1 // SPDX-License-Identifier: GPL-2.0
3 * blk-mq scheduling framework
5 * Copyright (C) 2016 Jens Axboe
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/list_sort.h>
11 #include <trace/events/block.h>
15 #include "blk-mq-debugfs.h"
16 #include "blk-mq-sched.h"
20 * Mark a hardware queue as needing a restart.
22 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
24 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
27 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
29 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
31 void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
33 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
36 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
37 * in blk_mq_run_hw_queue(). Its pair is the barrier in
38 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
39 * meantime new request added to hctx->dispatch is missed to check in
40 * blk_mq_run_hw_queue().
44 blk_mq_run_hw_queue(hctx, true);
47 static int sched_rq_cmp(void *priv, const struct list_head *a,
48 const struct list_head *b)
50 struct request *rqa = container_of(a, struct request, queuelist);
51 struct request *rqb = container_of(b, struct request, queuelist);
53 return rqa->mq_hctx > rqb->mq_hctx;
56 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
58 struct blk_mq_hw_ctx *hctx =
59 list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
62 unsigned int count = 0;
64 list_for_each_entry(rq, rq_list, queuelist) {
65 if (rq->mq_hctx != hctx) {
66 list_cut_before(&hctx_list, rq_list, &rq->queuelist);
71 list_splice_tail_init(rq_list, &hctx_list);
74 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
77 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */
80 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
81 * its queue by itself in its completion handler, so we don't need to
82 * restart queue if .get_budget() fails to get the budget.
84 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
85 * be run again. This is necessary to avoid starving flushes.
87 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
89 struct request_queue *q = hctx->queue;
90 struct elevator_queue *e = q->elevator;
91 bool multi_hctxs = false, run_queue = false;
92 bool dispatched = false, busy = false;
93 unsigned int max_dispatch;
97 if (hctx->dispatch_busy)
100 max_dispatch = hctx->queue->nr_requests;
106 if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
109 if (!list_empty_careful(&hctx->dispatch)) {
114 budget_token = blk_mq_get_dispatch_budget(q);
115 if (budget_token < 0)
118 rq = e->type->ops.dispatch_request(hctx);
120 blk_mq_put_dispatch_budget(q, budget_token);
122 * We're releasing without dispatching. Holding the
123 * budget could have blocked any "hctx"s with the
124 * same queue and if we didn't dispatch then there's
125 * no guarantee anyone will kick the queue. Kick it
132 blk_mq_set_rq_budget_token(rq, budget_token);
135 * Now this rq owns the budget which has to be released
136 * if this rq won't be queued to driver via .queue_rq()
137 * in blk_mq_dispatch_rq_list().
139 list_add_tail(&rq->queuelist, &rq_list);
141 if (rq->mq_hctx != hctx)
145 * If we cannot get tag for the request, stop dequeueing
146 * requests from the IO scheduler. We are unlikely to be able
147 * to submit them anyway and it creates false impression for
148 * scheduling heuristics that the device can take more IO.
150 if (!blk_mq_get_driver_tag(rq))
152 } while (count < max_dispatch);
156 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
157 } else if (multi_hctxs) {
159 * Requests from different hctx may be dequeued from some
160 * schedulers, such as bfq and deadline.
162 * Sort the requests in the list according to their hctx,
163 * dispatch batching requests from same hctx at a time.
165 list_sort(NULL, &rq_list, sched_rq_cmp);
167 dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
168 } while (!list_empty(&rq_list));
170 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
178 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
180 unsigned long end = jiffies + HZ;
184 ret = __blk_mq_do_dispatch_sched(hctx);
187 if (need_resched() || time_is_before_jiffies(end)) {
188 blk_mq_delay_run_hw_queue(hctx, 0);
196 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
197 struct blk_mq_ctx *ctx)
199 unsigned short idx = ctx->index_hw[hctx->type];
201 if (++idx == hctx->nr_ctx)
204 return hctx->ctxs[idx];
208 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
209 * its queue by itself in its completion handler, so we don't need to
210 * restart queue if .get_budget() fails to get the budget.
212 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
213 * be run again. This is necessary to avoid starving flushes.
215 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
217 struct request_queue *q = hctx->queue;
219 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
226 if (!list_empty_careful(&hctx->dispatch)) {
231 if (!sbitmap_any_bit_set(&hctx->ctx_map))
234 budget_token = blk_mq_get_dispatch_budget(q);
235 if (budget_token < 0)
238 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
240 blk_mq_put_dispatch_budget(q, budget_token);
242 * We're releasing without dispatching. Holding the
243 * budget could have blocked any "hctx"s with the
244 * same queue and if we didn't dispatch then there's
245 * no guarantee anyone will kick the queue. Kick it
248 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
252 blk_mq_set_rq_budget_token(rq, budget_token);
255 * Now this rq owns the budget which has to be released
256 * if this rq won't be queued to driver via .queue_rq()
257 * in blk_mq_dispatch_rq_list().
259 list_add(&rq->queuelist, &rq_list);
261 /* round robin for fair dispatch */
262 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
264 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
266 WRITE_ONCE(hctx->dispatch_from, ctx);
270 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
272 bool need_dispatch = false;
276 * If we have previous entries on our dispatch list, grab them first for
277 * more fair dispatch.
279 if (!list_empty_careful(&hctx->dispatch)) {
280 spin_lock(&hctx->lock);
281 if (!list_empty(&hctx->dispatch))
282 list_splice_init(&hctx->dispatch, &rq_list);
283 spin_unlock(&hctx->lock);
287 * Only ask the scheduler for requests, if we didn't have residual
288 * requests from the dispatch list. This is to avoid the case where
289 * we only ever dispatch a fraction of the requests available because
290 * of low device queue depth. Once we pull requests out of the IO
291 * scheduler, we can no longer merge or sort them. So it's best to
292 * leave them there for as long as we can. Mark the hw queue as
293 * needing a restart in that case.
295 * We want to dispatch from the scheduler if there was nothing
296 * on the dispatch list or we were able to dispatch from the
299 if (!list_empty(&rq_list)) {
300 blk_mq_sched_mark_restart_hctx(hctx);
301 if (!blk_mq_dispatch_rq_list(hctx, &rq_list, 0))
303 need_dispatch = true;
305 need_dispatch = hctx->dispatch_busy;
308 if (hctx->queue->elevator)
309 return blk_mq_do_dispatch_sched(hctx);
311 /* dequeue request one by one from sw queue if queue is busy */
313 return blk_mq_do_dispatch_ctx(hctx);
314 blk_mq_flush_busy_ctxs(hctx, &rq_list);
315 blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
319 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
321 struct request_queue *q = hctx->queue;
323 /* RCU or SRCU read lock is needed before checking quiesced flag */
324 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
330 * A return of -EAGAIN is an indication that hctx->dispatch is not
331 * empty and we must run again in order to avoid starving flushes.
333 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
334 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
335 blk_mq_run_hw_queue(hctx, true);
339 bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
340 unsigned int nr_segs)
342 struct elevator_queue *e = q->elevator;
343 struct blk_mq_ctx *ctx;
344 struct blk_mq_hw_ctx *hctx;
348 if (e && e->type->ops.bio_merge) {
349 ret = e->type->ops.bio_merge(q, bio, nr_segs);
353 ctx = blk_mq_get_ctx(q);
354 hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
356 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
357 list_empty_careful(&ctx->rq_lists[type]))
360 /* default per sw-queue merge */
361 spin_lock(&ctx->lock);
363 * Reverse check our software queue for entries that we could
364 * potentially merge with. Currently includes a hand-wavy stop
365 * count of 8, to not spend too much time checking for merges.
367 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs))
370 spin_unlock(&ctx->lock);
375 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
376 struct list_head *free)
378 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
380 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
382 static int blk_mq_sched_alloc_map_and_rqs(struct request_queue *q,
383 struct blk_mq_hw_ctx *hctx,
384 unsigned int hctx_idx)
386 if (blk_mq_is_shared_tags(q->tag_set->flags)) {
387 hctx->sched_tags = q->sched_shared_tags;
391 hctx->sched_tags = blk_mq_alloc_map_and_rqs(q->tag_set, hctx_idx,
394 if (!hctx->sched_tags)
399 static void blk_mq_exit_sched_shared_tags(struct request_queue *queue)
401 blk_mq_free_rq_map(queue->sched_shared_tags);
402 queue->sched_shared_tags = NULL;
405 /* called in queue's release handler, tagset has gone away */
406 static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags)
408 struct blk_mq_hw_ctx *hctx;
411 queue_for_each_hw_ctx(q, hctx, i) {
412 if (hctx->sched_tags) {
413 if (!blk_mq_is_shared_tags(flags))
414 blk_mq_free_rq_map(hctx->sched_tags);
415 hctx->sched_tags = NULL;
419 if (blk_mq_is_shared_tags(flags))
420 blk_mq_exit_sched_shared_tags(q);
423 static int blk_mq_init_sched_shared_tags(struct request_queue *queue)
425 struct blk_mq_tag_set *set = queue->tag_set;
428 * Set initial depth at max so that we don't need to reallocate for
429 * updating nr_requests.
431 queue->sched_shared_tags = blk_mq_alloc_map_and_rqs(set,
434 if (!queue->sched_shared_tags)
437 blk_mq_tag_update_sched_shared_tags(queue);
442 /* caller must have a reference to @e, will grab another one if successful */
443 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
445 unsigned int flags = q->tag_set->flags;
446 struct blk_mq_hw_ctx *hctx;
447 struct elevator_queue *eq;
452 * Default to double of smaller one between hw queue_depth and 128,
453 * since we don't split into sync/async like the old code did.
454 * Additionally, this is a per-hw queue depth.
456 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
459 if (blk_mq_is_shared_tags(flags)) {
460 ret = blk_mq_init_sched_shared_tags(q);
465 queue_for_each_hw_ctx(q, hctx, i) {
466 ret = blk_mq_sched_alloc_map_and_rqs(q, hctx, i);
468 goto err_free_map_and_rqs;
471 ret = e->ops.init_sched(q, e);
473 goto err_free_map_and_rqs;
475 mutex_lock(&q->debugfs_mutex);
476 blk_mq_debugfs_register_sched(q);
477 mutex_unlock(&q->debugfs_mutex);
479 queue_for_each_hw_ctx(q, hctx, i) {
480 if (e->ops.init_hctx) {
481 ret = e->ops.init_hctx(hctx, i);
484 blk_mq_sched_free_rqs(q);
485 blk_mq_exit_sched(q, eq);
486 kobject_put(&eq->kobj);
490 mutex_lock(&q->debugfs_mutex);
491 blk_mq_debugfs_register_sched_hctx(q, hctx);
492 mutex_unlock(&q->debugfs_mutex);
497 err_free_map_and_rqs:
498 blk_mq_sched_free_rqs(q);
499 blk_mq_sched_tags_teardown(q, flags);
506 * called in either blk_queue_cleanup or elevator_switch, tagset
507 * is required for freeing requests
509 void blk_mq_sched_free_rqs(struct request_queue *q)
511 struct blk_mq_hw_ctx *hctx;
514 if (blk_mq_is_shared_tags(q->tag_set->flags)) {
515 blk_mq_free_rqs(q->tag_set, q->sched_shared_tags,
518 queue_for_each_hw_ctx(q, hctx, i) {
519 if (hctx->sched_tags)
520 blk_mq_free_rqs(q->tag_set,
521 hctx->sched_tags, i);
526 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
528 struct blk_mq_hw_ctx *hctx;
530 unsigned int flags = 0;
532 queue_for_each_hw_ctx(q, hctx, i) {
533 mutex_lock(&q->debugfs_mutex);
534 blk_mq_debugfs_unregister_sched_hctx(hctx);
535 mutex_unlock(&q->debugfs_mutex);
537 if (e->type->ops.exit_hctx && hctx->sched_data) {
538 e->type->ops.exit_hctx(hctx, i);
539 hctx->sched_data = NULL;
544 mutex_lock(&q->debugfs_mutex);
545 blk_mq_debugfs_unregister_sched(q);
546 mutex_unlock(&q->debugfs_mutex);
548 if (e->type->ops.exit_sched)
549 e->type->ops.exit_sched(e);
550 blk_mq_sched_tags_teardown(q, flags);