1 // SPDX-License-Identifier: GPL-2.0
3 * Block multiqueue core code
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
30 #include <trace/events/block.h>
32 #include <linux/blk-mq.h>
35 #include "blk-mq-debugfs.h"
36 #include "blk-mq-tag.h"
39 #include "blk-mq-sched.h"
40 #include "blk-rq-qos.h"
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
47 int ddir, bytes, bucket;
49 ddir = rq_data_dir(rq);
50 bytes = blk_rq_bytes(rq);
52 bucket = ddir + 2*(ilog2(bytes) - 9);
56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
63 * Check if any of the ctx, dispatch list or elevator
64 * have pending work in this hardware queue.
66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68 return !list_empty_careful(&hctx->dispatch) ||
69 sbitmap_any_bit_set(&hctx->ctx_map) ||
70 blk_mq_sched_has_work(hctx);
74 * Mark this ctx as having pending work in this hardware queue
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77 struct blk_mq_ctx *ctx)
79 const int bit = ctx->index_hw[hctx->type];
81 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
82 sbitmap_set_bit(&hctx->ctx_map, bit);
85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
86 struct blk_mq_ctx *ctx)
88 const int bit = ctx->index_hw[hctx->type];
90 sbitmap_clear_bit(&hctx->ctx_map, bit);
94 struct hd_struct *part;
95 unsigned int *inflight;
98 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
99 struct request *rq, void *priv,
102 struct mq_inflight *mi = priv;
105 * index[0] counts the specific partition that was asked for.
107 if (rq->part == mi->part)
113 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
115 unsigned inflight[2];
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
124 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
125 struct request *rq, void *priv,
128 struct mq_inflight *mi = priv;
130 if (rq->part == mi->part)
131 mi->inflight[rq_data_dir(rq)]++;
136 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
137 unsigned int inflight[2])
139 struct mq_inflight mi = { .part = part, .inflight = inflight, };
141 inflight[0] = inflight[1] = 0;
142 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
145 void blk_freeze_queue_start(struct request_queue *q)
147 mutex_lock(&q->mq_freeze_lock);
148 if (++q->mq_freeze_depth == 1) {
149 percpu_ref_kill(&q->q_usage_counter);
150 mutex_unlock(&q->mq_freeze_lock);
152 blk_mq_run_hw_queues(q, false);
154 mutex_unlock(&q->mq_freeze_lock);
157 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
159 void blk_mq_freeze_queue_wait(struct request_queue *q)
161 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
165 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
166 unsigned long timeout)
168 return wait_event_timeout(q->mq_freeze_wq,
169 percpu_ref_is_zero(&q->q_usage_counter),
172 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
175 * Guarantee no request is in use, so we can change any data structure of
176 * the queue afterward.
178 void blk_freeze_queue(struct request_queue *q)
181 * In the !blk_mq case we are only calling this to kill the
182 * q_usage_counter, otherwise this increases the freeze depth
183 * and waits for it to return to zero. For this reason there is
184 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
185 * exported to drivers as the only user for unfreeze is blk_mq.
187 blk_freeze_queue_start(q);
188 blk_mq_freeze_queue_wait(q);
191 void blk_mq_freeze_queue(struct request_queue *q)
194 * ...just an alias to keep freeze and unfreeze actions balanced
195 * in the blk_mq_* namespace
199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
201 void blk_mq_unfreeze_queue(struct request_queue *q)
203 mutex_lock(&q->mq_freeze_lock);
204 q->mq_freeze_depth--;
205 WARN_ON_ONCE(q->mq_freeze_depth < 0);
206 if (!q->mq_freeze_depth) {
207 percpu_ref_resurrect(&q->q_usage_counter);
208 wake_up_all(&q->mq_freeze_wq);
210 mutex_unlock(&q->mq_freeze_lock);
212 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
215 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
216 * mpt3sas driver such that this function can be removed.
218 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
220 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
222 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
225 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
228 * Note: this function does not prevent that the struct request end_io()
229 * callback function is invoked. Once this function is returned, we make
230 * sure no dispatch can happen until the queue is unquiesced via
231 * blk_mq_unquiesce_queue().
233 void blk_mq_quiesce_queue(struct request_queue *q)
235 struct blk_mq_hw_ctx *hctx;
239 blk_mq_quiesce_queue_nowait(q);
241 queue_for_each_hw_ctx(q, hctx, i) {
242 if (hctx->flags & BLK_MQ_F_BLOCKING)
243 synchronize_srcu(hctx->srcu);
250 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
253 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
256 * This function recovers queue into the state before quiescing
257 * which is done by blk_mq_quiesce_queue.
259 void blk_mq_unquiesce_queue(struct request_queue *q)
261 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
263 /* dispatch requests which are inserted during quiescing */
264 blk_mq_run_hw_queues(q, true);
266 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
268 void blk_mq_wake_waiters(struct request_queue *q)
270 struct blk_mq_hw_ctx *hctx;
273 queue_for_each_hw_ctx(q, hctx, i)
274 if (blk_mq_hw_queue_mapped(hctx))
275 blk_mq_tag_wakeup_all(hctx->tags, true);
278 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
280 return blk_mq_has_free_tags(hctx->tags);
282 EXPORT_SYMBOL(blk_mq_can_queue);
285 * Only need start/end time stamping if we have stats enabled, or using
288 static inline bool blk_mq_need_time_stamp(struct request *rq)
290 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
293 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
294 unsigned int tag, unsigned int op)
296 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
297 struct request *rq = tags->static_rqs[tag];
298 req_flags_t rq_flags = 0;
300 if (data->flags & BLK_MQ_REQ_INTERNAL) {
302 rq->internal_tag = tag;
304 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
305 rq_flags = RQF_MQ_INFLIGHT;
306 atomic_inc(&data->hctx->nr_active);
309 rq->internal_tag = -1;
310 data->hctx->tags->rqs[rq->tag] = rq;
313 /* csd/requeue_work/fifo_time is initialized before use */
315 rq->mq_ctx = data->ctx;
316 rq->mq_hctx = data->hctx;
317 rq->rq_flags = rq_flags;
319 if (data->flags & BLK_MQ_REQ_PREEMPT)
320 rq->rq_flags |= RQF_PREEMPT;
321 if (blk_queue_io_stat(data->q))
322 rq->rq_flags |= RQF_IO_STAT;
323 INIT_LIST_HEAD(&rq->queuelist);
324 INIT_HLIST_NODE(&rq->hash);
325 RB_CLEAR_NODE(&rq->rb_node);
328 if (blk_mq_need_time_stamp(rq))
329 rq->start_time_ns = ktime_get_ns();
331 rq->start_time_ns = 0;
332 rq->io_start_time_ns = 0;
333 rq->nr_phys_segments = 0;
334 #if defined(CONFIG_BLK_DEV_INTEGRITY)
335 rq->nr_integrity_segments = 0;
337 /* tag was already set */
339 WRITE_ONCE(rq->deadline, 0);
344 rq->end_io_data = NULL;
346 data->ctx->rq_dispatched[op_is_sync(op)]++;
347 refcount_set(&rq->ref, 1);
351 static struct request *blk_mq_get_request(struct request_queue *q,
353 struct blk_mq_alloc_data *data)
355 struct elevator_queue *e = q->elevator;
358 bool clear_ctx_on_error = false;
360 blk_queue_enter_live(q);
362 if (likely(!data->ctx)) {
363 data->ctx = blk_mq_get_ctx(q);
364 clear_ctx_on_error = true;
366 if (likely(!data->hctx))
367 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
369 if (data->cmd_flags & REQ_NOWAIT)
370 data->flags |= BLK_MQ_REQ_NOWAIT;
373 data->flags |= BLK_MQ_REQ_INTERNAL;
376 * Flush requests are special and go directly to the
377 * dispatch list. Don't include reserved tags in the
378 * limiting, as it isn't useful.
380 if (!op_is_flush(data->cmd_flags) &&
381 e->type->ops.limit_depth &&
382 !(data->flags & BLK_MQ_REQ_RESERVED))
383 e->type->ops.limit_depth(data->cmd_flags, data);
385 blk_mq_tag_busy(data->hctx);
388 tag = blk_mq_get_tag(data);
389 if (tag == BLK_MQ_TAG_FAIL) {
390 if (clear_ctx_on_error)
396 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
397 if (!op_is_flush(data->cmd_flags)) {
399 if (e && e->type->ops.prepare_request) {
400 if (e->type->icq_cache)
401 blk_mq_sched_assign_ioc(rq);
403 e->type->ops.prepare_request(rq, bio);
404 rq->rq_flags |= RQF_ELVPRIV;
407 data->hctx->queued++;
411 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
412 blk_mq_req_flags_t flags)
414 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
418 ret = blk_queue_enter(q, flags);
422 rq = blk_mq_get_request(q, NULL, &alloc_data);
426 return ERR_PTR(-EWOULDBLOCK);
429 rq->__sector = (sector_t) -1;
430 rq->bio = rq->biotail = NULL;
433 EXPORT_SYMBOL(blk_mq_alloc_request);
435 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
436 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
438 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
444 * If the tag allocator sleeps we could get an allocation for a
445 * different hardware context. No need to complicate the low level
446 * allocator for this for the rare use case of a command tied to
449 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
450 return ERR_PTR(-EINVAL);
452 if (hctx_idx >= q->nr_hw_queues)
453 return ERR_PTR(-EIO);
455 ret = blk_queue_enter(q, flags);
460 * Check if the hardware context is actually mapped to anything.
461 * If not tell the caller that it should skip this queue.
463 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
464 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
466 return ERR_PTR(-EXDEV);
468 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
469 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
471 rq = blk_mq_get_request(q, NULL, &alloc_data);
475 return ERR_PTR(-EWOULDBLOCK);
479 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
481 static void __blk_mq_free_request(struct request *rq)
483 struct request_queue *q = rq->q;
484 struct blk_mq_ctx *ctx = rq->mq_ctx;
485 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
486 const int sched_tag = rq->internal_tag;
488 blk_pm_mark_last_busy(rq);
491 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
493 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
494 blk_mq_sched_restart(hctx);
498 void blk_mq_free_request(struct request *rq)
500 struct request_queue *q = rq->q;
501 struct elevator_queue *e = q->elevator;
502 struct blk_mq_ctx *ctx = rq->mq_ctx;
503 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
505 if (rq->rq_flags & RQF_ELVPRIV) {
506 if (e && e->type->ops.finish_request)
507 e->type->ops.finish_request(rq);
509 put_io_context(rq->elv.icq->ioc);
514 ctx->rq_completed[rq_is_sync(rq)]++;
515 if (rq->rq_flags & RQF_MQ_INFLIGHT)
516 atomic_dec(&hctx->nr_active);
518 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
519 laptop_io_completion(q->backing_dev_info);
523 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
524 if (refcount_dec_and_test(&rq->ref))
525 __blk_mq_free_request(rq);
527 EXPORT_SYMBOL_GPL(blk_mq_free_request);
529 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
533 if (blk_mq_need_time_stamp(rq))
534 now = ktime_get_ns();
536 if (rq->rq_flags & RQF_STATS) {
537 blk_mq_poll_stats_start(rq->q);
538 blk_stat_add(rq, now);
541 if (rq->internal_tag != -1)
542 blk_mq_sched_completed_request(rq, now);
544 blk_account_io_done(rq, now);
547 rq_qos_done(rq->q, rq);
548 rq->end_io(rq, error);
550 blk_mq_free_request(rq);
553 EXPORT_SYMBOL(__blk_mq_end_request);
555 void blk_mq_end_request(struct request *rq, blk_status_t error)
557 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
559 __blk_mq_end_request(rq, error);
561 EXPORT_SYMBOL(blk_mq_end_request);
563 static void __blk_mq_complete_request_remote(void *data)
565 struct request *rq = data;
566 struct request_queue *q = rq->q;
568 q->mq_ops->complete(rq);
571 static void __blk_mq_complete_request(struct request *rq)
573 struct blk_mq_ctx *ctx = rq->mq_ctx;
574 struct request_queue *q = rq->q;
578 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
580 * Most of single queue controllers, there is only one irq vector
581 * for handling IO completion, and the only irq's affinity is set
582 * as all possible CPUs. On most of ARCHs, this affinity means the
583 * irq is handled on one specific CPU.
585 * So complete IO reqeust in softirq context in case of single queue
586 * for not degrading IO performance by irqsoff latency.
588 if (q->nr_hw_queues == 1) {
589 __blk_complete_request(rq);
594 * For a polled request, always complete locallly, it's pointless
595 * to redirect the completion.
597 if ((rq->cmd_flags & REQ_HIPRI) ||
598 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
599 q->mq_ops->complete(rq);
604 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
605 shared = cpus_share_cache(cpu, ctx->cpu);
607 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
608 rq->csd.func = __blk_mq_complete_request_remote;
611 smp_call_function_single_async(ctx->cpu, &rq->csd);
613 q->mq_ops->complete(rq);
618 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
619 __releases(hctx->srcu)
621 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
624 srcu_read_unlock(hctx->srcu, srcu_idx);
627 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
628 __acquires(hctx->srcu)
630 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
631 /* shut up gcc false positive */
635 *srcu_idx = srcu_read_lock(hctx->srcu);
639 * blk_mq_complete_request - end I/O on a request
640 * @rq: the request being processed
643 * Ends all I/O on a request. It does not handle partial completions.
644 * The actual completion happens out-of-order, through a IPI handler.
646 bool blk_mq_complete_request(struct request *rq)
648 if (unlikely(blk_should_fake_timeout(rq->q)))
650 __blk_mq_complete_request(rq);
653 EXPORT_SYMBOL(blk_mq_complete_request);
655 void blk_mq_complete_request_sync(struct request *rq)
657 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
658 rq->q->mq_ops->complete(rq);
660 EXPORT_SYMBOL_GPL(blk_mq_complete_request_sync);
662 int blk_mq_request_started(struct request *rq)
664 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
666 EXPORT_SYMBOL_GPL(blk_mq_request_started);
668 void blk_mq_start_request(struct request *rq)
670 struct request_queue *q = rq->q;
672 trace_block_rq_issue(q, rq);
674 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
675 rq->io_start_time_ns = ktime_get_ns();
676 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
677 rq->throtl_size = blk_rq_sectors(rq);
679 rq->rq_flags |= RQF_STATS;
683 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
686 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
688 if (q->dma_drain_size && blk_rq_bytes(rq)) {
690 * Make sure space for the drain appears. We know we can do
691 * this because max_hw_segments has been adjusted to be one
692 * fewer than the device can handle.
694 rq->nr_phys_segments++;
697 EXPORT_SYMBOL(blk_mq_start_request);
699 static void __blk_mq_requeue_request(struct request *rq)
701 struct request_queue *q = rq->q;
703 blk_mq_put_driver_tag(rq);
705 trace_block_rq_requeue(q, rq);
706 rq_qos_requeue(q, rq);
708 if (blk_mq_request_started(rq)) {
709 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
710 rq->rq_flags &= ~RQF_TIMED_OUT;
711 if (q->dma_drain_size && blk_rq_bytes(rq))
712 rq->nr_phys_segments--;
716 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
718 __blk_mq_requeue_request(rq);
720 /* this request will be re-inserted to io scheduler queue */
721 blk_mq_sched_requeue_request(rq);
723 BUG_ON(!list_empty(&rq->queuelist));
724 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
726 EXPORT_SYMBOL(blk_mq_requeue_request);
728 static void blk_mq_requeue_work(struct work_struct *work)
730 struct request_queue *q =
731 container_of(work, struct request_queue, requeue_work.work);
733 struct request *rq, *next;
735 spin_lock_irq(&q->requeue_lock);
736 list_splice_init(&q->requeue_list, &rq_list);
737 spin_unlock_irq(&q->requeue_lock);
739 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
740 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
743 rq->rq_flags &= ~RQF_SOFTBARRIER;
744 list_del_init(&rq->queuelist);
746 * If RQF_DONTPREP, rq has contained some driver specific
747 * data, so insert it to hctx dispatch list to avoid any
750 if (rq->rq_flags & RQF_DONTPREP)
751 blk_mq_request_bypass_insert(rq, false);
753 blk_mq_sched_insert_request(rq, true, false, false);
756 while (!list_empty(&rq_list)) {
757 rq = list_entry(rq_list.next, struct request, queuelist);
758 list_del_init(&rq->queuelist);
759 blk_mq_sched_insert_request(rq, false, false, false);
762 blk_mq_run_hw_queues(q, false);
765 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
766 bool kick_requeue_list)
768 struct request_queue *q = rq->q;
772 * We abuse this flag that is otherwise used by the I/O scheduler to
773 * request head insertion from the workqueue.
775 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
777 spin_lock_irqsave(&q->requeue_lock, flags);
779 rq->rq_flags |= RQF_SOFTBARRIER;
780 list_add(&rq->queuelist, &q->requeue_list);
782 list_add_tail(&rq->queuelist, &q->requeue_list);
784 spin_unlock_irqrestore(&q->requeue_lock, flags);
786 if (kick_requeue_list)
787 blk_mq_kick_requeue_list(q);
790 void blk_mq_kick_requeue_list(struct request_queue *q)
792 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
794 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
796 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
799 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
800 msecs_to_jiffies(msecs));
802 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
804 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
806 if (tag < tags->nr_tags) {
807 prefetch(tags->rqs[tag]);
808 return tags->rqs[tag];
813 EXPORT_SYMBOL(blk_mq_tag_to_rq);
815 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
816 void *priv, bool reserved)
819 * If we find a request that is inflight and the queue matches,
820 * we know the queue is busy. Return false to stop the iteration.
822 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
832 bool blk_mq_queue_inflight(struct request_queue *q)
836 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
839 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
841 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
843 req->rq_flags |= RQF_TIMED_OUT;
844 if (req->q->mq_ops->timeout) {
845 enum blk_eh_timer_return ret;
847 ret = req->q->mq_ops->timeout(req, reserved);
848 if (ret == BLK_EH_DONE)
850 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
856 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
858 unsigned long deadline;
860 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
862 if (rq->rq_flags & RQF_TIMED_OUT)
865 deadline = READ_ONCE(rq->deadline);
866 if (time_after_eq(jiffies, deadline))
871 else if (time_after(*next, deadline))
876 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
877 struct request *rq, void *priv, bool reserved)
879 unsigned long *next = priv;
882 * Just do a quick check if it is expired before locking the request in
883 * so we're not unnecessarilly synchronizing across CPUs.
885 if (!blk_mq_req_expired(rq, next))
889 * We have reason to believe the request may be expired. Take a
890 * reference on the request to lock this request lifetime into its
891 * currently allocated context to prevent it from being reallocated in
892 * the event the completion by-passes this timeout handler.
894 * If the reference was already released, then the driver beat the
895 * timeout handler to posting a natural completion.
897 if (!refcount_inc_not_zero(&rq->ref))
901 * The request is now locked and cannot be reallocated underneath the
902 * timeout handler's processing. Re-verify this exact request is truly
903 * expired; if it is not expired, then the request was completed and
904 * reallocated as a new request.
906 if (blk_mq_req_expired(rq, next))
907 blk_mq_rq_timed_out(rq, reserved);
908 if (refcount_dec_and_test(&rq->ref))
909 __blk_mq_free_request(rq);
914 static void blk_mq_timeout_work(struct work_struct *work)
916 struct request_queue *q =
917 container_of(work, struct request_queue, timeout_work);
918 unsigned long next = 0;
919 struct blk_mq_hw_ctx *hctx;
922 /* A deadlock might occur if a request is stuck requiring a
923 * timeout at the same time a queue freeze is waiting
924 * completion, since the timeout code would not be able to
925 * acquire the queue reference here.
927 * That's why we don't use blk_queue_enter here; instead, we use
928 * percpu_ref_tryget directly, because we need to be able to
929 * obtain a reference even in the short window between the queue
930 * starting to freeze, by dropping the first reference in
931 * blk_freeze_queue_start, and the moment the last request is
932 * consumed, marked by the instant q_usage_counter reaches
935 if (!percpu_ref_tryget(&q->q_usage_counter))
938 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
941 mod_timer(&q->timeout, next);
944 * Request timeouts are handled as a forward rolling timer. If
945 * we end up here it means that no requests are pending and
946 * also that no request has been pending for a while. Mark
949 queue_for_each_hw_ctx(q, hctx, i) {
950 /* the hctx may be unmapped, so check it here */
951 if (blk_mq_hw_queue_mapped(hctx))
952 blk_mq_tag_idle(hctx);
958 struct flush_busy_ctx_data {
959 struct blk_mq_hw_ctx *hctx;
960 struct list_head *list;
963 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
965 struct flush_busy_ctx_data *flush_data = data;
966 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
967 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
968 enum hctx_type type = hctx->type;
970 spin_lock(&ctx->lock);
971 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
972 sbitmap_clear_bit(sb, bitnr);
973 spin_unlock(&ctx->lock);
978 * Process software queues that have been marked busy, splicing them
979 * to the for-dispatch
981 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
983 struct flush_busy_ctx_data data = {
988 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
990 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
992 struct dispatch_rq_data {
993 struct blk_mq_hw_ctx *hctx;
997 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1000 struct dispatch_rq_data *dispatch_data = data;
1001 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1002 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1003 enum hctx_type type = hctx->type;
1005 spin_lock(&ctx->lock);
1006 if (!list_empty(&ctx->rq_lists[type])) {
1007 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1008 list_del_init(&dispatch_data->rq->queuelist);
1009 if (list_empty(&ctx->rq_lists[type]))
1010 sbitmap_clear_bit(sb, bitnr);
1012 spin_unlock(&ctx->lock);
1014 return !dispatch_data->rq;
1017 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1018 struct blk_mq_ctx *start)
1020 unsigned off = start ? start->index_hw[hctx->type] : 0;
1021 struct dispatch_rq_data data = {
1026 __sbitmap_for_each_set(&hctx->ctx_map, off,
1027 dispatch_rq_from_ctx, &data);
1032 static inline unsigned int queued_to_index(unsigned int queued)
1037 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1040 bool blk_mq_get_driver_tag(struct request *rq)
1042 struct blk_mq_alloc_data data = {
1044 .hctx = rq->mq_hctx,
1045 .flags = BLK_MQ_REQ_NOWAIT,
1046 .cmd_flags = rq->cmd_flags,
1053 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1054 data.flags |= BLK_MQ_REQ_RESERVED;
1056 shared = blk_mq_tag_busy(data.hctx);
1057 rq->tag = blk_mq_get_tag(&data);
1060 rq->rq_flags |= RQF_MQ_INFLIGHT;
1061 atomic_inc(&data.hctx->nr_active);
1063 data.hctx->tags->rqs[rq->tag] = rq;
1067 return rq->tag != -1;
1070 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1071 int flags, void *key)
1073 struct blk_mq_hw_ctx *hctx;
1075 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1077 spin_lock(&hctx->dispatch_wait_lock);
1078 if (!list_empty(&wait->entry)) {
1079 struct sbitmap_queue *sbq;
1081 list_del_init(&wait->entry);
1082 sbq = &hctx->tags->bitmap_tags;
1083 atomic_dec(&sbq->ws_active);
1085 spin_unlock(&hctx->dispatch_wait_lock);
1087 blk_mq_run_hw_queue(hctx, true);
1092 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1093 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1094 * restart. For both cases, take care to check the condition again after
1095 * marking us as waiting.
1097 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1100 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1101 struct wait_queue_head *wq;
1102 wait_queue_entry_t *wait;
1105 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1106 blk_mq_sched_mark_restart_hctx(hctx);
1109 * It's possible that a tag was freed in the window between the
1110 * allocation failure and adding the hardware queue to the wait
1113 * Don't clear RESTART here, someone else could have set it.
1114 * At most this will cost an extra queue run.
1116 return blk_mq_get_driver_tag(rq);
1119 wait = &hctx->dispatch_wait;
1120 if (!list_empty_careful(&wait->entry))
1123 wq = &bt_wait_ptr(sbq, hctx)->wait;
1125 spin_lock_irq(&wq->lock);
1126 spin_lock(&hctx->dispatch_wait_lock);
1127 if (!list_empty(&wait->entry)) {
1128 spin_unlock(&hctx->dispatch_wait_lock);
1129 spin_unlock_irq(&wq->lock);
1133 atomic_inc(&sbq->ws_active);
1134 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1135 __add_wait_queue(wq, wait);
1138 * It's possible that a tag was freed in the window between the
1139 * allocation failure and adding the hardware queue to the wait
1142 ret = blk_mq_get_driver_tag(rq);
1144 spin_unlock(&hctx->dispatch_wait_lock);
1145 spin_unlock_irq(&wq->lock);
1150 * We got a tag, remove ourselves from the wait queue to ensure
1151 * someone else gets the wakeup.
1153 list_del_init(&wait->entry);
1154 atomic_dec(&sbq->ws_active);
1155 spin_unlock(&hctx->dispatch_wait_lock);
1156 spin_unlock_irq(&wq->lock);
1161 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1162 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1164 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1165 * - EWMA is one simple way to compute running average value
1166 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1167 * - take 4 as factor for avoiding to get too small(0) result, and this
1168 * factor doesn't matter because EWMA decreases exponentially
1170 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1174 if (hctx->queue->elevator)
1177 ewma = hctx->dispatch_busy;
1182 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1184 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1185 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1187 hctx->dispatch_busy = ewma;
1190 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1193 * Returns true if we did some work AND can potentially do more.
1195 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1198 struct blk_mq_hw_ctx *hctx;
1199 struct request *rq, *nxt;
1200 bool no_tag = false;
1202 blk_status_t ret = BLK_STS_OK;
1204 if (list_empty(list))
1207 WARN_ON(!list_is_singular(list) && got_budget);
1210 * Now process all the entries, sending them to the driver.
1212 errors = queued = 0;
1214 struct blk_mq_queue_data bd;
1216 rq = list_first_entry(list, struct request, queuelist);
1219 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1222 if (!blk_mq_get_driver_tag(rq)) {
1224 * The initial allocation attempt failed, so we need to
1225 * rerun the hardware queue when a tag is freed. The
1226 * waitqueue takes care of that. If the queue is run
1227 * before we add this entry back on the dispatch list,
1228 * we'll re-run it below.
1230 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1231 blk_mq_put_dispatch_budget(hctx);
1233 * For non-shared tags, the RESTART check
1236 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1242 list_del_init(&rq->queuelist);
1247 * Flag last if we have no more requests, or if we have more
1248 * but can't assign a driver tag to it.
1250 if (list_empty(list))
1253 nxt = list_first_entry(list, struct request, queuelist);
1254 bd.last = !blk_mq_get_driver_tag(nxt);
1257 ret = q->mq_ops->queue_rq(hctx, &bd);
1258 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1260 * If an I/O scheduler has been configured and we got a
1261 * driver tag for the next request already, free it
1264 if (!list_empty(list)) {
1265 nxt = list_first_entry(list, struct request, queuelist);
1266 blk_mq_put_driver_tag(nxt);
1268 list_add(&rq->queuelist, list);
1269 __blk_mq_requeue_request(rq);
1273 if (unlikely(ret != BLK_STS_OK)) {
1275 blk_mq_end_request(rq, BLK_STS_IOERR);
1280 } while (!list_empty(list));
1282 hctx->dispatched[queued_to_index(queued)]++;
1285 * Any items that need requeuing? Stuff them into hctx->dispatch,
1286 * that is where we will continue on next queue run.
1288 if (!list_empty(list)) {
1292 * If we didn't flush the entire list, we could have told
1293 * the driver there was more coming, but that turned out to
1296 if (q->mq_ops->commit_rqs)
1297 q->mq_ops->commit_rqs(hctx);
1299 spin_lock(&hctx->lock);
1300 list_splice_init(list, &hctx->dispatch);
1301 spin_unlock(&hctx->lock);
1304 * If SCHED_RESTART was set by the caller of this function and
1305 * it is no longer set that means that it was cleared by another
1306 * thread and hence that a queue rerun is needed.
1308 * If 'no_tag' is set, that means that we failed getting
1309 * a driver tag with an I/O scheduler attached. If our dispatch
1310 * waitqueue is no longer active, ensure that we run the queue
1311 * AFTER adding our entries back to the list.
1313 * If no I/O scheduler has been configured it is possible that
1314 * the hardware queue got stopped and restarted before requests
1315 * were pushed back onto the dispatch list. Rerun the queue to
1316 * avoid starvation. Notes:
1317 * - blk_mq_run_hw_queue() checks whether or not a queue has
1318 * been stopped before rerunning a queue.
1319 * - Some but not all block drivers stop a queue before
1320 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1323 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1324 * bit is set, run queue after a delay to avoid IO stalls
1325 * that could otherwise occur if the queue is idle.
1327 needs_restart = blk_mq_sched_needs_restart(hctx);
1328 if (!needs_restart ||
1329 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1330 blk_mq_run_hw_queue(hctx, true);
1331 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1332 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1334 blk_mq_update_dispatch_busy(hctx, true);
1337 blk_mq_update_dispatch_busy(hctx, false);
1340 * If the host/device is unable to accept more work, inform the
1343 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1346 return (queued + errors) != 0;
1349 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1354 * We should be running this queue from one of the CPUs that
1357 * There are at least two related races now between setting
1358 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1359 * __blk_mq_run_hw_queue():
1361 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1362 * but later it becomes online, then this warning is harmless
1365 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1366 * but later it becomes offline, then the warning can't be
1367 * triggered, and we depend on blk-mq timeout handler to
1368 * handle dispatched requests to this hctx
1370 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1371 cpu_online(hctx->next_cpu)) {
1372 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1373 raw_smp_processor_id(),
1374 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1379 * We can't run the queue inline with ints disabled. Ensure that
1380 * we catch bad users of this early.
1382 WARN_ON_ONCE(in_interrupt());
1384 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1386 hctx_lock(hctx, &srcu_idx);
1387 blk_mq_sched_dispatch_requests(hctx);
1388 hctx_unlock(hctx, srcu_idx);
1391 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1393 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1395 if (cpu >= nr_cpu_ids)
1396 cpu = cpumask_first(hctx->cpumask);
1401 * It'd be great if the workqueue API had a way to pass
1402 * in a mask and had some smarts for more clever placement.
1403 * For now we just round-robin here, switching for every
1404 * BLK_MQ_CPU_WORK_BATCH queued items.
1406 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1409 int next_cpu = hctx->next_cpu;
1411 if (hctx->queue->nr_hw_queues == 1)
1412 return WORK_CPU_UNBOUND;
1414 if (--hctx->next_cpu_batch <= 0) {
1416 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1418 if (next_cpu >= nr_cpu_ids)
1419 next_cpu = blk_mq_first_mapped_cpu(hctx);
1420 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1424 * Do unbound schedule if we can't find a online CPU for this hctx,
1425 * and it should only happen in the path of handling CPU DEAD.
1427 if (!cpu_online(next_cpu)) {
1434 * Make sure to re-select CPU next time once after CPUs
1435 * in hctx->cpumask become online again.
1437 hctx->next_cpu = next_cpu;
1438 hctx->next_cpu_batch = 1;
1439 return WORK_CPU_UNBOUND;
1442 hctx->next_cpu = next_cpu;
1446 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1447 unsigned long msecs)
1449 if (unlikely(blk_mq_hctx_stopped(hctx)))
1452 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1453 int cpu = get_cpu();
1454 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1455 __blk_mq_run_hw_queue(hctx);
1463 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1464 msecs_to_jiffies(msecs));
1467 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1469 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1471 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1473 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1479 * When queue is quiesced, we may be switching io scheduler, or
1480 * updating nr_hw_queues, or other things, and we can't run queue
1481 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1483 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1486 hctx_lock(hctx, &srcu_idx);
1487 need_run = !blk_queue_quiesced(hctx->queue) &&
1488 blk_mq_hctx_has_pending(hctx);
1489 hctx_unlock(hctx, srcu_idx);
1492 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1498 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1500 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1502 struct blk_mq_hw_ctx *hctx;
1505 queue_for_each_hw_ctx(q, hctx, i) {
1506 if (blk_mq_hctx_stopped(hctx))
1509 blk_mq_run_hw_queue(hctx, async);
1512 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1515 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1516 * @q: request queue.
1518 * The caller is responsible for serializing this function against
1519 * blk_mq_{start,stop}_hw_queue().
1521 bool blk_mq_queue_stopped(struct request_queue *q)
1523 struct blk_mq_hw_ctx *hctx;
1526 queue_for_each_hw_ctx(q, hctx, i)
1527 if (blk_mq_hctx_stopped(hctx))
1532 EXPORT_SYMBOL(blk_mq_queue_stopped);
1535 * This function is often used for pausing .queue_rq() by driver when
1536 * there isn't enough resource or some conditions aren't satisfied, and
1537 * BLK_STS_RESOURCE is usually returned.
1539 * We do not guarantee that dispatch can be drained or blocked
1540 * after blk_mq_stop_hw_queue() returns. Please use
1541 * blk_mq_quiesce_queue() for that requirement.
1543 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1545 cancel_delayed_work(&hctx->run_work);
1547 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1549 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1552 * This function is often used for pausing .queue_rq() by driver when
1553 * there isn't enough resource or some conditions aren't satisfied, and
1554 * BLK_STS_RESOURCE is usually returned.
1556 * We do not guarantee that dispatch can be drained or blocked
1557 * after blk_mq_stop_hw_queues() returns. Please use
1558 * blk_mq_quiesce_queue() for that requirement.
1560 void blk_mq_stop_hw_queues(struct request_queue *q)
1562 struct blk_mq_hw_ctx *hctx;
1565 queue_for_each_hw_ctx(q, hctx, i)
1566 blk_mq_stop_hw_queue(hctx);
1568 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1570 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1572 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1574 blk_mq_run_hw_queue(hctx, false);
1576 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1578 void blk_mq_start_hw_queues(struct request_queue *q)
1580 struct blk_mq_hw_ctx *hctx;
1583 queue_for_each_hw_ctx(q, hctx, i)
1584 blk_mq_start_hw_queue(hctx);
1586 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1588 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1590 if (!blk_mq_hctx_stopped(hctx))
1593 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1594 blk_mq_run_hw_queue(hctx, async);
1596 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1598 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1600 struct blk_mq_hw_ctx *hctx;
1603 queue_for_each_hw_ctx(q, hctx, i)
1604 blk_mq_start_stopped_hw_queue(hctx, async);
1606 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1608 static void blk_mq_run_work_fn(struct work_struct *work)
1610 struct blk_mq_hw_ctx *hctx;
1612 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1615 * If we are stopped, don't run the queue.
1617 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1620 __blk_mq_run_hw_queue(hctx);
1623 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1627 struct blk_mq_ctx *ctx = rq->mq_ctx;
1628 enum hctx_type type = hctx->type;
1630 lockdep_assert_held(&ctx->lock);
1632 trace_block_rq_insert(hctx->queue, rq);
1635 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1637 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1640 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1643 struct blk_mq_ctx *ctx = rq->mq_ctx;
1645 lockdep_assert_held(&ctx->lock);
1647 __blk_mq_insert_req_list(hctx, rq, at_head);
1648 blk_mq_hctx_mark_pending(hctx, ctx);
1652 * Should only be used carefully, when the caller knows we want to
1653 * bypass a potential IO scheduler on the target device.
1655 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1657 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1659 spin_lock(&hctx->lock);
1660 list_add_tail(&rq->queuelist, &hctx->dispatch);
1661 spin_unlock(&hctx->lock);
1664 blk_mq_run_hw_queue(hctx, false);
1667 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1668 struct list_head *list)
1672 enum hctx_type type = hctx->type;
1675 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1678 list_for_each_entry(rq, list, queuelist) {
1679 BUG_ON(rq->mq_ctx != ctx);
1680 trace_block_rq_insert(hctx->queue, rq);
1683 spin_lock(&ctx->lock);
1684 list_splice_tail_init(list, &ctx->rq_lists[type]);
1685 blk_mq_hctx_mark_pending(hctx, ctx);
1686 spin_unlock(&ctx->lock);
1689 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1691 struct request *rqa = container_of(a, struct request, queuelist);
1692 struct request *rqb = container_of(b, struct request, queuelist);
1694 if (rqa->mq_ctx < rqb->mq_ctx)
1696 else if (rqa->mq_ctx > rqb->mq_ctx)
1698 else if (rqa->mq_hctx < rqb->mq_hctx)
1700 else if (rqa->mq_hctx > rqb->mq_hctx)
1703 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1706 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1708 struct blk_mq_hw_ctx *this_hctx;
1709 struct blk_mq_ctx *this_ctx;
1710 struct request_queue *this_q;
1716 list_splice_init(&plug->mq_list, &list);
1718 if (plug->rq_count > 2 && plug->multiple_queues)
1719 list_sort(NULL, &list, plug_rq_cmp);
1728 while (!list_empty(&list)) {
1729 rq = list_entry_rq(list.next);
1730 list_del_init(&rq->queuelist);
1732 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1734 trace_block_unplug(this_q, depth, !from_schedule);
1735 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1741 this_ctx = rq->mq_ctx;
1742 this_hctx = rq->mq_hctx;
1747 list_add_tail(&rq->queuelist, &rq_list);
1751 * If 'this_hctx' is set, we know we have entries to complete
1752 * on 'rq_list'. Do those.
1755 trace_block_unplug(this_q, depth, !from_schedule);
1756 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1761 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1762 unsigned int nr_segs)
1764 if (bio->bi_opf & REQ_RAHEAD)
1765 rq->cmd_flags |= REQ_FAILFAST_MASK;
1767 rq->__sector = bio->bi_iter.bi_sector;
1768 rq->write_hint = bio->bi_write_hint;
1769 blk_rq_bio_prep(rq, bio, nr_segs);
1771 blk_account_io_start(rq, true);
1774 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1776 blk_qc_t *cookie, bool last)
1778 struct request_queue *q = rq->q;
1779 struct blk_mq_queue_data bd = {
1783 blk_qc_t new_cookie;
1786 new_cookie = request_to_qc_t(hctx, rq);
1789 * For OK queue, we are done. For error, caller may kill it.
1790 * Any other error (busy), just add it to our list as we
1791 * previously would have done.
1793 ret = q->mq_ops->queue_rq(hctx, &bd);
1796 blk_mq_update_dispatch_busy(hctx, false);
1797 *cookie = new_cookie;
1799 case BLK_STS_RESOURCE:
1800 case BLK_STS_DEV_RESOURCE:
1801 blk_mq_update_dispatch_busy(hctx, true);
1802 __blk_mq_requeue_request(rq);
1805 blk_mq_update_dispatch_busy(hctx, false);
1806 *cookie = BLK_QC_T_NONE;
1813 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1816 bool bypass_insert, bool last)
1818 struct request_queue *q = rq->q;
1819 bool run_queue = true;
1822 * RCU or SRCU read lock is needed before checking quiesced flag.
1824 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1825 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1826 * and avoid driver to try to dispatch again.
1828 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1830 bypass_insert = false;
1834 if (q->elevator && !bypass_insert)
1837 if (!blk_mq_get_dispatch_budget(hctx))
1840 if (!blk_mq_get_driver_tag(rq)) {
1841 blk_mq_put_dispatch_budget(hctx);
1845 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1848 return BLK_STS_RESOURCE;
1850 blk_mq_request_bypass_insert(rq, run_queue);
1854 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1855 struct request *rq, blk_qc_t *cookie)
1860 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1862 hctx_lock(hctx, &srcu_idx);
1864 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1865 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1866 blk_mq_request_bypass_insert(rq, true);
1867 else if (ret != BLK_STS_OK)
1868 blk_mq_end_request(rq, ret);
1870 hctx_unlock(hctx, srcu_idx);
1873 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1877 blk_qc_t unused_cookie;
1878 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1880 hctx_lock(hctx, &srcu_idx);
1881 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1882 hctx_unlock(hctx, srcu_idx);
1887 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1888 struct list_head *list)
1890 while (!list_empty(list)) {
1892 struct request *rq = list_first_entry(list, struct request,
1895 list_del_init(&rq->queuelist);
1896 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1897 if (ret != BLK_STS_OK) {
1898 if (ret == BLK_STS_RESOURCE ||
1899 ret == BLK_STS_DEV_RESOURCE) {
1900 blk_mq_request_bypass_insert(rq,
1904 blk_mq_end_request(rq, ret);
1909 * If we didn't flush the entire list, we could have told
1910 * the driver there was more coming, but that turned out to
1913 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1914 hctx->queue->mq_ops->commit_rqs(hctx);
1917 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1919 list_add_tail(&rq->queuelist, &plug->mq_list);
1921 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1922 struct request *tmp;
1924 tmp = list_first_entry(&plug->mq_list, struct request,
1926 if (tmp->q != rq->q)
1927 plug->multiple_queues = true;
1931 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1933 const int is_sync = op_is_sync(bio->bi_opf);
1934 const int is_flush_fua = op_is_flush(bio->bi_opf);
1935 struct blk_mq_alloc_data data = { .flags = 0};
1937 struct blk_plug *plug;
1938 struct request *same_queue_rq = NULL;
1939 unsigned int nr_segs;
1942 blk_queue_bounce(q, &bio);
1943 __blk_queue_split(q, &bio, &nr_segs);
1945 if (!bio_integrity_prep(bio))
1946 return BLK_QC_T_NONE;
1948 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1949 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1950 return BLK_QC_T_NONE;
1952 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1953 return BLK_QC_T_NONE;
1955 rq_qos_throttle(q, bio);
1957 data.cmd_flags = bio->bi_opf;
1958 rq = blk_mq_get_request(q, bio, &data);
1959 if (unlikely(!rq)) {
1960 rq_qos_cleanup(q, bio);
1961 if (bio->bi_opf & REQ_NOWAIT)
1962 bio_wouldblock_error(bio);
1963 return BLK_QC_T_NONE;
1966 trace_block_getrq(q, bio, bio->bi_opf);
1968 rq_qos_track(q, rq, bio);
1970 cookie = request_to_qc_t(data.hctx, rq);
1972 blk_mq_bio_to_request(rq, bio, nr_segs);
1974 plug = blk_mq_plug(q, bio);
1975 if (unlikely(is_flush_fua)) {
1976 /* bypass scheduler for flush rq */
1977 blk_insert_flush(rq);
1978 blk_mq_run_hw_queue(data.hctx, true);
1979 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1981 * Use plugging if we have a ->commit_rqs() hook as well, as
1982 * we know the driver uses bd->last in a smart fashion.
1984 unsigned int request_count = plug->rq_count;
1985 struct request *last = NULL;
1988 trace_block_plug(q);
1990 last = list_entry_rq(plug->mq_list.prev);
1992 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1993 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1994 blk_flush_plug_list(plug, false);
1995 trace_block_plug(q);
1998 blk_add_rq_to_plug(plug, rq);
1999 } else if (plug && !blk_queue_nomerges(q)) {
2001 * We do limited plugging. If the bio can be merged, do that.
2002 * Otherwise the existing request in the plug list will be
2003 * issued. So the plug list will have one request at most
2004 * The plug list might get flushed before this. If that happens,
2005 * the plug list is empty, and same_queue_rq is invalid.
2007 if (list_empty(&plug->mq_list))
2008 same_queue_rq = NULL;
2009 if (same_queue_rq) {
2010 list_del_init(&same_queue_rq->queuelist);
2013 blk_add_rq_to_plug(plug, rq);
2014 trace_block_plug(q);
2016 if (same_queue_rq) {
2017 data.hctx = same_queue_rq->mq_hctx;
2018 trace_block_unplug(q, 1, true);
2019 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2022 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2023 !data.hctx->dispatch_busy)) {
2024 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2026 blk_mq_sched_insert_request(rq, false, true, true);
2032 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2033 unsigned int hctx_idx)
2037 if (tags->rqs && set->ops->exit_request) {
2040 for (i = 0; i < tags->nr_tags; i++) {
2041 struct request *rq = tags->static_rqs[i];
2045 set->ops->exit_request(set, rq, hctx_idx);
2046 tags->static_rqs[i] = NULL;
2050 while (!list_empty(&tags->page_list)) {
2051 page = list_first_entry(&tags->page_list, struct page, lru);
2052 list_del_init(&page->lru);
2054 * Remove kmemleak object previously allocated in
2055 * blk_mq_alloc_rqs().
2057 kmemleak_free(page_address(page));
2058 __free_pages(page, page->private);
2062 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2066 kfree(tags->static_rqs);
2067 tags->static_rqs = NULL;
2069 blk_mq_free_tags(tags);
2072 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2073 unsigned int hctx_idx,
2074 unsigned int nr_tags,
2075 unsigned int reserved_tags)
2077 struct blk_mq_tags *tags;
2080 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2081 if (node == NUMA_NO_NODE)
2082 node = set->numa_node;
2084 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2085 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2089 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2090 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2093 blk_mq_free_tags(tags);
2097 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2098 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2100 if (!tags->static_rqs) {
2102 blk_mq_free_tags(tags);
2109 static size_t order_to_size(unsigned int order)
2111 return (size_t)PAGE_SIZE << order;
2114 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2115 unsigned int hctx_idx, int node)
2119 if (set->ops->init_request) {
2120 ret = set->ops->init_request(set, rq, hctx_idx, node);
2125 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2129 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2130 unsigned int hctx_idx, unsigned int depth)
2132 unsigned int i, j, entries_per_page, max_order = 4;
2133 size_t rq_size, left;
2136 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2137 if (node == NUMA_NO_NODE)
2138 node = set->numa_node;
2140 INIT_LIST_HEAD(&tags->page_list);
2143 * rq_size is the size of the request plus driver payload, rounded
2144 * to the cacheline size
2146 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2148 left = rq_size * depth;
2150 for (i = 0; i < depth; ) {
2151 int this_order = max_order;
2156 while (this_order && left < order_to_size(this_order - 1))
2160 page = alloc_pages_node(node,
2161 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2167 if (order_to_size(this_order) < rq_size)
2174 page->private = this_order;
2175 list_add_tail(&page->lru, &tags->page_list);
2177 p = page_address(page);
2179 * Allow kmemleak to scan these pages as they contain pointers
2180 * to additional allocations like via ops->init_request().
2182 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2183 entries_per_page = order_to_size(this_order) / rq_size;
2184 to_do = min(entries_per_page, depth - i);
2185 left -= to_do * rq_size;
2186 for (j = 0; j < to_do; j++) {
2187 struct request *rq = p;
2189 tags->static_rqs[i] = rq;
2190 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2191 tags->static_rqs[i] = NULL;
2202 blk_mq_free_rqs(set, tags, hctx_idx);
2207 * 'cpu' is going away. splice any existing rq_list entries from this
2208 * software queue to the hw queue dispatch list, and ensure that it
2211 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2213 struct blk_mq_hw_ctx *hctx;
2214 struct blk_mq_ctx *ctx;
2216 enum hctx_type type;
2218 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2219 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2222 spin_lock(&ctx->lock);
2223 if (!list_empty(&ctx->rq_lists[type])) {
2224 list_splice_init(&ctx->rq_lists[type], &tmp);
2225 blk_mq_hctx_clear_pending(hctx, ctx);
2227 spin_unlock(&ctx->lock);
2229 if (list_empty(&tmp))
2232 spin_lock(&hctx->lock);
2233 list_splice_tail_init(&tmp, &hctx->dispatch);
2234 spin_unlock(&hctx->lock);
2236 blk_mq_run_hw_queue(hctx, true);
2240 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2242 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2246 /* hctx->ctxs will be freed in queue's release handler */
2247 static void blk_mq_exit_hctx(struct request_queue *q,
2248 struct blk_mq_tag_set *set,
2249 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2251 if (blk_mq_hw_queue_mapped(hctx))
2252 blk_mq_tag_idle(hctx);
2254 if (set->ops->exit_request)
2255 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2257 if (set->ops->exit_hctx)
2258 set->ops->exit_hctx(hctx, hctx_idx);
2260 blk_mq_remove_cpuhp(hctx);
2262 spin_lock(&q->unused_hctx_lock);
2263 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2264 spin_unlock(&q->unused_hctx_lock);
2267 static void blk_mq_exit_hw_queues(struct request_queue *q,
2268 struct blk_mq_tag_set *set, int nr_queue)
2270 struct blk_mq_hw_ctx *hctx;
2273 queue_for_each_hw_ctx(q, hctx, i) {
2276 blk_mq_debugfs_unregister_hctx(hctx);
2277 blk_mq_exit_hctx(q, set, hctx, i);
2281 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2283 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2285 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2286 __alignof__(struct blk_mq_hw_ctx)) !=
2287 sizeof(struct blk_mq_hw_ctx));
2289 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2290 hw_ctx_size += sizeof(struct srcu_struct);
2295 static int blk_mq_init_hctx(struct request_queue *q,
2296 struct blk_mq_tag_set *set,
2297 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2299 hctx->queue_num = hctx_idx;
2301 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2303 hctx->tags = set->tags[hctx_idx];
2305 if (set->ops->init_hctx &&
2306 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2307 goto unregister_cpu_notifier;
2309 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2315 if (set->ops->exit_hctx)
2316 set->ops->exit_hctx(hctx, hctx_idx);
2317 unregister_cpu_notifier:
2318 blk_mq_remove_cpuhp(hctx);
2322 static struct blk_mq_hw_ctx *
2323 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2326 struct blk_mq_hw_ctx *hctx;
2327 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2329 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2331 goto fail_alloc_hctx;
2333 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2336 atomic_set(&hctx->nr_active, 0);
2337 if (node == NUMA_NO_NODE)
2338 node = set->numa_node;
2339 hctx->numa_node = node;
2341 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2342 spin_lock_init(&hctx->lock);
2343 INIT_LIST_HEAD(&hctx->dispatch);
2345 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2347 INIT_LIST_HEAD(&hctx->hctx_list);
2350 * Allocate space for all possible cpus to avoid allocation at
2353 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2358 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2363 spin_lock_init(&hctx->dispatch_wait_lock);
2364 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2365 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2367 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2372 if (hctx->flags & BLK_MQ_F_BLOCKING)
2373 init_srcu_struct(hctx->srcu);
2374 blk_mq_hctx_kobj_init(hctx);
2379 sbitmap_free(&hctx->ctx_map);
2383 free_cpumask_var(hctx->cpumask);
2390 static void blk_mq_init_cpu_queues(struct request_queue *q,
2391 unsigned int nr_hw_queues)
2393 struct blk_mq_tag_set *set = q->tag_set;
2396 for_each_possible_cpu(i) {
2397 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2398 struct blk_mq_hw_ctx *hctx;
2402 spin_lock_init(&__ctx->lock);
2403 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2404 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2409 * Set local node, IFF we have more than one hw queue. If
2410 * not, we remain on the home node of the device
2412 for (j = 0; j < set->nr_maps; j++) {
2413 hctx = blk_mq_map_queue_type(q, j, i);
2414 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2415 hctx->numa_node = local_memory_node(cpu_to_node(i));
2420 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2424 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2425 set->queue_depth, set->reserved_tags);
2426 if (!set->tags[hctx_idx])
2429 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2434 blk_mq_free_rq_map(set->tags[hctx_idx]);
2435 set->tags[hctx_idx] = NULL;
2439 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2440 unsigned int hctx_idx)
2442 if (set->tags && set->tags[hctx_idx]) {
2443 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2444 blk_mq_free_rq_map(set->tags[hctx_idx]);
2445 set->tags[hctx_idx] = NULL;
2449 static void blk_mq_map_swqueue(struct request_queue *q)
2451 unsigned int i, j, hctx_idx;
2452 struct blk_mq_hw_ctx *hctx;
2453 struct blk_mq_ctx *ctx;
2454 struct blk_mq_tag_set *set = q->tag_set;
2457 * Avoid others reading imcomplete hctx->cpumask through sysfs
2459 mutex_lock(&q->sysfs_lock);
2461 queue_for_each_hw_ctx(q, hctx, i) {
2462 cpumask_clear(hctx->cpumask);
2464 hctx->dispatch_from = NULL;
2468 * Map software to hardware queues.
2470 * If the cpu isn't present, the cpu is mapped to first hctx.
2472 for_each_possible_cpu(i) {
2473 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2474 /* unmapped hw queue can be remapped after CPU topo changed */
2475 if (!set->tags[hctx_idx] &&
2476 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2478 * If tags initialization fail for some hctx,
2479 * that hctx won't be brought online. In this
2480 * case, remap the current ctx to hctx[0] which
2481 * is guaranteed to always have tags allocated
2483 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2486 ctx = per_cpu_ptr(q->queue_ctx, i);
2487 for (j = 0; j < set->nr_maps; j++) {
2488 if (!set->map[j].nr_queues) {
2489 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2490 HCTX_TYPE_DEFAULT, i);
2494 hctx = blk_mq_map_queue_type(q, j, i);
2495 ctx->hctxs[j] = hctx;
2497 * If the CPU is already set in the mask, then we've
2498 * mapped this one already. This can happen if
2499 * devices share queues across queue maps.
2501 if (cpumask_test_cpu(i, hctx->cpumask))
2504 cpumask_set_cpu(i, hctx->cpumask);
2506 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2507 hctx->ctxs[hctx->nr_ctx++] = ctx;
2510 * If the nr_ctx type overflows, we have exceeded the
2511 * amount of sw queues we can support.
2513 BUG_ON(!hctx->nr_ctx);
2516 for (; j < HCTX_MAX_TYPES; j++)
2517 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2518 HCTX_TYPE_DEFAULT, i);
2521 mutex_unlock(&q->sysfs_lock);
2523 queue_for_each_hw_ctx(q, hctx, i) {
2525 * If no software queues are mapped to this hardware queue,
2526 * disable it and free the request entries.
2528 if (!hctx->nr_ctx) {
2529 /* Never unmap queue 0. We need it as a
2530 * fallback in case of a new remap fails
2533 if (i && set->tags[i])
2534 blk_mq_free_map_and_requests(set, i);
2540 hctx->tags = set->tags[i];
2541 WARN_ON(!hctx->tags);
2544 * Set the map size to the number of mapped software queues.
2545 * This is more accurate and more efficient than looping
2546 * over all possibly mapped software queues.
2548 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2551 * Initialize batch roundrobin counts
2553 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2554 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2559 * Caller needs to ensure that we're either frozen/quiesced, or that
2560 * the queue isn't live yet.
2562 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2564 struct blk_mq_hw_ctx *hctx;
2567 queue_for_each_hw_ctx(q, hctx, i) {
2569 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2571 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2575 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2578 struct request_queue *q;
2580 lockdep_assert_held(&set->tag_list_lock);
2582 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2583 blk_mq_freeze_queue(q);
2584 queue_set_hctx_shared(q, shared);
2585 blk_mq_unfreeze_queue(q);
2589 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2591 struct blk_mq_tag_set *set = q->tag_set;
2593 mutex_lock(&set->tag_list_lock);
2594 list_del_rcu(&q->tag_set_list);
2595 if (list_is_singular(&set->tag_list)) {
2596 /* just transitioned to unshared */
2597 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2598 /* update existing queue */
2599 blk_mq_update_tag_set_depth(set, false);
2601 mutex_unlock(&set->tag_list_lock);
2602 INIT_LIST_HEAD(&q->tag_set_list);
2605 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2606 struct request_queue *q)
2608 mutex_lock(&set->tag_list_lock);
2611 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2613 if (!list_empty(&set->tag_list) &&
2614 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2615 set->flags |= BLK_MQ_F_TAG_SHARED;
2616 /* update existing queue */
2617 blk_mq_update_tag_set_depth(set, true);
2619 if (set->flags & BLK_MQ_F_TAG_SHARED)
2620 queue_set_hctx_shared(q, true);
2621 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2623 mutex_unlock(&set->tag_list_lock);
2626 /* All allocations will be freed in release handler of q->mq_kobj */
2627 static int blk_mq_alloc_ctxs(struct request_queue *q)
2629 struct blk_mq_ctxs *ctxs;
2632 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2636 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2637 if (!ctxs->queue_ctx)
2640 for_each_possible_cpu(cpu) {
2641 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2645 q->mq_kobj = &ctxs->kobj;
2646 q->queue_ctx = ctxs->queue_ctx;
2655 * It is the actual release handler for mq, but we do it from
2656 * request queue's release handler for avoiding use-after-free
2657 * and headache because q->mq_kobj shouldn't have been introduced,
2658 * but we can't group ctx/kctx kobj without it.
2660 void blk_mq_release(struct request_queue *q)
2662 struct blk_mq_hw_ctx *hctx, *next;
2665 queue_for_each_hw_ctx(q, hctx, i)
2666 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2668 /* all hctx are in .unused_hctx_list now */
2669 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2670 list_del_init(&hctx->hctx_list);
2671 kobject_put(&hctx->kobj);
2674 kfree(q->queue_hw_ctx);
2677 * release .mq_kobj and sw queue's kobject now because
2678 * both share lifetime with request queue.
2680 blk_mq_sysfs_deinit(q);
2683 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2685 struct request_queue *uninit_q, *q;
2687 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2689 return ERR_PTR(-ENOMEM);
2691 q = blk_mq_init_allocated_queue(set, uninit_q);
2693 blk_cleanup_queue(uninit_q);
2697 EXPORT_SYMBOL(blk_mq_init_queue);
2700 * Helper for setting up a queue with mq ops, given queue depth, and
2701 * the passed in mq ops flags.
2703 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2704 const struct blk_mq_ops *ops,
2705 unsigned int queue_depth,
2706 unsigned int set_flags)
2708 struct request_queue *q;
2711 memset(set, 0, sizeof(*set));
2713 set->nr_hw_queues = 1;
2715 set->queue_depth = queue_depth;
2716 set->numa_node = NUMA_NO_NODE;
2717 set->flags = set_flags;
2719 ret = blk_mq_alloc_tag_set(set);
2721 return ERR_PTR(ret);
2723 q = blk_mq_init_queue(set);
2725 blk_mq_free_tag_set(set);
2731 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2733 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2734 struct blk_mq_tag_set *set, struct request_queue *q,
2735 int hctx_idx, int node)
2737 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2739 /* reuse dead hctx first */
2740 spin_lock(&q->unused_hctx_lock);
2741 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2742 if (tmp->numa_node == node) {
2748 list_del_init(&hctx->hctx_list);
2749 spin_unlock(&q->unused_hctx_lock);
2752 hctx = blk_mq_alloc_hctx(q, set, node);
2756 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2762 kobject_put(&hctx->kobj);
2767 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2768 struct request_queue *q)
2771 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2773 /* protect against switching io scheduler */
2774 mutex_lock(&q->sysfs_lock);
2775 for (i = 0; i < set->nr_hw_queues; i++) {
2777 struct blk_mq_hw_ctx *hctx;
2779 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2781 * If the hw queue has been mapped to another numa node,
2782 * we need to realloc the hctx. If allocation fails, fallback
2783 * to use the previous one.
2785 if (hctxs[i] && (hctxs[i]->numa_node == node))
2788 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2791 blk_mq_exit_hctx(q, set, hctxs[i], i);
2795 pr_warn("Allocate new hctx on node %d fails,\
2796 fallback to previous one on node %d\n",
2797 node, hctxs[i]->numa_node);
2803 * Increasing nr_hw_queues fails. Free the newly allocated
2804 * hctxs and keep the previous q->nr_hw_queues.
2806 if (i != set->nr_hw_queues) {
2807 j = q->nr_hw_queues;
2811 end = q->nr_hw_queues;
2812 q->nr_hw_queues = set->nr_hw_queues;
2815 for (; j < end; j++) {
2816 struct blk_mq_hw_ctx *hctx = hctxs[j];
2820 blk_mq_free_map_and_requests(set, j);
2821 blk_mq_exit_hctx(q, set, hctx, j);
2825 mutex_unlock(&q->sysfs_lock);
2829 * Maximum number of hardware queues we support. For single sets, we'll never
2830 * have more than the CPUs (software queues). For multiple sets, the tag_set
2831 * user may have set ->nr_hw_queues larger.
2833 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2835 if (set->nr_maps == 1)
2838 return max(set->nr_hw_queues, nr_cpu_ids);
2841 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2842 struct request_queue *q)
2844 /* mark the queue as mq asap */
2845 q->mq_ops = set->ops;
2847 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2848 blk_mq_poll_stats_bkt,
2849 BLK_MQ_POLL_STATS_BKTS, q);
2853 if (blk_mq_alloc_ctxs(q))
2856 /* init q->mq_kobj and sw queues' kobjects */
2857 blk_mq_sysfs_init(q);
2859 q->nr_queues = nr_hw_queues(set);
2860 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2861 GFP_KERNEL, set->numa_node);
2862 if (!q->queue_hw_ctx)
2865 INIT_LIST_HEAD(&q->unused_hctx_list);
2866 spin_lock_init(&q->unused_hctx_lock);
2868 blk_mq_realloc_hw_ctxs(set, q);
2869 if (!q->nr_hw_queues)
2872 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2873 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2877 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2878 if (set->nr_maps > HCTX_TYPE_POLL &&
2879 set->map[HCTX_TYPE_POLL].nr_queues)
2880 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2882 q->sg_reserved_size = INT_MAX;
2884 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2885 INIT_LIST_HEAD(&q->requeue_list);
2886 spin_lock_init(&q->requeue_lock);
2888 blk_queue_make_request(q, blk_mq_make_request);
2891 * Do this after blk_queue_make_request() overrides it...
2893 q->nr_requests = set->queue_depth;
2896 * Default to classic polling
2898 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2900 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2901 blk_mq_add_queue_tag_set(set, q);
2902 blk_mq_map_swqueue(q);
2904 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2907 ret = elevator_init_mq(q);
2909 return ERR_PTR(ret);
2915 kfree(q->queue_hw_ctx);
2917 blk_mq_sysfs_deinit(q);
2919 blk_stat_free_callback(q->poll_cb);
2923 return ERR_PTR(-ENOMEM);
2925 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2927 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2928 void blk_mq_exit_queue(struct request_queue *q)
2930 struct blk_mq_tag_set *set = q->tag_set;
2932 blk_mq_del_queue_tag_set(q);
2933 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2936 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2940 for (i = 0; i < set->nr_hw_queues; i++)
2941 if (!__blk_mq_alloc_rq_map(set, i))
2948 blk_mq_free_rq_map(set->tags[i]);
2954 * Allocate the request maps associated with this tag_set. Note that this
2955 * may reduce the depth asked for, if memory is tight. set->queue_depth
2956 * will be updated to reflect the allocated depth.
2958 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2963 depth = set->queue_depth;
2965 err = __blk_mq_alloc_rq_maps(set);
2969 set->queue_depth >>= 1;
2970 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2974 } while (set->queue_depth);
2976 if (!set->queue_depth || err) {
2977 pr_err("blk-mq: failed to allocate request map\n");
2981 if (depth != set->queue_depth)
2982 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2983 depth, set->queue_depth);
2988 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2990 if (set->ops->map_queues && !is_kdump_kernel()) {
2994 * transport .map_queues is usually done in the following
2997 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2998 * mask = get_cpu_mask(queue)
2999 * for_each_cpu(cpu, mask)
3000 * set->map[x].mq_map[cpu] = queue;
3003 * When we need to remap, the table has to be cleared for
3004 * killing stale mapping since one CPU may not be mapped
3007 for (i = 0; i < set->nr_maps; i++)
3008 blk_mq_clear_mq_map(&set->map[i]);
3010 return set->ops->map_queues(set);
3012 BUG_ON(set->nr_maps > 1);
3013 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3018 * Alloc a tag set to be associated with one or more request queues.
3019 * May fail with EINVAL for various error conditions. May adjust the
3020 * requested depth down, if it's too large. In that case, the set
3021 * value will be stored in set->queue_depth.
3023 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3027 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3029 if (!set->nr_hw_queues)
3031 if (!set->queue_depth)
3033 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3036 if (!set->ops->queue_rq)
3039 if (!set->ops->get_budget ^ !set->ops->put_budget)
3042 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3043 pr_info("blk-mq: reduced tag depth to %u\n",
3045 set->queue_depth = BLK_MQ_MAX_DEPTH;
3050 else if (set->nr_maps > HCTX_MAX_TYPES)
3054 * If a crashdump is active, then we are potentially in a very
3055 * memory constrained environment. Limit us to 1 queue and
3056 * 64 tags to prevent using too much memory.
3058 if (is_kdump_kernel()) {
3059 set->nr_hw_queues = 1;
3061 set->queue_depth = min(64U, set->queue_depth);
3064 * There is no use for more h/w queues than cpus if we just have
3067 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3068 set->nr_hw_queues = nr_cpu_ids;
3070 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3071 GFP_KERNEL, set->numa_node);
3076 for (i = 0; i < set->nr_maps; i++) {
3077 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3078 sizeof(set->map[i].mq_map[0]),
3079 GFP_KERNEL, set->numa_node);
3080 if (!set->map[i].mq_map)
3081 goto out_free_mq_map;
3082 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3085 ret = blk_mq_update_queue_map(set);
3087 goto out_free_mq_map;
3089 ret = blk_mq_alloc_rq_maps(set);
3091 goto out_free_mq_map;
3093 mutex_init(&set->tag_list_lock);
3094 INIT_LIST_HEAD(&set->tag_list);
3099 for (i = 0; i < set->nr_maps; i++) {
3100 kfree(set->map[i].mq_map);
3101 set->map[i].mq_map = NULL;
3107 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3109 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3113 for (i = 0; i < nr_hw_queues(set); i++)
3114 blk_mq_free_map_and_requests(set, i);
3116 for (j = 0; j < set->nr_maps; j++) {
3117 kfree(set->map[j].mq_map);
3118 set->map[j].mq_map = NULL;
3124 EXPORT_SYMBOL(blk_mq_free_tag_set);
3126 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3128 struct blk_mq_tag_set *set = q->tag_set;
3129 struct blk_mq_hw_ctx *hctx;
3135 if (q->nr_requests == nr)
3138 blk_mq_freeze_queue(q);
3139 blk_mq_quiesce_queue(q);
3142 queue_for_each_hw_ctx(q, hctx, i) {
3146 * If we're using an MQ scheduler, just update the scheduler
3147 * queue depth. This is similar to what the old code would do.
3149 if (!hctx->sched_tags) {
3150 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3153 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3158 if (q->elevator && q->elevator->type->ops.depth_updated)
3159 q->elevator->type->ops.depth_updated(hctx);
3163 q->nr_requests = nr;
3165 blk_mq_unquiesce_queue(q);
3166 blk_mq_unfreeze_queue(q);
3172 * request_queue and elevator_type pair.
3173 * It is just used by __blk_mq_update_nr_hw_queues to cache
3174 * the elevator_type associated with a request_queue.
3176 struct blk_mq_qe_pair {
3177 struct list_head node;
3178 struct request_queue *q;
3179 struct elevator_type *type;
3183 * Cache the elevator_type in qe pair list and switch the
3184 * io scheduler to 'none'
3186 static bool blk_mq_elv_switch_none(struct list_head *head,
3187 struct request_queue *q)
3189 struct blk_mq_qe_pair *qe;
3194 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3198 INIT_LIST_HEAD(&qe->node);
3200 qe->type = q->elevator->type;
3201 list_add(&qe->node, head);
3203 mutex_lock(&q->sysfs_lock);
3205 * After elevator_switch_mq, the previous elevator_queue will be
3206 * released by elevator_release. The reference of the io scheduler
3207 * module get by elevator_get will also be put. So we need to get
3208 * a reference of the io scheduler module here to prevent it to be
3211 __module_get(qe->type->elevator_owner);
3212 elevator_switch_mq(q, NULL);
3213 mutex_unlock(&q->sysfs_lock);
3218 static void blk_mq_elv_switch_back(struct list_head *head,
3219 struct request_queue *q)
3221 struct blk_mq_qe_pair *qe;
3222 struct elevator_type *t = NULL;
3224 list_for_each_entry(qe, head, node)
3233 list_del(&qe->node);
3236 mutex_lock(&q->sysfs_lock);
3237 elevator_switch_mq(q, t);
3238 mutex_unlock(&q->sysfs_lock);
3241 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3244 struct request_queue *q;
3246 int prev_nr_hw_queues;
3248 lockdep_assert_held(&set->tag_list_lock);
3250 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3251 nr_hw_queues = nr_cpu_ids;
3252 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3255 list_for_each_entry(q, &set->tag_list, tag_set_list)
3256 blk_mq_freeze_queue(q);
3258 * Sync with blk_mq_queue_tag_busy_iter.
3262 * Switch IO scheduler to 'none', cleaning up the data associated
3263 * with the previous scheduler. We will switch back once we are done
3264 * updating the new sw to hw queue mappings.
3266 list_for_each_entry(q, &set->tag_list, tag_set_list)
3267 if (!blk_mq_elv_switch_none(&head, q))
3270 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3271 blk_mq_debugfs_unregister_hctxs(q);
3272 blk_mq_sysfs_unregister(q);
3275 prev_nr_hw_queues = set->nr_hw_queues;
3276 set->nr_hw_queues = nr_hw_queues;
3277 blk_mq_update_queue_map(set);
3279 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3280 blk_mq_realloc_hw_ctxs(set, q);
3281 if (q->nr_hw_queues != set->nr_hw_queues) {
3282 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3283 nr_hw_queues, prev_nr_hw_queues);
3284 set->nr_hw_queues = prev_nr_hw_queues;
3285 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3288 blk_mq_map_swqueue(q);
3291 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3292 blk_mq_sysfs_register(q);
3293 blk_mq_debugfs_register_hctxs(q);
3297 list_for_each_entry(q, &set->tag_list, tag_set_list)
3298 blk_mq_elv_switch_back(&head, q);
3300 list_for_each_entry(q, &set->tag_list, tag_set_list)
3301 blk_mq_unfreeze_queue(q);
3304 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3306 mutex_lock(&set->tag_list_lock);
3307 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3308 mutex_unlock(&set->tag_list_lock);
3310 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3312 /* Enable polling stats and return whether they were already enabled. */
3313 static bool blk_poll_stats_enable(struct request_queue *q)
3315 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3316 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3318 blk_stat_add_callback(q, q->poll_cb);
3322 static void blk_mq_poll_stats_start(struct request_queue *q)
3325 * We don't arm the callback if polling stats are not enabled or the
3326 * callback is already active.
3328 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3329 blk_stat_is_active(q->poll_cb))
3332 blk_stat_activate_msecs(q->poll_cb, 100);
3335 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3337 struct request_queue *q = cb->data;
3340 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3341 if (cb->stat[bucket].nr_samples)
3342 q->poll_stat[bucket] = cb->stat[bucket];
3346 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3347 struct blk_mq_hw_ctx *hctx,
3350 unsigned long ret = 0;
3354 * If stats collection isn't on, don't sleep but turn it on for
3357 if (!blk_poll_stats_enable(q))
3361 * As an optimistic guess, use half of the mean service time
3362 * for this type of request. We can (and should) make this smarter.
3363 * For instance, if the completion latencies are tight, we can
3364 * get closer than just half the mean. This is especially
3365 * important on devices where the completion latencies are longer
3366 * than ~10 usec. We do use the stats for the relevant IO size
3367 * if available which does lead to better estimates.
3369 bucket = blk_mq_poll_stats_bkt(rq);
3373 if (q->poll_stat[bucket].nr_samples)
3374 ret = (q->poll_stat[bucket].mean + 1) / 2;
3379 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3380 struct blk_mq_hw_ctx *hctx,
3383 struct hrtimer_sleeper hs;
3384 enum hrtimer_mode mode;
3388 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3392 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3394 * 0: use half of prev avg
3395 * >0: use this specific value
3397 if (q->poll_nsec > 0)
3398 nsecs = q->poll_nsec;
3400 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3405 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3408 * This will be replaced with the stats tracking code, using
3409 * 'avg_completion_time / 2' as the pre-sleep target.
3413 mode = HRTIMER_MODE_REL;
3414 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3415 hrtimer_set_expires(&hs.timer, kt);
3417 hrtimer_init_sleeper(&hs, current);
3419 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3421 set_current_state(TASK_UNINTERRUPTIBLE);
3422 hrtimer_start_expires(&hs.timer, mode);
3425 hrtimer_cancel(&hs.timer);
3426 mode = HRTIMER_MODE_ABS;
3427 } while (hs.task && !signal_pending(current));
3429 __set_current_state(TASK_RUNNING);
3430 destroy_hrtimer_on_stack(&hs.timer);
3434 static bool blk_mq_poll_hybrid(struct request_queue *q,
3435 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3439 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3442 if (!blk_qc_t_is_internal(cookie))
3443 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3445 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3447 * With scheduling, if the request has completed, we'll
3448 * get a NULL return here, as we clear the sched tag when
3449 * that happens. The request still remains valid, like always,
3450 * so we should be safe with just the NULL check.
3456 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3460 * blk_poll - poll for IO completions
3462 * @cookie: cookie passed back at IO submission time
3463 * @spin: whether to spin for completions
3466 * Poll for completions on the passed in queue. Returns number of
3467 * completed entries found. If @spin is true, then blk_poll will continue
3468 * looping until at least one completion is found, unless the task is
3469 * otherwise marked running (or we need to reschedule).
3471 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3473 struct blk_mq_hw_ctx *hctx;
3476 if (!blk_qc_t_valid(cookie) ||
3477 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3481 blk_flush_plug_list(current->plug, false);
3483 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3486 * If we sleep, have the caller restart the poll loop to reset
3487 * the state. Like for the other success return cases, the
3488 * caller is responsible for checking if the IO completed. If
3489 * the IO isn't complete, we'll get called again and will go
3490 * straight to the busy poll loop.
3492 if (blk_mq_poll_hybrid(q, hctx, cookie))
3495 hctx->poll_considered++;
3497 state = current->state;
3501 hctx->poll_invoked++;
3503 ret = q->mq_ops->poll(hctx);
3505 hctx->poll_success++;
3506 __set_current_state(TASK_RUNNING);
3510 if (signal_pending_state(state, current))
3511 __set_current_state(TASK_RUNNING);
3513 if (current->state == TASK_RUNNING)
3515 if (ret < 0 || !spin)
3518 } while (!need_resched());
3520 __set_current_state(TASK_RUNNING);
3523 EXPORT_SYMBOL_GPL(blk_poll);
3525 unsigned int blk_mq_rq_cpu(struct request *rq)
3527 return rq->mq_ctx->cpu;
3529 EXPORT_SYMBOL(blk_mq_rq_cpu);
3531 static int __init blk_mq_init(void)
3533 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3534 blk_mq_hctx_notify_dead);
3537 subsys_initcall(blk_mq_init);