Merge remote-tracking branch 'stable/linux-5.15.y' into rpi-5.15.y
[platform/kernel/linux-rpi.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51         int ddir, sectors, bucket;
52
53         ddir = rq_data_dir(rq);
54         sectors = blk_rq_stats_sectors(rq);
55
56         bucket = ddir + 2 * ilog2(sectors);
57
58         if (bucket < 0)
59                 return -1;
60         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63         return bucket;
64 }
65
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72         return !list_empty_careful(&hctx->dispatch) ||
73                 sbitmap_any_bit_set(&hctx->ctx_map) ||
74                         blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81                                      struct blk_mq_ctx *ctx)
82 {
83         const int bit = ctx->index_hw[hctx->type];
84
85         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86                 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90                                       struct blk_mq_ctx *ctx)
91 {
92         const int bit = ctx->index_hw[hctx->type];
93
94         sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98         struct block_device *part;
99         unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103                                   struct request *rq, void *priv,
104                                   bool reserved)
105 {
106         struct mq_inflight *mi = priv;
107
108         if ((!mi->part->bd_partno || rq->part == mi->part) &&
109             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110                 mi->inflight[rq_data_dir(rq)]++;
111
112         return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116                 struct block_device *part)
117 {
118         struct mq_inflight mi = { .part = part };
119
120         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122         return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126                 unsigned int inflight[2])
127 {
128         struct mq_inflight mi = { .part = part };
129
130         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131         inflight[0] = mi.inflight[0];
132         inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137         mutex_lock(&q->mq_freeze_lock);
138         if (++q->mq_freeze_depth == 1) {
139                 percpu_ref_kill(&q->q_usage_counter);
140                 mutex_unlock(&q->mq_freeze_lock);
141                 if (queue_is_mq(q))
142                         blk_mq_run_hw_queues(q, false);
143         } else {
144                 mutex_unlock(&q->mq_freeze_lock);
145         }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156                                      unsigned long timeout)
157 {
158         return wait_event_timeout(q->mq_freeze_wq,
159                                         percpu_ref_is_zero(&q->q_usage_counter),
160                                         timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * In the !blk_mq case we are only calling this to kill the
172          * q_usage_counter, otherwise this increases the freeze depth
173          * and waits for it to return to zero.  For this reason there is
174          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175          * exported to drivers as the only user for unfreeze is blk_mq.
176          */
177         blk_freeze_queue_start(q);
178         blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183         /*
184          * ...just an alias to keep freeze and unfreeze actions balanced
185          * in the blk_mq_* namespace
186          */
187         blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
192 {
193         mutex_lock(&q->mq_freeze_lock);
194         if (force_atomic)
195                 q->q_usage_counter.data->force_atomic = true;
196         q->mq_freeze_depth--;
197         WARN_ON_ONCE(q->mq_freeze_depth < 0);
198         if (!q->mq_freeze_depth) {
199                 percpu_ref_resurrect(&q->q_usage_counter);
200                 wake_up_all(&q->mq_freeze_wq);
201         }
202         mutex_unlock(&q->mq_freeze_lock);
203 }
204
205 void blk_mq_unfreeze_queue(struct request_queue *q)
206 {
207         __blk_mq_unfreeze_queue(q, false);
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213  * mpt3sas driver such that this function can be removed.
214  */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220
221 /**
222  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223  * @q: request queue.
224  *
225  * Note: this function does not prevent that the struct request end_io()
226  * callback function is invoked. Once this function is returned, we make
227  * sure no dispatch can happen until the queue is unquiesced via
228  * blk_mq_unquiesce_queue().
229  */
230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232         struct blk_mq_hw_ctx *hctx;
233         unsigned int i;
234         bool rcu = false;
235
236         blk_mq_quiesce_queue_nowait(q);
237
238         queue_for_each_hw_ctx(q, hctx, i) {
239                 if (hctx->flags & BLK_MQ_F_BLOCKING)
240                         synchronize_srcu(hctx->srcu);
241                 else
242                         rcu = true;
243         }
244         if (rcu)
245                 synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248
249 /*
250  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251  * @q: request queue.
252  *
253  * This function recovers queue into the state before quiescing
254  * which is done by blk_mq_quiesce_queue.
255  */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259
260         /* dispatch requests which are inserted during quiescing */
261         blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264
265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267         struct blk_mq_hw_ctx *hctx;
268         unsigned int i;
269
270         queue_for_each_hw_ctx(q, hctx, i)
271                 if (blk_mq_hw_queue_mapped(hctx))
272                         blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274
275 /*
276  * Only need start/end time stamping if we have iostat or
277  * blk stats enabled, or using an IO scheduler.
278  */
279 static inline bool blk_mq_need_time_stamp(struct request *rq)
280 {
281         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
282 }
283
284 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
285                 unsigned int tag, u64 alloc_time_ns)
286 {
287         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
288         struct request *rq = tags->static_rqs[tag];
289
290         if (data->q->elevator) {
291                 rq->tag = BLK_MQ_NO_TAG;
292                 rq->internal_tag = tag;
293         } else {
294                 rq->tag = tag;
295                 rq->internal_tag = BLK_MQ_NO_TAG;
296         }
297
298         /* csd/requeue_work/fifo_time is initialized before use */
299         rq->q = data->q;
300         rq->mq_ctx = data->ctx;
301         rq->mq_hctx = data->hctx;
302         rq->rq_flags = 0;
303         rq->cmd_flags = data->cmd_flags;
304         if (data->flags & BLK_MQ_REQ_PM)
305                 rq->rq_flags |= RQF_PM;
306         if (blk_queue_io_stat(data->q))
307                 rq->rq_flags |= RQF_IO_STAT;
308         INIT_LIST_HEAD(&rq->queuelist);
309         INIT_HLIST_NODE(&rq->hash);
310         RB_CLEAR_NODE(&rq->rb_node);
311         rq->rq_disk = NULL;
312         rq->part = NULL;
313 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
314         rq->alloc_time_ns = alloc_time_ns;
315 #endif
316         if (blk_mq_need_time_stamp(rq))
317                 rq->start_time_ns = ktime_get_ns();
318         else
319                 rq->start_time_ns = 0;
320         rq->io_start_time_ns = 0;
321         rq->stats_sectors = 0;
322         rq->nr_phys_segments = 0;
323 #if defined(CONFIG_BLK_DEV_INTEGRITY)
324         rq->nr_integrity_segments = 0;
325 #endif
326         blk_crypto_rq_set_defaults(rq);
327         /* tag was already set */
328         WRITE_ONCE(rq->deadline, 0);
329
330         rq->timeout = 0;
331
332         rq->end_io = NULL;
333         rq->end_io_data = NULL;
334
335         data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
336         refcount_set(&rq->ref, 1);
337
338         if (!op_is_flush(data->cmd_flags)) {
339                 struct elevator_queue *e = data->q->elevator;
340
341                 rq->elv.icq = NULL;
342                 if (e && e->type->ops.prepare_request) {
343                         if (e->type->icq_cache)
344                                 blk_mq_sched_assign_ioc(rq);
345
346                         e->type->ops.prepare_request(rq);
347                         rq->rq_flags |= RQF_ELVPRIV;
348                 }
349         }
350
351         data->hctx->queued++;
352         return rq;
353 }
354
355 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
356 {
357         struct request_queue *q = data->q;
358         struct elevator_queue *e = q->elevator;
359         u64 alloc_time_ns = 0;
360         unsigned int tag;
361
362         /* alloc_time includes depth and tag waits */
363         if (blk_queue_rq_alloc_time(q))
364                 alloc_time_ns = ktime_get_ns();
365
366         if (data->cmd_flags & REQ_NOWAIT)
367                 data->flags |= BLK_MQ_REQ_NOWAIT;
368
369         if (e) {
370                 /*
371                  * Flush/passthrough requests are special and go directly to the
372                  * dispatch list. Don't include reserved tags in the
373                  * limiting, as it isn't useful.
374                  */
375                 if (!op_is_flush(data->cmd_flags) &&
376                     !blk_op_is_passthrough(data->cmd_flags) &&
377                     e->type->ops.limit_depth &&
378                     !(data->flags & BLK_MQ_REQ_RESERVED))
379                         e->type->ops.limit_depth(data->cmd_flags, data);
380         }
381
382 retry:
383         data->ctx = blk_mq_get_ctx(q);
384         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
385         if (!e)
386                 blk_mq_tag_busy(data->hctx);
387
388         /*
389          * Waiting allocations only fail because of an inactive hctx.  In that
390          * case just retry the hctx assignment and tag allocation as CPU hotplug
391          * should have migrated us to an online CPU by now.
392          */
393         tag = blk_mq_get_tag(data);
394         if (tag == BLK_MQ_NO_TAG) {
395                 if (data->flags & BLK_MQ_REQ_NOWAIT)
396                         return NULL;
397
398                 /*
399                  * Give up the CPU and sleep for a random short time to ensure
400                  * that thread using a realtime scheduling class are migrated
401                  * off the CPU, and thus off the hctx that is going away.
402                  */
403                 msleep(3);
404                 goto retry;
405         }
406         return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
407 }
408
409 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
410                 blk_mq_req_flags_t flags)
411 {
412         struct blk_mq_alloc_data data = {
413                 .q              = q,
414                 .flags          = flags,
415                 .cmd_flags      = op,
416         };
417         struct request *rq;
418         int ret;
419
420         ret = blk_queue_enter(q, flags);
421         if (ret)
422                 return ERR_PTR(ret);
423
424         rq = __blk_mq_alloc_request(&data);
425         if (!rq)
426                 goto out_queue_exit;
427         rq->__data_len = 0;
428         rq->__sector = (sector_t) -1;
429         rq->bio = rq->biotail = NULL;
430         return rq;
431 out_queue_exit:
432         blk_queue_exit(q);
433         return ERR_PTR(-EWOULDBLOCK);
434 }
435 EXPORT_SYMBOL(blk_mq_alloc_request);
436
437 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
438         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
439 {
440         struct blk_mq_alloc_data data = {
441                 .q              = q,
442                 .flags          = flags,
443                 .cmd_flags      = op,
444         };
445         u64 alloc_time_ns = 0;
446         unsigned int cpu;
447         unsigned int tag;
448         int ret;
449
450         /* alloc_time includes depth and tag waits */
451         if (blk_queue_rq_alloc_time(q))
452                 alloc_time_ns = ktime_get_ns();
453
454         /*
455          * If the tag allocator sleeps we could get an allocation for a
456          * different hardware context.  No need to complicate the low level
457          * allocator for this for the rare use case of a command tied to
458          * a specific queue.
459          */
460         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
461                 return ERR_PTR(-EINVAL);
462
463         if (hctx_idx >= q->nr_hw_queues)
464                 return ERR_PTR(-EIO);
465
466         ret = blk_queue_enter(q, flags);
467         if (ret)
468                 return ERR_PTR(ret);
469
470         /*
471          * Check if the hardware context is actually mapped to anything.
472          * If not tell the caller that it should skip this queue.
473          */
474         ret = -EXDEV;
475         data.hctx = q->queue_hw_ctx[hctx_idx];
476         if (!blk_mq_hw_queue_mapped(data.hctx))
477                 goto out_queue_exit;
478         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
479         if (cpu >= nr_cpu_ids)
480                 goto out_queue_exit;
481         data.ctx = __blk_mq_get_ctx(q, cpu);
482
483         if (!q->elevator)
484                 blk_mq_tag_busy(data.hctx);
485
486         ret = -EWOULDBLOCK;
487         tag = blk_mq_get_tag(&data);
488         if (tag == BLK_MQ_NO_TAG)
489                 goto out_queue_exit;
490         return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
491
492 out_queue_exit:
493         blk_queue_exit(q);
494         return ERR_PTR(ret);
495 }
496 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
497
498 static void __blk_mq_free_request(struct request *rq)
499 {
500         struct request_queue *q = rq->q;
501         struct blk_mq_ctx *ctx = rq->mq_ctx;
502         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
503         const int sched_tag = rq->internal_tag;
504
505         blk_crypto_free_request(rq);
506         blk_pm_mark_last_busy(rq);
507         rq->mq_hctx = NULL;
508         if (rq->tag != BLK_MQ_NO_TAG)
509                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
510         if (sched_tag != BLK_MQ_NO_TAG)
511                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
512         blk_mq_sched_restart(hctx);
513         blk_queue_exit(q);
514 }
515
516 void blk_mq_free_request(struct request *rq)
517 {
518         struct request_queue *q = rq->q;
519         struct elevator_queue *e = q->elevator;
520         struct blk_mq_ctx *ctx = rq->mq_ctx;
521         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
522
523         if (rq->rq_flags & RQF_ELVPRIV) {
524                 if (e && e->type->ops.finish_request)
525                         e->type->ops.finish_request(rq);
526                 if (rq->elv.icq) {
527                         put_io_context(rq->elv.icq->ioc);
528                         rq->elv.icq = NULL;
529                 }
530         }
531
532         ctx->rq_completed[rq_is_sync(rq)]++;
533         if (rq->rq_flags & RQF_MQ_INFLIGHT)
534                 __blk_mq_dec_active_requests(hctx);
535
536         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
537                 laptop_io_completion(q->disk->bdi);
538
539         rq_qos_done(q, rq);
540
541         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
542         if (refcount_dec_and_test(&rq->ref))
543                 __blk_mq_free_request(rq);
544 }
545 EXPORT_SYMBOL_GPL(blk_mq_free_request);
546
547 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
548 {
549         u64 now = 0;
550
551         if (blk_mq_need_time_stamp(rq))
552                 now = ktime_get_ns();
553
554         if (rq->rq_flags & RQF_STATS) {
555                 blk_mq_poll_stats_start(rq->q);
556                 blk_stat_add(rq, now);
557         }
558
559         blk_mq_sched_completed_request(rq, now);
560
561         blk_account_io_done(rq, now);
562
563         if (rq->end_io) {
564                 rq_qos_done(rq->q, rq);
565                 rq->end_io(rq, error);
566         } else {
567                 blk_mq_free_request(rq);
568         }
569 }
570 EXPORT_SYMBOL(__blk_mq_end_request);
571
572 void blk_mq_end_request(struct request *rq, blk_status_t error)
573 {
574         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
575                 BUG();
576         __blk_mq_end_request(rq, error);
577 }
578 EXPORT_SYMBOL(blk_mq_end_request);
579
580 static void blk_complete_reqs(struct llist_head *list)
581 {
582         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
583         struct request *rq, *next;
584
585         llist_for_each_entry_safe(rq, next, entry, ipi_list)
586                 rq->q->mq_ops->complete(rq);
587 }
588
589 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
590 {
591         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
592 }
593
594 static int blk_softirq_cpu_dead(unsigned int cpu)
595 {
596         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
597         return 0;
598 }
599
600 static void __blk_mq_complete_request_remote(void *data)
601 {
602         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
603 }
604
605 static inline bool blk_mq_complete_need_ipi(struct request *rq)
606 {
607         int cpu = raw_smp_processor_id();
608
609         if (!IS_ENABLED(CONFIG_SMP) ||
610             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
611                 return false;
612         /*
613          * With force threaded interrupts enabled, raising softirq from an SMP
614          * function call will always result in waking the ksoftirqd thread.
615          * This is probably worse than completing the request on a different
616          * cache domain.
617          */
618         if (force_irqthreads())
619                 return false;
620
621         /* same CPU or cache domain?  Complete locally */
622         if (cpu == rq->mq_ctx->cpu ||
623             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
624              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
625                 return false;
626
627         /* don't try to IPI to an offline CPU */
628         return cpu_online(rq->mq_ctx->cpu);
629 }
630
631 static void blk_mq_complete_send_ipi(struct request *rq)
632 {
633         struct llist_head *list;
634         unsigned int cpu;
635
636         cpu = rq->mq_ctx->cpu;
637         list = &per_cpu(blk_cpu_done, cpu);
638         if (llist_add(&rq->ipi_list, list)) {
639                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
640                 smp_call_function_single_async(cpu, &rq->csd);
641         }
642 }
643
644 static void blk_mq_raise_softirq(struct request *rq)
645 {
646         struct llist_head *list;
647
648         preempt_disable();
649         list = this_cpu_ptr(&blk_cpu_done);
650         if (llist_add(&rq->ipi_list, list))
651                 raise_softirq(BLOCK_SOFTIRQ);
652         preempt_enable();
653 }
654
655 bool blk_mq_complete_request_remote(struct request *rq)
656 {
657         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
658
659         /*
660          * For a polled request, always complete locallly, it's pointless
661          * to redirect the completion.
662          */
663         if (rq->cmd_flags & REQ_HIPRI)
664                 return false;
665
666         if (blk_mq_complete_need_ipi(rq)) {
667                 blk_mq_complete_send_ipi(rq);
668                 return true;
669         }
670
671         if (rq->q->nr_hw_queues == 1) {
672                 blk_mq_raise_softirq(rq);
673                 return true;
674         }
675         return false;
676 }
677 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
678
679 /**
680  * blk_mq_complete_request - end I/O on a request
681  * @rq:         the request being processed
682  *
683  * Description:
684  *      Complete a request by scheduling the ->complete_rq operation.
685  **/
686 void blk_mq_complete_request(struct request *rq)
687 {
688         if (!blk_mq_complete_request_remote(rq))
689                 rq->q->mq_ops->complete(rq);
690 }
691 EXPORT_SYMBOL(blk_mq_complete_request);
692
693 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
694         __releases(hctx->srcu)
695 {
696         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
697                 rcu_read_unlock();
698         else
699                 srcu_read_unlock(hctx->srcu, srcu_idx);
700 }
701
702 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
703         __acquires(hctx->srcu)
704 {
705         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
706                 /* shut up gcc false positive */
707                 *srcu_idx = 0;
708                 rcu_read_lock();
709         } else
710                 *srcu_idx = srcu_read_lock(hctx->srcu);
711 }
712
713 /**
714  * blk_mq_start_request - Start processing a request
715  * @rq: Pointer to request to be started
716  *
717  * Function used by device drivers to notify the block layer that a request
718  * is going to be processed now, so blk layer can do proper initializations
719  * such as starting the timeout timer.
720  */
721 void blk_mq_start_request(struct request *rq)
722 {
723         struct request_queue *q = rq->q;
724
725         trace_block_rq_issue(rq);
726
727         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
728                 rq->io_start_time_ns = ktime_get_ns();
729                 rq->stats_sectors = blk_rq_sectors(rq);
730                 rq->rq_flags |= RQF_STATS;
731                 rq_qos_issue(q, rq);
732         }
733
734         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
735
736         blk_add_timer(rq);
737         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
738
739 #ifdef CONFIG_BLK_DEV_INTEGRITY
740         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
741                 q->integrity.profile->prepare_fn(rq);
742 #endif
743 }
744 EXPORT_SYMBOL(blk_mq_start_request);
745
746 static void __blk_mq_requeue_request(struct request *rq)
747 {
748         struct request_queue *q = rq->q;
749
750         blk_mq_put_driver_tag(rq);
751
752         trace_block_rq_requeue(rq);
753         rq_qos_requeue(q, rq);
754
755         if (blk_mq_request_started(rq)) {
756                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
757                 rq->rq_flags &= ~RQF_TIMED_OUT;
758         }
759 }
760
761 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
762 {
763         __blk_mq_requeue_request(rq);
764
765         /* this request will be re-inserted to io scheduler queue */
766         blk_mq_sched_requeue_request(rq);
767
768         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
769 }
770 EXPORT_SYMBOL(blk_mq_requeue_request);
771
772 static void blk_mq_requeue_work(struct work_struct *work)
773 {
774         struct request_queue *q =
775                 container_of(work, struct request_queue, requeue_work.work);
776         LIST_HEAD(rq_list);
777         struct request *rq, *next;
778
779         spin_lock_irq(&q->requeue_lock);
780         list_splice_init(&q->requeue_list, &rq_list);
781         spin_unlock_irq(&q->requeue_lock);
782
783         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
784                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
785                         continue;
786
787                 rq->rq_flags &= ~RQF_SOFTBARRIER;
788                 list_del_init(&rq->queuelist);
789                 /*
790                  * If RQF_DONTPREP, rq has contained some driver specific
791                  * data, so insert it to hctx dispatch list to avoid any
792                  * merge.
793                  */
794                 if (rq->rq_flags & RQF_DONTPREP)
795                         blk_mq_request_bypass_insert(rq, false, false);
796                 else
797                         blk_mq_sched_insert_request(rq, true, false, false);
798         }
799
800         while (!list_empty(&rq_list)) {
801                 rq = list_entry(rq_list.next, struct request, queuelist);
802                 list_del_init(&rq->queuelist);
803                 blk_mq_sched_insert_request(rq, false, false, false);
804         }
805
806         blk_mq_run_hw_queues(q, false);
807 }
808
809 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
810                                 bool kick_requeue_list)
811 {
812         struct request_queue *q = rq->q;
813         unsigned long flags;
814
815         /*
816          * We abuse this flag that is otherwise used by the I/O scheduler to
817          * request head insertion from the workqueue.
818          */
819         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
820
821         spin_lock_irqsave(&q->requeue_lock, flags);
822         if (at_head) {
823                 rq->rq_flags |= RQF_SOFTBARRIER;
824                 list_add(&rq->queuelist, &q->requeue_list);
825         } else {
826                 list_add_tail(&rq->queuelist, &q->requeue_list);
827         }
828         spin_unlock_irqrestore(&q->requeue_lock, flags);
829
830         if (kick_requeue_list)
831                 blk_mq_kick_requeue_list(q);
832 }
833
834 void blk_mq_kick_requeue_list(struct request_queue *q)
835 {
836         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
837 }
838 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
839
840 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
841                                     unsigned long msecs)
842 {
843         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
844                                     msecs_to_jiffies(msecs));
845 }
846 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
847
848 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
849 {
850         if (tag < tags->nr_tags) {
851                 prefetch(tags->rqs[tag]);
852                 return tags->rqs[tag];
853         }
854
855         return NULL;
856 }
857 EXPORT_SYMBOL(blk_mq_tag_to_rq);
858
859 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
860                                void *priv, bool reserved)
861 {
862         /*
863          * If we find a request that isn't idle and the queue matches,
864          * we know the queue is busy. Return false to stop the iteration.
865          */
866         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
867                 bool *busy = priv;
868
869                 *busy = true;
870                 return false;
871         }
872
873         return true;
874 }
875
876 bool blk_mq_queue_inflight(struct request_queue *q)
877 {
878         bool busy = false;
879
880         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
881         return busy;
882 }
883 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
884
885 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
886 {
887         req->rq_flags |= RQF_TIMED_OUT;
888         if (req->q->mq_ops->timeout) {
889                 enum blk_eh_timer_return ret;
890
891                 ret = req->q->mq_ops->timeout(req, reserved);
892                 if (ret == BLK_EH_DONE)
893                         return;
894                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
895         }
896
897         blk_add_timer(req);
898 }
899
900 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
901 {
902         unsigned long deadline;
903
904         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
905                 return false;
906         if (rq->rq_flags & RQF_TIMED_OUT)
907                 return false;
908
909         deadline = READ_ONCE(rq->deadline);
910         if (time_after_eq(jiffies, deadline))
911                 return true;
912
913         if (*next == 0)
914                 *next = deadline;
915         else if (time_after(*next, deadline))
916                 *next = deadline;
917         return false;
918 }
919
920 void blk_mq_put_rq_ref(struct request *rq)
921 {
922         if (is_flush_rq(rq))
923                 rq->end_io(rq, 0);
924         else if (refcount_dec_and_test(&rq->ref))
925                 __blk_mq_free_request(rq);
926 }
927
928 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
929                 struct request *rq, void *priv, bool reserved)
930 {
931         unsigned long *next = priv;
932
933         /*
934          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
935          * be reallocated underneath the timeout handler's processing, then
936          * the expire check is reliable. If the request is not expired, then
937          * it was completed and reallocated as a new request after returning
938          * from blk_mq_check_expired().
939          */
940         if (blk_mq_req_expired(rq, next))
941                 blk_mq_rq_timed_out(rq, reserved);
942         return true;
943 }
944
945 static void blk_mq_timeout_work(struct work_struct *work)
946 {
947         struct request_queue *q =
948                 container_of(work, struct request_queue, timeout_work);
949         unsigned long next = 0;
950         struct blk_mq_hw_ctx *hctx;
951         int i;
952
953         /* A deadlock might occur if a request is stuck requiring a
954          * timeout at the same time a queue freeze is waiting
955          * completion, since the timeout code would not be able to
956          * acquire the queue reference here.
957          *
958          * That's why we don't use blk_queue_enter here; instead, we use
959          * percpu_ref_tryget directly, because we need to be able to
960          * obtain a reference even in the short window between the queue
961          * starting to freeze, by dropping the first reference in
962          * blk_freeze_queue_start, and the moment the last request is
963          * consumed, marked by the instant q_usage_counter reaches
964          * zero.
965          */
966         if (!percpu_ref_tryget(&q->q_usage_counter))
967                 return;
968
969         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
970
971         if (next != 0) {
972                 mod_timer(&q->timeout, next);
973         } else {
974                 /*
975                  * Request timeouts are handled as a forward rolling timer. If
976                  * we end up here it means that no requests are pending and
977                  * also that no request has been pending for a while. Mark
978                  * each hctx as idle.
979                  */
980                 queue_for_each_hw_ctx(q, hctx, i) {
981                         /* the hctx may be unmapped, so check it here */
982                         if (blk_mq_hw_queue_mapped(hctx))
983                                 blk_mq_tag_idle(hctx);
984                 }
985         }
986         blk_queue_exit(q);
987 }
988
989 struct flush_busy_ctx_data {
990         struct blk_mq_hw_ctx *hctx;
991         struct list_head *list;
992 };
993
994 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
995 {
996         struct flush_busy_ctx_data *flush_data = data;
997         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
998         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
999         enum hctx_type type = hctx->type;
1000
1001         spin_lock(&ctx->lock);
1002         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1003         sbitmap_clear_bit(sb, bitnr);
1004         spin_unlock(&ctx->lock);
1005         return true;
1006 }
1007
1008 /*
1009  * Process software queues that have been marked busy, splicing them
1010  * to the for-dispatch
1011  */
1012 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1013 {
1014         struct flush_busy_ctx_data data = {
1015                 .hctx = hctx,
1016                 .list = list,
1017         };
1018
1019         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1020 }
1021 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1022
1023 struct dispatch_rq_data {
1024         struct blk_mq_hw_ctx *hctx;
1025         struct request *rq;
1026 };
1027
1028 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1029                 void *data)
1030 {
1031         struct dispatch_rq_data *dispatch_data = data;
1032         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1033         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1034         enum hctx_type type = hctx->type;
1035
1036         spin_lock(&ctx->lock);
1037         if (!list_empty(&ctx->rq_lists[type])) {
1038                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1039                 list_del_init(&dispatch_data->rq->queuelist);
1040                 if (list_empty(&ctx->rq_lists[type]))
1041                         sbitmap_clear_bit(sb, bitnr);
1042         }
1043         spin_unlock(&ctx->lock);
1044
1045         return !dispatch_data->rq;
1046 }
1047
1048 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1049                                         struct blk_mq_ctx *start)
1050 {
1051         unsigned off = start ? start->index_hw[hctx->type] : 0;
1052         struct dispatch_rq_data data = {
1053                 .hctx = hctx,
1054                 .rq   = NULL,
1055         };
1056
1057         __sbitmap_for_each_set(&hctx->ctx_map, off,
1058                                dispatch_rq_from_ctx, &data);
1059
1060         return data.rq;
1061 }
1062
1063 static inline unsigned int queued_to_index(unsigned int queued)
1064 {
1065         if (!queued)
1066                 return 0;
1067
1068         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1069 }
1070
1071 static bool __blk_mq_get_driver_tag(struct request *rq)
1072 {
1073         struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1074         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1075         int tag;
1076
1077         blk_mq_tag_busy(rq->mq_hctx);
1078
1079         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1080                 bt = rq->mq_hctx->tags->breserved_tags;
1081                 tag_offset = 0;
1082         } else {
1083                 if (!hctx_may_queue(rq->mq_hctx, bt))
1084                         return false;
1085         }
1086
1087         tag = __sbitmap_queue_get(bt);
1088         if (tag == BLK_MQ_NO_TAG)
1089                 return false;
1090
1091         rq->tag = tag + tag_offset;
1092         return true;
1093 }
1094
1095 bool blk_mq_get_driver_tag(struct request *rq)
1096 {
1097         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1098
1099         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1100                 return false;
1101
1102         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1103                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1104                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1105                 __blk_mq_inc_active_requests(hctx);
1106         }
1107         hctx->tags->rqs[rq->tag] = rq;
1108         return true;
1109 }
1110
1111 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1112                                 int flags, void *key)
1113 {
1114         struct blk_mq_hw_ctx *hctx;
1115
1116         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1117
1118         spin_lock(&hctx->dispatch_wait_lock);
1119         if (!list_empty(&wait->entry)) {
1120                 struct sbitmap_queue *sbq;
1121
1122                 list_del_init(&wait->entry);
1123                 sbq = hctx->tags->bitmap_tags;
1124                 atomic_dec(&sbq->ws_active);
1125         }
1126         spin_unlock(&hctx->dispatch_wait_lock);
1127
1128         blk_mq_run_hw_queue(hctx, true);
1129         return 1;
1130 }
1131
1132 /*
1133  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1134  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1135  * restart. For both cases, take care to check the condition again after
1136  * marking us as waiting.
1137  */
1138 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1139                                  struct request *rq)
1140 {
1141         struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1142         struct wait_queue_head *wq;
1143         wait_queue_entry_t *wait;
1144         bool ret;
1145
1146         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1147                 blk_mq_sched_mark_restart_hctx(hctx);
1148
1149                 /*
1150                  * It's possible that a tag was freed in the window between the
1151                  * allocation failure and adding the hardware queue to the wait
1152                  * queue.
1153                  *
1154                  * Don't clear RESTART here, someone else could have set it.
1155                  * At most this will cost an extra queue run.
1156                  */
1157                 return blk_mq_get_driver_tag(rq);
1158         }
1159
1160         wait = &hctx->dispatch_wait;
1161         if (!list_empty_careful(&wait->entry))
1162                 return false;
1163
1164         wq = &bt_wait_ptr(sbq, hctx)->wait;
1165
1166         spin_lock_irq(&wq->lock);
1167         spin_lock(&hctx->dispatch_wait_lock);
1168         if (!list_empty(&wait->entry)) {
1169                 spin_unlock(&hctx->dispatch_wait_lock);
1170                 spin_unlock_irq(&wq->lock);
1171                 return false;
1172         }
1173
1174         atomic_inc(&sbq->ws_active);
1175         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1176         __add_wait_queue(wq, wait);
1177
1178         /*
1179          * It's possible that a tag was freed in the window between the
1180          * allocation failure and adding the hardware queue to the wait
1181          * queue.
1182          */
1183         ret = blk_mq_get_driver_tag(rq);
1184         if (!ret) {
1185                 spin_unlock(&hctx->dispatch_wait_lock);
1186                 spin_unlock_irq(&wq->lock);
1187                 return false;
1188         }
1189
1190         /*
1191          * We got a tag, remove ourselves from the wait queue to ensure
1192          * someone else gets the wakeup.
1193          */
1194         list_del_init(&wait->entry);
1195         atomic_dec(&sbq->ws_active);
1196         spin_unlock(&hctx->dispatch_wait_lock);
1197         spin_unlock_irq(&wq->lock);
1198
1199         return true;
1200 }
1201
1202 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1203 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1204 /*
1205  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1206  * - EWMA is one simple way to compute running average value
1207  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1208  * - take 4 as factor for avoiding to get too small(0) result, and this
1209  *   factor doesn't matter because EWMA decreases exponentially
1210  */
1211 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1212 {
1213         unsigned int ewma;
1214
1215         ewma = hctx->dispatch_busy;
1216
1217         if (!ewma && !busy)
1218                 return;
1219
1220         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1221         if (busy)
1222                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1223         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1224
1225         hctx->dispatch_busy = ewma;
1226 }
1227
1228 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1229
1230 static void blk_mq_handle_dev_resource(struct request *rq,
1231                                        struct list_head *list)
1232 {
1233         struct request *next =
1234                 list_first_entry_or_null(list, struct request, queuelist);
1235
1236         /*
1237          * If an I/O scheduler has been configured and we got a driver tag for
1238          * the next request already, free it.
1239          */
1240         if (next)
1241                 blk_mq_put_driver_tag(next);
1242
1243         list_add(&rq->queuelist, list);
1244         __blk_mq_requeue_request(rq);
1245 }
1246
1247 static void blk_mq_handle_zone_resource(struct request *rq,
1248                                         struct list_head *zone_list)
1249 {
1250         /*
1251          * If we end up here it is because we cannot dispatch a request to a
1252          * specific zone due to LLD level zone-write locking or other zone
1253          * related resource not being available. In this case, set the request
1254          * aside in zone_list for retrying it later.
1255          */
1256         list_add(&rq->queuelist, zone_list);
1257         __blk_mq_requeue_request(rq);
1258 }
1259
1260 enum prep_dispatch {
1261         PREP_DISPATCH_OK,
1262         PREP_DISPATCH_NO_TAG,
1263         PREP_DISPATCH_NO_BUDGET,
1264 };
1265
1266 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1267                                                   bool need_budget)
1268 {
1269         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1270         int budget_token = -1;
1271
1272         if (need_budget) {
1273                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1274                 if (budget_token < 0) {
1275                         blk_mq_put_driver_tag(rq);
1276                         return PREP_DISPATCH_NO_BUDGET;
1277                 }
1278                 blk_mq_set_rq_budget_token(rq, budget_token);
1279         }
1280
1281         if (!blk_mq_get_driver_tag(rq)) {
1282                 /*
1283                  * The initial allocation attempt failed, so we need to
1284                  * rerun the hardware queue when a tag is freed. The
1285                  * waitqueue takes care of that. If the queue is run
1286                  * before we add this entry back on the dispatch list,
1287                  * we'll re-run it below.
1288                  */
1289                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1290                         /*
1291                          * All budgets not got from this function will be put
1292                          * together during handling partial dispatch
1293                          */
1294                         if (need_budget)
1295                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1296                         return PREP_DISPATCH_NO_TAG;
1297                 }
1298         }
1299
1300         return PREP_DISPATCH_OK;
1301 }
1302
1303 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1304 static void blk_mq_release_budgets(struct request_queue *q,
1305                 struct list_head *list)
1306 {
1307         struct request *rq;
1308
1309         list_for_each_entry(rq, list, queuelist) {
1310                 int budget_token = blk_mq_get_rq_budget_token(rq);
1311
1312                 if (budget_token >= 0)
1313                         blk_mq_put_dispatch_budget(q, budget_token);
1314         }
1315 }
1316
1317 /*
1318  * Returns true if we did some work AND can potentially do more.
1319  */
1320 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1321                              unsigned int nr_budgets)
1322 {
1323         enum prep_dispatch prep;
1324         struct request_queue *q = hctx->queue;
1325         struct request *rq, *nxt;
1326         int errors, queued;
1327         blk_status_t ret = BLK_STS_OK;
1328         LIST_HEAD(zone_list);
1329         bool needs_resource = false;
1330
1331         if (list_empty(list))
1332                 return false;
1333
1334         /*
1335          * Now process all the entries, sending them to the driver.
1336          */
1337         errors = queued = 0;
1338         do {
1339                 struct blk_mq_queue_data bd;
1340
1341                 rq = list_first_entry(list, struct request, queuelist);
1342
1343                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1344                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1345                 if (prep != PREP_DISPATCH_OK)
1346                         break;
1347
1348                 list_del_init(&rq->queuelist);
1349
1350                 bd.rq = rq;
1351
1352                 /*
1353                  * Flag last if we have no more requests, or if we have more
1354                  * but can't assign a driver tag to it.
1355                  */
1356                 if (list_empty(list))
1357                         bd.last = true;
1358                 else {
1359                         nxt = list_first_entry(list, struct request, queuelist);
1360                         bd.last = !blk_mq_get_driver_tag(nxt);
1361                 }
1362
1363                 /*
1364                  * once the request is queued to lld, no need to cover the
1365                  * budget any more
1366                  */
1367                 if (nr_budgets)
1368                         nr_budgets--;
1369                 ret = q->mq_ops->queue_rq(hctx, &bd);
1370                 switch (ret) {
1371                 case BLK_STS_OK:
1372                         queued++;
1373                         break;
1374                 case BLK_STS_RESOURCE:
1375                         needs_resource = true;
1376                         fallthrough;
1377                 case BLK_STS_DEV_RESOURCE:
1378                         blk_mq_handle_dev_resource(rq, list);
1379                         goto out;
1380                 case BLK_STS_ZONE_RESOURCE:
1381                         /*
1382                          * Move the request to zone_list and keep going through
1383                          * the dispatch list to find more requests the drive can
1384                          * accept.
1385                          */
1386                         blk_mq_handle_zone_resource(rq, &zone_list);
1387                         needs_resource = true;
1388                         break;
1389                 default:
1390                         errors++;
1391                         blk_mq_end_request(rq, ret);
1392                 }
1393         } while (!list_empty(list));
1394 out:
1395         if (!list_empty(&zone_list))
1396                 list_splice_tail_init(&zone_list, list);
1397
1398         hctx->dispatched[queued_to_index(queued)]++;
1399
1400         /* If we didn't flush the entire list, we could have told the driver
1401          * there was more coming, but that turned out to be a lie.
1402          */
1403         if ((!list_empty(list) || errors || needs_resource ||
1404              ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
1405                 q->mq_ops->commit_rqs(hctx);
1406         /*
1407          * Any items that need requeuing? Stuff them into hctx->dispatch,
1408          * that is where we will continue on next queue run.
1409          */
1410         if (!list_empty(list)) {
1411                 bool needs_restart;
1412                 /* For non-shared tags, the RESTART check will suffice */
1413                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1414                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1415
1416                 if (nr_budgets)
1417                         blk_mq_release_budgets(q, list);
1418
1419                 spin_lock(&hctx->lock);
1420                 list_splice_tail_init(list, &hctx->dispatch);
1421                 spin_unlock(&hctx->lock);
1422
1423                 /*
1424                  * Order adding requests to hctx->dispatch and checking
1425                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1426                  * in blk_mq_sched_restart(). Avoid restart code path to
1427                  * miss the new added requests to hctx->dispatch, meantime
1428                  * SCHED_RESTART is observed here.
1429                  */
1430                 smp_mb();
1431
1432                 /*
1433                  * If SCHED_RESTART was set by the caller of this function and
1434                  * it is no longer set that means that it was cleared by another
1435                  * thread and hence that a queue rerun is needed.
1436                  *
1437                  * If 'no_tag' is set, that means that we failed getting
1438                  * a driver tag with an I/O scheduler attached. If our dispatch
1439                  * waitqueue is no longer active, ensure that we run the queue
1440                  * AFTER adding our entries back to the list.
1441                  *
1442                  * If no I/O scheduler has been configured it is possible that
1443                  * the hardware queue got stopped and restarted before requests
1444                  * were pushed back onto the dispatch list. Rerun the queue to
1445                  * avoid starvation. Notes:
1446                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1447                  *   been stopped before rerunning a queue.
1448                  * - Some but not all block drivers stop a queue before
1449                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1450                  *   and dm-rq.
1451                  *
1452                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1453                  * bit is set, run queue after a delay to avoid IO stalls
1454                  * that could otherwise occur if the queue is idle.  We'll do
1455                  * similar if we couldn't get budget or couldn't lock a zone
1456                  * and SCHED_RESTART is set.
1457                  */
1458                 needs_restart = blk_mq_sched_needs_restart(hctx);
1459                 if (prep == PREP_DISPATCH_NO_BUDGET)
1460                         needs_resource = true;
1461                 if (!needs_restart ||
1462                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1463                         blk_mq_run_hw_queue(hctx, true);
1464                 else if (needs_restart && needs_resource)
1465                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1466
1467                 blk_mq_update_dispatch_busy(hctx, true);
1468                 return false;
1469         } else
1470                 blk_mq_update_dispatch_busy(hctx, false);
1471
1472         return (queued + errors) != 0;
1473 }
1474
1475 /**
1476  * __blk_mq_run_hw_queue - Run a hardware queue.
1477  * @hctx: Pointer to the hardware queue to run.
1478  *
1479  * Send pending requests to the hardware.
1480  */
1481 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1482 {
1483         int srcu_idx;
1484
1485         /*
1486          * We can't run the queue inline with ints disabled. Ensure that
1487          * we catch bad users of this early.
1488          */
1489         WARN_ON_ONCE(in_interrupt());
1490
1491         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1492
1493         hctx_lock(hctx, &srcu_idx);
1494         blk_mq_sched_dispatch_requests(hctx);
1495         hctx_unlock(hctx, srcu_idx);
1496 }
1497
1498 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1499 {
1500         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1501
1502         if (cpu >= nr_cpu_ids)
1503                 cpu = cpumask_first(hctx->cpumask);
1504         return cpu;
1505 }
1506
1507 /*
1508  * It'd be great if the workqueue API had a way to pass
1509  * in a mask and had some smarts for more clever placement.
1510  * For now we just round-robin here, switching for every
1511  * BLK_MQ_CPU_WORK_BATCH queued items.
1512  */
1513 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1514 {
1515         bool tried = false;
1516         int next_cpu = hctx->next_cpu;
1517
1518         if (hctx->queue->nr_hw_queues == 1)
1519                 return WORK_CPU_UNBOUND;
1520
1521         if (--hctx->next_cpu_batch <= 0) {
1522 select_cpu:
1523                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1524                                 cpu_online_mask);
1525                 if (next_cpu >= nr_cpu_ids)
1526                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1527                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1528         }
1529
1530         /*
1531          * Do unbound schedule if we can't find a online CPU for this hctx,
1532          * and it should only happen in the path of handling CPU DEAD.
1533          */
1534         if (!cpu_online(next_cpu)) {
1535                 if (!tried) {
1536                         tried = true;
1537                         goto select_cpu;
1538                 }
1539
1540                 /*
1541                  * Make sure to re-select CPU next time once after CPUs
1542                  * in hctx->cpumask become online again.
1543                  */
1544                 hctx->next_cpu = next_cpu;
1545                 hctx->next_cpu_batch = 1;
1546                 return WORK_CPU_UNBOUND;
1547         }
1548
1549         hctx->next_cpu = next_cpu;
1550         return next_cpu;
1551 }
1552
1553 /**
1554  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1555  * @hctx: Pointer to the hardware queue to run.
1556  * @async: If we want to run the queue asynchronously.
1557  * @msecs: Milliseconds of delay to wait before running the queue.
1558  *
1559  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1560  * with a delay of @msecs.
1561  */
1562 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1563                                         unsigned long msecs)
1564 {
1565         if (unlikely(blk_mq_hctx_stopped(hctx)))
1566                 return;
1567
1568         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1569                 int cpu = get_cpu();
1570                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1571                         __blk_mq_run_hw_queue(hctx);
1572                         put_cpu();
1573                         return;
1574                 }
1575
1576                 put_cpu();
1577         }
1578
1579         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1580                                     msecs_to_jiffies(msecs));
1581 }
1582
1583 /**
1584  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1585  * @hctx: Pointer to the hardware queue to run.
1586  * @msecs: Milliseconds of delay to wait before running the queue.
1587  *
1588  * Run a hardware queue asynchronously with a delay of @msecs.
1589  */
1590 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1591 {
1592         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1593 }
1594 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1595
1596 /**
1597  * blk_mq_run_hw_queue - Start to run a hardware queue.
1598  * @hctx: Pointer to the hardware queue to run.
1599  * @async: If we want to run the queue asynchronously.
1600  *
1601  * Check if the request queue is not in a quiesced state and if there are
1602  * pending requests to be sent. If this is true, run the queue to send requests
1603  * to hardware.
1604  */
1605 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1606 {
1607         int srcu_idx;
1608         bool need_run;
1609
1610         /*
1611          * When queue is quiesced, we may be switching io scheduler, or
1612          * updating nr_hw_queues, or other things, and we can't run queue
1613          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1614          *
1615          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1616          * quiesced.
1617          */
1618         hctx_lock(hctx, &srcu_idx);
1619         need_run = !blk_queue_quiesced(hctx->queue) &&
1620                 blk_mq_hctx_has_pending(hctx);
1621         hctx_unlock(hctx, srcu_idx);
1622
1623         if (need_run)
1624                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1625 }
1626 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1627
1628 /*
1629  * Is the request queue handled by an IO scheduler that does not respect
1630  * hardware queues when dispatching?
1631  */
1632 static bool blk_mq_has_sqsched(struct request_queue *q)
1633 {
1634         struct elevator_queue *e = q->elevator;
1635
1636         if (e && e->type->ops.dispatch_request &&
1637             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1638                 return true;
1639         return false;
1640 }
1641
1642 /*
1643  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1644  * scheduler.
1645  */
1646 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1647 {
1648         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
1649         /*
1650          * If the IO scheduler does not respect hardware queues when
1651          * dispatching, we just don't bother with multiple HW queues and
1652          * dispatch from hctx for the current CPU since running multiple queues
1653          * just causes lock contention inside the scheduler and pointless cache
1654          * bouncing.
1655          */
1656         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, 0, ctx);
1657
1658         if (!blk_mq_hctx_stopped(hctx))
1659                 return hctx;
1660         return NULL;
1661 }
1662
1663 /**
1664  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1665  * @q: Pointer to the request queue to run.
1666  * @async: If we want to run the queue asynchronously.
1667  */
1668 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1669 {
1670         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1671         int i;
1672
1673         sq_hctx = NULL;
1674         if (blk_mq_has_sqsched(q))
1675                 sq_hctx = blk_mq_get_sq_hctx(q);
1676         queue_for_each_hw_ctx(q, hctx, i) {
1677                 if (blk_mq_hctx_stopped(hctx))
1678                         continue;
1679                 /*
1680                  * Dispatch from this hctx either if there's no hctx preferred
1681                  * by IO scheduler or if it has requests that bypass the
1682                  * scheduler.
1683                  */
1684                 if (!sq_hctx || sq_hctx == hctx ||
1685                     !list_empty_careful(&hctx->dispatch))
1686                         blk_mq_run_hw_queue(hctx, async);
1687         }
1688 }
1689 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1690
1691 /**
1692  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1693  * @q: Pointer to the request queue to run.
1694  * @msecs: Milliseconds of delay to wait before running the queues.
1695  */
1696 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1697 {
1698         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1699         int i;
1700
1701         sq_hctx = NULL;
1702         if (blk_mq_has_sqsched(q))
1703                 sq_hctx = blk_mq_get_sq_hctx(q);
1704         queue_for_each_hw_ctx(q, hctx, i) {
1705                 if (blk_mq_hctx_stopped(hctx))
1706                         continue;
1707                 /*
1708                  * Dispatch from this hctx either if there's no hctx preferred
1709                  * by IO scheduler or if it has requests that bypass the
1710                  * scheduler.
1711                  */
1712                 if (!sq_hctx || sq_hctx == hctx ||
1713                     !list_empty_careful(&hctx->dispatch))
1714                         blk_mq_delay_run_hw_queue(hctx, msecs);
1715         }
1716 }
1717 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1718
1719 /**
1720  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1721  * @q: request queue.
1722  *
1723  * The caller is responsible for serializing this function against
1724  * blk_mq_{start,stop}_hw_queue().
1725  */
1726 bool blk_mq_queue_stopped(struct request_queue *q)
1727 {
1728         struct blk_mq_hw_ctx *hctx;
1729         int i;
1730
1731         queue_for_each_hw_ctx(q, hctx, i)
1732                 if (blk_mq_hctx_stopped(hctx))
1733                         return true;
1734
1735         return false;
1736 }
1737 EXPORT_SYMBOL(blk_mq_queue_stopped);
1738
1739 /*
1740  * This function is often used for pausing .queue_rq() by driver when
1741  * there isn't enough resource or some conditions aren't satisfied, and
1742  * BLK_STS_RESOURCE is usually returned.
1743  *
1744  * We do not guarantee that dispatch can be drained or blocked
1745  * after blk_mq_stop_hw_queue() returns. Please use
1746  * blk_mq_quiesce_queue() for that requirement.
1747  */
1748 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1749 {
1750         cancel_delayed_work(&hctx->run_work);
1751
1752         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1753 }
1754 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1755
1756 /*
1757  * This function is often used for pausing .queue_rq() by driver when
1758  * there isn't enough resource or some conditions aren't satisfied, and
1759  * BLK_STS_RESOURCE is usually returned.
1760  *
1761  * We do not guarantee that dispatch can be drained or blocked
1762  * after blk_mq_stop_hw_queues() returns. Please use
1763  * blk_mq_quiesce_queue() for that requirement.
1764  */
1765 void blk_mq_stop_hw_queues(struct request_queue *q)
1766 {
1767         struct blk_mq_hw_ctx *hctx;
1768         int i;
1769
1770         queue_for_each_hw_ctx(q, hctx, i)
1771                 blk_mq_stop_hw_queue(hctx);
1772 }
1773 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1774
1775 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1776 {
1777         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1778
1779         blk_mq_run_hw_queue(hctx, false);
1780 }
1781 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1782
1783 void blk_mq_start_hw_queues(struct request_queue *q)
1784 {
1785         struct blk_mq_hw_ctx *hctx;
1786         int i;
1787
1788         queue_for_each_hw_ctx(q, hctx, i)
1789                 blk_mq_start_hw_queue(hctx);
1790 }
1791 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1792
1793 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1794 {
1795         if (!blk_mq_hctx_stopped(hctx))
1796                 return;
1797
1798         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1799         blk_mq_run_hw_queue(hctx, async);
1800 }
1801 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1802
1803 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1804 {
1805         struct blk_mq_hw_ctx *hctx;
1806         int i;
1807
1808         queue_for_each_hw_ctx(q, hctx, i)
1809                 blk_mq_start_stopped_hw_queue(hctx, async);
1810 }
1811 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1812
1813 static void blk_mq_run_work_fn(struct work_struct *work)
1814 {
1815         struct blk_mq_hw_ctx *hctx;
1816
1817         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1818
1819         /*
1820          * If we are stopped, don't run the queue.
1821          */
1822         if (blk_mq_hctx_stopped(hctx))
1823                 return;
1824
1825         __blk_mq_run_hw_queue(hctx);
1826 }
1827
1828 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1829                                             struct request *rq,
1830                                             bool at_head)
1831 {
1832         struct blk_mq_ctx *ctx = rq->mq_ctx;
1833         enum hctx_type type = hctx->type;
1834
1835         lockdep_assert_held(&ctx->lock);
1836
1837         trace_block_rq_insert(rq);
1838
1839         if (at_head)
1840                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1841         else
1842                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1843 }
1844
1845 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1846                              bool at_head)
1847 {
1848         struct blk_mq_ctx *ctx = rq->mq_ctx;
1849
1850         lockdep_assert_held(&ctx->lock);
1851
1852         __blk_mq_insert_req_list(hctx, rq, at_head);
1853         blk_mq_hctx_mark_pending(hctx, ctx);
1854 }
1855
1856 /**
1857  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1858  * @rq: Pointer to request to be inserted.
1859  * @at_head: true if the request should be inserted at the head of the list.
1860  * @run_queue: If we should run the hardware queue after inserting the request.
1861  *
1862  * Should only be used carefully, when the caller knows we want to
1863  * bypass a potential IO scheduler on the target device.
1864  */
1865 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1866                                   bool run_queue)
1867 {
1868         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1869
1870         spin_lock(&hctx->lock);
1871         if (at_head)
1872                 list_add(&rq->queuelist, &hctx->dispatch);
1873         else
1874                 list_add_tail(&rq->queuelist, &hctx->dispatch);
1875         spin_unlock(&hctx->lock);
1876
1877         if (run_queue)
1878                 blk_mq_run_hw_queue(hctx, false);
1879 }
1880
1881 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1882                             struct list_head *list)
1883
1884 {
1885         struct request *rq;
1886         enum hctx_type type = hctx->type;
1887
1888         /*
1889          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1890          * offline now
1891          */
1892         list_for_each_entry(rq, list, queuelist) {
1893                 BUG_ON(rq->mq_ctx != ctx);
1894                 trace_block_rq_insert(rq);
1895         }
1896
1897         spin_lock(&ctx->lock);
1898         list_splice_tail_init(list, &ctx->rq_lists[type]);
1899         blk_mq_hctx_mark_pending(hctx, ctx);
1900         spin_unlock(&ctx->lock);
1901 }
1902
1903 static int plug_rq_cmp(void *priv, const struct list_head *a,
1904                        const struct list_head *b)
1905 {
1906         struct request *rqa = container_of(a, struct request, queuelist);
1907         struct request *rqb = container_of(b, struct request, queuelist);
1908
1909         if (rqa->mq_ctx != rqb->mq_ctx)
1910                 return rqa->mq_ctx > rqb->mq_ctx;
1911         if (rqa->mq_hctx != rqb->mq_hctx)
1912                 return rqa->mq_hctx > rqb->mq_hctx;
1913
1914         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1915 }
1916
1917 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1918 {
1919         LIST_HEAD(list);
1920
1921         if (list_empty(&plug->mq_list))
1922                 return;
1923         list_splice_init(&plug->mq_list, &list);
1924
1925         if (plug->rq_count > 2 && plug->multiple_queues)
1926                 list_sort(NULL, &list, plug_rq_cmp);
1927
1928         plug->rq_count = 0;
1929
1930         do {
1931                 struct list_head rq_list;
1932                 struct request *rq, *head_rq = list_entry_rq(list.next);
1933                 struct list_head *pos = &head_rq->queuelist; /* skip first */
1934                 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1935                 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1936                 unsigned int depth = 1;
1937
1938                 list_for_each_continue(pos, &list) {
1939                         rq = list_entry_rq(pos);
1940                         BUG_ON(!rq->q);
1941                         if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1942                                 break;
1943                         depth++;
1944                 }
1945
1946                 list_cut_before(&rq_list, &list, pos);
1947                 trace_block_unplug(head_rq->q, depth, !from_schedule);
1948                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1949                                                 from_schedule);
1950         } while(!list_empty(&list));
1951 }
1952
1953 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1954                 unsigned int nr_segs)
1955 {
1956         int err;
1957
1958         if (bio->bi_opf & REQ_RAHEAD)
1959                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1960
1961         rq->__sector = bio->bi_iter.bi_sector;
1962         rq->write_hint = bio->bi_write_hint;
1963         blk_rq_bio_prep(rq, bio, nr_segs);
1964
1965         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1966         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1967         WARN_ON_ONCE(err);
1968
1969         blk_account_io_start(rq);
1970 }
1971
1972 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1973                                             struct request *rq,
1974                                             blk_qc_t *cookie, bool last)
1975 {
1976         struct request_queue *q = rq->q;
1977         struct blk_mq_queue_data bd = {
1978                 .rq = rq,
1979                 .last = last,
1980         };
1981         blk_qc_t new_cookie;
1982         blk_status_t ret;
1983
1984         new_cookie = request_to_qc_t(hctx, rq);
1985
1986         /*
1987          * For OK queue, we are done. For error, caller may kill it.
1988          * Any other error (busy), just add it to our list as we
1989          * previously would have done.
1990          */
1991         ret = q->mq_ops->queue_rq(hctx, &bd);
1992         switch (ret) {
1993         case BLK_STS_OK:
1994                 blk_mq_update_dispatch_busy(hctx, false);
1995                 *cookie = new_cookie;
1996                 break;
1997         case BLK_STS_RESOURCE:
1998         case BLK_STS_DEV_RESOURCE:
1999                 blk_mq_update_dispatch_busy(hctx, true);
2000                 __blk_mq_requeue_request(rq);
2001                 break;
2002         default:
2003                 blk_mq_update_dispatch_busy(hctx, false);
2004                 *cookie = BLK_QC_T_NONE;
2005                 break;
2006         }
2007
2008         return ret;
2009 }
2010
2011 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2012                                                 struct request *rq,
2013                                                 blk_qc_t *cookie,
2014                                                 bool bypass_insert, bool last)
2015 {
2016         struct request_queue *q = rq->q;
2017         bool run_queue = true;
2018         int budget_token;
2019
2020         /*
2021          * RCU or SRCU read lock is needed before checking quiesced flag.
2022          *
2023          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2024          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2025          * and avoid driver to try to dispatch again.
2026          */
2027         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2028                 run_queue = false;
2029                 bypass_insert = false;
2030                 goto insert;
2031         }
2032
2033         if (q->elevator && !bypass_insert)
2034                 goto insert;
2035
2036         budget_token = blk_mq_get_dispatch_budget(q);
2037         if (budget_token < 0)
2038                 goto insert;
2039
2040         blk_mq_set_rq_budget_token(rq, budget_token);
2041
2042         if (!blk_mq_get_driver_tag(rq)) {
2043                 blk_mq_put_dispatch_budget(q, budget_token);
2044                 goto insert;
2045         }
2046
2047         return __blk_mq_issue_directly(hctx, rq, cookie, last);
2048 insert:
2049         if (bypass_insert)
2050                 return BLK_STS_RESOURCE;
2051
2052         blk_mq_sched_insert_request(rq, false, run_queue, false);
2053
2054         return BLK_STS_OK;
2055 }
2056
2057 /**
2058  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2059  * @hctx: Pointer of the associated hardware queue.
2060  * @rq: Pointer to request to be sent.
2061  * @cookie: Request queue cookie.
2062  *
2063  * If the device has enough resources to accept a new request now, send the
2064  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2065  * we can try send it another time in the future. Requests inserted at this
2066  * queue have higher priority.
2067  */
2068 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2069                 struct request *rq, blk_qc_t *cookie)
2070 {
2071         blk_status_t ret;
2072         int srcu_idx;
2073
2074         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2075
2076         hctx_lock(hctx, &srcu_idx);
2077
2078         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2079         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2080                 blk_mq_request_bypass_insert(rq, false, true);
2081         else if (ret != BLK_STS_OK)
2082                 blk_mq_end_request(rq, ret);
2083
2084         hctx_unlock(hctx, srcu_idx);
2085 }
2086
2087 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2088 {
2089         blk_status_t ret;
2090         int srcu_idx;
2091         blk_qc_t unused_cookie;
2092         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2093
2094         hctx_lock(hctx, &srcu_idx);
2095         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2096         hctx_unlock(hctx, srcu_idx);
2097
2098         return ret;
2099 }
2100
2101 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2102                 struct list_head *list)
2103 {
2104         int queued = 0;
2105         int errors = 0;
2106
2107         while (!list_empty(list)) {
2108                 blk_status_t ret;
2109                 struct request *rq = list_first_entry(list, struct request,
2110                                 queuelist);
2111
2112                 list_del_init(&rq->queuelist);
2113                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2114                 if (ret != BLK_STS_OK) {
2115                         errors++;
2116                         if (ret == BLK_STS_RESOURCE ||
2117                                         ret == BLK_STS_DEV_RESOURCE) {
2118                                 blk_mq_request_bypass_insert(rq, false,
2119                                                         list_empty(list));
2120                                 break;
2121                         }
2122                         blk_mq_end_request(rq, ret);
2123                 } else
2124                         queued++;
2125         }
2126
2127         /*
2128          * If we didn't flush the entire list, we could have told
2129          * the driver there was more coming, but that turned out to
2130          * be a lie.
2131          */
2132         if ((!list_empty(list) || errors) &&
2133              hctx->queue->mq_ops->commit_rqs && queued)
2134                 hctx->queue->mq_ops->commit_rqs(hctx);
2135 }
2136
2137 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2138 {
2139         list_add_tail(&rq->queuelist, &plug->mq_list);
2140         plug->rq_count++;
2141         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2142                 struct request *tmp;
2143
2144                 tmp = list_first_entry(&plug->mq_list, struct request,
2145                                                 queuelist);
2146                 if (tmp->q != rq->q)
2147                         plug->multiple_queues = true;
2148         }
2149 }
2150
2151 /*
2152  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2153  * queues. This is important for md arrays to benefit from merging
2154  * requests.
2155  */
2156 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2157 {
2158         if (plug->multiple_queues)
2159                 return BLK_MAX_REQUEST_COUNT * 2;
2160         return BLK_MAX_REQUEST_COUNT;
2161 }
2162
2163 /**
2164  * blk_mq_submit_bio - Create and send a request to block device.
2165  * @bio: Bio pointer.
2166  *
2167  * Builds up a request structure from @q and @bio and send to the device. The
2168  * request may not be queued directly to hardware if:
2169  * * This request can be merged with another one
2170  * * We want to place request at plug queue for possible future merging
2171  * * There is an IO scheduler active at this queue
2172  *
2173  * It will not queue the request if there is an error with the bio, or at the
2174  * request creation.
2175  *
2176  * Returns: Request queue cookie.
2177  */
2178 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2179 {
2180         struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2181         const int is_sync = op_is_sync(bio->bi_opf);
2182         const int is_flush_fua = op_is_flush(bio->bi_opf);
2183         struct blk_mq_alloc_data data = {
2184                 .q              = q,
2185         };
2186         struct request *rq;
2187         struct blk_plug *plug;
2188         struct request *same_queue_rq = NULL;
2189         unsigned int nr_segs;
2190         blk_qc_t cookie;
2191         blk_status_t ret;
2192         bool hipri;
2193
2194         blk_queue_bounce(q, &bio);
2195         __blk_queue_split(&bio, &nr_segs);
2196
2197         if (!bio_integrity_prep(bio))
2198                 goto queue_exit;
2199
2200         if (!is_flush_fua && !blk_queue_nomerges(q) &&
2201             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2202                 goto queue_exit;
2203
2204         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2205                 goto queue_exit;
2206
2207         rq_qos_throttle(q, bio);
2208
2209         hipri = bio->bi_opf & REQ_HIPRI;
2210
2211         data.cmd_flags = bio->bi_opf;
2212         rq = __blk_mq_alloc_request(&data);
2213         if (unlikely(!rq)) {
2214                 rq_qos_cleanup(q, bio);
2215                 if (bio->bi_opf & REQ_NOWAIT)
2216                         bio_wouldblock_error(bio);
2217                 goto queue_exit;
2218         }
2219
2220         trace_block_getrq(bio);
2221
2222         rq_qos_track(q, rq, bio);
2223
2224         cookie = request_to_qc_t(data.hctx, rq);
2225
2226         blk_mq_bio_to_request(rq, bio, nr_segs);
2227
2228         ret = blk_crypto_init_request(rq);
2229         if (ret != BLK_STS_OK) {
2230                 bio->bi_status = ret;
2231                 bio_endio(bio);
2232                 blk_mq_free_request(rq);
2233                 return BLK_QC_T_NONE;
2234         }
2235
2236         plug = blk_mq_plug(q, bio);
2237         if (unlikely(is_flush_fua)) {
2238                 /* Bypass scheduler for flush requests */
2239                 blk_insert_flush(rq);
2240                 blk_mq_run_hw_queue(data.hctx, true);
2241         } else if (plug && (q->nr_hw_queues == 1 ||
2242                    blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2243                    q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2244                 /*
2245                  * Use plugging if we have a ->commit_rqs() hook as well, as
2246                  * we know the driver uses bd->last in a smart fashion.
2247                  *
2248                  * Use normal plugging if this disk is slow HDD, as sequential
2249                  * IO may benefit a lot from plug merging.
2250                  */
2251                 unsigned int request_count = plug->rq_count;
2252                 struct request *last = NULL;
2253
2254                 if (!request_count)
2255                         trace_block_plug(q);
2256                 else
2257                         last = list_entry_rq(plug->mq_list.prev);
2258
2259                 if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2260                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2261                         blk_flush_plug_list(plug, false);
2262                         trace_block_plug(q);
2263                 }
2264
2265                 blk_add_rq_to_plug(plug, rq);
2266         } else if (q->elevator) {
2267                 /* Insert the request at the IO scheduler queue */
2268                 blk_mq_sched_insert_request(rq, false, true, true);
2269         } else if (plug && !blk_queue_nomerges(q)) {
2270                 /*
2271                  * We do limited plugging. If the bio can be merged, do that.
2272                  * Otherwise the existing request in the plug list will be
2273                  * issued. So the plug list will have one request at most
2274                  * The plug list might get flushed before this. If that happens,
2275                  * the plug list is empty, and same_queue_rq is invalid.
2276                  */
2277                 if (list_empty(&plug->mq_list))
2278                         same_queue_rq = NULL;
2279                 if (same_queue_rq) {
2280                         list_del_init(&same_queue_rq->queuelist);
2281                         plug->rq_count--;
2282                 }
2283                 blk_add_rq_to_plug(plug, rq);
2284                 trace_block_plug(q);
2285
2286                 if (same_queue_rq) {
2287                         data.hctx = same_queue_rq->mq_hctx;
2288                         trace_block_unplug(q, 1, true);
2289                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2290                                         &cookie);
2291                 }
2292         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2293                         !data.hctx->dispatch_busy) {
2294                 /*
2295                  * There is no scheduler and we can try to send directly
2296                  * to the hardware.
2297                  */
2298                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2299         } else {
2300                 /* Default case. */
2301                 blk_mq_sched_insert_request(rq, false, true, true);
2302         }
2303
2304         if (!hipri)
2305                 return BLK_QC_T_NONE;
2306         return cookie;
2307 queue_exit:
2308         blk_queue_exit(q);
2309         return BLK_QC_T_NONE;
2310 }
2311
2312 static size_t order_to_size(unsigned int order)
2313 {
2314         return (size_t)PAGE_SIZE << order;
2315 }
2316
2317 /* called before freeing request pool in @tags */
2318 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2319                 struct blk_mq_tags *tags, unsigned int hctx_idx)
2320 {
2321         struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2322         struct page *page;
2323         unsigned long flags;
2324
2325         list_for_each_entry(page, &tags->page_list, lru) {
2326                 unsigned long start = (unsigned long)page_address(page);
2327                 unsigned long end = start + order_to_size(page->private);
2328                 int i;
2329
2330                 for (i = 0; i < set->queue_depth; i++) {
2331                         struct request *rq = drv_tags->rqs[i];
2332                         unsigned long rq_addr = (unsigned long)rq;
2333
2334                         if (rq_addr >= start && rq_addr < end) {
2335                                 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2336                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2337                         }
2338                 }
2339         }
2340
2341         /*
2342          * Wait until all pending iteration is done.
2343          *
2344          * Request reference is cleared and it is guaranteed to be observed
2345          * after the ->lock is released.
2346          */
2347         spin_lock_irqsave(&drv_tags->lock, flags);
2348         spin_unlock_irqrestore(&drv_tags->lock, flags);
2349 }
2350
2351 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2352                      unsigned int hctx_idx)
2353 {
2354         struct page *page;
2355
2356         if (tags->rqs && set->ops->exit_request) {
2357                 int i;
2358
2359                 for (i = 0; i < tags->nr_tags; i++) {
2360                         struct request *rq = tags->static_rqs[i];
2361
2362                         if (!rq)
2363                                 continue;
2364                         set->ops->exit_request(set, rq, hctx_idx);
2365                         tags->static_rqs[i] = NULL;
2366                 }
2367         }
2368
2369         blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2370
2371         while (!list_empty(&tags->page_list)) {
2372                 page = list_first_entry(&tags->page_list, struct page, lru);
2373                 list_del_init(&page->lru);
2374                 /*
2375                  * Remove kmemleak object previously allocated in
2376                  * blk_mq_alloc_rqs().
2377                  */
2378                 kmemleak_free(page_address(page));
2379                 __free_pages(page, page->private);
2380         }
2381 }
2382
2383 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2384 {
2385         kfree(tags->rqs);
2386         tags->rqs = NULL;
2387         kfree(tags->static_rqs);
2388         tags->static_rqs = NULL;
2389
2390         blk_mq_free_tags(tags, flags);
2391 }
2392
2393 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2394                                         unsigned int hctx_idx,
2395                                         unsigned int nr_tags,
2396                                         unsigned int reserved_tags,
2397                                         unsigned int flags)
2398 {
2399         struct blk_mq_tags *tags;
2400         int node;
2401
2402         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2403         if (node == NUMA_NO_NODE)
2404                 node = set->numa_node;
2405
2406         tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2407         if (!tags)
2408                 return NULL;
2409
2410         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2411                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2412                                  node);
2413         if (!tags->rqs) {
2414                 blk_mq_free_tags(tags, flags);
2415                 return NULL;
2416         }
2417
2418         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2419                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2420                                         node);
2421         if (!tags->static_rqs) {
2422                 kfree(tags->rqs);
2423                 blk_mq_free_tags(tags, flags);
2424                 return NULL;
2425         }
2426
2427         return tags;
2428 }
2429
2430 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2431                                unsigned int hctx_idx, int node)
2432 {
2433         int ret;
2434
2435         if (set->ops->init_request) {
2436                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2437                 if (ret)
2438                         return ret;
2439         }
2440
2441         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2442         return 0;
2443 }
2444
2445 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2446                      unsigned int hctx_idx, unsigned int depth)
2447 {
2448         unsigned int i, j, entries_per_page, max_order = 4;
2449         size_t rq_size, left;
2450         int node;
2451
2452         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2453         if (node == NUMA_NO_NODE)
2454                 node = set->numa_node;
2455
2456         INIT_LIST_HEAD(&tags->page_list);
2457
2458         /*
2459          * rq_size is the size of the request plus driver payload, rounded
2460          * to the cacheline size
2461          */
2462         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2463                                 cache_line_size());
2464         left = rq_size * depth;
2465
2466         for (i = 0; i < depth; ) {
2467                 int this_order = max_order;
2468                 struct page *page;
2469                 int to_do;
2470                 void *p;
2471
2472                 while (this_order && left < order_to_size(this_order - 1))
2473                         this_order--;
2474
2475                 do {
2476                         page = alloc_pages_node(node,
2477                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2478                                 this_order);
2479                         if (page)
2480                                 break;
2481                         if (!this_order--)
2482                                 break;
2483                         if (order_to_size(this_order) < rq_size)
2484                                 break;
2485                 } while (1);
2486
2487                 if (!page)
2488                         goto fail;
2489
2490                 page->private = this_order;
2491                 list_add_tail(&page->lru, &tags->page_list);
2492
2493                 p = page_address(page);
2494                 /*
2495                  * Allow kmemleak to scan these pages as they contain pointers
2496                  * to additional allocations like via ops->init_request().
2497                  */
2498                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2499                 entries_per_page = order_to_size(this_order) / rq_size;
2500                 to_do = min(entries_per_page, depth - i);
2501                 left -= to_do * rq_size;
2502                 for (j = 0; j < to_do; j++) {
2503                         struct request *rq = p;
2504
2505                         tags->static_rqs[i] = rq;
2506                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2507                                 tags->static_rqs[i] = NULL;
2508                                 goto fail;
2509                         }
2510
2511                         p += rq_size;
2512                         i++;
2513                 }
2514         }
2515         return 0;
2516
2517 fail:
2518         blk_mq_free_rqs(set, tags, hctx_idx);
2519         return -ENOMEM;
2520 }
2521
2522 struct rq_iter_data {
2523         struct blk_mq_hw_ctx *hctx;
2524         bool has_rq;
2525 };
2526
2527 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2528 {
2529         struct rq_iter_data *iter_data = data;
2530
2531         if (rq->mq_hctx != iter_data->hctx)
2532                 return true;
2533         iter_data->has_rq = true;
2534         return false;
2535 }
2536
2537 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2538 {
2539         struct blk_mq_tags *tags = hctx->sched_tags ?
2540                         hctx->sched_tags : hctx->tags;
2541         struct rq_iter_data data = {
2542                 .hctx   = hctx,
2543         };
2544
2545         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2546         return data.has_rq;
2547 }
2548
2549 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2550                 struct blk_mq_hw_ctx *hctx)
2551 {
2552         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2553                 return false;
2554         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2555                 return false;
2556         return true;
2557 }
2558
2559 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2560 {
2561         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2562                         struct blk_mq_hw_ctx, cpuhp_online);
2563
2564         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2565             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2566                 return 0;
2567
2568         /*
2569          * Prevent new request from being allocated on the current hctx.
2570          *
2571          * The smp_mb__after_atomic() Pairs with the implied barrier in
2572          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2573          * seen once we return from the tag allocator.
2574          */
2575         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2576         smp_mb__after_atomic();
2577
2578         /*
2579          * Try to grab a reference to the queue and wait for any outstanding
2580          * requests.  If we could not grab a reference the queue has been
2581          * frozen and there are no requests.
2582          */
2583         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2584                 while (blk_mq_hctx_has_requests(hctx))
2585                         msleep(5);
2586                 percpu_ref_put(&hctx->queue->q_usage_counter);
2587         }
2588
2589         return 0;
2590 }
2591
2592 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2593 {
2594         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2595                         struct blk_mq_hw_ctx, cpuhp_online);
2596
2597         if (cpumask_test_cpu(cpu, hctx->cpumask))
2598                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2599         return 0;
2600 }
2601
2602 /*
2603  * 'cpu' is going away. splice any existing rq_list entries from this
2604  * software queue to the hw queue dispatch list, and ensure that it
2605  * gets run.
2606  */
2607 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2608 {
2609         struct blk_mq_hw_ctx *hctx;
2610         struct blk_mq_ctx *ctx;
2611         LIST_HEAD(tmp);
2612         enum hctx_type type;
2613
2614         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2615         if (!cpumask_test_cpu(cpu, hctx->cpumask))
2616                 return 0;
2617
2618         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2619         type = hctx->type;
2620
2621         spin_lock(&ctx->lock);
2622         if (!list_empty(&ctx->rq_lists[type])) {
2623                 list_splice_init(&ctx->rq_lists[type], &tmp);
2624                 blk_mq_hctx_clear_pending(hctx, ctx);
2625         }
2626         spin_unlock(&ctx->lock);
2627
2628         if (list_empty(&tmp))
2629                 return 0;
2630
2631         spin_lock(&hctx->lock);
2632         list_splice_tail_init(&tmp, &hctx->dispatch);
2633         spin_unlock(&hctx->lock);
2634
2635         blk_mq_run_hw_queue(hctx, true);
2636         return 0;
2637 }
2638
2639 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2640 {
2641         if (!(hctx->flags & BLK_MQ_F_STACKING))
2642                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2643                                                     &hctx->cpuhp_online);
2644         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2645                                             &hctx->cpuhp_dead);
2646 }
2647
2648 /*
2649  * Before freeing hw queue, clearing the flush request reference in
2650  * tags->rqs[] for avoiding potential UAF.
2651  */
2652 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2653                 unsigned int queue_depth, struct request *flush_rq)
2654 {
2655         int i;
2656         unsigned long flags;
2657
2658         /* The hw queue may not be mapped yet */
2659         if (!tags)
2660                 return;
2661
2662         WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2663
2664         for (i = 0; i < queue_depth; i++)
2665                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
2666
2667         /*
2668          * Wait until all pending iteration is done.
2669          *
2670          * Request reference is cleared and it is guaranteed to be observed
2671          * after the ->lock is released.
2672          */
2673         spin_lock_irqsave(&tags->lock, flags);
2674         spin_unlock_irqrestore(&tags->lock, flags);
2675 }
2676
2677 /* hctx->ctxs will be freed in queue's release handler */
2678 static void blk_mq_exit_hctx(struct request_queue *q,
2679                 struct blk_mq_tag_set *set,
2680                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2681 {
2682         struct request *flush_rq = hctx->fq->flush_rq;
2683
2684         if (blk_mq_hw_queue_mapped(hctx))
2685                 blk_mq_tag_idle(hctx);
2686
2687         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2688                         set->queue_depth, flush_rq);
2689         if (set->ops->exit_request)
2690                 set->ops->exit_request(set, flush_rq, hctx_idx);
2691
2692         if (set->ops->exit_hctx)
2693                 set->ops->exit_hctx(hctx, hctx_idx);
2694
2695         blk_mq_remove_cpuhp(hctx);
2696
2697         spin_lock(&q->unused_hctx_lock);
2698         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2699         spin_unlock(&q->unused_hctx_lock);
2700 }
2701
2702 static void blk_mq_exit_hw_queues(struct request_queue *q,
2703                 struct blk_mq_tag_set *set, int nr_queue)
2704 {
2705         struct blk_mq_hw_ctx *hctx;
2706         unsigned int i;
2707
2708         queue_for_each_hw_ctx(q, hctx, i) {
2709                 if (i == nr_queue)
2710                         break;
2711                 blk_mq_debugfs_unregister_hctx(hctx);
2712                 blk_mq_exit_hctx(q, set, hctx, i);
2713         }
2714 }
2715
2716 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2717 {
2718         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2719
2720         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2721                            __alignof__(struct blk_mq_hw_ctx)) !=
2722                      sizeof(struct blk_mq_hw_ctx));
2723
2724         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2725                 hw_ctx_size += sizeof(struct srcu_struct);
2726
2727         return hw_ctx_size;
2728 }
2729
2730 static int blk_mq_init_hctx(struct request_queue *q,
2731                 struct blk_mq_tag_set *set,
2732                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2733 {
2734         hctx->queue_num = hctx_idx;
2735
2736         if (!(hctx->flags & BLK_MQ_F_STACKING))
2737                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2738                                 &hctx->cpuhp_online);
2739         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2740
2741         hctx->tags = set->tags[hctx_idx];
2742
2743         if (set->ops->init_hctx &&
2744             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2745                 goto unregister_cpu_notifier;
2746
2747         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2748                                 hctx->numa_node))
2749                 goto exit_hctx;
2750         return 0;
2751
2752  exit_hctx:
2753         if (set->ops->exit_hctx)
2754                 set->ops->exit_hctx(hctx, hctx_idx);
2755  unregister_cpu_notifier:
2756         blk_mq_remove_cpuhp(hctx);
2757         return -1;
2758 }
2759
2760 static struct blk_mq_hw_ctx *
2761 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2762                 int node)
2763 {
2764         struct blk_mq_hw_ctx *hctx;
2765         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2766
2767         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2768         if (!hctx)
2769                 goto fail_alloc_hctx;
2770
2771         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2772                 goto free_hctx;
2773
2774         atomic_set(&hctx->nr_active, 0);
2775         if (node == NUMA_NO_NODE)
2776                 node = set->numa_node;
2777         hctx->numa_node = node;
2778
2779         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2780         spin_lock_init(&hctx->lock);
2781         INIT_LIST_HEAD(&hctx->dispatch);
2782         hctx->queue = q;
2783         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2784
2785         INIT_LIST_HEAD(&hctx->hctx_list);
2786
2787         /*
2788          * Allocate space for all possible cpus to avoid allocation at
2789          * runtime
2790          */
2791         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2792                         gfp, node);
2793         if (!hctx->ctxs)
2794                 goto free_cpumask;
2795
2796         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2797                                 gfp, node, false, false))
2798                 goto free_ctxs;
2799         hctx->nr_ctx = 0;
2800
2801         spin_lock_init(&hctx->dispatch_wait_lock);
2802         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2803         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2804
2805         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2806         if (!hctx->fq)
2807                 goto free_bitmap;
2808
2809         if (hctx->flags & BLK_MQ_F_BLOCKING)
2810                 init_srcu_struct(hctx->srcu);
2811         blk_mq_hctx_kobj_init(hctx);
2812
2813         return hctx;
2814
2815  free_bitmap:
2816         sbitmap_free(&hctx->ctx_map);
2817  free_ctxs:
2818         kfree(hctx->ctxs);
2819  free_cpumask:
2820         free_cpumask_var(hctx->cpumask);
2821  free_hctx:
2822         kfree(hctx);
2823  fail_alloc_hctx:
2824         return NULL;
2825 }
2826
2827 static void blk_mq_init_cpu_queues(struct request_queue *q,
2828                                    unsigned int nr_hw_queues)
2829 {
2830         struct blk_mq_tag_set *set = q->tag_set;
2831         unsigned int i, j;
2832
2833         for_each_possible_cpu(i) {
2834                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2835                 struct blk_mq_hw_ctx *hctx;
2836                 int k;
2837
2838                 __ctx->cpu = i;
2839                 spin_lock_init(&__ctx->lock);
2840                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2841                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2842
2843                 __ctx->queue = q;
2844
2845                 /*
2846                  * Set local node, IFF we have more than one hw queue. If
2847                  * not, we remain on the home node of the device
2848                  */
2849                 for (j = 0; j < set->nr_maps; j++) {
2850                         hctx = blk_mq_map_queue_type(q, j, i);
2851                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2852                                 hctx->numa_node = cpu_to_node(i);
2853                 }
2854         }
2855 }
2856
2857 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2858                                         int hctx_idx)
2859 {
2860         unsigned int flags = set->flags;
2861         int ret = 0;
2862
2863         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2864                                         set->queue_depth, set->reserved_tags, flags);
2865         if (!set->tags[hctx_idx])
2866                 return false;
2867
2868         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2869                                 set->queue_depth);
2870         if (!ret)
2871                 return true;
2872
2873         blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2874         set->tags[hctx_idx] = NULL;
2875         return false;
2876 }
2877
2878 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2879                                          unsigned int hctx_idx)
2880 {
2881         unsigned int flags = set->flags;
2882
2883         if (set->tags && set->tags[hctx_idx]) {
2884                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2885                 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2886                 set->tags[hctx_idx] = NULL;
2887         }
2888 }
2889
2890 static void blk_mq_map_swqueue(struct request_queue *q)
2891 {
2892         unsigned int i, j, hctx_idx;
2893         struct blk_mq_hw_ctx *hctx;
2894         struct blk_mq_ctx *ctx;
2895         struct blk_mq_tag_set *set = q->tag_set;
2896
2897         queue_for_each_hw_ctx(q, hctx, i) {
2898                 cpumask_clear(hctx->cpumask);
2899                 hctx->nr_ctx = 0;
2900                 hctx->dispatch_from = NULL;
2901         }
2902
2903         /*
2904          * Map software to hardware queues.
2905          *
2906          * If the cpu isn't present, the cpu is mapped to first hctx.
2907          */
2908         for_each_possible_cpu(i) {
2909
2910                 ctx = per_cpu_ptr(q->queue_ctx, i);
2911                 for (j = 0; j < set->nr_maps; j++) {
2912                         if (!set->map[j].nr_queues) {
2913                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2914                                                 HCTX_TYPE_DEFAULT, i);
2915                                 continue;
2916                         }
2917                         hctx_idx = set->map[j].mq_map[i];
2918                         /* unmapped hw queue can be remapped after CPU topo changed */
2919                         if (!set->tags[hctx_idx] &&
2920                             !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2921                                 /*
2922                                  * If tags initialization fail for some hctx,
2923                                  * that hctx won't be brought online.  In this
2924                                  * case, remap the current ctx to hctx[0] which
2925                                  * is guaranteed to always have tags allocated
2926                                  */
2927                                 set->map[j].mq_map[i] = 0;
2928                         }
2929
2930                         hctx = blk_mq_map_queue_type(q, j, i);
2931                         ctx->hctxs[j] = hctx;
2932                         /*
2933                          * If the CPU is already set in the mask, then we've
2934                          * mapped this one already. This can happen if
2935                          * devices share queues across queue maps.
2936                          */
2937                         if (cpumask_test_cpu(i, hctx->cpumask))
2938                                 continue;
2939
2940                         cpumask_set_cpu(i, hctx->cpumask);
2941                         hctx->type = j;
2942                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2943                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2944
2945                         /*
2946                          * If the nr_ctx type overflows, we have exceeded the
2947                          * amount of sw queues we can support.
2948                          */
2949                         BUG_ON(!hctx->nr_ctx);
2950                 }
2951
2952                 for (; j < HCTX_MAX_TYPES; j++)
2953                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2954                                         HCTX_TYPE_DEFAULT, i);
2955         }
2956
2957         queue_for_each_hw_ctx(q, hctx, i) {
2958                 /*
2959                  * If no software queues are mapped to this hardware queue,
2960                  * disable it and free the request entries.
2961                  */
2962                 if (!hctx->nr_ctx) {
2963                         /* Never unmap queue 0.  We need it as a
2964                          * fallback in case of a new remap fails
2965                          * allocation
2966                          */
2967                         if (i && set->tags[i])
2968                                 blk_mq_free_map_and_requests(set, i);
2969
2970                         hctx->tags = NULL;
2971                         continue;
2972                 }
2973
2974                 hctx->tags = set->tags[i];
2975                 WARN_ON(!hctx->tags);
2976
2977                 /*
2978                  * Set the map size to the number of mapped software queues.
2979                  * This is more accurate and more efficient than looping
2980                  * over all possibly mapped software queues.
2981                  */
2982                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2983
2984                 /*
2985                  * Initialize batch roundrobin counts
2986                  */
2987                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2988                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2989         }
2990 }
2991
2992 /*
2993  * Caller needs to ensure that we're either frozen/quiesced, or that
2994  * the queue isn't live yet.
2995  */
2996 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2997 {
2998         struct blk_mq_hw_ctx *hctx;
2999         int i;
3000
3001         queue_for_each_hw_ctx(q, hctx, i) {
3002                 if (shared) {
3003                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3004                 } else {
3005                         blk_mq_tag_idle(hctx);
3006                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3007                 }
3008         }
3009 }
3010
3011 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3012                                          bool shared)
3013 {
3014         struct request_queue *q;
3015
3016         lockdep_assert_held(&set->tag_list_lock);
3017
3018         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3019                 blk_mq_freeze_queue(q);
3020                 queue_set_hctx_shared(q, shared);
3021                 blk_mq_unfreeze_queue(q);
3022         }
3023 }
3024
3025 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3026 {
3027         struct blk_mq_tag_set *set = q->tag_set;
3028
3029         mutex_lock(&set->tag_list_lock);
3030         list_del(&q->tag_set_list);
3031         if (list_is_singular(&set->tag_list)) {
3032                 /* just transitioned to unshared */
3033                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3034                 /* update existing queue */
3035                 blk_mq_update_tag_set_shared(set, false);
3036         }
3037         mutex_unlock(&set->tag_list_lock);
3038         INIT_LIST_HEAD(&q->tag_set_list);
3039 }
3040
3041 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3042                                      struct request_queue *q)
3043 {
3044         mutex_lock(&set->tag_list_lock);
3045
3046         /*
3047          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3048          */
3049         if (!list_empty(&set->tag_list) &&
3050             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3051                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3052                 /* update existing queue */
3053                 blk_mq_update_tag_set_shared(set, true);
3054         }
3055         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3056                 queue_set_hctx_shared(q, true);
3057         list_add_tail(&q->tag_set_list, &set->tag_list);
3058
3059         mutex_unlock(&set->tag_list_lock);
3060 }
3061
3062 /* All allocations will be freed in release handler of q->mq_kobj */
3063 static int blk_mq_alloc_ctxs(struct request_queue *q)
3064 {
3065         struct blk_mq_ctxs *ctxs;
3066         int cpu;
3067
3068         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3069         if (!ctxs)
3070                 return -ENOMEM;
3071
3072         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3073         if (!ctxs->queue_ctx)
3074                 goto fail;
3075
3076         for_each_possible_cpu(cpu) {
3077                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3078                 ctx->ctxs = ctxs;
3079         }
3080
3081         q->mq_kobj = &ctxs->kobj;
3082         q->queue_ctx = ctxs->queue_ctx;
3083
3084         return 0;
3085  fail:
3086         kfree(ctxs);
3087         return -ENOMEM;
3088 }
3089
3090 /*
3091  * It is the actual release handler for mq, but we do it from
3092  * request queue's release handler for avoiding use-after-free
3093  * and headache because q->mq_kobj shouldn't have been introduced,
3094  * but we can't group ctx/kctx kobj without it.
3095  */
3096 void blk_mq_release(struct request_queue *q)
3097 {
3098         struct blk_mq_hw_ctx *hctx, *next;
3099         int i;
3100
3101         queue_for_each_hw_ctx(q, hctx, i)
3102                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3103
3104         /* all hctx are in .unused_hctx_list now */
3105         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3106                 list_del_init(&hctx->hctx_list);
3107                 kobject_put(&hctx->kobj);
3108         }
3109
3110         kfree(q->queue_hw_ctx);
3111
3112         /*
3113          * release .mq_kobj and sw queue's kobject now because
3114          * both share lifetime with request queue.
3115          */
3116         blk_mq_sysfs_deinit(q);
3117 }
3118
3119 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3120                 void *queuedata)
3121 {
3122         struct request_queue *q;
3123         int ret;
3124
3125         q = blk_alloc_queue(set->numa_node);
3126         if (!q)
3127                 return ERR_PTR(-ENOMEM);
3128         q->queuedata = queuedata;
3129         ret = blk_mq_init_allocated_queue(set, q);
3130         if (ret) {
3131                 blk_cleanup_queue(q);
3132                 return ERR_PTR(ret);
3133         }
3134         return q;
3135 }
3136
3137 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3138 {
3139         return blk_mq_init_queue_data(set, NULL);
3140 }
3141 EXPORT_SYMBOL(blk_mq_init_queue);
3142
3143 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3144                 struct lock_class_key *lkclass)
3145 {
3146         struct request_queue *q;
3147         struct gendisk *disk;
3148
3149         q = blk_mq_init_queue_data(set, queuedata);
3150         if (IS_ERR(q))
3151                 return ERR_CAST(q);
3152
3153         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3154         if (!disk) {
3155                 blk_cleanup_queue(q);
3156                 return ERR_PTR(-ENOMEM);
3157         }
3158         return disk;
3159 }
3160 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3161
3162 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3163                 struct blk_mq_tag_set *set, struct request_queue *q,
3164                 int hctx_idx, int node)
3165 {
3166         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3167
3168         /* reuse dead hctx first */
3169         spin_lock(&q->unused_hctx_lock);
3170         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3171                 if (tmp->numa_node == node) {
3172                         hctx = tmp;
3173                         break;
3174                 }
3175         }
3176         if (hctx)
3177                 list_del_init(&hctx->hctx_list);
3178         spin_unlock(&q->unused_hctx_lock);
3179
3180         if (!hctx)
3181                 hctx = blk_mq_alloc_hctx(q, set, node);
3182         if (!hctx)
3183                 goto fail;
3184
3185         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3186                 goto free_hctx;
3187
3188         return hctx;
3189
3190  free_hctx:
3191         kobject_put(&hctx->kobj);
3192  fail:
3193         return NULL;
3194 }
3195
3196 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3197                                                 struct request_queue *q)
3198 {
3199         int i, j, end;
3200         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3201
3202         if (q->nr_hw_queues < set->nr_hw_queues) {
3203                 struct blk_mq_hw_ctx **new_hctxs;
3204
3205                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3206                                        sizeof(*new_hctxs), GFP_KERNEL,
3207                                        set->numa_node);
3208                 if (!new_hctxs)
3209                         return;
3210                 if (hctxs)
3211                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3212                                sizeof(*hctxs));
3213                 q->queue_hw_ctx = new_hctxs;
3214                 kfree(hctxs);
3215                 hctxs = new_hctxs;
3216         }
3217
3218         /* protect against switching io scheduler  */
3219         mutex_lock(&q->sysfs_lock);
3220         for (i = 0; i < set->nr_hw_queues; i++) {
3221                 int node;
3222                 struct blk_mq_hw_ctx *hctx;
3223
3224                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3225                 /*
3226                  * If the hw queue has been mapped to another numa node,
3227                  * we need to realloc the hctx. If allocation fails, fallback
3228                  * to use the previous one.
3229                  */
3230                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3231                         continue;
3232
3233                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3234                 if (hctx) {
3235                         if (hctxs[i])
3236                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3237                         hctxs[i] = hctx;
3238                 } else {
3239                         if (hctxs[i])
3240                                 pr_warn("Allocate new hctx on node %d fails,\
3241                                                 fallback to previous one on node %d\n",
3242                                                 node, hctxs[i]->numa_node);
3243                         else
3244                                 break;
3245                 }
3246         }
3247         /*
3248          * Increasing nr_hw_queues fails. Free the newly allocated
3249          * hctxs and keep the previous q->nr_hw_queues.
3250          */
3251         if (i != set->nr_hw_queues) {
3252                 j = q->nr_hw_queues;
3253                 end = i;
3254         } else {
3255                 j = i;
3256                 end = q->nr_hw_queues;
3257                 q->nr_hw_queues = set->nr_hw_queues;
3258         }
3259
3260         for (; j < end; j++) {
3261                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3262
3263                 if (hctx) {
3264                         if (hctx->tags)
3265                                 blk_mq_free_map_and_requests(set, j);
3266                         blk_mq_exit_hctx(q, set, hctx, j);
3267                         hctxs[j] = NULL;
3268                 }
3269         }
3270         mutex_unlock(&q->sysfs_lock);
3271 }
3272
3273 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3274                 struct request_queue *q)
3275 {
3276         /* mark the queue as mq asap */
3277         q->mq_ops = set->ops;
3278
3279         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3280                                              blk_mq_poll_stats_bkt,
3281                                              BLK_MQ_POLL_STATS_BKTS, q);
3282         if (!q->poll_cb)
3283                 goto err_exit;
3284
3285         if (blk_mq_alloc_ctxs(q))
3286                 goto err_poll;
3287
3288         /* init q->mq_kobj and sw queues' kobjects */
3289         blk_mq_sysfs_init(q);
3290
3291         INIT_LIST_HEAD(&q->unused_hctx_list);
3292         spin_lock_init(&q->unused_hctx_lock);
3293
3294         blk_mq_realloc_hw_ctxs(set, q);
3295         if (!q->nr_hw_queues)
3296                 goto err_hctxs;
3297
3298         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3299         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3300
3301         q->tag_set = set;
3302
3303         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3304         if (set->nr_maps > HCTX_TYPE_POLL &&
3305             set->map[HCTX_TYPE_POLL].nr_queues)
3306                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3307
3308         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3309         INIT_LIST_HEAD(&q->requeue_list);
3310         spin_lock_init(&q->requeue_lock);
3311
3312         q->nr_requests = set->queue_depth;
3313
3314         /*
3315          * Default to classic polling
3316          */
3317         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3318
3319         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3320         blk_mq_add_queue_tag_set(set, q);
3321         blk_mq_map_swqueue(q);
3322         return 0;
3323
3324 err_hctxs:
3325         kfree(q->queue_hw_ctx);
3326         q->nr_hw_queues = 0;
3327         blk_mq_sysfs_deinit(q);
3328 err_poll:
3329         blk_stat_free_callback(q->poll_cb);
3330         q->poll_cb = NULL;
3331 err_exit:
3332         q->mq_ops = NULL;
3333         return -ENOMEM;
3334 }
3335 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3336
3337 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3338 void blk_mq_exit_queue(struct request_queue *q)
3339 {
3340         struct blk_mq_tag_set *set = q->tag_set;
3341
3342         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3343         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3344         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3345         blk_mq_del_queue_tag_set(q);
3346 }
3347
3348 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3349 {
3350         int i;
3351
3352         for (i = 0; i < set->nr_hw_queues; i++) {
3353                 if (!__blk_mq_alloc_map_and_request(set, i))
3354                         goto out_unwind;
3355                 cond_resched();
3356         }
3357
3358         return 0;
3359
3360 out_unwind:
3361         while (--i >= 0)
3362                 blk_mq_free_map_and_requests(set, i);
3363
3364         return -ENOMEM;
3365 }
3366
3367 /*
3368  * Allocate the request maps associated with this tag_set. Note that this
3369  * may reduce the depth asked for, if memory is tight. set->queue_depth
3370  * will be updated to reflect the allocated depth.
3371  */
3372 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3373 {
3374         unsigned int depth;
3375         int err;
3376
3377         depth = set->queue_depth;
3378         do {
3379                 err = __blk_mq_alloc_rq_maps(set);
3380                 if (!err)
3381                         break;
3382
3383                 set->queue_depth >>= 1;
3384                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3385                         err = -ENOMEM;
3386                         break;
3387                 }
3388         } while (set->queue_depth);
3389
3390         if (!set->queue_depth || err) {
3391                 pr_err("blk-mq: failed to allocate request map\n");
3392                 return -ENOMEM;
3393         }
3394
3395         if (depth != set->queue_depth)
3396                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3397                                                 depth, set->queue_depth);
3398
3399         return 0;
3400 }
3401
3402 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3403 {
3404         /*
3405          * blk_mq_map_queues() and multiple .map_queues() implementations
3406          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3407          * number of hardware queues.
3408          */
3409         if (set->nr_maps == 1)
3410                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3411
3412         if (set->ops->map_queues && !is_kdump_kernel()) {
3413                 int i;
3414
3415                 /*
3416                  * transport .map_queues is usually done in the following
3417                  * way:
3418                  *
3419                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3420                  *      mask = get_cpu_mask(queue)
3421                  *      for_each_cpu(cpu, mask)
3422                  *              set->map[x].mq_map[cpu] = queue;
3423                  * }
3424                  *
3425                  * When we need to remap, the table has to be cleared for
3426                  * killing stale mapping since one CPU may not be mapped
3427                  * to any hw queue.
3428                  */
3429                 for (i = 0; i < set->nr_maps; i++)
3430                         blk_mq_clear_mq_map(&set->map[i]);
3431
3432                 return set->ops->map_queues(set);
3433         } else {
3434                 BUG_ON(set->nr_maps > 1);
3435                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3436         }
3437 }
3438
3439 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3440                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3441 {
3442         struct blk_mq_tags **new_tags;
3443
3444         if (cur_nr_hw_queues >= new_nr_hw_queues)
3445                 return 0;
3446
3447         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3448                                 GFP_KERNEL, set->numa_node);
3449         if (!new_tags)
3450                 return -ENOMEM;
3451
3452         if (set->tags)
3453                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3454                        sizeof(*set->tags));
3455         kfree(set->tags);
3456         set->tags = new_tags;
3457         set->nr_hw_queues = new_nr_hw_queues;
3458
3459         return 0;
3460 }
3461
3462 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3463                                 int new_nr_hw_queues)
3464 {
3465         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3466 }
3467
3468 /*
3469  * Alloc a tag set to be associated with one or more request queues.
3470  * May fail with EINVAL for various error conditions. May adjust the
3471  * requested depth down, if it's too large. In that case, the set
3472  * value will be stored in set->queue_depth.
3473  */
3474 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3475 {
3476         int i, ret;
3477
3478         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3479
3480         if (!set->nr_hw_queues)
3481                 return -EINVAL;
3482         if (!set->queue_depth)
3483                 return -EINVAL;
3484         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3485                 return -EINVAL;
3486
3487         if (!set->ops->queue_rq)
3488                 return -EINVAL;
3489
3490         if (!set->ops->get_budget ^ !set->ops->put_budget)
3491                 return -EINVAL;
3492
3493         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3494                 pr_info("blk-mq: reduced tag depth to %u\n",
3495                         BLK_MQ_MAX_DEPTH);
3496                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3497         }
3498
3499         if (!set->nr_maps)
3500                 set->nr_maps = 1;
3501         else if (set->nr_maps > HCTX_MAX_TYPES)
3502                 return -EINVAL;
3503
3504         /*
3505          * If a crashdump is active, then we are potentially in a very
3506          * memory constrained environment. Limit us to 1 queue and
3507          * 64 tags to prevent using too much memory.
3508          */
3509         if (is_kdump_kernel()) {
3510                 set->nr_hw_queues = 1;
3511                 set->nr_maps = 1;
3512                 set->queue_depth = min(64U, set->queue_depth);
3513         }
3514         /*
3515          * There is no use for more h/w queues than cpus if we just have
3516          * a single map
3517          */
3518         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3519                 set->nr_hw_queues = nr_cpu_ids;
3520
3521         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3522                 return -ENOMEM;
3523
3524         ret = -ENOMEM;
3525         for (i = 0; i < set->nr_maps; i++) {
3526                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3527                                                   sizeof(set->map[i].mq_map[0]),
3528                                                   GFP_KERNEL, set->numa_node);
3529                 if (!set->map[i].mq_map)
3530                         goto out_free_mq_map;
3531                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3532         }
3533
3534         ret = blk_mq_update_queue_map(set);
3535         if (ret)
3536                 goto out_free_mq_map;
3537
3538         ret = blk_mq_alloc_map_and_requests(set);
3539         if (ret)
3540                 goto out_free_mq_map;
3541
3542         if (blk_mq_is_sbitmap_shared(set->flags)) {
3543                 atomic_set(&set->active_queues_shared_sbitmap, 0);
3544
3545                 if (blk_mq_init_shared_sbitmap(set)) {
3546                         ret = -ENOMEM;
3547                         goto out_free_mq_rq_maps;
3548                 }
3549         }
3550
3551         mutex_init(&set->tag_list_lock);
3552         INIT_LIST_HEAD(&set->tag_list);
3553
3554         return 0;
3555
3556 out_free_mq_rq_maps:
3557         for (i = 0; i < set->nr_hw_queues; i++)
3558                 blk_mq_free_map_and_requests(set, i);
3559 out_free_mq_map:
3560         for (i = 0; i < set->nr_maps; i++) {
3561                 kfree(set->map[i].mq_map);
3562                 set->map[i].mq_map = NULL;
3563         }
3564         kfree(set->tags);
3565         set->tags = NULL;
3566         return ret;
3567 }
3568 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3569
3570 /* allocate and initialize a tagset for a simple single-queue device */
3571 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3572                 const struct blk_mq_ops *ops, unsigned int queue_depth,
3573                 unsigned int set_flags)
3574 {
3575         memset(set, 0, sizeof(*set));
3576         set->ops = ops;
3577         set->nr_hw_queues = 1;
3578         set->nr_maps = 1;
3579         set->queue_depth = queue_depth;
3580         set->numa_node = NUMA_NO_NODE;
3581         set->flags = set_flags;
3582         return blk_mq_alloc_tag_set(set);
3583 }
3584 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3585
3586 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3587 {
3588         int i, j;
3589
3590         for (i = 0; i < set->nr_hw_queues; i++)
3591                 blk_mq_free_map_and_requests(set, i);
3592
3593         if (blk_mq_is_sbitmap_shared(set->flags))
3594                 blk_mq_exit_shared_sbitmap(set);
3595
3596         for (j = 0; j < set->nr_maps; j++) {
3597                 kfree(set->map[j].mq_map);
3598                 set->map[j].mq_map = NULL;
3599         }
3600
3601         kfree(set->tags);
3602         set->tags = NULL;
3603 }
3604 EXPORT_SYMBOL(blk_mq_free_tag_set);
3605
3606 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3607 {
3608         struct blk_mq_tag_set *set = q->tag_set;
3609         struct blk_mq_hw_ctx *hctx;
3610         int i, ret;
3611
3612         if (!set)
3613                 return -EINVAL;
3614
3615         if (q->nr_requests == nr)
3616                 return 0;
3617
3618         blk_mq_freeze_queue(q);
3619         blk_mq_quiesce_queue(q);
3620
3621         ret = 0;
3622         queue_for_each_hw_ctx(q, hctx, i) {
3623                 if (!hctx->tags)
3624                         continue;
3625                 /*
3626                  * If we're using an MQ scheduler, just update the scheduler
3627                  * queue depth. This is similar to what the old code would do.
3628                  */
3629                 if (!hctx->sched_tags) {
3630                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3631                                                         false);
3632                         if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3633                                 blk_mq_tag_resize_shared_sbitmap(set, nr);
3634                 } else {
3635                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3636                                                         nr, true);
3637                         if (blk_mq_is_sbitmap_shared(set->flags)) {
3638                                 hctx->sched_tags->bitmap_tags =
3639                                         &q->sched_bitmap_tags;
3640                                 hctx->sched_tags->breserved_tags =
3641                                         &q->sched_breserved_tags;
3642                         }
3643                 }
3644                 if (ret)
3645                         break;
3646                 if (q->elevator && q->elevator->type->ops.depth_updated)
3647                         q->elevator->type->ops.depth_updated(hctx);
3648         }
3649         if (!ret) {
3650                 q->nr_requests = nr;
3651                 if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3652                         sbitmap_queue_resize(&q->sched_bitmap_tags,
3653                                              nr - set->reserved_tags);
3654         }
3655
3656         blk_mq_unquiesce_queue(q);
3657         blk_mq_unfreeze_queue(q);
3658
3659         return ret;
3660 }
3661
3662 /*
3663  * request_queue and elevator_type pair.
3664  * It is just used by __blk_mq_update_nr_hw_queues to cache
3665  * the elevator_type associated with a request_queue.
3666  */
3667 struct blk_mq_qe_pair {
3668         struct list_head node;
3669         struct request_queue *q;
3670         struct elevator_type *type;
3671 };
3672
3673 /*
3674  * Cache the elevator_type in qe pair list and switch the
3675  * io scheduler to 'none'
3676  */
3677 static bool blk_mq_elv_switch_none(struct list_head *head,
3678                 struct request_queue *q)
3679 {
3680         struct blk_mq_qe_pair *qe;
3681
3682         if (!q->elevator)
3683                 return true;
3684
3685         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3686         if (!qe)
3687                 return false;
3688
3689         INIT_LIST_HEAD(&qe->node);
3690         qe->q = q;
3691         qe->type = q->elevator->type;
3692         list_add(&qe->node, head);
3693
3694         mutex_lock(&q->sysfs_lock);
3695         /*
3696          * After elevator_switch_mq, the previous elevator_queue will be
3697          * released by elevator_release. The reference of the io scheduler
3698          * module get by elevator_get will also be put. So we need to get
3699          * a reference of the io scheduler module here to prevent it to be
3700          * removed.
3701          */
3702         __module_get(qe->type->elevator_owner);
3703         elevator_switch_mq(q, NULL);
3704         mutex_unlock(&q->sysfs_lock);
3705
3706         return true;
3707 }
3708
3709 static void blk_mq_elv_switch_back(struct list_head *head,
3710                 struct request_queue *q)
3711 {
3712         struct blk_mq_qe_pair *qe;
3713         struct elevator_type *t = NULL;
3714
3715         list_for_each_entry(qe, head, node)
3716                 if (qe->q == q) {
3717                         t = qe->type;
3718                         break;
3719                 }
3720
3721         if (!t)
3722                 return;
3723
3724         list_del(&qe->node);
3725         kfree(qe);
3726
3727         mutex_lock(&q->sysfs_lock);
3728         elevator_switch_mq(q, t);
3729         mutex_unlock(&q->sysfs_lock);
3730 }
3731
3732 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3733                                                         int nr_hw_queues)
3734 {
3735         struct request_queue *q;
3736         LIST_HEAD(head);
3737         int prev_nr_hw_queues;
3738
3739         lockdep_assert_held(&set->tag_list_lock);
3740
3741         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3742                 nr_hw_queues = nr_cpu_ids;
3743         if (nr_hw_queues < 1)
3744                 return;
3745         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3746                 return;
3747
3748         list_for_each_entry(q, &set->tag_list, tag_set_list)
3749                 blk_mq_freeze_queue(q);
3750         /*
3751          * Switch IO scheduler to 'none', cleaning up the data associated
3752          * with the previous scheduler. We will switch back once we are done
3753          * updating the new sw to hw queue mappings.
3754          */
3755         list_for_each_entry(q, &set->tag_list, tag_set_list)
3756                 if (!blk_mq_elv_switch_none(&head, q))
3757                         goto switch_back;
3758
3759         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3760                 blk_mq_debugfs_unregister_hctxs(q);
3761                 blk_mq_sysfs_unregister(q);
3762         }
3763
3764         prev_nr_hw_queues = set->nr_hw_queues;
3765         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3766             0)
3767                 goto reregister;
3768
3769         set->nr_hw_queues = nr_hw_queues;
3770 fallback:
3771         blk_mq_update_queue_map(set);
3772         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3773                 blk_mq_realloc_hw_ctxs(set, q);
3774                 if (q->nr_hw_queues != set->nr_hw_queues) {
3775                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3776                                         nr_hw_queues, prev_nr_hw_queues);
3777                         set->nr_hw_queues = prev_nr_hw_queues;
3778                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3779                         goto fallback;
3780                 }
3781                 blk_mq_map_swqueue(q);
3782         }
3783
3784 reregister:
3785         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3786                 blk_mq_sysfs_register(q);
3787                 blk_mq_debugfs_register_hctxs(q);
3788         }
3789
3790 switch_back:
3791         list_for_each_entry(q, &set->tag_list, tag_set_list)
3792                 blk_mq_elv_switch_back(&head, q);
3793
3794         list_for_each_entry(q, &set->tag_list, tag_set_list)
3795                 blk_mq_unfreeze_queue(q);
3796 }
3797
3798 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3799 {
3800         mutex_lock(&set->tag_list_lock);
3801         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3802         mutex_unlock(&set->tag_list_lock);
3803 }
3804 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3805
3806 /* Enable polling stats and return whether they were already enabled. */
3807 static bool blk_poll_stats_enable(struct request_queue *q)
3808 {
3809         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3810             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3811                 return true;
3812         blk_stat_add_callback(q, q->poll_cb);
3813         return false;
3814 }
3815
3816 static void blk_mq_poll_stats_start(struct request_queue *q)
3817 {
3818         /*
3819          * We don't arm the callback if polling stats are not enabled or the
3820          * callback is already active.
3821          */
3822         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3823             blk_stat_is_active(q->poll_cb))
3824                 return;
3825
3826         blk_stat_activate_msecs(q->poll_cb, 100);
3827 }
3828
3829 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3830 {
3831         struct request_queue *q = cb->data;
3832         int bucket;
3833
3834         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3835                 if (cb->stat[bucket].nr_samples)
3836                         q->poll_stat[bucket] = cb->stat[bucket];
3837         }
3838 }
3839
3840 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3841                                        struct request *rq)
3842 {
3843         unsigned long ret = 0;
3844         int bucket;
3845
3846         /*
3847          * If stats collection isn't on, don't sleep but turn it on for
3848          * future users
3849          */
3850         if (!blk_poll_stats_enable(q))
3851                 return 0;
3852
3853         /*
3854          * As an optimistic guess, use half of the mean service time
3855          * for this type of request. We can (and should) make this smarter.
3856          * For instance, if the completion latencies are tight, we can
3857          * get closer than just half the mean. This is especially
3858          * important on devices where the completion latencies are longer
3859          * than ~10 usec. We do use the stats for the relevant IO size
3860          * if available which does lead to better estimates.
3861          */
3862         bucket = blk_mq_poll_stats_bkt(rq);
3863         if (bucket < 0)
3864                 return ret;
3865
3866         if (q->poll_stat[bucket].nr_samples)
3867                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3868
3869         return ret;
3870 }
3871
3872 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3873                                      struct request *rq)
3874 {
3875         struct hrtimer_sleeper hs;
3876         enum hrtimer_mode mode;
3877         unsigned int nsecs;
3878         ktime_t kt;
3879
3880         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3881                 return false;
3882
3883         /*
3884          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3885          *
3886          *  0:  use half of prev avg
3887          * >0:  use this specific value
3888          */
3889         if (q->poll_nsec > 0)
3890                 nsecs = q->poll_nsec;
3891         else
3892                 nsecs = blk_mq_poll_nsecs(q, rq);
3893
3894         if (!nsecs)
3895                 return false;
3896
3897         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3898
3899         /*
3900          * This will be replaced with the stats tracking code, using
3901          * 'avg_completion_time / 2' as the pre-sleep target.
3902          */
3903         kt = nsecs;
3904
3905         mode = HRTIMER_MODE_REL;
3906         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3907         hrtimer_set_expires(&hs.timer, kt);
3908
3909         do {
3910                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3911                         break;
3912                 set_current_state(TASK_UNINTERRUPTIBLE);
3913                 hrtimer_sleeper_start_expires(&hs, mode);
3914                 if (hs.task)
3915                         io_schedule();
3916                 hrtimer_cancel(&hs.timer);
3917                 mode = HRTIMER_MODE_ABS;
3918         } while (hs.task && !signal_pending(current));
3919
3920         __set_current_state(TASK_RUNNING);
3921         destroy_hrtimer_on_stack(&hs.timer);
3922         return true;
3923 }
3924
3925 static bool blk_mq_poll_hybrid(struct request_queue *q,
3926                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3927 {
3928         struct request *rq;
3929
3930         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3931                 return false;
3932
3933         if (!blk_qc_t_is_internal(cookie))
3934                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3935         else {
3936                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3937                 /*
3938                  * With scheduling, if the request has completed, we'll
3939                  * get a NULL return here, as we clear the sched tag when
3940                  * that happens. The request still remains valid, like always,
3941                  * so we should be safe with just the NULL check.
3942                  */
3943                 if (!rq)
3944                         return false;
3945         }
3946
3947         return blk_mq_poll_hybrid_sleep(q, rq);
3948 }
3949
3950 /**
3951  * blk_poll - poll for IO completions
3952  * @q:  the queue
3953  * @cookie: cookie passed back at IO submission time
3954  * @spin: whether to spin for completions
3955  *
3956  * Description:
3957  *    Poll for completions on the passed in queue. Returns number of
3958  *    completed entries found. If @spin is true, then blk_poll will continue
3959  *    looping until at least one completion is found, unless the task is
3960  *    otherwise marked running (or we need to reschedule).
3961  */
3962 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3963 {
3964         struct blk_mq_hw_ctx *hctx;
3965         unsigned int state;
3966
3967         if (!blk_qc_t_valid(cookie) ||
3968             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3969                 return 0;
3970
3971         if (current->plug)
3972                 blk_flush_plug_list(current->plug, false);
3973
3974         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3975
3976         /*
3977          * If we sleep, have the caller restart the poll loop to reset
3978          * the state. Like for the other success return cases, the
3979          * caller is responsible for checking if the IO completed. If
3980          * the IO isn't complete, we'll get called again and will go
3981          * straight to the busy poll loop. If specified not to spin,
3982          * we also should not sleep.
3983          */
3984         if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3985                 return 1;
3986
3987         hctx->poll_considered++;
3988
3989         state = get_current_state();
3990         do {
3991                 int ret;
3992
3993                 hctx->poll_invoked++;
3994
3995                 ret = q->mq_ops->poll(hctx);
3996                 if (ret > 0) {
3997                         hctx->poll_success++;
3998                         __set_current_state(TASK_RUNNING);
3999                         return ret;
4000                 }
4001
4002                 if (signal_pending_state(state, current))
4003                         __set_current_state(TASK_RUNNING);
4004
4005                 if (task_is_running(current))
4006                         return 1;
4007                 if (ret < 0 || !spin)
4008                         break;
4009                 cpu_relax();
4010         } while (!need_resched());
4011
4012         __set_current_state(TASK_RUNNING);
4013         return 0;
4014 }
4015 EXPORT_SYMBOL_GPL(blk_poll);
4016
4017 unsigned int blk_mq_rq_cpu(struct request *rq)
4018 {
4019         return rq->mq_ctx->cpu;
4020 }
4021 EXPORT_SYMBOL(blk_mq_rq_cpu);
4022
4023 void blk_mq_cancel_work_sync(struct request_queue *q)
4024 {
4025         if (queue_is_mq(q)) {
4026                 struct blk_mq_hw_ctx *hctx;
4027                 int i;
4028
4029                 cancel_delayed_work_sync(&q->requeue_work);
4030
4031                 queue_for_each_hw_ctx(q, hctx, i)
4032                         cancel_delayed_work_sync(&hctx->run_work);
4033         }
4034 }
4035
4036 static int __init blk_mq_init(void)
4037 {
4038         int i;
4039
4040         for_each_possible_cpu(i)
4041                 init_llist_head(&per_cpu(blk_cpu_done, i));
4042         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4043
4044         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4045                                   "block/softirq:dead", NULL,
4046                                   blk_softirq_cpu_dead);
4047         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4048                                 blk_mq_hctx_notify_dead);
4049         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4050                                 blk_mq_hctx_notify_online,
4051                                 blk_mq_hctx_notify_offline);
4052         return 0;
4053 }
4054 subsys_initcall(blk_mq_init);