Merge tag 'livepatching-for-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * parameters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO if doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, solely depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per        : Timer period
166  * - cur_per    : Internal wall and device vtime clock
167  * - vrate      : Device virtual time rate against wall clock
168  * - weight     : Surplus-adjusted and configured weights
169  * - hweight    : Surplus-adjusted and configured hierarchical weights
170  * - inflt      : The percentage of in-flight IO cost at the end of last period
171  * - del_ms     : Deferred issuer delay induction level and duration
172  * - usages     : Usage history
173  */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
185 #include "blk-wbt.h"
186 #include "blk-cgroup.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
196         do {                                                                    \
197                 unsigned long flags;                                            \
198                 if (trace_iocost_##type##_enabled()) {                          \
199                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
200                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
201                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
202                         trace_iocost_##type(iocg, trace_iocg_path,              \
203                                               ##__VA_ARGS__);                   \
204                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
205                 }                                                               \
206         } while (0)
207
208 #else   /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
210 #endif  /* CONFIG_TRACE_POINTS */
211
212 enum {
213         MILLION                 = 1000000,
214
215         /* timer period is calculated from latency requirements, bound it */
216         MIN_PERIOD              = USEC_PER_MSEC,
217         MAX_PERIOD              = USEC_PER_SEC,
218
219         /*
220          * iocg->vtime is targeted at 50% behind the device vtime, which
221          * serves as its IO credit buffer.  Surplus weight adjustment is
222          * immediately canceled if the vtime margin runs below 10%.
223          */
224         MARGIN_MIN_PCT          = 10,
225         MARGIN_LOW_PCT          = 20,
226         MARGIN_TARGET_PCT       = 50,
227
228         INUSE_ADJ_STEP_PCT      = 25,
229
230         /* Have some play in timer operations */
231         TIMER_SLACK_PCT         = 1,
232
233         /* 1/64k is granular enough and can easily be handled w/ u32 */
234         WEIGHT_ONE              = 1 << 16,
235 };
236
237 enum {
238         /*
239          * As vtime is used to calculate the cost of each IO, it needs to
240          * be fairly high precision.  For example, it should be able to
241          * represent the cost of a single page worth of discard with
242          * suffificient accuracy.  At the same time, it should be able to
243          * represent reasonably long enough durations to be useful and
244          * convenient during operation.
245          *
246          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
247          * granularity and days of wrap-around time even at extreme vrates.
248          */
249         VTIME_PER_SEC_SHIFT     = 37,
250         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
251         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
252         VTIME_PER_NSEC          = VTIME_PER_SEC / NSEC_PER_SEC,
253
254         /* bound vrate adjustments within two orders of magnitude */
255         VRATE_MIN_PPM           = 10000,        /* 1% */
256         VRATE_MAX_PPM           = 100000000,    /* 10000% */
257
258         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259         VRATE_CLAMP_ADJ_PCT     = 4,
260
261         /* switch iff the conditions are met for longer than this */
262         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
263 };
264
265 enum {
266         /* if IOs end up waiting for requests, issue less */
267         RQ_WAIT_BUSY_PCT        = 5,
268
269         /* unbusy hysterisis */
270         UNBUSY_THR_PCT          = 75,
271
272         /*
273          * The effect of delay is indirect and non-linear and a huge amount of
274          * future debt can accumulate abruptly while unthrottled. Linearly scale
275          * up delay as debt is going up and then let it decay exponentially.
276          * This gives us quick ramp ups while delay is accumulating and long
277          * tails which can help reducing the frequency of debt explosions on
278          * unthrottle. The parameters are experimentally determined.
279          *
280          * The delay mechanism provides adequate protection and behavior in many
281          * cases. However, this is far from ideal and falls shorts on both
282          * fronts. The debtors are often throttled too harshly costing a
283          * significant level of fairness and possibly total work while the
284          * protection against their impacts on the system can be choppy and
285          * unreliable.
286          *
287          * The shortcoming primarily stems from the fact that, unlike for page
288          * cache, the kernel doesn't have well-defined back-pressure propagation
289          * mechanism and policies for anonymous memory. Fully addressing this
290          * issue will likely require substantial improvements in the area.
291          */
292         MIN_DELAY_THR_PCT       = 500,
293         MAX_DELAY_THR_PCT       = 25000,
294         MIN_DELAY               = 250,
295         MAX_DELAY               = 250 * USEC_PER_MSEC,
296
297         /* halve debts if avg usage over 100ms is under 50% */
298         DFGV_USAGE_PCT          = 50,
299         DFGV_PERIOD             = 100 * USEC_PER_MSEC,
300
301         /* don't let cmds which take a very long time pin lagging for too long */
302         MAX_LAGGING_PERIODS     = 10,
303
304         /*
305          * Count IO size in 4k pages.  The 12bit shift helps keeping
306          * size-proportional components of cost calculation in closer
307          * numbers of digits to per-IO cost components.
308          */
309         IOC_PAGE_SHIFT          = 12,
310         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
311         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
312
313         /* if apart further than 16M, consider randio for linear model */
314         LCOEF_RANDIO_PAGES      = 4096,
315 };
316
317 enum ioc_running {
318         IOC_IDLE,
319         IOC_RUNNING,
320         IOC_STOP,
321 };
322
323 /* io.cost.qos controls including per-dev enable of the whole controller */
324 enum {
325         QOS_ENABLE,
326         QOS_CTRL,
327         NR_QOS_CTRL_PARAMS,
328 };
329
330 /* io.cost.qos params */
331 enum {
332         QOS_RPPM,
333         QOS_RLAT,
334         QOS_WPPM,
335         QOS_WLAT,
336         QOS_MIN,
337         QOS_MAX,
338         NR_QOS_PARAMS,
339 };
340
341 /* io.cost.model controls */
342 enum {
343         COST_CTRL,
344         COST_MODEL,
345         NR_COST_CTRL_PARAMS,
346 };
347
348 /* builtin linear cost model coefficients */
349 enum {
350         I_LCOEF_RBPS,
351         I_LCOEF_RSEQIOPS,
352         I_LCOEF_RRANDIOPS,
353         I_LCOEF_WBPS,
354         I_LCOEF_WSEQIOPS,
355         I_LCOEF_WRANDIOPS,
356         NR_I_LCOEFS,
357 };
358
359 enum {
360         LCOEF_RPAGE,
361         LCOEF_RSEQIO,
362         LCOEF_RRANDIO,
363         LCOEF_WPAGE,
364         LCOEF_WSEQIO,
365         LCOEF_WRANDIO,
366         NR_LCOEFS,
367 };
368
369 enum {
370         AUTOP_INVALID,
371         AUTOP_HDD,
372         AUTOP_SSD_QD1,
373         AUTOP_SSD_DFL,
374         AUTOP_SSD_FAST,
375 };
376
377 struct ioc_params {
378         u32                             qos[NR_QOS_PARAMS];
379         u64                             i_lcoefs[NR_I_LCOEFS];
380         u64                             lcoefs[NR_LCOEFS];
381         u32                             too_fast_vrate_pct;
382         u32                             too_slow_vrate_pct;
383 };
384
385 struct ioc_margins {
386         s64                             min;
387         s64                             low;
388         s64                             target;
389 };
390
391 struct ioc_missed {
392         local_t                         nr_met;
393         local_t                         nr_missed;
394         u32                             last_met;
395         u32                             last_missed;
396 };
397
398 struct ioc_pcpu_stat {
399         struct ioc_missed               missed[2];
400
401         local64_t                       rq_wait_ns;
402         u64                             last_rq_wait_ns;
403 };
404
405 /* per device */
406 struct ioc {
407         struct rq_qos                   rqos;
408
409         bool                            enabled;
410
411         struct ioc_params               params;
412         struct ioc_margins              margins;
413         u32                             period_us;
414         u32                             timer_slack_ns;
415         u64                             vrate_min;
416         u64                             vrate_max;
417
418         spinlock_t                      lock;
419         struct timer_list               timer;
420         struct list_head                active_iocgs;   /* active cgroups */
421         struct ioc_pcpu_stat __percpu   *pcpu_stat;
422
423         enum ioc_running                running;
424         atomic64_t                      vtime_rate;
425         u64                             vtime_base_rate;
426         s64                             vtime_err;
427
428         seqcount_spinlock_t             period_seqcount;
429         u64                             period_at;      /* wallclock starttime */
430         u64                             period_at_vtime; /* vtime starttime */
431
432         atomic64_t                      cur_period;     /* inc'd each period */
433         int                             busy_level;     /* saturation history */
434
435         bool                            weights_updated;
436         atomic_t                        hweight_gen;    /* for lazy hweights */
437
438         /* debt forgivness */
439         u64                             dfgv_period_at;
440         u64                             dfgv_period_rem;
441         u64                             dfgv_usage_us_sum;
442
443         u64                             autop_too_fast_at;
444         u64                             autop_too_slow_at;
445         int                             autop_idx;
446         bool                            user_qos_params:1;
447         bool                            user_cost_model:1;
448 };
449
450 struct iocg_pcpu_stat {
451         local64_t                       abs_vusage;
452 };
453
454 struct iocg_stat {
455         u64                             usage_us;
456         u64                             wait_us;
457         u64                             indebt_us;
458         u64                             indelay_us;
459 };
460
461 /* per device-cgroup pair */
462 struct ioc_gq {
463         struct blkg_policy_data         pd;
464         struct ioc                      *ioc;
465
466         /*
467          * A iocg can get its weight from two sources - an explicit
468          * per-device-cgroup configuration or the default weight of the
469          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
470          * configuration.  `weight` is the effective considering both
471          * sources.
472          *
473          * When an idle cgroup becomes active its `active` goes from 0 to
474          * `weight`.  `inuse` is the surplus adjusted active weight.
475          * `active` and `inuse` are used to calculate `hweight_active` and
476          * `hweight_inuse`.
477          *
478          * `last_inuse` remembers `inuse` while an iocg is idle to persist
479          * surplus adjustments.
480          *
481          * `inuse` may be adjusted dynamically during period. `saved_*` are used
482          * to determine and track adjustments.
483          */
484         u32                             cfg_weight;
485         u32                             weight;
486         u32                             active;
487         u32                             inuse;
488
489         u32                             last_inuse;
490         s64                             saved_margin;
491
492         sector_t                        cursor;         /* to detect randio */
493
494         /*
495          * `vtime` is this iocg's vtime cursor which progresses as IOs are
496          * issued.  If lagging behind device vtime, the delta represents
497          * the currently available IO budget.  If running ahead, the
498          * overage.
499          *
500          * `vtime_done` is the same but progressed on completion rather
501          * than issue.  The delta behind `vtime` represents the cost of
502          * currently in-flight IOs.
503          */
504         atomic64_t                      vtime;
505         atomic64_t                      done_vtime;
506         u64                             abs_vdebt;
507
508         /* current delay in effect and when it started */
509         u64                             delay;
510         u64                             delay_at;
511
512         /*
513          * The period this iocg was last active in.  Used for deactivation
514          * and invalidating `vtime`.
515          */
516         atomic64_t                      active_period;
517         struct list_head                active_list;
518
519         /* see __propagate_weights() and current_hweight() for details */
520         u64                             child_active_sum;
521         u64                             child_inuse_sum;
522         u64                             child_adjusted_sum;
523         int                             hweight_gen;
524         u32                             hweight_active;
525         u32                             hweight_inuse;
526         u32                             hweight_donating;
527         u32                             hweight_after_donation;
528
529         struct list_head                walk_list;
530         struct list_head                surplus_list;
531
532         struct wait_queue_head          waitq;
533         struct hrtimer                  waitq_timer;
534
535         /* timestamp at the latest activation */
536         u64                             activated_at;
537
538         /* statistics */
539         struct iocg_pcpu_stat __percpu  *pcpu_stat;
540         struct iocg_stat                stat;
541         struct iocg_stat                last_stat;
542         u64                             last_stat_abs_vusage;
543         u64                             usage_delta_us;
544         u64                             wait_since;
545         u64                             indebt_since;
546         u64                             indelay_since;
547
548         /* this iocg's depth in the hierarchy and ancestors including self */
549         int                             level;
550         struct ioc_gq                   *ancestors[];
551 };
552
553 /* per cgroup */
554 struct ioc_cgrp {
555         struct blkcg_policy_data        cpd;
556         unsigned int                    dfl_weight;
557 };
558
559 struct ioc_now {
560         u64                             now_ns;
561         u64                             now;
562         u64                             vnow;
563 };
564
565 struct iocg_wait {
566         struct wait_queue_entry         wait;
567         struct bio                      *bio;
568         u64                             abs_cost;
569         bool                            committed;
570 };
571
572 struct iocg_wake_ctx {
573         struct ioc_gq                   *iocg;
574         u32                             hw_inuse;
575         s64                             vbudget;
576 };
577
578 static const struct ioc_params autop[] = {
579         [AUTOP_HDD] = {
580                 .qos                            = {
581                         [QOS_RLAT]              =        250000, /* 250ms */
582                         [QOS_WLAT]              =        250000,
583                         [QOS_MIN]               = VRATE_MIN_PPM,
584                         [QOS_MAX]               = VRATE_MAX_PPM,
585                 },
586                 .i_lcoefs                       = {
587                         [I_LCOEF_RBPS]          =     174019176,
588                         [I_LCOEF_RSEQIOPS]      =         41708,
589                         [I_LCOEF_RRANDIOPS]     =           370,
590                         [I_LCOEF_WBPS]          =     178075866,
591                         [I_LCOEF_WSEQIOPS]      =         42705,
592                         [I_LCOEF_WRANDIOPS]     =           378,
593                 },
594         },
595         [AUTOP_SSD_QD1] = {
596                 .qos                            = {
597                         [QOS_RLAT]              =         25000, /* 25ms */
598                         [QOS_WLAT]              =         25000,
599                         [QOS_MIN]               = VRATE_MIN_PPM,
600                         [QOS_MAX]               = VRATE_MAX_PPM,
601                 },
602                 .i_lcoefs                       = {
603                         [I_LCOEF_RBPS]          =     245855193,
604                         [I_LCOEF_RSEQIOPS]      =         61575,
605                         [I_LCOEF_RRANDIOPS]     =          6946,
606                         [I_LCOEF_WBPS]          =     141365009,
607                         [I_LCOEF_WSEQIOPS]      =         33716,
608                         [I_LCOEF_WRANDIOPS]     =         26796,
609                 },
610         },
611         [AUTOP_SSD_DFL] = {
612                 .qos                            = {
613                         [QOS_RLAT]              =         25000, /* 25ms */
614                         [QOS_WLAT]              =         25000,
615                         [QOS_MIN]               = VRATE_MIN_PPM,
616                         [QOS_MAX]               = VRATE_MAX_PPM,
617                 },
618                 .i_lcoefs                       = {
619                         [I_LCOEF_RBPS]          =     488636629,
620                         [I_LCOEF_RSEQIOPS]      =          8932,
621                         [I_LCOEF_RRANDIOPS]     =          8518,
622                         [I_LCOEF_WBPS]          =     427891549,
623                         [I_LCOEF_WSEQIOPS]      =         28755,
624                         [I_LCOEF_WRANDIOPS]     =         21940,
625                 },
626                 .too_fast_vrate_pct             =           500,
627         },
628         [AUTOP_SSD_FAST] = {
629                 .qos                            = {
630                         [QOS_RLAT]              =          5000, /* 5ms */
631                         [QOS_WLAT]              =          5000,
632                         [QOS_MIN]               = VRATE_MIN_PPM,
633                         [QOS_MAX]               = VRATE_MAX_PPM,
634                 },
635                 .i_lcoefs                       = {
636                         [I_LCOEF_RBPS]          =    3102524156LLU,
637                         [I_LCOEF_RSEQIOPS]      =        724816,
638                         [I_LCOEF_RRANDIOPS]     =        778122,
639                         [I_LCOEF_WBPS]          =    1742780862LLU,
640                         [I_LCOEF_WSEQIOPS]      =        425702,
641                         [I_LCOEF_WRANDIOPS]     =        443193,
642                 },
643                 .too_slow_vrate_pct             =            10,
644         },
645 };
646
647 /*
648  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
649  * vtime credit shortage and down on device saturation.
650  */
651 static u32 vrate_adj_pct[] =
652         { 0, 0, 0, 0,
653           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
654           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
655           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
656
657 static struct blkcg_policy blkcg_policy_iocost;
658
659 /* accessors and helpers */
660 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
661 {
662         return container_of(rqos, struct ioc, rqos);
663 }
664
665 static struct ioc *q_to_ioc(struct request_queue *q)
666 {
667         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
668 }
669
670 static const char __maybe_unused *ioc_name(struct ioc *ioc)
671 {
672         struct gendisk *disk = ioc->rqos.disk;
673
674         if (!disk)
675                 return "<unknown>";
676         return disk->disk_name;
677 }
678
679 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
680 {
681         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
682 }
683
684 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
685 {
686         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
687 }
688
689 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
690 {
691         return pd_to_blkg(&iocg->pd);
692 }
693
694 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
695 {
696         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
697                             struct ioc_cgrp, cpd);
698 }
699
700 /*
701  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
702  * weight, the more expensive each IO.  Must round up.
703  */
704 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
705 {
706         return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
707 }
708
709 /*
710  * The inverse of abs_cost_to_cost().  Must round up.
711  */
712 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
713 {
714         return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
715 }
716
717 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
718                             u64 abs_cost, u64 cost)
719 {
720         struct iocg_pcpu_stat *gcs;
721
722         bio->bi_iocost_cost = cost;
723         atomic64_add(cost, &iocg->vtime);
724
725         gcs = get_cpu_ptr(iocg->pcpu_stat);
726         local64_add(abs_cost, &gcs->abs_vusage);
727         put_cpu_ptr(gcs);
728 }
729
730 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
731 {
732         if (lock_ioc) {
733                 spin_lock_irqsave(&iocg->ioc->lock, *flags);
734                 spin_lock(&iocg->waitq.lock);
735         } else {
736                 spin_lock_irqsave(&iocg->waitq.lock, *flags);
737         }
738 }
739
740 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
741 {
742         if (unlock_ioc) {
743                 spin_unlock(&iocg->waitq.lock);
744                 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
745         } else {
746                 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
747         }
748 }
749
750 #define CREATE_TRACE_POINTS
751 #include <trace/events/iocost.h>
752
753 static void ioc_refresh_margins(struct ioc *ioc)
754 {
755         struct ioc_margins *margins = &ioc->margins;
756         u32 period_us = ioc->period_us;
757         u64 vrate = ioc->vtime_base_rate;
758
759         margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
760         margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
761         margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
762 }
763
764 /* latency Qos params changed, update period_us and all the dependent params */
765 static void ioc_refresh_period_us(struct ioc *ioc)
766 {
767         u32 ppm, lat, multi, period_us;
768
769         lockdep_assert_held(&ioc->lock);
770
771         /* pick the higher latency target */
772         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
773                 ppm = ioc->params.qos[QOS_RPPM];
774                 lat = ioc->params.qos[QOS_RLAT];
775         } else {
776                 ppm = ioc->params.qos[QOS_WPPM];
777                 lat = ioc->params.qos[QOS_WLAT];
778         }
779
780         /*
781          * We want the period to be long enough to contain a healthy number
782          * of IOs while short enough for granular control.  Define it as a
783          * multiple of the latency target.  Ideally, the multiplier should
784          * be scaled according to the percentile so that it would nominally
785          * contain a certain number of requests.  Let's be simpler and
786          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
787          */
788         if (ppm)
789                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
790         else
791                 multi = 2;
792         period_us = multi * lat;
793         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
794
795         /* calculate dependent params */
796         ioc->period_us = period_us;
797         ioc->timer_slack_ns = div64_u64(
798                 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
799                 100);
800         ioc_refresh_margins(ioc);
801 }
802
803 static int ioc_autop_idx(struct ioc *ioc)
804 {
805         int idx = ioc->autop_idx;
806         const struct ioc_params *p = &autop[idx];
807         u32 vrate_pct;
808         u64 now_ns;
809
810         /* rotational? */
811         if (!blk_queue_nonrot(ioc->rqos.disk->queue))
812                 return AUTOP_HDD;
813
814         /* handle SATA SSDs w/ broken NCQ */
815         if (blk_queue_depth(ioc->rqos.disk->queue) == 1)
816                 return AUTOP_SSD_QD1;
817
818         /* use one of the normal ssd sets */
819         if (idx < AUTOP_SSD_DFL)
820                 return AUTOP_SSD_DFL;
821
822         /* if user is overriding anything, maintain what was there */
823         if (ioc->user_qos_params || ioc->user_cost_model)
824                 return idx;
825
826         /* step up/down based on the vrate */
827         vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
828         now_ns = ktime_get_ns();
829
830         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
831                 if (!ioc->autop_too_fast_at)
832                         ioc->autop_too_fast_at = now_ns;
833                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
834                         return idx + 1;
835         } else {
836                 ioc->autop_too_fast_at = 0;
837         }
838
839         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
840                 if (!ioc->autop_too_slow_at)
841                         ioc->autop_too_slow_at = now_ns;
842                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
843                         return idx - 1;
844         } else {
845                 ioc->autop_too_slow_at = 0;
846         }
847
848         return idx;
849 }
850
851 /*
852  * Take the followings as input
853  *
854  *  @bps        maximum sequential throughput
855  *  @seqiops    maximum sequential 4k iops
856  *  @randiops   maximum random 4k iops
857  *
858  * and calculate the linear model cost coefficients.
859  *
860  *  *@page      per-page cost           1s / (@bps / 4096)
861  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
862  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
863  */
864 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
865                         u64 *page, u64 *seqio, u64 *randio)
866 {
867         u64 v;
868
869         *page = *seqio = *randio = 0;
870
871         if (bps) {
872                 u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE);
873
874                 if (bps_pages)
875                         *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages);
876                 else
877                         *page = 1;
878         }
879
880         if (seqiops) {
881                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
882                 if (v > *page)
883                         *seqio = v - *page;
884         }
885
886         if (randiops) {
887                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
888                 if (v > *page)
889                         *randio = v - *page;
890         }
891 }
892
893 static void ioc_refresh_lcoefs(struct ioc *ioc)
894 {
895         u64 *u = ioc->params.i_lcoefs;
896         u64 *c = ioc->params.lcoefs;
897
898         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
899                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
900         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
901                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
902 }
903
904 static bool ioc_refresh_params(struct ioc *ioc, bool force)
905 {
906         const struct ioc_params *p;
907         int idx;
908
909         lockdep_assert_held(&ioc->lock);
910
911         idx = ioc_autop_idx(ioc);
912         p = &autop[idx];
913
914         if (idx == ioc->autop_idx && !force)
915                 return false;
916
917         if (idx != ioc->autop_idx) {
918                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
919                 ioc->vtime_base_rate = VTIME_PER_USEC;
920         }
921
922         ioc->autop_idx = idx;
923         ioc->autop_too_fast_at = 0;
924         ioc->autop_too_slow_at = 0;
925
926         if (!ioc->user_qos_params)
927                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
928         if (!ioc->user_cost_model)
929                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
930
931         ioc_refresh_period_us(ioc);
932         ioc_refresh_lcoefs(ioc);
933
934         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
935                                             VTIME_PER_USEC, MILLION);
936         ioc->vrate_max = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MAX] *
937                                             VTIME_PER_USEC, MILLION);
938
939         return true;
940 }
941
942 /*
943  * When an iocg accumulates too much vtime or gets deactivated, we throw away
944  * some vtime, which lowers the overall device utilization. As the exact amount
945  * which is being thrown away is known, we can compensate by accelerating the
946  * vrate accordingly so that the extra vtime generated in the current period
947  * matches what got lost.
948  */
949 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
950 {
951         s64 pleft = ioc->period_at + ioc->period_us - now->now;
952         s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
953         s64 vcomp, vcomp_min, vcomp_max;
954
955         lockdep_assert_held(&ioc->lock);
956
957         /* we need some time left in this period */
958         if (pleft <= 0)
959                 goto done;
960
961         /*
962          * Calculate how much vrate should be adjusted to offset the error.
963          * Limit the amount of adjustment and deduct the adjusted amount from
964          * the error.
965          */
966         vcomp = -div64_s64(ioc->vtime_err, pleft);
967         vcomp_min = -(ioc->vtime_base_rate >> 1);
968         vcomp_max = ioc->vtime_base_rate;
969         vcomp = clamp(vcomp, vcomp_min, vcomp_max);
970
971         ioc->vtime_err += vcomp * pleft;
972
973         atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
974 done:
975         /* bound how much error can accumulate */
976         ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
977 }
978
979 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
980                                   int nr_lagging, int nr_shortages,
981                                   int prev_busy_level, u32 *missed_ppm)
982 {
983         u64 vrate = ioc->vtime_base_rate;
984         u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
985
986         if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
987                 if (ioc->busy_level != prev_busy_level || nr_lagging)
988                         trace_iocost_ioc_vrate_adj(ioc, vrate,
989                                                    missed_ppm, rq_wait_pct,
990                                                    nr_lagging, nr_shortages);
991
992                 return;
993         }
994
995         /*
996          * If vrate is out of bounds, apply clamp gradually as the
997          * bounds can change abruptly.  Otherwise, apply busy_level
998          * based adjustment.
999          */
1000         if (vrate < vrate_min) {
1001                 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
1002                 vrate = min(vrate, vrate_min);
1003         } else if (vrate > vrate_max) {
1004                 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
1005                 vrate = max(vrate, vrate_max);
1006         } else {
1007                 int idx = min_t(int, abs(ioc->busy_level),
1008                                 ARRAY_SIZE(vrate_adj_pct) - 1);
1009                 u32 adj_pct = vrate_adj_pct[idx];
1010
1011                 if (ioc->busy_level > 0)
1012                         adj_pct = 100 - adj_pct;
1013                 else
1014                         adj_pct = 100 + adj_pct;
1015
1016                 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1017                               vrate_min, vrate_max);
1018         }
1019
1020         trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1021                                    nr_lagging, nr_shortages);
1022
1023         ioc->vtime_base_rate = vrate;
1024         ioc_refresh_margins(ioc);
1025 }
1026
1027 /* take a snapshot of the current [v]time and vrate */
1028 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1029 {
1030         unsigned seq;
1031         u64 vrate;
1032
1033         now->now_ns = ktime_get();
1034         now->now = ktime_to_us(now->now_ns);
1035         vrate = atomic64_read(&ioc->vtime_rate);
1036
1037         /*
1038          * The current vtime is
1039          *
1040          *   vtime at period start + (wallclock time since the start) * vrate
1041          *
1042          * As a consistent snapshot of `period_at_vtime` and `period_at` is
1043          * needed, they're seqcount protected.
1044          */
1045         do {
1046                 seq = read_seqcount_begin(&ioc->period_seqcount);
1047                 now->vnow = ioc->period_at_vtime +
1048                         (now->now - ioc->period_at) * vrate;
1049         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1050 }
1051
1052 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1053 {
1054         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1055
1056         write_seqcount_begin(&ioc->period_seqcount);
1057         ioc->period_at = now->now;
1058         ioc->period_at_vtime = now->vnow;
1059         write_seqcount_end(&ioc->period_seqcount);
1060
1061         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1062         add_timer(&ioc->timer);
1063 }
1064
1065 /*
1066  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1067  * weight sums and propagate upwards accordingly. If @save, the current margin
1068  * is saved to be used as reference for later inuse in-period adjustments.
1069  */
1070 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1071                                 bool save, struct ioc_now *now)
1072 {
1073         struct ioc *ioc = iocg->ioc;
1074         int lvl;
1075
1076         lockdep_assert_held(&ioc->lock);
1077
1078         /*
1079          * For an active leaf node, its inuse shouldn't be zero or exceed
1080          * @active. An active internal node's inuse is solely determined by the
1081          * inuse to active ratio of its children regardless of @inuse.
1082          */
1083         if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1084                 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1085                                            iocg->child_active_sum);
1086         } else {
1087                 inuse = clamp_t(u32, inuse, 1, active);
1088         }
1089
1090         iocg->last_inuse = iocg->inuse;
1091         if (save)
1092                 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1093
1094         if (active == iocg->active && inuse == iocg->inuse)
1095                 return;
1096
1097         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1098                 struct ioc_gq *parent = iocg->ancestors[lvl];
1099                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1100                 u32 parent_active = 0, parent_inuse = 0;
1101
1102                 /* update the level sums */
1103                 parent->child_active_sum += (s32)(active - child->active);
1104                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1105                 /* apply the updates */
1106                 child->active = active;
1107                 child->inuse = inuse;
1108
1109                 /*
1110                  * The delta between inuse and active sums indicates that
1111                  * much of weight is being given away.  Parent's inuse
1112                  * and active should reflect the ratio.
1113                  */
1114                 if (parent->child_active_sum) {
1115                         parent_active = parent->weight;
1116                         parent_inuse = DIV64_U64_ROUND_UP(
1117                                 parent_active * parent->child_inuse_sum,
1118                                 parent->child_active_sum);
1119                 }
1120
1121                 /* do we need to keep walking up? */
1122                 if (parent_active == parent->active &&
1123                     parent_inuse == parent->inuse)
1124                         break;
1125
1126                 active = parent_active;
1127                 inuse = parent_inuse;
1128         }
1129
1130         ioc->weights_updated = true;
1131 }
1132
1133 static void commit_weights(struct ioc *ioc)
1134 {
1135         lockdep_assert_held(&ioc->lock);
1136
1137         if (ioc->weights_updated) {
1138                 /* paired with rmb in current_hweight(), see there */
1139                 smp_wmb();
1140                 atomic_inc(&ioc->hweight_gen);
1141                 ioc->weights_updated = false;
1142         }
1143 }
1144
1145 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1146                               bool save, struct ioc_now *now)
1147 {
1148         __propagate_weights(iocg, active, inuse, save, now);
1149         commit_weights(iocg->ioc);
1150 }
1151
1152 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1153 {
1154         struct ioc *ioc = iocg->ioc;
1155         int lvl;
1156         u32 hwa, hwi;
1157         int ioc_gen;
1158
1159         /* hot path - if uptodate, use cached */
1160         ioc_gen = atomic_read(&ioc->hweight_gen);
1161         if (ioc_gen == iocg->hweight_gen)
1162                 goto out;
1163
1164         /*
1165          * Paired with wmb in commit_weights(). If we saw the updated
1166          * hweight_gen, all the weight updates from __propagate_weights() are
1167          * visible too.
1168          *
1169          * We can race with weight updates during calculation and get it
1170          * wrong.  However, hweight_gen would have changed and a future
1171          * reader will recalculate and we're guaranteed to discard the
1172          * wrong result soon.
1173          */
1174         smp_rmb();
1175
1176         hwa = hwi = WEIGHT_ONE;
1177         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1178                 struct ioc_gq *parent = iocg->ancestors[lvl];
1179                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1180                 u64 active_sum = READ_ONCE(parent->child_active_sum);
1181                 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1182                 u32 active = READ_ONCE(child->active);
1183                 u32 inuse = READ_ONCE(child->inuse);
1184
1185                 /* we can race with deactivations and either may read as zero */
1186                 if (!active_sum || !inuse_sum)
1187                         continue;
1188
1189                 active_sum = max_t(u64, active, active_sum);
1190                 hwa = div64_u64((u64)hwa * active, active_sum);
1191
1192                 inuse_sum = max_t(u64, inuse, inuse_sum);
1193                 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1194         }
1195
1196         iocg->hweight_active = max_t(u32, hwa, 1);
1197         iocg->hweight_inuse = max_t(u32, hwi, 1);
1198         iocg->hweight_gen = ioc_gen;
1199 out:
1200         if (hw_activep)
1201                 *hw_activep = iocg->hweight_active;
1202         if (hw_inusep)
1203                 *hw_inusep = iocg->hweight_inuse;
1204 }
1205
1206 /*
1207  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1208  * other weights stay unchanged.
1209  */
1210 static u32 current_hweight_max(struct ioc_gq *iocg)
1211 {
1212         u32 hwm = WEIGHT_ONE;
1213         u32 inuse = iocg->active;
1214         u64 child_inuse_sum;
1215         int lvl;
1216
1217         lockdep_assert_held(&iocg->ioc->lock);
1218
1219         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1220                 struct ioc_gq *parent = iocg->ancestors[lvl];
1221                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1222
1223                 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1224                 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1225                 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1226                                            parent->child_active_sum);
1227         }
1228
1229         return max_t(u32, hwm, 1);
1230 }
1231
1232 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1233 {
1234         struct ioc *ioc = iocg->ioc;
1235         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1236         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1237         u32 weight;
1238
1239         lockdep_assert_held(&ioc->lock);
1240
1241         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1242         if (weight != iocg->weight && iocg->active)
1243                 propagate_weights(iocg, weight, iocg->inuse, true, now);
1244         iocg->weight = weight;
1245 }
1246
1247 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1248 {
1249         struct ioc *ioc = iocg->ioc;
1250         u64 last_period, cur_period;
1251         u64 vtime, vtarget;
1252         int i;
1253
1254         /*
1255          * If seem to be already active, just update the stamp to tell the
1256          * timer that we're still active.  We don't mind occassional races.
1257          */
1258         if (!list_empty(&iocg->active_list)) {
1259                 ioc_now(ioc, now);
1260                 cur_period = atomic64_read(&ioc->cur_period);
1261                 if (atomic64_read(&iocg->active_period) != cur_period)
1262                         atomic64_set(&iocg->active_period, cur_period);
1263                 return true;
1264         }
1265
1266         /* racy check on internal node IOs, treat as root level IOs */
1267         if (iocg->child_active_sum)
1268                 return false;
1269
1270         spin_lock_irq(&ioc->lock);
1271
1272         ioc_now(ioc, now);
1273
1274         /* update period */
1275         cur_period = atomic64_read(&ioc->cur_period);
1276         last_period = atomic64_read(&iocg->active_period);
1277         atomic64_set(&iocg->active_period, cur_period);
1278
1279         /* already activated or breaking leaf-only constraint? */
1280         if (!list_empty(&iocg->active_list))
1281                 goto succeed_unlock;
1282         for (i = iocg->level - 1; i > 0; i--)
1283                 if (!list_empty(&iocg->ancestors[i]->active_list))
1284                         goto fail_unlock;
1285
1286         if (iocg->child_active_sum)
1287                 goto fail_unlock;
1288
1289         /*
1290          * Always start with the target budget. On deactivation, we throw away
1291          * anything above it.
1292          */
1293         vtarget = now->vnow - ioc->margins.target;
1294         vtime = atomic64_read(&iocg->vtime);
1295
1296         atomic64_add(vtarget - vtime, &iocg->vtime);
1297         atomic64_add(vtarget - vtime, &iocg->done_vtime);
1298         vtime = vtarget;
1299
1300         /*
1301          * Activate, propagate weight and start period timer if not
1302          * running.  Reset hweight_gen to avoid accidental match from
1303          * wrapping.
1304          */
1305         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1306         list_add(&iocg->active_list, &ioc->active_iocgs);
1307
1308         propagate_weights(iocg, iocg->weight,
1309                           iocg->last_inuse ?: iocg->weight, true, now);
1310
1311         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1312                         last_period, cur_period, vtime);
1313
1314         iocg->activated_at = now->now;
1315
1316         if (ioc->running == IOC_IDLE) {
1317                 ioc->running = IOC_RUNNING;
1318                 ioc->dfgv_period_at = now->now;
1319                 ioc->dfgv_period_rem = 0;
1320                 ioc_start_period(ioc, now);
1321         }
1322
1323 succeed_unlock:
1324         spin_unlock_irq(&ioc->lock);
1325         return true;
1326
1327 fail_unlock:
1328         spin_unlock_irq(&ioc->lock);
1329         return false;
1330 }
1331
1332 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1333 {
1334         struct ioc *ioc = iocg->ioc;
1335         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1336         u64 tdelta, delay, new_delay;
1337         s64 vover, vover_pct;
1338         u32 hwa;
1339
1340         lockdep_assert_held(&iocg->waitq.lock);
1341
1342         /* calculate the current delay in effect - 1/2 every second */
1343         tdelta = now->now - iocg->delay_at;
1344         if (iocg->delay)
1345                 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1346         else
1347                 delay = 0;
1348
1349         /* calculate the new delay from the debt amount */
1350         current_hweight(iocg, &hwa, NULL);
1351         vover = atomic64_read(&iocg->vtime) +
1352                 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1353         vover_pct = div64_s64(100 * vover,
1354                               ioc->period_us * ioc->vtime_base_rate);
1355
1356         if (vover_pct <= MIN_DELAY_THR_PCT)
1357                 new_delay = 0;
1358         else if (vover_pct >= MAX_DELAY_THR_PCT)
1359                 new_delay = MAX_DELAY;
1360         else
1361                 new_delay = MIN_DELAY +
1362                         div_u64((MAX_DELAY - MIN_DELAY) *
1363                                 (vover_pct - MIN_DELAY_THR_PCT),
1364                                 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1365
1366         /* pick the higher one and apply */
1367         if (new_delay > delay) {
1368                 iocg->delay = new_delay;
1369                 iocg->delay_at = now->now;
1370                 delay = new_delay;
1371         }
1372
1373         if (delay >= MIN_DELAY) {
1374                 if (!iocg->indelay_since)
1375                         iocg->indelay_since = now->now;
1376                 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1377                 return true;
1378         } else {
1379                 if (iocg->indelay_since) {
1380                         iocg->stat.indelay_us += now->now - iocg->indelay_since;
1381                         iocg->indelay_since = 0;
1382                 }
1383                 iocg->delay = 0;
1384                 blkcg_clear_delay(blkg);
1385                 return false;
1386         }
1387 }
1388
1389 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1390                             struct ioc_now *now)
1391 {
1392         struct iocg_pcpu_stat *gcs;
1393
1394         lockdep_assert_held(&iocg->ioc->lock);
1395         lockdep_assert_held(&iocg->waitq.lock);
1396         WARN_ON_ONCE(list_empty(&iocg->active_list));
1397
1398         /*
1399          * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1400          * inuse donating all of it share to others until its debt is paid off.
1401          */
1402         if (!iocg->abs_vdebt && abs_cost) {
1403                 iocg->indebt_since = now->now;
1404                 propagate_weights(iocg, iocg->active, 0, false, now);
1405         }
1406
1407         iocg->abs_vdebt += abs_cost;
1408
1409         gcs = get_cpu_ptr(iocg->pcpu_stat);
1410         local64_add(abs_cost, &gcs->abs_vusage);
1411         put_cpu_ptr(gcs);
1412 }
1413
1414 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1415                           struct ioc_now *now)
1416 {
1417         lockdep_assert_held(&iocg->ioc->lock);
1418         lockdep_assert_held(&iocg->waitq.lock);
1419
1420         /* make sure that nobody messed with @iocg */
1421         WARN_ON_ONCE(list_empty(&iocg->active_list));
1422         WARN_ON_ONCE(iocg->inuse > 1);
1423
1424         iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1425
1426         /* if debt is paid in full, restore inuse */
1427         if (!iocg->abs_vdebt) {
1428                 iocg->stat.indebt_us += now->now - iocg->indebt_since;
1429                 iocg->indebt_since = 0;
1430
1431                 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1432                                   false, now);
1433         }
1434 }
1435
1436 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1437                         int flags, void *key)
1438 {
1439         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1440         struct iocg_wake_ctx *ctx = key;
1441         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1442
1443         ctx->vbudget -= cost;
1444
1445         if (ctx->vbudget < 0)
1446                 return -1;
1447
1448         iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1449         wait->committed = true;
1450
1451         /*
1452          * autoremove_wake_function() removes the wait entry only when it
1453          * actually changed the task state. We want the wait always removed.
1454          * Remove explicitly and use default_wake_function(). Note that the
1455          * order of operations is important as finish_wait() tests whether
1456          * @wq_entry is removed without grabbing the lock.
1457          */
1458         default_wake_function(wq_entry, mode, flags, key);
1459         list_del_init_careful(&wq_entry->entry);
1460         return 0;
1461 }
1462
1463 /*
1464  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1465  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1466  * addition to iocg->waitq.lock.
1467  */
1468 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1469                             struct ioc_now *now)
1470 {
1471         struct ioc *ioc = iocg->ioc;
1472         struct iocg_wake_ctx ctx = { .iocg = iocg };
1473         u64 vshortage, expires, oexpires;
1474         s64 vbudget;
1475         u32 hwa;
1476
1477         lockdep_assert_held(&iocg->waitq.lock);
1478
1479         current_hweight(iocg, &hwa, NULL);
1480         vbudget = now->vnow - atomic64_read(&iocg->vtime);
1481
1482         /* pay off debt */
1483         if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1484                 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1485                 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1486                 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1487
1488                 lockdep_assert_held(&ioc->lock);
1489
1490                 atomic64_add(vpay, &iocg->vtime);
1491                 atomic64_add(vpay, &iocg->done_vtime);
1492                 iocg_pay_debt(iocg, abs_vpay, now);
1493                 vbudget -= vpay;
1494         }
1495
1496         if (iocg->abs_vdebt || iocg->delay)
1497                 iocg_kick_delay(iocg, now);
1498
1499         /*
1500          * Debt can still be outstanding if we haven't paid all yet or the
1501          * caller raced and called without @pay_debt. Shouldn't wake up waiters
1502          * under debt. Make sure @vbudget reflects the outstanding amount and is
1503          * not positive.
1504          */
1505         if (iocg->abs_vdebt) {
1506                 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1507                 vbudget = min_t(s64, 0, vbudget - vdebt);
1508         }
1509
1510         /*
1511          * Wake up the ones which are due and see how much vtime we'll need for
1512          * the next one. As paying off debt restores hw_inuse, it must be read
1513          * after the above debt payment.
1514          */
1515         ctx.vbudget = vbudget;
1516         current_hweight(iocg, NULL, &ctx.hw_inuse);
1517
1518         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1519
1520         if (!waitqueue_active(&iocg->waitq)) {
1521                 if (iocg->wait_since) {
1522                         iocg->stat.wait_us += now->now - iocg->wait_since;
1523                         iocg->wait_since = 0;
1524                 }
1525                 return;
1526         }
1527
1528         if (!iocg->wait_since)
1529                 iocg->wait_since = now->now;
1530
1531         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1532                 return;
1533
1534         /* determine next wakeup, add a timer margin to guarantee chunking */
1535         vshortage = -ctx.vbudget;
1536         expires = now->now_ns +
1537                 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1538                 NSEC_PER_USEC;
1539         expires += ioc->timer_slack_ns;
1540
1541         /* if already active and close enough, don't bother */
1542         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1543         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1544             abs(oexpires - expires) <= ioc->timer_slack_ns)
1545                 return;
1546
1547         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1548                                ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1549 }
1550
1551 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1552 {
1553         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1554         bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1555         struct ioc_now now;
1556         unsigned long flags;
1557
1558         ioc_now(iocg->ioc, &now);
1559
1560         iocg_lock(iocg, pay_debt, &flags);
1561         iocg_kick_waitq(iocg, pay_debt, &now);
1562         iocg_unlock(iocg, pay_debt, &flags);
1563
1564         return HRTIMER_NORESTART;
1565 }
1566
1567 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1568 {
1569         u32 nr_met[2] = { };
1570         u32 nr_missed[2] = { };
1571         u64 rq_wait_ns = 0;
1572         int cpu, rw;
1573
1574         for_each_online_cpu(cpu) {
1575                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1576                 u64 this_rq_wait_ns;
1577
1578                 for (rw = READ; rw <= WRITE; rw++) {
1579                         u32 this_met = local_read(&stat->missed[rw].nr_met);
1580                         u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1581
1582                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1583                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1584                         stat->missed[rw].last_met = this_met;
1585                         stat->missed[rw].last_missed = this_missed;
1586                 }
1587
1588                 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1589                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1590                 stat->last_rq_wait_ns = this_rq_wait_ns;
1591         }
1592
1593         for (rw = READ; rw <= WRITE; rw++) {
1594                 if (nr_met[rw] + nr_missed[rw])
1595                         missed_ppm_ar[rw] =
1596                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1597                                                    nr_met[rw] + nr_missed[rw]);
1598                 else
1599                         missed_ppm_ar[rw] = 0;
1600         }
1601
1602         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1603                                    ioc->period_us * NSEC_PER_USEC);
1604 }
1605
1606 /* was iocg idle this period? */
1607 static bool iocg_is_idle(struct ioc_gq *iocg)
1608 {
1609         struct ioc *ioc = iocg->ioc;
1610
1611         /* did something get issued this period? */
1612         if (atomic64_read(&iocg->active_period) ==
1613             atomic64_read(&ioc->cur_period))
1614                 return false;
1615
1616         /* is something in flight? */
1617         if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1618                 return false;
1619
1620         return true;
1621 }
1622
1623 /*
1624  * Call this function on the target leaf @iocg's to build pre-order traversal
1625  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1626  * ->walk_list and the caller is responsible for dissolving the list after use.
1627  */
1628 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1629                                   struct list_head *inner_walk)
1630 {
1631         int lvl;
1632
1633         WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1634
1635         /* find the first ancestor which hasn't been visited yet */
1636         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1637                 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1638                         break;
1639         }
1640
1641         /* walk down and visit the inner nodes to get pre-order traversal */
1642         while (++lvl <= iocg->level - 1) {
1643                 struct ioc_gq *inner = iocg->ancestors[lvl];
1644
1645                 /* record traversal order */
1646                 list_add_tail(&inner->walk_list, inner_walk);
1647         }
1648 }
1649
1650 /* propagate the deltas to the parent */
1651 static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1652 {
1653         if (iocg->level > 0) {
1654                 struct iocg_stat *parent_stat =
1655                         &iocg->ancestors[iocg->level - 1]->stat;
1656
1657                 parent_stat->usage_us +=
1658                         iocg->stat.usage_us - iocg->last_stat.usage_us;
1659                 parent_stat->wait_us +=
1660                         iocg->stat.wait_us - iocg->last_stat.wait_us;
1661                 parent_stat->indebt_us +=
1662                         iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1663                 parent_stat->indelay_us +=
1664                         iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1665         }
1666
1667         iocg->last_stat = iocg->stat;
1668 }
1669
1670 /* collect per-cpu counters and propagate the deltas to the parent */
1671 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1672 {
1673         struct ioc *ioc = iocg->ioc;
1674         u64 abs_vusage = 0;
1675         u64 vusage_delta;
1676         int cpu;
1677
1678         lockdep_assert_held(&iocg->ioc->lock);
1679
1680         /* collect per-cpu counters */
1681         for_each_possible_cpu(cpu) {
1682                 abs_vusage += local64_read(
1683                                 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1684         }
1685         vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1686         iocg->last_stat_abs_vusage = abs_vusage;
1687
1688         iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1689         iocg->stat.usage_us += iocg->usage_delta_us;
1690
1691         iocg_flush_stat_upward(iocg);
1692 }
1693
1694 /* get stat counters ready for reading on all active iocgs */
1695 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1696 {
1697         LIST_HEAD(inner_walk);
1698         struct ioc_gq *iocg, *tiocg;
1699
1700         /* flush leaves and build inner node walk list */
1701         list_for_each_entry(iocg, target_iocgs, active_list) {
1702                 iocg_flush_stat_leaf(iocg, now);
1703                 iocg_build_inner_walk(iocg, &inner_walk);
1704         }
1705
1706         /* keep flushing upwards by walking the inner list backwards */
1707         list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1708                 iocg_flush_stat_upward(iocg);
1709                 list_del_init(&iocg->walk_list);
1710         }
1711 }
1712
1713 /*
1714  * Determine what @iocg's hweight_inuse should be after donating unused
1715  * capacity. @hwm is the upper bound and used to signal no donation. This
1716  * function also throws away @iocg's excess budget.
1717  */
1718 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1719                                   u32 usage, struct ioc_now *now)
1720 {
1721         struct ioc *ioc = iocg->ioc;
1722         u64 vtime = atomic64_read(&iocg->vtime);
1723         s64 excess, delta, target, new_hwi;
1724
1725         /* debt handling owns inuse for debtors */
1726         if (iocg->abs_vdebt)
1727                 return 1;
1728
1729         /* see whether minimum margin requirement is met */
1730         if (waitqueue_active(&iocg->waitq) ||
1731             time_after64(vtime, now->vnow - ioc->margins.min))
1732                 return hwm;
1733
1734         /* throw away excess above target */
1735         excess = now->vnow - vtime - ioc->margins.target;
1736         if (excess > 0) {
1737                 atomic64_add(excess, &iocg->vtime);
1738                 atomic64_add(excess, &iocg->done_vtime);
1739                 vtime += excess;
1740                 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1741         }
1742
1743         /*
1744          * Let's say the distance between iocg's and device's vtimes as a
1745          * fraction of period duration is delta. Assuming that the iocg will
1746          * consume the usage determined above, we want to determine new_hwi so
1747          * that delta equals MARGIN_TARGET at the end of the next period.
1748          *
1749          * We need to execute usage worth of IOs while spending the sum of the
1750          * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1751          * (delta):
1752          *
1753          *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1754          *
1755          * Therefore, the new_hwi is:
1756          *
1757          *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1758          */
1759         delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1760                           now->vnow - ioc->period_at_vtime);
1761         target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1762         new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1763
1764         return clamp_t(s64, new_hwi, 1, hwm);
1765 }
1766
1767 /*
1768  * For work-conservation, an iocg which isn't using all of its share should
1769  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1770  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1771  *
1772  * #1 is mathematically simpler but has the drawback of requiring synchronous
1773  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1774  * change due to donation snapbacks as it has the possibility of grossly
1775  * overshooting what's allowed by the model and vrate.
1776  *
1777  * #2 is inherently safe with local operations. The donating iocg can easily
1778  * snap back to higher weights when needed without worrying about impacts on
1779  * other nodes as the impacts will be inherently correct. This also makes idle
1780  * iocg activations safe. The only effect activations have is decreasing
1781  * hweight_inuse of others, the right solution to which is for those iocgs to
1782  * snap back to higher weights.
1783  *
1784  * So, we go with #2. The challenge is calculating how each donating iocg's
1785  * inuse should be adjusted to achieve the target donation amounts. This is done
1786  * using Andy's method described in the following pdf.
1787  *
1788  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1789  *
1790  * Given the weights and target after-donation hweight_inuse values, Andy's
1791  * method determines how the proportional distribution should look like at each
1792  * sibling level to maintain the relative relationship between all non-donating
1793  * pairs. To roughly summarize, it divides the tree into donating and
1794  * non-donating parts, calculates global donation rate which is used to
1795  * determine the target hweight_inuse for each node, and then derives per-level
1796  * proportions.
1797  *
1798  * The following pdf shows that global distribution calculated this way can be
1799  * achieved by scaling inuse weights of donating leaves and propagating the
1800  * adjustments upwards proportionally.
1801  *
1802  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1803  *
1804  * Combining the above two, we can determine how each leaf iocg's inuse should
1805  * be adjusted to achieve the target donation.
1806  *
1807  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1808  *
1809  * The inline comments use symbols from the last pdf.
1810  *
1811  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1812  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1813  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1814  *   w is the weight of the node. w = w_f + w_t
1815  *   w_f is the non-donating portion of w. w_f = w * f / b
1816  *   w_b is the donating portion of w. w_t = w * t / b
1817  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1818  *   s_f and s_t are the non-donating and donating portions of s.
1819  *
1820  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1821  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1822  * after adjustments. Subscript r denotes the root node's values.
1823  */
1824 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1825 {
1826         LIST_HEAD(over_hwa);
1827         LIST_HEAD(inner_walk);
1828         struct ioc_gq *iocg, *tiocg, *root_iocg;
1829         u32 after_sum, over_sum, over_target, gamma;
1830
1831         /*
1832          * It's pretty unlikely but possible for the total sum of
1833          * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1834          * confuse the following calculations. If such condition is detected,
1835          * scale down everyone over its full share equally to keep the sum below
1836          * WEIGHT_ONE.
1837          */
1838         after_sum = 0;
1839         over_sum = 0;
1840         list_for_each_entry(iocg, surpluses, surplus_list) {
1841                 u32 hwa;
1842
1843                 current_hweight(iocg, &hwa, NULL);
1844                 after_sum += iocg->hweight_after_donation;
1845
1846                 if (iocg->hweight_after_donation > hwa) {
1847                         over_sum += iocg->hweight_after_donation;
1848                         list_add(&iocg->walk_list, &over_hwa);
1849                 }
1850         }
1851
1852         if (after_sum >= WEIGHT_ONE) {
1853                 /*
1854                  * The delta should be deducted from the over_sum, calculate
1855                  * target over_sum value.
1856                  */
1857                 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1858                 WARN_ON_ONCE(over_sum <= over_delta);
1859                 over_target = over_sum - over_delta;
1860         } else {
1861                 over_target = 0;
1862         }
1863
1864         list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1865                 if (over_target)
1866                         iocg->hweight_after_donation =
1867                                 div_u64((u64)iocg->hweight_after_donation *
1868                                         over_target, over_sum);
1869                 list_del_init(&iocg->walk_list);
1870         }
1871
1872         /*
1873          * Build pre-order inner node walk list and prepare for donation
1874          * adjustment calculations.
1875          */
1876         list_for_each_entry(iocg, surpluses, surplus_list) {
1877                 iocg_build_inner_walk(iocg, &inner_walk);
1878         }
1879
1880         root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1881         WARN_ON_ONCE(root_iocg->level > 0);
1882
1883         list_for_each_entry(iocg, &inner_walk, walk_list) {
1884                 iocg->child_adjusted_sum = 0;
1885                 iocg->hweight_donating = 0;
1886                 iocg->hweight_after_donation = 0;
1887         }
1888
1889         /*
1890          * Propagate the donating budget (b_t) and after donation budget (b'_t)
1891          * up the hierarchy.
1892          */
1893         list_for_each_entry(iocg, surpluses, surplus_list) {
1894                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1895
1896                 parent->hweight_donating += iocg->hweight_donating;
1897                 parent->hweight_after_donation += iocg->hweight_after_donation;
1898         }
1899
1900         list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1901                 if (iocg->level > 0) {
1902                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1903
1904                         parent->hweight_donating += iocg->hweight_donating;
1905                         parent->hweight_after_donation += iocg->hweight_after_donation;
1906                 }
1907         }
1908
1909         /*
1910          * Calculate inner hwa's (b) and make sure the donation values are
1911          * within the accepted ranges as we're doing low res calculations with
1912          * roundups.
1913          */
1914         list_for_each_entry(iocg, &inner_walk, walk_list) {
1915                 if (iocg->level) {
1916                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1917
1918                         iocg->hweight_active = DIV64_U64_ROUND_UP(
1919                                 (u64)parent->hweight_active * iocg->active,
1920                                 parent->child_active_sum);
1921
1922                 }
1923
1924                 iocg->hweight_donating = min(iocg->hweight_donating,
1925                                              iocg->hweight_active);
1926                 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1927                                                    iocg->hweight_donating - 1);
1928                 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1929                                  iocg->hweight_donating <= 1 ||
1930                                  iocg->hweight_after_donation == 0)) {
1931                         pr_warn("iocg: invalid donation weights in ");
1932                         pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1933                         pr_cont(": active=%u donating=%u after=%u\n",
1934                                 iocg->hweight_active, iocg->hweight_donating,
1935                                 iocg->hweight_after_donation);
1936                 }
1937         }
1938
1939         /*
1940          * Calculate the global donation rate (gamma) - the rate to adjust
1941          * non-donating budgets by.
1942          *
1943          * No need to use 64bit multiplication here as the first operand is
1944          * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1945          *
1946          * We know that there are beneficiary nodes and the sum of the donating
1947          * hweights can't be whole; however, due to the round-ups during hweight
1948          * calculations, root_iocg->hweight_donating might still end up equal to
1949          * or greater than whole. Limit the range when calculating the divider.
1950          *
1951          * gamma = (1 - t_r') / (1 - t_r)
1952          */
1953         gamma = DIV_ROUND_UP(
1954                 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1955                 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1956
1957         /*
1958          * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1959          * nodes.
1960          */
1961         list_for_each_entry(iocg, &inner_walk, walk_list) {
1962                 struct ioc_gq *parent;
1963                 u32 inuse, wpt, wptp;
1964                 u64 st, sf;
1965
1966                 if (iocg->level == 0) {
1967                         /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1968                         iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1969                                 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1970                                 WEIGHT_ONE - iocg->hweight_after_donation);
1971                         continue;
1972                 }
1973
1974                 parent = iocg->ancestors[iocg->level - 1];
1975
1976                 /* b' = gamma * b_f + b_t' */
1977                 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1978                         (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1979                         WEIGHT_ONE) + iocg->hweight_after_donation;
1980
1981                 /* w' = s' * b' / b'_p */
1982                 inuse = DIV64_U64_ROUND_UP(
1983                         (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1984                         parent->hweight_inuse);
1985
1986                 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1987                 st = DIV64_U64_ROUND_UP(
1988                         iocg->child_active_sum * iocg->hweight_donating,
1989                         iocg->hweight_active);
1990                 sf = iocg->child_active_sum - st;
1991                 wpt = DIV64_U64_ROUND_UP(
1992                         (u64)iocg->active * iocg->hweight_donating,
1993                         iocg->hweight_active);
1994                 wptp = DIV64_U64_ROUND_UP(
1995                         (u64)inuse * iocg->hweight_after_donation,
1996                         iocg->hweight_inuse);
1997
1998                 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1999         }
2000
2001         /*
2002          * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
2003          * we can finally determine leaf adjustments.
2004          */
2005         list_for_each_entry(iocg, surpluses, surplus_list) {
2006                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2007                 u32 inuse;
2008
2009                 /*
2010                  * In-debt iocgs participated in the donation calculation with
2011                  * the minimum target hweight_inuse. Configuring inuse
2012                  * accordingly would work fine but debt handling expects
2013                  * @iocg->inuse stay at the minimum and we don't wanna
2014                  * interfere.
2015                  */
2016                 if (iocg->abs_vdebt) {
2017                         WARN_ON_ONCE(iocg->inuse > 1);
2018                         continue;
2019                 }
2020
2021                 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2022                 inuse = DIV64_U64_ROUND_UP(
2023                         parent->child_adjusted_sum * iocg->hweight_after_donation,
2024                         parent->hweight_inuse);
2025
2026                 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2027                                 iocg->inuse, inuse,
2028                                 iocg->hweight_inuse,
2029                                 iocg->hweight_after_donation);
2030
2031                 __propagate_weights(iocg, iocg->active, inuse, true, now);
2032         }
2033
2034         /* walk list should be dissolved after use */
2035         list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2036                 list_del_init(&iocg->walk_list);
2037 }
2038
2039 /*
2040  * A low weight iocg can amass a large amount of debt, for example, when
2041  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2042  * memory paired with a slow IO device, the debt can span multiple seconds or
2043  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2044  * up blocked paying its debt while the IO device is idle.
2045  *
2046  * The following protects against such cases. If the device has been
2047  * sufficiently idle for a while, the debts are halved and delays are
2048  * recalculated.
2049  */
2050 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2051                               struct ioc_now *now)
2052 {
2053         struct ioc_gq *iocg;
2054         u64 dur, usage_pct, nr_cycles;
2055
2056         /* if no debtor, reset the cycle */
2057         if (!nr_debtors) {
2058                 ioc->dfgv_period_at = now->now;
2059                 ioc->dfgv_period_rem = 0;
2060                 ioc->dfgv_usage_us_sum = 0;
2061                 return;
2062         }
2063
2064         /*
2065          * Debtors can pass through a lot of writes choking the device and we
2066          * don't want to be forgiving debts while the device is struggling from
2067          * write bursts. If we're missing latency targets, consider the device
2068          * fully utilized.
2069          */
2070         if (ioc->busy_level > 0)
2071                 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2072
2073         ioc->dfgv_usage_us_sum += usage_us_sum;
2074         if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2075                 return;
2076
2077         /*
2078          * At least DFGV_PERIOD has passed since the last period. Calculate the
2079          * average usage and reset the period counters.
2080          */
2081         dur = now->now - ioc->dfgv_period_at;
2082         usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2083
2084         ioc->dfgv_period_at = now->now;
2085         ioc->dfgv_usage_us_sum = 0;
2086
2087         /* if was too busy, reset everything */
2088         if (usage_pct > DFGV_USAGE_PCT) {
2089                 ioc->dfgv_period_rem = 0;
2090                 return;
2091         }
2092
2093         /*
2094          * Usage is lower than threshold. Let's forgive some debts. Debt
2095          * forgiveness runs off of the usual ioc timer but its period usually
2096          * doesn't match ioc's. Compensate the difference by performing the
2097          * reduction as many times as would fit in the duration since the last
2098          * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2099          * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2100          * reductions is doubled.
2101          */
2102         nr_cycles = dur + ioc->dfgv_period_rem;
2103         ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2104
2105         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2106                 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2107
2108                 if (!iocg->abs_vdebt && !iocg->delay)
2109                         continue;
2110
2111                 spin_lock(&iocg->waitq.lock);
2112
2113                 old_debt = iocg->abs_vdebt;
2114                 old_delay = iocg->delay;
2115
2116                 if (iocg->abs_vdebt)
2117                         iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2118                 if (iocg->delay)
2119                         iocg->delay = iocg->delay >> nr_cycles ?: 1;
2120
2121                 iocg_kick_waitq(iocg, true, now);
2122
2123                 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2124                                 old_debt, iocg->abs_vdebt,
2125                                 old_delay, iocg->delay);
2126
2127                 spin_unlock(&iocg->waitq.lock);
2128         }
2129 }
2130
2131 /*
2132  * Check the active iocgs' state to avoid oversleeping and deactive
2133  * idle iocgs.
2134  *
2135  * Since waiters determine the sleep durations based on the vrate
2136  * they saw at the time of sleep, if vrate has increased, some
2137  * waiters could be sleeping for too long. Wake up tardy waiters
2138  * which should have woken up in the last period and expire idle
2139  * iocgs.
2140  */
2141 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2142 {
2143         int nr_debtors = 0;
2144         struct ioc_gq *iocg, *tiocg;
2145
2146         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2147                 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2148                     !iocg->delay && !iocg_is_idle(iocg))
2149                         continue;
2150
2151                 spin_lock(&iocg->waitq.lock);
2152
2153                 /* flush wait and indebt stat deltas */
2154                 if (iocg->wait_since) {
2155                         iocg->stat.wait_us += now->now - iocg->wait_since;
2156                         iocg->wait_since = now->now;
2157                 }
2158                 if (iocg->indebt_since) {
2159                         iocg->stat.indebt_us +=
2160                                 now->now - iocg->indebt_since;
2161                         iocg->indebt_since = now->now;
2162                 }
2163                 if (iocg->indelay_since) {
2164                         iocg->stat.indelay_us +=
2165                                 now->now - iocg->indelay_since;
2166                         iocg->indelay_since = now->now;
2167                 }
2168
2169                 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2170                     iocg->delay) {
2171                         /* might be oversleeping vtime / hweight changes, kick */
2172                         iocg_kick_waitq(iocg, true, now);
2173                         if (iocg->abs_vdebt || iocg->delay)
2174                                 nr_debtors++;
2175                 } else if (iocg_is_idle(iocg)) {
2176                         /* no waiter and idle, deactivate */
2177                         u64 vtime = atomic64_read(&iocg->vtime);
2178                         s64 excess;
2179
2180                         /*
2181                          * @iocg has been inactive for a full duration and will
2182                          * have a high budget. Account anything above target as
2183                          * error and throw away. On reactivation, it'll start
2184                          * with the target budget.
2185                          */
2186                         excess = now->vnow - vtime - ioc->margins.target;
2187                         if (excess > 0) {
2188                                 u32 old_hwi;
2189
2190                                 current_hweight(iocg, NULL, &old_hwi);
2191                                 ioc->vtime_err -= div64_u64(excess * old_hwi,
2192                                                             WEIGHT_ONE);
2193                         }
2194
2195                         TRACE_IOCG_PATH(iocg_idle, iocg, now,
2196                                         atomic64_read(&iocg->active_period),
2197                                         atomic64_read(&ioc->cur_period), vtime);
2198                         __propagate_weights(iocg, 0, 0, false, now);
2199                         list_del_init(&iocg->active_list);
2200                 }
2201
2202                 spin_unlock(&iocg->waitq.lock);
2203         }
2204
2205         commit_weights(ioc);
2206         return nr_debtors;
2207 }
2208
2209 static void ioc_timer_fn(struct timer_list *timer)
2210 {
2211         struct ioc *ioc = container_of(timer, struct ioc, timer);
2212         struct ioc_gq *iocg, *tiocg;
2213         struct ioc_now now;
2214         LIST_HEAD(surpluses);
2215         int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2216         u64 usage_us_sum = 0;
2217         u32 ppm_rthr;
2218         u32 ppm_wthr;
2219         u32 missed_ppm[2], rq_wait_pct;
2220         u64 period_vtime;
2221         int prev_busy_level;
2222
2223         /* how were the latencies during the period? */
2224         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2225
2226         /* take care of active iocgs */
2227         spin_lock_irq(&ioc->lock);
2228
2229         ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2230         ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2231         ioc_now(ioc, &now);
2232
2233         period_vtime = now.vnow - ioc->period_at_vtime;
2234         if (WARN_ON_ONCE(!period_vtime)) {
2235                 spin_unlock_irq(&ioc->lock);
2236                 return;
2237         }
2238
2239         nr_debtors = ioc_check_iocgs(ioc, &now);
2240
2241         /*
2242          * Wait and indebt stat are flushed above and the donation calculation
2243          * below needs updated usage stat. Let's bring stat up-to-date.
2244          */
2245         iocg_flush_stat(&ioc->active_iocgs, &now);
2246
2247         /* calc usage and see whether some weights need to be moved around */
2248         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2249                 u64 vdone, vtime, usage_us;
2250                 u32 hw_active, hw_inuse;
2251
2252                 /*
2253                  * Collect unused and wind vtime closer to vnow to prevent
2254                  * iocgs from accumulating a large amount of budget.
2255                  */
2256                 vdone = atomic64_read(&iocg->done_vtime);
2257                 vtime = atomic64_read(&iocg->vtime);
2258                 current_hweight(iocg, &hw_active, &hw_inuse);
2259
2260                 /*
2261                  * Latency QoS detection doesn't account for IOs which are
2262                  * in-flight for longer than a period.  Detect them by
2263                  * comparing vdone against period start.  If lagging behind
2264                  * IOs from past periods, don't increase vrate.
2265                  */
2266                 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2267                     !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2268                     time_after64(vtime, vdone) &&
2269                     time_after64(vtime, now.vnow -
2270                                  MAX_LAGGING_PERIODS * period_vtime) &&
2271                     time_before64(vdone, now.vnow - period_vtime))
2272                         nr_lagging++;
2273
2274                 /*
2275                  * Determine absolute usage factoring in in-flight IOs to avoid
2276                  * high-latency completions appearing as idle.
2277                  */
2278                 usage_us = iocg->usage_delta_us;
2279                 usage_us_sum += usage_us;
2280
2281                 /* see whether there's surplus vtime */
2282                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2283                 if (hw_inuse < hw_active ||
2284                     (!waitqueue_active(&iocg->waitq) &&
2285                      time_before64(vtime, now.vnow - ioc->margins.low))) {
2286                         u32 hwa, old_hwi, hwm, new_hwi, usage;
2287                         u64 usage_dur;
2288
2289                         if (vdone != vtime) {
2290                                 u64 inflight_us = DIV64_U64_ROUND_UP(
2291                                         cost_to_abs_cost(vtime - vdone, hw_inuse),
2292                                         ioc->vtime_base_rate);
2293
2294                                 usage_us = max(usage_us, inflight_us);
2295                         }
2296
2297                         /* convert to hweight based usage ratio */
2298                         if (time_after64(iocg->activated_at, ioc->period_at))
2299                                 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2300                         else
2301                                 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2302
2303                         usage = clamp_t(u32,
2304                                 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2305                                                    usage_dur),
2306                                 1, WEIGHT_ONE);
2307
2308                         /*
2309                          * Already donating or accumulated enough to start.
2310                          * Determine the donation amount.
2311                          */
2312                         current_hweight(iocg, &hwa, &old_hwi);
2313                         hwm = current_hweight_max(iocg);
2314                         new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2315                                                          usage, &now);
2316                         /*
2317                          * Donation calculation assumes hweight_after_donation
2318                          * to be positive, a condition that a donor w/ hwa < 2
2319                          * can't meet. Don't bother with donation if hwa is
2320                          * below 2. It's not gonna make a meaningful difference
2321                          * anyway.
2322                          */
2323                         if (new_hwi < hwm && hwa >= 2) {
2324                                 iocg->hweight_donating = hwa;
2325                                 iocg->hweight_after_donation = new_hwi;
2326                                 list_add(&iocg->surplus_list, &surpluses);
2327                         } else if (!iocg->abs_vdebt) {
2328                                 /*
2329                                  * @iocg doesn't have enough to donate. Reset
2330                                  * its inuse to active.
2331                                  *
2332                                  * Don't reset debtors as their inuse's are
2333                                  * owned by debt handling. This shouldn't affect
2334                                  * donation calculuation in any meaningful way
2335                                  * as @iocg doesn't have a meaningful amount of
2336                                  * share anyway.
2337                                  */
2338                                 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2339                                                 iocg->inuse, iocg->active,
2340                                                 iocg->hweight_inuse, new_hwi);
2341
2342                                 __propagate_weights(iocg, iocg->active,
2343                                                     iocg->active, true, &now);
2344                                 nr_shortages++;
2345                         }
2346                 } else {
2347                         /* genuinely short on vtime */
2348                         nr_shortages++;
2349                 }
2350         }
2351
2352         if (!list_empty(&surpluses) && nr_shortages)
2353                 transfer_surpluses(&surpluses, &now);
2354
2355         commit_weights(ioc);
2356
2357         /* surplus list should be dissolved after use */
2358         list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2359                 list_del_init(&iocg->surplus_list);
2360
2361         /*
2362          * If q is getting clogged or we're missing too much, we're issuing
2363          * too much IO and should lower vtime rate.  If we're not missing
2364          * and experiencing shortages but not surpluses, we're too stingy
2365          * and should increase vtime rate.
2366          */
2367         prev_busy_level = ioc->busy_level;
2368         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2369             missed_ppm[READ] > ppm_rthr ||
2370             missed_ppm[WRITE] > ppm_wthr) {
2371                 /* clearly missing QoS targets, slow down vrate */
2372                 ioc->busy_level = max(ioc->busy_level, 0);
2373                 ioc->busy_level++;
2374         } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2375                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2376                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2377                 /* QoS targets are being met with >25% margin */
2378                 if (nr_shortages) {
2379                         /*
2380                          * We're throttling while the device has spare
2381                          * capacity.  If vrate was being slowed down, stop.
2382                          */
2383                         ioc->busy_level = min(ioc->busy_level, 0);
2384
2385                         /*
2386                          * If there are IOs spanning multiple periods, wait
2387                          * them out before pushing the device harder.
2388                          */
2389                         if (!nr_lagging)
2390                                 ioc->busy_level--;
2391                 } else {
2392                         /*
2393                          * Nobody is being throttled and the users aren't
2394                          * issuing enough IOs to saturate the device.  We
2395                          * simply don't know how close the device is to
2396                          * saturation.  Coast.
2397                          */
2398                         ioc->busy_level = 0;
2399                 }
2400         } else {
2401                 /* inside the hysterisis margin, we're good */
2402                 ioc->busy_level = 0;
2403         }
2404
2405         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2406
2407         ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2408                               prev_busy_level, missed_ppm);
2409
2410         ioc_refresh_params(ioc, false);
2411
2412         ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2413
2414         /*
2415          * This period is done.  Move onto the next one.  If nothing's
2416          * going on with the device, stop the timer.
2417          */
2418         atomic64_inc(&ioc->cur_period);
2419
2420         if (ioc->running != IOC_STOP) {
2421                 if (!list_empty(&ioc->active_iocgs)) {
2422                         ioc_start_period(ioc, &now);
2423                 } else {
2424                         ioc->busy_level = 0;
2425                         ioc->vtime_err = 0;
2426                         ioc->running = IOC_IDLE;
2427                 }
2428
2429                 ioc_refresh_vrate(ioc, &now);
2430         }
2431
2432         spin_unlock_irq(&ioc->lock);
2433 }
2434
2435 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2436                                       u64 abs_cost, struct ioc_now *now)
2437 {
2438         struct ioc *ioc = iocg->ioc;
2439         struct ioc_margins *margins = &ioc->margins;
2440         u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2441         u32 hwi, adj_step;
2442         s64 margin;
2443         u64 cost, new_inuse;
2444
2445         current_hweight(iocg, NULL, &hwi);
2446         old_hwi = hwi;
2447         cost = abs_cost_to_cost(abs_cost, hwi);
2448         margin = now->vnow - vtime - cost;
2449
2450         /* debt handling owns inuse for debtors */
2451         if (iocg->abs_vdebt)
2452                 return cost;
2453
2454         /*
2455          * We only increase inuse during period and do so if the margin has
2456          * deteriorated since the previous adjustment.
2457          */
2458         if (margin >= iocg->saved_margin || margin >= margins->low ||
2459             iocg->inuse == iocg->active)
2460                 return cost;
2461
2462         spin_lock_irq(&ioc->lock);
2463
2464         /* we own inuse only when @iocg is in the normal active state */
2465         if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2466                 spin_unlock_irq(&ioc->lock);
2467                 return cost;
2468         }
2469
2470         /*
2471          * Bump up inuse till @abs_cost fits in the existing budget.
2472          * adj_step must be determined after acquiring ioc->lock - we might
2473          * have raced and lost to another thread for activation and could
2474          * be reading 0 iocg->active before ioc->lock which will lead to
2475          * infinite loop.
2476          */
2477         new_inuse = iocg->inuse;
2478         adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2479         do {
2480                 new_inuse = new_inuse + adj_step;
2481                 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2482                 current_hweight(iocg, NULL, &hwi);
2483                 cost = abs_cost_to_cost(abs_cost, hwi);
2484         } while (time_after64(vtime + cost, now->vnow) &&
2485                  iocg->inuse != iocg->active);
2486
2487         spin_unlock_irq(&ioc->lock);
2488
2489         TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2490                         old_inuse, iocg->inuse, old_hwi, hwi);
2491
2492         return cost;
2493 }
2494
2495 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2496                                     bool is_merge, u64 *costp)
2497 {
2498         struct ioc *ioc = iocg->ioc;
2499         u64 coef_seqio, coef_randio, coef_page;
2500         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2501         u64 seek_pages = 0;
2502         u64 cost = 0;
2503
2504         switch (bio_op(bio)) {
2505         case REQ_OP_READ:
2506                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
2507                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
2508                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
2509                 break;
2510         case REQ_OP_WRITE:
2511                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
2512                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
2513                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
2514                 break;
2515         default:
2516                 goto out;
2517         }
2518
2519         if (iocg->cursor) {
2520                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2521                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2522         }
2523
2524         if (!is_merge) {
2525                 if (seek_pages > LCOEF_RANDIO_PAGES) {
2526                         cost += coef_randio;
2527                 } else {
2528                         cost += coef_seqio;
2529                 }
2530         }
2531         cost += pages * coef_page;
2532 out:
2533         *costp = cost;
2534 }
2535
2536 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2537 {
2538         u64 cost;
2539
2540         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2541         return cost;
2542 }
2543
2544 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2545                                          u64 *costp)
2546 {
2547         unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2548
2549         switch (req_op(rq)) {
2550         case REQ_OP_READ:
2551                 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2552                 break;
2553         case REQ_OP_WRITE:
2554                 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2555                 break;
2556         default:
2557                 *costp = 0;
2558         }
2559 }
2560
2561 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2562 {
2563         u64 cost;
2564
2565         calc_size_vtime_cost_builtin(rq, ioc, &cost);
2566         return cost;
2567 }
2568
2569 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2570 {
2571         struct blkcg_gq *blkg = bio->bi_blkg;
2572         struct ioc *ioc = rqos_to_ioc(rqos);
2573         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2574         struct ioc_now now;
2575         struct iocg_wait wait;
2576         u64 abs_cost, cost, vtime;
2577         bool use_debt, ioc_locked;
2578         unsigned long flags;
2579
2580         /* bypass IOs if disabled, still initializing, or for root cgroup */
2581         if (!ioc->enabled || !iocg || !iocg->level)
2582                 return;
2583
2584         /* calculate the absolute vtime cost */
2585         abs_cost = calc_vtime_cost(bio, iocg, false);
2586         if (!abs_cost)
2587                 return;
2588
2589         if (!iocg_activate(iocg, &now))
2590                 return;
2591
2592         iocg->cursor = bio_end_sector(bio);
2593         vtime = atomic64_read(&iocg->vtime);
2594         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2595
2596         /*
2597          * If no one's waiting and within budget, issue right away.  The
2598          * tests are racy but the races aren't systemic - we only miss once
2599          * in a while which is fine.
2600          */
2601         if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2602             time_before_eq64(vtime + cost, now.vnow)) {
2603                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2604                 return;
2605         }
2606
2607         /*
2608          * We're over budget. This can be handled in two ways. IOs which may
2609          * cause priority inversions are punted to @ioc->aux_iocg and charged as
2610          * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2611          * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2612          * whether debt handling is needed and acquire locks accordingly.
2613          */
2614         use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2615         ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2616 retry_lock:
2617         iocg_lock(iocg, ioc_locked, &flags);
2618
2619         /*
2620          * @iocg must stay activated for debt and waitq handling. Deactivation
2621          * is synchronized against both ioc->lock and waitq.lock and we won't
2622          * get deactivated as long as we're waiting or has debt, so we're good
2623          * if we're activated here. In the unlikely cases that we aren't, just
2624          * issue the IO.
2625          */
2626         if (unlikely(list_empty(&iocg->active_list))) {
2627                 iocg_unlock(iocg, ioc_locked, &flags);
2628                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2629                 return;
2630         }
2631
2632         /*
2633          * We're over budget. If @bio has to be issued regardless, remember
2634          * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2635          * off the debt before waking more IOs.
2636          *
2637          * This way, the debt is continuously paid off each period with the
2638          * actual budget available to the cgroup. If we just wound vtime, we
2639          * would incorrectly use the current hw_inuse for the entire amount
2640          * which, for example, can lead to the cgroup staying blocked for a
2641          * long time even with substantially raised hw_inuse.
2642          *
2643          * An iocg with vdebt should stay online so that the timer can keep
2644          * deducting its vdebt and [de]activate use_delay mechanism
2645          * accordingly. We don't want to race against the timer trying to
2646          * clear them and leave @iocg inactive w/ dangling use_delay heavily
2647          * penalizing the cgroup and its descendants.
2648          */
2649         if (use_debt) {
2650                 iocg_incur_debt(iocg, abs_cost, &now);
2651                 if (iocg_kick_delay(iocg, &now))
2652                         blkcg_schedule_throttle(rqos->disk,
2653                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2654                 iocg_unlock(iocg, ioc_locked, &flags);
2655                 return;
2656         }
2657
2658         /* guarantee that iocgs w/ waiters have maximum inuse */
2659         if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2660                 if (!ioc_locked) {
2661                         iocg_unlock(iocg, false, &flags);
2662                         ioc_locked = true;
2663                         goto retry_lock;
2664                 }
2665                 propagate_weights(iocg, iocg->active, iocg->active, true,
2666                                   &now);
2667         }
2668
2669         /*
2670          * Append self to the waitq and schedule the wakeup timer if we're
2671          * the first waiter.  The timer duration is calculated based on the
2672          * current vrate.  vtime and hweight changes can make it too short
2673          * or too long.  Each wait entry records the absolute cost it's
2674          * waiting for to allow re-evaluation using a custom wait entry.
2675          *
2676          * If too short, the timer simply reschedules itself.  If too long,
2677          * the period timer will notice and trigger wakeups.
2678          *
2679          * All waiters are on iocg->waitq and the wait states are
2680          * synchronized using waitq.lock.
2681          */
2682         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2683         wait.wait.private = current;
2684         wait.bio = bio;
2685         wait.abs_cost = abs_cost;
2686         wait.committed = false; /* will be set true by waker */
2687
2688         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2689         iocg_kick_waitq(iocg, ioc_locked, &now);
2690
2691         iocg_unlock(iocg, ioc_locked, &flags);
2692
2693         while (true) {
2694                 set_current_state(TASK_UNINTERRUPTIBLE);
2695                 if (wait.committed)
2696                         break;
2697                 io_schedule();
2698         }
2699
2700         /* waker already committed us, proceed */
2701         finish_wait(&iocg->waitq, &wait.wait);
2702 }
2703
2704 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2705                            struct bio *bio)
2706 {
2707         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2708         struct ioc *ioc = rqos_to_ioc(rqos);
2709         sector_t bio_end = bio_end_sector(bio);
2710         struct ioc_now now;
2711         u64 vtime, abs_cost, cost;
2712         unsigned long flags;
2713
2714         /* bypass if disabled, still initializing, or for root cgroup */
2715         if (!ioc->enabled || !iocg || !iocg->level)
2716                 return;
2717
2718         abs_cost = calc_vtime_cost(bio, iocg, true);
2719         if (!abs_cost)
2720                 return;
2721
2722         ioc_now(ioc, &now);
2723
2724         vtime = atomic64_read(&iocg->vtime);
2725         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2726
2727         /* update cursor if backmerging into the request at the cursor */
2728         if (blk_rq_pos(rq) < bio_end &&
2729             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2730                 iocg->cursor = bio_end;
2731
2732         /*
2733          * Charge if there's enough vtime budget and the existing request has
2734          * cost assigned.
2735          */
2736         if (rq->bio && rq->bio->bi_iocost_cost &&
2737             time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2738                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2739                 return;
2740         }
2741
2742         /*
2743          * Otherwise, account it as debt if @iocg is online, which it should
2744          * be for the vast majority of cases. See debt handling in
2745          * ioc_rqos_throttle() for details.
2746          */
2747         spin_lock_irqsave(&ioc->lock, flags);
2748         spin_lock(&iocg->waitq.lock);
2749
2750         if (likely(!list_empty(&iocg->active_list))) {
2751                 iocg_incur_debt(iocg, abs_cost, &now);
2752                 if (iocg_kick_delay(iocg, &now))
2753                         blkcg_schedule_throttle(rqos->disk,
2754                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2755         } else {
2756                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2757         }
2758
2759         spin_unlock(&iocg->waitq.lock);
2760         spin_unlock_irqrestore(&ioc->lock, flags);
2761 }
2762
2763 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2764 {
2765         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2766
2767         if (iocg && bio->bi_iocost_cost)
2768                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2769 }
2770
2771 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2772 {
2773         struct ioc *ioc = rqos_to_ioc(rqos);
2774         struct ioc_pcpu_stat *ccs;
2775         u64 on_q_ns, rq_wait_ns, size_nsec;
2776         int pidx, rw;
2777
2778         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2779                 return;
2780
2781         switch (req_op(rq)) {
2782         case REQ_OP_READ:
2783                 pidx = QOS_RLAT;
2784                 rw = READ;
2785                 break;
2786         case REQ_OP_WRITE:
2787                 pidx = QOS_WLAT;
2788                 rw = WRITE;
2789                 break;
2790         default:
2791                 return;
2792         }
2793
2794         on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2795         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2796         size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2797
2798         ccs = get_cpu_ptr(ioc->pcpu_stat);
2799
2800         if (on_q_ns <= size_nsec ||
2801             on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2802                 local_inc(&ccs->missed[rw].nr_met);
2803         else
2804                 local_inc(&ccs->missed[rw].nr_missed);
2805
2806         local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2807
2808         put_cpu_ptr(ccs);
2809 }
2810
2811 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2812 {
2813         struct ioc *ioc = rqos_to_ioc(rqos);
2814
2815         spin_lock_irq(&ioc->lock);
2816         ioc_refresh_params(ioc, false);
2817         spin_unlock_irq(&ioc->lock);
2818 }
2819
2820 static void ioc_rqos_exit(struct rq_qos *rqos)
2821 {
2822         struct ioc *ioc = rqos_to_ioc(rqos);
2823
2824         blkcg_deactivate_policy(rqos->disk, &blkcg_policy_iocost);
2825
2826         spin_lock_irq(&ioc->lock);
2827         ioc->running = IOC_STOP;
2828         spin_unlock_irq(&ioc->lock);
2829
2830         timer_shutdown_sync(&ioc->timer);
2831         free_percpu(ioc->pcpu_stat);
2832         kfree(ioc);
2833 }
2834
2835 static const struct rq_qos_ops ioc_rqos_ops = {
2836         .throttle = ioc_rqos_throttle,
2837         .merge = ioc_rqos_merge,
2838         .done_bio = ioc_rqos_done_bio,
2839         .done = ioc_rqos_done,
2840         .queue_depth_changed = ioc_rqos_queue_depth_changed,
2841         .exit = ioc_rqos_exit,
2842 };
2843
2844 static int blk_iocost_init(struct gendisk *disk)
2845 {
2846         struct ioc *ioc;
2847         int i, cpu, ret;
2848
2849         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2850         if (!ioc)
2851                 return -ENOMEM;
2852
2853         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2854         if (!ioc->pcpu_stat) {
2855                 kfree(ioc);
2856                 return -ENOMEM;
2857         }
2858
2859         for_each_possible_cpu(cpu) {
2860                 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2861
2862                 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2863                         local_set(&ccs->missed[i].nr_met, 0);
2864                         local_set(&ccs->missed[i].nr_missed, 0);
2865                 }
2866                 local64_set(&ccs->rq_wait_ns, 0);
2867         }
2868
2869         spin_lock_init(&ioc->lock);
2870         timer_setup(&ioc->timer, ioc_timer_fn, 0);
2871         INIT_LIST_HEAD(&ioc->active_iocgs);
2872
2873         ioc->running = IOC_IDLE;
2874         ioc->vtime_base_rate = VTIME_PER_USEC;
2875         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2876         seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2877         ioc->period_at = ktime_to_us(ktime_get());
2878         atomic64_set(&ioc->cur_period, 0);
2879         atomic_set(&ioc->hweight_gen, 0);
2880
2881         spin_lock_irq(&ioc->lock);
2882         ioc->autop_idx = AUTOP_INVALID;
2883         ioc_refresh_params(ioc, true);
2884         spin_unlock_irq(&ioc->lock);
2885
2886         /*
2887          * rqos must be added before activation to allow ioc_pd_init() to
2888          * lookup the ioc from q. This means that the rqos methods may get
2889          * called before policy activation completion, can't assume that the
2890          * target bio has an iocg associated and need to test for NULL iocg.
2891          */
2892         ret = rq_qos_add(&ioc->rqos, disk, RQ_QOS_COST, &ioc_rqos_ops);
2893         if (ret)
2894                 goto err_free_ioc;
2895
2896         ret = blkcg_activate_policy(disk, &blkcg_policy_iocost);
2897         if (ret)
2898                 goto err_del_qos;
2899         return 0;
2900
2901 err_del_qos:
2902         rq_qos_del(&ioc->rqos);
2903 err_free_ioc:
2904         free_percpu(ioc->pcpu_stat);
2905         kfree(ioc);
2906         return ret;
2907 }
2908
2909 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2910 {
2911         struct ioc_cgrp *iocc;
2912
2913         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2914         if (!iocc)
2915                 return NULL;
2916
2917         iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2918         return &iocc->cpd;
2919 }
2920
2921 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2922 {
2923         kfree(container_of(cpd, struct ioc_cgrp, cpd));
2924 }
2925
2926 static struct blkg_policy_data *ioc_pd_alloc(struct gendisk *disk,
2927                 struct blkcg *blkcg, gfp_t gfp)
2928 {
2929         int levels = blkcg->css.cgroup->level + 1;
2930         struct ioc_gq *iocg;
2931
2932         iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp,
2933                             disk->node_id);
2934         if (!iocg)
2935                 return NULL;
2936
2937         iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2938         if (!iocg->pcpu_stat) {
2939                 kfree(iocg);
2940                 return NULL;
2941         }
2942
2943         return &iocg->pd;
2944 }
2945
2946 static void ioc_pd_init(struct blkg_policy_data *pd)
2947 {
2948         struct ioc_gq *iocg = pd_to_iocg(pd);
2949         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2950         struct ioc *ioc = q_to_ioc(blkg->q);
2951         struct ioc_now now;
2952         struct blkcg_gq *tblkg;
2953         unsigned long flags;
2954
2955         ioc_now(ioc, &now);
2956
2957         iocg->ioc = ioc;
2958         atomic64_set(&iocg->vtime, now.vnow);
2959         atomic64_set(&iocg->done_vtime, now.vnow);
2960         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2961         INIT_LIST_HEAD(&iocg->active_list);
2962         INIT_LIST_HEAD(&iocg->walk_list);
2963         INIT_LIST_HEAD(&iocg->surplus_list);
2964         iocg->hweight_active = WEIGHT_ONE;
2965         iocg->hweight_inuse = WEIGHT_ONE;
2966
2967         init_waitqueue_head(&iocg->waitq);
2968         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2969         iocg->waitq_timer.function = iocg_waitq_timer_fn;
2970
2971         iocg->level = blkg->blkcg->css.cgroup->level;
2972
2973         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2974                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2975                 iocg->ancestors[tiocg->level] = tiocg;
2976         }
2977
2978         spin_lock_irqsave(&ioc->lock, flags);
2979         weight_updated(iocg, &now);
2980         spin_unlock_irqrestore(&ioc->lock, flags);
2981 }
2982
2983 static void ioc_pd_free(struct blkg_policy_data *pd)
2984 {
2985         struct ioc_gq *iocg = pd_to_iocg(pd);
2986         struct ioc *ioc = iocg->ioc;
2987         unsigned long flags;
2988
2989         if (ioc) {
2990                 spin_lock_irqsave(&ioc->lock, flags);
2991
2992                 if (!list_empty(&iocg->active_list)) {
2993                         struct ioc_now now;
2994
2995                         ioc_now(ioc, &now);
2996                         propagate_weights(iocg, 0, 0, false, &now);
2997                         list_del_init(&iocg->active_list);
2998                 }
2999
3000                 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
3001                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
3002
3003                 spin_unlock_irqrestore(&ioc->lock, flags);
3004
3005                 hrtimer_cancel(&iocg->waitq_timer);
3006         }
3007         free_percpu(iocg->pcpu_stat);
3008         kfree(iocg);
3009 }
3010
3011 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3012 {
3013         struct ioc_gq *iocg = pd_to_iocg(pd);
3014         struct ioc *ioc = iocg->ioc;
3015
3016         if (!ioc->enabled)
3017                 return;
3018
3019         if (iocg->level == 0) {
3020                 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3021                         ioc->vtime_base_rate * 10000,
3022                         VTIME_PER_USEC);
3023                 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3024         }
3025
3026         seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3027
3028         if (blkcg_debug_stats)
3029                 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3030                         iocg->last_stat.wait_us,
3031                         iocg->last_stat.indebt_us,
3032                         iocg->last_stat.indelay_us);
3033 }
3034
3035 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3036                              int off)
3037 {
3038         const char *dname = blkg_dev_name(pd->blkg);
3039         struct ioc_gq *iocg = pd_to_iocg(pd);
3040
3041         if (dname && iocg->cfg_weight)
3042                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3043         return 0;
3044 }
3045
3046
3047 static int ioc_weight_show(struct seq_file *sf, void *v)
3048 {
3049         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3050         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3051
3052         seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3053         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3054                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3055         return 0;
3056 }
3057
3058 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3059                                 size_t nbytes, loff_t off)
3060 {
3061         struct blkcg *blkcg = css_to_blkcg(of_css(of));
3062         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3063         struct blkg_conf_ctx ctx;
3064         struct ioc_now now;
3065         struct ioc_gq *iocg;
3066         u32 v;
3067         int ret;
3068
3069         if (!strchr(buf, ':')) {
3070                 struct blkcg_gq *blkg;
3071
3072                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3073                         return -EINVAL;
3074
3075                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3076                         return -EINVAL;
3077
3078                 spin_lock_irq(&blkcg->lock);
3079                 iocc->dfl_weight = v * WEIGHT_ONE;
3080                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3081                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
3082
3083                         if (iocg) {
3084                                 spin_lock(&iocg->ioc->lock);
3085                                 ioc_now(iocg->ioc, &now);
3086                                 weight_updated(iocg, &now);
3087                                 spin_unlock(&iocg->ioc->lock);
3088                         }
3089                 }
3090                 spin_unlock_irq(&blkcg->lock);
3091
3092                 return nbytes;
3093         }
3094
3095         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3096         if (ret)
3097                 return ret;
3098
3099         iocg = blkg_to_iocg(ctx.blkg);
3100
3101         if (!strncmp(ctx.body, "default", 7)) {
3102                 v = 0;
3103         } else {
3104                 if (!sscanf(ctx.body, "%u", &v))
3105                         goto einval;
3106                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3107                         goto einval;
3108         }
3109
3110         spin_lock(&iocg->ioc->lock);
3111         iocg->cfg_weight = v * WEIGHT_ONE;
3112         ioc_now(iocg->ioc, &now);
3113         weight_updated(iocg, &now);
3114         spin_unlock(&iocg->ioc->lock);
3115
3116         blkg_conf_finish(&ctx);
3117         return nbytes;
3118
3119 einval:
3120         blkg_conf_finish(&ctx);
3121         return -EINVAL;
3122 }
3123
3124 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3125                           int off)
3126 {
3127         const char *dname = blkg_dev_name(pd->blkg);
3128         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3129
3130         if (!dname)
3131                 return 0;
3132
3133         spin_lock_irq(&ioc->lock);
3134         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3135                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3136                    ioc->params.qos[QOS_RPPM] / 10000,
3137                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
3138                    ioc->params.qos[QOS_RLAT],
3139                    ioc->params.qos[QOS_WPPM] / 10000,
3140                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
3141                    ioc->params.qos[QOS_WLAT],
3142                    ioc->params.qos[QOS_MIN] / 10000,
3143                    ioc->params.qos[QOS_MIN] % 10000 / 100,
3144                    ioc->params.qos[QOS_MAX] / 10000,
3145                    ioc->params.qos[QOS_MAX] % 10000 / 100);
3146         spin_unlock_irq(&ioc->lock);
3147         return 0;
3148 }
3149
3150 static int ioc_qos_show(struct seq_file *sf, void *v)
3151 {
3152         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3153
3154         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3155                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3156         return 0;
3157 }
3158
3159 static const match_table_t qos_ctrl_tokens = {
3160         { QOS_ENABLE,           "enable=%u"     },
3161         { QOS_CTRL,             "ctrl=%s"       },
3162         { NR_QOS_CTRL_PARAMS,   NULL            },
3163 };
3164
3165 static const match_table_t qos_tokens = {
3166         { QOS_RPPM,             "rpct=%s"       },
3167         { QOS_RLAT,             "rlat=%u"       },
3168         { QOS_WPPM,             "wpct=%s"       },
3169         { QOS_WLAT,             "wlat=%u"       },
3170         { QOS_MIN,              "min=%s"        },
3171         { QOS_MAX,              "max=%s"        },
3172         { NR_QOS_PARAMS,        NULL            },
3173 };
3174
3175 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3176                              size_t nbytes, loff_t off)
3177 {
3178         struct block_device *bdev;
3179         struct gendisk *disk;
3180         struct ioc *ioc;
3181         u32 qos[NR_QOS_PARAMS];
3182         bool enable, user;
3183         char *p;
3184         int ret;
3185
3186         bdev = blkcg_conf_open_bdev(&input);
3187         if (IS_ERR(bdev))
3188                 return PTR_ERR(bdev);
3189
3190         disk = bdev->bd_disk;
3191         if (!queue_is_mq(disk->queue)) {
3192                 ret = -EOPNOTSUPP;
3193                 goto err;
3194         }
3195
3196         ioc = q_to_ioc(disk->queue);
3197         if (!ioc) {
3198                 ret = blk_iocost_init(disk);
3199                 if (ret)
3200                         goto err;
3201                 ioc = q_to_ioc(disk->queue);
3202         }
3203
3204         blk_mq_freeze_queue(disk->queue);
3205         blk_mq_quiesce_queue(disk->queue);
3206
3207         spin_lock_irq(&ioc->lock);
3208         memcpy(qos, ioc->params.qos, sizeof(qos));
3209         enable = ioc->enabled;
3210         user = ioc->user_qos_params;
3211
3212         while ((p = strsep(&input, " \t\n"))) {
3213                 substring_t args[MAX_OPT_ARGS];
3214                 char buf[32];
3215                 int tok;
3216                 s64 v;
3217
3218                 if (!*p)
3219                         continue;
3220
3221                 switch (match_token(p, qos_ctrl_tokens, args)) {
3222                 case QOS_ENABLE:
3223                         if (match_u64(&args[0], &v))
3224                                 goto einval;
3225                         enable = v;
3226                         continue;
3227                 case QOS_CTRL:
3228                         match_strlcpy(buf, &args[0], sizeof(buf));
3229                         if (!strcmp(buf, "auto"))
3230                                 user = false;
3231                         else if (!strcmp(buf, "user"))
3232                                 user = true;
3233                         else
3234                                 goto einval;
3235                         continue;
3236                 }
3237
3238                 tok = match_token(p, qos_tokens, args);
3239                 switch (tok) {
3240                 case QOS_RPPM:
3241                 case QOS_WPPM:
3242                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3243                             sizeof(buf))
3244                                 goto einval;
3245                         if (cgroup_parse_float(buf, 2, &v))
3246                                 goto einval;
3247                         if (v < 0 || v > 10000)
3248                                 goto einval;
3249                         qos[tok] = v * 100;
3250                         break;
3251                 case QOS_RLAT:
3252                 case QOS_WLAT:
3253                         if (match_u64(&args[0], &v))
3254                                 goto einval;
3255                         qos[tok] = v;
3256                         break;
3257                 case QOS_MIN:
3258                 case QOS_MAX:
3259                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3260                             sizeof(buf))
3261                                 goto einval;
3262                         if (cgroup_parse_float(buf, 2, &v))
3263                                 goto einval;
3264                         if (v < 0)
3265                                 goto einval;
3266                         qos[tok] = clamp_t(s64, v * 100,
3267                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
3268                         break;
3269                 default:
3270                         goto einval;
3271                 }
3272                 user = true;
3273         }
3274
3275         if (qos[QOS_MIN] > qos[QOS_MAX])
3276                 goto einval;
3277
3278         if (enable) {
3279                 blk_stat_enable_accounting(disk->queue);
3280                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3281                 ioc->enabled = true;
3282                 wbt_disable_default(disk);
3283         } else {
3284                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3285                 ioc->enabled = false;
3286                 wbt_enable_default(disk);
3287         }
3288
3289         if (user) {
3290                 memcpy(ioc->params.qos, qos, sizeof(qos));
3291                 ioc->user_qos_params = true;
3292         } else {
3293                 ioc->user_qos_params = false;
3294         }
3295
3296         ioc_refresh_params(ioc, true);
3297         spin_unlock_irq(&ioc->lock);
3298
3299         blk_mq_unquiesce_queue(disk->queue);
3300         blk_mq_unfreeze_queue(disk->queue);
3301
3302         blkdev_put_no_open(bdev);
3303         return nbytes;
3304 einval:
3305         spin_unlock_irq(&ioc->lock);
3306
3307         blk_mq_unquiesce_queue(disk->queue);
3308         blk_mq_unfreeze_queue(disk->queue);
3309
3310         ret = -EINVAL;
3311 err:
3312         blkdev_put_no_open(bdev);
3313         return ret;
3314 }
3315
3316 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3317                                  struct blkg_policy_data *pd, int off)
3318 {
3319         const char *dname = blkg_dev_name(pd->blkg);
3320         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3321         u64 *u = ioc->params.i_lcoefs;
3322
3323         if (!dname)
3324                 return 0;
3325
3326         spin_lock_irq(&ioc->lock);
3327         seq_printf(sf, "%s ctrl=%s model=linear "
3328                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
3329                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3330                    dname, ioc->user_cost_model ? "user" : "auto",
3331                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3332                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3333         spin_unlock_irq(&ioc->lock);
3334         return 0;
3335 }
3336
3337 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3338 {
3339         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3340
3341         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3342                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3343         return 0;
3344 }
3345
3346 static const match_table_t cost_ctrl_tokens = {
3347         { COST_CTRL,            "ctrl=%s"       },
3348         { COST_MODEL,           "model=%s"      },
3349         { NR_COST_CTRL_PARAMS,  NULL            },
3350 };
3351
3352 static const match_table_t i_lcoef_tokens = {
3353         { I_LCOEF_RBPS,         "rbps=%u"       },
3354         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
3355         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
3356         { I_LCOEF_WBPS,         "wbps=%u"       },
3357         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
3358         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
3359         { NR_I_LCOEFS,          NULL            },
3360 };
3361
3362 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3363                                     size_t nbytes, loff_t off)
3364 {
3365         struct block_device *bdev;
3366         struct request_queue *q;
3367         struct ioc *ioc;
3368         u64 u[NR_I_LCOEFS];
3369         bool user;
3370         char *p;
3371         int ret;
3372
3373         bdev = blkcg_conf_open_bdev(&input);
3374         if (IS_ERR(bdev))
3375                 return PTR_ERR(bdev);
3376
3377         q = bdev_get_queue(bdev);
3378         if (!queue_is_mq(q)) {
3379                 ret = -EOPNOTSUPP;
3380                 goto err;
3381         }
3382
3383         ioc = q_to_ioc(q);
3384         if (!ioc) {
3385                 ret = blk_iocost_init(bdev->bd_disk);
3386                 if (ret)
3387                         goto err;
3388                 ioc = q_to_ioc(q);
3389         }
3390
3391         blk_mq_freeze_queue(q);
3392         blk_mq_quiesce_queue(q);
3393
3394         spin_lock_irq(&ioc->lock);
3395         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3396         user = ioc->user_cost_model;
3397
3398         while ((p = strsep(&input, " \t\n"))) {
3399                 substring_t args[MAX_OPT_ARGS];
3400                 char buf[32];
3401                 int tok;
3402                 u64 v;
3403
3404                 if (!*p)
3405                         continue;
3406
3407                 switch (match_token(p, cost_ctrl_tokens, args)) {
3408                 case COST_CTRL:
3409                         match_strlcpy(buf, &args[0], sizeof(buf));
3410                         if (!strcmp(buf, "auto"))
3411                                 user = false;
3412                         else if (!strcmp(buf, "user"))
3413                                 user = true;
3414                         else
3415                                 goto einval;
3416                         continue;
3417                 case COST_MODEL:
3418                         match_strlcpy(buf, &args[0], sizeof(buf));
3419                         if (strcmp(buf, "linear"))
3420                                 goto einval;
3421                         continue;
3422                 }
3423
3424                 tok = match_token(p, i_lcoef_tokens, args);
3425                 if (tok == NR_I_LCOEFS)
3426                         goto einval;
3427                 if (match_u64(&args[0], &v))
3428                         goto einval;
3429                 u[tok] = v;
3430                 user = true;
3431         }
3432
3433         if (user) {
3434                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3435                 ioc->user_cost_model = true;
3436         } else {
3437                 ioc->user_cost_model = false;
3438         }
3439         ioc_refresh_params(ioc, true);
3440         spin_unlock_irq(&ioc->lock);
3441
3442         blk_mq_unquiesce_queue(q);
3443         blk_mq_unfreeze_queue(q);
3444
3445         blkdev_put_no_open(bdev);
3446         return nbytes;
3447
3448 einval:
3449         spin_unlock_irq(&ioc->lock);
3450
3451         blk_mq_unquiesce_queue(q);
3452         blk_mq_unfreeze_queue(q);
3453
3454         ret = -EINVAL;
3455 err:
3456         blkdev_put_no_open(bdev);
3457         return ret;
3458 }
3459
3460 static struct cftype ioc_files[] = {
3461         {
3462                 .name = "weight",
3463                 .flags = CFTYPE_NOT_ON_ROOT,
3464                 .seq_show = ioc_weight_show,
3465                 .write = ioc_weight_write,
3466         },
3467         {
3468                 .name = "cost.qos",
3469                 .flags = CFTYPE_ONLY_ON_ROOT,
3470                 .seq_show = ioc_qos_show,
3471                 .write = ioc_qos_write,
3472         },
3473         {
3474                 .name = "cost.model",
3475                 .flags = CFTYPE_ONLY_ON_ROOT,
3476                 .seq_show = ioc_cost_model_show,
3477                 .write = ioc_cost_model_write,
3478         },
3479         {}
3480 };
3481
3482 static struct blkcg_policy blkcg_policy_iocost = {
3483         .dfl_cftypes    = ioc_files,
3484         .cpd_alloc_fn   = ioc_cpd_alloc,
3485         .cpd_free_fn    = ioc_cpd_free,
3486         .pd_alloc_fn    = ioc_pd_alloc,
3487         .pd_init_fn     = ioc_pd_init,
3488         .pd_free_fn     = ioc_pd_free,
3489         .pd_stat_fn     = ioc_pd_stat,
3490 };
3491
3492 static int __init ioc_init(void)
3493 {
3494         return blkcg_policy_register(&blkcg_policy_iocost);
3495 }
3496
3497 static void __exit ioc_exit(void)
3498 {
3499         blkcg_policy_unregister(&blkcg_policy_iocost);
3500 }
3501
3502 module_init(ioc_init);
3503 module_exit(ioc_exit);