arm64: dts: qcom: sm6125-pdx201: correct ramoops pmsg-size
[platform/kernel/linux-starfive.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54         int ddir, sectors, bucket;
55
56         ddir = rq_data_dir(rq);
57         sectors = blk_rq_stats_sectors(rq);
58
59         bucket = ddir + 2 * ilog2(sectors);
60
61         if (bucket < 0)
62                 return -1;
63         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65
66         return bucket;
67 }
68
69 #define BLK_QC_T_SHIFT          16
70 #define BLK_QC_T_INTERNAL       (1U << 31)
71
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73                 blk_qc_t qc)
74 {
75         return xa_load(&q->hctx_table,
76                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80                 blk_qc_t qc)
81 {
82         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83
84         if (qc & BLK_QC_T_INTERNAL)
85                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86         return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92                 (rq->tag != -1 ?
93                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102         return !list_empty_careful(&hctx->dispatch) ||
103                 sbitmap_any_bit_set(&hctx->ctx_map) ||
104                         blk_mq_sched_has_work(hctx);
105 }
106
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111                                      struct blk_mq_ctx *ctx)
112 {
113         const int bit = ctx->index_hw[hctx->type];
114
115         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116                 sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120                                       struct blk_mq_ctx *ctx)
121 {
122         const int bit = ctx->index_hw[hctx->type];
123
124         sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126
127 struct mq_inflight {
128         struct block_device *part;
129         unsigned int inflight[2];
130 };
131
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264         if (blk_queue_has_srcu(q))
265                 synchronize_srcu(q->srcu);
266         else
267                 synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282         blk_mq_quiesce_queue_nowait(q);
283         blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296         unsigned long flags;
297         bool run_queue = false;
298
299         spin_lock_irqsave(&q->queue_lock, flags);
300         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301                 ;
302         } else if (!--q->quiesce_depth) {
303                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304                 run_queue = true;
305         }
306         spin_unlock_irqrestore(&q->queue_lock, flags);
307
308         /* dispatch requests which are inserted during quiescing */
309         if (run_queue)
310                 blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316         struct blk_mq_hw_ctx *hctx;
317         unsigned long i;
318
319         queue_for_each_hw_ctx(q, hctx, i)
320                 if (blk_mq_hw_queue_mapped(hctx))
321                         blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326         memset(rq, 0, sizeof(*rq));
327
328         INIT_LIST_HEAD(&rq->queuelist);
329         rq->q = q;
330         rq->__sector = (sector_t) -1;
331         INIT_HLIST_NODE(&rq->hash);
332         RB_CLEAR_NODE(&rq->rb_node);
333         rq->tag = BLK_MQ_NO_TAG;
334         rq->internal_tag = BLK_MQ_NO_TAG;
335         rq->start_time_ns = ktime_get_ns();
336         rq->part = NULL;
337         blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344         struct blk_mq_ctx *ctx = data->ctx;
345         struct blk_mq_hw_ctx *hctx = data->hctx;
346         struct request_queue *q = data->q;
347         struct request *rq = tags->static_rqs[tag];
348
349         rq->q = q;
350         rq->mq_ctx = ctx;
351         rq->mq_hctx = hctx;
352         rq->cmd_flags = data->cmd_flags;
353
354         if (data->flags & BLK_MQ_REQ_PM)
355                 data->rq_flags |= RQF_PM;
356         if (blk_queue_io_stat(q))
357                 data->rq_flags |= RQF_IO_STAT;
358         rq->rq_flags = data->rq_flags;
359
360         if (!(data->rq_flags & RQF_ELV)) {
361                 rq->tag = tag;
362                 rq->internal_tag = BLK_MQ_NO_TAG;
363         } else {
364                 rq->tag = BLK_MQ_NO_TAG;
365                 rq->internal_tag = tag;
366         }
367         rq->timeout = 0;
368
369         if (blk_mq_need_time_stamp(rq))
370                 rq->start_time_ns = ktime_get_ns();
371         else
372                 rq->start_time_ns = 0;
373         rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375         rq->alloc_time_ns = alloc_time_ns;
376 #endif
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_ELV) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (!op_is_flush(data->cmd_flags) &&
399                     e->type->ops.prepare_request) {
400                         e->type->ops.prepare_request(rq);
401                         rq->rq_flags |= RQF_ELVPRIV;
402                 }
403         }
404
405         return rq;
406 }
407
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410                 u64 alloc_time_ns)
411 {
412         unsigned int tag, tag_offset;
413         struct blk_mq_tags *tags;
414         struct request *rq;
415         unsigned long tag_mask;
416         int i, nr = 0;
417
418         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419         if (unlikely(!tag_mask))
420                 return NULL;
421
422         tags = blk_mq_tags_from_data(data);
423         for (i = 0; tag_mask; i++) {
424                 if (!(tag_mask & (1UL << i)))
425                         continue;
426                 tag = tag_offset + i;
427                 prefetch(tags->static_rqs[tag]);
428                 tag_mask &= ~(1UL << i);
429                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430                 rq_list_add(data->cached_rq, rq);
431                 nr++;
432         }
433         /* caller already holds a reference, add for remainder */
434         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435         data->nr_tags -= nr;
436
437         return rq_list_pop(data->cached_rq);
438 }
439
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442         struct request_queue *q = data->q;
443         u64 alloc_time_ns = 0;
444         struct request *rq;
445         unsigned int tag;
446
447         /* alloc_time includes depth and tag waits */
448         if (blk_queue_rq_alloc_time(q))
449                 alloc_time_ns = ktime_get_ns();
450
451         if (data->cmd_flags & REQ_NOWAIT)
452                 data->flags |= BLK_MQ_REQ_NOWAIT;
453
454         if (q->elevator) {
455                 struct elevator_queue *e = q->elevator;
456
457                 data->rq_flags |= RQF_ELV;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list. Don't include reserved tags in the
462                  * limiting, as it isn't useful.
463                  */
464                 if (!op_is_flush(data->cmd_flags) &&
465                     !blk_op_is_passthrough(data->cmd_flags) &&
466                     e->type->ops.limit_depth &&
467                     !(data->flags & BLK_MQ_REQ_RESERVED))
468                         e->type->ops.limit_depth(data->cmd_flags, data);
469         }
470
471 retry:
472         data->ctx = blk_mq_get_ctx(q);
473         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474         if (!(data->rq_flags & RQF_ELV))
475                 blk_mq_tag_busy(data->hctx);
476
477         if (data->flags & BLK_MQ_REQ_RESERVED)
478                 data->rq_flags |= RQF_RESV;
479
480         /*
481          * Try batched alloc if we want more than 1 tag.
482          */
483         if (data->nr_tags > 1) {
484                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
485                 if (rq)
486                         return rq;
487                 data->nr_tags = 1;
488         }
489
490         /*
491          * Waiting allocations only fail because of an inactive hctx.  In that
492          * case just retry the hctx assignment and tag allocation as CPU hotplug
493          * should have migrated us to an online CPU by now.
494          */
495         tag = blk_mq_get_tag(data);
496         if (tag == BLK_MQ_NO_TAG) {
497                 if (data->flags & BLK_MQ_REQ_NOWAIT)
498                         return NULL;
499                 /*
500                  * Give up the CPU and sleep for a random short time to
501                  * ensure that thread using a realtime scheduling class
502                  * are migrated off the CPU, and thus off the hctx that
503                  * is going away.
504                  */
505                 msleep(3);
506                 goto retry;
507         }
508
509         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
510                                         alloc_time_ns);
511 }
512
513 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
514                                             struct blk_plug *plug,
515                                             blk_opf_t opf,
516                                             blk_mq_req_flags_t flags)
517 {
518         struct blk_mq_alloc_data data = {
519                 .q              = q,
520                 .flags          = flags,
521                 .cmd_flags      = opf,
522                 .nr_tags        = plug->nr_ios,
523                 .cached_rq      = &plug->cached_rq,
524         };
525         struct request *rq;
526
527         if (blk_queue_enter(q, flags))
528                 return NULL;
529
530         plug->nr_ios = 1;
531
532         rq = __blk_mq_alloc_requests(&data);
533         if (unlikely(!rq))
534                 blk_queue_exit(q);
535         return rq;
536 }
537
538 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
539                                                    blk_opf_t opf,
540                                                    blk_mq_req_flags_t flags)
541 {
542         struct blk_plug *plug = current->plug;
543         struct request *rq;
544
545         if (!plug)
546                 return NULL;
547         if (rq_list_empty(plug->cached_rq)) {
548                 if (plug->nr_ios == 1)
549                         return NULL;
550                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
551                 if (rq)
552                         goto got_it;
553                 return NULL;
554         }
555         rq = rq_list_peek(&plug->cached_rq);
556         if (!rq || rq->q != q)
557                 return NULL;
558
559         if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
560                 return NULL;
561         if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
562                 return NULL;
563
564         plug->cached_rq = rq_list_next(rq);
565 got_it:
566         rq->cmd_flags = opf;
567         INIT_LIST_HEAD(&rq->queuelist);
568         return rq;
569 }
570
571 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
572                 blk_mq_req_flags_t flags)
573 {
574         struct request *rq;
575
576         rq = blk_mq_alloc_cached_request(q, opf, flags);
577         if (!rq) {
578                 struct blk_mq_alloc_data data = {
579                         .q              = q,
580                         .flags          = flags,
581                         .cmd_flags      = opf,
582                         .nr_tags        = 1,
583                 };
584                 int ret;
585
586                 ret = blk_queue_enter(q, flags);
587                 if (ret)
588                         return ERR_PTR(ret);
589
590                 rq = __blk_mq_alloc_requests(&data);
591                 if (!rq)
592                         goto out_queue_exit;
593         }
594         rq->__data_len = 0;
595         rq->__sector = (sector_t) -1;
596         rq->bio = rq->biotail = NULL;
597         return rq;
598 out_queue_exit:
599         blk_queue_exit(q);
600         return ERR_PTR(-EWOULDBLOCK);
601 }
602 EXPORT_SYMBOL(blk_mq_alloc_request);
603
604 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
605         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
606 {
607         struct blk_mq_alloc_data data = {
608                 .q              = q,
609                 .flags          = flags,
610                 .cmd_flags      = opf,
611                 .nr_tags        = 1,
612         };
613         u64 alloc_time_ns = 0;
614         struct request *rq;
615         unsigned int cpu;
616         unsigned int tag;
617         int ret;
618
619         /* alloc_time includes depth and tag waits */
620         if (blk_queue_rq_alloc_time(q))
621                 alloc_time_ns = ktime_get_ns();
622
623         /*
624          * If the tag allocator sleeps we could get an allocation for a
625          * different hardware context.  No need to complicate the low level
626          * allocator for this for the rare use case of a command tied to
627          * a specific queue.
628          */
629         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
630             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
631                 return ERR_PTR(-EINVAL);
632
633         if (hctx_idx >= q->nr_hw_queues)
634                 return ERR_PTR(-EIO);
635
636         ret = blk_queue_enter(q, flags);
637         if (ret)
638                 return ERR_PTR(ret);
639
640         /*
641          * Check if the hardware context is actually mapped to anything.
642          * If not tell the caller that it should skip this queue.
643          */
644         ret = -EXDEV;
645         data.hctx = xa_load(&q->hctx_table, hctx_idx);
646         if (!blk_mq_hw_queue_mapped(data.hctx))
647                 goto out_queue_exit;
648         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
649         if (cpu >= nr_cpu_ids)
650                 goto out_queue_exit;
651         data.ctx = __blk_mq_get_ctx(q, cpu);
652
653         if (!q->elevator)
654                 blk_mq_tag_busy(data.hctx);
655         else
656                 data.rq_flags |= RQF_ELV;
657
658         if (flags & BLK_MQ_REQ_RESERVED)
659                 data.rq_flags |= RQF_RESV;
660
661         ret = -EWOULDBLOCK;
662         tag = blk_mq_get_tag(&data);
663         if (tag == BLK_MQ_NO_TAG)
664                 goto out_queue_exit;
665         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
666                                         alloc_time_ns);
667         rq->__data_len = 0;
668         rq->__sector = (sector_t) -1;
669         rq->bio = rq->biotail = NULL;
670         return rq;
671
672 out_queue_exit:
673         blk_queue_exit(q);
674         return ERR_PTR(ret);
675 }
676 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
677
678 static void __blk_mq_free_request(struct request *rq)
679 {
680         struct request_queue *q = rq->q;
681         struct blk_mq_ctx *ctx = rq->mq_ctx;
682         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
683         const int sched_tag = rq->internal_tag;
684
685         blk_crypto_free_request(rq);
686         blk_pm_mark_last_busy(rq);
687         rq->mq_hctx = NULL;
688
689         if (rq->rq_flags & RQF_MQ_INFLIGHT)
690                 __blk_mq_dec_active_requests(hctx);
691
692         if (rq->tag != BLK_MQ_NO_TAG)
693                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
694         if (sched_tag != BLK_MQ_NO_TAG)
695                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
696         blk_mq_sched_restart(hctx);
697         blk_queue_exit(q);
698 }
699
700 void blk_mq_free_request(struct request *rq)
701 {
702         struct request_queue *q = rq->q;
703
704         if ((rq->rq_flags & RQF_ELVPRIV) &&
705             q->elevator->type->ops.finish_request)
706                 q->elevator->type->ops.finish_request(rq);
707
708         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
709                 laptop_io_completion(q->disk->bdi);
710
711         rq_qos_done(q, rq);
712
713         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
714         if (req_ref_put_and_test(rq))
715                 __blk_mq_free_request(rq);
716 }
717 EXPORT_SYMBOL_GPL(blk_mq_free_request);
718
719 void blk_mq_free_plug_rqs(struct blk_plug *plug)
720 {
721         struct request *rq;
722
723         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
724                 blk_mq_free_request(rq);
725 }
726
727 void blk_dump_rq_flags(struct request *rq, char *msg)
728 {
729         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
730                 rq->q->disk ? rq->q->disk->disk_name : "?",
731                 (__force unsigned long long) rq->cmd_flags);
732
733         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
734                (unsigned long long)blk_rq_pos(rq),
735                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
736         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
737                rq->bio, rq->biotail, blk_rq_bytes(rq));
738 }
739 EXPORT_SYMBOL(blk_dump_rq_flags);
740
741 static void req_bio_endio(struct request *rq, struct bio *bio,
742                           unsigned int nbytes, blk_status_t error)
743 {
744         if (unlikely(error)) {
745                 bio->bi_status = error;
746         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
747                 /*
748                  * Partial zone append completions cannot be supported as the
749                  * BIO fragments may end up not being written sequentially.
750                  */
751                 if (bio->bi_iter.bi_size != nbytes)
752                         bio->bi_status = BLK_STS_IOERR;
753                 else
754                         bio->bi_iter.bi_sector = rq->__sector;
755         }
756
757         bio_advance(bio, nbytes);
758
759         if (unlikely(rq->rq_flags & RQF_QUIET))
760                 bio_set_flag(bio, BIO_QUIET);
761         /* don't actually finish bio if it's part of flush sequence */
762         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
763                 bio_endio(bio);
764 }
765
766 static void blk_account_io_completion(struct request *req, unsigned int bytes)
767 {
768         if (req->part && blk_do_io_stat(req)) {
769                 const int sgrp = op_stat_group(req_op(req));
770
771                 part_stat_lock();
772                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
773                 part_stat_unlock();
774         }
775 }
776
777 static void blk_print_req_error(struct request *req, blk_status_t status)
778 {
779         printk_ratelimited(KERN_ERR
780                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
781                 "phys_seg %u prio class %u\n",
782                 blk_status_to_str(status),
783                 req->q->disk ? req->q->disk->disk_name : "?",
784                 blk_rq_pos(req), (__force u32)req_op(req),
785                 blk_op_str(req_op(req)),
786                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
787                 req->nr_phys_segments,
788                 IOPRIO_PRIO_CLASS(req->ioprio));
789 }
790
791 /*
792  * Fully end IO on a request. Does not support partial completions, or
793  * errors.
794  */
795 static void blk_complete_request(struct request *req)
796 {
797         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
798         int total_bytes = blk_rq_bytes(req);
799         struct bio *bio = req->bio;
800
801         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
802
803         if (!bio)
804                 return;
805
806 #ifdef CONFIG_BLK_DEV_INTEGRITY
807         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
808                 req->q->integrity.profile->complete_fn(req, total_bytes);
809 #endif
810
811         /*
812          * Upper layers may call blk_crypto_evict_key() anytime after the last
813          * bio_endio().  Therefore, the keyslot must be released before that.
814          */
815         blk_crypto_rq_put_keyslot(req);
816
817         blk_account_io_completion(req, total_bytes);
818
819         do {
820                 struct bio *next = bio->bi_next;
821
822                 /* Completion has already been traced */
823                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
824
825                 if (req_op(req) == REQ_OP_ZONE_APPEND)
826                         bio->bi_iter.bi_sector = req->__sector;
827
828                 if (!is_flush)
829                         bio_endio(bio);
830                 bio = next;
831         } while (bio);
832
833         /*
834          * Reset counters so that the request stacking driver
835          * can find how many bytes remain in the request
836          * later.
837          */
838         if (!req->end_io) {
839                 req->bio = NULL;
840                 req->__data_len = 0;
841         }
842 }
843
844 /**
845  * blk_update_request - Complete multiple bytes without completing the request
846  * @req:      the request being processed
847  * @error:    block status code
848  * @nr_bytes: number of bytes to complete for @req
849  *
850  * Description:
851  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
852  *     the request structure even if @req doesn't have leftover.
853  *     If @req has leftover, sets it up for the next range of segments.
854  *
855  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
856  *     %false return from this function.
857  *
858  * Note:
859  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
860  *      except in the consistency check at the end of this function.
861  *
862  * Return:
863  *     %false - this request doesn't have any more data
864  *     %true  - this request has more data
865  **/
866 bool blk_update_request(struct request *req, blk_status_t error,
867                 unsigned int nr_bytes)
868 {
869         int total_bytes;
870
871         trace_block_rq_complete(req, error, nr_bytes);
872
873         if (!req->bio)
874                 return false;
875
876 #ifdef CONFIG_BLK_DEV_INTEGRITY
877         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
878             error == BLK_STS_OK)
879                 req->q->integrity.profile->complete_fn(req, nr_bytes);
880 #endif
881
882         /*
883          * Upper layers may call blk_crypto_evict_key() anytime after the last
884          * bio_endio().  Therefore, the keyslot must be released before that.
885          */
886         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
887                 __blk_crypto_rq_put_keyslot(req);
888
889         if (unlikely(error && !blk_rq_is_passthrough(req) &&
890                      !(req->rq_flags & RQF_QUIET)) &&
891                      !test_bit(GD_DEAD, &req->q->disk->state)) {
892                 blk_print_req_error(req, error);
893                 trace_block_rq_error(req, error, nr_bytes);
894         }
895
896         blk_account_io_completion(req, nr_bytes);
897
898         total_bytes = 0;
899         while (req->bio) {
900                 struct bio *bio = req->bio;
901                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
902
903                 if (bio_bytes == bio->bi_iter.bi_size)
904                         req->bio = bio->bi_next;
905
906                 /* Completion has already been traced */
907                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
908                 req_bio_endio(req, bio, bio_bytes, error);
909
910                 total_bytes += bio_bytes;
911                 nr_bytes -= bio_bytes;
912
913                 if (!nr_bytes)
914                         break;
915         }
916
917         /*
918          * completely done
919          */
920         if (!req->bio) {
921                 /*
922                  * Reset counters so that the request stacking driver
923                  * can find how many bytes remain in the request
924                  * later.
925                  */
926                 req->__data_len = 0;
927                 return false;
928         }
929
930         req->__data_len -= total_bytes;
931
932         /* update sector only for requests with clear definition of sector */
933         if (!blk_rq_is_passthrough(req))
934                 req->__sector += total_bytes >> 9;
935
936         /* mixed attributes always follow the first bio */
937         if (req->rq_flags & RQF_MIXED_MERGE) {
938                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
939                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
940         }
941
942         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
943                 /*
944                  * If total number of sectors is less than the first segment
945                  * size, something has gone terribly wrong.
946                  */
947                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
948                         blk_dump_rq_flags(req, "request botched");
949                         req->__data_len = blk_rq_cur_bytes(req);
950                 }
951
952                 /* recalculate the number of segments */
953                 req->nr_phys_segments = blk_recalc_rq_segments(req);
954         }
955
956         return true;
957 }
958 EXPORT_SYMBOL_GPL(blk_update_request);
959
960 static void __blk_account_io_done(struct request *req, u64 now)
961 {
962         const int sgrp = op_stat_group(req_op(req));
963
964         part_stat_lock();
965         update_io_ticks(req->part, jiffies, true);
966         part_stat_inc(req->part, ios[sgrp]);
967         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
968         part_stat_unlock();
969 }
970
971 static inline void blk_account_io_done(struct request *req, u64 now)
972 {
973         /*
974          * Account IO completion.  flush_rq isn't accounted as a
975          * normal IO on queueing nor completion.  Accounting the
976          * containing request is enough.
977          */
978         if (blk_do_io_stat(req) && req->part &&
979             !(req->rq_flags & RQF_FLUSH_SEQ))
980                 __blk_account_io_done(req, now);
981 }
982
983 static void __blk_account_io_start(struct request *rq)
984 {
985         /*
986          * All non-passthrough requests are created from a bio with one
987          * exception: when a flush command that is part of a flush sequence
988          * generated by the state machine in blk-flush.c is cloned onto the
989          * lower device by dm-multipath we can get here without a bio.
990          */
991         if (rq->bio)
992                 rq->part = rq->bio->bi_bdev;
993         else
994                 rq->part = rq->q->disk->part0;
995
996         part_stat_lock();
997         update_io_ticks(rq->part, jiffies, false);
998         part_stat_unlock();
999 }
1000
1001 static inline void blk_account_io_start(struct request *req)
1002 {
1003         if (blk_do_io_stat(req))
1004                 __blk_account_io_start(req);
1005 }
1006
1007 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1008 {
1009         if (rq->rq_flags & RQF_STATS) {
1010                 blk_mq_poll_stats_start(rq->q);
1011                 blk_stat_add(rq, now);
1012         }
1013
1014         blk_mq_sched_completed_request(rq, now);
1015         blk_account_io_done(rq, now);
1016 }
1017
1018 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1019 {
1020         if (blk_mq_need_time_stamp(rq))
1021                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1022
1023         if (rq->end_io) {
1024                 rq_qos_done(rq->q, rq);
1025                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1026                         blk_mq_free_request(rq);
1027         } else {
1028                 blk_mq_free_request(rq);
1029         }
1030 }
1031 EXPORT_SYMBOL(__blk_mq_end_request);
1032
1033 void blk_mq_end_request(struct request *rq, blk_status_t error)
1034 {
1035         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1036                 BUG();
1037         __blk_mq_end_request(rq, error);
1038 }
1039 EXPORT_SYMBOL(blk_mq_end_request);
1040
1041 #define TAG_COMP_BATCH          32
1042
1043 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1044                                           int *tag_array, int nr_tags)
1045 {
1046         struct request_queue *q = hctx->queue;
1047
1048         /*
1049          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1050          * update hctx->nr_active in batch
1051          */
1052         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1053                 __blk_mq_sub_active_requests(hctx, nr_tags);
1054
1055         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1056         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1057 }
1058
1059 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1060 {
1061         int tags[TAG_COMP_BATCH], nr_tags = 0;
1062         struct blk_mq_hw_ctx *cur_hctx = NULL;
1063         struct request *rq;
1064         u64 now = 0;
1065
1066         if (iob->need_ts)
1067                 now = ktime_get_ns();
1068
1069         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1070                 prefetch(rq->bio);
1071                 prefetch(rq->rq_next);
1072
1073                 blk_complete_request(rq);
1074                 if (iob->need_ts)
1075                         __blk_mq_end_request_acct(rq, now);
1076
1077                 rq_qos_done(rq->q, rq);
1078
1079                 /*
1080                  * If end_io handler returns NONE, then it still has
1081                  * ownership of the request.
1082                  */
1083                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1084                         continue;
1085
1086                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1087                 if (!req_ref_put_and_test(rq))
1088                         continue;
1089
1090                 blk_crypto_free_request(rq);
1091                 blk_pm_mark_last_busy(rq);
1092
1093                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1094                         if (cur_hctx)
1095                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1096                         nr_tags = 0;
1097                         cur_hctx = rq->mq_hctx;
1098                 }
1099                 tags[nr_tags++] = rq->tag;
1100         }
1101
1102         if (nr_tags)
1103                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1104 }
1105 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1106
1107 static void blk_complete_reqs(struct llist_head *list)
1108 {
1109         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1110         struct request *rq, *next;
1111
1112         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1113                 rq->q->mq_ops->complete(rq);
1114 }
1115
1116 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1117 {
1118         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1119 }
1120
1121 static int blk_softirq_cpu_dead(unsigned int cpu)
1122 {
1123         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1124         return 0;
1125 }
1126
1127 static void __blk_mq_complete_request_remote(void *data)
1128 {
1129         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1130 }
1131
1132 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1133 {
1134         int cpu = raw_smp_processor_id();
1135
1136         if (!IS_ENABLED(CONFIG_SMP) ||
1137             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1138                 return false;
1139         /*
1140          * With force threaded interrupts enabled, raising softirq from an SMP
1141          * function call will always result in waking the ksoftirqd thread.
1142          * This is probably worse than completing the request on a different
1143          * cache domain.
1144          */
1145         if (force_irqthreads())
1146                 return false;
1147
1148         /* same CPU or cache domain?  Complete locally */
1149         if (cpu == rq->mq_ctx->cpu ||
1150             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1151              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1152                 return false;
1153
1154         /* don't try to IPI to an offline CPU */
1155         return cpu_online(rq->mq_ctx->cpu);
1156 }
1157
1158 static void blk_mq_complete_send_ipi(struct request *rq)
1159 {
1160         struct llist_head *list;
1161         unsigned int cpu;
1162
1163         cpu = rq->mq_ctx->cpu;
1164         list = &per_cpu(blk_cpu_done, cpu);
1165         if (llist_add(&rq->ipi_list, list)) {
1166                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1167                 smp_call_function_single_async(cpu, &rq->csd);
1168         }
1169 }
1170
1171 static void blk_mq_raise_softirq(struct request *rq)
1172 {
1173         struct llist_head *list;
1174
1175         preempt_disable();
1176         list = this_cpu_ptr(&blk_cpu_done);
1177         if (llist_add(&rq->ipi_list, list))
1178                 raise_softirq(BLOCK_SOFTIRQ);
1179         preempt_enable();
1180 }
1181
1182 bool blk_mq_complete_request_remote(struct request *rq)
1183 {
1184         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1185
1186         /*
1187          * For request which hctx has only one ctx mapping,
1188          * or a polled request, always complete locally,
1189          * it's pointless to redirect the completion.
1190          */
1191         if (rq->mq_hctx->nr_ctx == 1 ||
1192                 rq->cmd_flags & REQ_POLLED)
1193                 return false;
1194
1195         if (blk_mq_complete_need_ipi(rq)) {
1196                 blk_mq_complete_send_ipi(rq);
1197                 return true;
1198         }
1199
1200         if (rq->q->nr_hw_queues == 1) {
1201                 blk_mq_raise_softirq(rq);
1202                 return true;
1203         }
1204         return false;
1205 }
1206 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1207
1208 /**
1209  * blk_mq_complete_request - end I/O on a request
1210  * @rq:         the request being processed
1211  *
1212  * Description:
1213  *      Complete a request by scheduling the ->complete_rq operation.
1214  **/
1215 void blk_mq_complete_request(struct request *rq)
1216 {
1217         if (!blk_mq_complete_request_remote(rq))
1218                 rq->q->mq_ops->complete(rq);
1219 }
1220 EXPORT_SYMBOL(blk_mq_complete_request);
1221
1222 /**
1223  * blk_mq_start_request - Start processing a request
1224  * @rq: Pointer to request to be started
1225  *
1226  * Function used by device drivers to notify the block layer that a request
1227  * is going to be processed now, so blk layer can do proper initializations
1228  * such as starting the timeout timer.
1229  */
1230 void blk_mq_start_request(struct request *rq)
1231 {
1232         struct request_queue *q = rq->q;
1233
1234         trace_block_rq_issue(rq);
1235
1236         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1237                 rq->io_start_time_ns = ktime_get_ns();
1238                 rq->stats_sectors = blk_rq_sectors(rq);
1239                 rq->rq_flags |= RQF_STATS;
1240                 rq_qos_issue(q, rq);
1241         }
1242
1243         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1244
1245         blk_add_timer(rq);
1246         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1247
1248 #ifdef CONFIG_BLK_DEV_INTEGRITY
1249         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1250                 q->integrity.profile->prepare_fn(rq);
1251 #endif
1252         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1253                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1254 }
1255 EXPORT_SYMBOL(blk_mq_start_request);
1256
1257 /*
1258  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1259  * queues. This is important for md arrays to benefit from merging
1260  * requests.
1261  */
1262 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1263 {
1264         if (plug->multiple_queues)
1265                 return BLK_MAX_REQUEST_COUNT * 2;
1266         return BLK_MAX_REQUEST_COUNT;
1267 }
1268
1269 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1270 {
1271         struct request *last = rq_list_peek(&plug->mq_list);
1272
1273         if (!plug->rq_count) {
1274                 trace_block_plug(rq->q);
1275         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1276                    (!blk_queue_nomerges(rq->q) &&
1277                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1278                 blk_mq_flush_plug_list(plug, false);
1279                 last = NULL;
1280                 trace_block_plug(rq->q);
1281         }
1282
1283         if (!plug->multiple_queues && last && last->q != rq->q)
1284                 plug->multiple_queues = true;
1285         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1286                 plug->has_elevator = true;
1287         rq->rq_next = NULL;
1288         rq_list_add(&plug->mq_list, rq);
1289         plug->rq_count++;
1290 }
1291
1292 /**
1293  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1294  * @rq:         request to insert
1295  * @at_head:    insert request at head or tail of queue
1296  *
1297  * Description:
1298  *    Insert a fully prepared request at the back of the I/O scheduler queue
1299  *    for execution.  Don't wait for completion.
1300  *
1301  * Note:
1302  *    This function will invoke @done directly if the queue is dead.
1303  */
1304 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1305 {
1306         WARN_ON(irqs_disabled());
1307         WARN_ON(!blk_rq_is_passthrough(rq));
1308
1309         blk_account_io_start(rq);
1310
1311         /*
1312          * As plugging can be enabled for passthrough requests on a zoned
1313          * device, directly accessing the plug instead of using blk_mq_plug()
1314          * should not have any consequences.
1315          */
1316         if (current->plug && !at_head)
1317                 blk_add_rq_to_plug(current->plug, rq);
1318         else
1319                 blk_mq_sched_insert_request(rq, at_head, true, false);
1320 }
1321 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1322
1323 struct blk_rq_wait {
1324         struct completion done;
1325         blk_status_t ret;
1326 };
1327
1328 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1329 {
1330         struct blk_rq_wait *wait = rq->end_io_data;
1331
1332         wait->ret = ret;
1333         complete(&wait->done);
1334         return RQ_END_IO_NONE;
1335 }
1336
1337 bool blk_rq_is_poll(struct request *rq)
1338 {
1339         if (!rq->mq_hctx)
1340                 return false;
1341         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1342                 return false;
1343         return true;
1344 }
1345 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1346
1347 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1348 {
1349         do {
1350                 blk_mq_poll(rq->q, blk_rq_to_qc(rq), NULL, 0);
1351                 cond_resched();
1352         } while (!completion_done(wait));
1353 }
1354
1355 /**
1356  * blk_execute_rq - insert a request into queue for execution
1357  * @rq:         request to insert
1358  * @at_head:    insert request at head or tail of queue
1359  *
1360  * Description:
1361  *    Insert a fully prepared request at the back of the I/O scheduler queue
1362  *    for execution and wait for completion.
1363  * Return: The blk_status_t result provided to blk_mq_end_request().
1364  */
1365 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1366 {
1367         struct blk_rq_wait wait = {
1368                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1369         };
1370
1371         WARN_ON(irqs_disabled());
1372         WARN_ON(!blk_rq_is_passthrough(rq));
1373
1374         rq->end_io_data = &wait;
1375         rq->end_io = blk_end_sync_rq;
1376
1377         blk_account_io_start(rq);
1378         blk_mq_sched_insert_request(rq, at_head, true, false);
1379
1380         if (blk_rq_is_poll(rq)) {
1381                 blk_rq_poll_completion(rq, &wait.done);
1382         } else {
1383                 /*
1384                  * Prevent hang_check timer from firing at us during very long
1385                  * I/O
1386                  */
1387                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1388
1389                 if (hang_check)
1390                         while (!wait_for_completion_io_timeout(&wait.done,
1391                                         hang_check * (HZ/2)))
1392                                 ;
1393                 else
1394                         wait_for_completion_io(&wait.done);
1395         }
1396
1397         return wait.ret;
1398 }
1399 EXPORT_SYMBOL(blk_execute_rq);
1400
1401 static void __blk_mq_requeue_request(struct request *rq)
1402 {
1403         struct request_queue *q = rq->q;
1404
1405         blk_mq_put_driver_tag(rq);
1406
1407         trace_block_rq_requeue(rq);
1408         rq_qos_requeue(q, rq);
1409
1410         if (blk_mq_request_started(rq)) {
1411                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1412                 rq->rq_flags &= ~RQF_TIMED_OUT;
1413         }
1414 }
1415
1416 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1417 {
1418         __blk_mq_requeue_request(rq);
1419
1420         /* this request will be re-inserted to io scheduler queue */
1421         blk_mq_sched_requeue_request(rq);
1422
1423         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1424 }
1425 EXPORT_SYMBOL(blk_mq_requeue_request);
1426
1427 static void blk_mq_requeue_work(struct work_struct *work)
1428 {
1429         struct request_queue *q =
1430                 container_of(work, struct request_queue, requeue_work.work);
1431         LIST_HEAD(rq_list);
1432         struct request *rq, *next;
1433
1434         spin_lock_irq(&q->requeue_lock);
1435         list_splice_init(&q->requeue_list, &rq_list);
1436         spin_unlock_irq(&q->requeue_lock);
1437
1438         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1439                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1440                         continue;
1441
1442                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1443                 list_del_init(&rq->queuelist);
1444                 /*
1445                  * If RQF_DONTPREP, rq has contained some driver specific
1446                  * data, so insert it to hctx dispatch list to avoid any
1447                  * merge.
1448                  */
1449                 if (rq->rq_flags & RQF_DONTPREP)
1450                         blk_mq_request_bypass_insert(rq, false, false);
1451                 else
1452                         blk_mq_sched_insert_request(rq, true, false, false);
1453         }
1454
1455         while (!list_empty(&rq_list)) {
1456                 rq = list_entry(rq_list.next, struct request, queuelist);
1457                 list_del_init(&rq->queuelist);
1458                 blk_mq_sched_insert_request(rq, false, false, false);
1459         }
1460
1461         blk_mq_run_hw_queues(q, false);
1462 }
1463
1464 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1465                                 bool kick_requeue_list)
1466 {
1467         struct request_queue *q = rq->q;
1468         unsigned long flags;
1469
1470         /*
1471          * We abuse this flag that is otherwise used by the I/O scheduler to
1472          * request head insertion from the workqueue.
1473          */
1474         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1475
1476         spin_lock_irqsave(&q->requeue_lock, flags);
1477         if (at_head) {
1478                 rq->rq_flags |= RQF_SOFTBARRIER;
1479                 list_add(&rq->queuelist, &q->requeue_list);
1480         } else {
1481                 list_add_tail(&rq->queuelist, &q->requeue_list);
1482         }
1483         spin_unlock_irqrestore(&q->requeue_lock, flags);
1484
1485         if (kick_requeue_list)
1486                 blk_mq_kick_requeue_list(q);
1487 }
1488
1489 void blk_mq_kick_requeue_list(struct request_queue *q)
1490 {
1491         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1492 }
1493 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1494
1495 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1496                                     unsigned long msecs)
1497 {
1498         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1499                                     msecs_to_jiffies(msecs));
1500 }
1501 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1502
1503 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1504 {
1505         /*
1506          * If we find a request that isn't idle we know the queue is busy
1507          * as it's checked in the iter.
1508          * Return false to stop the iteration.
1509          */
1510         if (blk_mq_request_started(rq)) {
1511                 bool *busy = priv;
1512
1513                 *busy = true;
1514                 return false;
1515         }
1516
1517         return true;
1518 }
1519
1520 bool blk_mq_queue_inflight(struct request_queue *q)
1521 {
1522         bool busy = false;
1523
1524         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1525         return busy;
1526 }
1527 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1528
1529 static void blk_mq_rq_timed_out(struct request *req)
1530 {
1531         req->rq_flags |= RQF_TIMED_OUT;
1532         if (req->q->mq_ops->timeout) {
1533                 enum blk_eh_timer_return ret;
1534
1535                 ret = req->q->mq_ops->timeout(req);
1536                 if (ret == BLK_EH_DONE)
1537                         return;
1538                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1539         }
1540
1541         blk_add_timer(req);
1542 }
1543
1544 struct blk_expired_data {
1545         bool has_timedout_rq;
1546         unsigned long next;
1547         unsigned long timeout_start;
1548 };
1549
1550 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1551 {
1552         unsigned long deadline;
1553
1554         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1555                 return false;
1556         if (rq->rq_flags & RQF_TIMED_OUT)
1557                 return false;
1558
1559         deadline = READ_ONCE(rq->deadline);
1560         if (time_after_eq(expired->timeout_start, deadline))
1561                 return true;
1562
1563         if (expired->next == 0)
1564                 expired->next = deadline;
1565         else if (time_after(expired->next, deadline))
1566                 expired->next = deadline;
1567         return false;
1568 }
1569
1570 void blk_mq_put_rq_ref(struct request *rq)
1571 {
1572         if (is_flush_rq(rq)) {
1573                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1574                         blk_mq_free_request(rq);
1575         } else if (req_ref_put_and_test(rq)) {
1576                 __blk_mq_free_request(rq);
1577         }
1578 }
1579
1580 static bool blk_mq_check_expired(struct request *rq, void *priv)
1581 {
1582         struct blk_expired_data *expired = priv;
1583
1584         /*
1585          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1586          * be reallocated underneath the timeout handler's processing, then
1587          * the expire check is reliable. If the request is not expired, then
1588          * it was completed and reallocated as a new request after returning
1589          * from blk_mq_check_expired().
1590          */
1591         if (blk_mq_req_expired(rq, expired)) {
1592                 expired->has_timedout_rq = true;
1593                 return false;
1594         }
1595         return true;
1596 }
1597
1598 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1599 {
1600         struct blk_expired_data *expired = priv;
1601
1602         if (blk_mq_req_expired(rq, expired))
1603                 blk_mq_rq_timed_out(rq);
1604         return true;
1605 }
1606
1607 static void blk_mq_timeout_work(struct work_struct *work)
1608 {
1609         struct request_queue *q =
1610                 container_of(work, struct request_queue, timeout_work);
1611         struct blk_expired_data expired = {
1612                 .timeout_start = jiffies,
1613         };
1614         struct blk_mq_hw_ctx *hctx;
1615         unsigned long i;
1616
1617         /* A deadlock might occur if a request is stuck requiring a
1618          * timeout at the same time a queue freeze is waiting
1619          * completion, since the timeout code would not be able to
1620          * acquire the queue reference here.
1621          *
1622          * That's why we don't use blk_queue_enter here; instead, we use
1623          * percpu_ref_tryget directly, because we need to be able to
1624          * obtain a reference even in the short window between the queue
1625          * starting to freeze, by dropping the first reference in
1626          * blk_freeze_queue_start, and the moment the last request is
1627          * consumed, marked by the instant q_usage_counter reaches
1628          * zero.
1629          */
1630         if (!percpu_ref_tryget(&q->q_usage_counter))
1631                 return;
1632
1633         /* check if there is any timed-out request */
1634         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1635         if (expired.has_timedout_rq) {
1636                 /*
1637                  * Before walking tags, we must ensure any submit started
1638                  * before the current time has finished. Since the submit
1639                  * uses srcu or rcu, wait for a synchronization point to
1640                  * ensure all running submits have finished
1641                  */
1642                 blk_mq_wait_quiesce_done(q);
1643
1644                 expired.next = 0;
1645                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1646         }
1647
1648         if (expired.next != 0) {
1649                 mod_timer(&q->timeout, expired.next);
1650         } else {
1651                 /*
1652                  * Request timeouts are handled as a forward rolling timer. If
1653                  * we end up here it means that no requests are pending and
1654                  * also that no request has been pending for a while. Mark
1655                  * each hctx as idle.
1656                  */
1657                 queue_for_each_hw_ctx(q, hctx, i) {
1658                         /* the hctx may be unmapped, so check it here */
1659                         if (blk_mq_hw_queue_mapped(hctx))
1660                                 blk_mq_tag_idle(hctx);
1661                 }
1662         }
1663         blk_queue_exit(q);
1664 }
1665
1666 struct flush_busy_ctx_data {
1667         struct blk_mq_hw_ctx *hctx;
1668         struct list_head *list;
1669 };
1670
1671 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1672 {
1673         struct flush_busy_ctx_data *flush_data = data;
1674         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1675         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1676         enum hctx_type type = hctx->type;
1677
1678         spin_lock(&ctx->lock);
1679         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1680         sbitmap_clear_bit(sb, bitnr);
1681         spin_unlock(&ctx->lock);
1682         return true;
1683 }
1684
1685 /*
1686  * Process software queues that have been marked busy, splicing them
1687  * to the for-dispatch
1688  */
1689 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1690 {
1691         struct flush_busy_ctx_data data = {
1692                 .hctx = hctx,
1693                 .list = list,
1694         };
1695
1696         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1697 }
1698 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1699
1700 struct dispatch_rq_data {
1701         struct blk_mq_hw_ctx *hctx;
1702         struct request *rq;
1703 };
1704
1705 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1706                 void *data)
1707 {
1708         struct dispatch_rq_data *dispatch_data = data;
1709         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1710         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1711         enum hctx_type type = hctx->type;
1712
1713         spin_lock(&ctx->lock);
1714         if (!list_empty(&ctx->rq_lists[type])) {
1715                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1716                 list_del_init(&dispatch_data->rq->queuelist);
1717                 if (list_empty(&ctx->rq_lists[type]))
1718                         sbitmap_clear_bit(sb, bitnr);
1719         }
1720         spin_unlock(&ctx->lock);
1721
1722         return !dispatch_data->rq;
1723 }
1724
1725 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1726                                         struct blk_mq_ctx *start)
1727 {
1728         unsigned off = start ? start->index_hw[hctx->type] : 0;
1729         struct dispatch_rq_data data = {
1730                 .hctx = hctx,
1731                 .rq   = NULL,
1732         };
1733
1734         __sbitmap_for_each_set(&hctx->ctx_map, off,
1735                                dispatch_rq_from_ctx, &data);
1736
1737         return data.rq;
1738 }
1739
1740 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1741 {
1742         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1743         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1744         int tag;
1745
1746         blk_mq_tag_busy(rq->mq_hctx);
1747
1748         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1749                 bt = &rq->mq_hctx->tags->breserved_tags;
1750                 tag_offset = 0;
1751         } else {
1752                 if (!hctx_may_queue(rq->mq_hctx, bt))
1753                         return false;
1754         }
1755
1756         tag = __sbitmap_queue_get(bt);
1757         if (tag == BLK_MQ_NO_TAG)
1758                 return false;
1759
1760         rq->tag = tag + tag_offset;
1761         return true;
1762 }
1763
1764 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1765 {
1766         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1767                 return false;
1768
1769         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1770                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1771                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1772                 __blk_mq_inc_active_requests(hctx);
1773         }
1774         hctx->tags->rqs[rq->tag] = rq;
1775         return true;
1776 }
1777
1778 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1779                                 int flags, void *key)
1780 {
1781         struct blk_mq_hw_ctx *hctx;
1782
1783         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1784
1785         spin_lock(&hctx->dispatch_wait_lock);
1786         if (!list_empty(&wait->entry)) {
1787                 struct sbitmap_queue *sbq;
1788
1789                 list_del_init(&wait->entry);
1790                 sbq = &hctx->tags->bitmap_tags;
1791                 atomic_dec(&sbq->ws_active);
1792         }
1793         spin_unlock(&hctx->dispatch_wait_lock);
1794
1795         blk_mq_run_hw_queue(hctx, true);
1796         return 1;
1797 }
1798
1799 /*
1800  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1801  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1802  * restart. For both cases, take care to check the condition again after
1803  * marking us as waiting.
1804  */
1805 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1806                                  struct request *rq)
1807 {
1808         struct sbitmap_queue *sbq;
1809         struct wait_queue_head *wq;
1810         wait_queue_entry_t *wait;
1811         bool ret;
1812
1813         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1814             !(blk_mq_is_shared_tags(hctx->flags))) {
1815                 blk_mq_sched_mark_restart_hctx(hctx);
1816
1817                 /*
1818                  * It's possible that a tag was freed in the window between the
1819                  * allocation failure and adding the hardware queue to the wait
1820                  * queue.
1821                  *
1822                  * Don't clear RESTART here, someone else could have set it.
1823                  * At most this will cost an extra queue run.
1824                  */
1825                 return blk_mq_get_driver_tag(rq);
1826         }
1827
1828         wait = &hctx->dispatch_wait;
1829         if (!list_empty_careful(&wait->entry))
1830                 return false;
1831
1832         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1833                 sbq = &hctx->tags->breserved_tags;
1834         else
1835                 sbq = &hctx->tags->bitmap_tags;
1836         wq = &bt_wait_ptr(sbq, hctx)->wait;
1837
1838         spin_lock_irq(&wq->lock);
1839         spin_lock(&hctx->dispatch_wait_lock);
1840         if (!list_empty(&wait->entry)) {
1841                 spin_unlock(&hctx->dispatch_wait_lock);
1842                 spin_unlock_irq(&wq->lock);
1843                 return false;
1844         }
1845
1846         atomic_inc(&sbq->ws_active);
1847         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1848         __add_wait_queue(wq, wait);
1849
1850         /*
1851          * It's possible that a tag was freed in the window between the
1852          * allocation failure and adding the hardware queue to the wait
1853          * queue.
1854          */
1855         ret = blk_mq_get_driver_tag(rq);
1856         if (!ret) {
1857                 spin_unlock(&hctx->dispatch_wait_lock);
1858                 spin_unlock_irq(&wq->lock);
1859                 return false;
1860         }
1861
1862         /*
1863          * We got a tag, remove ourselves from the wait queue to ensure
1864          * someone else gets the wakeup.
1865          */
1866         list_del_init(&wait->entry);
1867         atomic_dec(&sbq->ws_active);
1868         spin_unlock(&hctx->dispatch_wait_lock);
1869         spin_unlock_irq(&wq->lock);
1870
1871         return true;
1872 }
1873
1874 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1875 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1876 /*
1877  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1878  * - EWMA is one simple way to compute running average value
1879  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1880  * - take 4 as factor for avoiding to get too small(0) result, and this
1881  *   factor doesn't matter because EWMA decreases exponentially
1882  */
1883 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1884 {
1885         unsigned int ewma;
1886
1887         ewma = hctx->dispatch_busy;
1888
1889         if (!ewma && !busy)
1890                 return;
1891
1892         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1893         if (busy)
1894                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1895         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1896
1897         hctx->dispatch_busy = ewma;
1898 }
1899
1900 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1901
1902 static void blk_mq_handle_dev_resource(struct request *rq,
1903                                        struct list_head *list)
1904 {
1905         struct request *next =
1906                 list_first_entry_or_null(list, struct request, queuelist);
1907
1908         /*
1909          * If an I/O scheduler has been configured and we got a driver tag for
1910          * the next request already, free it.
1911          */
1912         if (next)
1913                 blk_mq_put_driver_tag(next);
1914
1915         list_add(&rq->queuelist, list);
1916         __blk_mq_requeue_request(rq);
1917 }
1918
1919 static void blk_mq_handle_zone_resource(struct request *rq,
1920                                         struct list_head *zone_list)
1921 {
1922         /*
1923          * If we end up here it is because we cannot dispatch a request to a
1924          * specific zone due to LLD level zone-write locking or other zone
1925          * related resource not being available. In this case, set the request
1926          * aside in zone_list for retrying it later.
1927          */
1928         list_add(&rq->queuelist, zone_list);
1929         __blk_mq_requeue_request(rq);
1930 }
1931
1932 enum prep_dispatch {
1933         PREP_DISPATCH_OK,
1934         PREP_DISPATCH_NO_TAG,
1935         PREP_DISPATCH_NO_BUDGET,
1936 };
1937
1938 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1939                                                   bool need_budget)
1940 {
1941         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1942         int budget_token = -1;
1943
1944         if (need_budget) {
1945                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1946                 if (budget_token < 0) {
1947                         blk_mq_put_driver_tag(rq);
1948                         return PREP_DISPATCH_NO_BUDGET;
1949                 }
1950                 blk_mq_set_rq_budget_token(rq, budget_token);
1951         }
1952
1953         if (!blk_mq_get_driver_tag(rq)) {
1954                 /*
1955                  * The initial allocation attempt failed, so we need to
1956                  * rerun the hardware queue when a tag is freed. The
1957                  * waitqueue takes care of that. If the queue is run
1958                  * before we add this entry back on the dispatch list,
1959                  * we'll re-run it below.
1960                  */
1961                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1962                         /*
1963                          * All budgets not got from this function will be put
1964                          * together during handling partial dispatch
1965                          */
1966                         if (need_budget)
1967                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1968                         return PREP_DISPATCH_NO_TAG;
1969                 }
1970         }
1971
1972         return PREP_DISPATCH_OK;
1973 }
1974
1975 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1976 static void blk_mq_release_budgets(struct request_queue *q,
1977                 struct list_head *list)
1978 {
1979         struct request *rq;
1980
1981         list_for_each_entry(rq, list, queuelist) {
1982                 int budget_token = blk_mq_get_rq_budget_token(rq);
1983
1984                 if (budget_token >= 0)
1985                         blk_mq_put_dispatch_budget(q, budget_token);
1986         }
1987 }
1988
1989 /*
1990  * Returns true if we did some work AND can potentially do more.
1991  */
1992 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1993                              unsigned int nr_budgets)
1994 {
1995         enum prep_dispatch prep;
1996         struct request_queue *q = hctx->queue;
1997         struct request *rq, *nxt;
1998         int errors, queued;
1999         blk_status_t ret = BLK_STS_OK;
2000         LIST_HEAD(zone_list);
2001         bool needs_resource = false;
2002
2003         if (list_empty(list))
2004                 return false;
2005
2006         /*
2007          * Now process all the entries, sending them to the driver.
2008          */
2009         errors = queued = 0;
2010         do {
2011                 struct blk_mq_queue_data bd;
2012
2013                 rq = list_first_entry(list, struct request, queuelist);
2014
2015                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2016                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2017                 if (prep != PREP_DISPATCH_OK)
2018                         break;
2019
2020                 list_del_init(&rq->queuelist);
2021
2022                 bd.rq = rq;
2023
2024                 /*
2025                  * Flag last if we have no more requests, or if we have more
2026                  * but can't assign a driver tag to it.
2027                  */
2028                 if (list_empty(list))
2029                         bd.last = true;
2030                 else {
2031                         nxt = list_first_entry(list, struct request, queuelist);
2032                         bd.last = !blk_mq_get_driver_tag(nxt);
2033                 }
2034
2035                 /*
2036                  * once the request is queued to lld, no need to cover the
2037                  * budget any more
2038                  */
2039                 if (nr_budgets)
2040                         nr_budgets--;
2041                 ret = q->mq_ops->queue_rq(hctx, &bd);
2042                 switch (ret) {
2043                 case BLK_STS_OK:
2044                         queued++;
2045                         break;
2046                 case BLK_STS_RESOURCE:
2047                         needs_resource = true;
2048                         fallthrough;
2049                 case BLK_STS_DEV_RESOURCE:
2050                         blk_mq_handle_dev_resource(rq, list);
2051                         goto out;
2052                 case BLK_STS_ZONE_RESOURCE:
2053                         /*
2054                          * Move the request to zone_list and keep going through
2055                          * the dispatch list to find more requests the drive can
2056                          * accept.
2057                          */
2058                         blk_mq_handle_zone_resource(rq, &zone_list);
2059                         needs_resource = true;
2060                         break;
2061                 default:
2062                         errors++;
2063                         blk_mq_end_request(rq, ret);
2064                 }
2065         } while (!list_empty(list));
2066 out:
2067         if (!list_empty(&zone_list))
2068                 list_splice_tail_init(&zone_list, list);
2069
2070         /* If we didn't flush the entire list, we could have told the driver
2071          * there was more coming, but that turned out to be a lie.
2072          */
2073         if ((!list_empty(list) || errors || needs_resource ||
2074              ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
2075                 q->mq_ops->commit_rqs(hctx);
2076         /*
2077          * Any items that need requeuing? Stuff them into hctx->dispatch,
2078          * that is where we will continue on next queue run.
2079          */
2080         if (!list_empty(list)) {
2081                 bool needs_restart;
2082                 /* For non-shared tags, the RESTART check will suffice */
2083                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2084                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2085                         blk_mq_is_shared_tags(hctx->flags));
2086
2087                 if (nr_budgets)
2088                         blk_mq_release_budgets(q, list);
2089
2090                 spin_lock(&hctx->lock);
2091                 list_splice_tail_init(list, &hctx->dispatch);
2092                 spin_unlock(&hctx->lock);
2093
2094                 /*
2095                  * Order adding requests to hctx->dispatch and checking
2096                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2097                  * in blk_mq_sched_restart(). Avoid restart code path to
2098                  * miss the new added requests to hctx->dispatch, meantime
2099                  * SCHED_RESTART is observed here.
2100                  */
2101                 smp_mb();
2102
2103                 /*
2104                  * If SCHED_RESTART was set by the caller of this function and
2105                  * it is no longer set that means that it was cleared by another
2106                  * thread and hence that a queue rerun is needed.
2107                  *
2108                  * If 'no_tag' is set, that means that we failed getting
2109                  * a driver tag with an I/O scheduler attached. If our dispatch
2110                  * waitqueue is no longer active, ensure that we run the queue
2111                  * AFTER adding our entries back to the list.
2112                  *
2113                  * If no I/O scheduler has been configured it is possible that
2114                  * the hardware queue got stopped and restarted before requests
2115                  * were pushed back onto the dispatch list. Rerun the queue to
2116                  * avoid starvation. Notes:
2117                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2118                  *   been stopped before rerunning a queue.
2119                  * - Some but not all block drivers stop a queue before
2120                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2121                  *   and dm-rq.
2122                  *
2123                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2124                  * bit is set, run queue after a delay to avoid IO stalls
2125                  * that could otherwise occur if the queue is idle.  We'll do
2126                  * similar if we couldn't get budget or couldn't lock a zone
2127                  * and SCHED_RESTART is set.
2128                  */
2129                 needs_restart = blk_mq_sched_needs_restart(hctx);
2130                 if (prep == PREP_DISPATCH_NO_BUDGET)
2131                         needs_resource = true;
2132                 if (!needs_restart ||
2133                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2134                         blk_mq_run_hw_queue(hctx, true);
2135                 else if (needs_resource)
2136                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2137
2138                 blk_mq_update_dispatch_busy(hctx, true);
2139                 return false;
2140         } else
2141                 blk_mq_update_dispatch_busy(hctx, false);
2142
2143         return (queued + errors) != 0;
2144 }
2145
2146 /**
2147  * __blk_mq_run_hw_queue - Run a hardware queue.
2148  * @hctx: Pointer to the hardware queue to run.
2149  *
2150  * Send pending requests to the hardware.
2151  */
2152 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2153 {
2154         /*
2155          * We can't run the queue inline with ints disabled. Ensure that
2156          * we catch bad users of this early.
2157          */
2158         WARN_ON_ONCE(in_interrupt());
2159
2160         blk_mq_run_dispatch_ops(hctx->queue,
2161                         blk_mq_sched_dispatch_requests(hctx));
2162 }
2163
2164 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2165 {
2166         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2167
2168         if (cpu >= nr_cpu_ids)
2169                 cpu = cpumask_first(hctx->cpumask);
2170         return cpu;
2171 }
2172
2173 /*
2174  * It'd be great if the workqueue API had a way to pass
2175  * in a mask and had some smarts for more clever placement.
2176  * For now we just round-robin here, switching for every
2177  * BLK_MQ_CPU_WORK_BATCH queued items.
2178  */
2179 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2180 {
2181         bool tried = false;
2182         int next_cpu = hctx->next_cpu;
2183
2184         if (hctx->queue->nr_hw_queues == 1)
2185                 return WORK_CPU_UNBOUND;
2186
2187         if (--hctx->next_cpu_batch <= 0) {
2188 select_cpu:
2189                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2190                                 cpu_online_mask);
2191                 if (next_cpu >= nr_cpu_ids)
2192                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2193                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2194         }
2195
2196         /*
2197          * Do unbound schedule if we can't find a online CPU for this hctx,
2198          * and it should only happen in the path of handling CPU DEAD.
2199          */
2200         if (!cpu_online(next_cpu)) {
2201                 if (!tried) {
2202                         tried = true;
2203                         goto select_cpu;
2204                 }
2205
2206                 /*
2207                  * Make sure to re-select CPU next time once after CPUs
2208                  * in hctx->cpumask become online again.
2209                  */
2210                 hctx->next_cpu = next_cpu;
2211                 hctx->next_cpu_batch = 1;
2212                 return WORK_CPU_UNBOUND;
2213         }
2214
2215         hctx->next_cpu = next_cpu;
2216         return next_cpu;
2217 }
2218
2219 /**
2220  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2221  * @hctx: Pointer to the hardware queue to run.
2222  * @async: If we want to run the queue asynchronously.
2223  * @msecs: Milliseconds of delay to wait before running the queue.
2224  *
2225  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2226  * with a delay of @msecs.
2227  */
2228 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2229                                         unsigned long msecs)
2230 {
2231         if (unlikely(blk_mq_hctx_stopped(hctx)))
2232                 return;
2233
2234         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2235                 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2236                         __blk_mq_run_hw_queue(hctx);
2237                         return;
2238                 }
2239         }
2240
2241         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2242                                     msecs_to_jiffies(msecs));
2243 }
2244
2245 /**
2246  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2247  * @hctx: Pointer to the hardware queue to run.
2248  * @msecs: Milliseconds of delay to wait before running the queue.
2249  *
2250  * Run a hardware queue asynchronously with a delay of @msecs.
2251  */
2252 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2253 {
2254         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2255 }
2256 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2257
2258 /**
2259  * blk_mq_run_hw_queue - Start to run a hardware queue.
2260  * @hctx: Pointer to the hardware queue to run.
2261  * @async: If we want to run the queue asynchronously.
2262  *
2263  * Check if the request queue is not in a quiesced state and if there are
2264  * pending requests to be sent. If this is true, run the queue to send requests
2265  * to hardware.
2266  */
2267 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2268 {
2269         bool need_run;
2270
2271         /*
2272          * When queue is quiesced, we may be switching io scheduler, or
2273          * updating nr_hw_queues, or other things, and we can't run queue
2274          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2275          *
2276          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2277          * quiesced.
2278          */
2279         __blk_mq_run_dispatch_ops(hctx->queue, false,
2280                 need_run = !blk_queue_quiesced(hctx->queue) &&
2281                 blk_mq_hctx_has_pending(hctx));
2282
2283         if (need_run)
2284                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2285 }
2286 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2287
2288 /*
2289  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2290  * scheduler.
2291  */
2292 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2293 {
2294         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2295         /*
2296          * If the IO scheduler does not respect hardware queues when
2297          * dispatching, we just don't bother with multiple HW queues and
2298          * dispatch from hctx for the current CPU since running multiple queues
2299          * just causes lock contention inside the scheduler and pointless cache
2300          * bouncing.
2301          */
2302         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2303
2304         if (!blk_mq_hctx_stopped(hctx))
2305                 return hctx;
2306         return NULL;
2307 }
2308
2309 /**
2310  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2311  * @q: Pointer to the request queue to run.
2312  * @async: If we want to run the queue asynchronously.
2313  */
2314 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2315 {
2316         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2317         unsigned long i;
2318
2319         sq_hctx = NULL;
2320         if (blk_queue_sq_sched(q))
2321                 sq_hctx = blk_mq_get_sq_hctx(q);
2322         queue_for_each_hw_ctx(q, hctx, i) {
2323                 if (blk_mq_hctx_stopped(hctx))
2324                         continue;
2325                 /*
2326                  * Dispatch from this hctx either if there's no hctx preferred
2327                  * by IO scheduler or if it has requests that bypass the
2328                  * scheduler.
2329                  */
2330                 if (!sq_hctx || sq_hctx == hctx ||
2331                     !list_empty_careful(&hctx->dispatch))
2332                         blk_mq_run_hw_queue(hctx, async);
2333         }
2334 }
2335 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2336
2337 /**
2338  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2339  * @q: Pointer to the request queue to run.
2340  * @msecs: Milliseconds of delay to wait before running the queues.
2341  */
2342 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2343 {
2344         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2345         unsigned long i;
2346
2347         sq_hctx = NULL;
2348         if (blk_queue_sq_sched(q))
2349                 sq_hctx = blk_mq_get_sq_hctx(q);
2350         queue_for_each_hw_ctx(q, hctx, i) {
2351                 if (blk_mq_hctx_stopped(hctx))
2352                         continue;
2353                 /*
2354                  * If there is already a run_work pending, leave the
2355                  * pending delay untouched. Otherwise, a hctx can stall
2356                  * if another hctx is re-delaying the other's work
2357                  * before the work executes.
2358                  */
2359                 if (delayed_work_pending(&hctx->run_work))
2360                         continue;
2361                 /*
2362                  * Dispatch from this hctx either if there's no hctx preferred
2363                  * by IO scheduler or if it has requests that bypass the
2364                  * scheduler.
2365                  */
2366                 if (!sq_hctx || sq_hctx == hctx ||
2367                     !list_empty_careful(&hctx->dispatch))
2368                         blk_mq_delay_run_hw_queue(hctx, msecs);
2369         }
2370 }
2371 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2372
2373 /*
2374  * This function is often used for pausing .queue_rq() by driver when
2375  * there isn't enough resource or some conditions aren't satisfied, and
2376  * BLK_STS_RESOURCE is usually returned.
2377  *
2378  * We do not guarantee that dispatch can be drained or blocked
2379  * after blk_mq_stop_hw_queue() returns. Please use
2380  * blk_mq_quiesce_queue() for that requirement.
2381  */
2382 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2383 {
2384         cancel_delayed_work(&hctx->run_work);
2385
2386         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2387 }
2388 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2389
2390 /*
2391  * This function is often used for pausing .queue_rq() by driver when
2392  * there isn't enough resource or some conditions aren't satisfied, and
2393  * BLK_STS_RESOURCE is usually returned.
2394  *
2395  * We do not guarantee that dispatch can be drained or blocked
2396  * after blk_mq_stop_hw_queues() returns. Please use
2397  * blk_mq_quiesce_queue() for that requirement.
2398  */
2399 void blk_mq_stop_hw_queues(struct request_queue *q)
2400 {
2401         struct blk_mq_hw_ctx *hctx;
2402         unsigned long i;
2403
2404         queue_for_each_hw_ctx(q, hctx, i)
2405                 blk_mq_stop_hw_queue(hctx);
2406 }
2407 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2408
2409 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2410 {
2411         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2412
2413         blk_mq_run_hw_queue(hctx, false);
2414 }
2415 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2416
2417 void blk_mq_start_hw_queues(struct request_queue *q)
2418 {
2419         struct blk_mq_hw_ctx *hctx;
2420         unsigned long i;
2421
2422         queue_for_each_hw_ctx(q, hctx, i)
2423                 blk_mq_start_hw_queue(hctx);
2424 }
2425 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2426
2427 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2428 {
2429         if (!blk_mq_hctx_stopped(hctx))
2430                 return;
2431
2432         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2433         blk_mq_run_hw_queue(hctx, async);
2434 }
2435 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2436
2437 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2438 {
2439         struct blk_mq_hw_ctx *hctx;
2440         unsigned long i;
2441
2442         queue_for_each_hw_ctx(q, hctx, i)
2443                 blk_mq_start_stopped_hw_queue(hctx, async);
2444 }
2445 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2446
2447 static void blk_mq_run_work_fn(struct work_struct *work)
2448 {
2449         struct blk_mq_hw_ctx *hctx;
2450
2451         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2452
2453         /*
2454          * If we are stopped, don't run the queue.
2455          */
2456         if (blk_mq_hctx_stopped(hctx))
2457                 return;
2458
2459         __blk_mq_run_hw_queue(hctx);
2460 }
2461
2462 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2463                                             struct request *rq,
2464                                             bool at_head)
2465 {
2466         struct blk_mq_ctx *ctx = rq->mq_ctx;
2467         enum hctx_type type = hctx->type;
2468
2469         lockdep_assert_held(&ctx->lock);
2470
2471         trace_block_rq_insert(rq);
2472
2473         if (at_head)
2474                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2475         else
2476                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2477 }
2478
2479 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2480                              bool at_head)
2481 {
2482         struct blk_mq_ctx *ctx = rq->mq_ctx;
2483
2484         lockdep_assert_held(&ctx->lock);
2485
2486         __blk_mq_insert_req_list(hctx, rq, at_head);
2487         blk_mq_hctx_mark_pending(hctx, ctx);
2488 }
2489
2490 /**
2491  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2492  * @rq: Pointer to request to be inserted.
2493  * @at_head: true if the request should be inserted at the head of the list.
2494  * @run_queue: If we should run the hardware queue after inserting the request.
2495  *
2496  * Should only be used carefully, when the caller knows we want to
2497  * bypass a potential IO scheduler on the target device.
2498  */
2499 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2500                                   bool run_queue)
2501 {
2502         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2503
2504         spin_lock(&hctx->lock);
2505         if (at_head)
2506                 list_add(&rq->queuelist, &hctx->dispatch);
2507         else
2508                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2509         spin_unlock(&hctx->lock);
2510
2511         if (run_queue)
2512                 blk_mq_run_hw_queue(hctx, false);
2513 }
2514
2515 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2516                             struct list_head *list)
2517
2518 {
2519         struct request *rq;
2520         enum hctx_type type = hctx->type;
2521
2522         /*
2523          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2524          * offline now
2525          */
2526         list_for_each_entry(rq, list, queuelist) {
2527                 BUG_ON(rq->mq_ctx != ctx);
2528                 trace_block_rq_insert(rq);
2529         }
2530
2531         spin_lock(&ctx->lock);
2532         list_splice_tail_init(list, &ctx->rq_lists[type]);
2533         blk_mq_hctx_mark_pending(hctx, ctx);
2534         spin_unlock(&ctx->lock);
2535 }
2536
2537 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2538                               bool from_schedule)
2539 {
2540         if (hctx->queue->mq_ops->commit_rqs) {
2541                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2542                 hctx->queue->mq_ops->commit_rqs(hctx);
2543         }
2544         *queued = 0;
2545 }
2546
2547 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2548                 unsigned int nr_segs)
2549 {
2550         int err;
2551
2552         if (bio->bi_opf & REQ_RAHEAD)
2553                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2554
2555         rq->__sector = bio->bi_iter.bi_sector;
2556         blk_rq_bio_prep(rq, bio, nr_segs);
2557
2558         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2559         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2560         WARN_ON_ONCE(err);
2561
2562         blk_account_io_start(rq);
2563 }
2564
2565 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2566                                             struct request *rq, bool last)
2567 {
2568         struct request_queue *q = rq->q;
2569         struct blk_mq_queue_data bd = {
2570                 .rq = rq,
2571                 .last = last,
2572         };
2573         blk_status_t ret;
2574
2575         /*
2576          * For OK queue, we are done. For error, caller may kill it.
2577          * Any other error (busy), just add it to our list as we
2578          * previously would have done.
2579          */
2580         ret = q->mq_ops->queue_rq(hctx, &bd);
2581         switch (ret) {
2582         case BLK_STS_OK:
2583                 blk_mq_update_dispatch_busy(hctx, false);
2584                 break;
2585         case BLK_STS_RESOURCE:
2586         case BLK_STS_DEV_RESOURCE:
2587                 blk_mq_update_dispatch_busy(hctx, true);
2588                 __blk_mq_requeue_request(rq);
2589                 break;
2590         default:
2591                 blk_mq_update_dispatch_busy(hctx, false);
2592                 break;
2593         }
2594
2595         return ret;
2596 }
2597
2598 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2599                                                 struct request *rq,
2600                                                 bool bypass_insert, bool last)
2601 {
2602         struct request_queue *q = rq->q;
2603         bool run_queue = true;
2604         int budget_token;
2605
2606         /*
2607          * RCU or SRCU read lock is needed before checking quiesced flag.
2608          *
2609          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2610          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2611          * and avoid driver to try to dispatch again.
2612          */
2613         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2614                 run_queue = false;
2615                 bypass_insert = false;
2616                 goto insert;
2617         }
2618
2619         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2620                 goto insert;
2621
2622         budget_token = blk_mq_get_dispatch_budget(q);
2623         if (budget_token < 0)
2624                 goto insert;
2625
2626         blk_mq_set_rq_budget_token(rq, budget_token);
2627
2628         if (!blk_mq_get_driver_tag(rq)) {
2629                 blk_mq_put_dispatch_budget(q, budget_token);
2630                 goto insert;
2631         }
2632
2633         return __blk_mq_issue_directly(hctx, rq, last);
2634 insert:
2635         if (bypass_insert)
2636                 return BLK_STS_RESOURCE;
2637
2638         blk_mq_sched_insert_request(rq, false, run_queue, false);
2639
2640         return BLK_STS_OK;
2641 }
2642
2643 /**
2644  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2645  * @hctx: Pointer of the associated hardware queue.
2646  * @rq: Pointer to request to be sent.
2647  *
2648  * If the device has enough resources to accept a new request now, send the
2649  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2650  * we can try send it another time in the future. Requests inserted at this
2651  * queue have higher priority.
2652  */
2653 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2654                 struct request *rq)
2655 {
2656         blk_status_t ret =
2657                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2658
2659         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2660                 blk_mq_request_bypass_insert(rq, false, true);
2661         else if (ret != BLK_STS_OK)
2662                 blk_mq_end_request(rq, ret);
2663 }
2664
2665 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2666 {
2667         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2668 }
2669
2670 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2671 {
2672         struct blk_mq_hw_ctx *hctx = NULL;
2673         struct request *rq;
2674         int queued = 0;
2675         int errors = 0;
2676
2677         while ((rq = rq_list_pop(&plug->mq_list))) {
2678                 bool last = rq_list_empty(plug->mq_list);
2679                 blk_status_t ret;
2680
2681                 if (hctx != rq->mq_hctx) {
2682                         if (hctx)
2683                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2684                         hctx = rq->mq_hctx;
2685                 }
2686
2687                 ret = blk_mq_request_issue_directly(rq, last);
2688                 switch (ret) {
2689                 case BLK_STS_OK:
2690                         queued++;
2691                         break;
2692                 case BLK_STS_RESOURCE:
2693                 case BLK_STS_DEV_RESOURCE:
2694                         blk_mq_request_bypass_insert(rq, false, true);
2695                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2696                         return;
2697                 default:
2698                         blk_mq_end_request(rq, ret);
2699                         errors++;
2700                         break;
2701                 }
2702         }
2703
2704         /*
2705          * If we didn't flush the entire list, we could have told the driver
2706          * there was more coming, but that turned out to be a lie.
2707          */
2708         if (errors)
2709                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2710 }
2711
2712 static void __blk_mq_flush_plug_list(struct request_queue *q,
2713                                      struct blk_plug *plug)
2714 {
2715         if (blk_queue_quiesced(q))
2716                 return;
2717         q->mq_ops->queue_rqs(&plug->mq_list);
2718 }
2719
2720 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2721 {
2722         struct blk_mq_hw_ctx *this_hctx = NULL;
2723         struct blk_mq_ctx *this_ctx = NULL;
2724         struct request *requeue_list = NULL;
2725         struct request **requeue_lastp = &requeue_list;
2726         unsigned int depth = 0;
2727         LIST_HEAD(list);
2728
2729         do {
2730                 struct request *rq = rq_list_pop(&plug->mq_list);
2731
2732                 if (!this_hctx) {
2733                         this_hctx = rq->mq_hctx;
2734                         this_ctx = rq->mq_ctx;
2735                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2736                         rq_list_add_tail(&requeue_lastp, rq);
2737                         continue;
2738                 }
2739                 list_add(&rq->queuelist, &list);
2740                 depth++;
2741         } while (!rq_list_empty(plug->mq_list));
2742
2743         plug->mq_list = requeue_list;
2744         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2745         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2746 }
2747
2748 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2749 {
2750         struct request *rq;
2751
2752         /*
2753          * We may have been called recursively midway through handling
2754          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2755          * To avoid mq_list changing under our feet, clear rq_count early and
2756          * bail out specifically if rq_count is 0 rather than checking
2757          * whether the mq_list is empty.
2758          */
2759         if (plug->rq_count == 0)
2760                 return;
2761         plug->rq_count = 0;
2762
2763         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2764                 struct request_queue *q;
2765
2766                 rq = rq_list_peek(&plug->mq_list);
2767                 q = rq->q;
2768
2769                 /*
2770                  * Peek first request and see if we have a ->queue_rqs() hook.
2771                  * If we do, we can dispatch the whole plug list in one go. We
2772                  * already know at this point that all requests belong to the
2773                  * same queue, caller must ensure that's the case.
2774                  *
2775                  * Since we pass off the full list to the driver at this point,
2776                  * we do not increment the active request count for the queue.
2777                  * Bypass shared tags for now because of that.
2778                  */
2779                 if (q->mq_ops->queue_rqs &&
2780                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2781                         blk_mq_run_dispatch_ops(q,
2782                                 __blk_mq_flush_plug_list(q, plug));
2783                         if (rq_list_empty(plug->mq_list))
2784                                 return;
2785                 }
2786
2787                 blk_mq_run_dispatch_ops(q,
2788                                 blk_mq_plug_issue_direct(plug, false));
2789                 if (rq_list_empty(plug->mq_list))
2790                         return;
2791         }
2792
2793         do {
2794                 blk_mq_dispatch_plug_list(plug, from_schedule);
2795         } while (!rq_list_empty(plug->mq_list));
2796 }
2797
2798 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2799                 struct list_head *list)
2800 {
2801         int queued = 0;
2802         int errors = 0;
2803
2804         while (!list_empty(list)) {
2805                 blk_status_t ret;
2806                 struct request *rq = list_first_entry(list, struct request,
2807                                 queuelist);
2808
2809                 list_del_init(&rq->queuelist);
2810                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2811                 if (ret != BLK_STS_OK) {
2812                         errors++;
2813                         if (ret == BLK_STS_RESOURCE ||
2814                                         ret == BLK_STS_DEV_RESOURCE) {
2815                                 blk_mq_request_bypass_insert(rq, false,
2816                                                         list_empty(list));
2817                                 break;
2818                         }
2819                         blk_mq_end_request(rq, ret);
2820                 } else
2821                         queued++;
2822         }
2823
2824         /*
2825          * If we didn't flush the entire list, we could have told
2826          * the driver there was more coming, but that turned out to
2827          * be a lie.
2828          */
2829         if ((!list_empty(list) || errors) &&
2830              hctx->queue->mq_ops->commit_rqs && queued)
2831                 hctx->queue->mq_ops->commit_rqs(hctx);
2832 }
2833
2834 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2835                                      struct bio *bio, unsigned int nr_segs)
2836 {
2837         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2838                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2839                         return true;
2840                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2841                         return true;
2842         }
2843         return false;
2844 }
2845
2846 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2847                                                struct blk_plug *plug,
2848                                                struct bio *bio,
2849                                                unsigned int nsegs)
2850 {
2851         struct blk_mq_alloc_data data = {
2852                 .q              = q,
2853                 .nr_tags        = 1,
2854                 .cmd_flags      = bio->bi_opf,
2855         };
2856         struct request *rq;
2857
2858         if (unlikely(bio_queue_enter(bio)))
2859                 return NULL;
2860
2861         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2862                 goto queue_exit;
2863
2864         rq_qos_throttle(q, bio);
2865
2866         if (plug) {
2867                 data.nr_tags = plug->nr_ios;
2868                 plug->nr_ios = 1;
2869                 data.cached_rq = &plug->cached_rq;
2870         }
2871
2872         rq = __blk_mq_alloc_requests(&data);
2873         if (rq)
2874                 return rq;
2875         rq_qos_cleanup(q, bio);
2876         if (bio->bi_opf & REQ_NOWAIT)
2877                 bio_wouldblock_error(bio);
2878 queue_exit:
2879         blk_queue_exit(q);
2880         return NULL;
2881 }
2882
2883 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2884                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2885 {
2886         struct request *rq;
2887         enum hctx_type type, hctx_type;
2888
2889         if (!plug)
2890                 return NULL;
2891         rq = rq_list_peek(&plug->cached_rq);
2892         if (!rq || rq->q != q)
2893                 return NULL;
2894
2895         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2896                 *bio = NULL;
2897                 return NULL;
2898         }
2899
2900         type = blk_mq_get_hctx_type((*bio)->bi_opf);
2901         hctx_type = rq->mq_hctx->type;
2902         if (type != hctx_type &&
2903             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2904                 return NULL;
2905         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2906                 return NULL;
2907
2908         /*
2909          * If any qos ->throttle() end up blocking, we will have flushed the
2910          * plug and hence killed the cached_rq list as well. Pop this entry
2911          * before we throttle.
2912          */
2913         plug->cached_rq = rq_list_next(rq);
2914         rq_qos_throttle(q, *bio);
2915
2916         rq->cmd_flags = (*bio)->bi_opf;
2917         INIT_LIST_HEAD(&rq->queuelist);
2918         return rq;
2919 }
2920
2921 static void bio_set_ioprio(struct bio *bio)
2922 {
2923         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2924         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2925                 bio->bi_ioprio = get_current_ioprio();
2926         blkcg_set_ioprio(bio);
2927 }
2928
2929 /**
2930  * blk_mq_submit_bio - Create and send a request to block device.
2931  * @bio: Bio pointer.
2932  *
2933  * Builds up a request structure from @q and @bio and send to the device. The
2934  * request may not be queued directly to hardware if:
2935  * * This request can be merged with another one
2936  * * We want to place request at plug queue for possible future merging
2937  * * There is an IO scheduler active at this queue
2938  *
2939  * It will not queue the request if there is an error with the bio, or at the
2940  * request creation.
2941  */
2942 void blk_mq_submit_bio(struct bio *bio)
2943 {
2944         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2945         struct blk_plug *plug = blk_mq_plug(bio);
2946         const int is_sync = op_is_sync(bio->bi_opf);
2947         struct request *rq;
2948         unsigned int nr_segs = 1;
2949         blk_status_t ret;
2950
2951         bio = blk_queue_bounce(bio, q);
2952         if (bio_may_exceed_limits(bio, &q->limits)) {
2953                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2954                 if (!bio)
2955                         return;
2956         }
2957
2958         if (!bio_integrity_prep(bio))
2959                 return;
2960
2961         bio_set_ioprio(bio);
2962
2963         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2964         if (!rq) {
2965                 if (!bio)
2966                         return;
2967                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2968                 if (unlikely(!rq))
2969                         return;
2970         }
2971
2972         trace_block_getrq(bio);
2973
2974         rq_qos_track(q, rq, bio);
2975
2976         blk_mq_bio_to_request(rq, bio, nr_segs);
2977
2978         ret = blk_crypto_rq_get_keyslot(rq);
2979         if (ret != BLK_STS_OK) {
2980                 bio->bi_status = ret;
2981                 bio_endio(bio);
2982                 blk_mq_free_request(rq);
2983                 return;
2984         }
2985
2986         if (op_is_flush(bio->bi_opf)) {
2987                 blk_insert_flush(rq);
2988                 return;
2989         }
2990
2991         if (plug)
2992                 blk_add_rq_to_plug(plug, rq);
2993         else if ((rq->rq_flags & RQF_ELV) ||
2994                  (rq->mq_hctx->dispatch_busy &&
2995                   (q->nr_hw_queues == 1 || !is_sync)))
2996                 blk_mq_sched_insert_request(rq, false, true, true);
2997         else
2998                 blk_mq_run_dispatch_ops(rq->q,
2999                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
3000 }
3001
3002 #ifdef CONFIG_BLK_MQ_STACKING
3003 /**
3004  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3005  * @rq: the request being queued
3006  */
3007 blk_status_t blk_insert_cloned_request(struct request *rq)
3008 {
3009         struct request_queue *q = rq->q;
3010         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3011         blk_status_t ret;
3012
3013         if (blk_rq_sectors(rq) > max_sectors) {
3014                 /*
3015                  * SCSI device does not have a good way to return if
3016                  * Write Same/Zero is actually supported. If a device rejects
3017                  * a non-read/write command (discard, write same,etc.) the
3018                  * low-level device driver will set the relevant queue limit to
3019                  * 0 to prevent blk-lib from issuing more of the offending
3020                  * operations. Commands queued prior to the queue limit being
3021                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3022                  * errors being propagated to upper layers.
3023                  */
3024                 if (max_sectors == 0)
3025                         return BLK_STS_NOTSUPP;
3026
3027                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3028                         __func__, blk_rq_sectors(rq), max_sectors);
3029                 return BLK_STS_IOERR;
3030         }
3031
3032         /*
3033          * The queue settings related to segment counting may differ from the
3034          * original queue.
3035          */
3036         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3037         if (rq->nr_phys_segments > queue_max_segments(q)) {
3038                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
3039                         __func__, rq->nr_phys_segments, queue_max_segments(q));
3040                 return BLK_STS_IOERR;
3041         }
3042
3043         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3044                 return BLK_STS_IOERR;
3045
3046         if (blk_crypto_insert_cloned_request(rq))
3047                 return BLK_STS_IOERR;
3048
3049         blk_account_io_start(rq);
3050
3051         /*
3052          * Since we have a scheduler attached on the top device,
3053          * bypass a potential scheduler on the bottom device for
3054          * insert.
3055          */
3056         blk_mq_run_dispatch_ops(q,
3057                         ret = blk_mq_request_issue_directly(rq, true));
3058         if (ret)
3059                 blk_account_io_done(rq, ktime_get_ns());
3060         return ret;
3061 }
3062 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3063
3064 /**
3065  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3066  * @rq: the clone request to be cleaned up
3067  *
3068  * Description:
3069  *     Free all bios in @rq for a cloned request.
3070  */
3071 void blk_rq_unprep_clone(struct request *rq)
3072 {
3073         struct bio *bio;
3074
3075         while ((bio = rq->bio) != NULL) {
3076                 rq->bio = bio->bi_next;
3077
3078                 bio_put(bio);
3079         }
3080 }
3081 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3082
3083 /**
3084  * blk_rq_prep_clone - Helper function to setup clone request
3085  * @rq: the request to be setup
3086  * @rq_src: original request to be cloned
3087  * @bs: bio_set that bios for clone are allocated from
3088  * @gfp_mask: memory allocation mask for bio
3089  * @bio_ctr: setup function to be called for each clone bio.
3090  *           Returns %0 for success, non %0 for failure.
3091  * @data: private data to be passed to @bio_ctr
3092  *
3093  * Description:
3094  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3095  *     Also, pages which the original bios are pointing to are not copied
3096  *     and the cloned bios just point same pages.
3097  *     So cloned bios must be completed before original bios, which means
3098  *     the caller must complete @rq before @rq_src.
3099  */
3100 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3101                       struct bio_set *bs, gfp_t gfp_mask,
3102                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3103                       void *data)
3104 {
3105         struct bio *bio, *bio_src;
3106
3107         if (!bs)
3108                 bs = &fs_bio_set;
3109
3110         __rq_for_each_bio(bio_src, rq_src) {
3111                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3112                                       bs);
3113                 if (!bio)
3114                         goto free_and_out;
3115
3116                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3117                         goto free_and_out;
3118
3119                 if (rq->bio) {
3120                         rq->biotail->bi_next = bio;
3121                         rq->biotail = bio;
3122                 } else {
3123                         rq->bio = rq->biotail = bio;
3124                 }
3125                 bio = NULL;
3126         }
3127
3128         /* Copy attributes of the original request to the clone request. */
3129         rq->__sector = blk_rq_pos(rq_src);
3130         rq->__data_len = blk_rq_bytes(rq_src);
3131         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3132                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3133                 rq->special_vec = rq_src->special_vec;
3134         }
3135         rq->nr_phys_segments = rq_src->nr_phys_segments;
3136         rq->ioprio = rq_src->ioprio;
3137
3138         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3139                 goto free_and_out;
3140
3141         return 0;
3142
3143 free_and_out:
3144         if (bio)
3145                 bio_put(bio);
3146         blk_rq_unprep_clone(rq);
3147
3148         return -ENOMEM;
3149 }
3150 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3151 #endif /* CONFIG_BLK_MQ_STACKING */
3152
3153 /*
3154  * Steal bios from a request and add them to a bio list.
3155  * The request must not have been partially completed before.
3156  */
3157 void blk_steal_bios(struct bio_list *list, struct request *rq)
3158 {
3159         if (rq->bio) {
3160                 if (list->tail)
3161                         list->tail->bi_next = rq->bio;
3162                 else
3163                         list->head = rq->bio;
3164                 list->tail = rq->biotail;
3165
3166                 rq->bio = NULL;
3167                 rq->biotail = NULL;
3168         }
3169
3170         rq->__data_len = 0;
3171 }
3172 EXPORT_SYMBOL_GPL(blk_steal_bios);
3173
3174 static size_t order_to_size(unsigned int order)
3175 {
3176         return (size_t)PAGE_SIZE << order;
3177 }
3178
3179 /* called before freeing request pool in @tags */
3180 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3181                                     struct blk_mq_tags *tags)
3182 {
3183         struct page *page;
3184         unsigned long flags;
3185
3186         /*
3187          * There is no need to clear mapping if driver tags is not initialized
3188          * or the mapping belongs to the driver tags.
3189          */
3190         if (!drv_tags || drv_tags == tags)
3191                 return;
3192
3193         list_for_each_entry(page, &tags->page_list, lru) {
3194                 unsigned long start = (unsigned long)page_address(page);
3195                 unsigned long end = start + order_to_size(page->private);
3196                 int i;
3197
3198                 for (i = 0; i < drv_tags->nr_tags; i++) {
3199                         struct request *rq = drv_tags->rqs[i];
3200                         unsigned long rq_addr = (unsigned long)rq;
3201
3202                         if (rq_addr >= start && rq_addr < end) {
3203                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3204                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3205                         }
3206                 }
3207         }
3208
3209         /*
3210          * Wait until all pending iteration is done.
3211          *
3212          * Request reference is cleared and it is guaranteed to be observed
3213          * after the ->lock is released.
3214          */
3215         spin_lock_irqsave(&drv_tags->lock, flags);
3216         spin_unlock_irqrestore(&drv_tags->lock, flags);
3217 }
3218
3219 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3220                      unsigned int hctx_idx)
3221 {
3222         struct blk_mq_tags *drv_tags;
3223         struct page *page;
3224
3225         if (list_empty(&tags->page_list))
3226                 return;
3227
3228         if (blk_mq_is_shared_tags(set->flags))
3229                 drv_tags = set->shared_tags;
3230         else
3231                 drv_tags = set->tags[hctx_idx];
3232
3233         if (tags->static_rqs && set->ops->exit_request) {
3234                 int i;
3235
3236                 for (i = 0; i < tags->nr_tags; i++) {
3237                         struct request *rq = tags->static_rqs[i];
3238
3239                         if (!rq)
3240                                 continue;
3241                         set->ops->exit_request(set, rq, hctx_idx);
3242                         tags->static_rqs[i] = NULL;
3243                 }
3244         }
3245
3246         blk_mq_clear_rq_mapping(drv_tags, tags);
3247
3248         while (!list_empty(&tags->page_list)) {
3249                 page = list_first_entry(&tags->page_list, struct page, lru);
3250                 list_del_init(&page->lru);
3251                 /*
3252                  * Remove kmemleak object previously allocated in
3253                  * blk_mq_alloc_rqs().
3254                  */
3255                 kmemleak_free(page_address(page));
3256                 __free_pages(page, page->private);
3257         }
3258 }
3259
3260 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3261 {
3262         kfree(tags->rqs);
3263         tags->rqs = NULL;
3264         kfree(tags->static_rqs);
3265         tags->static_rqs = NULL;
3266
3267         blk_mq_free_tags(tags);
3268 }
3269
3270 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3271                 unsigned int hctx_idx)
3272 {
3273         int i;
3274
3275         for (i = 0; i < set->nr_maps; i++) {
3276                 unsigned int start = set->map[i].queue_offset;
3277                 unsigned int end = start + set->map[i].nr_queues;
3278
3279                 if (hctx_idx >= start && hctx_idx < end)
3280                         break;
3281         }
3282
3283         if (i >= set->nr_maps)
3284                 i = HCTX_TYPE_DEFAULT;
3285
3286         return i;
3287 }
3288
3289 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3290                 unsigned int hctx_idx)
3291 {
3292         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3293
3294         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3295 }
3296
3297 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3298                                                unsigned int hctx_idx,
3299                                                unsigned int nr_tags,
3300                                                unsigned int reserved_tags)
3301 {
3302         int node = blk_mq_get_hctx_node(set, hctx_idx);
3303         struct blk_mq_tags *tags;
3304
3305         if (node == NUMA_NO_NODE)
3306                 node = set->numa_node;
3307
3308         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3309                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3310         if (!tags)
3311                 return NULL;
3312
3313         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3314                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3315                                  node);
3316         if (!tags->rqs) {
3317                 blk_mq_free_tags(tags);
3318                 return NULL;
3319         }
3320
3321         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3322                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3323                                         node);
3324         if (!tags->static_rqs) {
3325                 kfree(tags->rqs);
3326                 blk_mq_free_tags(tags);
3327                 return NULL;
3328         }
3329
3330         return tags;
3331 }
3332
3333 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3334                                unsigned int hctx_idx, int node)
3335 {
3336         int ret;
3337
3338         if (set->ops->init_request) {
3339                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3340                 if (ret)
3341                         return ret;
3342         }
3343
3344         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3345         return 0;
3346 }
3347
3348 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3349                             struct blk_mq_tags *tags,
3350                             unsigned int hctx_idx, unsigned int depth)
3351 {
3352         unsigned int i, j, entries_per_page, max_order = 4;
3353         int node = blk_mq_get_hctx_node(set, hctx_idx);
3354         size_t rq_size, left;
3355
3356         if (node == NUMA_NO_NODE)
3357                 node = set->numa_node;
3358
3359         INIT_LIST_HEAD(&tags->page_list);
3360
3361         /*
3362          * rq_size is the size of the request plus driver payload, rounded
3363          * to the cacheline size
3364          */
3365         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3366                                 cache_line_size());
3367         left = rq_size * depth;
3368
3369         for (i = 0; i < depth; ) {
3370                 int this_order = max_order;
3371                 struct page *page;
3372                 int to_do;
3373                 void *p;
3374
3375                 while (this_order && left < order_to_size(this_order - 1))
3376                         this_order--;
3377
3378                 do {
3379                         page = alloc_pages_node(node,
3380                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3381                                 this_order);
3382                         if (page)
3383                                 break;
3384                         if (!this_order--)
3385                                 break;
3386                         if (order_to_size(this_order) < rq_size)
3387                                 break;
3388                 } while (1);
3389
3390                 if (!page)
3391                         goto fail;
3392
3393                 page->private = this_order;
3394                 list_add_tail(&page->lru, &tags->page_list);
3395
3396                 p = page_address(page);
3397                 /*
3398                  * Allow kmemleak to scan these pages as they contain pointers
3399                  * to additional allocations like via ops->init_request().
3400                  */
3401                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3402                 entries_per_page = order_to_size(this_order) / rq_size;
3403                 to_do = min(entries_per_page, depth - i);
3404                 left -= to_do * rq_size;
3405                 for (j = 0; j < to_do; j++) {
3406                         struct request *rq = p;
3407
3408                         tags->static_rqs[i] = rq;
3409                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3410                                 tags->static_rqs[i] = NULL;
3411                                 goto fail;
3412                         }
3413
3414                         p += rq_size;
3415                         i++;
3416                 }
3417         }
3418         return 0;
3419
3420 fail:
3421         blk_mq_free_rqs(set, tags, hctx_idx);
3422         return -ENOMEM;
3423 }
3424
3425 struct rq_iter_data {
3426         struct blk_mq_hw_ctx *hctx;
3427         bool has_rq;
3428 };
3429
3430 static bool blk_mq_has_request(struct request *rq, void *data)
3431 {
3432         struct rq_iter_data *iter_data = data;
3433
3434         if (rq->mq_hctx != iter_data->hctx)
3435                 return true;
3436         iter_data->has_rq = true;
3437         return false;
3438 }
3439
3440 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3441 {
3442         struct blk_mq_tags *tags = hctx->sched_tags ?
3443                         hctx->sched_tags : hctx->tags;
3444         struct rq_iter_data data = {
3445                 .hctx   = hctx,
3446         };
3447
3448         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3449         return data.has_rq;
3450 }
3451
3452 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3453                 struct blk_mq_hw_ctx *hctx)
3454 {
3455         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3456                 return false;
3457         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3458                 return false;
3459         return true;
3460 }
3461
3462 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3463 {
3464         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3465                         struct blk_mq_hw_ctx, cpuhp_online);
3466
3467         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3468             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3469                 return 0;
3470
3471         /*
3472          * Prevent new request from being allocated on the current hctx.
3473          *
3474          * The smp_mb__after_atomic() Pairs with the implied barrier in
3475          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3476          * seen once we return from the tag allocator.
3477          */
3478         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3479         smp_mb__after_atomic();
3480
3481         /*
3482          * Try to grab a reference to the queue and wait for any outstanding
3483          * requests.  If we could not grab a reference the queue has been
3484          * frozen and there are no requests.
3485          */
3486         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3487                 while (blk_mq_hctx_has_requests(hctx))
3488                         msleep(5);
3489                 percpu_ref_put(&hctx->queue->q_usage_counter);
3490         }
3491
3492         return 0;
3493 }
3494
3495 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3496 {
3497         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3498                         struct blk_mq_hw_ctx, cpuhp_online);
3499
3500         if (cpumask_test_cpu(cpu, hctx->cpumask))
3501                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3502         return 0;
3503 }
3504
3505 /*
3506  * 'cpu' is going away. splice any existing rq_list entries from this
3507  * software queue to the hw queue dispatch list, and ensure that it
3508  * gets run.
3509  */
3510 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3511 {
3512         struct blk_mq_hw_ctx *hctx;
3513         struct blk_mq_ctx *ctx;
3514         LIST_HEAD(tmp);
3515         enum hctx_type type;
3516
3517         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3518         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3519                 return 0;
3520
3521         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3522         type = hctx->type;
3523
3524         spin_lock(&ctx->lock);
3525         if (!list_empty(&ctx->rq_lists[type])) {
3526                 list_splice_init(&ctx->rq_lists[type], &tmp);
3527                 blk_mq_hctx_clear_pending(hctx, ctx);
3528         }
3529         spin_unlock(&ctx->lock);
3530
3531         if (list_empty(&tmp))
3532                 return 0;
3533
3534         spin_lock(&hctx->lock);
3535         list_splice_tail_init(&tmp, &hctx->dispatch);
3536         spin_unlock(&hctx->lock);
3537
3538         blk_mq_run_hw_queue(hctx, true);
3539         return 0;
3540 }
3541
3542 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3543 {
3544         if (!(hctx->flags & BLK_MQ_F_STACKING))
3545                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3546                                                     &hctx->cpuhp_online);
3547         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3548                                             &hctx->cpuhp_dead);
3549 }
3550
3551 /*
3552  * Before freeing hw queue, clearing the flush request reference in
3553  * tags->rqs[] for avoiding potential UAF.
3554  */
3555 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3556                 unsigned int queue_depth, struct request *flush_rq)
3557 {
3558         int i;
3559         unsigned long flags;
3560
3561         /* The hw queue may not be mapped yet */
3562         if (!tags)
3563                 return;
3564
3565         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3566
3567         for (i = 0; i < queue_depth; i++)
3568                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3569
3570         /*
3571          * Wait until all pending iteration is done.
3572          *
3573          * Request reference is cleared and it is guaranteed to be observed
3574          * after the ->lock is released.
3575          */
3576         spin_lock_irqsave(&tags->lock, flags);
3577         spin_unlock_irqrestore(&tags->lock, flags);
3578 }
3579
3580 /* hctx->ctxs will be freed in queue's release handler */
3581 static void blk_mq_exit_hctx(struct request_queue *q,
3582                 struct blk_mq_tag_set *set,
3583                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3584 {
3585         struct request *flush_rq = hctx->fq->flush_rq;
3586
3587         if (blk_mq_hw_queue_mapped(hctx))
3588                 blk_mq_tag_idle(hctx);
3589
3590         if (blk_queue_init_done(q))
3591                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3592                                 set->queue_depth, flush_rq);
3593         if (set->ops->exit_request)
3594                 set->ops->exit_request(set, flush_rq, hctx_idx);
3595
3596         if (set->ops->exit_hctx)
3597                 set->ops->exit_hctx(hctx, hctx_idx);
3598
3599         blk_mq_remove_cpuhp(hctx);
3600
3601         xa_erase(&q->hctx_table, hctx_idx);
3602
3603         spin_lock(&q->unused_hctx_lock);
3604         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3605         spin_unlock(&q->unused_hctx_lock);
3606 }
3607
3608 static void blk_mq_exit_hw_queues(struct request_queue *q,
3609                 struct blk_mq_tag_set *set, int nr_queue)
3610 {
3611         struct blk_mq_hw_ctx *hctx;
3612         unsigned long i;
3613
3614         queue_for_each_hw_ctx(q, hctx, i) {
3615                 if (i == nr_queue)
3616                         break;
3617                 blk_mq_exit_hctx(q, set, hctx, i);
3618         }
3619 }
3620
3621 static int blk_mq_init_hctx(struct request_queue *q,
3622                 struct blk_mq_tag_set *set,
3623                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3624 {
3625         hctx->queue_num = hctx_idx;
3626
3627         if (!(hctx->flags & BLK_MQ_F_STACKING))
3628                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3629                                 &hctx->cpuhp_online);
3630         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3631
3632         hctx->tags = set->tags[hctx_idx];
3633
3634         if (set->ops->init_hctx &&
3635             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3636                 goto unregister_cpu_notifier;
3637
3638         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3639                                 hctx->numa_node))
3640                 goto exit_hctx;
3641
3642         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3643                 goto exit_flush_rq;
3644
3645         return 0;
3646
3647  exit_flush_rq:
3648         if (set->ops->exit_request)
3649                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3650  exit_hctx:
3651         if (set->ops->exit_hctx)
3652                 set->ops->exit_hctx(hctx, hctx_idx);
3653  unregister_cpu_notifier:
3654         blk_mq_remove_cpuhp(hctx);
3655         return -1;
3656 }
3657
3658 static struct blk_mq_hw_ctx *
3659 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3660                 int node)
3661 {
3662         struct blk_mq_hw_ctx *hctx;
3663         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3664
3665         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3666         if (!hctx)
3667                 goto fail_alloc_hctx;
3668
3669         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3670                 goto free_hctx;
3671
3672         atomic_set(&hctx->nr_active, 0);
3673         if (node == NUMA_NO_NODE)
3674                 node = set->numa_node;
3675         hctx->numa_node = node;
3676
3677         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3678         spin_lock_init(&hctx->lock);
3679         INIT_LIST_HEAD(&hctx->dispatch);
3680         hctx->queue = q;
3681         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3682
3683         INIT_LIST_HEAD(&hctx->hctx_list);
3684
3685         /*
3686          * Allocate space for all possible cpus to avoid allocation at
3687          * runtime
3688          */
3689         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3690                         gfp, node);
3691         if (!hctx->ctxs)
3692                 goto free_cpumask;
3693
3694         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3695                                 gfp, node, false, false))
3696                 goto free_ctxs;
3697         hctx->nr_ctx = 0;
3698
3699         spin_lock_init(&hctx->dispatch_wait_lock);
3700         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3701         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3702
3703         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3704         if (!hctx->fq)
3705                 goto free_bitmap;
3706
3707         blk_mq_hctx_kobj_init(hctx);
3708
3709         return hctx;
3710
3711  free_bitmap:
3712         sbitmap_free(&hctx->ctx_map);
3713  free_ctxs:
3714         kfree(hctx->ctxs);
3715  free_cpumask:
3716         free_cpumask_var(hctx->cpumask);
3717  free_hctx:
3718         kfree(hctx);
3719  fail_alloc_hctx:
3720         return NULL;
3721 }
3722
3723 static void blk_mq_init_cpu_queues(struct request_queue *q,
3724                                    unsigned int nr_hw_queues)
3725 {
3726         struct blk_mq_tag_set *set = q->tag_set;
3727         unsigned int i, j;
3728
3729         for_each_possible_cpu(i) {
3730                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3731                 struct blk_mq_hw_ctx *hctx;
3732                 int k;
3733
3734                 __ctx->cpu = i;
3735                 spin_lock_init(&__ctx->lock);
3736                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3737                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3738
3739                 __ctx->queue = q;
3740
3741                 /*
3742                  * Set local node, IFF we have more than one hw queue. If
3743                  * not, we remain on the home node of the device
3744                  */
3745                 for (j = 0; j < set->nr_maps; j++) {
3746                         hctx = blk_mq_map_queue_type(q, j, i);
3747                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3748                                 hctx->numa_node = cpu_to_node(i);
3749                 }
3750         }
3751 }
3752
3753 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3754                                              unsigned int hctx_idx,
3755                                              unsigned int depth)
3756 {
3757         struct blk_mq_tags *tags;
3758         int ret;
3759
3760         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3761         if (!tags)
3762                 return NULL;
3763
3764         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3765         if (ret) {
3766                 blk_mq_free_rq_map(tags);
3767                 return NULL;
3768         }
3769
3770         return tags;
3771 }
3772
3773 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3774                                        int hctx_idx)
3775 {
3776         if (blk_mq_is_shared_tags(set->flags)) {
3777                 set->tags[hctx_idx] = set->shared_tags;
3778
3779                 return true;
3780         }
3781
3782         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3783                                                        set->queue_depth);
3784
3785         return set->tags[hctx_idx];
3786 }
3787
3788 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3789                              struct blk_mq_tags *tags,
3790                              unsigned int hctx_idx)
3791 {
3792         if (tags) {
3793                 blk_mq_free_rqs(set, tags, hctx_idx);
3794                 blk_mq_free_rq_map(tags);
3795         }
3796 }
3797
3798 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3799                                       unsigned int hctx_idx)
3800 {
3801         if (!blk_mq_is_shared_tags(set->flags))
3802                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3803
3804         set->tags[hctx_idx] = NULL;
3805 }
3806
3807 static void blk_mq_map_swqueue(struct request_queue *q)
3808 {
3809         unsigned int j, hctx_idx;
3810         unsigned long i;
3811         struct blk_mq_hw_ctx *hctx;
3812         struct blk_mq_ctx *ctx;
3813         struct blk_mq_tag_set *set = q->tag_set;
3814
3815         queue_for_each_hw_ctx(q, hctx, i) {
3816                 cpumask_clear(hctx->cpumask);
3817                 hctx->nr_ctx = 0;
3818                 hctx->dispatch_from = NULL;
3819         }
3820
3821         /*
3822          * Map software to hardware queues.
3823          *
3824          * If the cpu isn't present, the cpu is mapped to first hctx.
3825          */
3826         for_each_possible_cpu(i) {
3827
3828                 ctx = per_cpu_ptr(q->queue_ctx, i);
3829                 for (j = 0; j < set->nr_maps; j++) {
3830                         if (!set->map[j].nr_queues) {
3831                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3832                                                 HCTX_TYPE_DEFAULT, i);
3833                                 continue;
3834                         }
3835                         hctx_idx = set->map[j].mq_map[i];
3836                         /* unmapped hw queue can be remapped after CPU topo changed */
3837                         if (!set->tags[hctx_idx] &&
3838                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3839                                 /*
3840                                  * If tags initialization fail for some hctx,
3841                                  * that hctx won't be brought online.  In this
3842                                  * case, remap the current ctx to hctx[0] which
3843                                  * is guaranteed to always have tags allocated
3844                                  */
3845                                 set->map[j].mq_map[i] = 0;
3846                         }
3847
3848                         hctx = blk_mq_map_queue_type(q, j, i);
3849                         ctx->hctxs[j] = hctx;
3850                         /*
3851                          * If the CPU is already set in the mask, then we've
3852                          * mapped this one already. This can happen if
3853                          * devices share queues across queue maps.
3854                          */
3855                         if (cpumask_test_cpu(i, hctx->cpumask))
3856                                 continue;
3857
3858                         cpumask_set_cpu(i, hctx->cpumask);
3859                         hctx->type = j;
3860                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3861                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3862
3863                         /*
3864                          * If the nr_ctx type overflows, we have exceeded the
3865                          * amount of sw queues we can support.
3866                          */
3867                         BUG_ON(!hctx->nr_ctx);
3868                 }
3869
3870                 for (; j < HCTX_MAX_TYPES; j++)
3871                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3872                                         HCTX_TYPE_DEFAULT, i);
3873         }
3874
3875         queue_for_each_hw_ctx(q, hctx, i) {
3876                 /*
3877                  * If no software queues are mapped to this hardware queue,
3878                  * disable it and free the request entries.
3879                  */
3880                 if (!hctx->nr_ctx) {
3881                         /* Never unmap queue 0.  We need it as a
3882                          * fallback in case of a new remap fails
3883                          * allocation
3884                          */
3885                         if (i)
3886                                 __blk_mq_free_map_and_rqs(set, i);
3887
3888                         hctx->tags = NULL;
3889                         continue;
3890                 }
3891
3892                 hctx->tags = set->tags[i];
3893                 WARN_ON(!hctx->tags);
3894
3895                 /*
3896                  * Set the map size to the number of mapped software queues.
3897                  * This is more accurate and more efficient than looping
3898                  * over all possibly mapped software queues.
3899                  */
3900                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3901
3902                 /*
3903                  * Initialize batch roundrobin counts
3904                  */
3905                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3906                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3907         }
3908 }
3909
3910 /*
3911  * Caller needs to ensure that we're either frozen/quiesced, or that
3912  * the queue isn't live yet.
3913  */
3914 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3915 {
3916         struct blk_mq_hw_ctx *hctx;
3917         unsigned long i;
3918
3919         queue_for_each_hw_ctx(q, hctx, i) {
3920                 if (shared) {
3921                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3922                 } else {
3923                         blk_mq_tag_idle(hctx);
3924                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3925                 }
3926         }
3927 }
3928
3929 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3930                                          bool shared)
3931 {
3932         struct request_queue *q;
3933
3934         lockdep_assert_held(&set->tag_list_lock);
3935
3936         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3937                 blk_mq_freeze_queue(q);
3938                 queue_set_hctx_shared(q, shared);
3939                 blk_mq_unfreeze_queue(q);
3940         }
3941 }
3942
3943 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3944 {
3945         struct blk_mq_tag_set *set = q->tag_set;
3946
3947         mutex_lock(&set->tag_list_lock);
3948         list_del(&q->tag_set_list);
3949         if (list_is_singular(&set->tag_list)) {
3950                 /* just transitioned to unshared */
3951                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3952                 /* update existing queue */
3953                 blk_mq_update_tag_set_shared(set, false);
3954         }
3955         mutex_unlock(&set->tag_list_lock);
3956         INIT_LIST_HEAD(&q->tag_set_list);
3957 }
3958
3959 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3960                                      struct request_queue *q)
3961 {
3962         mutex_lock(&set->tag_list_lock);
3963
3964         /*
3965          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3966          */
3967         if (!list_empty(&set->tag_list) &&
3968             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3969                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3970                 /* update existing queue */
3971                 blk_mq_update_tag_set_shared(set, true);
3972         }
3973         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3974                 queue_set_hctx_shared(q, true);
3975         list_add_tail(&q->tag_set_list, &set->tag_list);
3976
3977         mutex_unlock(&set->tag_list_lock);
3978 }
3979
3980 /* All allocations will be freed in release handler of q->mq_kobj */
3981 static int blk_mq_alloc_ctxs(struct request_queue *q)
3982 {
3983         struct blk_mq_ctxs *ctxs;
3984         int cpu;
3985
3986         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3987         if (!ctxs)
3988                 return -ENOMEM;
3989
3990         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3991         if (!ctxs->queue_ctx)
3992                 goto fail;
3993
3994         for_each_possible_cpu(cpu) {
3995                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3996                 ctx->ctxs = ctxs;
3997         }
3998
3999         q->mq_kobj = &ctxs->kobj;
4000         q->queue_ctx = ctxs->queue_ctx;
4001
4002         return 0;
4003  fail:
4004         kfree(ctxs);
4005         return -ENOMEM;
4006 }
4007
4008 /*
4009  * It is the actual release handler for mq, but we do it from
4010  * request queue's release handler for avoiding use-after-free
4011  * and headache because q->mq_kobj shouldn't have been introduced,
4012  * but we can't group ctx/kctx kobj without it.
4013  */
4014 void blk_mq_release(struct request_queue *q)
4015 {
4016         struct blk_mq_hw_ctx *hctx, *next;
4017         unsigned long i;
4018
4019         queue_for_each_hw_ctx(q, hctx, i)
4020                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4021
4022         /* all hctx are in .unused_hctx_list now */
4023         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4024                 list_del_init(&hctx->hctx_list);
4025                 kobject_put(&hctx->kobj);
4026         }
4027
4028         xa_destroy(&q->hctx_table);
4029
4030         /*
4031          * release .mq_kobj and sw queue's kobject now because
4032          * both share lifetime with request queue.
4033          */
4034         blk_mq_sysfs_deinit(q);
4035 }
4036
4037 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4038                 void *queuedata)
4039 {
4040         struct request_queue *q;
4041         int ret;
4042
4043         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
4044         if (!q)
4045                 return ERR_PTR(-ENOMEM);
4046         q->queuedata = queuedata;
4047         ret = blk_mq_init_allocated_queue(set, q);
4048         if (ret) {
4049                 blk_put_queue(q);
4050                 return ERR_PTR(ret);
4051         }
4052         return q;
4053 }
4054
4055 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4056 {
4057         return blk_mq_init_queue_data(set, NULL);
4058 }
4059 EXPORT_SYMBOL(blk_mq_init_queue);
4060
4061 /**
4062  * blk_mq_destroy_queue - shutdown a request queue
4063  * @q: request queue to shutdown
4064  *
4065  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
4066  * the initial reference.  All future requests will failed with -ENODEV.
4067  *
4068  * Context: can sleep
4069  */
4070 void blk_mq_destroy_queue(struct request_queue *q)
4071 {
4072         WARN_ON_ONCE(!queue_is_mq(q));
4073         WARN_ON_ONCE(blk_queue_registered(q));
4074
4075         might_sleep();
4076
4077         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4078         blk_queue_start_drain(q);
4079         blk_freeze_queue(q);
4080
4081         blk_sync_queue(q);
4082         blk_mq_cancel_work_sync(q);
4083         blk_mq_exit_queue(q);
4084
4085         /* @q is and will stay empty, shutdown and put */
4086         blk_put_queue(q);
4087 }
4088 EXPORT_SYMBOL(blk_mq_destroy_queue);
4089
4090 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4091                 struct lock_class_key *lkclass)
4092 {
4093         struct request_queue *q;
4094         struct gendisk *disk;
4095
4096         q = blk_mq_init_queue_data(set, queuedata);
4097         if (IS_ERR(q))
4098                 return ERR_CAST(q);
4099
4100         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4101         if (!disk) {
4102                 blk_mq_destroy_queue(q);
4103                 return ERR_PTR(-ENOMEM);
4104         }
4105         set_bit(GD_OWNS_QUEUE, &disk->state);
4106         return disk;
4107 }
4108 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4109
4110 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4111                 struct lock_class_key *lkclass)
4112 {
4113         struct gendisk *disk;
4114
4115         if (!blk_get_queue(q))
4116                 return NULL;
4117         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4118         if (!disk)
4119                 blk_put_queue(q);
4120         return disk;
4121 }
4122 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4123
4124 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4125                 struct blk_mq_tag_set *set, struct request_queue *q,
4126                 int hctx_idx, int node)
4127 {
4128         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4129
4130         /* reuse dead hctx first */
4131         spin_lock(&q->unused_hctx_lock);
4132         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4133                 if (tmp->numa_node == node) {
4134                         hctx = tmp;
4135                         break;
4136                 }
4137         }
4138         if (hctx)
4139                 list_del_init(&hctx->hctx_list);
4140         spin_unlock(&q->unused_hctx_lock);
4141
4142         if (!hctx)
4143                 hctx = blk_mq_alloc_hctx(q, set, node);
4144         if (!hctx)
4145                 goto fail;
4146
4147         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4148                 goto free_hctx;
4149
4150         return hctx;
4151
4152  free_hctx:
4153         kobject_put(&hctx->kobj);
4154  fail:
4155         return NULL;
4156 }
4157
4158 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4159                                                 struct request_queue *q)
4160 {
4161         struct blk_mq_hw_ctx *hctx;
4162         unsigned long i, j;
4163
4164         /* protect against switching io scheduler  */
4165         mutex_lock(&q->sysfs_lock);
4166         for (i = 0; i < set->nr_hw_queues; i++) {
4167                 int old_node;
4168                 int node = blk_mq_get_hctx_node(set, i);
4169                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4170
4171                 if (old_hctx) {
4172                         old_node = old_hctx->numa_node;
4173                         blk_mq_exit_hctx(q, set, old_hctx, i);
4174                 }
4175
4176                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4177                         if (!old_hctx)
4178                                 break;
4179                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4180                                         node, old_node);
4181                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4182                         WARN_ON_ONCE(!hctx);
4183                 }
4184         }
4185         /*
4186          * Increasing nr_hw_queues fails. Free the newly allocated
4187          * hctxs and keep the previous q->nr_hw_queues.
4188          */
4189         if (i != set->nr_hw_queues) {
4190                 j = q->nr_hw_queues;
4191         } else {
4192                 j = i;
4193                 q->nr_hw_queues = set->nr_hw_queues;
4194         }
4195
4196         xa_for_each_start(&q->hctx_table, j, hctx, j)
4197                 blk_mq_exit_hctx(q, set, hctx, j);
4198         mutex_unlock(&q->sysfs_lock);
4199 }
4200
4201 static void blk_mq_update_poll_flag(struct request_queue *q)
4202 {
4203         struct blk_mq_tag_set *set = q->tag_set;
4204
4205         if (set->nr_maps > HCTX_TYPE_POLL &&
4206             set->map[HCTX_TYPE_POLL].nr_queues)
4207                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4208         else
4209                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4210 }
4211
4212 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4213                 struct request_queue *q)
4214 {
4215         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4216                         !!(set->flags & BLK_MQ_F_BLOCKING));
4217
4218         /* mark the queue as mq asap */
4219         q->mq_ops = set->ops;
4220
4221         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4222                                              blk_mq_poll_stats_bkt,
4223                                              BLK_MQ_POLL_STATS_BKTS, q);
4224         if (!q->poll_cb)
4225                 goto err_exit;
4226
4227         if (blk_mq_alloc_ctxs(q))
4228                 goto err_poll;
4229
4230         /* init q->mq_kobj and sw queues' kobjects */
4231         blk_mq_sysfs_init(q);
4232
4233         INIT_LIST_HEAD(&q->unused_hctx_list);
4234         spin_lock_init(&q->unused_hctx_lock);
4235
4236         xa_init(&q->hctx_table);
4237
4238         blk_mq_realloc_hw_ctxs(set, q);
4239         if (!q->nr_hw_queues)
4240                 goto err_hctxs;
4241
4242         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4243         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4244
4245         q->tag_set = set;
4246
4247         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4248         blk_mq_update_poll_flag(q);
4249
4250         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4251         INIT_LIST_HEAD(&q->requeue_list);
4252         spin_lock_init(&q->requeue_lock);
4253
4254         q->nr_requests = set->queue_depth;
4255
4256         /*
4257          * Default to classic polling
4258          */
4259         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4260
4261         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4262         blk_mq_add_queue_tag_set(set, q);
4263         blk_mq_map_swqueue(q);
4264         return 0;
4265
4266 err_hctxs:
4267         blk_mq_release(q);
4268 err_poll:
4269         blk_stat_free_callback(q->poll_cb);
4270         q->poll_cb = NULL;
4271 err_exit:
4272         q->mq_ops = NULL;
4273         return -ENOMEM;
4274 }
4275 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4276
4277 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4278 void blk_mq_exit_queue(struct request_queue *q)
4279 {
4280         struct blk_mq_tag_set *set = q->tag_set;
4281
4282         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4283         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4284         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4285         blk_mq_del_queue_tag_set(q);
4286 }
4287
4288 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4289 {
4290         int i;
4291
4292         if (blk_mq_is_shared_tags(set->flags)) {
4293                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4294                                                 BLK_MQ_NO_HCTX_IDX,
4295                                                 set->queue_depth);
4296                 if (!set->shared_tags)
4297                         return -ENOMEM;
4298         }
4299
4300         for (i = 0; i < set->nr_hw_queues; i++) {
4301                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4302                         goto out_unwind;
4303                 cond_resched();
4304         }
4305
4306         return 0;
4307
4308 out_unwind:
4309         while (--i >= 0)
4310                 __blk_mq_free_map_and_rqs(set, i);
4311
4312         if (blk_mq_is_shared_tags(set->flags)) {
4313                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4314                                         BLK_MQ_NO_HCTX_IDX);
4315         }
4316
4317         return -ENOMEM;
4318 }
4319
4320 /*
4321  * Allocate the request maps associated with this tag_set. Note that this
4322  * may reduce the depth asked for, if memory is tight. set->queue_depth
4323  * will be updated to reflect the allocated depth.
4324  */
4325 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4326 {
4327         unsigned int depth;
4328         int err;
4329
4330         depth = set->queue_depth;
4331         do {
4332                 err = __blk_mq_alloc_rq_maps(set);
4333                 if (!err)
4334                         break;
4335
4336                 set->queue_depth >>= 1;
4337                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4338                         err = -ENOMEM;
4339                         break;
4340                 }
4341         } while (set->queue_depth);
4342
4343         if (!set->queue_depth || err) {
4344                 pr_err("blk-mq: failed to allocate request map\n");
4345                 return -ENOMEM;
4346         }
4347
4348         if (depth != set->queue_depth)
4349                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4350                                                 depth, set->queue_depth);
4351
4352         return 0;
4353 }
4354
4355 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4356 {
4357         /*
4358          * blk_mq_map_queues() and multiple .map_queues() implementations
4359          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4360          * number of hardware queues.
4361          */
4362         if (set->nr_maps == 1)
4363                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4364
4365         if (set->ops->map_queues && !is_kdump_kernel()) {
4366                 int i;
4367
4368                 /*
4369                  * transport .map_queues is usually done in the following
4370                  * way:
4371                  *
4372                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4373                  *      mask = get_cpu_mask(queue)
4374                  *      for_each_cpu(cpu, mask)
4375                  *              set->map[x].mq_map[cpu] = queue;
4376                  * }
4377                  *
4378                  * When we need to remap, the table has to be cleared for
4379                  * killing stale mapping since one CPU may not be mapped
4380                  * to any hw queue.
4381                  */
4382                 for (i = 0; i < set->nr_maps; i++)
4383                         blk_mq_clear_mq_map(&set->map[i]);
4384
4385                 set->ops->map_queues(set);
4386         } else {
4387                 BUG_ON(set->nr_maps > 1);
4388                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4389         }
4390 }
4391
4392 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4393                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4394 {
4395         struct blk_mq_tags **new_tags;
4396
4397         if (cur_nr_hw_queues >= new_nr_hw_queues)
4398                 return 0;
4399
4400         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4401                                 GFP_KERNEL, set->numa_node);
4402         if (!new_tags)
4403                 return -ENOMEM;
4404
4405         if (set->tags)
4406                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4407                        sizeof(*set->tags));
4408         kfree(set->tags);
4409         set->tags = new_tags;
4410         set->nr_hw_queues = new_nr_hw_queues;
4411
4412         return 0;
4413 }
4414
4415 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4416                                 int new_nr_hw_queues)
4417 {
4418         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4419 }
4420
4421 /*
4422  * Alloc a tag set to be associated with one or more request queues.
4423  * May fail with EINVAL for various error conditions. May adjust the
4424  * requested depth down, if it's too large. In that case, the set
4425  * value will be stored in set->queue_depth.
4426  */
4427 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4428 {
4429         int i, ret;
4430
4431         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4432
4433         if (!set->nr_hw_queues)
4434                 return -EINVAL;
4435         if (!set->queue_depth)
4436                 return -EINVAL;
4437         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4438                 return -EINVAL;
4439
4440         if (!set->ops->queue_rq)
4441                 return -EINVAL;
4442
4443         if (!set->ops->get_budget ^ !set->ops->put_budget)
4444                 return -EINVAL;
4445
4446         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4447                 pr_info("blk-mq: reduced tag depth to %u\n",
4448                         BLK_MQ_MAX_DEPTH);
4449                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4450         }
4451
4452         if (!set->nr_maps)
4453                 set->nr_maps = 1;
4454         else if (set->nr_maps > HCTX_MAX_TYPES)
4455                 return -EINVAL;
4456
4457         /*
4458          * If a crashdump is active, then we are potentially in a very
4459          * memory constrained environment. Limit us to 1 queue and
4460          * 64 tags to prevent using too much memory.
4461          */
4462         if (is_kdump_kernel()) {
4463                 set->nr_hw_queues = 1;
4464                 set->nr_maps = 1;
4465                 set->queue_depth = min(64U, set->queue_depth);
4466         }
4467         /*
4468          * There is no use for more h/w queues than cpus if we just have
4469          * a single map
4470          */
4471         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4472                 set->nr_hw_queues = nr_cpu_ids;
4473
4474         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4475                 return -ENOMEM;
4476
4477         ret = -ENOMEM;
4478         for (i = 0; i < set->nr_maps; i++) {
4479                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4480                                                   sizeof(set->map[i].mq_map[0]),
4481                                                   GFP_KERNEL, set->numa_node);
4482                 if (!set->map[i].mq_map)
4483                         goto out_free_mq_map;
4484                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4485         }
4486
4487         blk_mq_update_queue_map(set);
4488
4489         ret = blk_mq_alloc_set_map_and_rqs(set);
4490         if (ret)
4491                 goto out_free_mq_map;
4492
4493         mutex_init(&set->tag_list_lock);
4494         INIT_LIST_HEAD(&set->tag_list);
4495
4496         return 0;
4497
4498 out_free_mq_map:
4499         for (i = 0; i < set->nr_maps; i++) {
4500                 kfree(set->map[i].mq_map);
4501                 set->map[i].mq_map = NULL;
4502         }
4503         kfree(set->tags);
4504         set->tags = NULL;
4505         return ret;
4506 }
4507 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4508
4509 /* allocate and initialize a tagset for a simple single-queue device */
4510 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4511                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4512                 unsigned int set_flags)
4513 {
4514         memset(set, 0, sizeof(*set));
4515         set->ops = ops;
4516         set->nr_hw_queues = 1;
4517         set->nr_maps = 1;
4518         set->queue_depth = queue_depth;
4519         set->numa_node = NUMA_NO_NODE;
4520         set->flags = set_flags;
4521         return blk_mq_alloc_tag_set(set);
4522 }
4523 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4524
4525 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4526 {
4527         int i, j;
4528
4529         for (i = 0; i < set->nr_hw_queues; i++)
4530                 __blk_mq_free_map_and_rqs(set, i);
4531
4532         if (blk_mq_is_shared_tags(set->flags)) {
4533                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4534                                         BLK_MQ_NO_HCTX_IDX);
4535         }
4536
4537         for (j = 0; j < set->nr_maps; j++) {
4538                 kfree(set->map[j].mq_map);
4539                 set->map[j].mq_map = NULL;
4540         }
4541
4542         kfree(set->tags);
4543         set->tags = NULL;
4544 }
4545 EXPORT_SYMBOL(blk_mq_free_tag_set);
4546
4547 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4548 {
4549         struct blk_mq_tag_set *set = q->tag_set;
4550         struct blk_mq_hw_ctx *hctx;
4551         int ret;
4552         unsigned long i;
4553
4554         if (!set)
4555                 return -EINVAL;
4556
4557         if (q->nr_requests == nr)
4558                 return 0;
4559
4560         blk_mq_freeze_queue(q);
4561         blk_mq_quiesce_queue(q);
4562
4563         ret = 0;
4564         queue_for_each_hw_ctx(q, hctx, i) {
4565                 if (!hctx->tags)
4566                         continue;
4567                 /*
4568                  * If we're using an MQ scheduler, just update the scheduler
4569                  * queue depth. This is similar to what the old code would do.
4570                  */
4571                 if (hctx->sched_tags) {
4572                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4573                                                       nr, true);
4574                 } else {
4575                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4576                                                       false);
4577                 }
4578                 if (ret)
4579                         break;
4580                 if (q->elevator && q->elevator->type->ops.depth_updated)
4581                         q->elevator->type->ops.depth_updated(hctx);
4582         }
4583         if (!ret) {
4584                 q->nr_requests = nr;
4585                 if (blk_mq_is_shared_tags(set->flags)) {
4586                         if (q->elevator)
4587                                 blk_mq_tag_update_sched_shared_tags(q);
4588                         else
4589                                 blk_mq_tag_resize_shared_tags(set, nr);
4590                 }
4591         }
4592
4593         blk_mq_unquiesce_queue(q);
4594         blk_mq_unfreeze_queue(q);
4595
4596         return ret;
4597 }
4598
4599 /*
4600  * request_queue and elevator_type pair.
4601  * It is just used by __blk_mq_update_nr_hw_queues to cache
4602  * the elevator_type associated with a request_queue.
4603  */
4604 struct blk_mq_qe_pair {
4605         struct list_head node;
4606         struct request_queue *q;
4607         struct elevator_type *type;
4608 };
4609
4610 /*
4611  * Cache the elevator_type in qe pair list and switch the
4612  * io scheduler to 'none'
4613  */
4614 static bool blk_mq_elv_switch_none(struct list_head *head,
4615                 struct request_queue *q)
4616 {
4617         struct blk_mq_qe_pair *qe;
4618
4619         if (!q->elevator)
4620                 return true;
4621
4622         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4623         if (!qe)
4624                 return false;
4625
4626         /* q->elevator needs protection from ->sysfs_lock */
4627         mutex_lock(&q->sysfs_lock);
4628
4629         INIT_LIST_HEAD(&qe->node);
4630         qe->q = q;
4631         qe->type = q->elevator->type;
4632         list_add(&qe->node, head);
4633
4634         /*
4635          * After elevator_switch, the previous elevator_queue will be
4636          * released by elevator_release. The reference of the io scheduler
4637          * module get by elevator_get will also be put. So we need to get
4638          * a reference of the io scheduler module here to prevent it to be
4639          * removed.
4640          */
4641         __module_get(qe->type->elevator_owner);
4642         elevator_switch(q, NULL);
4643         mutex_unlock(&q->sysfs_lock);
4644
4645         return true;
4646 }
4647
4648 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4649                                                 struct request_queue *q)
4650 {
4651         struct blk_mq_qe_pair *qe;
4652
4653         list_for_each_entry(qe, head, node)
4654                 if (qe->q == q)
4655                         return qe;
4656
4657         return NULL;
4658 }
4659
4660 static void blk_mq_elv_switch_back(struct list_head *head,
4661                                   struct request_queue *q)
4662 {
4663         struct blk_mq_qe_pair *qe;
4664         struct elevator_type *t;
4665
4666         qe = blk_lookup_qe_pair(head, q);
4667         if (!qe)
4668                 return;
4669         t = qe->type;
4670         list_del(&qe->node);
4671         kfree(qe);
4672
4673         mutex_lock(&q->sysfs_lock);
4674         elevator_switch(q, t);
4675         mutex_unlock(&q->sysfs_lock);
4676 }
4677
4678 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4679                                                         int nr_hw_queues)
4680 {
4681         struct request_queue *q;
4682         LIST_HEAD(head);
4683         int prev_nr_hw_queues;
4684
4685         lockdep_assert_held(&set->tag_list_lock);
4686
4687         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4688                 nr_hw_queues = nr_cpu_ids;
4689         if (nr_hw_queues < 1)
4690                 return;
4691         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4692                 return;
4693
4694         list_for_each_entry(q, &set->tag_list, tag_set_list)
4695                 blk_mq_freeze_queue(q);
4696         /*
4697          * Switch IO scheduler to 'none', cleaning up the data associated
4698          * with the previous scheduler. We will switch back once we are done
4699          * updating the new sw to hw queue mappings.
4700          */
4701         list_for_each_entry(q, &set->tag_list, tag_set_list)
4702                 if (!blk_mq_elv_switch_none(&head, q))
4703                         goto switch_back;
4704
4705         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4706                 blk_mq_debugfs_unregister_hctxs(q);
4707                 blk_mq_sysfs_unregister_hctxs(q);
4708         }
4709
4710         prev_nr_hw_queues = set->nr_hw_queues;
4711         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4712             0)
4713                 goto reregister;
4714
4715         set->nr_hw_queues = nr_hw_queues;
4716 fallback:
4717         blk_mq_update_queue_map(set);
4718         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4719                 blk_mq_realloc_hw_ctxs(set, q);
4720                 blk_mq_update_poll_flag(q);
4721                 if (q->nr_hw_queues != set->nr_hw_queues) {
4722                         int i = prev_nr_hw_queues;
4723
4724                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4725                                         nr_hw_queues, prev_nr_hw_queues);
4726                         for (; i < set->nr_hw_queues; i++)
4727                                 __blk_mq_free_map_and_rqs(set, i);
4728
4729                         set->nr_hw_queues = prev_nr_hw_queues;
4730                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4731                         goto fallback;
4732                 }
4733                 blk_mq_map_swqueue(q);
4734         }
4735
4736 reregister:
4737         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4738                 blk_mq_sysfs_register_hctxs(q);
4739                 blk_mq_debugfs_register_hctxs(q);
4740         }
4741
4742 switch_back:
4743         list_for_each_entry(q, &set->tag_list, tag_set_list)
4744                 blk_mq_elv_switch_back(&head, q);
4745
4746         list_for_each_entry(q, &set->tag_list, tag_set_list)
4747                 blk_mq_unfreeze_queue(q);
4748 }
4749
4750 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4751 {
4752         mutex_lock(&set->tag_list_lock);
4753         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4754         mutex_unlock(&set->tag_list_lock);
4755 }
4756 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4757
4758 /* Enable polling stats and return whether they were already enabled. */
4759 static bool blk_poll_stats_enable(struct request_queue *q)
4760 {
4761         if (q->poll_stat)
4762                 return true;
4763
4764         return blk_stats_alloc_enable(q);
4765 }
4766
4767 static void blk_mq_poll_stats_start(struct request_queue *q)
4768 {
4769         /*
4770          * We don't arm the callback if polling stats are not enabled or the
4771          * callback is already active.
4772          */
4773         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4774                 return;
4775
4776         blk_stat_activate_msecs(q->poll_cb, 100);
4777 }
4778
4779 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4780 {
4781         struct request_queue *q = cb->data;
4782         int bucket;
4783
4784         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4785                 if (cb->stat[bucket].nr_samples)
4786                         q->poll_stat[bucket] = cb->stat[bucket];
4787         }
4788 }
4789
4790 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4791                                        struct request *rq)
4792 {
4793         unsigned long ret = 0;
4794         int bucket;
4795
4796         /*
4797          * If stats collection isn't on, don't sleep but turn it on for
4798          * future users
4799          */
4800         if (!blk_poll_stats_enable(q))
4801                 return 0;
4802
4803         /*
4804          * As an optimistic guess, use half of the mean service time
4805          * for this type of request. We can (and should) make this smarter.
4806          * For instance, if the completion latencies are tight, we can
4807          * get closer than just half the mean. This is especially
4808          * important on devices where the completion latencies are longer
4809          * than ~10 usec. We do use the stats for the relevant IO size
4810          * if available which does lead to better estimates.
4811          */
4812         bucket = blk_mq_poll_stats_bkt(rq);
4813         if (bucket < 0)
4814                 return ret;
4815
4816         if (q->poll_stat[bucket].nr_samples)
4817                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4818
4819         return ret;
4820 }
4821
4822 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4823 {
4824         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4825         struct request *rq = blk_qc_to_rq(hctx, qc);
4826         struct hrtimer_sleeper hs;
4827         enum hrtimer_mode mode;
4828         unsigned int nsecs;
4829         ktime_t kt;
4830
4831         /*
4832          * If a request has completed on queue that uses an I/O scheduler, we
4833          * won't get back a request from blk_qc_to_rq.
4834          */
4835         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4836                 return false;
4837
4838         /*
4839          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4840          *
4841          *  0:  use half of prev avg
4842          * >0:  use this specific value
4843          */
4844         if (q->poll_nsec > 0)
4845                 nsecs = q->poll_nsec;
4846         else
4847                 nsecs = blk_mq_poll_nsecs(q, rq);
4848
4849         if (!nsecs)
4850                 return false;
4851
4852         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4853
4854         /*
4855          * This will be replaced with the stats tracking code, using
4856          * 'avg_completion_time / 2' as the pre-sleep target.
4857          */
4858         kt = nsecs;
4859
4860         mode = HRTIMER_MODE_REL;
4861         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4862         hrtimer_set_expires(&hs.timer, kt);
4863
4864         do {
4865                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4866                         break;
4867                 set_current_state(TASK_UNINTERRUPTIBLE);
4868                 hrtimer_sleeper_start_expires(&hs, mode);
4869                 if (hs.task)
4870                         io_schedule();
4871                 hrtimer_cancel(&hs.timer);
4872                 mode = HRTIMER_MODE_ABS;
4873         } while (hs.task && !signal_pending(current));
4874
4875         __set_current_state(TASK_RUNNING);
4876         destroy_hrtimer_on_stack(&hs.timer);
4877
4878         /*
4879          * If we sleep, have the caller restart the poll loop to reset the
4880          * state.  Like for the other success return cases, the caller is
4881          * responsible for checking if the IO completed.  If the IO isn't
4882          * complete, we'll get called again and will go straight to the busy
4883          * poll loop.
4884          */
4885         return true;
4886 }
4887
4888 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4889                                struct io_comp_batch *iob, unsigned int flags)
4890 {
4891         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4892         long state = get_current_state();
4893         int ret;
4894
4895         do {
4896                 ret = q->mq_ops->poll(hctx, iob);
4897                 if (ret > 0) {
4898                         __set_current_state(TASK_RUNNING);
4899                         return ret;
4900                 }
4901
4902                 if (signal_pending_state(state, current))
4903                         __set_current_state(TASK_RUNNING);
4904                 if (task_is_running(current))
4905                         return 1;
4906
4907                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4908                         break;
4909                 cpu_relax();
4910         } while (!need_resched());
4911
4912         __set_current_state(TASK_RUNNING);
4913         return 0;
4914 }
4915
4916 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4917                 unsigned int flags)
4918 {
4919         if (!(flags & BLK_POLL_NOSLEEP) &&
4920             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4921                 if (blk_mq_poll_hybrid(q, cookie))
4922                         return 1;
4923         }
4924         return blk_mq_poll_classic(q, cookie, iob, flags);
4925 }
4926
4927 unsigned int blk_mq_rq_cpu(struct request *rq)
4928 {
4929         return rq->mq_ctx->cpu;
4930 }
4931 EXPORT_SYMBOL(blk_mq_rq_cpu);
4932
4933 void blk_mq_cancel_work_sync(struct request_queue *q)
4934 {
4935         if (queue_is_mq(q)) {
4936                 struct blk_mq_hw_ctx *hctx;
4937                 unsigned long i;
4938
4939                 cancel_delayed_work_sync(&q->requeue_work);
4940
4941                 queue_for_each_hw_ctx(q, hctx, i)
4942                         cancel_delayed_work_sync(&hctx->run_work);
4943         }
4944 }
4945
4946 static int __init blk_mq_init(void)
4947 {
4948         int i;
4949
4950         for_each_possible_cpu(i)
4951                 init_llist_head(&per_cpu(blk_cpu_done, i));
4952         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4953
4954         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4955                                   "block/softirq:dead", NULL,
4956                                   blk_softirq_cpu_dead);
4957         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4958                                 blk_mq_hctx_notify_dead);
4959         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4960                                 blk_mq_hctx_notify_online,
4961                                 blk_mq_hctx_notify_offline);
4962         return 0;
4963 }
4964 subsys_initcall(blk_mq_init);