ARM: tizen_bcm2711_defconfig: Fix console loglevel for logo display
[platform/kernel/linux-rpi.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51         int ddir, sectors, bucket;
52
53         ddir = rq_data_dir(rq);
54         sectors = blk_rq_stats_sectors(rq);
55
56         bucket = ddir + 2 * ilog2(sectors);
57
58         if (bucket < 0)
59                 return -1;
60         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63         return bucket;
64 }
65
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72         return !list_empty_careful(&hctx->dispatch) ||
73                 sbitmap_any_bit_set(&hctx->ctx_map) ||
74                         blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81                                      struct blk_mq_ctx *ctx)
82 {
83         const int bit = ctx->index_hw[hctx->type];
84
85         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86                 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90                                       struct blk_mq_ctx *ctx)
91 {
92         const int bit = ctx->index_hw[hctx->type];
93
94         sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98         struct hd_struct *part;
99         unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103                                   struct request *rq, void *priv,
104                                   bool reserved)
105 {
106         struct mq_inflight *mi = priv;
107
108         if (rq->part == mi->part && blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
109                 mi->inflight[rq_data_dir(rq)]++;
110
111         return true;
112 }
113
114 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
115 {
116         struct mq_inflight mi = { .part = part };
117
118         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119
120         return mi.inflight[0] + mi.inflight[1];
121 }
122
123 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
124                          unsigned int inflight[2])
125 {
126         struct mq_inflight mi = { .part = part };
127
128         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
129         inflight[0] = mi.inflight[0];
130         inflight[1] = mi.inflight[1];
131 }
132
133 void blk_freeze_queue_start(struct request_queue *q)
134 {
135         mutex_lock(&q->mq_freeze_lock);
136         if (++q->mq_freeze_depth == 1) {
137                 percpu_ref_kill(&q->q_usage_counter);
138                 mutex_unlock(&q->mq_freeze_lock);
139                 if (queue_is_mq(q))
140                         blk_mq_run_hw_queues(q, false);
141         } else {
142                 mutex_unlock(&q->mq_freeze_lock);
143         }
144 }
145 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
146
147 void blk_mq_freeze_queue_wait(struct request_queue *q)
148 {
149         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
152
153 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
154                                      unsigned long timeout)
155 {
156         return wait_event_timeout(q->mq_freeze_wq,
157                                         percpu_ref_is_zero(&q->q_usage_counter),
158                                         timeout);
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
161
162 /*
163  * Guarantee no request is in use, so we can change any data structure of
164  * the queue afterward.
165  */
166 void blk_freeze_queue(struct request_queue *q)
167 {
168         /*
169          * In the !blk_mq case we are only calling this to kill the
170          * q_usage_counter, otherwise this increases the freeze depth
171          * and waits for it to return to zero.  For this reason there is
172          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
173          * exported to drivers as the only user for unfreeze is blk_mq.
174          */
175         blk_freeze_queue_start(q);
176         blk_mq_freeze_queue_wait(q);
177 }
178
179 void blk_mq_freeze_queue(struct request_queue *q)
180 {
181         /*
182          * ...just an alias to keep freeze and unfreeze actions balanced
183          * in the blk_mq_* namespace
184          */
185         blk_freeze_queue(q);
186 }
187 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
188
189 void blk_mq_unfreeze_queue(struct request_queue *q)
190 {
191         mutex_lock(&q->mq_freeze_lock);
192         q->mq_freeze_depth--;
193         WARN_ON_ONCE(q->mq_freeze_depth < 0);
194         if (!q->mq_freeze_depth) {
195                 percpu_ref_resurrect(&q->q_usage_counter);
196                 wake_up_all(&q->mq_freeze_wq);
197         }
198         mutex_unlock(&q->mq_freeze_lock);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
201
202 /*
203  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
204  * mpt3sas driver such that this function can be removed.
205  */
206 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
207 {
208         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
209 }
210 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
211
212 /**
213  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
214  * @q: request queue.
215  *
216  * Note: this function does not prevent that the struct request end_io()
217  * callback function is invoked. Once this function is returned, we make
218  * sure no dispatch can happen until the queue is unquiesced via
219  * blk_mq_unquiesce_queue().
220  */
221 void blk_mq_quiesce_queue(struct request_queue *q)
222 {
223         struct blk_mq_hw_ctx *hctx;
224         unsigned int i;
225         bool rcu = false;
226
227         blk_mq_quiesce_queue_nowait(q);
228
229         queue_for_each_hw_ctx(q, hctx, i) {
230                 if (hctx->flags & BLK_MQ_F_BLOCKING)
231                         synchronize_srcu(hctx->srcu);
232                 else
233                         rcu = true;
234         }
235         if (rcu)
236                 synchronize_rcu();
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
239
240 /*
241  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
242  * @q: request queue.
243  *
244  * This function recovers queue into the state before quiescing
245  * which is done by blk_mq_quiesce_queue.
246  */
247 void blk_mq_unquiesce_queue(struct request_queue *q)
248 {
249         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
250
251         /* dispatch requests which are inserted during quiescing */
252         blk_mq_run_hw_queues(q, true);
253 }
254 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
255
256 void blk_mq_wake_waiters(struct request_queue *q)
257 {
258         struct blk_mq_hw_ctx *hctx;
259         unsigned int i;
260
261         queue_for_each_hw_ctx(q, hctx, i)
262                 if (blk_mq_hw_queue_mapped(hctx))
263                         blk_mq_tag_wakeup_all(hctx->tags, true);
264 }
265
266 /*
267  * Only need start/end time stamping if we have iostat or
268  * blk stats enabled, or using an IO scheduler.
269  */
270 static inline bool blk_mq_need_time_stamp(struct request *rq)
271 {
272         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
273 }
274
275 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
276                 unsigned int tag, u64 alloc_time_ns)
277 {
278         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
279         struct request *rq = tags->static_rqs[tag];
280
281         if (data->q->elevator) {
282                 rq->tag = BLK_MQ_NO_TAG;
283                 rq->internal_tag = tag;
284         } else {
285                 rq->tag = tag;
286                 rq->internal_tag = BLK_MQ_NO_TAG;
287         }
288
289         /* csd/requeue_work/fifo_time is initialized before use */
290         rq->q = data->q;
291         rq->mq_ctx = data->ctx;
292         rq->mq_hctx = data->hctx;
293         rq->rq_flags = 0;
294         rq->cmd_flags = data->cmd_flags;
295         if (data->flags & BLK_MQ_REQ_PM)
296                 rq->rq_flags |= RQF_PM;
297         if (blk_queue_io_stat(data->q))
298                 rq->rq_flags |= RQF_IO_STAT;
299         INIT_LIST_HEAD(&rq->queuelist);
300         INIT_HLIST_NODE(&rq->hash);
301         RB_CLEAR_NODE(&rq->rb_node);
302         rq->rq_disk = NULL;
303         rq->part = NULL;
304 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
305         rq->alloc_time_ns = alloc_time_ns;
306 #endif
307         if (blk_mq_need_time_stamp(rq))
308                 rq->start_time_ns = ktime_get_ns();
309         else
310                 rq->start_time_ns = 0;
311         rq->io_start_time_ns = 0;
312         rq->stats_sectors = 0;
313         rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315         rq->nr_integrity_segments = 0;
316 #endif
317         blk_crypto_rq_set_defaults(rq);
318         /* tag was already set */
319         WRITE_ONCE(rq->deadline, 0);
320
321         rq->timeout = 0;
322
323         rq->end_io = NULL;
324         rq->end_io_data = NULL;
325
326         data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
327         refcount_set(&rq->ref, 1);
328
329         if (!op_is_flush(data->cmd_flags)) {
330                 struct elevator_queue *e = data->q->elevator;
331
332                 rq->elv.icq = NULL;
333                 if (e && e->type->ops.prepare_request) {
334                         if (e->type->icq_cache)
335                                 blk_mq_sched_assign_ioc(rq);
336
337                         e->type->ops.prepare_request(rq);
338                         rq->rq_flags |= RQF_ELVPRIV;
339                 }
340         }
341
342         data->hctx->queued++;
343         return rq;
344 }
345
346 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
347 {
348         struct request_queue *q = data->q;
349         struct elevator_queue *e = q->elevator;
350         u64 alloc_time_ns = 0;
351         unsigned int tag;
352
353         /* alloc_time includes depth and tag waits */
354         if (blk_queue_rq_alloc_time(q))
355                 alloc_time_ns = ktime_get_ns();
356
357         if (data->cmd_flags & REQ_NOWAIT)
358                 data->flags |= BLK_MQ_REQ_NOWAIT;
359
360         if (e) {
361                 /*
362                  * Flush requests are special and go directly to the
363                  * dispatch list. Don't include reserved tags in the
364                  * limiting, as it isn't useful.
365                  */
366                 if (!op_is_flush(data->cmd_flags) &&
367                     e->type->ops.limit_depth &&
368                     !(data->flags & BLK_MQ_REQ_RESERVED))
369                         e->type->ops.limit_depth(data->cmd_flags, data);
370         }
371
372 retry:
373         data->ctx = blk_mq_get_ctx(q);
374         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
375         if (!e)
376                 blk_mq_tag_busy(data->hctx);
377
378         /*
379          * Waiting allocations only fail because of an inactive hctx.  In that
380          * case just retry the hctx assignment and tag allocation as CPU hotplug
381          * should have migrated us to an online CPU by now.
382          */
383         tag = blk_mq_get_tag(data);
384         if (tag == BLK_MQ_NO_TAG) {
385                 if (data->flags & BLK_MQ_REQ_NOWAIT)
386                         return NULL;
387
388                 /*
389                  * Give up the CPU and sleep for a random short time to ensure
390                  * that thread using a realtime scheduling class are migrated
391                  * off the CPU, and thus off the hctx that is going away.
392                  */
393                 msleep(3);
394                 goto retry;
395         }
396         return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
397 }
398
399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400                 blk_mq_req_flags_t flags)
401 {
402         struct blk_mq_alloc_data data = {
403                 .q              = q,
404                 .flags          = flags,
405                 .cmd_flags      = op,
406         };
407         struct request *rq;
408         int ret;
409
410         ret = blk_queue_enter(q, flags);
411         if (ret)
412                 return ERR_PTR(ret);
413
414         rq = __blk_mq_alloc_request(&data);
415         if (!rq)
416                 goto out_queue_exit;
417         rq->__data_len = 0;
418         rq->__sector = (sector_t) -1;
419         rq->bio = rq->biotail = NULL;
420         return rq;
421 out_queue_exit:
422         blk_queue_exit(q);
423         return ERR_PTR(-EWOULDBLOCK);
424 }
425 EXPORT_SYMBOL(blk_mq_alloc_request);
426
427 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
428         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
429 {
430         struct blk_mq_alloc_data data = {
431                 .q              = q,
432                 .flags          = flags,
433                 .cmd_flags      = op,
434         };
435         u64 alloc_time_ns = 0;
436         unsigned int cpu;
437         unsigned int tag;
438         int ret;
439
440         /* alloc_time includes depth and tag waits */
441         if (blk_queue_rq_alloc_time(q))
442                 alloc_time_ns = ktime_get_ns();
443
444         /*
445          * If the tag allocator sleeps we could get an allocation for a
446          * different hardware context.  No need to complicate the low level
447          * allocator for this for the rare use case of a command tied to
448          * a specific queue.
449          */
450         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
451                 return ERR_PTR(-EINVAL);
452
453         if (hctx_idx >= q->nr_hw_queues)
454                 return ERR_PTR(-EIO);
455
456         ret = blk_queue_enter(q, flags);
457         if (ret)
458                 return ERR_PTR(ret);
459
460         /*
461          * Check if the hardware context is actually mapped to anything.
462          * If not tell the caller that it should skip this queue.
463          */
464         ret = -EXDEV;
465         data.hctx = q->queue_hw_ctx[hctx_idx];
466         if (!blk_mq_hw_queue_mapped(data.hctx))
467                 goto out_queue_exit;
468         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
469         data.ctx = __blk_mq_get_ctx(q, cpu);
470
471         if (!q->elevator)
472                 blk_mq_tag_busy(data.hctx);
473
474         ret = -EWOULDBLOCK;
475         tag = blk_mq_get_tag(&data);
476         if (tag == BLK_MQ_NO_TAG)
477                 goto out_queue_exit;
478         return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
479
480 out_queue_exit:
481         blk_queue_exit(q);
482         return ERR_PTR(ret);
483 }
484 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
485
486 static void __blk_mq_free_request(struct request *rq)
487 {
488         struct request_queue *q = rq->q;
489         struct blk_mq_ctx *ctx = rq->mq_ctx;
490         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
491         const int sched_tag = rq->internal_tag;
492
493         blk_crypto_free_request(rq);
494         blk_pm_mark_last_busy(rq);
495         rq->mq_hctx = NULL;
496         if (rq->tag != BLK_MQ_NO_TAG)
497                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
498         if (sched_tag != BLK_MQ_NO_TAG)
499                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
500         blk_mq_sched_restart(hctx);
501         blk_queue_exit(q);
502 }
503
504 void blk_mq_free_request(struct request *rq)
505 {
506         struct request_queue *q = rq->q;
507         struct elevator_queue *e = q->elevator;
508         struct blk_mq_ctx *ctx = rq->mq_ctx;
509         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
510
511         if (rq->rq_flags & RQF_ELVPRIV) {
512                 if (e && e->type->ops.finish_request)
513                         e->type->ops.finish_request(rq);
514                 if (rq->elv.icq) {
515                         put_io_context(rq->elv.icq->ioc);
516                         rq->elv.icq = NULL;
517                 }
518         }
519
520         ctx->rq_completed[rq_is_sync(rq)]++;
521         if (rq->rq_flags & RQF_MQ_INFLIGHT)
522                 __blk_mq_dec_active_requests(hctx);
523
524         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
525                 laptop_io_completion(q->backing_dev_info);
526
527         rq_qos_done(q, rq);
528
529         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
530         if (refcount_dec_and_test(&rq->ref))
531                 __blk_mq_free_request(rq);
532 }
533 EXPORT_SYMBOL_GPL(blk_mq_free_request);
534
535 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
536 {
537         u64 now = 0;
538
539         if (blk_mq_need_time_stamp(rq))
540                 now = ktime_get_ns();
541
542         if (rq->rq_flags & RQF_STATS) {
543                 blk_mq_poll_stats_start(rq->q);
544                 blk_stat_add(rq, now);
545         }
546
547         blk_mq_sched_completed_request(rq, now);
548
549         blk_account_io_done(rq, now);
550
551         if (rq->end_io) {
552                 rq_qos_done(rq->q, rq);
553                 rq->end_io(rq, error);
554         } else {
555                 blk_mq_free_request(rq);
556         }
557 }
558 EXPORT_SYMBOL(__blk_mq_end_request);
559
560 void blk_mq_end_request(struct request *rq, blk_status_t error)
561 {
562         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
563                 BUG();
564         __blk_mq_end_request(rq, error);
565 }
566 EXPORT_SYMBOL(blk_mq_end_request);
567
568 /*
569  * Softirq action handler - move entries to local list and loop over them
570  * while passing them to the queue registered handler.
571  */
572 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
573 {
574         struct list_head *cpu_list, local_list;
575
576         local_irq_disable();
577         cpu_list = this_cpu_ptr(&blk_cpu_done);
578         list_replace_init(cpu_list, &local_list);
579         local_irq_enable();
580
581         while (!list_empty(&local_list)) {
582                 struct request *rq;
583
584                 rq = list_entry(local_list.next, struct request, ipi_list);
585                 list_del_init(&rq->ipi_list);
586                 rq->q->mq_ops->complete(rq);
587         }
588 }
589
590 static void blk_mq_trigger_softirq(struct request *rq)
591 {
592         struct list_head *list;
593         unsigned long flags;
594
595         local_irq_save(flags);
596         list = this_cpu_ptr(&blk_cpu_done);
597         list_add_tail(&rq->ipi_list, list);
598
599         /*
600          * If the list only contains our just added request, signal a raise of
601          * the softirq.  If there are already entries there, someone already
602          * raised the irq but it hasn't run yet.
603          */
604         if (list->next == &rq->ipi_list)
605                 raise_softirq_irqoff(BLOCK_SOFTIRQ);
606         local_irq_restore(flags);
607 }
608
609 static int blk_softirq_cpu_dead(unsigned int cpu)
610 {
611         /*
612          * If a CPU goes away, splice its entries to the current CPU
613          * and trigger a run of the softirq
614          */
615         local_irq_disable();
616         list_splice_init(&per_cpu(blk_cpu_done, cpu),
617                          this_cpu_ptr(&blk_cpu_done));
618         raise_softirq_irqoff(BLOCK_SOFTIRQ);
619         local_irq_enable();
620
621         return 0;
622 }
623
624
625 static void __blk_mq_complete_request_remote(void *data)
626 {
627         struct request *rq = data;
628
629         /*
630          * For most of single queue controllers, there is only one irq vector
631          * for handling I/O completion, and the only irq's affinity is set
632          * to all possible CPUs.  On most of ARCHs, this affinity means the irq
633          * is handled on one specific CPU.
634          *
635          * So complete I/O requests in softirq context in case of single queue
636          * devices to avoid degrading I/O performance due to irqsoff latency.
637          */
638         if (rq->q->nr_hw_queues == 1)
639                 blk_mq_trigger_softirq(rq);
640         else
641                 rq->q->mq_ops->complete(rq);
642 }
643
644 static inline bool blk_mq_complete_need_ipi(struct request *rq)
645 {
646         int cpu = raw_smp_processor_id();
647
648         if (!IS_ENABLED(CONFIG_SMP) ||
649             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
650                 return false;
651
652         /* same CPU or cache domain?  Complete locally */
653         if (cpu == rq->mq_ctx->cpu ||
654             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
655              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
656                 return false;
657
658         /* don't try to IPI to an offline CPU */
659         return cpu_online(rq->mq_ctx->cpu);
660 }
661
662 bool blk_mq_complete_request_remote(struct request *rq)
663 {
664         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
665
666         /*
667          * For a polled request, always complete locallly, it's pointless
668          * to redirect the completion.
669          */
670         if (rq->cmd_flags & REQ_HIPRI)
671                 return false;
672
673         if (blk_mq_complete_need_ipi(rq)) {
674                 rq->csd.func = __blk_mq_complete_request_remote;
675                 rq->csd.info = rq;
676                 rq->csd.flags = 0;
677                 smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
678         } else {
679                 if (rq->q->nr_hw_queues > 1)
680                         return false;
681                 blk_mq_trigger_softirq(rq);
682         }
683
684         return true;
685 }
686 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
687
688 /**
689  * blk_mq_complete_request - end I/O on a request
690  * @rq:         the request being processed
691  *
692  * Description:
693  *      Complete a request by scheduling the ->complete_rq operation.
694  **/
695 void blk_mq_complete_request(struct request *rq)
696 {
697         if (!blk_mq_complete_request_remote(rq))
698                 rq->q->mq_ops->complete(rq);
699 }
700 EXPORT_SYMBOL(blk_mq_complete_request);
701
702 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
703         __releases(hctx->srcu)
704 {
705         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
706                 rcu_read_unlock();
707         else
708                 srcu_read_unlock(hctx->srcu, srcu_idx);
709 }
710
711 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
712         __acquires(hctx->srcu)
713 {
714         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
715                 /* shut up gcc false positive */
716                 *srcu_idx = 0;
717                 rcu_read_lock();
718         } else
719                 *srcu_idx = srcu_read_lock(hctx->srcu);
720 }
721
722 /**
723  * blk_mq_start_request - Start processing a request
724  * @rq: Pointer to request to be started
725  *
726  * Function used by device drivers to notify the block layer that a request
727  * is going to be processed now, so blk layer can do proper initializations
728  * such as starting the timeout timer.
729  */
730 void blk_mq_start_request(struct request *rq)
731 {
732         struct request_queue *q = rq->q;
733
734         trace_block_rq_issue(q, rq);
735
736         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
737                 rq->io_start_time_ns = ktime_get_ns();
738                 rq->stats_sectors = blk_rq_sectors(rq);
739                 rq->rq_flags |= RQF_STATS;
740                 rq_qos_issue(q, rq);
741         }
742
743         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
744
745         blk_add_timer(rq);
746         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
747
748 #ifdef CONFIG_BLK_DEV_INTEGRITY
749         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
750                 q->integrity.profile->prepare_fn(rq);
751 #endif
752 }
753 EXPORT_SYMBOL(blk_mq_start_request);
754
755 static void __blk_mq_requeue_request(struct request *rq)
756 {
757         struct request_queue *q = rq->q;
758
759         blk_mq_put_driver_tag(rq);
760
761         trace_block_rq_requeue(q, rq);
762         rq_qos_requeue(q, rq);
763
764         if (blk_mq_request_started(rq)) {
765                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
766                 rq->rq_flags &= ~RQF_TIMED_OUT;
767         }
768 }
769
770 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
771 {
772         __blk_mq_requeue_request(rq);
773
774         /* this request will be re-inserted to io scheduler queue */
775         blk_mq_sched_requeue_request(rq);
776
777         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
778 }
779 EXPORT_SYMBOL(blk_mq_requeue_request);
780
781 static void blk_mq_requeue_work(struct work_struct *work)
782 {
783         struct request_queue *q =
784                 container_of(work, struct request_queue, requeue_work.work);
785         LIST_HEAD(rq_list);
786         struct request *rq, *next;
787
788         spin_lock_irq(&q->requeue_lock);
789         list_splice_init(&q->requeue_list, &rq_list);
790         spin_unlock_irq(&q->requeue_lock);
791
792         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
793                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
794                         continue;
795
796                 rq->rq_flags &= ~RQF_SOFTBARRIER;
797                 list_del_init(&rq->queuelist);
798                 /*
799                  * If RQF_DONTPREP, rq has contained some driver specific
800                  * data, so insert it to hctx dispatch list to avoid any
801                  * merge.
802                  */
803                 if (rq->rq_flags & RQF_DONTPREP)
804                         blk_mq_request_bypass_insert(rq, false, false);
805                 else
806                         blk_mq_sched_insert_request(rq, true, false, false);
807         }
808
809         while (!list_empty(&rq_list)) {
810                 rq = list_entry(rq_list.next, struct request, queuelist);
811                 list_del_init(&rq->queuelist);
812                 blk_mq_sched_insert_request(rq, false, false, false);
813         }
814
815         blk_mq_run_hw_queues(q, false);
816 }
817
818 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
819                                 bool kick_requeue_list)
820 {
821         struct request_queue *q = rq->q;
822         unsigned long flags;
823
824         /*
825          * We abuse this flag that is otherwise used by the I/O scheduler to
826          * request head insertion from the workqueue.
827          */
828         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
829
830         spin_lock_irqsave(&q->requeue_lock, flags);
831         if (at_head) {
832                 rq->rq_flags |= RQF_SOFTBARRIER;
833                 list_add(&rq->queuelist, &q->requeue_list);
834         } else {
835                 list_add_tail(&rq->queuelist, &q->requeue_list);
836         }
837         spin_unlock_irqrestore(&q->requeue_lock, flags);
838
839         if (kick_requeue_list)
840                 blk_mq_kick_requeue_list(q);
841 }
842
843 void blk_mq_kick_requeue_list(struct request_queue *q)
844 {
845         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
846 }
847 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
848
849 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
850                                     unsigned long msecs)
851 {
852         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
853                                     msecs_to_jiffies(msecs));
854 }
855 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
856
857 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
858 {
859         if (tag < tags->nr_tags) {
860                 prefetch(tags->rqs[tag]);
861                 return tags->rqs[tag];
862         }
863
864         return NULL;
865 }
866 EXPORT_SYMBOL(blk_mq_tag_to_rq);
867
868 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
869                                void *priv, bool reserved)
870 {
871         /*
872          * If we find a request that isn't idle and the queue matches,
873          * we know the queue is busy. Return false to stop the iteration.
874          */
875         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
876                 bool *busy = priv;
877
878                 *busy = true;
879                 return false;
880         }
881
882         return true;
883 }
884
885 bool blk_mq_queue_inflight(struct request_queue *q)
886 {
887         bool busy = false;
888
889         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
890         return busy;
891 }
892 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
893
894 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
895 {
896         req->rq_flags |= RQF_TIMED_OUT;
897         if (req->q->mq_ops->timeout) {
898                 enum blk_eh_timer_return ret;
899
900                 ret = req->q->mq_ops->timeout(req, reserved);
901                 if (ret == BLK_EH_DONE)
902                         return;
903                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
904         }
905
906         blk_add_timer(req);
907 }
908
909 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
910 {
911         unsigned long deadline;
912
913         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
914                 return false;
915         if (rq->rq_flags & RQF_TIMED_OUT)
916                 return false;
917
918         deadline = READ_ONCE(rq->deadline);
919         if (time_after_eq(jiffies, deadline))
920                 return true;
921
922         if (*next == 0)
923                 *next = deadline;
924         else if (time_after(*next, deadline))
925                 *next = deadline;
926         return false;
927 }
928
929 void blk_mq_put_rq_ref(struct request *rq)
930 {
931         if (is_flush_rq(rq))
932                 rq->end_io(rq, 0);
933         else if (refcount_dec_and_test(&rq->ref))
934                 __blk_mq_free_request(rq);
935 }
936
937 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
938                 struct request *rq, void *priv, bool reserved)
939 {
940         unsigned long *next = priv;
941
942         /*
943          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
944          * be reallocated underneath the timeout handler's processing, then
945          * the expire check is reliable. If the request is not expired, then
946          * it was completed and reallocated as a new request after returning
947          * from blk_mq_check_expired().
948          */
949         if (blk_mq_req_expired(rq, next))
950                 blk_mq_rq_timed_out(rq, reserved);
951         return true;
952 }
953
954 static void blk_mq_timeout_work(struct work_struct *work)
955 {
956         struct request_queue *q =
957                 container_of(work, struct request_queue, timeout_work);
958         unsigned long next = 0;
959         struct blk_mq_hw_ctx *hctx;
960         int i;
961
962         /* A deadlock might occur if a request is stuck requiring a
963          * timeout at the same time a queue freeze is waiting
964          * completion, since the timeout code would not be able to
965          * acquire the queue reference here.
966          *
967          * That's why we don't use blk_queue_enter here; instead, we use
968          * percpu_ref_tryget directly, because we need to be able to
969          * obtain a reference even in the short window between the queue
970          * starting to freeze, by dropping the first reference in
971          * blk_freeze_queue_start, and the moment the last request is
972          * consumed, marked by the instant q_usage_counter reaches
973          * zero.
974          */
975         if (!percpu_ref_tryget(&q->q_usage_counter))
976                 return;
977
978         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
979
980         if (next != 0) {
981                 mod_timer(&q->timeout, next);
982         } else {
983                 /*
984                  * Request timeouts are handled as a forward rolling timer. If
985                  * we end up here it means that no requests are pending and
986                  * also that no request has been pending for a while. Mark
987                  * each hctx as idle.
988                  */
989                 queue_for_each_hw_ctx(q, hctx, i) {
990                         /* the hctx may be unmapped, so check it here */
991                         if (blk_mq_hw_queue_mapped(hctx))
992                                 blk_mq_tag_idle(hctx);
993                 }
994         }
995         blk_queue_exit(q);
996 }
997
998 struct flush_busy_ctx_data {
999         struct blk_mq_hw_ctx *hctx;
1000         struct list_head *list;
1001 };
1002
1003 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1004 {
1005         struct flush_busy_ctx_data *flush_data = data;
1006         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1007         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1008         enum hctx_type type = hctx->type;
1009
1010         spin_lock(&ctx->lock);
1011         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1012         sbitmap_clear_bit(sb, bitnr);
1013         spin_unlock(&ctx->lock);
1014         return true;
1015 }
1016
1017 /*
1018  * Process software queues that have been marked busy, splicing them
1019  * to the for-dispatch
1020  */
1021 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1022 {
1023         struct flush_busy_ctx_data data = {
1024                 .hctx = hctx,
1025                 .list = list,
1026         };
1027
1028         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1029 }
1030 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1031
1032 struct dispatch_rq_data {
1033         struct blk_mq_hw_ctx *hctx;
1034         struct request *rq;
1035 };
1036
1037 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1038                 void *data)
1039 {
1040         struct dispatch_rq_data *dispatch_data = data;
1041         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1042         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1043         enum hctx_type type = hctx->type;
1044
1045         spin_lock(&ctx->lock);
1046         if (!list_empty(&ctx->rq_lists[type])) {
1047                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1048                 list_del_init(&dispatch_data->rq->queuelist);
1049                 if (list_empty(&ctx->rq_lists[type]))
1050                         sbitmap_clear_bit(sb, bitnr);
1051         }
1052         spin_unlock(&ctx->lock);
1053
1054         return !dispatch_data->rq;
1055 }
1056
1057 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1058                                         struct blk_mq_ctx *start)
1059 {
1060         unsigned off = start ? start->index_hw[hctx->type] : 0;
1061         struct dispatch_rq_data data = {
1062                 .hctx = hctx,
1063                 .rq   = NULL,
1064         };
1065
1066         __sbitmap_for_each_set(&hctx->ctx_map, off,
1067                                dispatch_rq_from_ctx, &data);
1068
1069         return data.rq;
1070 }
1071
1072 static inline unsigned int queued_to_index(unsigned int queued)
1073 {
1074         if (!queued)
1075                 return 0;
1076
1077         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1078 }
1079
1080 static bool __blk_mq_get_driver_tag(struct request *rq)
1081 {
1082         struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1083         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1084         int tag;
1085
1086         blk_mq_tag_busy(rq->mq_hctx);
1087
1088         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1089                 bt = rq->mq_hctx->tags->breserved_tags;
1090                 tag_offset = 0;
1091         } else {
1092                 if (!hctx_may_queue(rq->mq_hctx, bt))
1093                         return false;
1094         }
1095
1096         tag = __sbitmap_queue_get(bt);
1097         if (tag == BLK_MQ_NO_TAG)
1098                 return false;
1099
1100         rq->tag = tag + tag_offset;
1101         return true;
1102 }
1103
1104 static bool blk_mq_get_driver_tag(struct request *rq)
1105 {
1106         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1107
1108         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1109                 return false;
1110
1111         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1112                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1113                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1114                 __blk_mq_inc_active_requests(hctx);
1115         }
1116         hctx->tags->rqs[rq->tag] = rq;
1117         return true;
1118 }
1119
1120 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1121                                 int flags, void *key)
1122 {
1123         struct blk_mq_hw_ctx *hctx;
1124
1125         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1126
1127         spin_lock(&hctx->dispatch_wait_lock);
1128         if (!list_empty(&wait->entry)) {
1129                 struct sbitmap_queue *sbq;
1130
1131                 list_del_init(&wait->entry);
1132                 sbq = hctx->tags->bitmap_tags;
1133                 atomic_dec(&sbq->ws_active);
1134         }
1135         spin_unlock(&hctx->dispatch_wait_lock);
1136
1137         blk_mq_run_hw_queue(hctx, true);
1138         return 1;
1139 }
1140
1141 /*
1142  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1143  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1144  * restart. For both cases, take care to check the condition again after
1145  * marking us as waiting.
1146  */
1147 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1148                                  struct request *rq)
1149 {
1150         struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1151         struct wait_queue_head *wq;
1152         wait_queue_entry_t *wait;
1153         bool ret;
1154
1155         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1156                 blk_mq_sched_mark_restart_hctx(hctx);
1157
1158                 /*
1159                  * It's possible that a tag was freed in the window between the
1160                  * allocation failure and adding the hardware queue to the wait
1161                  * queue.
1162                  *
1163                  * Don't clear RESTART here, someone else could have set it.
1164                  * At most this will cost an extra queue run.
1165                  */
1166                 return blk_mq_get_driver_tag(rq);
1167         }
1168
1169         wait = &hctx->dispatch_wait;
1170         if (!list_empty_careful(&wait->entry))
1171                 return false;
1172
1173         wq = &bt_wait_ptr(sbq, hctx)->wait;
1174
1175         spin_lock_irq(&wq->lock);
1176         spin_lock(&hctx->dispatch_wait_lock);
1177         if (!list_empty(&wait->entry)) {
1178                 spin_unlock(&hctx->dispatch_wait_lock);
1179                 spin_unlock_irq(&wq->lock);
1180                 return false;
1181         }
1182
1183         atomic_inc(&sbq->ws_active);
1184         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1185         __add_wait_queue(wq, wait);
1186
1187         /*
1188          * It's possible that a tag was freed in the window between the
1189          * allocation failure and adding the hardware queue to the wait
1190          * queue.
1191          */
1192         ret = blk_mq_get_driver_tag(rq);
1193         if (!ret) {
1194                 spin_unlock(&hctx->dispatch_wait_lock);
1195                 spin_unlock_irq(&wq->lock);
1196                 return false;
1197         }
1198
1199         /*
1200          * We got a tag, remove ourselves from the wait queue to ensure
1201          * someone else gets the wakeup.
1202          */
1203         list_del_init(&wait->entry);
1204         atomic_dec(&sbq->ws_active);
1205         spin_unlock(&hctx->dispatch_wait_lock);
1206         spin_unlock_irq(&wq->lock);
1207
1208         return true;
1209 }
1210
1211 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1212 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1213 /*
1214  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1215  * - EWMA is one simple way to compute running average value
1216  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1217  * - take 4 as factor for avoiding to get too small(0) result, and this
1218  *   factor doesn't matter because EWMA decreases exponentially
1219  */
1220 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1221 {
1222         unsigned int ewma;
1223
1224         ewma = hctx->dispatch_busy;
1225
1226         if (!ewma && !busy)
1227                 return;
1228
1229         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1230         if (busy)
1231                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1232         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1233
1234         hctx->dispatch_busy = ewma;
1235 }
1236
1237 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1238
1239 static void blk_mq_handle_dev_resource(struct request *rq,
1240                                        struct list_head *list)
1241 {
1242         struct request *next =
1243                 list_first_entry_or_null(list, struct request, queuelist);
1244
1245         /*
1246          * If an I/O scheduler has been configured and we got a driver tag for
1247          * the next request already, free it.
1248          */
1249         if (next)
1250                 blk_mq_put_driver_tag(next);
1251
1252         list_add(&rq->queuelist, list);
1253         __blk_mq_requeue_request(rq);
1254 }
1255
1256 static void blk_mq_handle_zone_resource(struct request *rq,
1257                                         struct list_head *zone_list)
1258 {
1259         /*
1260          * If we end up here it is because we cannot dispatch a request to a
1261          * specific zone due to LLD level zone-write locking or other zone
1262          * related resource not being available. In this case, set the request
1263          * aside in zone_list for retrying it later.
1264          */
1265         list_add(&rq->queuelist, zone_list);
1266         __blk_mq_requeue_request(rq);
1267 }
1268
1269 enum prep_dispatch {
1270         PREP_DISPATCH_OK,
1271         PREP_DISPATCH_NO_TAG,
1272         PREP_DISPATCH_NO_BUDGET,
1273 };
1274
1275 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1276                                                   bool need_budget)
1277 {
1278         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1279
1280         if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1281                 blk_mq_put_driver_tag(rq);
1282                 return PREP_DISPATCH_NO_BUDGET;
1283         }
1284
1285         if (!blk_mq_get_driver_tag(rq)) {
1286                 /*
1287                  * The initial allocation attempt failed, so we need to
1288                  * rerun the hardware queue when a tag is freed. The
1289                  * waitqueue takes care of that. If the queue is run
1290                  * before we add this entry back on the dispatch list,
1291                  * we'll re-run it below.
1292                  */
1293                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1294                         /*
1295                          * All budgets not got from this function will be put
1296                          * together during handling partial dispatch
1297                          */
1298                         if (need_budget)
1299                                 blk_mq_put_dispatch_budget(rq->q);
1300                         return PREP_DISPATCH_NO_TAG;
1301                 }
1302         }
1303
1304         return PREP_DISPATCH_OK;
1305 }
1306
1307 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1308 static void blk_mq_release_budgets(struct request_queue *q,
1309                 unsigned int nr_budgets)
1310 {
1311         int i;
1312
1313         for (i = 0; i < nr_budgets; i++)
1314                 blk_mq_put_dispatch_budget(q);
1315 }
1316
1317 /*
1318  * Returns true if we did some work AND can potentially do more.
1319  */
1320 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1321                              unsigned int nr_budgets)
1322 {
1323         enum prep_dispatch prep;
1324         struct request_queue *q = hctx->queue;
1325         struct request *rq, *nxt;
1326         int errors, queued;
1327         blk_status_t ret = BLK_STS_OK;
1328         LIST_HEAD(zone_list);
1329         bool needs_resource = false;
1330
1331         if (list_empty(list))
1332                 return false;
1333
1334         /*
1335          * Now process all the entries, sending them to the driver.
1336          */
1337         errors = queued = 0;
1338         do {
1339                 struct blk_mq_queue_data bd;
1340
1341                 rq = list_first_entry(list, struct request, queuelist);
1342
1343                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1344                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1345                 if (prep != PREP_DISPATCH_OK)
1346                         break;
1347
1348                 list_del_init(&rq->queuelist);
1349
1350                 bd.rq = rq;
1351
1352                 /*
1353                  * Flag last if we have no more requests, or if we have more
1354                  * but can't assign a driver tag to it.
1355                  */
1356                 if (list_empty(list))
1357                         bd.last = true;
1358                 else {
1359                         nxt = list_first_entry(list, struct request, queuelist);
1360                         bd.last = !blk_mq_get_driver_tag(nxt);
1361                 }
1362
1363                 /*
1364                  * once the request is queued to lld, no need to cover the
1365                  * budget any more
1366                  */
1367                 if (nr_budgets)
1368                         nr_budgets--;
1369                 ret = q->mq_ops->queue_rq(hctx, &bd);
1370                 switch (ret) {
1371                 case BLK_STS_OK:
1372                         queued++;
1373                         break;
1374                 case BLK_STS_RESOURCE:
1375                         needs_resource = true;
1376                         fallthrough;
1377                 case BLK_STS_DEV_RESOURCE:
1378                         blk_mq_handle_dev_resource(rq, list);
1379                         goto out;
1380                 case BLK_STS_ZONE_RESOURCE:
1381                         /*
1382                          * Move the request to zone_list and keep going through
1383                          * the dispatch list to find more requests the drive can
1384                          * accept.
1385                          */
1386                         blk_mq_handle_zone_resource(rq, &zone_list);
1387                         needs_resource = true;
1388                         break;
1389                 default:
1390                         errors++;
1391                         blk_mq_end_request(rq, BLK_STS_IOERR);
1392                 }
1393         } while (!list_empty(list));
1394 out:
1395         if (!list_empty(&zone_list))
1396                 list_splice_tail_init(&zone_list, list);
1397
1398         hctx->dispatched[queued_to_index(queued)]++;
1399
1400         /* If we didn't flush the entire list, we could have told the driver
1401          * there was more coming, but that turned out to be a lie.
1402          */
1403         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1404                 q->mq_ops->commit_rqs(hctx);
1405         /*
1406          * Any items that need requeuing? Stuff them into hctx->dispatch,
1407          * that is where we will continue on next queue run.
1408          */
1409         if (!list_empty(list)) {
1410                 bool needs_restart;
1411                 /* For non-shared tags, the RESTART check will suffice */
1412                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1413                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1414
1415                 blk_mq_release_budgets(q, nr_budgets);
1416
1417                 spin_lock(&hctx->lock);
1418                 list_splice_tail_init(list, &hctx->dispatch);
1419                 spin_unlock(&hctx->lock);
1420
1421                 /*
1422                  * Order adding requests to hctx->dispatch and checking
1423                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1424                  * in blk_mq_sched_restart(). Avoid restart code path to
1425                  * miss the new added requests to hctx->dispatch, meantime
1426                  * SCHED_RESTART is observed here.
1427                  */
1428                 smp_mb();
1429
1430                 /*
1431                  * If SCHED_RESTART was set by the caller of this function and
1432                  * it is no longer set that means that it was cleared by another
1433                  * thread and hence that a queue rerun is needed.
1434                  *
1435                  * If 'no_tag' is set, that means that we failed getting
1436                  * a driver tag with an I/O scheduler attached. If our dispatch
1437                  * waitqueue is no longer active, ensure that we run the queue
1438                  * AFTER adding our entries back to the list.
1439                  *
1440                  * If no I/O scheduler has been configured it is possible that
1441                  * the hardware queue got stopped and restarted before requests
1442                  * were pushed back onto the dispatch list. Rerun the queue to
1443                  * avoid starvation. Notes:
1444                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1445                  *   been stopped before rerunning a queue.
1446                  * - Some but not all block drivers stop a queue before
1447                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1448                  *   and dm-rq.
1449                  *
1450                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1451                  * bit is set, run queue after a delay to avoid IO stalls
1452                  * that could otherwise occur if the queue is idle.  We'll do
1453                  * similar if we couldn't get budget or couldn't lock a zone
1454                  * and SCHED_RESTART is set.
1455                  */
1456                 needs_restart = blk_mq_sched_needs_restart(hctx);
1457                 if (prep == PREP_DISPATCH_NO_BUDGET)
1458                         needs_resource = true;
1459                 if (!needs_restart ||
1460                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1461                         blk_mq_run_hw_queue(hctx, true);
1462                 else if (needs_restart && needs_resource)
1463                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1464
1465                 blk_mq_update_dispatch_busy(hctx, true);
1466                 return false;
1467         } else
1468                 blk_mq_update_dispatch_busy(hctx, false);
1469
1470         return (queued + errors) != 0;
1471 }
1472
1473 /**
1474  * __blk_mq_run_hw_queue - Run a hardware queue.
1475  * @hctx: Pointer to the hardware queue to run.
1476  *
1477  * Send pending requests to the hardware.
1478  */
1479 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1480 {
1481         int srcu_idx;
1482
1483         /*
1484          * We should be running this queue from one of the CPUs that
1485          * are mapped to it.
1486          *
1487          * There are at least two related races now between setting
1488          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1489          * __blk_mq_run_hw_queue():
1490          *
1491          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1492          *   but later it becomes online, then this warning is harmless
1493          *   at all
1494          *
1495          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1496          *   but later it becomes offline, then the warning can't be
1497          *   triggered, and we depend on blk-mq timeout handler to
1498          *   handle dispatched requests to this hctx
1499          */
1500         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1501                 cpu_online(hctx->next_cpu)) {
1502                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1503                         raw_smp_processor_id(),
1504                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1505                 dump_stack();
1506         }
1507
1508         /*
1509          * We can't run the queue inline with ints disabled. Ensure that
1510          * we catch bad users of this early.
1511          */
1512         WARN_ON_ONCE(in_interrupt());
1513
1514         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1515
1516         hctx_lock(hctx, &srcu_idx);
1517         blk_mq_sched_dispatch_requests(hctx);
1518         hctx_unlock(hctx, srcu_idx);
1519 }
1520
1521 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1522 {
1523         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1524
1525         if (cpu >= nr_cpu_ids)
1526                 cpu = cpumask_first(hctx->cpumask);
1527         return cpu;
1528 }
1529
1530 /*
1531  * It'd be great if the workqueue API had a way to pass
1532  * in a mask and had some smarts for more clever placement.
1533  * For now we just round-robin here, switching for every
1534  * BLK_MQ_CPU_WORK_BATCH queued items.
1535  */
1536 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1537 {
1538         bool tried = false;
1539         int next_cpu = hctx->next_cpu;
1540
1541         if (hctx->queue->nr_hw_queues == 1)
1542                 return WORK_CPU_UNBOUND;
1543
1544         if (--hctx->next_cpu_batch <= 0) {
1545 select_cpu:
1546                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1547                                 cpu_online_mask);
1548                 if (next_cpu >= nr_cpu_ids)
1549                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1550                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1551         }
1552
1553         /*
1554          * Do unbound schedule if we can't find a online CPU for this hctx,
1555          * and it should only happen in the path of handling CPU DEAD.
1556          */
1557         if (!cpu_online(next_cpu)) {
1558                 if (!tried) {
1559                         tried = true;
1560                         goto select_cpu;
1561                 }
1562
1563                 /*
1564                  * Make sure to re-select CPU next time once after CPUs
1565                  * in hctx->cpumask become online again.
1566                  */
1567                 hctx->next_cpu = next_cpu;
1568                 hctx->next_cpu_batch = 1;
1569                 return WORK_CPU_UNBOUND;
1570         }
1571
1572         hctx->next_cpu = next_cpu;
1573         return next_cpu;
1574 }
1575
1576 /**
1577  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1578  * @hctx: Pointer to the hardware queue to run.
1579  * @async: If we want to run the queue asynchronously.
1580  * @msecs: Microseconds of delay to wait before running the queue.
1581  *
1582  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1583  * with a delay of @msecs.
1584  */
1585 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1586                                         unsigned long msecs)
1587 {
1588         if (unlikely(blk_mq_hctx_stopped(hctx)))
1589                 return;
1590
1591         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1592                 int cpu = get_cpu();
1593                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1594                         __blk_mq_run_hw_queue(hctx);
1595                         put_cpu();
1596                         return;
1597                 }
1598
1599                 put_cpu();
1600         }
1601
1602         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1603                                     msecs_to_jiffies(msecs));
1604 }
1605
1606 /**
1607  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1608  * @hctx: Pointer to the hardware queue to run.
1609  * @msecs: Microseconds of delay to wait before running the queue.
1610  *
1611  * Run a hardware queue asynchronously with a delay of @msecs.
1612  */
1613 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1614 {
1615         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1616 }
1617 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1618
1619 /**
1620  * blk_mq_run_hw_queue - Start to run a hardware queue.
1621  * @hctx: Pointer to the hardware queue to run.
1622  * @async: If we want to run the queue asynchronously.
1623  *
1624  * Check if the request queue is not in a quiesced state and if there are
1625  * pending requests to be sent. If this is true, run the queue to send requests
1626  * to hardware.
1627  */
1628 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1629 {
1630         int srcu_idx;
1631         bool need_run;
1632
1633         /*
1634          * When queue is quiesced, we may be switching io scheduler, or
1635          * updating nr_hw_queues, or other things, and we can't run queue
1636          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1637          *
1638          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1639          * quiesced.
1640          */
1641         hctx_lock(hctx, &srcu_idx);
1642         need_run = !blk_queue_quiesced(hctx->queue) &&
1643                 blk_mq_hctx_has_pending(hctx);
1644         hctx_unlock(hctx, srcu_idx);
1645
1646         if (need_run)
1647                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1648 }
1649 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1650
1651 /**
1652  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1653  * @q: Pointer to the request queue to run.
1654  * @async: If we want to run the queue asynchronously.
1655  */
1656 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1657 {
1658         struct blk_mq_hw_ctx *hctx;
1659         int i;
1660
1661         queue_for_each_hw_ctx(q, hctx, i) {
1662                 if (blk_mq_hctx_stopped(hctx))
1663                         continue;
1664
1665                 blk_mq_run_hw_queue(hctx, async);
1666         }
1667 }
1668 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1669
1670 /**
1671  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1672  * @q: Pointer to the request queue to run.
1673  * @msecs: Microseconds of delay to wait before running the queues.
1674  */
1675 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1676 {
1677         struct blk_mq_hw_ctx *hctx;
1678         int i;
1679
1680         queue_for_each_hw_ctx(q, hctx, i) {
1681                 if (blk_mq_hctx_stopped(hctx))
1682                         continue;
1683
1684                 blk_mq_delay_run_hw_queue(hctx, msecs);
1685         }
1686 }
1687 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1688
1689 /**
1690  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1691  * @q: request queue.
1692  *
1693  * The caller is responsible for serializing this function against
1694  * blk_mq_{start,stop}_hw_queue().
1695  */
1696 bool blk_mq_queue_stopped(struct request_queue *q)
1697 {
1698         struct blk_mq_hw_ctx *hctx;
1699         int i;
1700
1701         queue_for_each_hw_ctx(q, hctx, i)
1702                 if (blk_mq_hctx_stopped(hctx))
1703                         return true;
1704
1705         return false;
1706 }
1707 EXPORT_SYMBOL(blk_mq_queue_stopped);
1708
1709 /*
1710  * This function is often used for pausing .queue_rq() by driver when
1711  * there isn't enough resource or some conditions aren't satisfied, and
1712  * BLK_STS_RESOURCE is usually returned.
1713  *
1714  * We do not guarantee that dispatch can be drained or blocked
1715  * after blk_mq_stop_hw_queue() returns. Please use
1716  * blk_mq_quiesce_queue() for that requirement.
1717  */
1718 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1719 {
1720         cancel_delayed_work(&hctx->run_work);
1721
1722         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1723 }
1724 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1725
1726 /*
1727  * This function is often used for pausing .queue_rq() by driver when
1728  * there isn't enough resource or some conditions aren't satisfied, and
1729  * BLK_STS_RESOURCE is usually returned.
1730  *
1731  * We do not guarantee that dispatch can be drained or blocked
1732  * after blk_mq_stop_hw_queues() returns. Please use
1733  * blk_mq_quiesce_queue() for that requirement.
1734  */
1735 void blk_mq_stop_hw_queues(struct request_queue *q)
1736 {
1737         struct blk_mq_hw_ctx *hctx;
1738         int i;
1739
1740         queue_for_each_hw_ctx(q, hctx, i)
1741                 blk_mq_stop_hw_queue(hctx);
1742 }
1743 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1744
1745 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1746 {
1747         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1748
1749         blk_mq_run_hw_queue(hctx, false);
1750 }
1751 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1752
1753 void blk_mq_start_hw_queues(struct request_queue *q)
1754 {
1755         struct blk_mq_hw_ctx *hctx;
1756         int i;
1757
1758         queue_for_each_hw_ctx(q, hctx, i)
1759                 blk_mq_start_hw_queue(hctx);
1760 }
1761 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1762
1763 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1764 {
1765         if (!blk_mq_hctx_stopped(hctx))
1766                 return;
1767
1768         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1769         blk_mq_run_hw_queue(hctx, async);
1770 }
1771 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1772
1773 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1774 {
1775         struct blk_mq_hw_ctx *hctx;
1776         int i;
1777
1778         queue_for_each_hw_ctx(q, hctx, i)
1779                 blk_mq_start_stopped_hw_queue(hctx, async);
1780 }
1781 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1782
1783 static void blk_mq_run_work_fn(struct work_struct *work)
1784 {
1785         struct blk_mq_hw_ctx *hctx;
1786
1787         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1788
1789         /*
1790          * If we are stopped, don't run the queue.
1791          */
1792         if (blk_mq_hctx_stopped(hctx))
1793                 return;
1794
1795         __blk_mq_run_hw_queue(hctx);
1796 }
1797
1798 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1799                                             struct request *rq,
1800                                             bool at_head)
1801 {
1802         struct blk_mq_ctx *ctx = rq->mq_ctx;
1803         enum hctx_type type = hctx->type;
1804
1805         lockdep_assert_held(&ctx->lock);
1806
1807         trace_block_rq_insert(hctx->queue, rq);
1808
1809         if (at_head)
1810                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1811         else
1812                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1813 }
1814
1815 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1816                              bool at_head)
1817 {
1818         struct blk_mq_ctx *ctx = rq->mq_ctx;
1819
1820         lockdep_assert_held(&ctx->lock);
1821
1822         __blk_mq_insert_req_list(hctx, rq, at_head);
1823         blk_mq_hctx_mark_pending(hctx, ctx);
1824 }
1825
1826 /**
1827  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1828  * @rq: Pointer to request to be inserted.
1829  * @at_head: true if the request should be inserted at the head of the list.
1830  * @run_queue: If we should run the hardware queue after inserting the request.
1831  *
1832  * Should only be used carefully, when the caller knows we want to
1833  * bypass a potential IO scheduler on the target device.
1834  */
1835 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1836                                   bool run_queue)
1837 {
1838         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1839
1840         spin_lock(&hctx->lock);
1841         if (at_head)
1842                 list_add(&rq->queuelist, &hctx->dispatch);
1843         else
1844                 list_add_tail(&rq->queuelist, &hctx->dispatch);
1845         spin_unlock(&hctx->lock);
1846
1847         if (run_queue)
1848                 blk_mq_run_hw_queue(hctx, false);
1849 }
1850
1851 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1852                             struct list_head *list)
1853
1854 {
1855         struct request *rq;
1856         enum hctx_type type = hctx->type;
1857
1858         /*
1859          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1860          * offline now
1861          */
1862         list_for_each_entry(rq, list, queuelist) {
1863                 BUG_ON(rq->mq_ctx != ctx);
1864                 trace_block_rq_insert(hctx->queue, rq);
1865         }
1866
1867         spin_lock(&ctx->lock);
1868         list_splice_tail_init(list, &ctx->rq_lists[type]);
1869         blk_mq_hctx_mark_pending(hctx, ctx);
1870         spin_unlock(&ctx->lock);
1871 }
1872
1873 static int plug_rq_cmp(void *priv, const struct list_head *a,
1874                        const struct list_head *b)
1875 {
1876         struct request *rqa = container_of(a, struct request, queuelist);
1877         struct request *rqb = container_of(b, struct request, queuelist);
1878
1879         if (rqa->mq_ctx != rqb->mq_ctx)
1880                 return rqa->mq_ctx > rqb->mq_ctx;
1881         if (rqa->mq_hctx != rqb->mq_hctx)
1882                 return rqa->mq_hctx > rqb->mq_hctx;
1883
1884         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1885 }
1886
1887 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1888 {
1889         LIST_HEAD(list);
1890
1891         if (list_empty(&plug->mq_list))
1892                 return;
1893         list_splice_init(&plug->mq_list, &list);
1894
1895         if (plug->rq_count > 2 && plug->multiple_queues)
1896                 list_sort(NULL, &list, plug_rq_cmp);
1897
1898         plug->rq_count = 0;
1899
1900         do {
1901                 struct list_head rq_list;
1902                 struct request *rq, *head_rq = list_entry_rq(list.next);
1903                 struct list_head *pos = &head_rq->queuelist; /* skip first */
1904                 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1905                 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1906                 unsigned int depth = 1;
1907
1908                 list_for_each_continue(pos, &list) {
1909                         rq = list_entry_rq(pos);
1910                         BUG_ON(!rq->q);
1911                         if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1912                                 break;
1913                         depth++;
1914                 }
1915
1916                 list_cut_before(&rq_list, &list, pos);
1917                 trace_block_unplug(head_rq->q, depth, !from_schedule);
1918                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1919                                                 from_schedule);
1920         } while(!list_empty(&list));
1921 }
1922
1923 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1924                 unsigned int nr_segs)
1925 {
1926         int err;
1927
1928         if (bio->bi_opf & REQ_RAHEAD)
1929                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1930
1931         rq->__sector = bio->bi_iter.bi_sector;
1932         rq->write_hint = bio->bi_write_hint;
1933         blk_rq_bio_prep(rq, bio, nr_segs);
1934
1935         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1936         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1937         WARN_ON_ONCE(err);
1938
1939         blk_account_io_start(rq);
1940 }
1941
1942 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1943                                             struct request *rq,
1944                                             blk_qc_t *cookie, bool last)
1945 {
1946         struct request_queue *q = rq->q;
1947         struct blk_mq_queue_data bd = {
1948                 .rq = rq,
1949                 .last = last,
1950         };
1951         blk_qc_t new_cookie;
1952         blk_status_t ret;
1953
1954         new_cookie = request_to_qc_t(hctx, rq);
1955
1956         /*
1957          * For OK queue, we are done. For error, caller may kill it.
1958          * Any other error (busy), just add it to our list as we
1959          * previously would have done.
1960          */
1961         ret = q->mq_ops->queue_rq(hctx, &bd);
1962         switch (ret) {
1963         case BLK_STS_OK:
1964                 blk_mq_update_dispatch_busy(hctx, false);
1965                 *cookie = new_cookie;
1966                 break;
1967         case BLK_STS_RESOURCE:
1968         case BLK_STS_DEV_RESOURCE:
1969                 blk_mq_update_dispatch_busy(hctx, true);
1970                 __blk_mq_requeue_request(rq);
1971                 break;
1972         default:
1973                 blk_mq_update_dispatch_busy(hctx, false);
1974                 *cookie = BLK_QC_T_NONE;
1975                 break;
1976         }
1977
1978         return ret;
1979 }
1980
1981 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1982                                                 struct request *rq,
1983                                                 blk_qc_t *cookie,
1984                                                 bool bypass_insert, bool last)
1985 {
1986         struct request_queue *q = rq->q;
1987         bool run_queue = true;
1988
1989         /*
1990          * RCU or SRCU read lock is needed before checking quiesced flag.
1991          *
1992          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1993          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1994          * and avoid driver to try to dispatch again.
1995          */
1996         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1997                 run_queue = false;
1998                 bypass_insert = false;
1999                 goto insert;
2000         }
2001
2002         if (q->elevator && !bypass_insert)
2003                 goto insert;
2004
2005         if (!blk_mq_get_dispatch_budget(q))
2006                 goto insert;
2007
2008         if (!blk_mq_get_driver_tag(rq)) {
2009                 blk_mq_put_dispatch_budget(q);
2010                 goto insert;
2011         }
2012
2013         return __blk_mq_issue_directly(hctx, rq, cookie, last);
2014 insert:
2015         if (bypass_insert)
2016                 return BLK_STS_RESOURCE;
2017
2018         blk_mq_sched_insert_request(rq, false, run_queue, false);
2019
2020         return BLK_STS_OK;
2021 }
2022
2023 /**
2024  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2025  * @hctx: Pointer of the associated hardware queue.
2026  * @rq: Pointer to request to be sent.
2027  * @cookie: Request queue cookie.
2028  *
2029  * If the device has enough resources to accept a new request now, send the
2030  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2031  * we can try send it another time in the future. Requests inserted at this
2032  * queue have higher priority.
2033  */
2034 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2035                 struct request *rq, blk_qc_t *cookie)
2036 {
2037         blk_status_t ret;
2038         int srcu_idx;
2039
2040         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2041
2042         hctx_lock(hctx, &srcu_idx);
2043
2044         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2045         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2046                 blk_mq_request_bypass_insert(rq, false, true);
2047         else if (ret != BLK_STS_OK)
2048                 blk_mq_end_request(rq, ret);
2049
2050         hctx_unlock(hctx, srcu_idx);
2051 }
2052
2053 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2054 {
2055         blk_status_t ret;
2056         int srcu_idx;
2057         blk_qc_t unused_cookie;
2058         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2059
2060         hctx_lock(hctx, &srcu_idx);
2061         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2062         hctx_unlock(hctx, srcu_idx);
2063
2064         return ret;
2065 }
2066
2067 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2068                 struct list_head *list)
2069 {
2070         int queued = 0;
2071         int errors = 0;
2072
2073         while (!list_empty(list)) {
2074                 blk_status_t ret;
2075                 struct request *rq = list_first_entry(list, struct request,
2076                                 queuelist);
2077
2078                 list_del_init(&rq->queuelist);
2079                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2080                 if (ret != BLK_STS_OK) {
2081                         if (ret == BLK_STS_RESOURCE ||
2082                                         ret == BLK_STS_DEV_RESOURCE) {
2083                                 blk_mq_request_bypass_insert(rq, false,
2084                                                         list_empty(list));
2085                                 break;
2086                         }
2087                         blk_mq_end_request(rq, ret);
2088                         errors++;
2089                 } else
2090                         queued++;
2091         }
2092
2093         /*
2094          * If we didn't flush the entire list, we could have told
2095          * the driver there was more coming, but that turned out to
2096          * be a lie.
2097          */
2098         if ((!list_empty(list) || errors) &&
2099              hctx->queue->mq_ops->commit_rqs && queued)
2100                 hctx->queue->mq_ops->commit_rqs(hctx);
2101 }
2102
2103 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2104 {
2105         list_add_tail(&rq->queuelist, &plug->mq_list);
2106         plug->rq_count++;
2107         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2108                 struct request *tmp;
2109
2110                 tmp = list_first_entry(&plug->mq_list, struct request,
2111                                                 queuelist);
2112                 if (tmp->q != rq->q)
2113                         plug->multiple_queues = true;
2114         }
2115 }
2116
2117 /*
2118  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2119  * queues. This is important for md arrays to benefit from merging
2120  * requests.
2121  */
2122 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2123 {
2124         if (plug->multiple_queues)
2125                 return BLK_MAX_REQUEST_COUNT * 2;
2126         return BLK_MAX_REQUEST_COUNT;
2127 }
2128
2129 /**
2130  * blk_mq_submit_bio - Create and send a request to block device.
2131  * @bio: Bio pointer.
2132  *
2133  * Builds up a request structure from @q and @bio and send to the device. The
2134  * request may not be queued directly to hardware if:
2135  * * This request can be merged with another one
2136  * * We want to place request at plug queue for possible future merging
2137  * * There is an IO scheduler active at this queue
2138  *
2139  * It will not queue the request if there is an error with the bio, or at the
2140  * request creation.
2141  *
2142  * Returns: Request queue cookie.
2143  */
2144 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2145 {
2146         struct request_queue *q = bio->bi_disk->queue;
2147         const int is_sync = op_is_sync(bio->bi_opf);
2148         const int is_flush_fua = op_is_flush(bio->bi_opf);
2149         struct blk_mq_alloc_data data = {
2150                 .q              = q,
2151         };
2152         struct request *rq;
2153         struct blk_plug *plug;
2154         struct request *same_queue_rq = NULL;
2155         unsigned int nr_segs;
2156         blk_qc_t cookie;
2157         blk_status_t ret;
2158
2159         blk_queue_bounce(q, &bio);
2160         __blk_queue_split(&bio, &nr_segs);
2161
2162         if (!bio_integrity_prep(bio))
2163                 goto queue_exit;
2164
2165         if (!is_flush_fua && !blk_queue_nomerges(q) &&
2166             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2167                 goto queue_exit;
2168
2169         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2170                 goto queue_exit;
2171
2172         rq_qos_throttle(q, bio);
2173
2174         data.cmd_flags = bio->bi_opf;
2175         rq = __blk_mq_alloc_request(&data);
2176         if (unlikely(!rq)) {
2177                 rq_qos_cleanup(q, bio);
2178                 if (bio->bi_opf & REQ_NOWAIT)
2179                         bio_wouldblock_error(bio);
2180                 goto queue_exit;
2181         }
2182
2183         trace_block_getrq(q, bio, bio->bi_opf);
2184
2185         rq_qos_track(q, rq, bio);
2186
2187         cookie = request_to_qc_t(data.hctx, rq);
2188
2189         blk_mq_bio_to_request(rq, bio, nr_segs);
2190
2191         ret = blk_crypto_init_request(rq);
2192         if (ret != BLK_STS_OK) {
2193                 bio->bi_status = ret;
2194                 bio_endio(bio);
2195                 blk_mq_free_request(rq);
2196                 return BLK_QC_T_NONE;
2197         }
2198
2199         plug = blk_mq_plug(q, bio);
2200         if (unlikely(is_flush_fua)) {
2201                 /* Bypass scheduler for flush requests */
2202                 blk_insert_flush(rq);
2203                 blk_mq_run_hw_queue(data.hctx, true);
2204         } else if (plug && (q->nr_hw_queues == 1 ||
2205                    blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2206                    q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2207                 /*
2208                  * Use plugging if we have a ->commit_rqs() hook as well, as
2209                  * we know the driver uses bd->last in a smart fashion.
2210                  *
2211                  * Use normal plugging if this disk is slow HDD, as sequential
2212                  * IO may benefit a lot from plug merging.
2213                  */
2214                 unsigned int request_count = plug->rq_count;
2215                 struct request *last = NULL;
2216
2217                 if (!request_count)
2218                         trace_block_plug(q);
2219                 else
2220                         last = list_entry_rq(plug->mq_list.prev);
2221
2222                 if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2223                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2224                         blk_flush_plug_list(plug, false);
2225                         trace_block_plug(q);
2226                 }
2227
2228                 blk_add_rq_to_plug(plug, rq);
2229         } else if (q->elevator) {
2230                 /* Insert the request at the IO scheduler queue */
2231                 blk_mq_sched_insert_request(rq, false, true, true);
2232         } else if (plug && !blk_queue_nomerges(q)) {
2233                 /*
2234                  * We do limited plugging. If the bio can be merged, do that.
2235                  * Otherwise the existing request in the plug list will be
2236                  * issued. So the plug list will have one request at most
2237                  * The plug list might get flushed before this. If that happens,
2238                  * the plug list is empty, and same_queue_rq is invalid.
2239                  */
2240                 if (list_empty(&plug->mq_list))
2241                         same_queue_rq = NULL;
2242                 if (same_queue_rq) {
2243                         list_del_init(&same_queue_rq->queuelist);
2244                         plug->rq_count--;
2245                 }
2246                 blk_add_rq_to_plug(plug, rq);
2247                 trace_block_plug(q);
2248
2249                 if (same_queue_rq) {
2250                         data.hctx = same_queue_rq->mq_hctx;
2251                         trace_block_unplug(q, 1, true);
2252                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2253                                         &cookie);
2254                 }
2255         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2256                         !data.hctx->dispatch_busy) {
2257                 /*
2258                  * There is no scheduler and we can try to send directly
2259                  * to the hardware.
2260                  */
2261                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2262         } else {
2263                 /* Default case. */
2264                 blk_mq_sched_insert_request(rq, false, true, true);
2265         }
2266
2267         return cookie;
2268 queue_exit:
2269         blk_queue_exit(q);
2270         return BLK_QC_T_NONE;
2271 }
2272
2273 static size_t order_to_size(unsigned int order)
2274 {
2275         return (size_t)PAGE_SIZE << order;
2276 }
2277
2278 /* called before freeing request pool in @tags */
2279 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2280                 struct blk_mq_tags *tags, unsigned int hctx_idx)
2281 {
2282         struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2283         struct page *page;
2284         unsigned long flags;
2285
2286         list_for_each_entry(page, &tags->page_list, lru) {
2287                 unsigned long start = (unsigned long)page_address(page);
2288                 unsigned long end = start + order_to_size(page->private);
2289                 int i;
2290
2291                 for (i = 0; i < set->queue_depth; i++) {
2292                         struct request *rq = drv_tags->rqs[i];
2293                         unsigned long rq_addr = (unsigned long)rq;
2294
2295                         if (rq_addr >= start && rq_addr < end) {
2296                                 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2297                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2298                         }
2299                 }
2300         }
2301
2302         /*
2303          * Wait until all pending iteration is done.
2304          *
2305          * Request reference is cleared and it is guaranteed to be observed
2306          * after the ->lock is released.
2307          */
2308         spin_lock_irqsave(&drv_tags->lock, flags);
2309         spin_unlock_irqrestore(&drv_tags->lock, flags);
2310 }
2311
2312 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2313                      unsigned int hctx_idx)
2314 {
2315         struct page *page;
2316
2317         if (tags->rqs && set->ops->exit_request) {
2318                 int i;
2319
2320                 for (i = 0; i < tags->nr_tags; i++) {
2321                         struct request *rq = tags->static_rqs[i];
2322
2323                         if (!rq)
2324                                 continue;
2325                         set->ops->exit_request(set, rq, hctx_idx);
2326                         tags->static_rqs[i] = NULL;
2327                 }
2328         }
2329
2330         blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2331
2332         while (!list_empty(&tags->page_list)) {
2333                 page = list_first_entry(&tags->page_list, struct page, lru);
2334                 list_del_init(&page->lru);
2335                 /*
2336                  * Remove kmemleak object previously allocated in
2337                  * blk_mq_alloc_rqs().
2338                  */
2339                 kmemleak_free(page_address(page));
2340                 __free_pages(page, page->private);
2341         }
2342 }
2343
2344 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2345 {
2346         kfree(tags->rqs);
2347         tags->rqs = NULL;
2348         kfree(tags->static_rqs);
2349         tags->static_rqs = NULL;
2350
2351         blk_mq_free_tags(tags, flags);
2352 }
2353
2354 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2355                                         unsigned int hctx_idx,
2356                                         unsigned int nr_tags,
2357                                         unsigned int reserved_tags,
2358                                         unsigned int flags)
2359 {
2360         struct blk_mq_tags *tags;
2361         int node;
2362
2363         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2364         if (node == NUMA_NO_NODE)
2365                 node = set->numa_node;
2366
2367         tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2368         if (!tags)
2369                 return NULL;
2370
2371         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2372                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2373                                  node);
2374         if (!tags->rqs) {
2375                 blk_mq_free_tags(tags, flags);
2376                 return NULL;
2377         }
2378
2379         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2380                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2381                                         node);
2382         if (!tags->static_rqs) {
2383                 kfree(tags->rqs);
2384                 blk_mq_free_tags(tags, flags);
2385                 return NULL;
2386         }
2387
2388         return tags;
2389 }
2390
2391 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2392                                unsigned int hctx_idx, int node)
2393 {
2394         int ret;
2395
2396         if (set->ops->init_request) {
2397                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2398                 if (ret)
2399                         return ret;
2400         }
2401
2402         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2403         return 0;
2404 }
2405
2406 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2407                      unsigned int hctx_idx, unsigned int depth)
2408 {
2409         unsigned int i, j, entries_per_page, max_order = 4;
2410         size_t rq_size, left;
2411         int node;
2412
2413         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2414         if (node == NUMA_NO_NODE)
2415                 node = set->numa_node;
2416
2417         INIT_LIST_HEAD(&tags->page_list);
2418
2419         /*
2420          * rq_size is the size of the request plus driver payload, rounded
2421          * to the cacheline size
2422          */
2423         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2424                                 cache_line_size());
2425         left = rq_size * depth;
2426
2427         for (i = 0; i < depth; ) {
2428                 int this_order = max_order;
2429                 struct page *page;
2430                 int to_do;
2431                 void *p;
2432
2433                 while (this_order && left < order_to_size(this_order - 1))
2434                         this_order--;
2435
2436                 do {
2437                         page = alloc_pages_node(node,
2438                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2439                                 this_order);
2440                         if (page)
2441                                 break;
2442                         if (!this_order--)
2443                                 break;
2444                         if (order_to_size(this_order) < rq_size)
2445                                 break;
2446                 } while (1);
2447
2448                 if (!page)
2449                         goto fail;
2450
2451                 page->private = this_order;
2452                 list_add_tail(&page->lru, &tags->page_list);
2453
2454                 p = page_address(page);
2455                 /*
2456                  * Allow kmemleak to scan these pages as they contain pointers
2457                  * to additional allocations like via ops->init_request().
2458                  */
2459                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2460                 entries_per_page = order_to_size(this_order) / rq_size;
2461                 to_do = min(entries_per_page, depth - i);
2462                 left -= to_do * rq_size;
2463                 for (j = 0; j < to_do; j++) {
2464                         struct request *rq = p;
2465
2466                         tags->static_rqs[i] = rq;
2467                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2468                                 tags->static_rqs[i] = NULL;
2469                                 goto fail;
2470                         }
2471
2472                         p += rq_size;
2473                         i++;
2474                 }
2475         }
2476         return 0;
2477
2478 fail:
2479         blk_mq_free_rqs(set, tags, hctx_idx);
2480         return -ENOMEM;
2481 }
2482
2483 struct rq_iter_data {
2484         struct blk_mq_hw_ctx *hctx;
2485         bool has_rq;
2486 };
2487
2488 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2489 {
2490         struct rq_iter_data *iter_data = data;
2491
2492         if (rq->mq_hctx != iter_data->hctx)
2493                 return true;
2494         iter_data->has_rq = true;
2495         return false;
2496 }
2497
2498 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2499 {
2500         struct blk_mq_tags *tags = hctx->sched_tags ?
2501                         hctx->sched_tags : hctx->tags;
2502         struct rq_iter_data data = {
2503                 .hctx   = hctx,
2504         };
2505
2506         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2507         return data.has_rq;
2508 }
2509
2510 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2511                 struct blk_mq_hw_ctx *hctx)
2512 {
2513         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2514                 return false;
2515         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2516                 return false;
2517         return true;
2518 }
2519
2520 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2521 {
2522         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2523                         struct blk_mq_hw_ctx, cpuhp_online);
2524
2525         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2526             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2527                 return 0;
2528
2529         /*
2530          * Prevent new request from being allocated on the current hctx.
2531          *
2532          * The smp_mb__after_atomic() Pairs with the implied barrier in
2533          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2534          * seen once we return from the tag allocator.
2535          */
2536         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2537         smp_mb__after_atomic();
2538
2539         /*
2540          * Try to grab a reference to the queue and wait for any outstanding
2541          * requests.  If we could not grab a reference the queue has been
2542          * frozen and there are no requests.
2543          */
2544         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2545                 while (blk_mq_hctx_has_requests(hctx))
2546                         msleep(5);
2547                 percpu_ref_put(&hctx->queue->q_usage_counter);
2548         }
2549
2550         return 0;
2551 }
2552
2553 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2554 {
2555         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2556                         struct blk_mq_hw_ctx, cpuhp_online);
2557
2558         if (cpumask_test_cpu(cpu, hctx->cpumask))
2559                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2560         return 0;
2561 }
2562
2563 /*
2564  * 'cpu' is going away. splice any existing rq_list entries from this
2565  * software queue to the hw queue dispatch list, and ensure that it
2566  * gets run.
2567  */
2568 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2569 {
2570         struct blk_mq_hw_ctx *hctx;
2571         struct blk_mq_ctx *ctx;
2572         LIST_HEAD(tmp);
2573         enum hctx_type type;
2574
2575         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2576         if (!cpumask_test_cpu(cpu, hctx->cpumask))
2577                 return 0;
2578
2579         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2580         type = hctx->type;
2581
2582         spin_lock(&ctx->lock);
2583         if (!list_empty(&ctx->rq_lists[type])) {
2584                 list_splice_init(&ctx->rq_lists[type], &tmp);
2585                 blk_mq_hctx_clear_pending(hctx, ctx);
2586         }
2587         spin_unlock(&ctx->lock);
2588
2589         if (list_empty(&tmp))
2590                 return 0;
2591
2592         spin_lock(&hctx->lock);
2593         list_splice_tail_init(&tmp, &hctx->dispatch);
2594         spin_unlock(&hctx->lock);
2595
2596         blk_mq_run_hw_queue(hctx, true);
2597         return 0;
2598 }
2599
2600 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2601 {
2602         if (!(hctx->flags & BLK_MQ_F_STACKING))
2603                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2604                                                     &hctx->cpuhp_online);
2605         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2606                                             &hctx->cpuhp_dead);
2607 }
2608
2609 /*
2610  * Before freeing hw queue, clearing the flush request reference in
2611  * tags->rqs[] for avoiding potential UAF.
2612  */
2613 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2614                 unsigned int queue_depth, struct request *flush_rq)
2615 {
2616         int i;
2617         unsigned long flags;
2618
2619         /* The hw queue may not be mapped yet */
2620         if (!tags)
2621                 return;
2622
2623         WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2624
2625         for (i = 0; i < queue_depth; i++)
2626                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
2627
2628         /*
2629          * Wait until all pending iteration is done.
2630          *
2631          * Request reference is cleared and it is guaranteed to be observed
2632          * after the ->lock is released.
2633          */
2634         spin_lock_irqsave(&tags->lock, flags);
2635         spin_unlock_irqrestore(&tags->lock, flags);
2636 }
2637
2638 /* hctx->ctxs will be freed in queue's release handler */
2639 static void blk_mq_exit_hctx(struct request_queue *q,
2640                 struct blk_mq_tag_set *set,
2641                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2642 {
2643         struct request *flush_rq = hctx->fq->flush_rq;
2644
2645         if (blk_mq_hw_queue_mapped(hctx))
2646                 blk_mq_tag_idle(hctx);
2647
2648         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2649                         set->queue_depth, flush_rq);
2650         if (set->ops->exit_request)
2651                 set->ops->exit_request(set, flush_rq, hctx_idx);
2652
2653         if (set->ops->exit_hctx)
2654                 set->ops->exit_hctx(hctx, hctx_idx);
2655
2656         blk_mq_remove_cpuhp(hctx);
2657
2658         spin_lock(&q->unused_hctx_lock);
2659         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2660         spin_unlock(&q->unused_hctx_lock);
2661 }
2662
2663 static void blk_mq_exit_hw_queues(struct request_queue *q,
2664                 struct blk_mq_tag_set *set, int nr_queue)
2665 {
2666         struct blk_mq_hw_ctx *hctx;
2667         unsigned int i;
2668
2669         queue_for_each_hw_ctx(q, hctx, i) {
2670                 if (i == nr_queue)
2671                         break;
2672                 blk_mq_debugfs_unregister_hctx(hctx);
2673                 blk_mq_exit_hctx(q, set, hctx, i);
2674         }
2675 }
2676
2677 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2678 {
2679         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2680
2681         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2682                            __alignof__(struct blk_mq_hw_ctx)) !=
2683                      sizeof(struct blk_mq_hw_ctx));
2684
2685         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2686                 hw_ctx_size += sizeof(struct srcu_struct);
2687
2688         return hw_ctx_size;
2689 }
2690
2691 static int blk_mq_init_hctx(struct request_queue *q,
2692                 struct blk_mq_tag_set *set,
2693                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2694 {
2695         hctx->queue_num = hctx_idx;
2696
2697         if (!(hctx->flags & BLK_MQ_F_STACKING))
2698                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2699                                 &hctx->cpuhp_online);
2700         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2701
2702         hctx->tags = set->tags[hctx_idx];
2703
2704         if (set->ops->init_hctx &&
2705             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2706                 goto unregister_cpu_notifier;
2707
2708         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2709                                 hctx->numa_node))
2710                 goto exit_hctx;
2711         return 0;
2712
2713  exit_hctx:
2714         if (set->ops->exit_hctx)
2715                 set->ops->exit_hctx(hctx, hctx_idx);
2716  unregister_cpu_notifier:
2717         blk_mq_remove_cpuhp(hctx);
2718         return -1;
2719 }
2720
2721 static struct blk_mq_hw_ctx *
2722 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2723                 int node)
2724 {
2725         struct blk_mq_hw_ctx *hctx;
2726         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2727
2728         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2729         if (!hctx)
2730                 goto fail_alloc_hctx;
2731
2732         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2733                 goto free_hctx;
2734
2735         atomic_set(&hctx->nr_active, 0);
2736         atomic_set(&hctx->elevator_queued, 0);
2737         if (node == NUMA_NO_NODE)
2738                 node = set->numa_node;
2739         hctx->numa_node = node;
2740
2741         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2742         spin_lock_init(&hctx->lock);
2743         INIT_LIST_HEAD(&hctx->dispatch);
2744         hctx->queue = q;
2745         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2746
2747         INIT_LIST_HEAD(&hctx->hctx_list);
2748
2749         /*
2750          * Allocate space for all possible cpus to avoid allocation at
2751          * runtime
2752          */
2753         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2754                         gfp, node);
2755         if (!hctx->ctxs)
2756                 goto free_cpumask;
2757
2758         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2759                                 gfp, node))
2760                 goto free_ctxs;
2761         hctx->nr_ctx = 0;
2762
2763         spin_lock_init(&hctx->dispatch_wait_lock);
2764         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2765         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2766
2767         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2768         if (!hctx->fq)
2769                 goto free_bitmap;
2770
2771         if (hctx->flags & BLK_MQ_F_BLOCKING)
2772                 init_srcu_struct(hctx->srcu);
2773         blk_mq_hctx_kobj_init(hctx);
2774
2775         return hctx;
2776
2777  free_bitmap:
2778         sbitmap_free(&hctx->ctx_map);
2779  free_ctxs:
2780         kfree(hctx->ctxs);
2781  free_cpumask:
2782         free_cpumask_var(hctx->cpumask);
2783  free_hctx:
2784         kfree(hctx);
2785  fail_alloc_hctx:
2786         return NULL;
2787 }
2788
2789 static void blk_mq_init_cpu_queues(struct request_queue *q,
2790                                    unsigned int nr_hw_queues)
2791 {
2792         struct blk_mq_tag_set *set = q->tag_set;
2793         unsigned int i, j;
2794
2795         for_each_possible_cpu(i) {
2796                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2797                 struct blk_mq_hw_ctx *hctx;
2798                 int k;
2799
2800                 __ctx->cpu = i;
2801                 spin_lock_init(&__ctx->lock);
2802                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2803                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2804
2805                 __ctx->queue = q;
2806
2807                 /*
2808                  * Set local node, IFF we have more than one hw queue. If
2809                  * not, we remain on the home node of the device
2810                  */
2811                 for (j = 0; j < set->nr_maps; j++) {
2812                         hctx = blk_mq_map_queue_type(q, j, i);
2813                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2814                                 hctx->numa_node = cpu_to_node(i);
2815                 }
2816         }
2817 }
2818
2819 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2820                                         int hctx_idx)
2821 {
2822         unsigned int flags = set->flags;
2823         int ret = 0;
2824
2825         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2826                                         set->queue_depth, set->reserved_tags, flags);
2827         if (!set->tags[hctx_idx])
2828                 return false;
2829
2830         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2831                                 set->queue_depth);
2832         if (!ret)
2833                 return true;
2834
2835         blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2836         set->tags[hctx_idx] = NULL;
2837         return false;
2838 }
2839
2840 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2841                                          unsigned int hctx_idx)
2842 {
2843         unsigned int flags = set->flags;
2844
2845         if (set->tags && set->tags[hctx_idx]) {
2846                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2847                 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2848                 set->tags[hctx_idx] = NULL;
2849         }
2850 }
2851
2852 static void blk_mq_map_swqueue(struct request_queue *q)
2853 {
2854         unsigned int i, j, hctx_idx;
2855         struct blk_mq_hw_ctx *hctx;
2856         struct blk_mq_ctx *ctx;
2857         struct blk_mq_tag_set *set = q->tag_set;
2858
2859         queue_for_each_hw_ctx(q, hctx, i) {
2860                 cpumask_clear(hctx->cpumask);
2861                 hctx->nr_ctx = 0;
2862                 hctx->dispatch_from = NULL;
2863         }
2864
2865         /*
2866          * Map software to hardware queues.
2867          *
2868          * If the cpu isn't present, the cpu is mapped to first hctx.
2869          */
2870         for_each_possible_cpu(i) {
2871
2872                 ctx = per_cpu_ptr(q->queue_ctx, i);
2873                 for (j = 0; j < set->nr_maps; j++) {
2874                         if (!set->map[j].nr_queues) {
2875                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2876                                                 HCTX_TYPE_DEFAULT, i);
2877                                 continue;
2878                         }
2879                         hctx_idx = set->map[j].mq_map[i];
2880                         /* unmapped hw queue can be remapped after CPU topo changed */
2881                         if (!set->tags[hctx_idx] &&
2882                             !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2883                                 /*
2884                                  * If tags initialization fail for some hctx,
2885                                  * that hctx won't be brought online.  In this
2886                                  * case, remap the current ctx to hctx[0] which
2887                                  * is guaranteed to always have tags allocated
2888                                  */
2889                                 set->map[j].mq_map[i] = 0;
2890                         }
2891
2892                         hctx = blk_mq_map_queue_type(q, j, i);
2893                         ctx->hctxs[j] = hctx;
2894                         /*
2895                          * If the CPU is already set in the mask, then we've
2896                          * mapped this one already. This can happen if
2897                          * devices share queues across queue maps.
2898                          */
2899                         if (cpumask_test_cpu(i, hctx->cpumask))
2900                                 continue;
2901
2902                         cpumask_set_cpu(i, hctx->cpumask);
2903                         hctx->type = j;
2904                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2905                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2906
2907                         /*
2908                          * If the nr_ctx type overflows, we have exceeded the
2909                          * amount of sw queues we can support.
2910                          */
2911                         BUG_ON(!hctx->nr_ctx);
2912                 }
2913
2914                 for (; j < HCTX_MAX_TYPES; j++)
2915                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2916                                         HCTX_TYPE_DEFAULT, i);
2917         }
2918
2919         queue_for_each_hw_ctx(q, hctx, i) {
2920                 /*
2921                  * If no software queues are mapped to this hardware queue,
2922                  * disable it and free the request entries.
2923                  */
2924                 if (!hctx->nr_ctx) {
2925                         /* Never unmap queue 0.  We need it as a
2926                          * fallback in case of a new remap fails
2927                          * allocation
2928                          */
2929                         if (i && set->tags[i])
2930                                 blk_mq_free_map_and_requests(set, i);
2931
2932                         hctx->tags = NULL;
2933                         continue;
2934                 }
2935
2936                 hctx->tags = set->tags[i];
2937                 WARN_ON(!hctx->tags);
2938
2939                 /*
2940                  * Set the map size to the number of mapped software queues.
2941                  * This is more accurate and more efficient than looping
2942                  * over all possibly mapped software queues.
2943                  */
2944                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2945
2946                 /*
2947                  * Initialize batch roundrobin counts
2948                  */
2949                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2950                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2951         }
2952 }
2953
2954 /*
2955  * Caller needs to ensure that we're either frozen/quiesced, or that
2956  * the queue isn't live yet.
2957  */
2958 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2959 {
2960         struct blk_mq_hw_ctx *hctx;
2961         int i;
2962
2963         queue_for_each_hw_ctx(q, hctx, i) {
2964                 if (shared)
2965                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2966                 else
2967                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2968         }
2969 }
2970
2971 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2972                                          bool shared)
2973 {
2974         struct request_queue *q;
2975
2976         lockdep_assert_held(&set->tag_list_lock);
2977
2978         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2979                 blk_mq_freeze_queue(q);
2980                 queue_set_hctx_shared(q, shared);
2981                 blk_mq_unfreeze_queue(q);
2982         }
2983 }
2984
2985 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2986 {
2987         struct blk_mq_tag_set *set = q->tag_set;
2988
2989         mutex_lock(&set->tag_list_lock);
2990         list_del(&q->tag_set_list);
2991         if (list_is_singular(&set->tag_list)) {
2992                 /* just transitioned to unshared */
2993                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2994                 /* update existing queue */
2995                 blk_mq_update_tag_set_shared(set, false);
2996         }
2997         mutex_unlock(&set->tag_list_lock);
2998         INIT_LIST_HEAD(&q->tag_set_list);
2999 }
3000
3001 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3002                                      struct request_queue *q)
3003 {
3004         mutex_lock(&set->tag_list_lock);
3005
3006         /*
3007          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3008          */
3009         if (!list_empty(&set->tag_list) &&
3010             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3011                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3012                 /* update existing queue */
3013                 blk_mq_update_tag_set_shared(set, true);
3014         }
3015         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3016                 queue_set_hctx_shared(q, true);
3017         list_add_tail(&q->tag_set_list, &set->tag_list);
3018
3019         mutex_unlock(&set->tag_list_lock);
3020 }
3021
3022 /* All allocations will be freed in release handler of q->mq_kobj */
3023 static int blk_mq_alloc_ctxs(struct request_queue *q)
3024 {
3025         struct blk_mq_ctxs *ctxs;
3026         int cpu;
3027
3028         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3029         if (!ctxs)
3030                 return -ENOMEM;
3031
3032         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3033         if (!ctxs->queue_ctx)
3034                 goto fail;
3035
3036         for_each_possible_cpu(cpu) {
3037                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3038                 ctx->ctxs = ctxs;
3039         }
3040
3041         q->mq_kobj = &ctxs->kobj;
3042         q->queue_ctx = ctxs->queue_ctx;
3043
3044         return 0;
3045  fail:
3046         kfree(ctxs);
3047         return -ENOMEM;
3048 }
3049
3050 /*
3051  * It is the actual release handler for mq, but we do it from
3052  * request queue's release handler for avoiding use-after-free
3053  * and headache because q->mq_kobj shouldn't have been introduced,
3054  * but we can't group ctx/kctx kobj without it.
3055  */
3056 void blk_mq_release(struct request_queue *q)
3057 {
3058         struct blk_mq_hw_ctx *hctx, *next;
3059         int i;
3060
3061         queue_for_each_hw_ctx(q, hctx, i)
3062                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3063
3064         /* all hctx are in .unused_hctx_list now */
3065         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3066                 list_del_init(&hctx->hctx_list);
3067                 kobject_put(&hctx->kobj);
3068         }
3069
3070         kfree(q->queue_hw_ctx);
3071
3072         /*
3073          * release .mq_kobj and sw queue's kobject now because
3074          * both share lifetime with request queue.
3075          */
3076         blk_mq_sysfs_deinit(q);
3077 }
3078
3079 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3080                 void *queuedata)
3081 {
3082         struct request_queue *uninit_q, *q;
3083
3084         uninit_q = blk_alloc_queue(set->numa_node);
3085         if (!uninit_q)
3086                 return ERR_PTR(-ENOMEM);
3087         uninit_q->queuedata = queuedata;
3088
3089         /*
3090          * Initialize the queue without an elevator. device_add_disk() will do
3091          * the initialization.
3092          */
3093         q = blk_mq_init_allocated_queue(set, uninit_q, false);
3094         if (IS_ERR(q))
3095                 blk_cleanup_queue(uninit_q);
3096
3097         return q;
3098 }
3099 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3100
3101 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3102 {
3103         return blk_mq_init_queue_data(set, NULL);
3104 }
3105 EXPORT_SYMBOL(blk_mq_init_queue);
3106
3107 /*
3108  * Helper for setting up a queue with mq ops, given queue depth, and
3109  * the passed in mq ops flags.
3110  */
3111 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3112                                            const struct blk_mq_ops *ops,
3113                                            unsigned int queue_depth,
3114                                            unsigned int set_flags)
3115 {
3116         struct request_queue *q;
3117         int ret;
3118
3119         memset(set, 0, sizeof(*set));
3120         set->ops = ops;
3121         set->nr_hw_queues = 1;
3122         set->nr_maps = 1;
3123         set->queue_depth = queue_depth;
3124         set->numa_node = NUMA_NO_NODE;
3125         set->flags = set_flags;
3126
3127         ret = blk_mq_alloc_tag_set(set);
3128         if (ret)
3129                 return ERR_PTR(ret);
3130
3131         q = blk_mq_init_queue(set);
3132         if (IS_ERR(q)) {
3133                 blk_mq_free_tag_set(set);
3134                 return q;
3135         }
3136
3137         return q;
3138 }
3139 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3140
3141 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3142                 struct blk_mq_tag_set *set, struct request_queue *q,
3143                 int hctx_idx, int node)
3144 {
3145         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3146
3147         /* reuse dead hctx first */
3148         spin_lock(&q->unused_hctx_lock);
3149         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3150                 if (tmp->numa_node == node) {
3151                         hctx = tmp;
3152                         break;
3153                 }
3154         }
3155         if (hctx)
3156                 list_del_init(&hctx->hctx_list);
3157         spin_unlock(&q->unused_hctx_lock);
3158
3159         if (!hctx)
3160                 hctx = blk_mq_alloc_hctx(q, set, node);
3161         if (!hctx)
3162                 goto fail;
3163
3164         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3165                 goto free_hctx;
3166
3167         return hctx;
3168
3169  free_hctx:
3170         kobject_put(&hctx->kobj);
3171  fail:
3172         return NULL;
3173 }
3174
3175 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3176                                                 struct request_queue *q)
3177 {
3178         int i, j, end;
3179         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3180
3181         if (q->nr_hw_queues < set->nr_hw_queues) {
3182                 struct blk_mq_hw_ctx **new_hctxs;
3183
3184                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3185                                        sizeof(*new_hctxs), GFP_KERNEL,
3186                                        set->numa_node);
3187                 if (!new_hctxs)
3188                         return;
3189                 if (hctxs)
3190                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3191                                sizeof(*hctxs));
3192                 q->queue_hw_ctx = new_hctxs;
3193                 kfree(hctxs);
3194                 hctxs = new_hctxs;
3195         }
3196
3197         /* protect against switching io scheduler  */
3198         mutex_lock(&q->sysfs_lock);
3199         for (i = 0; i < set->nr_hw_queues; i++) {
3200                 int node;
3201                 struct blk_mq_hw_ctx *hctx;
3202
3203                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3204                 /*
3205                  * If the hw queue has been mapped to another numa node,
3206                  * we need to realloc the hctx. If allocation fails, fallback
3207                  * to use the previous one.
3208                  */
3209                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3210                         continue;
3211
3212                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3213                 if (hctx) {
3214                         if (hctxs[i])
3215                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3216                         hctxs[i] = hctx;
3217                 } else {
3218                         if (hctxs[i])
3219                                 pr_warn("Allocate new hctx on node %d fails,\
3220                                                 fallback to previous one on node %d\n",
3221                                                 node, hctxs[i]->numa_node);
3222                         else
3223                                 break;
3224                 }
3225         }
3226         /*
3227          * Increasing nr_hw_queues fails. Free the newly allocated
3228          * hctxs and keep the previous q->nr_hw_queues.
3229          */
3230         if (i != set->nr_hw_queues) {
3231                 j = q->nr_hw_queues;
3232                 end = i;
3233         } else {
3234                 j = i;
3235                 end = q->nr_hw_queues;
3236                 q->nr_hw_queues = set->nr_hw_queues;
3237         }
3238
3239         for (; j < end; j++) {
3240                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3241
3242                 if (hctx) {
3243                         if (hctx->tags)
3244                                 blk_mq_free_map_and_requests(set, j);
3245                         blk_mq_exit_hctx(q, set, hctx, j);
3246                         hctxs[j] = NULL;
3247                 }
3248         }
3249         mutex_unlock(&q->sysfs_lock);
3250 }
3251
3252 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3253                                                   struct request_queue *q,
3254                                                   bool elevator_init)
3255 {
3256         /* mark the queue as mq asap */
3257         q->mq_ops = set->ops;
3258
3259         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3260                                              blk_mq_poll_stats_bkt,
3261                                              BLK_MQ_POLL_STATS_BKTS, q);
3262         if (!q->poll_cb)
3263                 goto err_exit;
3264
3265         if (blk_mq_alloc_ctxs(q))
3266                 goto err_poll;
3267
3268         /* init q->mq_kobj and sw queues' kobjects */
3269         blk_mq_sysfs_init(q);
3270
3271         INIT_LIST_HEAD(&q->unused_hctx_list);
3272         spin_lock_init(&q->unused_hctx_lock);
3273
3274         blk_mq_realloc_hw_ctxs(set, q);
3275         if (!q->nr_hw_queues)
3276                 goto err_hctxs;
3277
3278         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3279         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3280
3281         q->tag_set = set;
3282
3283         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3284         if (set->nr_maps > HCTX_TYPE_POLL &&
3285             set->map[HCTX_TYPE_POLL].nr_queues)
3286                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3287
3288         q->sg_reserved_size = INT_MAX;
3289
3290         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3291         INIT_LIST_HEAD(&q->requeue_list);
3292         spin_lock_init(&q->requeue_lock);
3293
3294         q->nr_requests = set->queue_depth;
3295
3296         /*
3297          * Default to classic polling
3298          */
3299         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3300
3301         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3302         blk_mq_add_queue_tag_set(set, q);
3303         blk_mq_map_swqueue(q);
3304
3305         if (elevator_init)
3306                 elevator_init_mq(q);
3307
3308         return q;
3309
3310 err_hctxs:
3311         kfree(q->queue_hw_ctx);
3312         q->nr_hw_queues = 0;
3313         blk_mq_sysfs_deinit(q);
3314 err_poll:
3315         blk_stat_free_callback(q->poll_cb);
3316         q->poll_cb = NULL;
3317 err_exit:
3318         q->mq_ops = NULL;
3319         return ERR_PTR(-ENOMEM);
3320 }
3321 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3322
3323 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3324 void blk_mq_exit_queue(struct request_queue *q)
3325 {
3326         struct blk_mq_tag_set *set = q->tag_set;
3327
3328         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3329         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3330         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3331         blk_mq_del_queue_tag_set(q);
3332 }
3333
3334 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3335 {
3336         int i;
3337
3338         for (i = 0; i < set->nr_hw_queues; i++) {
3339                 if (!__blk_mq_alloc_map_and_request(set, i))
3340                         goto out_unwind;
3341                 cond_resched();
3342         }
3343
3344         return 0;
3345
3346 out_unwind:
3347         while (--i >= 0)
3348                 blk_mq_free_map_and_requests(set, i);
3349
3350         return -ENOMEM;
3351 }
3352
3353 /*
3354  * Allocate the request maps associated with this tag_set. Note that this
3355  * may reduce the depth asked for, if memory is tight. set->queue_depth
3356  * will be updated to reflect the allocated depth.
3357  */
3358 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3359 {
3360         unsigned int depth;
3361         int err;
3362
3363         depth = set->queue_depth;
3364         do {
3365                 err = __blk_mq_alloc_rq_maps(set);
3366                 if (!err)
3367                         break;
3368
3369                 set->queue_depth >>= 1;
3370                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3371                         err = -ENOMEM;
3372                         break;
3373                 }
3374         } while (set->queue_depth);
3375
3376         if (!set->queue_depth || err) {
3377                 pr_err("blk-mq: failed to allocate request map\n");
3378                 return -ENOMEM;
3379         }
3380
3381         if (depth != set->queue_depth)
3382                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3383                                                 depth, set->queue_depth);
3384
3385         return 0;
3386 }
3387
3388 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3389 {
3390         /*
3391          * blk_mq_map_queues() and multiple .map_queues() implementations
3392          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3393          * number of hardware queues.
3394          */
3395         if (set->nr_maps == 1)
3396                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3397
3398         if (set->ops->map_queues && !is_kdump_kernel()) {
3399                 int i;
3400
3401                 /*
3402                  * transport .map_queues is usually done in the following
3403                  * way:
3404                  *
3405                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3406                  *      mask = get_cpu_mask(queue)
3407                  *      for_each_cpu(cpu, mask)
3408                  *              set->map[x].mq_map[cpu] = queue;
3409                  * }
3410                  *
3411                  * When we need to remap, the table has to be cleared for
3412                  * killing stale mapping since one CPU may not be mapped
3413                  * to any hw queue.
3414                  */
3415                 for (i = 0; i < set->nr_maps; i++)
3416                         blk_mq_clear_mq_map(&set->map[i]);
3417
3418                 return set->ops->map_queues(set);
3419         } else {
3420                 BUG_ON(set->nr_maps > 1);
3421                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3422         }
3423 }
3424
3425 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3426                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3427 {
3428         struct blk_mq_tags **new_tags;
3429
3430         if (cur_nr_hw_queues >= new_nr_hw_queues)
3431                 return 0;
3432
3433         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3434                                 GFP_KERNEL, set->numa_node);
3435         if (!new_tags)
3436                 return -ENOMEM;
3437
3438         if (set->tags)
3439                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3440                        sizeof(*set->tags));
3441         kfree(set->tags);
3442         set->tags = new_tags;
3443         set->nr_hw_queues = new_nr_hw_queues;
3444
3445         return 0;
3446 }
3447
3448 /*
3449  * Alloc a tag set to be associated with one or more request queues.
3450  * May fail with EINVAL for various error conditions. May adjust the
3451  * requested depth down, if it's too large. In that case, the set
3452  * value will be stored in set->queue_depth.
3453  */
3454 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3455 {
3456         int i, ret;
3457
3458         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3459
3460         if (!set->nr_hw_queues)
3461                 return -EINVAL;
3462         if (!set->queue_depth)
3463                 return -EINVAL;
3464         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3465                 return -EINVAL;
3466
3467         if (!set->ops->queue_rq)
3468                 return -EINVAL;
3469
3470         if (!set->ops->get_budget ^ !set->ops->put_budget)
3471                 return -EINVAL;
3472
3473         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3474                 pr_info("blk-mq: reduced tag depth to %u\n",
3475                         BLK_MQ_MAX_DEPTH);
3476                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3477         }
3478
3479         if (!set->nr_maps)
3480                 set->nr_maps = 1;
3481         else if (set->nr_maps > HCTX_MAX_TYPES)
3482                 return -EINVAL;
3483
3484         /*
3485          * If a crashdump is active, then we are potentially in a very
3486          * memory constrained environment. Limit us to 1 queue and
3487          * 64 tags to prevent using too much memory.
3488          */
3489         if (is_kdump_kernel()) {
3490                 set->nr_hw_queues = 1;
3491                 set->nr_maps = 1;
3492                 set->queue_depth = min(64U, set->queue_depth);
3493         }
3494         /*
3495          * There is no use for more h/w queues than cpus if we just have
3496          * a single map
3497          */
3498         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3499                 set->nr_hw_queues = nr_cpu_ids;
3500
3501         if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3502                 return -ENOMEM;
3503
3504         ret = -ENOMEM;
3505         for (i = 0; i < set->nr_maps; i++) {
3506                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3507                                                   sizeof(set->map[i].mq_map[0]),
3508                                                   GFP_KERNEL, set->numa_node);
3509                 if (!set->map[i].mq_map)
3510                         goto out_free_mq_map;
3511                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3512         }
3513
3514         ret = blk_mq_update_queue_map(set);
3515         if (ret)
3516                 goto out_free_mq_map;
3517
3518         ret = blk_mq_alloc_map_and_requests(set);
3519         if (ret)
3520                 goto out_free_mq_map;
3521
3522         if (blk_mq_is_sbitmap_shared(set->flags)) {
3523                 atomic_set(&set->active_queues_shared_sbitmap, 0);
3524
3525                 if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3526                         ret = -ENOMEM;
3527                         goto out_free_mq_rq_maps;
3528                 }
3529         }
3530
3531         mutex_init(&set->tag_list_lock);
3532         INIT_LIST_HEAD(&set->tag_list);
3533
3534         return 0;
3535
3536 out_free_mq_rq_maps:
3537         for (i = 0; i < set->nr_hw_queues; i++)
3538                 blk_mq_free_map_and_requests(set, i);
3539 out_free_mq_map:
3540         for (i = 0; i < set->nr_maps; i++) {
3541                 kfree(set->map[i].mq_map);
3542                 set->map[i].mq_map = NULL;
3543         }
3544         kfree(set->tags);
3545         set->tags = NULL;
3546         return ret;
3547 }
3548 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3549
3550 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3551 {
3552         int i, j;
3553
3554         for (i = 0; i < set->nr_hw_queues; i++)
3555                 blk_mq_free_map_and_requests(set, i);
3556
3557         if (blk_mq_is_sbitmap_shared(set->flags))
3558                 blk_mq_exit_shared_sbitmap(set);
3559
3560         for (j = 0; j < set->nr_maps; j++) {
3561                 kfree(set->map[j].mq_map);
3562                 set->map[j].mq_map = NULL;
3563         }
3564
3565         kfree(set->tags);
3566         set->tags = NULL;
3567 }
3568 EXPORT_SYMBOL(blk_mq_free_tag_set);
3569
3570 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3571 {
3572         struct blk_mq_tag_set *set = q->tag_set;
3573         struct blk_mq_hw_ctx *hctx;
3574         int i, ret;
3575
3576         if (!set)
3577                 return -EINVAL;
3578
3579         if (q->nr_requests == nr)
3580                 return 0;
3581
3582         blk_mq_freeze_queue(q);
3583         blk_mq_quiesce_queue(q);
3584
3585         ret = 0;
3586         queue_for_each_hw_ctx(q, hctx, i) {
3587                 if (!hctx->tags)
3588                         continue;
3589                 /*
3590                  * If we're using an MQ scheduler, just update the scheduler
3591                  * queue depth. This is similar to what the old code would do.
3592                  */
3593                 if (!hctx->sched_tags) {
3594                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3595                                                         false);
3596                         if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3597                                 blk_mq_tag_resize_shared_sbitmap(set, nr);
3598                 } else {
3599                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3600                                                         nr, true);
3601                 }
3602                 if (ret)
3603                         break;
3604                 if (q->elevator && q->elevator->type->ops.depth_updated)
3605                         q->elevator->type->ops.depth_updated(hctx);
3606         }
3607
3608         if (!ret)
3609                 q->nr_requests = nr;
3610
3611         blk_mq_unquiesce_queue(q);
3612         blk_mq_unfreeze_queue(q);
3613
3614         return ret;
3615 }
3616
3617 /*
3618  * request_queue and elevator_type pair.
3619  * It is just used by __blk_mq_update_nr_hw_queues to cache
3620  * the elevator_type associated with a request_queue.
3621  */
3622 struct blk_mq_qe_pair {
3623         struct list_head node;
3624         struct request_queue *q;
3625         struct elevator_type *type;
3626 };
3627
3628 /*
3629  * Cache the elevator_type in qe pair list and switch the
3630  * io scheduler to 'none'
3631  */
3632 static bool blk_mq_elv_switch_none(struct list_head *head,
3633                 struct request_queue *q)
3634 {
3635         struct blk_mq_qe_pair *qe;
3636
3637         if (!q->elevator)
3638                 return true;
3639
3640         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3641         if (!qe)
3642                 return false;
3643
3644         INIT_LIST_HEAD(&qe->node);
3645         qe->q = q;
3646         qe->type = q->elevator->type;
3647         list_add(&qe->node, head);
3648
3649         mutex_lock(&q->sysfs_lock);
3650         /*
3651          * After elevator_switch_mq, the previous elevator_queue will be
3652          * released by elevator_release. The reference of the io scheduler
3653          * module get by elevator_get will also be put. So we need to get
3654          * a reference of the io scheduler module here to prevent it to be
3655          * removed.
3656          */
3657         __module_get(qe->type->elevator_owner);
3658         elevator_switch_mq(q, NULL);
3659         mutex_unlock(&q->sysfs_lock);
3660
3661         return true;
3662 }
3663
3664 static void blk_mq_elv_switch_back(struct list_head *head,
3665                 struct request_queue *q)
3666 {
3667         struct blk_mq_qe_pair *qe;
3668         struct elevator_type *t = NULL;
3669
3670         list_for_each_entry(qe, head, node)
3671                 if (qe->q == q) {
3672                         t = qe->type;
3673                         break;
3674                 }
3675
3676         if (!t)
3677                 return;
3678
3679         list_del(&qe->node);
3680         kfree(qe);
3681
3682         mutex_lock(&q->sysfs_lock);
3683         elevator_switch_mq(q, t);
3684         mutex_unlock(&q->sysfs_lock);
3685 }
3686
3687 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3688                                                         int nr_hw_queues)
3689 {
3690         struct request_queue *q;
3691         LIST_HEAD(head);
3692         int prev_nr_hw_queues;
3693
3694         lockdep_assert_held(&set->tag_list_lock);
3695
3696         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3697                 nr_hw_queues = nr_cpu_ids;
3698         if (nr_hw_queues < 1)
3699                 return;
3700         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3701                 return;
3702
3703         list_for_each_entry(q, &set->tag_list, tag_set_list)
3704                 blk_mq_freeze_queue(q);
3705         /*
3706          * Switch IO scheduler to 'none', cleaning up the data associated
3707          * with the previous scheduler. We will switch back once we are done
3708          * updating the new sw to hw queue mappings.
3709          */
3710         list_for_each_entry(q, &set->tag_list, tag_set_list)
3711                 if (!blk_mq_elv_switch_none(&head, q))
3712                         goto switch_back;
3713
3714         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3715                 blk_mq_debugfs_unregister_hctxs(q);
3716                 blk_mq_sysfs_unregister(q);
3717         }
3718
3719         prev_nr_hw_queues = set->nr_hw_queues;
3720         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3721             0)
3722                 goto reregister;
3723
3724         set->nr_hw_queues = nr_hw_queues;
3725 fallback:
3726         blk_mq_update_queue_map(set);
3727         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3728                 blk_mq_realloc_hw_ctxs(set, q);
3729                 if (q->nr_hw_queues != set->nr_hw_queues) {
3730                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3731                                         nr_hw_queues, prev_nr_hw_queues);
3732                         set->nr_hw_queues = prev_nr_hw_queues;
3733                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3734                         goto fallback;
3735                 }
3736                 blk_mq_map_swqueue(q);
3737         }
3738
3739 reregister:
3740         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3741                 blk_mq_sysfs_register(q);
3742                 blk_mq_debugfs_register_hctxs(q);
3743         }
3744
3745 switch_back:
3746         list_for_each_entry(q, &set->tag_list, tag_set_list)
3747                 blk_mq_elv_switch_back(&head, q);
3748
3749         list_for_each_entry(q, &set->tag_list, tag_set_list)
3750                 blk_mq_unfreeze_queue(q);
3751 }
3752
3753 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3754 {
3755         mutex_lock(&set->tag_list_lock);
3756         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3757         mutex_unlock(&set->tag_list_lock);
3758 }
3759 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3760
3761 /* Enable polling stats and return whether they were already enabled. */
3762 static bool blk_poll_stats_enable(struct request_queue *q)
3763 {
3764         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3765             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3766                 return true;
3767         blk_stat_add_callback(q, q->poll_cb);
3768         return false;
3769 }
3770
3771 static void blk_mq_poll_stats_start(struct request_queue *q)
3772 {
3773         /*
3774          * We don't arm the callback if polling stats are not enabled or the
3775          * callback is already active.
3776          */
3777         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3778             blk_stat_is_active(q->poll_cb))
3779                 return;
3780
3781         blk_stat_activate_msecs(q->poll_cb, 100);
3782 }
3783
3784 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3785 {
3786         struct request_queue *q = cb->data;
3787         int bucket;
3788
3789         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3790                 if (cb->stat[bucket].nr_samples)
3791                         q->poll_stat[bucket] = cb->stat[bucket];
3792         }
3793 }
3794
3795 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3796                                        struct request *rq)
3797 {
3798         unsigned long ret = 0;
3799         int bucket;
3800
3801         /*
3802          * If stats collection isn't on, don't sleep but turn it on for
3803          * future users
3804          */
3805         if (!blk_poll_stats_enable(q))
3806                 return 0;
3807
3808         /*
3809          * As an optimistic guess, use half of the mean service time
3810          * for this type of request. We can (and should) make this smarter.
3811          * For instance, if the completion latencies are tight, we can
3812          * get closer than just half the mean. This is especially
3813          * important on devices where the completion latencies are longer
3814          * than ~10 usec. We do use the stats for the relevant IO size
3815          * if available which does lead to better estimates.
3816          */
3817         bucket = blk_mq_poll_stats_bkt(rq);
3818         if (bucket < 0)
3819                 return ret;
3820
3821         if (q->poll_stat[bucket].nr_samples)
3822                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3823
3824         return ret;
3825 }
3826
3827 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3828                                      struct request *rq)
3829 {
3830         struct hrtimer_sleeper hs;
3831         enum hrtimer_mode mode;
3832         unsigned int nsecs;
3833         ktime_t kt;
3834
3835         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3836                 return false;
3837
3838         /*
3839          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3840          *
3841          *  0:  use half of prev avg
3842          * >0:  use this specific value
3843          */
3844         if (q->poll_nsec > 0)
3845                 nsecs = q->poll_nsec;
3846         else
3847                 nsecs = blk_mq_poll_nsecs(q, rq);
3848
3849         if (!nsecs)
3850                 return false;
3851
3852         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3853
3854         /*
3855          * This will be replaced with the stats tracking code, using
3856          * 'avg_completion_time / 2' as the pre-sleep target.
3857          */
3858         kt = nsecs;
3859
3860         mode = HRTIMER_MODE_REL;
3861         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3862         hrtimer_set_expires(&hs.timer, kt);
3863
3864         do {
3865                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3866                         break;
3867                 set_current_state(TASK_UNINTERRUPTIBLE);
3868                 hrtimer_sleeper_start_expires(&hs, mode);
3869                 if (hs.task)
3870                         io_schedule();
3871                 hrtimer_cancel(&hs.timer);
3872                 mode = HRTIMER_MODE_ABS;
3873         } while (hs.task && !signal_pending(current));
3874
3875         __set_current_state(TASK_RUNNING);
3876         destroy_hrtimer_on_stack(&hs.timer);
3877         return true;
3878 }
3879
3880 static bool blk_mq_poll_hybrid(struct request_queue *q,
3881                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3882 {
3883         struct request *rq;
3884
3885         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3886                 return false;
3887
3888         if (!blk_qc_t_is_internal(cookie))
3889                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3890         else {
3891                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3892                 /*
3893                  * With scheduling, if the request has completed, we'll
3894                  * get a NULL return here, as we clear the sched tag when
3895                  * that happens. The request still remains valid, like always,
3896                  * so we should be safe with just the NULL check.
3897                  */
3898                 if (!rq)
3899                         return false;
3900         }
3901
3902         return blk_mq_poll_hybrid_sleep(q, rq);
3903 }
3904
3905 /**
3906  * blk_poll - poll for IO completions
3907  * @q:  the queue
3908  * @cookie: cookie passed back at IO submission time
3909  * @spin: whether to spin for completions
3910  *
3911  * Description:
3912  *    Poll for completions on the passed in queue. Returns number of
3913  *    completed entries found. If @spin is true, then blk_poll will continue
3914  *    looping until at least one completion is found, unless the task is
3915  *    otherwise marked running (or we need to reschedule).
3916  */
3917 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3918 {
3919         struct blk_mq_hw_ctx *hctx;
3920         long state;
3921
3922         if (!blk_qc_t_valid(cookie) ||
3923             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3924                 return 0;
3925
3926         if (current->plug)
3927                 blk_flush_plug_list(current->plug, false);
3928
3929         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3930
3931         /*
3932          * If we sleep, have the caller restart the poll loop to reset
3933          * the state. Like for the other success return cases, the
3934          * caller is responsible for checking if the IO completed. If
3935          * the IO isn't complete, we'll get called again and will go
3936          * straight to the busy poll loop.
3937          */
3938         if (blk_mq_poll_hybrid(q, hctx, cookie))
3939                 return 1;
3940
3941         hctx->poll_considered++;
3942
3943         state = current->state;
3944         do {
3945                 int ret;
3946
3947                 hctx->poll_invoked++;
3948
3949                 ret = q->mq_ops->poll(hctx);
3950                 if (ret > 0) {
3951                         hctx->poll_success++;
3952                         __set_current_state(TASK_RUNNING);
3953                         return ret;
3954                 }
3955
3956                 if (signal_pending_state(state, current))
3957                         __set_current_state(TASK_RUNNING);
3958
3959                 if (current->state == TASK_RUNNING)
3960                         return 1;
3961                 if (ret < 0 || !spin)
3962                         break;
3963                 cpu_relax();
3964         } while (!need_resched());
3965
3966         __set_current_state(TASK_RUNNING);
3967         return 0;
3968 }
3969 EXPORT_SYMBOL_GPL(blk_poll);
3970
3971 unsigned int blk_mq_rq_cpu(struct request *rq)
3972 {
3973         return rq->mq_ctx->cpu;
3974 }
3975 EXPORT_SYMBOL(blk_mq_rq_cpu);
3976
3977 static int __init blk_mq_init(void)
3978 {
3979         int i;
3980
3981         for_each_possible_cpu(i)
3982                 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3983         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3984
3985         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3986                                   "block/softirq:dead", NULL,
3987                                   blk_softirq_cpu_dead);
3988         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3989                                 blk_mq_hctx_notify_dead);
3990         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3991                                 blk_mq_hctx_notify_online,
3992                                 blk_mq_hctx_notify_offline);
3993         return 0;
3994 }
3995 subsys_initcall(blk_mq_init);