blk-iocost: Fix typo in comment
[platform/kernel/linux-rpi.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * parameters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO if doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, solely depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per        : Timer period
166  * - cur_per    : Internal wall and device vtime clock
167  * - vrate      : Device virtual time rate against wall clock
168  * - weight     : Surplus-adjusted and configured weights
169  * - hweight    : Surplus-adjusted and configured hierarchical weights
170  * - inflt      : The percentage of in-flight IO cost at the end of last period
171  * - del_ms     : Deferred issuer delay induction level and duration
172  * - usages     : Usage history
173  */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
185 #include "blk-wbt.h"
186 #include "blk-cgroup.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
196         do {                                                                    \
197                 unsigned long flags;                                            \
198                 if (trace_iocost_##type##_enabled()) {                          \
199                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
200                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
201                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
202                         trace_iocost_##type(iocg, trace_iocg_path,              \
203                                               ##__VA_ARGS__);                   \
204                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
205                 }                                                               \
206         } while (0)
207
208 #else   /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
210 #endif  /* CONFIG_TRACE_POINTS */
211
212 enum {
213         MILLION                 = 1000000,
214
215         /* timer period is calculated from latency requirements, bound it */
216         MIN_PERIOD              = USEC_PER_MSEC,
217         MAX_PERIOD              = USEC_PER_SEC,
218
219         /*
220          * iocg->vtime is targeted at 50% behind the device vtime, which
221          * serves as its IO credit buffer.  Surplus weight adjustment is
222          * immediately canceled if the vtime margin runs below 10%.
223          */
224         MARGIN_MIN_PCT          = 10,
225         MARGIN_LOW_PCT          = 20,
226         MARGIN_TARGET_PCT       = 50,
227
228         INUSE_ADJ_STEP_PCT      = 25,
229
230         /* Have some play in timer operations */
231         TIMER_SLACK_PCT         = 1,
232
233         /* 1/64k is granular enough and can easily be handled w/ u32 */
234         WEIGHT_ONE              = 1 << 16,
235
236         /*
237          * As vtime is used to calculate the cost of each IO, it needs to
238          * be fairly high precision.  For example, it should be able to
239          * represent the cost of a single page worth of discard with
240          * suffificient accuracy.  At the same time, it should be able to
241          * represent reasonably long enough durations to be useful and
242          * convenient during operation.
243          *
244          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
245          * granularity and days of wrap-around time even at extreme vrates.
246          */
247         VTIME_PER_SEC_SHIFT     = 37,
248         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
249         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
250         VTIME_PER_NSEC          = VTIME_PER_SEC / NSEC_PER_SEC,
251
252         /* bound vrate adjustments within two orders of magnitude */
253         VRATE_MIN_PPM           = 10000,        /* 1% */
254         VRATE_MAX_PPM           = 100000000,    /* 10000% */
255
256         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
257         VRATE_CLAMP_ADJ_PCT     = 4,
258
259         /* if IOs end up waiting for requests, issue less */
260         RQ_WAIT_BUSY_PCT        = 5,
261
262         /* unbusy hysterisis */
263         UNBUSY_THR_PCT          = 75,
264
265         /*
266          * The effect of delay is indirect and non-linear and a huge amount of
267          * future debt can accumulate abruptly while unthrottled. Linearly scale
268          * up delay as debt is going up and then let it decay exponentially.
269          * This gives us quick ramp ups while delay is accumulating and long
270          * tails which can help reducing the frequency of debt explosions on
271          * unthrottle. The parameters are experimentally determined.
272          *
273          * The delay mechanism provides adequate protection and behavior in many
274          * cases. However, this is far from ideal and falls shorts on both
275          * fronts. The debtors are often throttled too harshly costing a
276          * significant level of fairness and possibly total work while the
277          * protection against their impacts on the system can be choppy and
278          * unreliable.
279          *
280          * The shortcoming primarily stems from the fact that, unlike for page
281          * cache, the kernel doesn't have well-defined back-pressure propagation
282          * mechanism and policies for anonymous memory. Fully addressing this
283          * issue will likely require substantial improvements in the area.
284          */
285         MIN_DELAY_THR_PCT       = 500,
286         MAX_DELAY_THR_PCT       = 25000,
287         MIN_DELAY               = 250,
288         MAX_DELAY               = 250 * USEC_PER_MSEC,
289
290         /* halve debts if avg usage over 100ms is under 50% */
291         DFGV_USAGE_PCT          = 50,
292         DFGV_PERIOD             = 100 * USEC_PER_MSEC,
293
294         /* don't let cmds which take a very long time pin lagging for too long */
295         MAX_LAGGING_PERIODS     = 10,
296
297         /* switch iff the conditions are met for longer than this */
298         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
299
300         /*
301          * Count IO size in 4k pages.  The 12bit shift helps keeping
302          * size-proportional components of cost calculation in closer
303          * numbers of digits to per-IO cost components.
304          */
305         IOC_PAGE_SHIFT          = 12,
306         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
307         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
308
309         /* if apart further than 16M, consider randio for linear model */
310         LCOEF_RANDIO_PAGES      = 4096,
311 };
312
313 enum ioc_running {
314         IOC_IDLE,
315         IOC_RUNNING,
316         IOC_STOP,
317 };
318
319 /* io.cost.qos controls including per-dev enable of the whole controller */
320 enum {
321         QOS_ENABLE,
322         QOS_CTRL,
323         NR_QOS_CTRL_PARAMS,
324 };
325
326 /* io.cost.qos params */
327 enum {
328         QOS_RPPM,
329         QOS_RLAT,
330         QOS_WPPM,
331         QOS_WLAT,
332         QOS_MIN,
333         QOS_MAX,
334         NR_QOS_PARAMS,
335 };
336
337 /* io.cost.model controls */
338 enum {
339         COST_CTRL,
340         COST_MODEL,
341         NR_COST_CTRL_PARAMS,
342 };
343
344 /* builtin linear cost model coefficients */
345 enum {
346         I_LCOEF_RBPS,
347         I_LCOEF_RSEQIOPS,
348         I_LCOEF_RRANDIOPS,
349         I_LCOEF_WBPS,
350         I_LCOEF_WSEQIOPS,
351         I_LCOEF_WRANDIOPS,
352         NR_I_LCOEFS,
353 };
354
355 enum {
356         LCOEF_RPAGE,
357         LCOEF_RSEQIO,
358         LCOEF_RRANDIO,
359         LCOEF_WPAGE,
360         LCOEF_WSEQIO,
361         LCOEF_WRANDIO,
362         NR_LCOEFS,
363 };
364
365 enum {
366         AUTOP_INVALID,
367         AUTOP_HDD,
368         AUTOP_SSD_QD1,
369         AUTOP_SSD_DFL,
370         AUTOP_SSD_FAST,
371 };
372
373 struct ioc_params {
374         u32                             qos[NR_QOS_PARAMS];
375         u64                             i_lcoefs[NR_I_LCOEFS];
376         u64                             lcoefs[NR_LCOEFS];
377         u32                             too_fast_vrate_pct;
378         u32                             too_slow_vrate_pct;
379 };
380
381 struct ioc_margins {
382         s64                             min;
383         s64                             low;
384         s64                             target;
385 };
386
387 struct ioc_missed {
388         local_t                         nr_met;
389         local_t                         nr_missed;
390         u32                             last_met;
391         u32                             last_missed;
392 };
393
394 struct ioc_pcpu_stat {
395         struct ioc_missed               missed[2];
396
397         local64_t                       rq_wait_ns;
398         u64                             last_rq_wait_ns;
399 };
400
401 /* per device */
402 struct ioc {
403         struct rq_qos                   rqos;
404
405         bool                            enabled;
406
407         struct ioc_params               params;
408         struct ioc_margins              margins;
409         u32                             period_us;
410         u32                             timer_slack_ns;
411         u64                             vrate_min;
412         u64                             vrate_max;
413
414         spinlock_t                      lock;
415         struct timer_list               timer;
416         struct list_head                active_iocgs;   /* active cgroups */
417         struct ioc_pcpu_stat __percpu   *pcpu_stat;
418
419         enum ioc_running                running;
420         atomic64_t                      vtime_rate;
421         u64                             vtime_base_rate;
422         s64                             vtime_err;
423
424         seqcount_spinlock_t             period_seqcount;
425         u64                             period_at;      /* wallclock starttime */
426         u64                             period_at_vtime; /* vtime starttime */
427
428         atomic64_t                      cur_period;     /* inc'd each period */
429         int                             busy_level;     /* saturation history */
430
431         bool                            weights_updated;
432         atomic_t                        hweight_gen;    /* for lazy hweights */
433
434         /* debt forgivness */
435         u64                             dfgv_period_at;
436         u64                             dfgv_period_rem;
437         u64                             dfgv_usage_us_sum;
438
439         u64                             autop_too_fast_at;
440         u64                             autop_too_slow_at;
441         int                             autop_idx;
442         bool                            user_qos_params:1;
443         bool                            user_cost_model:1;
444 };
445
446 struct iocg_pcpu_stat {
447         local64_t                       abs_vusage;
448 };
449
450 struct iocg_stat {
451         u64                             usage_us;
452         u64                             wait_us;
453         u64                             indebt_us;
454         u64                             indelay_us;
455 };
456
457 /* per device-cgroup pair */
458 struct ioc_gq {
459         struct blkg_policy_data         pd;
460         struct ioc                      *ioc;
461
462         /*
463          * A iocg can get its weight from two sources - an explicit
464          * per-device-cgroup configuration or the default weight of the
465          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
466          * configuration.  `weight` is the effective considering both
467          * sources.
468          *
469          * When an idle cgroup becomes active its `active` goes from 0 to
470          * `weight`.  `inuse` is the surplus adjusted active weight.
471          * `active` and `inuse` are used to calculate `hweight_active` and
472          * `hweight_inuse`.
473          *
474          * `last_inuse` remembers `inuse` while an iocg is idle to persist
475          * surplus adjustments.
476          *
477          * `inuse` may be adjusted dynamically during period. `saved_*` are used
478          * to determine and track adjustments.
479          */
480         u32                             cfg_weight;
481         u32                             weight;
482         u32                             active;
483         u32                             inuse;
484
485         u32                             last_inuse;
486         s64                             saved_margin;
487
488         sector_t                        cursor;         /* to detect randio */
489
490         /*
491          * `vtime` is this iocg's vtime cursor which progresses as IOs are
492          * issued.  If lagging behind device vtime, the delta represents
493          * the currently available IO budget.  If running ahead, the
494          * overage.
495          *
496          * `vtime_done` is the same but progressed on completion rather
497          * than issue.  The delta behind `vtime` represents the cost of
498          * currently in-flight IOs.
499          */
500         atomic64_t                      vtime;
501         atomic64_t                      done_vtime;
502         u64                             abs_vdebt;
503
504         /* current delay in effect and when it started */
505         u64                             delay;
506         u64                             delay_at;
507
508         /*
509          * The period this iocg was last active in.  Used for deactivation
510          * and invalidating `vtime`.
511          */
512         atomic64_t                      active_period;
513         struct list_head                active_list;
514
515         /* see __propagate_weights() and current_hweight() for details */
516         u64                             child_active_sum;
517         u64                             child_inuse_sum;
518         u64                             child_adjusted_sum;
519         int                             hweight_gen;
520         u32                             hweight_active;
521         u32                             hweight_inuse;
522         u32                             hweight_donating;
523         u32                             hweight_after_donation;
524
525         struct list_head                walk_list;
526         struct list_head                surplus_list;
527
528         struct wait_queue_head          waitq;
529         struct hrtimer                  waitq_timer;
530
531         /* timestamp at the latest activation */
532         u64                             activated_at;
533
534         /* statistics */
535         struct iocg_pcpu_stat __percpu  *pcpu_stat;
536         struct iocg_stat                stat;
537         struct iocg_stat                last_stat;
538         u64                             last_stat_abs_vusage;
539         u64                             usage_delta_us;
540         u64                             wait_since;
541         u64                             indebt_since;
542         u64                             indelay_since;
543
544         /* this iocg's depth in the hierarchy and ancestors including self */
545         int                             level;
546         struct ioc_gq                   *ancestors[];
547 };
548
549 /* per cgroup */
550 struct ioc_cgrp {
551         struct blkcg_policy_data        cpd;
552         unsigned int                    dfl_weight;
553 };
554
555 struct ioc_now {
556         u64                             now_ns;
557         u64                             now;
558         u64                             vnow;
559         u64                             vrate;
560 };
561
562 struct iocg_wait {
563         struct wait_queue_entry         wait;
564         struct bio                      *bio;
565         u64                             abs_cost;
566         bool                            committed;
567 };
568
569 struct iocg_wake_ctx {
570         struct ioc_gq                   *iocg;
571         u32                             hw_inuse;
572         s64                             vbudget;
573 };
574
575 static const struct ioc_params autop[] = {
576         [AUTOP_HDD] = {
577                 .qos                            = {
578                         [QOS_RLAT]              =        250000, /* 250ms */
579                         [QOS_WLAT]              =        250000,
580                         [QOS_MIN]               = VRATE_MIN_PPM,
581                         [QOS_MAX]               = VRATE_MAX_PPM,
582                 },
583                 .i_lcoefs                       = {
584                         [I_LCOEF_RBPS]          =     174019176,
585                         [I_LCOEF_RSEQIOPS]      =         41708,
586                         [I_LCOEF_RRANDIOPS]     =           370,
587                         [I_LCOEF_WBPS]          =     178075866,
588                         [I_LCOEF_WSEQIOPS]      =         42705,
589                         [I_LCOEF_WRANDIOPS]     =           378,
590                 },
591         },
592         [AUTOP_SSD_QD1] = {
593                 .qos                            = {
594                         [QOS_RLAT]              =         25000, /* 25ms */
595                         [QOS_WLAT]              =         25000,
596                         [QOS_MIN]               = VRATE_MIN_PPM,
597                         [QOS_MAX]               = VRATE_MAX_PPM,
598                 },
599                 .i_lcoefs                       = {
600                         [I_LCOEF_RBPS]          =     245855193,
601                         [I_LCOEF_RSEQIOPS]      =         61575,
602                         [I_LCOEF_RRANDIOPS]     =          6946,
603                         [I_LCOEF_WBPS]          =     141365009,
604                         [I_LCOEF_WSEQIOPS]      =         33716,
605                         [I_LCOEF_WRANDIOPS]     =         26796,
606                 },
607         },
608         [AUTOP_SSD_DFL] = {
609                 .qos                            = {
610                         [QOS_RLAT]              =         25000, /* 25ms */
611                         [QOS_WLAT]              =         25000,
612                         [QOS_MIN]               = VRATE_MIN_PPM,
613                         [QOS_MAX]               = VRATE_MAX_PPM,
614                 },
615                 .i_lcoefs                       = {
616                         [I_LCOEF_RBPS]          =     488636629,
617                         [I_LCOEF_RSEQIOPS]      =          8932,
618                         [I_LCOEF_RRANDIOPS]     =          8518,
619                         [I_LCOEF_WBPS]          =     427891549,
620                         [I_LCOEF_WSEQIOPS]      =         28755,
621                         [I_LCOEF_WRANDIOPS]     =         21940,
622                 },
623                 .too_fast_vrate_pct             =           500,
624         },
625         [AUTOP_SSD_FAST] = {
626                 .qos                            = {
627                         [QOS_RLAT]              =          5000, /* 5ms */
628                         [QOS_WLAT]              =          5000,
629                         [QOS_MIN]               = VRATE_MIN_PPM,
630                         [QOS_MAX]               = VRATE_MAX_PPM,
631                 },
632                 .i_lcoefs                       = {
633                         [I_LCOEF_RBPS]          =    3102524156LLU,
634                         [I_LCOEF_RSEQIOPS]      =        724816,
635                         [I_LCOEF_RRANDIOPS]     =        778122,
636                         [I_LCOEF_WBPS]          =    1742780862LLU,
637                         [I_LCOEF_WSEQIOPS]      =        425702,
638                         [I_LCOEF_WRANDIOPS]     =        443193,
639                 },
640                 .too_slow_vrate_pct             =            10,
641         },
642 };
643
644 /*
645  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
646  * vtime credit shortage and down on device saturation.
647  */
648 static u32 vrate_adj_pct[] =
649         { 0, 0, 0, 0,
650           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
651           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
652           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
653
654 static struct blkcg_policy blkcg_policy_iocost;
655
656 /* accessors and helpers */
657 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
658 {
659         return container_of(rqos, struct ioc, rqos);
660 }
661
662 static struct ioc *q_to_ioc(struct request_queue *q)
663 {
664         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
665 }
666
667 static const char __maybe_unused *ioc_name(struct ioc *ioc)
668 {
669         struct gendisk *disk = ioc->rqos.q->disk;
670
671         if (!disk)
672                 return "<unknown>";
673         return disk->disk_name;
674 }
675
676 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
677 {
678         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
679 }
680
681 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
682 {
683         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
684 }
685
686 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
687 {
688         return pd_to_blkg(&iocg->pd);
689 }
690
691 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
692 {
693         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
694                             struct ioc_cgrp, cpd);
695 }
696
697 /*
698  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
699  * weight, the more expensive each IO.  Must round up.
700  */
701 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
702 {
703         return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
704 }
705
706 /*
707  * The inverse of abs_cost_to_cost().  Must round up.
708  */
709 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
710 {
711         return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
712 }
713
714 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
715                             u64 abs_cost, u64 cost)
716 {
717         struct iocg_pcpu_stat *gcs;
718
719         bio->bi_iocost_cost = cost;
720         atomic64_add(cost, &iocg->vtime);
721
722         gcs = get_cpu_ptr(iocg->pcpu_stat);
723         local64_add(abs_cost, &gcs->abs_vusage);
724         put_cpu_ptr(gcs);
725 }
726
727 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
728 {
729         if (lock_ioc) {
730                 spin_lock_irqsave(&iocg->ioc->lock, *flags);
731                 spin_lock(&iocg->waitq.lock);
732         } else {
733                 spin_lock_irqsave(&iocg->waitq.lock, *flags);
734         }
735 }
736
737 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
738 {
739         if (unlock_ioc) {
740                 spin_unlock(&iocg->waitq.lock);
741                 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
742         } else {
743                 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
744         }
745 }
746
747 #define CREATE_TRACE_POINTS
748 #include <trace/events/iocost.h>
749
750 static void ioc_refresh_margins(struct ioc *ioc)
751 {
752         struct ioc_margins *margins = &ioc->margins;
753         u32 period_us = ioc->period_us;
754         u64 vrate = ioc->vtime_base_rate;
755
756         margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
757         margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
758         margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
759 }
760
761 /* latency Qos params changed, update period_us and all the dependent params */
762 static void ioc_refresh_period_us(struct ioc *ioc)
763 {
764         u32 ppm, lat, multi, period_us;
765
766         lockdep_assert_held(&ioc->lock);
767
768         /* pick the higher latency target */
769         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
770                 ppm = ioc->params.qos[QOS_RPPM];
771                 lat = ioc->params.qos[QOS_RLAT];
772         } else {
773                 ppm = ioc->params.qos[QOS_WPPM];
774                 lat = ioc->params.qos[QOS_WLAT];
775         }
776
777         /*
778          * We want the period to be long enough to contain a healthy number
779          * of IOs while short enough for granular control.  Define it as a
780          * multiple of the latency target.  Ideally, the multiplier should
781          * be scaled according to the percentile so that it would nominally
782          * contain a certain number of requests.  Let's be simpler and
783          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
784          */
785         if (ppm)
786                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
787         else
788                 multi = 2;
789         period_us = multi * lat;
790         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
791
792         /* calculate dependent params */
793         ioc->period_us = period_us;
794         ioc->timer_slack_ns = div64_u64(
795                 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
796                 100);
797         ioc_refresh_margins(ioc);
798 }
799
800 static int ioc_autop_idx(struct ioc *ioc)
801 {
802         int idx = ioc->autop_idx;
803         const struct ioc_params *p = &autop[idx];
804         u32 vrate_pct;
805         u64 now_ns;
806
807         /* rotational? */
808         if (!blk_queue_nonrot(ioc->rqos.q))
809                 return AUTOP_HDD;
810
811         /* handle SATA SSDs w/ broken NCQ */
812         if (blk_queue_depth(ioc->rqos.q) == 1)
813                 return AUTOP_SSD_QD1;
814
815         /* use one of the normal ssd sets */
816         if (idx < AUTOP_SSD_DFL)
817                 return AUTOP_SSD_DFL;
818
819         /* if user is overriding anything, maintain what was there */
820         if (ioc->user_qos_params || ioc->user_cost_model)
821                 return idx;
822
823         /* step up/down based on the vrate */
824         vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
825         now_ns = ktime_get_ns();
826
827         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
828                 if (!ioc->autop_too_fast_at)
829                         ioc->autop_too_fast_at = now_ns;
830                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
831                         return idx + 1;
832         } else {
833                 ioc->autop_too_fast_at = 0;
834         }
835
836         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
837                 if (!ioc->autop_too_slow_at)
838                         ioc->autop_too_slow_at = now_ns;
839                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
840                         return idx - 1;
841         } else {
842                 ioc->autop_too_slow_at = 0;
843         }
844
845         return idx;
846 }
847
848 /*
849  * Take the followings as input
850  *
851  *  @bps        maximum sequential throughput
852  *  @seqiops    maximum sequential 4k iops
853  *  @randiops   maximum random 4k iops
854  *
855  * and calculate the linear model cost coefficients.
856  *
857  *  *@page      per-page cost           1s / (@bps / 4096)
858  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
859  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
860  */
861 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
862                         u64 *page, u64 *seqio, u64 *randio)
863 {
864         u64 v;
865
866         *page = *seqio = *randio = 0;
867
868         if (bps)
869                 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
870                                            DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
871
872         if (seqiops) {
873                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
874                 if (v > *page)
875                         *seqio = v - *page;
876         }
877
878         if (randiops) {
879                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
880                 if (v > *page)
881                         *randio = v - *page;
882         }
883 }
884
885 static void ioc_refresh_lcoefs(struct ioc *ioc)
886 {
887         u64 *u = ioc->params.i_lcoefs;
888         u64 *c = ioc->params.lcoefs;
889
890         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
891                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
892         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
893                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
894 }
895
896 static bool ioc_refresh_params(struct ioc *ioc, bool force)
897 {
898         const struct ioc_params *p;
899         int idx;
900
901         lockdep_assert_held(&ioc->lock);
902
903         idx = ioc_autop_idx(ioc);
904         p = &autop[idx];
905
906         if (idx == ioc->autop_idx && !force)
907                 return false;
908
909         if (idx != ioc->autop_idx)
910                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
911
912         ioc->autop_idx = idx;
913         ioc->autop_too_fast_at = 0;
914         ioc->autop_too_slow_at = 0;
915
916         if (!ioc->user_qos_params)
917                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
918         if (!ioc->user_cost_model)
919                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
920
921         ioc_refresh_period_us(ioc);
922         ioc_refresh_lcoefs(ioc);
923
924         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
925                                             VTIME_PER_USEC, MILLION);
926         ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
927                                    VTIME_PER_USEC, MILLION);
928
929         return true;
930 }
931
932 /*
933  * When an iocg accumulates too much vtime or gets deactivated, we throw away
934  * some vtime, which lowers the overall device utilization. As the exact amount
935  * which is being thrown away is known, we can compensate by accelerating the
936  * vrate accordingly so that the extra vtime generated in the current period
937  * matches what got lost.
938  */
939 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
940 {
941         s64 pleft = ioc->period_at + ioc->period_us - now->now;
942         s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
943         s64 vcomp, vcomp_min, vcomp_max;
944
945         lockdep_assert_held(&ioc->lock);
946
947         /* we need some time left in this period */
948         if (pleft <= 0)
949                 goto done;
950
951         /*
952          * Calculate how much vrate should be adjusted to offset the error.
953          * Limit the amount of adjustment and deduct the adjusted amount from
954          * the error.
955          */
956         vcomp = -div64_s64(ioc->vtime_err, pleft);
957         vcomp_min = -(ioc->vtime_base_rate >> 1);
958         vcomp_max = ioc->vtime_base_rate;
959         vcomp = clamp(vcomp, vcomp_min, vcomp_max);
960
961         ioc->vtime_err += vcomp * pleft;
962
963         atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
964 done:
965         /* bound how much error can accumulate */
966         ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
967 }
968
969 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
970                                   int nr_lagging, int nr_shortages,
971                                   int prev_busy_level, u32 *missed_ppm)
972 {
973         u64 vrate = ioc->vtime_base_rate;
974         u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
975
976         if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
977                 if (ioc->busy_level != prev_busy_level || nr_lagging)
978                         trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
979                                                    missed_ppm, rq_wait_pct,
980                                                    nr_lagging, nr_shortages);
981
982                 return;
983         }
984
985         /*
986          * If vrate is out of bounds, apply clamp gradually as the
987          * bounds can change abruptly.  Otherwise, apply busy_level
988          * based adjustment.
989          */
990         if (vrate < vrate_min) {
991                 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
992                 vrate = min(vrate, vrate_min);
993         } else if (vrate > vrate_max) {
994                 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
995                 vrate = max(vrate, vrate_max);
996         } else {
997                 int idx = min_t(int, abs(ioc->busy_level),
998                                 ARRAY_SIZE(vrate_adj_pct) - 1);
999                 u32 adj_pct = vrate_adj_pct[idx];
1000
1001                 if (ioc->busy_level > 0)
1002                         adj_pct = 100 - adj_pct;
1003                 else
1004                         adj_pct = 100 + adj_pct;
1005
1006                 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1007                               vrate_min, vrate_max);
1008         }
1009
1010         trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1011                                    nr_lagging, nr_shortages);
1012
1013         ioc->vtime_base_rate = vrate;
1014         ioc_refresh_margins(ioc);
1015 }
1016
1017 /* take a snapshot of the current [v]time and vrate */
1018 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1019 {
1020         unsigned seq;
1021
1022         now->now_ns = ktime_get();
1023         now->now = ktime_to_us(now->now_ns);
1024         now->vrate = atomic64_read(&ioc->vtime_rate);
1025
1026         /*
1027          * The current vtime is
1028          *
1029          *   vtime at period start + (wallclock time since the start) * vrate
1030          *
1031          * As a consistent snapshot of `period_at_vtime` and `period_at` is
1032          * needed, they're seqcount protected.
1033          */
1034         do {
1035                 seq = read_seqcount_begin(&ioc->period_seqcount);
1036                 now->vnow = ioc->period_at_vtime +
1037                         (now->now - ioc->period_at) * now->vrate;
1038         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1039 }
1040
1041 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1042 {
1043         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1044
1045         write_seqcount_begin(&ioc->period_seqcount);
1046         ioc->period_at = now->now;
1047         ioc->period_at_vtime = now->vnow;
1048         write_seqcount_end(&ioc->period_seqcount);
1049
1050         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1051         add_timer(&ioc->timer);
1052 }
1053
1054 /*
1055  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1056  * weight sums and propagate upwards accordingly. If @save, the current margin
1057  * is saved to be used as reference for later inuse in-period adjustments.
1058  */
1059 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1060                                 bool save, struct ioc_now *now)
1061 {
1062         struct ioc *ioc = iocg->ioc;
1063         int lvl;
1064
1065         lockdep_assert_held(&ioc->lock);
1066
1067         /*
1068          * For an active leaf node, its inuse shouldn't be zero or exceed
1069          * @active. An active internal node's inuse is solely determined by the
1070          * inuse to active ratio of its children regardless of @inuse.
1071          */
1072         if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1073                 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1074                                            iocg->child_active_sum);
1075         } else {
1076                 inuse = clamp_t(u32, inuse, 1, active);
1077         }
1078
1079         iocg->last_inuse = iocg->inuse;
1080         if (save)
1081                 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1082
1083         if (active == iocg->active && inuse == iocg->inuse)
1084                 return;
1085
1086         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1087                 struct ioc_gq *parent = iocg->ancestors[lvl];
1088                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1089                 u32 parent_active = 0, parent_inuse = 0;
1090
1091                 /* update the level sums */
1092                 parent->child_active_sum += (s32)(active - child->active);
1093                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1094                 /* apply the updates */
1095                 child->active = active;
1096                 child->inuse = inuse;
1097
1098                 /*
1099                  * The delta between inuse and active sums indicates that
1100                  * much of weight is being given away.  Parent's inuse
1101                  * and active should reflect the ratio.
1102                  */
1103                 if (parent->child_active_sum) {
1104                         parent_active = parent->weight;
1105                         parent_inuse = DIV64_U64_ROUND_UP(
1106                                 parent_active * parent->child_inuse_sum,
1107                                 parent->child_active_sum);
1108                 }
1109
1110                 /* do we need to keep walking up? */
1111                 if (parent_active == parent->active &&
1112                     parent_inuse == parent->inuse)
1113                         break;
1114
1115                 active = parent_active;
1116                 inuse = parent_inuse;
1117         }
1118
1119         ioc->weights_updated = true;
1120 }
1121
1122 static void commit_weights(struct ioc *ioc)
1123 {
1124         lockdep_assert_held(&ioc->lock);
1125
1126         if (ioc->weights_updated) {
1127                 /* paired with rmb in current_hweight(), see there */
1128                 smp_wmb();
1129                 atomic_inc(&ioc->hweight_gen);
1130                 ioc->weights_updated = false;
1131         }
1132 }
1133
1134 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1135                               bool save, struct ioc_now *now)
1136 {
1137         __propagate_weights(iocg, active, inuse, save, now);
1138         commit_weights(iocg->ioc);
1139 }
1140
1141 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1142 {
1143         struct ioc *ioc = iocg->ioc;
1144         int lvl;
1145         u32 hwa, hwi;
1146         int ioc_gen;
1147
1148         /* hot path - if uptodate, use cached */
1149         ioc_gen = atomic_read(&ioc->hweight_gen);
1150         if (ioc_gen == iocg->hweight_gen)
1151                 goto out;
1152
1153         /*
1154          * Paired with wmb in commit_weights(). If we saw the updated
1155          * hweight_gen, all the weight updates from __propagate_weights() are
1156          * visible too.
1157          *
1158          * We can race with weight updates during calculation and get it
1159          * wrong.  However, hweight_gen would have changed and a future
1160          * reader will recalculate and we're guaranteed to discard the
1161          * wrong result soon.
1162          */
1163         smp_rmb();
1164
1165         hwa = hwi = WEIGHT_ONE;
1166         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1167                 struct ioc_gq *parent = iocg->ancestors[lvl];
1168                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1169                 u64 active_sum = READ_ONCE(parent->child_active_sum);
1170                 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1171                 u32 active = READ_ONCE(child->active);
1172                 u32 inuse = READ_ONCE(child->inuse);
1173
1174                 /* we can race with deactivations and either may read as zero */
1175                 if (!active_sum || !inuse_sum)
1176                         continue;
1177
1178                 active_sum = max_t(u64, active, active_sum);
1179                 hwa = div64_u64((u64)hwa * active, active_sum);
1180
1181                 inuse_sum = max_t(u64, inuse, inuse_sum);
1182                 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1183         }
1184
1185         iocg->hweight_active = max_t(u32, hwa, 1);
1186         iocg->hweight_inuse = max_t(u32, hwi, 1);
1187         iocg->hweight_gen = ioc_gen;
1188 out:
1189         if (hw_activep)
1190                 *hw_activep = iocg->hweight_active;
1191         if (hw_inusep)
1192                 *hw_inusep = iocg->hweight_inuse;
1193 }
1194
1195 /*
1196  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1197  * other weights stay unchanged.
1198  */
1199 static u32 current_hweight_max(struct ioc_gq *iocg)
1200 {
1201         u32 hwm = WEIGHT_ONE;
1202         u32 inuse = iocg->active;
1203         u64 child_inuse_sum;
1204         int lvl;
1205
1206         lockdep_assert_held(&iocg->ioc->lock);
1207
1208         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1209                 struct ioc_gq *parent = iocg->ancestors[lvl];
1210                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1211
1212                 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1213                 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1214                 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1215                                            parent->child_active_sum);
1216         }
1217
1218         return max_t(u32, hwm, 1);
1219 }
1220
1221 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1222 {
1223         struct ioc *ioc = iocg->ioc;
1224         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1225         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1226         u32 weight;
1227
1228         lockdep_assert_held(&ioc->lock);
1229
1230         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1231         if (weight != iocg->weight && iocg->active)
1232                 propagate_weights(iocg, weight, iocg->inuse, true, now);
1233         iocg->weight = weight;
1234 }
1235
1236 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1237 {
1238         struct ioc *ioc = iocg->ioc;
1239         u64 last_period, cur_period;
1240         u64 vtime, vtarget;
1241         int i;
1242
1243         /*
1244          * If seem to be already active, just update the stamp to tell the
1245          * timer that we're still active.  We don't mind occassional races.
1246          */
1247         if (!list_empty(&iocg->active_list)) {
1248                 ioc_now(ioc, now);
1249                 cur_period = atomic64_read(&ioc->cur_period);
1250                 if (atomic64_read(&iocg->active_period) != cur_period)
1251                         atomic64_set(&iocg->active_period, cur_period);
1252                 return true;
1253         }
1254
1255         /* racy check on internal node IOs, treat as root level IOs */
1256         if (iocg->child_active_sum)
1257                 return false;
1258
1259         spin_lock_irq(&ioc->lock);
1260
1261         ioc_now(ioc, now);
1262
1263         /* update period */
1264         cur_period = atomic64_read(&ioc->cur_period);
1265         last_period = atomic64_read(&iocg->active_period);
1266         atomic64_set(&iocg->active_period, cur_period);
1267
1268         /* already activated or breaking leaf-only constraint? */
1269         if (!list_empty(&iocg->active_list))
1270                 goto succeed_unlock;
1271         for (i = iocg->level - 1; i > 0; i--)
1272                 if (!list_empty(&iocg->ancestors[i]->active_list))
1273                         goto fail_unlock;
1274
1275         if (iocg->child_active_sum)
1276                 goto fail_unlock;
1277
1278         /*
1279          * Always start with the target budget. On deactivation, we throw away
1280          * anything above it.
1281          */
1282         vtarget = now->vnow - ioc->margins.target;
1283         vtime = atomic64_read(&iocg->vtime);
1284
1285         atomic64_add(vtarget - vtime, &iocg->vtime);
1286         atomic64_add(vtarget - vtime, &iocg->done_vtime);
1287         vtime = vtarget;
1288
1289         /*
1290          * Activate, propagate weight and start period timer if not
1291          * running.  Reset hweight_gen to avoid accidental match from
1292          * wrapping.
1293          */
1294         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1295         list_add(&iocg->active_list, &ioc->active_iocgs);
1296
1297         propagate_weights(iocg, iocg->weight,
1298                           iocg->last_inuse ?: iocg->weight, true, now);
1299
1300         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1301                         last_period, cur_period, vtime);
1302
1303         iocg->activated_at = now->now;
1304
1305         if (ioc->running == IOC_IDLE) {
1306                 ioc->running = IOC_RUNNING;
1307                 ioc->dfgv_period_at = now->now;
1308                 ioc->dfgv_period_rem = 0;
1309                 ioc_start_period(ioc, now);
1310         }
1311
1312 succeed_unlock:
1313         spin_unlock_irq(&ioc->lock);
1314         return true;
1315
1316 fail_unlock:
1317         spin_unlock_irq(&ioc->lock);
1318         return false;
1319 }
1320
1321 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1322 {
1323         struct ioc *ioc = iocg->ioc;
1324         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1325         u64 tdelta, delay, new_delay;
1326         s64 vover, vover_pct;
1327         u32 hwa;
1328
1329         lockdep_assert_held(&iocg->waitq.lock);
1330
1331         /* calculate the current delay in effect - 1/2 every second */
1332         tdelta = now->now - iocg->delay_at;
1333         if (iocg->delay)
1334                 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1335         else
1336                 delay = 0;
1337
1338         /* calculate the new delay from the debt amount */
1339         current_hweight(iocg, &hwa, NULL);
1340         vover = atomic64_read(&iocg->vtime) +
1341                 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1342         vover_pct = div64_s64(100 * vover,
1343                               ioc->period_us * ioc->vtime_base_rate);
1344
1345         if (vover_pct <= MIN_DELAY_THR_PCT)
1346                 new_delay = 0;
1347         else if (vover_pct >= MAX_DELAY_THR_PCT)
1348                 new_delay = MAX_DELAY;
1349         else
1350                 new_delay = MIN_DELAY +
1351                         div_u64((MAX_DELAY - MIN_DELAY) *
1352                                 (vover_pct - MIN_DELAY_THR_PCT),
1353                                 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1354
1355         /* pick the higher one and apply */
1356         if (new_delay > delay) {
1357                 iocg->delay = new_delay;
1358                 iocg->delay_at = now->now;
1359                 delay = new_delay;
1360         }
1361
1362         if (delay >= MIN_DELAY) {
1363                 if (!iocg->indelay_since)
1364                         iocg->indelay_since = now->now;
1365                 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1366                 return true;
1367         } else {
1368                 if (iocg->indelay_since) {
1369                         iocg->stat.indelay_us += now->now - iocg->indelay_since;
1370                         iocg->indelay_since = 0;
1371                 }
1372                 iocg->delay = 0;
1373                 blkcg_clear_delay(blkg);
1374                 return false;
1375         }
1376 }
1377
1378 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1379                             struct ioc_now *now)
1380 {
1381         struct iocg_pcpu_stat *gcs;
1382
1383         lockdep_assert_held(&iocg->ioc->lock);
1384         lockdep_assert_held(&iocg->waitq.lock);
1385         WARN_ON_ONCE(list_empty(&iocg->active_list));
1386
1387         /*
1388          * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1389          * inuse donating all of it share to others until its debt is paid off.
1390          */
1391         if (!iocg->abs_vdebt && abs_cost) {
1392                 iocg->indebt_since = now->now;
1393                 propagate_weights(iocg, iocg->active, 0, false, now);
1394         }
1395
1396         iocg->abs_vdebt += abs_cost;
1397
1398         gcs = get_cpu_ptr(iocg->pcpu_stat);
1399         local64_add(abs_cost, &gcs->abs_vusage);
1400         put_cpu_ptr(gcs);
1401 }
1402
1403 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1404                           struct ioc_now *now)
1405 {
1406         lockdep_assert_held(&iocg->ioc->lock);
1407         lockdep_assert_held(&iocg->waitq.lock);
1408
1409         /* make sure that nobody messed with @iocg */
1410         WARN_ON_ONCE(list_empty(&iocg->active_list));
1411         WARN_ON_ONCE(iocg->inuse > 1);
1412
1413         iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1414
1415         /* if debt is paid in full, restore inuse */
1416         if (!iocg->abs_vdebt) {
1417                 iocg->stat.indebt_us += now->now - iocg->indebt_since;
1418                 iocg->indebt_since = 0;
1419
1420                 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1421                                   false, now);
1422         }
1423 }
1424
1425 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1426                         int flags, void *key)
1427 {
1428         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1429         struct iocg_wake_ctx *ctx = key;
1430         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1431
1432         ctx->vbudget -= cost;
1433
1434         if (ctx->vbudget < 0)
1435                 return -1;
1436
1437         iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1438         wait->committed = true;
1439
1440         /*
1441          * autoremove_wake_function() removes the wait entry only when it
1442          * actually changed the task state. We want the wait always removed.
1443          * Remove explicitly and use default_wake_function(). Note that the
1444          * order of operations is important as finish_wait() tests whether
1445          * @wq_entry is removed without grabbing the lock.
1446          */
1447         default_wake_function(wq_entry, mode, flags, key);
1448         list_del_init_careful(&wq_entry->entry);
1449         return 0;
1450 }
1451
1452 /*
1453  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1454  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1455  * addition to iocg->waitq.lock.
1456  */
1457 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1458                             struct ioc_now *now)
1459 {
1460         struct ioc *ioc = iocg->ioc;
1461         struct iocg_wake_ctx ctx = { .iocg = iocg };
1462         u64 vshortage, expires, oexpires;
1463         s64 vbudget;
1464         u32 hwa;
1465
1466         lockdep_assert_held(&iocg->waitq.lock);
1467
1468         current_hweight(iocg, &hwa, NULL);
1469         vbudget = now->vnow - atomic64_read(&iocg->vtime);
1470
1471         /* pay off debt */
1472         if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1473                 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1474                 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1475                 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1476
1477                 lockdep_assert_held(&ioc->lock);
1478
1479                 atomic64_add(vpay, &iocg->vtime);
1480                 atomic64_add(vpay, &iocg->done_vtime);
1481                 iocg_pay_debt(iocg, abs_vpay, now);
1482                 vbudget -= vpay;
1483         }
1484
1485         if (iocg->abs_vdebt || iocg->delay)
1486                 iocg_kick_delay(iocg, now);
1487
1488         /*
1489          * Debt can still be outstanding if we haven't paid all yet or the
1490          * caller raced and called without @pay_debt. Shouldn't wake up waiters
1491          * under debt. Make sure @vbudget reflects the outstanding amount and is
1492          * not positive.
1493          */
1494         if (iocg->abs_vdebt) {
1495                 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1496                 vbudget = min_t(s64, 0, vbudget - vdebt);
1497         }
1498
1499         /*
1500          * Wake up the ones which are due and see how much vtime we'll need for
1501          * the next one. As paying off debt restores hw_inuse, it must be read
1502          * after the above debt payment.
1503          */
1504         ctx.vbudget = vbudget;
1505         current_hweight(iocg, NULL, &ctx.hw_inuse);
1506
1507         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1508
1509         if (!waitqueue_active(&iocg->waitq)) {
1510                 if (iocg->wait_since) {
1511                         iocg->stat.wait_us += now->now - iocg->wait_since;
1512                         iocg->wait_since = 0;
1513                 }
1514                 return;
1515         }
1516
1517         if (!iocg->wait_since)
1518                 iocg->wait_since = now->now;
1519
1520         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1521                 return;
1522
1523         /* determine next wakeup, add a timer margin to guarantee chunking */
1524         vshortage = -ctx.vbudget;
1525         expires = now->now_ns +
1526                 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1527                 NSEC_PER_USEC;
1528         expires += ioc->timer_slack_ns;
1529
1530         /* if already active and close enough, don't bother */
1531         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1532         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1533             abs(oexpires - expires) <= ioc->timer_slack_ns)
1534                 return;
1535
1536         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1537                                ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1538 }
1539
1540 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1541 {
1542         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1543         bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1544         struct ioc_now now;
1545         unsigned long flags;
1546
1547         ioc_now(iocg->ioc, &now);
1548
1549         iocg_lock(iocg, pay_debt, &flags);
1550         iocg_kick_waitq(iocg, pay_debt, &now);
1551         iocg_unlock(iocg, pay_debt, &flags);
1552
1553         return HRTIMER_NORESTART;
1554 }
1555
1556 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1557 {
1558         u32 nr_met[2] = { };
1559         u32 nr_missed[2] = { };
1560         u64 rq_wait_ns = 0;
1561         int cpu, rw;
1562
1563         for_each_online_cpu(cpu) {
1564                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1565                 u64 this_rq_wait_ns;
1566
1567                 for (rw = READ; rw <= WRITE; rw++) {
1568                         u32 this_met = local_read(&stat->missed[rw].nr_met);
1569                         u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1570
1571                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1572                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1573                         stat->missed[rw].last_met = this_met;
1574                         stat->missed[rw].last_missed = this_missed;
1575                 }
1576
1577                 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1578                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1579                 stat->last_rq_wait_ns = this_rq_wait_ns;
1580         }
1581
1582         for (rw = READ; rw <= WRITE; rw++) {
1583                 if (nr_met[rw] + nr_missed[rw])
1584                         missed_ppm_ar[rw] =
1585                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1586                                                    nr_met[rw] + nr_missed[rw]);
1587                 else
1588                         missed_ppm_ar[rw] = 0;
1589         }
1590
1591         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1592                                    ioc->period_us * NSEC_PER_USEC);
1593 }
1594
1595 /* was iocg idle this period? */
1596 static bool iocg_is_idle(struct ioc_gq *iocg)
1597 {
1598         struct ioc *ioc = iocg->ioc;
1599
1600         /* did something get issued this period? */
1601         if (atomic64_read(&iocg->active_period) ==
1602             atomic64_read(&ioc->cur_period))
1603                 return false;
1604
1605         /* is something in flight? */
1606         if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1607                 return false;
1608
1609         return true;
1610 }
1611
1612 /*
1613  * Call this function on the target leaf @iocg's to build pre-order traversal
1614  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1615  * ->walk_list and the caller is responsible for dissolving the list after use.
1616  */
1617 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1618                                   struct list_head *inner_walk)
1619 {
1620         int lvl;
1621
1622         WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1623
1624         /* find the first ancestor which hasn't been visited yet */
1625         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1626                 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1627                         break;
1628         }
1629
1630         /* walk down and visit the inner nodes to get pre-order traversal */
1631         while (++lvl <= iocg->level - 1) {
1632                 struct ioc_gq *inner = iocg->ancestors[lvl];
1633
1634                 /* record traversal order */
1635                 list_add_tail(&inner->walk_list, inner_walk);
1636         }
1637 }
1638
1639 /* propagate the deltas to the parent */
1640 static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1641 {
1642         if (iocg->level > 0) {
1643                 struct iocg_stat *parent_stat =
1644                         &iocg->ancestors[iocg->level - 1]->stat;
1645
1646                 parent_stat->usage_us +=
1647                         iocg->stat.usage_us - iocg->last_stat.usage_us;
1648                 parent_stat->wait_us +=
1649                         iocg->stat.wait_us - iocg->last_stat.wait_us;
1650                 parent_stat->indebt_us +=
1651                         iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1652                 parent_stat->indelay_us +=
1653                         iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1654         }
1655
1656         iocg->last_stat = iocg->stat;
1657 }
1658
1659 /* collect per-cpu counters and propagate the deltas to the parent */
1660 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1661 {
1662         struct ioc *ioc = iocg->ioc;
1663         u64 abs_vusage = 0;
1664         u64 vusage_delta;
1665         int cpu;
1666
1667         lockdep_assert_held(&iocg->ioc->lock);
1668
1669         /* collect per-cpu counters */
1670         for_each_possible_cpu(cpu) {
1671                 abs_vusage += local64_read(
1672                                 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1673         }
1674         vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1675         iocg->last_stat_abs_vusage = abs_vusage;
1676
1677         iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1678         iocg->stat.usage_us += iocg->usage_delta_us;
1679
1680         iocg_flush_stat_upward(iocg);
1681 }
1682
1683 /* get stat counters ready for reading on all active iocgs */
1684 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1685 {
1686         LIST_HEAD(inner_walk);
1687         struct ioc_gq *iocg, *tiocg;
1688
1689         /* flush leaves and build inner node walk list */
1690         list_for_each_entry(iocg, target_iocgs, active_list) {
1691                 iocg_flush_stat_leaf(iocg, now);
1692                 iocg_build_inner_walk(iocg, &inner_walk);
1693         }
1694
1695         /* keep flushing upwards by walking the inner list backwards */
1696         list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1697                 iocg_flush_stat_upward(iocg);
1698                 list_del_init(&iocg->walk_list);
1699         }
1700 }
1701
1702 /*
1703  * Determine what @iocg's hweight_inuse should be after donating unused
1704  * capacity. @hwm is the upper bound and used to signal no donation. This
1705  * function also throws away @iocg's excess budget.
1706  */
1707 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1708                                   u32 usage, struct ioc_now *now)
1709 {
1710         struct ioc *ioc = iocg->ioc;
1711         u64 vtime = atomic64_read(&iocg->vtime);
1712         s64 excess, delta, target, new_hwi;
1713
1714         /* debt handling owns inuse for debtors */
1715         if (iocg->abs_vdebt)
1716                 return 1;
1717
1718         /* see whether minimum margin requirement is met */
1719         if (waitqueue_active(&iocg->waitq) ||
1720             time_after64(vtime, now->vnow - ioc->margins.min))
1721                 return hwm;
1722
1723         /* throw away excess above target */
1724         excess = now->vnow - vtime - ioc->margins.target;
1725         if (excess > 0) {
1726                 atomic64_add(excess, &iocg->vtime);
1727                 atomic64_add(excess, &iocg->done_vtime);
1728                 vtime += excess;
1729                 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1730         }
1731
1732         /*
1733          * Let's say the distance between iocg's and device's vtimes as a
1734          * fraction of period duration is delta. Assuming that the iocg will
1735          * consume the usage determined above, we want to determine new_hwi so
1736          * that delta equals MARGIN_TARGET at the end of the next period.
1737          *
1738          * We need to execute usage worth of IOs while spending the sum of the
1739          * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1740          * (delta):
1741          *
1742          *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1743          *
1744          * Therefore, the new_hwi is:
1745          *
1746          *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1747          */
1748         delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1749                           now->vnow - ioc->period_at_vtime);
1750         target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1751         new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1752
1753         return clamp_t(s64, new_hwi, 1, hwm);
1754 }
1755
1756 /*
1757  * For work-conservation, an iocg which isn't using all of its share should
1758  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1759  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1760  *
1761  * #1 is mathematically simpler but has the drawback of requiring synchronous
1762  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1763  * change due to donation snapbacks as it has the possibility of grossly
1764  * overshooting what's allowed by the model and vrate.
1765  *
1766  * #2 is inherently safe with local operations. The donating iocg can easily
1767  * snap back to higher weights when needed without worrying about impacts on
1768  * other nodes as the impacts will be inherently correct. This also makes idle
1769  * iocg activations safe. The only effect activations have is decreasing
1770  * hweight_inuse of others, the right solution to which is for those iocgs to
1771  * snap back to higher weights.
1772  *
1773  * So, we go with #2. The challenge is calculating how each donating iocg's
1774  * inuse should be adjusted to achieve the target donation amounts. This is done
1775  * using Andy's method described in the following pdf.
1776  *
1777  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1778  *
1779  * Given the weights and target after-donation hweight_inuse values, Andy's
1780  * method determines how the proportional distribution should look like at each
1781  * sibling level to maintain the relative relationship between all non-donating
1782  * pairs. To roughly summarize, it divides the tree into donating and
1783  * non-donating parts, calculates global donation rate which is used to
1784  * determine the target hweight_inuse for each node, and then derives per-level
1785  * proportions.
1786  *
1787  * The following pdf shows that global distribution calculated this way can be
1788  * achieved by scaling inuse weights of donating leaves and propagating the
1789  * adjustments upwards proportionally.
1790  *
1791  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1792  *
1793  * Combining the above two, we can determine how each leaf iocg's inuse should
1794  * be adjusted to achieve the target donation.
1795  *
1796  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1797  *
1798  * The inline comments use symbols from the last pdf.
1799  *
1800  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1801  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1802  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1803  *   w is the weight of the node. w = w_f + w_t
1804  *   w_f is the non-donating portion of w. w_f = w * f / b
1805  *   w_b is the donating portion of w. w_t = w * t / b
1806  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1807  *   s_f and s_t are the non-donating and donating portions of s.
1808  *
1809  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1810  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1811  * after adjustments. Subscript r denotes the root node's values.
1812  */
1813 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1814 {
1815         LIST_HEAD(over_hwa);
1816         LIST_HEAD(inner_walk);
1817         struct ioc_gq *iocg, *tiocg, *root_iocg;
1818         u32 after_sum, over_sum, over_target, gamma;
1819
1820         /*
1821          * It's pretty unlikely but possible for the total sum of
1822          * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1823          * confuse the following calculations. If such condition is detected,
1824          * scale down everyone over its full share equally to keep the sum below
1825          * WEIGHT_ONE.
1826          */
1827         after_sum = 0;
1828         over_sum = 0;
1829         list_for_each_entry(iocg, surpluses, surplus_list) {
1830                 u32 hwa;
1831
1832                 current_hweight(iocg, &hwa, NULL);
1833                 after_sum += iocg->hweight_after_donation;
1834
1835                 if (iocg->hweight_after_donation > hwa) {
1836                         over_sum += iocg->hweight_after_donation;
1837                         list_add(&iocg->walk_list, &over_hwa);
1838                 }
1839         }
1840
1841         if (after_sum >= WEIGHT_ONE) {
1842                 /*
1843                  * The delta should be deducted from the over_sum, calculate
1844                  * target over_sum value.
1845                  */
1846                 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1847                 WARN_ON_ONCE(over_sum <= over_delta);
1848                 over_target = over_sum - over_delta;
1849         } else {
1850                 over_target = 0;
1851         }
1852
1853         list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1854                 if (over_target)
1855                         iocg->hweight_after_donation =
1856                                 div_u64((u64)iocg->hweight_after_donation *
1857                                         over_target, over_sum);
1858                 list_del_init(&iocg->walk_list);
1859         }
1860
1861         /*
1862          * Build pre-order inner node walk list and prepare for donation
1863          * adjustment calculations.
1864          */
1865         list_for_each_entry(iocg, surpluses, surplus_list) {
1866                 iocg_build_inner_walk(iocg, &inner_walk);
1867         }
1868
1869         root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1870         WARN_ON_ONCE(root_iocg->level > 0);
1871
1872         list_for_each_entry(iocg, &inner_walk, walk_list) {
1873                 iocg->child_adjusted_sum = 0;
1874                 iocg->hweight_donating = 0;
1875                 iocg->hweight_after_donation = 0;
1876         }
1877
1878         /*
1879          * Propagate the donating budget (b_t) and after donation budget (b'_t)
1880          * up the hierarchy.
1881          */
1882         list_for_each_entry(iocg, surpluses, surplus_list) {
1883                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1884
1885                 parent->hweight_donating += iocg->hweight_donating;
1886                 parent->hweight_after_donation += iocg->hweight_after_donation;
1887         }
1888
1889         list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1890                 if (iocg->level > 0) {
1891                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1892
1893                         parent->hweight_donating += iocg->hweight_donating;
1894                         parent->hweight_after_donation += iocg->hweight_after_donation;
1895                 }
1896         }
1897
1898         /*
1899          * Calculate inner hwa's (b) and make sure the donation values are
1900          * within the accepted ranges as we're doing low res calculations with
1901          * roundups.
1902          */
1903         list_for_each_entry(iocg, &inner_walk, walk_list) {
1904                 if (iocg->level) {
1905                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1906
1907                         iocg->hweight_active = DIV64_U64_ROUND_UP(
1908                                 (u64)parent->hweight_active * iocg->active,
1909                                 parent->child_active_sum);
1910
1911                 }
1912
1913                 iocg->hweight_donating = min(iocg->hweight_donating,
1914                                              iocg->hweight_active);
1915                 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1916                                                    iocg->hweight_donating - 1);
1917                 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1918                                  iocg->hweight_donating <= 1 ||
1919                                  iocg->hweight_after_donation == 0)) {
1920                         pr_warn("iocg: invalid donation weights in ");
1921                         pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1922                         pr_cont(": active=%u donating=%u after=%u\n",
1923                                 iocg->hweight_active, iocg->hweight_donating,
1924                                 iocg->hweight_after_donation);
1925                 }
1926         }
1927
1928         /*
1929          * Calculate the global donation rate (gamma) - the rate to adjust
1930          * non-donating budgets by.
1931          *
1932          * No need to use 64bit multiplication here as the first operand is
1933          * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1934          *
1935          * We know that there are beneficiary nodes and the sum of the donating
1936          * hweights can't be whole; however, due to the round-ups during hweight
1937          * calculations, root_iocg->hweight_donating might still end up equal to
1938          * or greater than whole. Limit the range when calculating the divider.
1939          *
1940          * gamma = (1 - t_r') / (1 - t_r)
1941          */
1942         gamma = DIV_ROUND_UP(
1943                 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1944                 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1945
1946         /*
1947          * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1948          * nodes.
1949          */
1950         list_for_each_entry(iocg, &inner_walk, walk_list) {
1951                 struct ioc_gq *parent;
1952                 u32 inuse, wpt, wptp;
1953                 u64 st, sf;
1954
1955                 if (iocg->level == 0) {
1956                         /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1957                         iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1958                                 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1959                                 WEIGHT_ONE - iocg->hweight_after_donation);
1960                         continue;
1961                 }
1962
1963                 parent = iocg->ancestors[iocg->level - 1];
1964
1965                 /* b' = gamma * b_f + b_t' */
1966                 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1967                         (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1968                         WEIGHT_ONE) + iocg->hweight_after_donation;
1969
1970                 /* w' = s' * b' / b'_p */
1971                 inuse = DIV64_U64_ROUND_UP(
1972                         (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1973                         parent->hweight_inuse);
1974
1975                 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1976                 st = DIV64_U64_ROUND_UP(
1977                         iocg->child_active_sum * iocg->hweight_donating,
1978                         iocg->hweight_active);
1979                 sf = iocg->child_active_sum - st;
1980                 wpt = DIV64_U64_ROUND_UP(
1981                         (u64)iocg->active * iocg->hweight_donating,
1982                         iocg->hweight_active);
1983                 wptp = DIV64_U64_ROUND_UP(
1984                         (u64)inuse * iocg->hweight_after_donation,
1985                         iocg->hweight_inuse);
1986
1987                 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1988         }
1989
1990         /*
1991          * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1992          * we can finally determine leaf adjustments.
1993          */
1994         list_for_each_entry(iocg, surpluses, surplus_list) {
1995                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1996                 u32 inuse;
1997
1998                 /*
1999                  * In-debt iocgs participated in the donation calculation with
2000                  * the minimum target hweight_inuse. Configuring inuse
2001                  * accordingly would work fine but debt handling expects
2002                  * @iocg->inuse stay at the minimum and we don't wanna
2003                  * interfere.
2004                  */
2005                 if (iocg->abs_vdebt) {
2006                         WARN_ON_ONCE(iocg->inuse > 1);
2007                         continue;
2008                 }
2009
2010                 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2011                 inuse = DIV64_U64_ROUND_UP(
2012                         parent->child_adjusted_sum * iocg->hweight_after_donation,
2013                         parent->hweight_inuse);
2014
2015                 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2016                                 iocg->inuse, inuse,
2017                                 iocg->hweight_inuse,
2018                                 iocg->hweight_after_donation);
2019
2020                 __propagate_weights(iocg, iocg->active, inuse, true, now);
2021         }
2022
2023         /* walk list should be dissolved after use */
2024         list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2025                 list_del_init(&iocg->walk_list);
2026 }
2027
2028 /*
2029  * A low weight iocg can amass a large amount of debt, for example, when
2030  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2031  * memory paired with a slow IO device, the debt can span multiple seconds or
2032  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2033  * up blocked paying its debt while the IO device is idle.
2034  *
2035  * The following protects against such cases. If the device has been
2036  * sufficiently idle for a while, the debts are halved and delays are
2037  * recalculated.
2038  */
2039 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2040                               struct ioc_now *now)
2041 {
2042         struct ioc_gq *iocg;
2043         u64 dur, usage_pct, nr_cycles;
2044
2045         /* if no debtor, reset the cycle */
2046         if (!nr_debtors) {
2047                 ioc->dfgv_period_at = now->now;
2048                 ioc->dfgv_period_rem = 0;
2049                 ioc->dfgv_usage_us_sum = 0;
2050                 return;
2051         }
2052
2053         /*
2054          * Debtors can pass through a lot of writes choking the device and we
2055          * don't want to be forgiving debts while the device is struggling from
2056          * write bursts. If we're missing latency targets, consider the device
2057          * fully utilized.
2058          */
2059         if (ioc->busy_level > 0)
2060                 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2061
2062         ioc->dfgv_usage_us_sum += usage_us_sum;
2063         if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2064                 return;
2065
2066         /*
2067          * At least DFGV_PERIOD has passed since the last period. Calculate the
2068          * average usage and reset the period counters.
2069          */
2070         dur = now->now - ioc->dfgv_period_at;
2071         usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2072
2073         ioc->dfgv_period_at = now->now;
2074         ioc->dfgv_usage_us_sum = 0;
2075
2076         /* if was too busy, reset everything */
2077         if (usage_pct > DFGV_USAGE_PCT) {
2078                 ioc->dfgv_period_rem = 0;
2079                 return;
2080         }
2081
2082         /*
2083          * Usage is lower than threshold. Let's forgive some debts. Debt
2084          * forgiveness runs off of the usual ioc timer but its period usually
2085          * doesn't match ioc's. Compensate the difference by performing the
2086          * reduction as many times as would fit in the duration since the last
2087          * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2088          * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2089          * reductions is doubled.
2090          */
2091         nr_cycles = dur + ioc->dfgv_period_rem;
2092         ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2093
2094         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2095                 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2096
2097                 if (!iocg->abs_vdebt && !iocg->delay)
2098                         continue;
2099
2100                 spin_lock(&iocg->waitq.lock);
2101
2102                 old_debt = iocg->abs_vdebt;
2103                 old_delay = iocg->delay;
2104
2105                 if (iocg->abs_vdebt)
2106                         iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2107                 if (iocg->delay)
2108                         iocg->delay = iocg->delay >> nr_cycles ?: 1;
2109
2110                 iocg_kick_waitq(iocg, true, now);
2111
2112                 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2113                                 old_debt, iocg->abs_vdebt,
2114                                 old_delay, iocg->delay);
2115
2116                 spin_unlock(&iocg->waitq.lock);
2117         }
2118 }
2119
2120 /*
2121  * Check the active iocgs' state to avoid oversleeping and deactive
2122  * idle iocgs.
2123  *
2124  * Since waiters determine the sleep durations based on the vrate
2125  * they saw at the time of sleep, if vrate has increased, some
2126  * waiters could be sleeping for too long. Wake up tardy waiters
2127  * which should have woken up in the last period and expire idle
2128  * iocgs.
2129  */
2130 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2131 {
2132         int nr_debtors = 0;
2133         struct ioc_gq *iocg, *tiocg;
2134
2135         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2136                 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2137                     !iocg->delay && !iocg_is_idle(iocg))
2138                         continue;
2139
2140                 spin_lock(&iocg->waitq.lock);
2141
2142                 /* flush wait and indebt stat deltas */
2143                 if (iocg->wait_since) {
2144                         iocg->stat.wait_us += now->now - iocg->wait_since;
2145                         iocg->wait_since = now->now;
2146                 }
2147                 if (iocg->indebt_since) {
2148                         iocg->stat.indebt_us +=
2149                                 now->now - iocg->indebt_since;
2150                         iocg->indebt_since = now->now;
2151                 }
2152                 if (iocg->indelay_since) {
2153                         iocg->stat.indelay_us +=
2154                                 now->now - iocg->indelay_since;
2155                         iocg->indelay_since = now->now;
2156                 }
2157
2158                 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2159                     iocg->delay) {
2160                         /* might be oversleeping vtime / hweight changes, kick */
2161                         iocg_kick_waitq(iocg, true, now);
2162                         if (iocg->abs_vdebt || iocg->delay)
2163                                 nr_debtors++;
2164                 } else if (iocg_is_idle(iocg)) {
2165                         /* no waiter and idle, deactivate */
2166                         u64 vtime = atomic64_read(&iocg->vtime);
2167                         s64 excess;
2168
2169                         /*
2170                          * @iocg has been inactive for a full duration and will
2171                          * have a high budget. Account anything above target as
2172                          * error and throw away. On reactivation, it'll start
2173                          * with the target budget.
2174                          */
2175                         excess = now->vnow - vtime - ioc->margins.target;
2176                         if (excess > 0) {
2177                                 u32 old_hwi;
2178
2179                                 current_hweight(iocg, NULL, &old_hwi);
2180                                 ioc->vtime_err -= div64_u64(excess * old_hwi,
2181                                                             WEIGHT_ONE);
2182                         }
2183
2184                         TRACE_IOCG_PATH(iocg_idle, iocg, now,
2185                                         atomic64_read(&iocg->active_period),
2186                                         atomic64_read(&ioc->cur_period), vtime);
2187                         __propagate_weights(iocg, 0, 0, false, now);
2188                         list_del_init(&iocg->active_list);
2189                 }
2190
2191                 spin_unlock(&iocg->waitq.lock);
2192         }
2193
2194         commit_weights(ioc);
2195         return nr_debtors;
2196 }
2197
2198 static void ioc_timer_fn(struct timer_list *timer)
2199 {
2200         struct ioc *ioc = container_of(timer, struct ioc, timer);
2201         struct ioc_gq *iocg, *tiocg;
2202         struct ioc_now now;
2203         LIST_HEAD(surpluses);
2204         int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2205         u64 usage_us_sum = 0;
2206         u32 ppm_rthr;
2207         u32 ppm_wthr;
2208         u32 missed_ppm[2], rq_wait_pct;
2209         u64 period_vtime;
2210         int prev_busy_level;
2211
2212         /* how were the latencies during the period? */
2213         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2214
2215         /* take care of active iocgs */
2216         spin_lock_irq(&ioc->lock);
2217
2218         ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2219         ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2220         ioc_now(ioc, &now);
2221
2222         period_vtime = now.vnow - ioc->period_at_vtime;
2223         if (WARN_ON_ONCE(!period_vtime)) {
2224                 spin_unlock_irq(&ioc->lock);
2225                 return;
2226         }
2227
2228         nr_debtors = ioc_check_iocgs(ioc, &now);
2229
2230         /*
2231          * Wait and indebt stat are flushed above and the donation calculation
2232          * below needs updated usage stat. Let's bring stat up-to-date.
2233          */
2234         iocg_flush_stat(&ioc->active_iocgs, &now);
2235
2236         /* calc usage and see whether some weights need to be moved around */
2237         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2238                 u64 vdone, vtime, usage_us;
2239                 u32 hw_active, hw_inuse;
2240
2241                 /*
2242                  * Collect unused and wind vtime closer to vnow to prevent
2243                  * iocgs from accumulating a large amount of budget.
2244                  */
2245                 vdone = atomic64_read(&iocg->done_vtime);
2246                 vtime = atomic64_read(&iocg->vtime);
2247                 current_hweight(iocg, &hw_active, &hw_inuse);
2248
2249                 /*
2250                  * Latency QoS detection doesn't account for IOs which are
2251                  * in-flight for longer than a period.  Detect them by
2252                  * comparing vdone against period start.  If lagging behind
2253                  * IOs from past periods, don't increase vrate.
2254                  */
2255                 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2256                     !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2257                     time_after64(vtime, vdone) &&
2258                     time_after64(vtime, now.vnow -
2259                                  MAX_LAGGING_PERIODS * period_vtime) &&
2260                     time_before64(vdone, now.vnow - period_vtime))
2261                         nr_lagging++;
2262
2263                 /*
2264                  * Determine absolute usage factoring in in-flight IOs to avoid
2265                  * high-latency completions appearing as idle.
2266                  */
2267                 usage_us = iocg->usage_delta_us;
2268                 usage_us_sum += usage_us;
2269
2270                 /* see whether there's surplus vtime */
2271                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2272                 if (hw_inuse < hw_active ||
2273                     (!waitqueue_active(&iocg->waitq) &&
2274                      time_before64(vtime, now.vnow - ioc->margins.low))) {
2275                         u32 hwa, old_hwi, hwm, new_hwi, usage;
2276                         u64 usage_dur;
2277
2278                         if (vdone != vtime) {
2279                                 u64 inflight_us = DIV64_U64_ROUND_UP(
2280                                         cost_to_abs_cost(vtime - vdone, hw_inuse),
2281                                         ioc->vtime_base_rate);
2282
2283                                 usage_us = max(usage_us, inflight_us);
2284                         }
2285
2286                         /* convert to hweight based usage ratio */
2287                         if (time_after64(iocg->activated_at, ioc->period_at))
2288                                 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2289                         else
2290                                 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2291
2292                         usage = clamp_t(u32,
2293                                 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2294                                                    usage_dur),
2295                                 1, WEIGHT_ONE);
2296
2297                         /*
2298                          * Already donating or accumulated enough to start.
2299                          * Determine the donation amount.
2300                          */
2301                         current_hweight(iocg, &hwa, &old_hwi);
2302                         hwm = current_hweight_max(iocg);
2303                         new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2304                                                          usage, &now);
2305                         /*
2306                          * Donation calculation assumes hweight_after_donation
2307                          * to be positive, a condition that a donor w/ hwa < 2
2308                          * can't meet. Don't bother with donation if hwa is
2309                          * below 2. It's not gonna make a meaningful difference
2310                          * anyway.
2311                          */
2312                         if (new_hwi < hwm && hwa >= 2) {
2313                                 iocg->hweight_donating = hwa;
2314                                 iocg->hweight_after_donation = new_hwi;
2315                                 list_add(&iocg->surplus_list, &surpluses);
2316                         } else if (!iocg->abs_vdebt) {
2317                                 /*
2318                                  * @iocg doesn't have enough to donate. Reset
2319                                  * its inuse to active.
2320                                  *
2321                                  * Don't reset debtors as their inuse's are
2322                                  * owned by debt handling. This shouldn't affect
2323                                  * donation calculuation in any meaningful way
2324                                  * as @iocg doesn't have a meaningful amount of
2325                                  * share anyway.
2326                                  */
2327                                 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2328                                                 iocg->inuse, iocg->active,
2329                                                 iocg->hweight_inuse, new_hwi);
2330
2331                                 __propagate_weights(iocg, iocg->active,
2332                                                     iocg->active, true, &now);
2333                                 nr_shortages++;
2334                         }
2335                 } else {
2336                         /* genuinely short on vtime */
2337                         nr_shortages++;
2338                 }
2339         }
2340
2341         if (!list_empty(&surpluses) && nr_shortages)
2342                 transfer_surpluses(&surpluses, &now);
2343
2344         commit_weights(ioc);
2345
2346         /* surplus list should be dissolved after use */
2347         list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2348                 list_del_init(&iocg->surplus_list);
2349
2350         /*
2351          * If q is getting clogged or we're missing too much, we're issuing
2352          * too much IO and should lower vtime rate.  If we're not missing
2353          * and experiencing shortages but not surpluses, we're too stingy
2354          * and should increase vtime rate.
2355          */
2356         prev_busy_level = ioc->busy_level;
2357         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2358             missed_ppm[READ] > ppm_rthr ||
2359             missed_ppm[WRITE] > ppm_wthr) {
2360                 /* clearly missing QoS targets, slow down vrate */
2361                 ioc->busy_level = max(ioc->busy_level, 0);
2362                 ioc->busy_level++;
2363         } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2364                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2365                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2366                 /* QoS targets are being met with >25% margin */
2367                 if (nr_shortages) {
2368                         /*
2369                          * We're throttling while the device has spare
2370                          * capacity.  If vrate was being slowed down, stop.
2371                          */
2372                         ioc->busy_level = min(ioc->busy_level, 0);
2373
2374                         /*
2375                          * If there are IOs spanning multiple periods, wait
2376                          * them out before pushing the device harder.
2377                          */
2378                         if (!nr_lagging)
2379                                 ioc->busy_level--;
2380                 } else {
2381                         /*
2382                          * Nobody is being throttled and the users aren't
2383                          * issuing enough IOs to saturate the device.  We
2384                          * simply don't know how close the device is to
2385                          * saturation.  Coast.
2386                          */
2387                         ioc->busy_level = 0;
2388                 }
2389         } else {
2390                 /* inside the hysterisis margin, we're good */
2391                 ioc->busy_level = 0;
2392         }
2393
2394         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2395
2396         ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2397                               prev_busy_level, missed_ppm);
2398
2399         ioc_refresh_params(ioc, false);
2400
2401         ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2402
2403         /*
2404          * This period is done.  Move onto the next one.  If nothing's
2405          * going on with the device, stop the timer.
2406          */
2407         atomic64_inc(&ioc->cur_period);
2408
2409         if (ioc->running != IOC_STOP) {
2410                 if (!list_empty(&ioc->active_iocgs)) {
2411                         ioc_start_period(ioc, &now);
2412                 } else {
2413                         ioc->busy_level = 0;
2414                         ioc->vtime_err = 0;
2415                         ioc->running = IOC_IDLE;
2416                 }
2417
2418                 ioc_refresh_vrate(ioc, &now);
2419         }
2420
2421         spin_unlock_irq(&ioc->lock);
2422 }
2423
2424 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2425                                       u64 abs_cost, struct ioc_now *now)
2426 {
2427         struct ioc *ioc = iocg->ioc;
2428         struct ioc_margins *margins = &ioc->margins;
2429         u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2430         u32 hwi, adj_step;
2431         s64 margin;
2432         u64 cost, new_inuse;
2433
2434         current_hweight(iocg, NULL, &hwi);
2435         old_hwi = hwi;
2436         cost = abs_cost_to_cost(abs_cost, hwi);
2437         margin = now->vnow - vtime - cost;
2438
2439         /* debt handling owns inuse for debtors */
2440         if (iocg->abs_vdebt)
2441                 return cost;
2442
2443         /*
2444          * We only increase inuse during period and do so if the margin has
2445          * deteriorated since the previous adjustment.
2446          */
2447         if (margin >= iocg->saved_margin || margin >= margins->low ||
2448             iocg->inuse == iocg->active)
2449                 return cost;
2450
2451         spin_lock_irq(&ioc->lock);
2452
2453         /* we own inuse only when @iocg is in the normal active state */
2454         if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2455                 spin_unlock_irq(&ioc->lock);
2456                 return cost;
2457         }
2458
2459         /*
2460          * Bump up inuse till @abs_cost fits in the existing budget.
2461          * adj_step must be determined after acquiring ioc->lock - we might
2462          * have raced and lost to another thread for activation and could
2463          * be reading 0 iocg->active before ioc->lock which will lead to
2464          * infinite loop.
2465          */
2466         new_inuse = iocg->inuse;
2467         adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2468         do {
2469                 new_inuse = new_inuse + adj_step;
2470                 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2471                 current_hweight(iocg, NULL, &hwi);
2472                 cost = abs_cost_to_cost(abs_cost, hwi);
2473         } while (time_after64(vtime + cost, now->vnow) &&
2474                  iocg->inuse != iocg->active);
2475
2476         spin_unlock_irq(&ioc->lock);
2477
2478         TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2479                         old_inuse, iocg->inuse, old_hwi, hwi);
2480
2481         return cost;
2482 }
2483
2484 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2485                                     bool is_merge, u64 *costp)
2486 {
2487         struct ioc *ioc = iocg->ioc;
2488         u64 coef_seqio, coef_randio, coef_page;
2489         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2490         u64 seek_pages = 0;
2491         u64 cost = 0;
2492
2493         switch (bio_op(bio)) {
2494         case REQ_OP_READ:
2495                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
2496                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
2497                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
2498                 break;
2499         case REQ_OP_WRITE:
2500                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
2501                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
2502                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
2503                 break;
2504         default:
2505                 goto out;
2506         }
2507
2508         if (iocg->cursor) {
2509                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2510                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2511         }
2512
2513         if (!is_merge) {
2514                 if (seek_pages > LCOEF_RANDIO_PAGES) {
2515                         cost += coef_randio;
2516                 } else {
2517                         cost += coef_seqio;
2518                 }
2519         }
2520         cost += pages * coef_page;
2521 out:
2522         *costp = cost;
2523 }
2524
2525 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2526 {
2527         u64 cost;
2528
2529         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2530         return cost;
2531 }
2532
2533 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2534                                          u64 *costp)
2535 {
2536         unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2537
2538         switch (req_op(rq)) {
2539         case REQ_OP_READ:
2540                 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2541                 break;
2542         case REQ_OP_WRITE:
2543                 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2544                 break;
2545         default:
2546                 *costp = 0;
2547         }
2548 }
2549
2550 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2551 {
2552         u64 cost;
2553
2554         calc_size_vtime_cost_builtin(rq, ioc, &cost);
2555         return cost;
2556 }
2557
2558 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2559 {
2560         struct blkcg_gq *blkg = bio->bi_blkg;
2561         struct ioc *ioc = rqos_to_ioc(rqos);
2562         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2563         struct ioc_now now;
2564         struct iocg_wait wait;
2565         u64 abs_cost, cost, vtime;
2566         bool use_debt, ioc_locked;
2567         unsigned long flags;
2568
2569         /* bypass IOs if disabled, still initializing, or for root cgroup */
2570         if (!ioc->enabled || !iocg || !iocg->level)
2571                 return;
2572
2573         /* calculate the absolute vtime cost */
2574         abs_cost = calc_vtime_cost(bio, iocg, false);
2575         if (!abs_cost)
2576                 return;
2577
2578         if (!iocg_activate(iocg, &now))
2579                 return;
2580
2581         iocg->cursor = bio_end_sector(bio);
2582         vtime = atomic64_read(&iocg->vtime);
2583         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2584
2585         /*
2586          * If no one's waiting and within budget, issue right away.  The
2587          * tests are racy but the races aren't systemic - we only miss once
2588          * in a while which is fine.
2589          */
2590         if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2591             time_before_eq64(vtime + cost, now.vnow)) {
2592                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2593                 return;
2594         }
2595
2596         /*
2597          * We're over budget. This can be handled in two ways. IOs which may
2598          * cause priority inversions are punted to @ioc->aux_iocg and charged as
2599          * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2600          * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2601          * whether debt handling is needed and acquire locks accordingly.
2602          */
2603         use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2604         ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2605 retry_lock:
2606         iocg_lock(iocg, ioc_locked, &flags);
2607
2608         /*
2609          * @iocg must stay activated for debt and waitq handling. Deactivation
2610          * is synchronized against both ioc->lock and waitq.lock and we won't
2611          * get deactivated as long as we're waiting or has debt, so we're good
2612          * if we're activated here. In the unlikely cases that we aren't, just
2613          * issue the IO.
2614          */
2615         if (unlikely(list_empty(&iocg->active_list))) {
2616                 iocg_unlock(iocg, ioc_locked, &flags);
2617                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2618                 return;
2619         }
2620
2621         /*
2622          * We're over budget. If @bio has to be issued regardless, remember
2623          * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2624          * off the debt before waking more IOs.
2625          *
2626          * This way, the debt is continuously paid off each period with the
2627          * actual budget available to the cgroup. If we just wound vtime, we
2628          * would incorrectly use the current hw_inuse for the entire amount
2629          * which, for example, can lead to the cgroup staying blocked for a
2630          * long time even with substantially raised hw_inuse.
2631          *
2632          * An iocg with vdebt should stay online so that the timer can keep
2633          * deducting its vdebt and [de]activate use_delay mechanism
2634          * accordingly. We don't want to race against the timer trying to
2635          * clear them and leave @iocg inactive w/ dangling use_delay heavily
2636          * penalizing the cgroup and its descendants.
2637          */
2638         if (use_debt) {
2639                 iocg_incur_debt(iocg, abs_cost, &now);
2640                 if (iocg_kick_delay(iocg, &now))
2641                         blkcg_schedule_throttle(rqos->q->disk,
2642                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2643                 iocg_unlock(iocg, ioc_locked, &flags);
2644                 return;
2645         }
2646
2647         /* guarantee that iocgs w/ waiters have maximum inuse */
2648         if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2649                 if (!ioc_locked) {
2650                         iocg_unlock(iocg, false, &flags);
2651                         ioc_locked = true;
2652                         goto retry_lock;
2653                 }
2654                 propagate_weights(iocg, iocg->active, iocg->active, true,
2655                                   &now);
2656         }
2657
2658         /*
2659          * Append self to the waitq and schedule the wakeup timer if we're
2660          * the first waiter.  The timer duration is calculated based on the
2661          * current vrate.  vtime and hweight changes can make it too short
2662          * or too long.  Each wait entry records the absolute cost it's
2663          * waiting for to allow re-evaluation using a custom wait entry.
2664          *
2665          * If too short, the timer simply reschedules itself.  If too long,
2666          * the period timer will notice and trigger wakeups.
2667          *
2668          * All waiters are on iocg->waitq and the wait states are
2669          * synchronized using waitq.lock.
2670          */
2671         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2672         wait.wait.private = current;
2673         wait.bio = bio;
2674         wait.abs_cost = abs_cost;
2675         wait.committed = false; /* will be set true by waker */
2676
2677         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2678         iocg_kick_waitq(iocg, ioc_locked, &now);
2679
2680         iocg_unlock(iocg, ioc_locked, &flags);
2681
2682         while (true) {
2683                 set_current_state(TASK_UNINTERRUPTIBLE);
2684                 if (wait.committed)
2685                         break;
2686                 io_schedule();
2687         }
2688
2689         /* waker already committed us, proceed */
2690         finish_wait(&iocg->waitq, &wait.wait);
2691 }
2692
2693 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2694                            struct bio *bio)
2695 {
2696         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2697         struct ioc *ioc = rqos_to_ioc(rqos);
2698         sector_t bio_end = bio_end_sector(bio);
2699         struct ioc_now now;
2700         u64 vtime, abs_cost, cost;
2701         unsigned long flags;
2702
2703         /* bypass if disabled, still initializing, or for root cgroup */
2704         if (!ioc->enabled || !iocg || !iocg->level)
2705                 return;
2706
2707         abs_cost = calc_vtime_cost(bio, iocg, true);
2708         if (!abs_cost)
2709                 return;
2710
2711         ioc_now(ioc, &now);
2712
2713         vtime = atomic64_read(&iocg->vtime);
2714         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2715
2716         /* update cursor if backmerging into the request at the cursor */
2717         if (blk_rq_pos(rq) < bio_end &&
2718             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2719                 iocg->cursor = bio_end;
2720
2721         /*
2722          * Charge if there's enough vtime budget and the existing request has
2723          * cost assigned.
2724          */
2725         if (rq->bio && rq->bio->bi_iocost_cost &&
2726             time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2727                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2728                 return;
2729         }
2730
2731         /*
2732          * Otherwise, account it as debt if @iocg is online, which it should
2733          * be for the vast majority of cases. See debt handling in
2734          * ioc_rqos_throttle() for details.
2735          */
2736         spin_lock_irqsave(&ioc->lock, flags);
2737         spin_lock(&iocg->waitq.lock);
2738
2739         if (likely(!list_empty(&iocg->active_list))) {
2740                 iocg_incur_debt(iocg, abs_cost, &now);
2741                 if (iocg_kick_delay(iocg, &now))
2742                         blkcg_schedule_throttle(rqos->q->disk,
2743                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2744         } else {
2745                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2746         }
2747
2748         spin_unlock(&iocg->waitq.lock);
2749         spin_unlock_irqrestore(&ioc->lock, flags);
2750 }
2751
2752 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2753 {
2754         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2755
2756         if (iocg && bio->bi_iocost_cost)
2757                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2758 }
2759
2760 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2761 {
2762         struct ioc *ioc = rqos_to_ioc(rqos);
2763         struct ioc_pcpu_stat *ccs;
2764         u64 on_q_ns, rq_wait_ns, size_nsec;
2765         int pidx, rw;
2766
2767         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2768                 return;
2769
2770         switch (req_op(rq)) {
2771         case REQ_OP_READ:
2772                 pidx = QOS_RLAT;
2773                 rw = READ;
2774                 break;
2775         case REQ_OP_WRITE:
2776                 pidx = QOS_WLAT;
2777                 rw = WRITE;
2778                 break;
2779         default:
2780                 return;
2781         }
2782
2783         on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2784         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2785         size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2786
2787         ccs = get_cpu_ptr(ioc->pcpu_stat);
2788
2789         if (on_q_ns <= size_nsec ||
2790             on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2791                 local_inc(&ccs->missed[rw].nr_met);
2792         else
2793                 local_inc(&ccs->missed[rw].nr_missed);
2794
2795         local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2796
2797         put_cpu_ptr(ccs);
2798 }
2799
2800 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2801 {
2802         struct ioc *ioc = rqos_to_ioc(rqos);
2803
2804         spin_lock_irq(&ioc->lock);
2805         ioc_refresh_params(ioc, false);
2806         spin_unlock_irq(&ioc->lock);
2807 }
2808
2809 static void ioc_rqos_exit(struct rq_qos *rqos)
2810 {
2811         struct ioc *ioc = rqos_to_ioc(rqos);
2812
2813         blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2814
2815         spin_lock_irq(&ioc->lock);
2816         ioc->running = IOC_STOP;
2817         spin_unlock_irq(&ioc->lock);
2818
2819         del_timer_sync(&ioc->timer);
2820         free_percpu(ioc->pcpu_stat);
2821         kfree(ioc);
2822 }
2823
2824 static struct rq_qos_ops ioc_rqos_ops = {
2825         .throttle = ioc_rqos_throttle,
2826         .merge = ioc_rqos_merge,
2827         .done_bio = ioc_rqos_done_bio,
2828         .done = ioc_rqos_done,
2829         .queue_depth_changed = ioc_rqos_queue_depth_changed,
2830         .exit = ioc_rqos_exit,
2831 };
2832
2833 static int blk_iocost_init(struct gendisk *disk)
2834 {
2835         struct request_queue *q = disk->queue;
2836         struct ioc *ioc;
2837         struct rq_qos *rqos;
2838         int i, cpu, ret;
2839
2840         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2841         if (!ioc)
2842                 return -ENOMEM;
2843
2844         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2845         if (!ioc->pcpu_stat) {
2846                 kfree(ioc);
2847                 return -ENOMEM;
2848         }
2849
2850         for_each_possible_cpu(cpu) {
2851                 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2852
2853                 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2854                         local_set(&ccs->missed[i].nr_met, 0);
2855                         local_set(&ccs->missed[i].nr_missed, 0);
2856                 }
2857                 local64_set(&ccs->rq_wait_ns, 0);
2858         }
2859
2860         rqos = &ioc->rqos;
2861         rqos->id = RQ_QOS_COST;
2862         rqos->ops = &ioc_rqos_ops;
2863         rqos->q = q;
2864
2865         spin_lock_init(&ioc->lock);
2866         timer_setup(&ioc->timer, ioc_timer_fn, 0);
2867         INIT_LIST_HEAD(&ioc->active_iocgs);
2868
2869         ioc->running = IOC_IDLE;
2870         ioc->vtime_base_rate = VTIME_PER_USEC;
2871         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2872         seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2873         ioc->period_at = ktime_to_us(ktime_get());
2874         atomic64_set(&ioc->cur_period, 0);
2875         atomic_set(&ioc->hweight_gen, 0);
2876
2877         spin_lock_irq(&ioc->lock);
2878         ioc->autop_idx = AUTOP_INVALID;
2879         ioc_refresh_params(ioc, true);
2880         spin_unlock_irq(&ioc->lock);
2881
2882         /*
2883          * rqos must be added before activation to allow iocg_pd_init() to
2884          * lookup the ioc from q. This means that the rqos methods may get
2885          * called before policy activation completion, can't assume that the
2886          * target bio has an iocg associated and need to test for NULL iocg.
2887          */
2888         ret = rq_qos_add(q, rqos);
2889         if (ret)
2890                 goto err_free_ioc;
2891
2892         ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2893         if (ret)
2894                 goto err_del_qos;
2895         return 0;
2896
2897 err_del_qos:
2898         rq_qos_del(q, rqos);
2899 err_free_ioc:
2900         free_percpu(ioc->pcpu_stat);
2901         kfree(ioc);
2902         return ret;
2903 }
2904
2905 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2906 {
2907         struct ioc_cgrp *iocc;
2908
2909         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2910         if (!iocc)
2911                 return NULL;
2912
2913         iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2914         return &iocc->cpd;
2915 }
2916
2917 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2918 {
2919         kfree(container_of(cpd, struct ioc_cgrp, cpd));
2920 }
2921
2922 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2923                                              struct blkcg *blkcg)
2924 {
2925         int levels = blkcg->css.cgroup->level + 1;
2926         struct ioc_gq *iocg;
2927
2928         iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2929         if (!iocg)
2930                 return NULL;
2931
2932         iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2933         if (!iocg->pcpu_stat) {
2934                 kfree(iocg);
2935                 return NULL;
2936         }
2937
2938         return &iocg->pd;
2939 }
2940
2941 static void ioc_pd_init(struct blkg_policy_data *pd)
2942 {
2943         struct ioc_gq *iocg = pd_to_iocg(pd);
2944         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2945         struct ioc *ioc = q_to_ioc(blkg->q);
2946         struct ioc_now now;
2947         struct blkcg_gq *tblkg;
2948         unsigned long flags;
2949
2950         ioc_now(ioc, &now);
2951
2952         iocg->ioc = ioc;
2953         atomic64_set(&iocg->vtime, now.vnow);
2954         atomic64_set(&iocg->done_vtime, now.vnow);
2955         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2956         INIT_LIST_HEAD(&iocg->active_list);
2957         INIT_LIST_HEAD(&iocg->walk_list);
2958         INIT_LIST_HEAD(&iocg->surplus_list);
2959         iocg->hweight_active = WEIGHT_ONE;
2960         iocg->hweight_inuse = WEIGHT_ONE;
2961
2962         init_waitqueue_head(&iocg->waitq);
2963         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2964         iocg->waitq_timer.function = iocg_waitq_timer_fn;
2965
2966         iocg->level = blkg->blkcg->css.cgroup->level;
2967
2968         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2969                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2970                 iocg->ancestors[tiocg->level] = tiocg;
2971         }
2972
2973         spin_lock_irqsave(&ioc->lock, flags);
2974         weight_updated(iocg, &now);
2975         spin_unlock_irqrestore(&ioc->lock, flags);
2976 }
2977
2978 static void ioc_pd_free(struct blkg_policy_data *pd)
2979 {
2980         struct ioc_gq *iocg = pd_to_iocg(pd);
2981         struct ioc *ioc = iocg->ioc;
2982         unsigned long flags;
2983
2984         if (ioc) {
2985                 spin_lock_irqsave(&ioc->lock, flags);
2986
2987                 if (!list_empty(&iocg->active_list)) {
2988                         struct ioc_now now;
2989
2990                         ioc_now(ioc, &now);
2991                         propagate_weights(iocg, 0, 0, false, &now);
2992                         list_del_init(&iocg->active_list);
2993                 }
2994
2995                 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2996                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2997
2998                 spin_unlock_irqrestore(&ioc->lock, flags);
2999
3000                 hrtimer_cancel(&iocg->waitq_timer);
3001         }
3002         free_percpu(iocg->pcpu_stat);
3003         kfree(iocg);
3004 }
3005
3006 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3007 {
3008         struct ioc_gq *iocg = pd_to_iocg(pd);
3009         struct ioc *ioc = iocg->ioc;
3010
3011         if (!ioc->enabled)
3012                 return;
3013
3014         if (iocg->level == 0) {
3015                 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3016                         ioc->vtime_base_rate * 10000,
3017                         VTIME_PER_USEC);
3018                 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3019         }
3020
3021         seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3022
3023         if (blkcg_debug_stats)
3024                 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3025                         iocg->last_stat.wait_us,
3026                         iocg->last_stat.indebt_us,
3027                         iocg->last_stat.indelay_us);
3028 }
3029
3030 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3031                              int off)
3032 {
3033         const char *dname = blkg_dev_name(pd->blkg);
3034         struct ioc_gq *iocg = pd_to_iocg(pd);
3035
3036         if (dname && iocg->cfg_weight)
3037                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3038         return 0;
3039 }
3040
3041
3042 static int ioc_weight_show(struct seq_file *sf, void *v)
3043 {
3044         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3045         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3046
3047         seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3048         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3049                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3050         return 0;
3051 }
3052
3053 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3054                                 size_t nbytes, loff_t off)
3055 {
3056         struct blkcg *blkcg = css_to_blkcg(of_css(of));
3057         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3058         struct blkg_conf_ctx ctx;
3059         struct ioc_now now;
3060         struct ioc_gq *iocg;
3061         u32 v;
3062         int ret;
3063
3064         if (!strchr(buf, ':')) {
3065                 struct blkcg_gq *blkg;
3066
3067                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3068                         return -EINVAL;
3069
3070                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3071                         return -EINVAL;
3072
3073                 spin_lock_irq(&blkcg->lock);
3074                 iocc->dfl_weight = v * WEIGHT_ONE;
3075                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3076                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
3077
3078                         if (iocg) {
3079                                 spin_lock(&iocg->ioc->lock);
3080                                 ioc_now(iocg->ioc, &now);
3081                                 weight_updated(iocg, &now);
3082                                 spin_unlock(&iocg->ioc->lock);
3083                         }
3084                 }
3085                 spin_unlock_irq(&blkcg->lock);
3086
3087                 return nbytes;
3088         }
3089
3090         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3091         if (ret)
3092                 return ret;
3093
3094         iocg = blkg_to_iocg(ctx.blkg);
3095
3096         if (!strncmp(ctx.body, "default", 7)) {
3097                 v = 0;
3098         } else {
3099                 if (!sscanf(ctx.body, "%u", &v))
3100                         goto einval;
3101                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3102                         goto einval;
3103         }
3104
3105         spin_lock(&iocg->ioc->lock);
3106         iocg->cfg_weight = v * WEIGHT_ONE;
3107         ioc_now(iocg->ioc, &now);
3108         weight_updated(iocg, &now);
3109         spin_unlock(&iocg->ioc->lock);
3110
3111         blkg_conf_finish(&ctx);
3112         return nbytes;
3113
3114 einval:
3115         blkg_conf_finish(&ctx);
3116         return -EINVAL;
3117 }
3118
3119 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3120                           int off)
3121 {
3122         const char *dname = blkg_dev_name(pd->blkg);
3123         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3124
3125         if (!dname)
3126                 return 0;
3127
3128         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3129                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3130                    ioc->params.qos[QOS_RPPM] / 10000,
3131                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
3132                    ioc->params.qos[QOS_RLAT],
3133                    ioc->params.qos[QOS_WPPM] / 10000,
3134                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
3135                    ioc->params.qos[QOS_WLAT],
3136                    ioc->params.qos[QOS_MIN] / 10000,
3137                    ioc->params.qos[QOS_MIN] % 10000 / 100,
3138                    ioc->params.qos[QOS_MAX] / 10000,
3139                    ioc->params.qos[QOS_MAX] % 10000 / 100);
3140         return 0;
3141 }
3142
3143 static int ioc_qos_show(struct seq_file *sf, void *v)
3144 {
3145         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3146
3147         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3148                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3149         return 0;
3150 }
3151
3152 static const match_table_t qos_ctrl_tokens = {
3153         { QOS_ENABLE,           "enable=%u"     },
3154         { QOS_CTRL,             "ctrl=%s"       },
3155         { NR_QOS_CTRL_PARAMS,   NULL            },
3156 };
3157
3158 static const match_table_t qos_tokens = {
3159         { QOS_RPPM,             "rpct=%s"       },
3160         { QOS_RLAT,             "rlat=%u"       },
3161         { QOS_WPPM,             "wpct=%s"       },
3162         { QOS_WLAT,             "wlat=%u"       },
3163         { QOS_MIN,              "min=%s"        },
3164         { QOS_MAX,              "max=%s"        },
3165         { NR_QOS_PARAMS,        NULL            },
3166 };
3167
3168 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3169                              size_t nbytes, loff_t off)
3170 {
3171         struct block_device *bdev;
3172         struct gendisk *disk;
3173         struct ioc *ioc;
3174         u32 qos[NR_QOS_PARAMS];
3175         bool enable, user;
3176         char *p;
3177         int ret;
3178
3179         bdev = blkcg_conf_open_bdev(&input);
3180         if (IS_ERR(bdev))
3181                 return PTR_ERR(bdev);
3182
3183         disk = bdev->bd_disk;
3184         ioc = q_to_ioc(disk->queue);
3185         if (!ioc) {
3186                 ret = blk_iocost_init(disk);
3187                 if (ret)
3188                         goto err;
3189                 ioc = q_to_ioc(disk->queue);
3190         }
3191
3192         blk_mq_freeze_queue(disk->queue);
3193         blk_mq_quiesce_queue(disk->queue);
3194
3195         spin_lock_irq(&ioc->lock);
3196         memcpy(qos, ioc->params.qos, sizeof(qos));
3197         enable = ioc->enabled;
3198         user = ioc->user_qos_params;
3199
3200         while ((p = strsep(&input, " \t\n"))) {
3201                 substring_t args[MAX_OPT_ARGS];
3202                 char buf[32];
3203                 int tok;
3204                 s64 v;
3205
3206                 if (!*p)
3207                         continue;
3208
3209                 switch (match_token(p, qos_ctrl_tokens, args)) {
3210                 case QOS_ENABLE:
3211                         match_u64(&args[0], &v);
3212                         enable = v;
3213                         continue;
3214                 case QOS_CTRL:
3215                         match_strlcpy(buf, &args[0], sizeof(buf));
3216                         if (!strcmp(buf, "auto"))
3217                                 user = false;
3218                         else if (!strcmp(buf, "user"))
3219                                 user = true;
3220                         else
3221                                 goto einval;
3222                         continue;
3223                 }
3224
3225                 tok = match_token(p, qos_tokens, args);
3226                 switch (tok) {
3227                 case QOS_RPPM:
3228                 case QOS_WPPM:
3229                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3230                             sizeof(buf))
3231                                 goto einval;
3232                         if (cgroup_parse_float(buf, 2, &v))
3233                                 goto einval;
3234                         if (v < 0 || v > 10000)
3235                                 goto einval;
3236                         qos[tok] = v * 100;
3237                         break;
3238                 case QOS_RLAT:
3239                 case QOS_WLAT:
3240                         if (match_u64(&args[0], &v))
3241                                 goto einval;
3242                         qos[tok] = v;
3243                         break;
3244                 case QOS_MIN:
3245                 case QOS_MAX:
3246                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3247                             sizeof(buf))
3248                                 goto einval;
3249                         if (cgroup_parse_float(buf, 2, &v))
3250                                 goto einval;
3251                         if (v < 0)
3252                                 goto einval;
3253                         qos[tok] = clamp_t(s64, v * 100,
3254                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
3255                         break;
3256                 default:
3257                         goto einval;
3258                 }
3259                 user = true;
3260         }
3261
3262         if (qos[QOS_MIN] > qos[QOS_MAX])
3263                 goto einval;
3264
3265         if (enable) {
3266                 blk_stat_enable_accounting(disk->queue);
3267                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3268                 ioc->enabled = true;
3269                 wbt_disable_default(disk->queue);
3270         } else {
3271                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3272                 ioc->enabled = false;
3273                 wbt_enable_default(disk->queue);
3274         }
3275
3276         if (user) {
3277                 memcpy(ioc->params.qos, qos, sizeof(qos));
3278                 ioc->user_qos_params = true;
3279         } else {
3280                 ioc->user_qos_params = false;
3281         }
3282
3283         ioc_refresh_params(ioc, true);
3284         spin_unlock_irq(&ioc->lock);
3285
3286         blk_mq_unquiesce_queue(disk->queue);
3287         blk_mq_unfreeze_queue(disk->queue);
3288
3289         blkdev_put_no_open(bdev);
3290         return nbytes;
3291 einval:
3292         spin_unlock_irq(&ioc->lock);
3293
3294         blk_mq_unquiesce_queue(disk->queue);
3295         blk_mq_unfreeze_queue(disk->queue);
3296
3297         ret = -EINVAL;
3298 err:
3299         blkdev_put_no_open(bdev);
3300         return ret;
3301 }
3302
3303 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3304                                  struct blkg_policy_data *pd, int off)
3305 {
3306         const char *dname = blkg_dev_name(pd->blkg);
3307         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3308         u64 *u = ioc->params.i_lcoefs;
3309
3310         if (!dname)
3311                 return 0;
3312
3313         seq_printf(sf, "%s ctrl=%s model=linear "
3314                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
3315                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3316                    dname, ioc->user_cost_model ? "user" : "auto",
3317                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3318                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3319         return 0;
3320 }
3321
3322 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3323 {
3324         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3325
3326         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3327                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3328         return 0;
3329 }
3330
3331 static const match_table_t cost_ctrl_tokens = {
3332         { COST_CTRL,            "ctrl=%s"       },
3333         { COST_MODEL,           "model=%s"      },
3334         { NR_COST_CTRL_PARAMS,  NULL            },
3335 };
3336
3337 static const match_table_t i_lcoef_tokens = {
3338         { I_LCOEF_RBPS,         "rbps=%u"       },
3339         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
3340         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
3341         { I_LCOEF_WBPS,         "wbps=%u"       },
3342         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
3343         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
3344         { NR_I_LCOEFS,          NULL            },
3345 };
3346
3347 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3348                                     size_t nbytes, loff_t off)
3349 {
3350         struct block_device *bdev;
3351         struct request_queue *q;
3352         struct ioc *ioc;
3353         u64 u[NR_I_LCOEFS];
3354         bool user;
3355         char *p;
3356         int ret;
3357
3358         bdev = blkcg_conf_open_bdev(&input);
3359         if (IS_ERR(bdev))
3360                 return PTR_ERR(bdev);
3361
3362         q = bdev_get_queue(bdev);
3363         ioc = q_to_ioc(q);
3364         if (!ioc) {
3365                 ret = blk_iocost_init(bdev->bd_disk);
3366                 if (ret)
3367                         goto err;
3368                 ioc = q_to_ioc(q);
3369         }
3370
3371         blk_mq_freeze_queue(q);
3372         blk_mq_quiesce_queue(q);
3373
3374         spin_lock_irq(&ioc->lock);
3375         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3376         user = ioc->user_cost_model;
3377
3378         while ((p = strsep(&input, " \t\n"))) {
3379                 substring_t args[MAX_OPT_ARGS];
3380                 char buf[32];
3381                 int tok;
3382                 u64 v;
3383
3384                 if (!*p)
3385                         continue;
3386
3387                 switch (match_token(p, cost_ctrl_tokens, args)) {
3388                 case COST_CTRL:
3389                         match_strlcpy(buf, &args[0], sizeof(buf));
3390                         if (!strcmp(buf, "auto"))
3391                                 user = false;
3392                         else if (!strcmp(buf, "user"))
3393                                 user = true;
3394                         else
3395                                 goto einval;
3396                         continue;
3397                 case COST_MODEL:
3398                         match_strlcpy(buf, &args[0], sizeof(buf));
3399                         if (strcmp(buf, "linear"))
3400                                 goto einval;
3401                         continue;
3402                 }
3403
3404                 tok = match_token(p, i_lcoef_tokens, args);
3405                 if (tok == NR_I_LCOEFS)
3406                         goto einval;
3407                 if (match_u64(&args[0], &v))
3408                         goto einval;
3409                 u[tok] = v;
3410                 user = true;
3411         }
3412
3413         if (user) {
3414                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3415                 ioc->user_cost_model = true;
3416         } else {
3417                 ioc->user_cost_model = false;
3418         }
3419         ioc_refresh_params(ioc, true);
3420         spin_unlock_irq(&ioc->lock);
3421
3422         blk_mq_unquiesce_queue(q);
3423         blk_mq_unfreeze_queue(q);
3424
3425         blkdev_put_no_open(bdev);
3426         return nbytes;
3427
3428 einval:
3429         spin_unlock_irq(&ioc->lock);
3430
3431         blk_mq_unquiesce_queue(q);
3432         blk_mq_unfreeze_queue(q);
3433
3434         ret = -EINVAL;
3435 err:
3436         blkdev_put_no_open(bdev);
3437         return ret;
3438 }
3439
3440 static struct cftype ioc_files[] = {
3441         {
3442                 .name = "weight",
3443                 .flags = CFTYPE_NOT_ON_ROOT,
3444                 .seq_show = ioc_weight_show,
3445                 .write = ioc_weight_write,
3446         },
3447         {
3448                 .name = "cost.qos",
3449                 .flags = CFTYPE_ONLY_ON_ROOT,
3450                 .seq_show = ioc_qos_show,
3451                 .write = ioc_qos_write,
3452         },
3453         {
3454                 .name = "cost.model",
3455                 .flags = CFTYPE_ONLY_ON_ROOT,
3456                 .seq_show = ioc_cost_model_show,
3457                 .write = ioc_cost_model_write,
3458         },
3459         {}
3460 };
3461
3462 static struct blkcg_policy blkcg_policy_iocost = {
3463         .dfl_cftypes    = ioc_files,
3464         .cpd_alloc_fn   = ioc_cpd_alloc,
3465         .cpd_free_fn    = ioc_cpd_free,
3466         .pd_alloc_fn    = ioc_pd_alloc,
3467         .pd_init_fn     = ioc_pd_init,
3468         .pd_free_fn     = ioc_pd_free,
3469         .pd_stat_fn     = ioc_pd_stat,
3470 };
3471
3472 static int __init ioc_init(void)
3473 {
3474         return blkcg_policy_register(&blkcg_policy_iocost);
3475 }
3476
3477 static void __exit ioc_exit(void)
3478 {
3479         blkcg_policy_unregister(&blkcg_policy_iocost);
3480 }
3481
3482 module_init(ioc_init);
3483 module_exit(ioc_exit);