hw_ctx *hctx)
3514 {
3515         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3516                 return false;
3517         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3518                 return false;
3519         return true;
3520 }
3521
3522 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3523 {
3524         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3525                         struct blk_mq_hw_ctx, cpuhp_online);
3526
3527         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3528             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3529                 return 0;
3530
3531         /*
3532          * Prevent new request from being allocated on the current hctx.
3533          *
3534          * The smp_mb__after_atomic() Pairs with the implied barrier in
3535          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3536          * seen once we return from the tag allocator.
3537          */
3538         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3539         smp_mb__after_atomic();
3540
3541         /*
3542          * Try to grab a reference to the queue and wait for any outstanding
3543          * requests.  If we could not grab a reference the queue has been
3544          * frozen and there are no requests.
3545          */
3546         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3547                 while (blk_mq_hctx_has_requests(hctx))
3548                         msleep(5);
3549                 percpu_ref_put(&hctx->queue->q_usage_counter);
3550         }
3551
3552         return 0;
3553 }
3554
3555 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3556 {
3557         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3558                         struct blk_mq_hw_ctx, cpuhp_online);
3559
3560         if (cpumask_test_cpu(cpu, hctx->cpumask))
3561                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3562         return 0;
3563 }
3564
3565 /*
3566  * 'cpu' is going away. splice any existing rq_list entries from this
3567  * software queue to the hw queue dispatch list, and ensure that it
3568  * gets run.
3569  */
3570 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3571 {
3572         struct blk_mq_hw_ctx *hctx;
3573         struct blk_mq_ctx *ctx;
3574         LIST_HEAD(tmp);
3575         enum hctx_type type;
3576
3577         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3578         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3579                 return 0;
3580
3581         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3582         type = hctx->type;
3583
3584         spin_lock(&ctx->lock);
3585         if (!list_empty(&ctx->rq_lists[type])) {
3586                 list_splice_init(&ctx->rq_lists[type], &tmp);
3587                 blk_mq_hctx_clear_pending(hctx, ctx);
3588         }
3589         spin_unlock(&ctx->lock);
3590
3591         if (list_empty(&tmp))
3592                 return 0;
3593
3594         spin_lock(&hctx->lock);
3595         list_splice_tail_init(&tmp, &hctx->dispatch);
3596         spin_unlock(&hctx->lock);
3597
3598         blk_mq_run_hw_queue(hctx, true);
3599         return 0;
3600 }
3601
3602 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3603 {
3604         if (!(hctx->flags & BLK_MQ_F_STACKING))
3605                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3606                                                     &hctx->cpuhp_online);
3607         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3608                                             &hctx->cpuhp_dead);
3609 }
3610
3611 /*
3612  * Before freeing hw queue, clearing the flush request reference in
3613  * tags->rqs[] for avoiding potential UAF.
3614  */
3615 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3616                 unsigned int queue_depth, struct request *flush_rq)
3617 {
3618         int i;
3619         unsigned long flags;
3620
3621         /* The hw queue may not be mapped yet */
3622         if (!tags)
3623                 return;
3624
3625         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3626
3627         for (i = 0; i < queue_depth; i++)
3628                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3629
3630         /*
3631          * Wait until all pending iteration is done.
3632          *
3633          * Request reference is cleared and it is guaranteed to be observed
3634          * after the ->lock is released.
3635          */
3636         spin_lock_irqsave(&tags->lock, flags);
3637         spin_unlock_irqrestore(&tags->lock, flags);
3638 }
3639
3640 /* hctx->ctxs will be freed in queue's release handler */
3641 static void blk_mq_exit_hctx(struct request_queue *q,
3642                 struct blk_mq_tag_set *set,
3643                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3644 {
3645         struct request *flush_rq = hctx->fq->flush_rq;
3646
3647         if (blk_mq_hw_queue_mapped(hctx))
3648                 blk_mq_tag_idle(hctx);
3649
3650         if (blk_queue_init_done(q))
3651                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3652                                 set->queue_depth, flush_rq);
3653         if (set->ops->exit_request)
3654                 set->ops->exit_request(set, flush_rq, hctx_idx);
3655
3656         if (set->ops->exit_hctx)
3657                 set->ops->exit_hctx(hctx, hctx_idx);
3658
3659         blk_mq_remove_cpuhp(hctx);
3660
3661         xa_erase(&q->hctx_table, hctx_idx);
3662
3663         spin_lock(&q->unused_hctx_lock);
3664         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3665         spin_unlock(&q->unused_hctx_lock);
3666 }
3667
3668 static void blk_mq_exit_hw_queues(struct request_queue *q,
3669                 struct blk_mq_tag_set *set, int nr_queue)
3670 {
3671         struct blk_mq_hw_ctx *hctx;
3672         unsigned long i;
3673
3674         queue_for_each_hw_ctx(q, hctx, i) {
3675                 if (i == nr_queue)
3676                         break;
3677                 blk_mq_exit_hctx(q, set, hctx, i);
3678         }
3679 }
3680
3681 static int blk_mq_init_hctx(struct request_queue *q,
3682                 struct blk_mq_tag_set *set,
3683                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3684 {
3685         hctx->queue_num = hctx_idx;
3686
3687         if (!(hctx->flags & BLK_MQ_F_STACKING))
3688                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3689                                 &hctx->cpuhp_online);
3690         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3691
3692         hctx->tags = set->tags[hctx_idx];
3693
3694         if (set->ops->init_hctx &&
3695             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3696                 goto unregister_cpu_notifier;
3697
3698         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3699                                 hctx->numa_node))
3700                 goto exit_hctx;
3701
3702         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3703                 goto exit_flush_rq;
3704
3705         return 0;
3706
3707  exit_flush_rq:
3708         if (set->ops->exit_request)
3709                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3710  exit_hctx:
3711         if (set->ops->exit_hctx)
3712                 set->ops->exit_hctx(hctx, hctx_idx);
3713  unregister_cpu_notifier:
3714         blk_mq_remove_cpuhp(hctx);
3715         return -1;
3716 }
3717
3718 static struct blk_mq_hw_ctx *
3719 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3720                 int node)
3721 {
3722         struct blk_mq_hw_ctx *hctx;
3723         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3724
3725         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3726         if (!hctx)
3727                 goto fail_alloc_hctx;
3728
3729         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3730                 goto free_hctx;
3731
3732         atomic_set(&hctx->nr_active, 0);
3733         if (node == NUMA_NO_NODE)
3734                 node = set->numa_node;
3735         hctx->numa_node = node;
3736
3737         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3738         spin_lock_init(&hctx->lock);
3739         INIT_LIST_HEAD(&hctx->dispatch);
3740         hctx->queue = q;
3741         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3742
3743         INIT_LIST_HEAD(&hctx->hctx_list);
3744
3745         /*
3746          * Allocate space for all possible cpus to avoid allocation at
3747          * runtime
3748          */
3749         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3750                         gfp, node);
3751         if (!hctx->ctxs)
3752                 goto free_cpumask;
3753
3754         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3755                                 gfp, node, false, false))
3756                 goto free_ctxs;
3757         hctx->nr_ctx = 0;
3758
3759         spin_lock_init(&hctx->dispatch_wait_lock);
3760         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3761         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3762
3763         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3764         if (!hctx->fq)
3765                 goto free_bitmap;
3766
3767         blk_mq_hctx_kobj_init(hctx);
3768
3769         return hctx;
3770
3771  free_bitmap:
3772         sbitmap_free(&hctx->ctx_map);
3773  free_ctxs:
3774         kfree(hctx->ctxs);
3775  free_cpumask:
3776         free_cpumask_var(hctx->cpumask);
3777  free_hctx:
3778         kfree(hctx);
3779  fail_alloc_hctx:
3780         return NULL;
3781 }
3782
3783 static void blk_mq_init_cpu_queues(struct request_queue *q,
3784                                    unsigned int nr_hw_queues)
3785 {
3786         struct blk_mq_tag_set *set = q->tag_set;
3787         unsigned int i, j;
3788
3789         for_each_possible_cpu(i) {
3790                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3791                 struct blk_mq_hw_ctx *hctx;
3792                 int k;
3793
3794                 __ctx->cpu = i;
3795                 spin_lock_init(&__ctx->lock);
3796                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3797                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3798
3799                 __ctx->queue = q;
3800
3801                 /*
3802                  * Set local node, IFF we have more than one hw queue. If
3803                  * not, we remain on the home node of the device
3804                  */
3805                 for (j = 0; j < set->nr_maps; j++) {
3806                         hctx = blk_mq_map_queue_type(q, j, i);
3807                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3808                                 hctx->numa_node = cpu_to_node(i);
3809                 }
3810         }
3811 }
3812
3813 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3814                                              unsigned int hctx_idx,
3815                                              unsigned int depth)
3816 {
3817         struct blk_mq_tags *tags;
3818         int ret;
3819
3820         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3821         if (!tags)
3822                 return NULL;
3823
3824         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3825         if (ret) {
3826                 blk_mq_free_rq_map(tags);
3827                 return NULL;
3828         }
3829
3830         return tags;
3831 }
3832
3833 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3834                                        int hctx_idx)
3835 {
3836         if (blk_mq_is_shared_tags(set->flags)) {
3837                 set->tags[hctx_idx] = set->shared_tags;
3838
3839                 return true;
3840         }
3841
3842         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3843                                                        set->queue_depth);
3844
3845         return set->tags[hctx_idx];
3846 }
3847
3848 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3849                              struct blk_mq_tags *tags,
3850                              unsigned int hctx_idx)
3851 {
3852         if (tags) {
3853                 blk_mq_free_rqs(set, tags, hctx_idx);
3854                 blk_mq_free_rq_map(tags);
3855         }
3856 }
3857
3858 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3859                                       unsigned int hctx_idx)
3860 {
3861         if (!blk_mq_is_shared_tags(set->flags))
3862                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3863
3864         set->tags[hctx_idx] = NULL;
3865 }
3866
3867 static void blk_mq_map_swqueue(struct request_queue *q)
3868 {
3869         unsigned int j, hctx_idx;
3870         unsigned long i;
3871         struct blk_mq_hw_ctx *hctx;
3872         struct blk_mq_ctx *ctx;
3873         struct blk_mq_tag_set *set = q->tag_set;
3874
3875         queue_for_each_hw_ctx(q, hctx, i) {
3876                 cpumask_clear(hctx->cpumask);
3877                 hctx->nr_ctx = 0;
3878                 hctx->dispatch_from = NULL;
3879         }
3880
3881         /*
3882          * Map software to hardware queues.
3883          *
3884          * If the cpu isn't present, the cpu is mapped to first hctx.
3885          */
3886         for_each_possible_cpu(i) {
3887
3888                 ctx = per_cpu_ptr(q->queue_ctx, i);
3889                 for (j = 0; j < set->nr_maps; j++) {
3890                         if (!set->map[j].nr_queues) {
3891                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3892                                                 HCTX_TYPE_DEFAULT, i);
3893                                 continue;
3894                         }
3895                         hctx_idx = set->map[j].mq_map[i];
3896                         /* unmapped hw queue can be remapped after CPU topo changed */
3897                         if (!set->tags[hctx_idx] &&
3898                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3899                                 /*
3900                                  * If tags initialization fail for some hctx,
3901                                  * that hctx won't be brought online.  In this
3902                                  * case, remap the current ctx to hctx[0] which
3903                                  * is guaranteed to always have tags allocated
3904                                  */
3905                                 set->map[j].mq_map[i] = 0;
3906                         }
3907
3908                         hctx = blk_mq_map_queue_type(q, j, i);
3909                         ctx->hctxs[j] = hctx;
3910                         /*
3911                          * If the CPU is already set in the mask, then we've
3912                          * mapped this one already. This can happen if
3913                          * devices share queues across queue maps.
3914                          */
3915                         if (cpumask_test_cpu(i, hctx->cpumask))
3916                                 continue;
3917
3918                         cpumask_set_cpu(i, hctx->cpumask);
3919                         hctx->type = j;
3920                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3921                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3922
3923                         /*
3924                          * If the nr_ctx type overflows, we have exceeded the
3925                          * amount of sw queues we can support.
3926                          */
3927                         BUG_ON(!hctx->nr_ctx);
3928                 }
3929
3930                 for (; j < HCTX_MAX_TYPES; j++)
3931                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3932                                         HCTX_TYPE_DEFAULT, i);
3933         }
3934
3935         queue_for_each_hw_ctx(q, hctx, i) {
3936                 /*
3937                  * If no software queues are mapped to this hardware queue,
3938                  * disable it and free the request entries.
3939                  */
3940                 if (!hctx->nr_ctx) {
3941                         /* Never unmap queue 0.  We need it as a
3942                          * fallback in case of a new remap fails
3943                          * allocation
3944                          */
3945                         if (i)
3946                                 __blk_mq_free_map_and_rqs(set, i);
3947
3948                         hctx->tags = NULL;
3949                         continue;
3950                 }
3951
3952                 hctx->tags = set->tags[i];
3953                 WARN_ON(!hctx->tags);
3954
3955                 /*
3956                  * Set the map size to the number of mapped software queues.
3957                  * This is more accurate and more efficient than looping
3958                  * over all possibly mapped software queues.
3959                  */
3960                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3961
3962                 /*
3963                  * Initialize batch roundrobin counts
3964                  */
3965                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3966                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3967         }
3968 }
3969
3970 /*
3971  * Caller needs to ensure that we're either frozen/quiesced, or that
3972  * the queue isn't live yet.
3973  */
3974 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3975 {
3976         struct blk_mq_hw_ctx *hctx;
3977         unsigned long i;
3978
3979         queue_for_each_hw_ctx(q, hctx, i) {
3980                 if (shared) {
3981                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3982                 } else {
3983                         blk_mq_tag_idle(hctx);
3984                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3985                 }
3986         }
3987 }
3988
3989 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3990                                          bool shared)
3991 {
3992         struct request_queue *q;
3993
3994         lockdep_assert_held(&set->tag_list_lock);
3995
3996         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3997                 blk_mq_freeze_queue(q);
3998                 queue_set_hctx_shared(q, shared);
3999                 blk_mq_unfreeze_queue(q);
4000         }
4001 }
4002
4003 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4004 {
4005         struct blk_mq_tag_set *set = q->tag_set;
4006
4007         mutex_lock(&set->tag_list_lock);
4008         list_del(&q->tag_set_list);
4009         if (list_is_singular(&set->tag_list)) {
4010                 /* just transitioned to unshared */
4011                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4012                 /* update existing queue */
4013                 blk_mq_update_tag_set_shared(set, false);
4014         }
4015         mutex_unlock(&set->tag_list_lock);
4016         INIT_LIST_HEAD(&q->tag_set_list);
4017 }
4018
4019 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4020                                      struct request_queue *q)
4021 {
4022         mutex_lock(&set->tag_list_lock);
4023
4024         /*
4025          * Check to see if we're transitioning to shared (from 1 to 2 queues).
4026          */
4027         if (!list_empty(&set->tag_list) &&
4028             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4029                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4030                 /* update existing queue */
4031                 blk_mq_update_tag_set_shared(set, true);
4032         }
4033         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4034                 queue_set_hctx_shared(q, true);
4035         list_add_tail(&q->tag_set_list, &set->tag_list);
4036
4037         mutex_unlock(&set->tag_list_lock);
4038 }
4039
4040 /* All allocations will be freed in release handler of q->mq_kobj */
4041 static int blk_mq_alloc_ctxs(struct request_queue *q)
4042 {
4043         struct blk_mq_ctxs *ctxs;
4044         int cpu;
4045
4046         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4047         if (!ctxs)
4048                 return -ENOMEM;
4049
4050         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4051         if (!ctxs->queue_ctx)
4052                 goto fail;
4053
4054         for_each_possible_cpu(cpu) {
4055                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4056                 ctx->ctxs = ctxs;
4057         }
4058
4059         q->mq_kobj = &ctxs->kobj;
4060         q->queue_ctx = ctxs->queue_ctx;
4061
4062         return 0;
4063  fail:
4064         kfree(ctxs);
4065         return -ENOMEM;
4066 }
4067
4068 /*
4069  * It is the actual release handler for mq, but we do it from
4070  * request queue's release handler for avoiding use-after-free
4071  * and headache because q->mq_kobj shouldn't have been introduced,
4072  * but we can't group ctx/kctx kobj without it.
4073  */
4074 void blk_mq_release(struct request_queue *q)
4075 {
4076         struct blk_mq_hw_ctx *hctx, *next;
4077         unsigned long i;
4078
4079         queue_for_each_hw_ctx(q, hctx, i)
4080                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4081
4082         /* all hctx are in .unused_hctx_list now */
4083         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4084                 list_del_init(&hctx->hctx_list);
4085                 kobject_put(&hctx->kobj);
4086         }
4087
4088         xa_destroy(&q->hctx_table);
4089
4090         /*
4091          * release .mq_kobj and sw queue's kobject now because
4092          * both share lifetime with request queue.
4093          */
4094         blk_mq_sysfs_deinit(q);
4095 }
4096
4097 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4098                 void *queuedata)
4099 {
4100         struct request_queue *q;
4101         int ret;
4102
4103         q = blk_alloc_queue(set->numa_node);
4104         if (!q)
4105                 return ERR_PTR(-ENOMEM);
4106         q->queuedata = queuedata;
4107         ret = blk_mq_init_allocated_queue(set, q);
4108         if (ret) {
4109                 blk_put_queue(q);
4110                 return ERR_PTR(ret);
4111         }
4112         return q;
4113 }
4114
4115 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4116 {
4117         return blk_mq_init_queue_data(set, NULL);
4118 }
4119 EXPORT_SYMBOL(blk_mq_init_queue);
4120
4121 /**
4122  * blk_mq_destroy_queue - shutdown a request queue
4123  * @q: request queue to shutdown
4124  *
4125  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4126  * requests will be failed with -ENODEV. The caller is responsible for dropping
4127  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4128  *
4129  * Context: can sleep
4130  */
4131 void blk_mq_destroy_queue(struct request_queue *q)
4132 {
4133         WARN_ON_ONCE(!queue_is_mq(q));
4134         WARN_ON_ONCE(blk_queue_registered(q));
4135
4136         might_sleep();
4137
4138         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4139         blk_queue_start_drain(q);
4140         blk_mq_freeze_queue_wait(q);
4141
4142         blk_sync_queue(q);
4143         blk_mq_cancel_work_sync(q);
4144         blk_mq_exit_queue(q);
4145 }
4146 EXPORT_SYMBOL(blk_mq_destroy_queue);
4147
4148 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4149                 struct lock_class_key *lkclass)
4150 {
4151         struct request_queue *q;
4152         struct gendisk *disk;
4153
4154         q = blk_mq_init_queue_data(set, queuedata);
4155         if (IS_ERR(q))
4156                 return ERR_CAST(q);
4157
4158         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4159         if (!disk) {
4160                 blk_mq_destroy_queue(q);
4161                 blk_put_queue(q);
4162                 return ERR_PTR(-ENOMEM);
4163         }
4164         set_bit(GD_OWNS_QUEUE, &disk->state);
4165         return disk;
4166 }
4167 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4168
4169 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4170                 struct lock_class_key *lkclass)
4171 {
4172         struct gendisk *disk;
4173
4174         if (!blk_get_queue(q))
4175                 return NULL;
4176         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4177         if (!disk)
4178                 blk_put_queue(q);
4179         return disk;
4180 }
4181 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4182
4183 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4184                 struct blk_mq_tag_set *set, struct request_queue *q,
4185                 int hctx_idx, int node)
4186 {
4187         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4188
4189         /* reuse dead hctx first */
4190         spin_lock(&q->unused_hctx_lock);
4191         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4192                 if (tmp->numa_node == node) {
4193                         hctx = tmp;
4194                         break;
4195                 }
4196         }
4197         if (hctx)
4198                 list_del_init(&hctx->hctx_list);
4199         spin_unlock(&q->unused_hctx_lock);
4200
4201         if (!hctx)
4202                 hctx = blk_mq_alloc_hctx(q, set, node);
4203         if (!hctx)
4204                 goto fail;
4205
4206         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4207                 goto free_hctx;
4208
4209         return hctx;
4210
4211  free_hctx:
4212         kobject_put(&hctx->kobj);
4213  fail:
4214         return NULL;
4215 }
4216
4217 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4218                                                 struct request_queue *q)
4219 {
4220         struct blk_mq_hw_ctx *hctx;
4221         unsigned long i, j;
4222
4223         /* protect against switching io scheduler  */
4224         mutex_lock(&q->sysfs_lock);
4225         for (i = 0; i < set->nr_hw_queues; i++) {
4226                 int old_node;
4227                 int node = blk_mq_get_hctx_node(set, i);
4228                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4229
4230                 if (old_hctx) {
4231                         old_node = old_hctx->numa_node;
4232                         blk_mq_exit_hctx(q, set, old_hctx, i);
4233                 }
4234
4235                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4236                         if (!old_hctx)
4237                                 break;
4238                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4239                                         node, old_node);
4240                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4241                         WARN_ON_ONCE(!hctx);
4242                 }
4243         }
4244         /*
4245          * Increasing nr_hw_queues fails. Free the newly allocated
4246          * hctxs and keep the previous q->nr_hw_queues.
4247          */
4248         if (i != set->nr_hw_queues) {
4249                 j = q->nr_hw_queues;
4250         } else {
4251                 j = i;
4252                 q->nr_hw_queues = set->nr_hw_queues;
4253         }
4254
4255         xa_for_each_start(&q->hctx_table, j, hctx, j)
4256                 blk_mq_exit_hctx(q, set, hctx, j);
4257         mutex_unlock(&q->sysfs_lock);
4258 }
4259
4260 static void blk_mq_update_poll_flag(struct request_queue *q)
4261 {
4262         struct blk_mq_tag_set *set = q->tag_set;
4263
4264         if (set->nr_maps > HCTX_TYPE_POLL &&
4265             set->map[HCTX_TYPE_POLL].nr_queues)
4266                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4267         else
4268                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4269 }
4270
4271 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4272                 struct request_queue *q)
4273 {
4274         /* mark the queue as mq asap */
4275         q->mq_ops = set->ops;
4276
4277         if (blk_mq_alloc_ctxs(q))
4278                 goto err_exit;
4279
4280         /* init q->mq_kobj and sw queues' kobjects */
4281         blk_mq_sysfs_init(q);
4282
4283         INIT_LIST_HEAD(&q->unused_hctx_list);
4284         spin_lock_init(&q->unused_hctx_lock);
4285
4286         xa_init(&q->hctx_table);
4287
4288         blk_mq_realloc_hw_ctxs(set, q);
4289         if (!q->nr_hw_queues)
4290                 goto err_hctxs;
4291
4292         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4293         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4294
4295         q->tag_set = set;
4296
4297         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4298         blk_mq_update_poll_flag(q);
4299
4300         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4301         INIT_LIST_HEAD(&q->flush_list);
4302         INIT_LIST_HEAD(&q->requeue_list);
4303         spin_lock_init(&q->requeue_lock);
4304
4305         q->nr_requests = set->queue_depth;
4306
4307         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4308         blk_mq_add_queue_tag_set(set, q);
4309         blk_mq_map_swqueue(q);
4310         return 0;
4311
4312 err_hctxs:
4313         blk_mq_release(q);
4314 err_exit:
4315         q->mq_ops = NULL;
4316         return -ENOMEM;
4317 }
4318 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4319
4320 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4321 void blk_mq_exit_queue(struct request_queue *q)
4322 {
4323         struct blk_mq_tag_set *set = q->tag_set;
4324
4325         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4326         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4327         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4328         blk_mq_del_queue_tag_set(q);
4329 }
4330
4331 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4332 {
4333         int i;
4334
4335         if (blk_mq_is_shared_tags(set->flags)) {
4336                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4337                                                 BLK_MQ_NO_HCTX_IDX,
4338                                                 set->queue_depth);
4339                 if (!set->shared_tags)
4340                         return -ENOMEM;
4341         }
4342
4343         for (i = 0; i < set->nr_hw_queues; i++) {
4344                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4345                         goto out_unwind;
4346                 cond_resched();
4347         }
4348
4349         return 0;
4350
4351 out_unwind:
4352         while (--i >= 0)
4353                 __blk_mq_free_map_and_rqs(set, i);
4354
4355         if (blk_mq_is_shared_tags(set->flags)) {
4356                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4357                                         BLK_MQ_NO_HCTX_IDX);
4358         }
4359
4360         return -ENOMEM;
4361 }
4362
4363 /*
4364  * Allocate the request maps associated with this tag_set. Note that this
4365  * may reduce the depth asked for, if memory is tight. set->queue_depth
4366  * will be updated to reflect the allocated depth.
4367  */
4368 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4369 {
4370         unsigned int depth;
4371         int err;
4372
4373         depth = set->queue_depth;
4374         do {
4375                 err = __blk_mq_alloc_rq_maps(set);
4376                 if (!err)
4377                         break;
4378
4379                 set->queue_depth >>= 1;
4380                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4381                         err = -ENOMEM;
4382                         break;
4383                 }
4384         } while (set->queue_depth);
4385
4386         if (!set->queue_depth || err) {
4387                 pr_err("blk-mq: failed to allocate request map\n");
4388                 return -ENOMEM;
4389         }
4390
4391         if (depth != set->queue_depth)
4392                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4393                                                 depth, set->queue_depth);
4394
4395         return 0;
4396 }
4397
4398 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4399 {
4400         /*
4401          * blk_mq_map_queues() and multiple .map_queues() implementations
4402          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4403          * number of hardware queues.
4404          */
4405         if (set->nr_maps == 1)
4406                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4407
4408         if (set->ops->map_queues && !is_kdump_kernel()) {
4409                 int i;
4410
4411                 /*
4412                  * transport .map_queues is usually done in the following
4413                  * way:
4414                  *
4415                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4416                  *      mask = get_cpu_mask(queue)
4417                  *      for_each_cpu(cpu, mask)
4418                  *              set->map[x].mq_map[cpu] = queue;
4419                  * }
4420                  *
4421                  * When we need to remap, the table has to be cleared for
4422                  * killing stale mapping since one CPU may not be mapped
4423                  * to any hw queue.
4424                  */
4425                 for (i = 0; i < set->nr_maps; i++)
4426                         blk_mq_clear_mq_map(&set->map[i]);
4427
4428                 set->ops->map_queues(set);
4429         } else {
4430                 BUG_ON(set->nr_maps > 1);
4431                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4432         }
4433 }
4434
4435 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4436                                        int new_nr_hw_queues)
4437 {
4438         struct blk_mq_tags **new_tags;
4439         int i;
4440
4441         if (set->nr_hw_queues >= new_nr_hw_queues)
4442                 goto done;
4443
4444         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4445                                 GFP_KERNEL, set->numa_node);
4446         if (!new_tags)
4447                 return -ENOMEM;
4448
4449         if (set->tags)
4450                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4451                        sizeof(*set->tags));
4452         kfree(set->tags);
4453         set->tags = new_tags;
4454
4455         for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4456                 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4457                         while (--i >= set->nr_hw_queues)
4458                                 __blk_mq_free_map_and_rqs(set, i);
4459                         return -ENOMEM;
4460                 }
4461                 cond_resched();
4462         }
4463
4464 done:
4465         set->nr_hw_queues = new_nr_hw_queues;
4466         return 0;
4467 }
4468
4469 /*
4470  * Alloc a tag set to be associated with one or more request queues.
4471  * May fail with EINVAL for various error conditions. May adjust the
4472  * requested depth down, if it's too large. In that case, the set
4473  * value will be stored in set->queue_depth.
4474  */
4475 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4476 {
4477         int i, ret;
4478
4479         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4480
4481         if (!set->nr_hw_queues)
4482                 return -EINVAL;
4483         if (!set->queue_depth)
4484                 return -EINVAL;
4485         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4486                 return -EINVAL;
4487
4488         if (!set->ops->queue_rq)
4489                 return -EINVAL;
4490
4491         if (!set->ops->get_budget ^ !set->ops->put_budget)
4492                 return -EINVAL;
4493
4494         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4495                 pr_info("blk-mq: reduced tag depth to %u\n",
4496                         BLK_MQ_MAX_DEPTH);
4497                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4498         }
4499
4500         if (!set->nr_maps)
4501                 set->nr_maps = 1;
4502         else if (set->nr_maps > HCTX_MAX_TYPES)
4503                 return -EINVAL;
4504
4505         /*
4506          * If a crashdump is active, then we are potentially in a very
4507          * memory constrained environment. Limit us to 1 queue and
4508          * 64 tags to prevent using too much memory.
4509          */
4510         if (is_kdump_kernel()) {
4511                 set->nr_hw_queues = 1;
4512                 set->nr_maps = 1;
4513                 set->queue_depth = min(64U, set->queue_depth);
4514         }
4515         /*
4516          * There is no use for more h/w queues than cpus if we just have
4517          * a single map
4518          */
4519         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4520                 set->nr_hw_queues = nr_cpu_ids;
4521
4522         if (set->flags & BLK_MQ_F_BLOCKING) {
4523                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4524                 if (!set->srcu)
4525                         return -ENOMEM;
4526                 ret = init_srcu_struct(set->srcu);
4527                 if (ret)
4528                         goto out_free_srcu;
4529         }
4530
4531         ret = -ENOMEM;
4532         set->tags = kcalloc_node(set->nr_hw_queues,
4533                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4534                                  set->numa_node);
4535         if (!set->tags)
4536                 goto out_cleanup_srcu;
4537
4538         for (i = 0; i < set->nr_maps; i++) {
4539                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4540                                                   sizeof(set->map[i].mq_map[0]),
4541                                                   GFP_KERNEL, set->numa_node);
4542                 if (!set->map[i].mq_map)
4543                         goto out_free_mq_map;
4544                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4545         }
4546
4547         blk_mq_update_queue_map(set);
4548
4549         ret = blk_mq_alloc_set_map_and_rqs(set);
4550         if (ret)
4551                 goto out_free_mq_map;
4552
4553         mutex_init(&set->tag_list_lock);
4554         INIT_LIST_HEAD(&set->tag_list);
4555
4556         return 0;
4557
4558 out_free_mq_map:
4559         for (i = 0; i < set->nr_maps; i++) {
4560                 kfree(set->map[i].mq_map);
4561                 set->map[i].mq_map = NULL;
4562         }
4563         kfree(set->tags);
4564         set->tags = NULL;
4565 out_cleanup_srcu:
4566         if (set->flags & BLK_MQ_F_BLOCKING)
4567                 cleanup_srcu_struct(set->srcu);
4568 out_free_srcu:
4569         if (set->flags & BLK_MQ_F_BLOCKING)
4570                 kfree(set->srcu);
4571         return ret;
4572 }
4573 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4574
4575 /* allocate and initialize a tagset for a simple single-queue device */
4576 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4577                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4578                 unsigned int set_flags)
4579 {
4580         memset(set, 0, sizeof(*set));
4581         set->ops = ops;
4582         set->nr_hw_queues = 1;
4583         set->nr_maps = 1;
4584         set->queue_depth = queue_depth;
4585         set->numa_node = NUMA_NO_NODE;
4586         set->flags = set_flags;
4587         return blk_mq_alloc_tag_set(set);
4588 }
4589 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4590
4591 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4592 {
4593         int i, j;
4594
4595         for (i = 0; i < set->nr_hw_queues; i++)
4596                 __blk_mq_free_map_and_rqs(set, i);
4597
4598         if (blk_mq_is_shared_tags(set->flags)) {
4599                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4600                                         BLK_MQ_NO_HCTX_IDX);
4601         }
4602
4603         for (j = 0; j < set->nr_maps; j++) {
4604                 kfree(set->map[j].mq_map);
4605                 set->map[j].mq_map = NULL;
4606         }
4607
4608         kfree(set->tags);
4609         set->tags = NULL;
4610         if (set->flags & BLK_MQ_F_BLOCKING) {
4611                 cleanup_srcu_struct(set->srcu);
4612                 kfree(set->srcu);
4613         }
4614 }
4615 EXPORT_SYMBOL(blk_mq_free_tag_set);
4616
4617 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4618 {
4619         struct blk_mq_tag_set *set = q->tag_set;
4620         struct blk_mq_hw_ctx *hctx;
4621         int ret;
4622         unsigned long i;
4623
4624         if (!set)
4625                 return -EINVAL;
4626
4627         if (q->nr_requests == nr)
4628                 return 0;
4629
4630         blk_mq_freeze_queue(q);
4631         blk_mq_quiesce_queue(q);
4632
4633         ret = 0;
4634         queue_for_each_hw_ctx(q, hctx, i) {
4635                 if (!hctx->tags)
4636                         continue;
4637                 /*
4638                  * If we're using an MQ scheduler, just update the scheduler
4639                  * queue depth. This is similar to what the old code would do.
4640                  */
4641                 if (hctx->sched_tags) {
4642                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4643                                                       nr, true);
4644                 } else {
4645                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4646                                                       false);
4647                 }
4648                 if (ret)
4649                         break;
4650                 if (q->elevator && q->elevator->type->ops.depth_updated)
4651                         q->elevator->type->ops.depth_updated(hctx);
4652         }
4653         if (!ret) {
4654                 q->nr_requests = nr;
4655                 if (blk_mq_is_shared_tags(set->flags)) {
4656                         if (q->elevator)
4657                                 blk_mq_tag_update_sched_shared_tags(q);
4658                         else
4659                                 blk_mq_tag_resize_shared_tags(set, nr);
4660                 }
4661         }
4662
4663         blk_mq_unquiesce_queue(q);
4664         blk_mq_unfreeze_queue(q);
4665
4666         return ret;
4667 }
4668
4669 /*
4670  * request_queue and elevator_type pair.
4671  * It is just used by __blk_mq_update_nr_hw_queues to cache
4672  * the elevator_type associated with a request_queue.
4673  */
4674 struct blk_mq_qe_pair {
4675         struct list_head node;
4676         struct request_queue *q;
4677         struct elevator_type *type;
4678 };
4679
4680 /*
4681  * Cache the elevator_type in qe pair list and switch the
4682  * io scheduler to 'none'
4683  */
4684 static bool blk_mq_elv_switch_none(struct list_head *head,
4685                 struct request_queue *q)
4686 {
4687         struct blk_mq_qe_pair *qe;
4688
4689         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4690         if (!qe)
4691                 return false;
4692
4693         /* q->elevator needs protection from ->sysfs_lock */
4694         mutex_lock(&q->sysfs_lock);
4695
4696         /* the check has to be done with holding sysfs_lock */
4697         if (!q->elevator) {
4698                 kfree(qe);
4699                 goto unlock;
4700         }
4701
4702         INIT_LIST_HEAD(&qe->node);
4703         qe->q = q;
4704         qe->type = q->elevator->type;
4705         /* keep a reference to the elevator module as we'll switch back */
4706         __elevator_get(qe->type);
4707         list_add(&qe->node, head);
4708         elevator_disable(q);
4709 unlock:
4710         mutex_unlock(&q->sysfs_lock);
4711
4712         return true;
4713 }
4714
4715 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4716                                                 struct request_queue *q)
4717 {
4718         struct blk_mq_qe_pair *qe;
4719
4720         list_for_each_entry(qe, head, node)
4721                 if (qe->q == q)
4722                         return qe;
4723
4724         return NULL;
4725 }
4726
4727 static void blk_mq_elv_switch_back(struct list_head *head,
4728                                   struct request_queue *q)
4729 {
4730         struct blk_mq_qe_pair *qe;
4731         struct elevator_type *t;
4732
4733         qe = blk_lookup_qe_pair(head, q);
4734         if (!qe)
4735                 return;
4736         t = qe->type;
4737         list_del(&qe->node);
4738         kfree(qe);
4739
4740         mutex_lock(&q->sysfs_lock);
4741         elevator_switch(q, t);
4742         /* drop the reference acquired in blk_mq_elv_switch_none */
4743         elevator_put(t);
4744         mutex_unlock(&q->sysfs_lock);
4745 }
4746
4747 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4748                                                         int nr_hw_queues)
4749 {
4750         struct request_queue *q;
4751         LIST_HEAD(head);
4752         int prev_nr_hw_queues = set->nr_hw_queues;
4753         int i;
4754
4755         lockdep_assert_held(&set->tag_list_lock);
4756
4757         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4758                 nr_hw_queues = nr_cpu_ids;
4759         if (nr_hw_queues < 1)
4760                 return;
4761         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4762                 return;
4763
4764         list_for_each_entry(q, &set->tag_list, tag_set_list)
4765                 blk_mq_freeze_queue(q);
4766         /*
4767          * Switch IO scheduler to 'none', cleaning up the data associated
4768          * with the previous scheduler. We will switch back once we are done
4769          * updating the new sw to hw queue mappings.
4770          */
4771         list_for_each_entry(q, &set->tag_list, tag_set_list)
4772                 if (!blk_mq_elv_switch_none(&head, q))
4773                         goto switch_back;
4774
4775         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4776                 blk_mq_debugfs_unregister_hctxs(q);
4777                 blk_mq_sysfs_unregister_hctxs(q);
4778         }
4779
4780         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4781                 goto reregister;
4782
4783 fallback:
4784         blk_mq_update_queue_map(set);
4785         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4786                 blk_mq_realloc_hw_ctxs(set, q);
4787                 blk_mq_update_poll_flag(q);
4788                 if (q->nr_hw_queues != set->nr_hw_queues) {
4789                         int i = prev_nr_hw_queues;
4790
4791                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4792                                         nr_hw_queues, prev_nr_hw_queues);
4793                         for (; i < set->nr_hw_queues; i++)
4794                                 __blk_mq_free_map_and_rqs(set, i);
4795
4796                         set->nr_hw_queues = prev_nr_hw_queues;
4797                         goto fallback;
4798                 }
4799                 blk_mq_map_swqueue(q);
4800         }
4801
4802 reregister:
4803         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4804                 blk_mq_sysfs_register_hctxs(q);
4805                 blk_mq_debugfs_register_hctxs(q);
4806         }
4807
4808 switch_back:
4809         list_for_each_entry(q, &set->tag_list, tag_set_list)
4810                 blk_mq_elv_switch_back(&head, q);
4811
4812         list_for_each_entry(q, &set->tag_list, tag_set_list)
4813                 blk_mq_unfreeze_queue(q);
4814
4815         /* Free the excess tags when nr_hw_queues shrink. */
4816         for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4817                 __blk_mq_free_map_and_rqs(set, i);
4818 }
4819
4820 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4821 {
4822         mutex_lock(&set->tag_list_lock);
4823         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4824         mutex_unlock(&set->tag_list_lock);
4825 }
4826 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4827
4828 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4829                          struct io_comp_batch *iob, unsigned int flags)
4830 {
4831         long state = get_current_state();
4832         int ret;
4833
4834         do {
4835                 ret = q->mq_ops->poll(hctx, iob);
4836                 if (ret > 0) {
4837                         __set_current_state(TASK_RUNNING);
4838                         return ret;
4839                 }
4840
4841                 if (signal_pending_state(state, current))
4842                         __set_current_state(TASK_RUNNING);
4843                 if (task_is_running(current))
4844                         return 1;
4845
4846                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4847                         break;
4848                 cpu_relax();
4849         } while (!need_resched());
4850
4851         __set_current_state(TASK_RUNNING);
4852         return 0;
4853 }
4854
4855 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4856                 struct io_comp_batch *iob, unsigned int flags)
4857 {
4858         struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4859
4860         return blk_hctx_poll(q, hctx, iob, flags);
4861 }
4862
4863 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4864                 unsigned int poll_flags)
4865 {
4866         struct request_queue *q = rq->q;
4867         int ret;
4868
4869         if (!blk_rq_is_poll(rq))
4870                 return 0;
4871         if (!percpu_ref_tryget(&q->q_usage_counter))
4872                 return 0;
4873
4874         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4875         blk_queue_exit(q);
4876
4877         return ret;
4878 }
4879 EXPORT_SYMBOL_GPL(blk_rq_poll);
4880
4881 unsigned int blk_mq_rq_cpu(struct request *rq)
4882 {
4883         return rq->mq_ctx->cpu;
4884 }
4885 EXPORT_SYMBOL(blk_mq_rq_cpu);
4886
4887 void blk_mq_cancel_work_sync(struct request_queue *q)
4888 {
4889         struct blk_mq_hw_ctx *hctx;
4890         unsigned long i;
4891
4892         cancel_delayed_work_sync(&q->requeue_work);
4893
4894         queue_for_each_hw_ctx(q, hctx, i)
4895                 cancel_delayed_work_sync(&hctx->run_work);
4896 }
4897
4898 static int __init blk_mq_init(void)
4899 {
4900         int i;
4901
4902         for_each_possible_cpu(i)
4903                 init_llist_head(&per_cpu(blk_cpu_done, i));
4904         for_each_possible_cpu(i)
4905                 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4906                          __blk_mq_complete_request_remote, NULL);
4907         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4908
4909         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4910                                   "block/softirq:dead", NULL,
4911                                   blk_softirq_cpu_dead);
4912         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4913                                 blk_mq_hctx_notify_dead);
4914         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4915                                 blk_mq_hctx_notify_online,
4916                                 blk_mq_hctx_notify_offline);
4917         return 0;
4918 }
4919 subsys_initcall(blk_mq_init);