1 // SPDX-License-Identifier: GPL-2.0
3 * Functions related to segment and merge handling
5 #include <linux/kernel.h>
6 #include <linux/module.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
11 #include <trace/events/block.h>
14 #include "blk-rq-qos.h"
16 static inline bool bio_will_gap(struct request_queue *q,
17 struct request *prev_rq, struct bio *prev, struct bio *next)
19 struct bio_vec pb, nb;
21 if (!bio_has_data(prev) || !queue_virt_boundary(q))
25 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
26 * is quite difficult to respect the sg gap limit. We work hard to
27 * merge a huge number of small single bios in case of mkfs.
30 bio_get_first_bvec(prev_rq->bio, &pb);
32 bio_get_first_bvec(prev, &pb);
33 if (pb.bv_offset & queue_virt_boundary(q))
37 * We don't need to worry about the situation that the merged segment
38 * ends in unaligned virt boundary:
40 * - if 'pb' ends aligned, the merged segment ends aligned
41 * - if 'pb' ends unaligned, the next bio must include
42 * one single bvec of 'nb', otherwise the 'nb' can't
45 bio_get_last_bvec(prev, &pb);
46 bio_get_first_bvec(next, &nb);
47 if (biovec_phys_mergeable(q, &pb, &nb))
49 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
52 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
54 return bio_will_gap(req->q, req, req->biotail, bio);
57 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
59 return bio_will_gap(req->q, NULL, bio, req->bio);
62 static struct bio *blk_bio_discard_split(struct request_queue *q,
67 unsigned int max_discard_sectors, granularity;
70 unsigned split_sectors;
74 /* Zero-sector (unknown) and one-sector granularities are the same. */
75 granularity = max(q->limits.discard_granularity >> 9, 1U);
77 max_discard_sectors = min(q->limits.max_discard_sectors,
78 bio_allowed_max_sectors(q));
79 max_discard_sectors -= max_discard_sectors % granularity;
81 if (unlikely(!max_discard_sectors)) {
86 if (bio_sectors(bio) <= max_discard_sectors)
89 split_sectors = max_discard_sectors;
92 * If the next starting sector would be misaligned, stop the discard at
93 * the previous aligned sector.
95 alignment = (q->limits.discard_alignment >> 9) % granularity;
97 tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
98 tmp = sector_div(tmp, granularity);
100 if (split_sectors > tmp)
101 split_sectors -= tmp;
103 return bio_split(bio, split_sectors, GFP_NOIO, bs);
106 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
107 struct bio *bio, struct bio_set *bs, unsigned *nsegs)
111 if (!q->limits.max_write_zeroes_sectors)
114 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
117 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
120 static struct bio *blk_bio_write_same_split(struct request_queue *q,
127 if (!q->limits.max_write_same_sectors)
130 if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
133 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
137 * Return the maximum number of sectors from the start of a bio that may be
138 * submitted as a single request to a block device. If enough sectors remain,
139 * align the end to the physical block size. Otherwise align the end to the
140 * logical block size. This approach minimizes the number of non-aligned
141 * requests that are submitted to a block device if the start of a bio is not
142 * aligned to a physical block boundary.
144 static inline unsigned get_max_io_size(struct request_queue *q,
147 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
148 unsigned max_sectors = sectors;
149 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
150 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
151 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
153 max_sectors += start_offset;
154 max_sectors &= ~(pbs - 1);
155 if (max_sectors > start_offset)
156 return max_sectors - start_offset;
158 return sectors & ~(lbs - 1);
161 static inline unsigned get_max_segment_size(const struct request_queue *q,
162 struct page *start_page,
163 unsigned long offset)
165 unsigned long mask = queue_segment_boundary(q);
167 offset = mask & (page_to_phys(start_page) + offset);
170 * overflow may be triggered in case of zero page physical address
171 * on 32bit arch, use queue's max segment size when that happens.
173 return min_not_zero(mask - offset + 1,
174 (unsigned long)queue_max_segment_size(q));
178 * bvec_split_segs - verify whether or not a bvec should be split in the middle
179 * @q: [in] request queue associated with the bio associated with @bv
180 * @bv: [in] bvec to examine
181 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
182 * by the number of segments from @bv that may be appended to that
183 * bio without exceeding @max_segs
184 * @sectors: [in,out] Number of sectors in the bio being built. Incremented
185 * by the number of sectors from @bv that may be appended to that
186 * bio without exceeding @max_sectors
187 * @max_segs: [in] upper bound for *@nsegs
188 * @max_sectors: [in] upper bound for *@sectors
190 * When splitting a bio, it can happen that a bvec is encountered that is too
191 * big to fit in a single segment and hence that it has to be split in the
192 * middle. This function verifies whether or not that should happen. The value
193 * %true is returned if and only if appending the entire @bv to a bio with
194 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
197 static bool bvec_split_segs(const struct request_queue *q,
198 const struct bio_vec *bv, unsigned *nsegs,
199 unsigned *sectors, unsigned max_segs,
200 unsigned max_sectors)
202 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
203 unsigned len = min(bv->bv_len, max_len);
204 unsigned total_len = 0;
205 unsigned seg_size = 0;
207 while (len && *nsegs < max_segs) {
208 seg_size = get_max_segment_size(q, bv->bv_page,
209 bv->bv_offset + total_len);
210 seg_size = min(seg_size, len);
213 total_len += seg_size;
216 if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
220 *sectors += total_len >> 9;
222 /* tell the caller to split the bvec if it is too big to fit */
223 return len > 0 || bv->bv_len > max_len;
227 * blk_bio_segment_split - split a bio in two bios
228 * @q: [in] request queue pointer
229 * @bio: [in] bio to be split
230 * @bs: [in] bio set to allocate the clone from
231 * @segs: [out] number of segments in the bio with the first half of the sectors
233 * Clone @bio, update the bi_iter of the clone to represent the first sectors
234 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
235 * following is guaranteed for the cloned bio:
236 * - That it has at most get_max_io_size(@q, @bio) sectors.
237 * - That it has at most queue_max_segments(@q) segments.
239 * Except for discard requests the cloned bio will point at the bi_io_vec of
240 * the original bio. It is the responsibility of the caller to ensure that the
241 * original bio is not freed before the cloned bio. The caller is also
242 * responsible for ensuring that @bs is only destroyed after processing of the
243 * split bio has finished.
245 static struct bio *blk_bio_segment_split(struct request_queue *q,
250 struct bio_vec bv, bvprv, *bvprvp = NULL;
251 struct bvec_iter iter;
252 unsigned nsegs = 0, sectors = 0;
253 const unsigned max_sectors = get_max_io_size(q, bio);
254 const unsigned max_segs = queue_max_segments(q);
256 bio_for_each_bvec(bv, bio, iter) {
258 * If the queue doesn't support SG gaps and adding this
259 * offset would create a gap, disallow it.
261 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
264 if (nsegs < max_segs &&
265 sectors + (bv.bv_len >> 9) <= max_sectors &&
266 bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
268 sectors += bv.bv_len >> 9;
269 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs,
284 * Bio splitting may cause subtle trouble such as hang when doing sync
285 * iopoll in direct IO routine. Given performance gain of iopoll for
286 * big IO can be trival, disable iopoll when split needed.
288 bio->bi_opf &= ~REQ_HIPRI;
290 return bio_split(bio, sectors, GFP_NOIO, bs);
294 * __blk_queue_split - split a bio and submit the second half
295 * @bio: [in, out] bio to be split
296 * @nr_segs: [out] number of segments in the first bio
298 * Split a bio into two bios, chain the two bios, submit the second half and
299 * store a pointer to the first half in *@bio. If the second bio is still too
300 * big it will be split by a recursive call to this function. Since this
301 * function may allocate a new bio from q->bio_split, it is the responsibility
302 * of the caller to ensure that q->bio_split is only released after processing
303 * of the split bio has finished.
305 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
307 struct request_queue *q = (*bio)->bi_bdev->bd_disk->queue;
308 struct bio *split = NULL;
310 switch (bio_op(*bio)) {
312 case REQ_OP_SECURE_ERASE:
313 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
315 case REQ_OP_WRITE_ZEROES:
316 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
319 case REQ_OP_WRITE_SAME:
320 split = blk_bio_write_same_split(q, *bio, &q->bio_split,
325 * All drivers must accept single-segments bios that are <=
326 * PAGE_SIZE. This is a quick and dirty check that relies on
327 * the fact that bi_io_vec[0] is always valid if a bio has data.
328 * The check might lead to occasional false negatives when bios
329 * are cloned, but compared to the performance impact of cloned
330 * bios themselves the loop below doesn't matter anyway.
332 if (!q->limits.chunk_sectors &&
333 (*bio)->bi_vcnt == 1 &&
334 ((*bio)->bi_io_vec[0].bv_len +
335 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
339 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
344 /* there isn't chance to merge the splitted bio */
345 split->bi_opf |= REQ_NOMERGE;
347 bio_chain(split, *bio);
348 trace_block_split(split, (*bio)->bi_iter.bi_sector);
349 submit_bio_noacct(*bio);
355 * blk_queue_split - split a bio and submit the second half
356 * @bio: [in, out] bio to be split
358 * Split a bio into two bios, chains the two bios, submit the second half and
359 * store a pointer to the first half in *@bio. Since this function may allocate
360 * a new bio from q->bio_split, it is the responsibility of the caller to ensure
361 * that q->bio_split is only released after processing of the split bio has
364 void blk_queue_split(struct bio **bio)
366 unsigned int nr_segs;
368 __blk_queue_split(bio, &nr_segs);
370 EXPORT_SYMBOL(blk_queue_split);
372 unsigned int blk_recalc_rq_segments(struct request *rq)
374 unsigned int nr_phys_segs = 0;
375 unsigned int nr_sectors = 0;
376 struct req_iterator iter;
382 switch (bio_op(rq->bio)) {
384 case REQ_OP_SECURE_ERASE:
385 if (queue_max_discard_segments(rq->q) > 1) {
386 struct bio *bio = rq->bio;
393 case REQ_OP_WRITE_ZEROES:
395 case REQ_OP_WRITE_SAME:
399 rq_for_each_bvec(bv, rq, iter)
400 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
405 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
406 struct scatterlist *sglist)
412 * If the driver previously mapped a shorter list, we could see a
413 * termination bit prematurely unless it fully inits the sg table
414 * on each mapping. We KNOW that there must be more entries here
415 * or the driver would be buggy, so force clear the termination bit
416 * to avoid doing a full sg_init_table() in drivers for each command.
422 static unsigned blk_bvec_map_sg(struct request_queue *q,
423 struct bio_vec *bvec, struct scatterlist *sglist,
424 struct scatterlist **sg)
426 unsigned nbytes = bvec->bv_len;
427 unsigned nsegs = 0, total = 0;
430 unsigned offset = bvec->bv_offset + total;
431 unsigned len = min(get_max_segment_size(q, bvec->bv_page,
433 struct page *page = bvec->bv_page;
436 * Unfortunately a fair number of drivers barf on scatterlists
437 * that have an offset larger than PAGE_SIZE, despite other
438 * subsystems dealing with that invariant just fine. For now
439 * stick to the legacy format where we never present those from
440 * the block layer, but the code below should be removed once
441 * these offenders (mostly MMC/SD drivers) are fixed.
443 page += (offset >> PAGE_SHIFT);
444 offset &= ~PAGE_MASK;
446 *sg = blk_next_sg(sg, sglist);
447 sg_set_page(*sg, page, len, offset);
457 static inline int __blk_bvec_map_sg(struct bio_vec bv,
458 struct scatterlist *sglist, struct scatterlist **sg)
460 *sg = blk_next_sg(sg, sglist);
461 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
465 /* only try to merge bvecs into one sg if they are from two bios */
467 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
468 struct bio_vec *bvprv, struct scatterlist **sg)
471 int nbytes = bvec->bv_len;
476 if ((*sg)->length + nbytes > queue_max_segment_size(q))
479 if (!biovec_phys_mergeable(q, bvprv, bvec))
482 (*sg)->length += nbytes;
487 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
488 struct scatterlist *sglist,
489 struct scatterlist **sg)
491 struct bio_vec bvec, bvprv = { NULL };
492 struct bvec_iter iter;
494 bool new_bio = false;
497 bio_for_each_bvec(bvec, bio, iter) {
499 * Only try to merge bvecs from two bios given we
500 * have done bio internal merge when adding pages
504 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
507 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
508 nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
510 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
514 if (likely(bio->bi_iter.bi_size)) {
524 * map a request to scatterlist, return number of sg entries setup. Caller
525 * must make sure sg can hold rq->nr_phys_segments entries
527 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
528 struct scatterlist *sglist, struct scatterlist **last_sg)
532 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
533 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
534 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
535 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
537 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
540 sg_mark_end(*last_sg);
543 * Something must have been wrong if the figured number of
544 * segment is bigger than number of req's physical segments
546 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
550 EXPORT_SYMBOL(__blk_rq_map_sg);
552 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
554 if (req_op(rq) == REQ_OP_DISCARD)
555 return queue_max_discard_segments(rq->q);
556 return queue_max_segments(rq->q);
559 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
560 unsigned int nr_phys_segs)
562 if (blk_integrity_merge_bio(req->q, req, bio) == false)
565 /* discard request merge won't add new segment */
566 if (req_op(req) == REQ_OP_DISCARD)
569 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
573 * This will form the start of a new hw segment. Bump both
576 req->nr_phys_segments += nr_phys_segs;
580 req_set_nomerge(req->q, req);
584 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
586 if (req_gap_back_merge(req, bio))
588 if (blk_integrity_rq(req) &&
589 integrity_req_gap_back_merge(req, bio))
591 if (!bio_crypt_ctx_back_mergeable(req, bio))
593 if (blk_rq_sectors(req) + bio_sectors(bio) >
594 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
595 req_set_nomerge(req->q, req);
599 return ll_new_hw_segment(req, bio, nr_segs);
602 static int ll_front_merge_fn(struct request *req, struct bio *bio,
603 unsigned int nr_segs)
605 if (req_gap_front_merge(req, bio))
607 if (blk_integrity_rq(req) &&
608 integrity_req_gap_front_merge(req, bio))
610 if (!bio_crypt_ctx_front_mergeable(req, bio))
612 if (blk_rq_sectors(req) + bio_sectors(bio) >
613 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
614 req_set_nomerge(req->q, req);
618 return ll_new_hw_segment(req, bio, nr_segs);
621 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
622 struct request *next)
624 unsigned short segments = blk_rq_nr_discard_segments(req);
626 if (segments >= queue_max_discard_segments(q))
628 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
629 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
632 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
635 req_set_nomerge(q, req);
639 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
640 struct request *next)
642 int total_phys_segments;
644 if (req_gap_back_merge(req, next->bio))
648 * Will it become too large?
650 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
651 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
654 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
655 if (total_phys_segments > blk_rq_get_max_segments(req))
658 if (blk_integrity_merge_rq(q, req, next) == false)
661 if (!bio_crypt_ctx_merge_rq(req, next))
665 req->nr_phys_segments = total_phys_segments;
670 * blk_rq_set_mixed_merge - mark a request as mixed merge
671 * @rq: request to mark as mixed merge
674 * @rq is about to be mixed merged. Make sure the attributes
675 * which can be mixed are set in each bio and mark @rq as mixed
678 void blk_rq_set_mixed_merge(struct request *rq)
680 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
683 if (rq->rq_flags & RQF_MIXED_MERGE)
687 * @rq will no longer represent mixable attributes for all the
688 * contained bios. It will just track those of the first one.
689 * Distributes the attributs to each bio.
691 for (bio = rq->bio; bio; bio = bio->bi_next) {
692 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
693 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
696 rq->rq_flags |= RQF_MIXED_MERGE;
699 static void blk_account_io_merge_request(struct request *req)
701 if (blk_do_io_stat(req)) {
703 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
709 * Two cases of handling DISCARD merge:
710 * If max_discard_segments > 1, the driver takes every bio
711 * as a range and send them to controller together. The ranges
712 * needn't to be contiguous.
713 * Otherwise, the bios/requests will be handled as same as
714 * others which should be contiguous.
716 static inline bool blk_discard_mergable(struct request *req)
718 if (req_op(req) == REQ_OP_DISCARD &&
719 queue_max_discard_segments(req->q) > 1)
724 static enum elv_merge blk_try_req_merge(struct request *req,
725 struct request *next)
727 if (blk_discard_mergable(req))
728 return ELEVATOR_DISCARD_MERGE;
729 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
730 return ELEVATOR_BACK_MERGE;
732 return ELEVATOR_NO_MERGE;
736 * For non-mq, this has to be called with the request spinlock acquired.
737 * For mq with scheduling, the appropriate queue wide lock should be held.
739 static struct request *attempt_merge(struct request_queue *q,
740 struct request *req, struct request *next)
742 if (!rq_mergeable(req) || !rq_mergeable(next))
745 if (req_op(req) != req_op(next))
748 if (rq_data_dir(req) != rq_data_dir(next)
749 || req->rq_disk != next->rq_disk)
752 if (req_op(req) == REQ_OP_WRITE_SAME &&
753 !blk_write_same_mergeable(req->bio, next->bio))
757 * Don't allow merge of different write hints, or for a hint with
760 if (req->write_hint != next->write_hint)
763 if (req->ioprio != next->ioprio)
767 * If we are allowed to merge, then append bio list
768 * from next to rq and release next. merge_requests_fn
769 * will have updated segment counts, update sector
770 * counts here. Handle DISCARDs separately, as they
771 * have separate settings.
774 switch (blk_try_req_merge(req, next)) {
775 case ELEVATOR_DISCARD_MERGE:
776 if (!req_attempt_discard_merge(q, req, next))
779 case ELEVATOR_BACK_MERGE:
780 if (!ll_merge_requests_fn(q, req, next))
788 * If failfast settings disagree or any of the two is already
789 * a mixed merge, mark both as mixed before proceeding. This
790 * makes sure that all involved bios have mixable attributes
793 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
794 (req->cmd_flags & REQ_FAILFAST_MASK) !=
795 (next->cmd_flags & REQ_FAILFAST_MASK)) {
796 blk_rq_set_mixed_merge(req);
797 blk_rq_set_mixed_merge(next);
801 * At this point we have either done a back merge or front merge. We
802 * need the smaller start_time_ns of the merged requests to be the
803 * current request for accounting purposes.
805 if (next->start_time_ns < req->start_time_ns)
806 req->start_time_ns = next->start_time_ns;
808 req->biotail->bi_next = next->bio;
809 req->biotail = next->biotail;
811 req->__data_len += blk_rq_bytes(next);
813 if (!blk_discard_mergable(req))
814 elv_merge_requests(q, req, next);
817 * 'next' is going away, so update stats accordingly
819 blk_account_io_merge_request(next);
821 trace_block_rq_merge(next);
824 * ownership of bio passed from next to req, return 'next' for
831 static struct request *attempt_back_merge(struct request_queue *q,
834 struct request *next = elv_latter_request(q, rq);
837 return attempt_merge(q, rq, next);
842 static struct request *attempt_front_merge(struct request_queue *q,
845 struct request *prev = elv_former_request(q, rq);
848 return attempt_merge(q, prev, rq);
854 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
855 * otherwise. The caller is responsible for freeing 'next' if the merge
858 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
859 struct request *next)
861 return attempt_merge(q, rq, next);
864 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
866 if (!rq_mergeable(rq) || !bio_mergeable(bio))
869 if (req_op(rq) != bio_op(bio))
872 /* different data direction or already started, don't merge */
873 if (bio_data_dir(bio) != rq_data_dir(rq))
876 /* must be same device */
877 if (rq->rq_disk != bio->bi_bdev->bd_disk)
880 /* only merge integrity protected bio into ditto rq */
881 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
884 /* Only merge if the crypt contexts are compatible */
885 if (!bio_crypt_rq_ctx_compatible(rq, bio))
888 /* must be using the same buffer */
889 if (req_op(rq) == REQ_OP_WRITE_SAME &&
890 !blk_write_same_mergeable(rq->bio, bio))
894 * Don't allow merge of different write hints, or for a hint with
897 if (rq->write_hint != bio->bi_write_hint)
900 if (rq->ioprio != bio_prio(bio))
906 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
908 if (blk_discard_mergable(rq))
909 return ELEVATOR_DISCARD_MERGE;
910 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
911 return ELEVATOR_BACK_MERGE;
912 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
913 return ELEVATOR_FRONT_MERGE;
914 return ELEVATOR_NO_MERGE;
917 static void blk_account_io_merge_bio(struct request *req)
919 if (!blk_do_io_stat(req))
923 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
927 enum bio_merge_status {
933 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
934 struct bio *bio, unsigned int nr_segs)
936 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
938 if (!ll_back_merge_fn(req, bio, nr_segs))
939 return BIO_MERGE_FAILED;
941 trace_block_bio_backmerge(bio);
942 rq_qos_merge(req->q, req, bio);
944 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
945 blk_rq_set_mixed_merge(req);
947 req->biotail->bi_next = bio;
949 req->__data_len += bio->bi_iter.bi_size;
951 bio_crypt_free_ctx(bio);
953 blk_account_io_merge_bio(req);
957 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
958 struct bio *bio, unsigned int nr_segs)
960 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
962 if (!ll_front_merge_fn(req, bio, nr_segs))
963 return BIO_MERGE_FAILED;
965 trace_block_bio_frontmerge(bio);
966 rq_qos_merge(req->q, req, bio);
968 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
969 blk_rq_set_mixed_merge(req);
971 bio->bi_next = req->bio;
974 req->__sector = bio->bi_iter.bi_sector;
975 req->__data_len += bio->bi_iter.bi_size;
977 bio_crypt_do_front_merge(req, bio);
979 blk_account_io_merge_bio(req);
983 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
984 struct request *req, struct bio *bio)
986 unsigned short segments = blk_rq_nr_discard_segments(req);
988 if (segments >= queue_max_discard_segments(q))
990 if (blk_rq_sectors(req) + bio_sectors(bio) >
991 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
994 rq_qos_merge(q, req, bio);
996 req->biotail->bi_next = bio;
998 req->__data_len += bio->bi_iter.bi_size;
999 req->nr_phys_segments = segments + 1;
1001 blk_account_io_merge_bio(req);
1002 return BIO_MERGE_OK;
1004 req_set_nomerge(q, req);
1005 return BIO_MERGE_FAILED;
1008 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1011 unsigned int nr_segs,
1012 bool sched_allow_merge)
1014 if (!blk_rq_merge_ok(rq, bio))
1015 return BIO_MERGE_NONE;
1017 switch (blk_try_merge(rq, bio)) {
1018 case ELEVATOR_BACK_MERGE:
1019 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1020 return bio_attempt_back_merge(rq, bio, nr_segs);
1022 case ELEVATOR_FRONT_MERGE:
1023 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1024 return bio_attempt_front_merge(rq, bio, nr_segs);
1026 case ELEVATOR_DISCARD_MERGE:
1027 return bio_attempt_discard_merge(q, rq, bio);
1029 return BIO_MERGE_NONE;
1032 return BIO_MERGE_FAILED;
1036 * blk_attempt_plug_merge - try to merge with %current's plugged list
1037 * @q: request_queue new bio is being queued at
1038 * @bio: new bio being queued
1039 * @nr_segs: number of segments in @bio
1040 * @same_queue_rq: pointer to &struct request that gets filled in when
1041 * another request associated with @q is found on the plug list
1042 * (optional, may be %NULL)
1044 * Determine whether @bio being queued on @q can be merged with a request
1045 * on %current's plugged list. Returns %true if merge was successful,
1048 * Plugging coalesces IOs from the same issuer for the same purpose without
1049 * going through @q->queue_lock. As such it's more of an issuing mechanism
1050 * than scheduling, and the request, while may have elvpriv data, is not
1051 * added on the elevator at this point. In addition, we don't have
1052 * reliable access to the elevator outside queue lock. Only check basic
1053 * merging parameters without querying the elevator.
1055 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1057 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1058 unsigned int nr_segs, struct request **same_queue_rq)
1060 struct blk_plug *plug;
1062 struct list_head *plug_list;
1064 plug = blk_mq_plug(q, bio);
1068 plug_list = &plug->mq_list;
1070 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1071 if (rq->q == q && same_queue_rq) {
1073 * Only blk-mq multiple hardware queues case checks the
1074 * rq in the same queue, there should be only one such
1077 *same_queue_rq = rq;
1083 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1092 * Iterate list of requests and see if we can merge this bio with any
1095 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1096 struct bio *bio, unsigned int nr_segs)
1101 list_for_each_entry_reverse(rq, list, queuelist) {
1105 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1106 case BIO_MERGE_NONE:
1110 case BIO_MERGE_FAILED:
1118 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1120 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1121 unsigned int nr_segs, struct request **merged_request)
1125 switch (elv_merge(q, &rq, bio)) {
1126 case ELEVATOR_BACK_MERGE:
1127 if (!blk_mq_sched_allow_merge(q, rq, bio))
1129 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1131 *merged_request = attempt_back_merge(q, rq);
1132 if (!*merged_request)
1133 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1135 case ELEVATOR_FRONT_MERGE:
1136 if (!blk_mq_sched_allow_merge(q, rq, bio))
1138 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1140 *merged_request = attempt_front_merge(q, rq);
1141 if (!*merged_request)
1142 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1144 case ELEVATOR_DISCARD_MERGE:
1145 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1150 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);