Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-starfive.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * parameters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO if doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, solely depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per        : Timer period
166  * - cur_per    : Internal wall and device vtime clock
167  * - vrate      : Device virtual time rate against wall clock
168  * - weight     : Surplus-adjusted and configured weights
169  * - hweight    : Surplus-adjusted and configured hierarchical weights
170  * - inflt      : The percentage of in-flight IO cost at the end of last period
171  * - del_ms     : Deferred issuer delay induction level and duration
172  * - usages     : Usage history
173  */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
185 #include "blk-wbt.h"
186 #include "blk-cgroup.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
196         do {                                                                    \
197                 unsigned long flags;                                            \
198                 if (trace_iocost_##type##_enabled()) {                          \
199                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
200                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
201                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
202                         trace_iocost_##type(iocg, trace_iocg_path,              \
203                                               ##__VA_ARGS__);                   \
204                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
205                 }                                                               \
206         } while (0)
207
208 #else   /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
210 #endif  /* CONFIG_TRACE_POINTS */
211
212 enum {
213         MILLION                 = 1000000,
214
215         /* timer period is calculated from latency requirements, bound it */
216         MIN_PERIOD              = USEC_PER_MSEC,
217         MAX_PERIOD              = USEC_PER_SEC,
218
219         /*
220          * iocg->vtime is targeted at 50% behind the device vtime, which
221          * serves as its IO credit buffer.  Surplus weight adjustment is
222          * immediately canceled if the vtime margin runs below 10%.
223          */
224         MARGIN_MIN_PCT          = 10,
225         MARGIN_LOW_PCT          = 20,
226         MARGIN_TARGET_PCT       = 50,
227
228         INUSE_ADJ_STEP_PCT      = 25,
229
230         /* Have some play in timer operations */
231         TIMER_SLACK_PCT         = 1,
232
233         /* 1/64k is granular enough and can easily be handled w/ u32 */
234         WEIGHT_ONE              = 1 << 16,
235 };
236
237 enum {
238         /*
239          * As vtime is used to calculate the cost of each IO, it needs to
240          * be fairly high precision.  For example, it should be able to
241          * represent the cost of a single page worth of discard with
242          * suffificient accuracy.  At the same time, it should be able to
243          * represent reasonably long enough durations to be useful and
244          * convenient during operation.
245          *
246          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
247          * granularity and days of wrap-around time even at extreme vrates.
248          */
249         VTIME_PER_SEC_SHIFT     = 37,
250         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
251         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
252         VTIME_PER_NSEC          = VTIME_PER_SEC / NSEC_PER_SEC,
253
254         /* bound vrate adjustments within two orders of magnitude */
255         VRATE_MIN_PPM           = 10000,        /* 1% */
256         VRATE_MAX_PPM           = 100000000,    /* 10000% */
257
258         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259         VRATE_CLAMP_ADJ_PCT     = 4,
260
261         /* if IOs end up waiting for requests, issue less */
262         RQ_WAIT_BUSY_PCT        = 5,
263
264         /* unbusy hysterisis */
265         UNBUSY_THR_PCT          = 75,
266
267         /*
268          * The effect of delay is indirect and non-linear and a huge amount of
269          * future debt can accumulate abruptly while unthrottled. Linearly scale
270          * up delay as debt is going up and then let it decay exponentially.
271          * This gives us quick ramp ups while delay is accumulating and long
272          * tails which can help reducing the frequency of debt explosions on
273          * unthrottle. The parameters are experimentally determined.
274          *
275          * The delay mechanism provides adequate protection and behavior in many
276          * cases. However, this is far from ideal and falls shorts on both
277          * fronts. The debtors are often throttled too harshly costing a
278          * significant level of fairness and possibly total work while the
279          * protection against their impacts on the system can be choppy and
280          * unreliable.
281          *
282          * The shortcoming primarily stems from the fact that, unlike for page
283          * cache, the kernel doesn't have well-defined back-pressure propagation
284          * mechanism and policies for anonymous memory. Fully addressing this
285          * issue will likely require substantial improvements in the area.
286          */
287         MIN_DELAY_THR_PCT       = 500,
288         MAX_DELAY_THR_PCT       = 25000,
289         MIN_DELAY               = 250,
290         MAX_DELAY               = 250 * USEC_PER_MSEC,
291
292         /* halve debts if avg usage over 100ms is under 50% */
293         DFGV_USAGE_PCT          = 50,
294         DFGV_PERIOD             = 100 * USEC_PER_MSEC,
295
296         /* don't let cmds which take a very long time pin lagging for too long */
297         MAX_LAGGING_PERIODS     = 10,
298
299         /* switch iff the conditions are met for longer than this */
300         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
301
302         /*
303          * Count IO size in 4k pages.  The 12bit shift helps keeping
304          * size-proportional components of cost calculation in closer
305          * numbers of digits to per-IO cost components.
306          */
307         IOC_PAGE_SHIFT          = 12,
308         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
309         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
310
311         /* if apart further than 16M, consider randio for linear model */
312         LCOEF_RANDIO_PAGES      = 4096,
313 };
314
315 enum ioc_running {
316         IOC_IDLE,
317         IOC_RUNNING,
318         IOC_STOP,
319 };
320
321 /* io.cost.qos controls including per-dev enable of the whole controller */
322 enum {
323         QOS_ENABLE,
324         QOS_CTRL,
325         NR_QOS_CTRL_PARAMS,
326 };
327
328 /* io.cost.qos params */
329 enum {
330         QOS_RPPM,
331         QOS_RLAT,
332         QOS_WPPM,
333         QOS_WLAT,
334         QOS_MIN,
335         QOS_MAX,
336         NR_QOS_PARAMS,
337 };
338
339 /* io.cost.model controls */
340 enum {
341         COST_CTRL,
342         COST_MODEL,
343         NR_COST_CTRL_PARAMS,
344 };
345
346 /* builtin linear cost model coefficients */
347 enum {
348         I_LCOEF_RBPS,
349         I_LCOEF_RSEQIOPS,
350         I_LCOEF_RRANDIOPS,
351         I_LCOEF_WBPS,
352         I_LCOEF_WSEQIOPS,
353         I_LCOEF_WRANDIOPS,
354         NR_I_LCOEFS,
355 };
356
357 enum {
358         LCOEF_RPAGE,
359         LCOEF_RSEQIO,
360         LCOEF_RRANDIO,
361         LCOEF_WPAGE,
362         LCOEF_WSEQIO,
363         LCOEF_WRANDIO,
364         NR_LCOEFS,
365 };
366
367 enum {
368         AUTOP_INVALID,
369         AUTOP_HDD,
370         AUTOP_SSD_QD1,
371         AUTOP_SSD_DFL,
372         AUTOP_SSD_FAST,
373 };
374
375 struct ioc_params {
376         u32                             qos[NR_QOS_PARAMS];
377         u64                             i_lcoefs[NR_I_LCOEFS];
378         u64                             lcoefs[NR_LCOEFS];
379         u32                             too_fast_vrate_pct;
380         u32                             too_slow_vrate_pct;
381 };
382
383 struct ioc_margins {
384         s64                             min;
385         s64                             low;
386         s64                             target;
387 };
388
389 struct ioc_missed {
390         local_t                         nr_met;
391         local_t                         nr_missed;
392         u32                             last_met;
393         u32                             last_missed;
394 };
395
396 struct ioc_pcpu_stat {
397         struct ioc_missed               missed[2];
398
399         local64_t                       rq_wait_ns;
400         u64                             last_rq_wait_ns;
401 };
402
403 /* per device */
404 struct ioc {
405         struct rq_qos                   rqos;
406
407         bool                            enabled;
408
409         struct ioc_params               params;
410         struct ioc_margins              margins;
411         u32                             period_us;
412         u32                             timer_slack_ns;
413         u64                             vrate_min;
414         u64                             vrate_max;
415
416         spinlock_t                      lock;
417         struct timer_list               timer;
418         struct list_head                active_iocgs;   /* active cgroups */
419         struct ioc_pcpu_stat __percpu   *pcpu_stat;
420
421         enum ioc_running                running;
422         atomic64_t                      vtime_rate;
423         u64                             vtime_base_rate;
424         s64                             vtime_err;
425
426         seqcount_spinlock_t             period_seqcount;
427         u64                             period_at;      /* wallclock starttime */
428         u64                             period_at_vtime; /* vtime starttime */
429
430         atomic64_t                      cur_period;     /* inc'd each period */
431         int                             busy_level;     /* saturation history */
432
433         bool                            weights_updated;
434         atomic_t                        hweight_gen;    /* for lazy hweights */
435
436         /* debt forgivness */
437         u64                             dfgv_period_at;
438         u64                             dfgv_period_rem;
439         u64                             dfgv_usage_us_sum;
440
441         u64                             autop_too_fast_at;
442         u64                             autop_too_slow_at;
443         int                             autop_idx;
444         bool                            user_qos_params:1;
445         bool                            user_cost_model:1;
446 };
447
448 struct iocg_pcpu_stat {
449         local64_t                       abs_vusage;
450 };
451
452 struct iocg_stat {
453         u64                             usage_us;
454         u64                             wait_us;
455         u64                             indebt_us;
456         u64                             indelay_us;
457 };
458
459 /* per device-cgroup pair */
460 struct ioc_gq {
461         struct blkg_policy_data         pd;
462         struct ioc                      *ioc;
463
464         /*
465          * A iocg can get its weight from two sources - an explicit
466          * per-device-cgroup configuration or the default weight of the
467          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
468          * configuration.  `weight` is the effective considering both
469          * sources.
470          *
471          * When an idle cgroup becomes active its `active` goes from 0 to
472          * `weight`.  `inuse` is the surplus adjusted active weight.
473          * `active` and `inuse` are used to calculate `hweight_active` and
474          * `hweight_inuse`.
475          *
476          * `last_inuse` remembers `inuse` while an iocg is idle to persist
477          * surplus adjustments.
478          *
479          * `inuse` may be adjusted dynamically during period. `saved_*` are used
480          * to determine and track adjustments.
481          */
482         u32                             cfg_weight;
483         u32                             weight;
484         u32                             active;
485         u32                             inuse;
486
487         u32                             last_inuse;
488         s64                             saved_margin;
489
490         sector_t                        cursor;         /* to detect randio */
491
492         /*
493          * `vtime` is this iocg's vtime cursor which progresses as IOs are
494          * issued.  If lagging behind device vtime, the delta represents
495          * the currently available IO budget.  If running ahead, the
496          * overage.
497          *
498          * `vtime_done` is the same but progressed on completion rather
499          * than issue.  The delta behind `vtime` represents the cost of
500          * currently in-flight IOs.
501          */
502         atomic64_t                      vtime;
503         atomic64_t                      done_vtime;
504         u64                             abs_vdebt;
505
506         /* current delay in effect and when it started */
507         u64                             delay;
508         u64                             delay_at;
509
510         /*
511          * The period this iocg was last active in.  Used for deactivation
512          * and invalidating `vtime`.
513          */
514         atomic64_t                      active_period;
515         struct list_head                active_list;
516
517         /* see __propagate_weights() and current_hweight() for details */
518         u64                             child_active_sum;
519         u64                             child_inuse_sum;
520         u64                             child_adjusted_sum;
521         int                             hweight_gen;
522         u32                             hweight_active;
523         u32                             hweight_inuse;
524         u32                             hweight_donating;
525         u32                             hweight_after_donation;
526
527         struct list_head                walk_list;
528         struct list_head                surplus_list;
529
530         struct wait_queue_head          waitq;
531         struct hrtimer                  waitq_timer;
532
533         /* timestamp at the latest activation */
534         u64                             activated_at;
535
536         /* statistics */
537         struct iocg_pcpu_stat __percpu  *pcpu_stat;
538         struct iocg_stat                stat;
539         struct iocg_stat                last_stat;
540         u64                             last_stat_abs_vusage;
541         u64                             usage_delta_us;
542         u64                             wait_since;
543         u64                             indebt_since;
544         u64                             indelay_since;
545
546         /* this iocg's depth in the hierarchy and ancestors including self */
547         int                             level;
548         struct ioc_gq                   *ancestors[];
549 };
550
551 /* per cgroup */
552 struct ioc_cgrp {
553         struct blkcg_policy_data        cpd;
554         unsigned int                    dfl_weight;
555 };
556
557 struct ioc_now {
558         u64                             now_ns;
559         u64                             now;
560         u64                             vnow;
561 };
562
563 struct iocg_wait {
564         struct wait_queue_entry         wait;
565         struct bio                      *bio;
566         u64                             abs_cost;
567         bool                            committed;
568 };
569
570 struct iocg_wake_ctx {
571         struct ioc_gq                   *iocg;
572         u32                             hw_inuse;
573         s64                             vbudget;
574 };
575
576 static const struct ioc_params autop[] = {
577         [AUTOP_HDD] = {
578                 .qos                            = {
579                         [QOS_RLAT]              =        250000, /* 250ms */
580                         [QOS_WLAT]              =        250000,
581                         [QOS_MIN]               = VRATE_MIN_PPM,
582                         [QOS_MAX]               = VRATE_MAX_PPM,
583                 },
584                 .i_lcoefs                       = {
585                         [I_LCOEF_RBPS]          =     174019176,
586                         [I_LCOEF_RSEQIOPS]      =         41708,
587                         [I_LCOEF_RRANDIOPS]     =           370,
588                         [I_LCOEF_WBPS]          =     178075866,
589                         [I_LCOEF_WSEQIOPS]      =         42705,
590                         [I_LCOEF_WRANDIOPS]     =           378,
591                 },
592         },
593         [AUTOP_SSD_QD1] = {
594                 .qos                            = {
595                         [QOS_RLAT]              =         25000, /* 25ms */
596                         [QOS_WLAT]              =         25000,
597                         [QOS_MIN]               = VRATE_MIN_PPM,
598                         [QOS_MAX]               = VRATE_MAX_PPM,
599                 },
600                 .i_lcoefs                       = {
601                         [I_LCOEF_RBPS]          =     245855193,
602                         [I_LCOEF_RSEQIOPS]      =         61575,
603                         [I_LCOEF_RRANDIOPS]     =          6946,
604                         [I_LCOEF_WBPS]          =     141365009,
605                         [I_LCOEF_WSEQIOPS]      =         33716,
606                         [I_LCOEF_WRANDIOPS]     =         26796,
607                 },
608         },
609         [AUTOP_SSD_DFL] = {
610                 .qos                            = {
611                         [QOS_RLAT]              =         25000, /* 25ms */
612                         [QOS_WLAT]              =         25000,
613                         [QOS_MIN]               = VRATE_MIN_PPM,
614                         [QOS_MAX]               = VRATE_MAX_PPM,
615                 },
616                 .i_lcoefs                       = {
617                         [I_LCOEF_RBPS]          =     488636629,
618                         [I_LCOEF_RSEQIOPS]      =          8932,
619                         [I_LCOEF_RRANDIOPS]     =          8518,
620                         [I_LCOEF_WBPS]          =     427891549,
621                         [I_LCOEF_WSEQIOPS]      =         28755,
622                         [I_LCOEF_WRANDIOPS]     =         21940,
623                 },
624                 .too_fast_vrate_pct             =           500,
625         },
626         [AUTOP_SSD_FAST] = {
627                 .qos                            = {
628                         [QOS_RLAT]              =          5000, /* 5ms */
629                         [QOS_WLAT]              =          5000,
630                         [QOS_MIN]               = VRATE_MIN_PPM,
631                         [QOS_MAX]               = VRATE_MAX_PPM,
632                 },
633                 .i_lcoefs                       = {
634                         [I_LCOEF_RBPS]          =    3102524156LLU,
635                         [I_LCOEF_RSEQIOPS]      =        724816,
636                         [I_LCOEF_RRANDIOPS]     =        778122,
637                         [I_LCOEF_WBPS]          =    1742780862LLU,
638                         [I_LCOEF_WSEQIOPS]      =        425702,
639                         [I_LCOEF_WRANDIOPS]     =        443193,
640                 },
641                 .too_slow_vrate_pct             =            10,
642         },
643 };
644
645 /*
646  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
647  * vtime credit shortage and down on device saturation.
648  */
649 static u32 vrate_adj_pct[] =
650         { 0, 0, 0, 0,
651           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
652           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
653           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
654
655 static struct blkcg_policy blkcg_policy_iocost;
656
657 /* accessors and helpers */
658 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
659 {
660         return container_of(rqos, struct ioc, rqos);
661 }
662
663 static struct ioc *q_to_ioc(struct request_queue *q)
664 {
665         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
666 }
667
668 static const char __maybe_unused *ioc_name(struct ioc *ioc)
669 {
670         struct gendisk *disk = ioc->rqos.q->disk;
671
672         if (!disk)
673                 return "<unknown>";
674         return disk->disk_name;
675 }
676
677 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
678 {
679         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
680 }
681
682 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
683 {
684         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
685 }
686
687 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
688 {
689         return pd_to_blkg(&iocg->pd);
690 }
691
692 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
693 {
694         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
695                             struct ioc_cgrp, cpd);
696 }
697
698 /*
699  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
700  * weight, the more expensive each IO.  Must round up.
701  */
702 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
703 {
704         return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
705 }
706
707 /*
708  * The inverse of abs_cost_to_cost().  Must round up.
709  */
710 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
711 {
712         return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
713 }
714
715 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
716                             u64 abs_cost, u64 cost)
717 {
718         struct iocg_pcpu_stat *gcs;
719
720         bio->bi_iocost_cost = cost;
721         atomic64_add(cost, &iocg->vtime);
722
723         gcs = get_cpu_ptr(iocg->pcpu_stat);
724         local64_add(abs_cost, &gcs->abs_vusage);
725         put_cpu_ptr(gcs);
726 }
727
728 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
729 {
730         if (lock_ioc) {
731                 spin_lock_irqsave(&iocg->ioc->lock, *flags);
732                 spin_lock(&iocg->waitq.lock);
733         } else {
734                 spin_lock_irqsave(&iocg->waitq.lock, *flags);
735         }
736 }
737
738 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
739 {
740         if (unlock_ioc) {
741                 spin_unlock(&iocg->waitq.lock);
742                 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
743         } else {
744                 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
745         }
746 }
747
748 #define CREATE_TRACE_POINTS
749 #include <trace/events/iocost.h>
750
751 static void ioc_refresh_margins(struct ioc *ioc)
752 {
753         struct ioc_margins *margins = &ioc->margins;
754         u32 period_us = ioc->period_us;
755         u64 vrate = ioc->vtime_base_rate;
756
757         margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
758         margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
759         margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
760 }
761
762 /* latency Qos params changed, update period_us and all the dependent params */
763 static void ioc_refresh_period_us(struct ioc *ioc)
764 {
765         u32 ppm, lat, multi, period_us;
766
767         lockdep_assert_held(&ioc->lock);
768
769         /* pick the higher latency target */
770         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
771                 ppm = ioc->params.qos[QOS_RPPM];
772                 lat = ioc->params.qos[QOS_RLAT];
773         } else {
774                 ppm = ioc->params.qos[QOS_WPPM];
775                 lat = ioc->params.qos[QOS_WLAT];
776         }
777
778         /*
779          * We want the period to be long enough to contain a healthy number
780          * of IOs while short enough for granular control.  Define it as a
781          * multiple of the latency target.  Ideally, the multiplier should
782          * be scaled according to the percentile so that it would nominally
783          * contain a certain number of requests.  Let's be simpler and
784          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
785          */
786         if (ppm)
787                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
788         else
789                 multi = 2;
790         period_us = multi * lat;
791         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
792
793         /* calculate dependent params */
794         ioc->period_us = period_us;
795         ioc->timer_slack_ns = div64_u64(
796                 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
797                 100);
798         ioc_refresh_margins(ioc);
799 }
800
801 static int ioc_autop_idx(struct ioc *ioc)
802 {
803         int idx = ioc->autop_idx;
804         const struct ioc_params *p = &autop[idx];
805         u32 vrate_pct;
806         u64 now_ns;
807
808         /* rotational? */
809         if (!blk_queue_nonrot(ioc->rqos.q))
810                 return AUTOP_HDD;
811
812         /* handle SATA SSDs w/ broken NCQ */
813         if (blk_queue_depth(ioc->rqos.q) == 1)
814                 return AUTOP_SSD_QD1;
815
816         /* use one of the normal ssd sets */
817         if (idx < AUTOP_SSD_DFL)
818                 return AUTOP_SSD_DFL;
819
820         /* if user is overriding anything, maintain what was there */
821         if (ioc->user_qos_params || ioc->user_cost_model)
822                 return idx;
823
824         /* step up/down based on the vrate */
825         vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
826         now_ns = ktime_get_ns();
827
828         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
829                 if (!ioc->autop_too_fast_at)
830                         ioc->autop_too_fast_at = now_ns;
831                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
832                         return idx + 1;
833         } else {
834                 ioc->autop_too_fast_at = 0;
835         }
836
837         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
838                 if (!ioc->autop_too_slow_at)
839                         ioc->autop_too_slow_at = now_ns;
840                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
841                         return idx - 1;
842         } else {
843                 ioc->autop_too_slow_at = 0;
844         }
845
846         return idx;
847 }
848
849 /*
850  * Take the followings as input
851  *
852  *  @bps        maximum sequential throughput
853  *  @seqiops    maximum sequential 4k iops
854  *  @randiops   maximum random 4k iops
855  *
856  * and calculate the linear model cost coefficients.
857  *
858  *  *@page      per-page cost           1s / (@bps / 4096)
859  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
860  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
861  */
862 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
863                         u64 *page, u64 *seqio, u64 *randio)
864 {
865         u64 v;
866
867         *page = *seqio = *randio = 0;
868
869         if (bps)
870                 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
871                                            DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
872
873         if (seqiops) {
874                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
875                 if (v > *page)
876                         *seqio = v - *page;
877         }
878
879         if (randiops) {
880                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
881                 if (v > *page)
882                         *randio = v - *page;
883         }
884 }
885
886 static void ioc_refresh_lcoefs(struct ioc *ioc)
887 {
888         u64 *u = ioc->params.i_lcoefs;
889         u64 *c = ioc->params.lcoefs;
890
891         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
892                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
893         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
894                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
895 }
896
897 static bool ioc_refresh_params(struct ioc *ioc, bool force)
898 {
899         const struct ioc_params *p;
900         int idx;
901
902         lockdep_assert_held(&ioc->lock);
903
904         idx = ioc_autop_idx(ioc);
905         p = &autop[idx];
906
907         if (idx == ioc->autop_idx && !force)
908                 return false;
909
910         if (idx != ioc->autop_idx) {
911                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
912                 ioc->vtime_base_rate = VTIME_PER_USEC;
913         }
914
915         ioc->autop_idx = idx;
916         ioc->autop_too_fast_at = 0;
917         ioc->autop_too_slow_at = 0;
918
919         if (!ioc->user_qos_params)
920                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
921         if (!ioc->user_cost_model)
922                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
923
924         ioc_refresh_period_us(ioc);
925         ioc_refresh_lcoefs(ioc);
926
927         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
928                                             VTIME_PER_USEC, MILLION);
929         ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
930                                    VTIME_PER_USEC, MILLION);
931
932         return true;
933 }
934
935 /*
936  * When an iocg accumulates too much vtime or gets deactivated, we throw away
937  * some vtime, which lowers the overall device utilization. As the exact amount
938  * which is being thrown away is known, we can compensate by accelerating the
939  * vrate accordingly so that the extra vtime generated in the current period
940  * matches what got lost.
941  */
942 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
943 {
944         s64 pleft = ioc->period_at + ioc->period_us - now->now;
945         s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
946         s64 vcomp, vcomp_min, vcomp_max;
947
948         lockdep_assert_held(&ioc->lock);
949
950         /* we need some time left in this period */
951         if (pleft <= 0)
952                 goto done;
953
954         /*
955          * Calculate how much vrate should be adjusted to offset the error.
956          * Limit the amount of adjustment and deduct the adjusted amount from
957          * the error.
958          */
959         vcomp = -div64_s64(ioc->vtime_err, pleft);
960         vcomp_min = -(ioc->vtime_base_rate >> 1);
961         vcomp_max = ioc->vtime_base_rate;
962         vcomp = clamp(vcomp, vcomp_min, vcomp_max);
963
964         ioc->vtime_err += vcomp * pleft;
965
966         atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
967 done:
968         /* bound how much error can accumulate */
969         ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
970 }
971
972 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
973                                   int nr_lagging, int nr_shortages,
974                                   int prev_busy_level, u32 *missed_ppm)
975 {
976         u64 vrate = ioc->vtime_base_rate;
977         u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
978
979         if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
980                 if (ioc->busy_level != prev_busy_level || nr_lagging)
981                         trace_iocost_ioc_vrate_adj(ioc, vrate,
982                                                    missed_ppm, rq_wait_pct,
983                                                    nr_lagging, nr_shortages);
984
985                 return;
986         }
987
988         /*
989          * If vrate is out of bounds, apply clamp gradually as the
990          * bounds can change abruptly.  Otherwise, apply busy_level
991          * based adjustment.
992          */
993         if (vrate < vrate_min) {
994                 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
995                 vrate = min(vrate, vrate_min);
996         } else if (vrate > vrate_max) {
997                 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
998                 vrate = max(vrate, vrate_max);
999         } else {
1000                 int idx = min_t(int, abs(ioc->busy_level),
1001                                 ARRAY_SIZE(vrate_adj_pct) - 1);
1002                 u32 adj_pct = vrate_adj_pct[idx];
1003
1004                 if (ioc->busy_level > 0)
1005                         adj_pct = 100 - adj_pct;
1006                 else
1007                         adj_pct = 100 + adj_pct;
1008
1009                 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1010                               vrate_min, vrate_max);
1011         }
1012
1013         trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1014                                    nr_lagging, nr_shortages);
1015
1016         ioc->vtime_base_rate = vrate;
1017         ioc_refresh_margins(ioc);
1018 }
1019
1020 /* take a snapshot of the current [v]time and vrate */
1021 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1022 {
1023         unsigned seq;
1024         u64 vrate;
1025
1026         now->now_ns = ktime_get();
1027         now->now = ktime_to_us(now->now_ns);
1028         vrate = atomic64_read(&ioc->vtime_rate);
1029
1030         /*
1031          * The current vtime is
1032          *
1033          *   vtime at period start + (wallclock time since the start) * vrate
1034          *
1035          * As a consistent snapshot of `period_at_vtime` and `period_at` is
1036          * needed, they're seqcount protected.
1037          */
1038         do {
1039                 seq = read_seqcount_begin(&ioc->period_seqcount);
1040                 now->vnow = ioc->period_at_vtime +
1041                         (now->now - ioc->period_at) * vrate;
1042         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1043 }
1044
1045 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1046 {
1047         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1048
1049         write_seqcount_begin(&ioc->period_seqcount);
1050         ioc->period_at = now->now;
1051         ioc->period_at_vtime = now->vnow;
1052         write_seqcount_end(&ioc->period_seqcount);
1053
1054         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1055         add_timer(&ioc->timer);
1056 }
1057
1058 /*
1059  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1060  * weight sums and propagate upwards accordingly. If @save, the current margin
1061  * is saved to be used as reference for later inuse in-period adjustments.
1062  */
1063 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1064                                 bool save, struct ioc_now *now)
1065 {
1066         struct ioc *ioc = iocg->ioc;
1067         int lvl;
1068
1069         lockdep_assert_held(&ioc->lock);
1070
1071         /*
1072          * For an active leaf node, its inuse shouldn't be zero or exceed
1073          * @active. An active internal node's inuse is solely determined by the
1074          * inuse to active ratio of its children regardless of @inuse.
1075          */
1076         if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1077                 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1078                                            iocg->child_active_sum);
1079         } else {
1080                 inuse = clamp_t(u32, inuse, 1, active);
1081         }
1082
1083         iocg->last_inuse = iocg->inuse;
1084         if (save)
1085                 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1086
1087         if (active == iocg->active && inuse == iocg->inuse)
1088                 return;
1089
1090         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1091                 struct ioc_gq *parent = iocg->ancestors[lvl];
1092                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1093                 u32 parent_active = 0, parent_inuse = 0;
1094
1095                 /* update the level sums */
1096                 parent->child_active_sum += (s32)(active - child->active);
1097                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1098                 /* apply the updates */
1099                 child->active = active;
1100                 child->inuse = inuse;
1101
1102                 /*
1103                  * The delta between inuse and active sums indicates that
1104                  * much of weight is being given away.  Parent's inuse
1105                  * and active should reflect the ratio.
1106                  */
1107                 if (parent->child_active_sum) {
1108                         parent_active = parent->weight;
1109                         parent_inuse = DIV64_U64_ROUND_UP(
1110                                 parent_active * parent->child_inuse_sum,
1111                                 parent->child_active_sum);
1112                 }
1113
1114                 /* do we need to keep walking up? */
1115                 if (parent_active == parent->active &&
1116                     parent_inuse == parent->inuse)
1117                         break;
1118
1119                 active = parent_active;
1120                 inuse = parent_inuse;
1121         }
1122
1123         ioc->weights_updated = true;
1124 }
1125
1126 static void commit_weights(struct ioc *ioc)
1127 {
1128         lockdep_assert_held(&ioc->lock);
1129
1130         if (ioc->weights_updated) {
1131                 /* paired with rmb in current_hweight(), see there */
1132                 smp_wmb();
1133                 atomic_inc(&ioc->hweight_gen);
1134                 ioc->weights_updated = false;
1135         }
1136 }
1137
1138 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1139                               bool save, struct ioc_now *now)
1140 {
1141         __propagate_weights(iocg, active, inuse, save, now);
1142         commit_weights(iocg->ioc);
1143 }
1144
1145 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1146 {
1147         struct ioc *ioc = iocg->ioc;
1148         int lvl;
1149         u32 hwa, hwi;
1150         int ioc_gen;
1151
1152         /* hot path - if uptodate, use cached */
1153         ioc_gen = atomic_read(&ioc->hweight_gen);
1154         if (ioc_gen == iocg->hweight_gen)
1155                 goto out;
1156
1157         /*
1158          * Paired with wmb in commit_weights(). If we saw the updated
1159          * hweight_gen, all the weight updates from __propagate_weights() are
1160          * visible too.
1161          *
1162          * We can race with weight updates during calculation and get it
1163          * wrong.  However, hweight_gen would have changed and a future
1164          * reader will recalculate and we're guaranteed to discard the
1165          * wrong result soon.
1166          */
1167         smp_rmb();
1168
1169         hwa = hwi = WEIGHT_ONE;
1170         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1171                 struct ioc_gq *parent = iocg->ancestors[lvl];
1172                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1173                 u64 active_sum = READ_ONCE(parent->child_active_sum);
1174                 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1175                 u32 active = READ_ONCE(child->active);
1176                 u32 inuse = READ_ONCE(child->inuse);
1177
1178                 /* we can race with deactivations and either may read as zero */
1179                 if (!active_sum || !inuse_sum)
1180                         continue;
1181
1182                 active_sum = max_t(u64, active, active_sum);
1183                 hwa = div64_u64((u64)hwa * active, active_sum);
1184
1185                 inuse_sum = max_t(u64, inuse, inuse_sum);
1186                 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1187         }
1188
1189         iocg->hweight_active = max_t(u32, hwa, 1);
1190         iocg->hweight_inuse = max_t(u32, hwi, 1);
1191         iocg->hweight_gen = ioc_gen;
1192 out:
1193         if (hw_activep)
1194                 *hw_activep = iocg->hweight_active;
1195         if (hw_inusep)
1196                 *hw_inusep = iocg->hweight_inuse;
1197 }
1198
1199 /*
1200  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1201  * other weights stay unchanged.
1202  */
1203 static u32 current_hweight_max(struct ioc_gq *iocg)
1204 {
1205         u32 hwm = WEIGHT_ONE;
1206         u32 inuse = iocg->active;
1207         u64 child_inuse_sum;
1208         int lvl;
1209
1210         lockdep_assert_held(&iocg->ioc->lock);
1211
1212         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1213                 struct ioc_gq *parent = iocg->ancestors[lvl];
1214                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1215
1216                 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1217                 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1218                 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1219                                            parent->child_active_sum);
1220         }
1221
1222         return max_t(u32, hwm, 1);
1223 }
1224
1225 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1226 {
1227         struct ioc *ioc = iocg->ioc;
1228         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1229         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1230         u32 weight;
1231
1232         lockdep_assert_held(&ioc->lock);
1233
1234         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1235         if (weight != iocg->weight && iocg->active)
1236                 propagate_weights(iocg, weight, iocg->inuse, true, now);
1237         iocg->weight = weight;
1238 }
1239
1240 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1241 {
1242         struct ioc *ioc = iocg->ioc;
1243         u64 last_period, cur_period;
1244         u64 vtime, vtarget;
1245         int i;
1246
1247         /*
1248          * If seem to be already active, just update the stamp to tell the
1249          * timer that we're still active.  We don't mind occassional races.
1250          */
1251         if (!list_empty(&iocg->active_list)) {
1252                 ioc_now(ioc, now);
1253                 cur_period = atomic64_read(&ioc->cur_period);
1254                 if (atomic64_read(&iocg->active_period) != cur_period)
1255                         atomic64_set(&iocg->active_period, cur_period);
1256                 return true;
1257         }
1258
1259         /* racy check on internal node IOs, treat as root level IOs */
1260         if (iocg->child_active_sum)
1261                 return false;
1262
1263         spin_lock_irq(&ioc->lock);
1264
1265         ioc_now(ioc, now);
1266
1267         /* update period */
1268         cur_period = atomic64_read(&ioc->cur_period);
1269         last_period = atomic64_read(&iocg->active_period);
1270         atomic64_set(&iocg->active_period, cur_period);
1271
1272         /* already activated or breaking leaf-only constraint? */
1273         if (!list_empty(&iocg->active_list))
1274                 goto succeed_unlock;
1275         for (i = iocg->level - 1; i > 0; i--)
1276                 if (!list_empty(&iocg->ancestors[i]->active_list))
1277                         goto fail_unlock;
1278
1279         if (iocg->child_active_sum)
1280                 goto fail_unlock;
1281
1282         /*
1283          * Always start with the target budget. On deactivation, we throw away
1284          * anything above it.
1285          */
1286         vtarget = now->vnow - ioc->margins.target;
1287         vtime = atomic64_read(&iocg->vtime);
1288
1289         atomic64_add(vtarget - vtime, &iocg->vtime);
1290         atomic64_add(vtarget - vtime, &iocg->done_vtime);
1291         vtime = vtarget;
1292
1293         /*
1294          * Activate, propagate weight and start period timer if not
1295          * running.  Reset hweight_gen to avoid accidental match from
1296          * wrapping.
1297          */
1298         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1299         list_add(&iocg->active_list, &ioc->active_iocgs);
1300
1301         propagate_weights(iocg, iocg->weight,
1302                           iocg->last_inuse ?: iocg->weight, true, now);
1303
1304         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1305                         last_period, cur_period, vtime);
1306
1307         iocg->activated_at = now->now;
1308
1309         if (ioc->running == IOC_IDLE) {
1310                 ioc->running = IOC_RUNNING;
1311                 ioc->dfgv_period_at = now->now;
1312                 ioc->dfgv_period_rem = 0;
1313                 ioc_start_period(ioc, now);
1314         }
1315
1316 succeed_unlock:
1317         spin_unlock_irq(&ioc->lock);
1318         return true;
1319
1320 fail_unlock:
1321         spin_unlock_irq(&ioc->lock);
1322         return false;
1323 }
1324
1325 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1326 {
1327         struct ioc *ioc = iocg->ioc;
1328         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1329         u64 tdelta, delay, new_delay;
1330         s64 vover, vover_pct;
1331         u32 hwa;
1332
1333         lockdep_assert_held(&iocg->waitq.lock);
1334
1335         /* calculate the current delay in effect - 1/2 every second */
1336         tdelta = now->now - iocg->delay_at;
1337         if (iocg->delay)
1338                 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1339         else
1340                 delay = 0;
1341
1342         /* calculate the new delay from the debt amount */
1343         current_hweight(iocg, &hwa, NULL);
1344         vover = atomic64_read(&iocg->vtime) +
1345                 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1346         vover_pct = div64_s64(100 * vover,
1347                               ioc->period_us * ioc->vtime_base_rate);
1348
1349         if (vover_pct <= MIN_DELAY_THR_PCT)
1350                 new_delay = 0;
1351         else if (vover_pct >= MAX_DELAY_THR_PCT)
1352                 new_delay = MAX_DELAY;
1353         else
1354                 new_delay = MIN_DELAY +
1355                         div_u64((MAX_DELAY - MIN_DELAY) *
1356                                 (vover_pct - MIN_DELAY_THR_PCT),
1357                                 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1358
1359         /* pick the higher one and apply */
1360         if (new_delay > delay) {
1361                 iocg->delay = new_delay;
1362                 iocg->delay_at = now->now;
1363                 delay = new_delay;
1364         }
1365
1366         if (delay >= MIN_DELAY) {
1367                 if (!iocg->indelay_since)
1368                         iocg->indelay_since = now->now;
1369                 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1370                 return true;
1371         } else {
1372                 if (iocg->indelay_since) {
1373                         iocg->stat.indelay_us += now->now - iocg->indelay_since;
1374                         iocg->indelay_since = 0;
1375                 }
1376                 iocg->delay = 0;
1377                 blkcg_clear_delay(blkg);
1378                 return false;
1379         }
1380 }
1381
1382 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1383                             struct ioc_now *now)
1384 {
1385         struct iocg_pcpu_stat *gcs;
1386
1387         lockdep_assert_held(&iocg->ioc->lock);
1388         lockdep_assert_held(&iocg->waitq.lock);
1389         WARN_ON_ONCE(list_empty(&iocg->active_list));
1390
1391         /*
1392          * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1393          * inuse donating all of it share to others until its debt is paid off.
1394          */
1395         if (!iocg->abs_vdebt && abs_cost) {
1396                 iocg->indebt_since = now->now;
1397                 propagate_weights(iocg, iocg->active, 0, false, now);
1398         }
1399
1400         iocg->abs_vdebt += abs_cost;
1401
1402         gcs = get_cpu_ptr(iocg->pcpu_stat);
1403         local64_add(abs_cost, &gcs->abs_vusage);
1404         put_cpu_ptr(gcs);
1405 }
1406
1407 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1408                           struct ioc_now *now)
1409 {
1410         lockdep_assert_held(&iocg->ioc->lock);
1411         lockdep_assert_held(&iocg->waitq.lock);
1412
1413         /* make sure that nobody messed with @iocg */
1414         WARN_ON_ONCE(list_empty(&iocg->active_list));
1415         WARN_ON_ONCE(iocg->inuse > 1);
1416
1417         iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1418
1419         /* if debt is paid in full, restore inuse */
1420         if (!iocg->abs_vdebt) {
1421                 iocg->stat.indebt_us += now->now - iocg->indebt_since;
1422                 iocg->indebt_since = 0;
1423
1424                 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1425                                   false, now);
1426         }
1427 }
1428
1429 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1430                         int flags, void *key)
1431 {
1432         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1433         struct iocg_wake_ctx *ctx = key;
1434         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1435
1436         ctx->vbudget -= cost;
1437
1438         if (ctx->vbudget < 0)
1439                 return -1;
1440
1441         iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1442         wait->committed = true;
1443
1444         /*
1445          * autoremove_wake_function() removes the wait entry only when it
1446          * actually changed the task state. We want the wait always removed.
1447          * Remove explicitly and use default_wake_function(). Note that the
1448          * order of operations is important as finish_wait() tests whether
1449          * @wq_entry is removed without grabbing the lock.
1450          */
1451         default_wake_function(wq_entry, mode, flags, key);
1452         list_del_init_careful(&wq_entry->entry);
1453         return 0;
1454 }
1455
1456 /*
1457  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1458  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1459  * addition to iocg->waitq.lock.
1460  */
1461 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1462                             struct ioc_now *now)
1463 {
1464         struct ioc *ioc = iocg->ioc;
1465         struct iocg_wake_ctx ctx = { .iocg = iocg };
1466         u64 vshortage, expires, oexpires;
1467         s64 vbudget;
1468         u32 hwa;
1469
1470         lockdep_assert_held(&iocg->waitq.lock);
1471
1472         current_hweight(iocg, &hwa, NULL);
1473         vbudget = now->vnow - atomic64_read(&iocg->vtime);
1474
1475         /* pay off debt */
1476         if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1477                 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1478                 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1479                 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1480
1481                 lockdep_assert_held(&ioc->lock);
1482
1483                 atomic64_add(vpay, &iocg->vtime);
1484                 atomic64_add(vpay, &iocg->done_vtime);
1485                 iocg_pay_debt(iocg, abs_vpay, now);
1486                 vbudget -= vpay;
1487         }
1488
1489         if (iocg->abs_vdebt || iocg->delay)
1490                 iocg_kick_delay(iocg, now);
1491
1492         /*
1493          * Debt can still be outstanding if we haven't paid all yet or the
1494          * caller raced and called without @pay_debt. Shouldn't wake up waiters
1495          * under debt. Make sure @vbudget reflects the outstanding amount and is
1496          * not positive.
1497          */
1498         if (iocg->abs_vdebt) {
1499                 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1500                 vbudget = min_t(s64, 0, vbudget - vdebt);
1501         }
1502
1503         /*
1504          * Wake up the ones which are due and see how much vtime we'll need for
1505          * the next one. As paying off debt restores hw_inuse, it must be read
1506          * after the above debt payment.
1507          */
1508         ctx.vbudget = vbudget;
1509         current_hweight(iocg, NULL, &ctx.hw_inuse);
1510
1511         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1512
1513         if (!waitqueue_active(&iocg->waitq)) {
1514                 if (iocg->wait_since) {
1515                         iocg->stat.wait_us += now->now - iocg->wait_since;
1516                         iocg->wait_since = 0;
1517                 }
1518                 return;
1519         }
1520
1521         if (!iocg->wait_since)
1522                 iocg->wait_since = now->now;
1523
1524         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1525                 return;
1526
1527         /* determine next wakeup, add a timer margin to guarantee chunking */
1528         vshortage = -ctx.vbudget;
1529         expires = now->now_ns +
1530                 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1531                 NSEC_PER_USEC;
1532         expires += ioc->timer_slack_ns;
1533
1534         /* if already active and close enough, don't bother */
1535         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1536         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1537             abs(oexpires - expires) <= ioc->timer_slack_ns)
1538                 return;
1539
1540         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1541                                ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1542 }
1543
1544 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1545 {
1546         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1547         bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1548         struct ioc_now now;
1549         unsigned long flags;
1550
1551         ioc_now(iocg->ioc, &now);
1552
1553         iocg_lock(iocg, pay_debt, &flags);
1554         iocg_kick_waitq(iocg, pay_debt, &now);
1555         iocg_unlock(iocg, pay_debt, &flags);
1556
1557         return HRTIMER_NORESTART;
1558 }
1559
1560 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1561 {
1562         u32 nr_met[2] = { };
1563         u32 nr_missed[2] = { };
1564         u64 rq_wait_ns = 0;
1565         int cpu, rw;
1566
1567         for_each_online_cpu(cpu) {
1568                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1569                 u64 this_rq_wait_ns;
1570
1571                 for (rw = READ; rw <= WRITE; rw++) {
1572                         u32 this_met = local_read(&stat->missed[rw].nr_met);
1573                         u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1574
1575                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1576                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1577                         stat->missed[rw].last_met = this_met;
1578                         stat->missed[rw].last_missed = this_missed;
1579                 }
1580
1581                 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1582                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1583                 stat->last_rq_wait_ns = this_rq_wait_ns;
1584         }
1585
1586         for (rw = READ; rw <= WRITE; rw++) {
1587                 if (nr_met[rw] + nr_missed[rw])
1588                         missed_ppm_ar[rw] =
1589                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1590                                                    nr_met[rw] + nr_missed[rw]);
1591                 else
1592                         missed_ppm_ar[rw] = 0;
1593         }
1594
1595         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1596                                    ioc->period_us * NSEC_PER_USEC);
1597 }
1598
1599 /* was iocg idle this period? */
1600 static bool iocg_is_idle(struct ioc_gq *iocg)
1601 {
1602         struct ioc *ioc = iocg->ioc;
1603
1604         /* did something get issued this period? */
1605         if (atomic64_read(&iocg->active_period) ==
1606             atomic64_read(&ioc->cur_period))
1607                 return false;
1608
1609         /* is something in flight? */
1610         if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1611                 return false;
1612
1613         return true;
1614 }
1615
1616 /*
1617  * Call this function on the target leaf @iocg's to build pre-order traversal
1618  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1619  * ->walk_list and the caller is responsible for dissolving the list after use.
1620  */
1621 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1622                                   struct list_head *inner_walk)
1623 {
1624         int lvl;
1625
1626         WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1627
1628         /* find the first ancestor which hasn't been visited yet */
1629         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1630                 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1631                         break;
1632         }
1633
1634         /* walk down and visit the inner nodes to get pre-order traversal */
1635         while (++lvl <= iocg->level - 1) {
1636                 struct ioc_gq *inner = iocg->ancestors[lvl];
1637
1638                 /* record traversal order */
1639                 list_add_tail(&inner->walk_list, inner_walk);
1640         }
1641 }
1642
1643 /* propagate the deltas to the parent */
1644 static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1645 {
1646         if (iocg->level > 0) {
1647                 struct iocg_stat *parent_stat =
1648                         &iocg->ancestors[iocg->level - 1]->stat;
1649
1650                 parent_stat->usage_us +=
1651                         iocg->stat.usage_us - iocg->last_stat.usage_us;
1652                 parent_stat->wait_us +=
1653                         iocg->stat.wait_us - iocg->last_stat.wait_us;
1654                 parent_stat->indebt_us +=
1655                         iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1656                 parent_stat->indelay_us +=
1657                         iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1658         }
1659
1660         iocg->last_stat = iocg->stat;
1661 }
1662
1663 /* collect per-cpu counters and propagate the deltas to the parent */
1664 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1665 {
1666         struct ioc *ioc = iocg->ioc;
1667         u64 abs_vusage = 0;
1668         u64 vusage_delta;
1669         int cpu;
1670
1671         lockdep_assert_held(&iocg->ioc->lock);
1672
1673         /* collect per-cpu counters */
1674         for_each_possible_cpu(cpu) {
1675                 abs_vusage += local64_read(
1676                                 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1677         }
1678         vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1679         iocg->last_stat_abs_vusage = abs_vusage;
1680
1681         iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1682         iocg->stat.usage_us += iocg->usage_delta_us;
1683
1684         iocg_flush_stat_upward(iocg);
1685 }
1686
1687 /* get stat counters ready for reading on all active iocgs */
1688 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1689 {
1690         LIST_HEAD(inner_walk);
1691         struct ioc_gq *iocg, *tiocg;
1692
1693         /* flush leaves and build inner node walk list */
1694         list_for_each_entry(iocg, target_iocgs, active_list) {
1695                 iocg_flush_stat_leaf(iocg, now);
1696                 iocg_build_inner_walk(iocg, &inner_walk);
1697         }
1698
1699         /* keep flushing upwards by walking the inner list backwards */
1700         list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1701                 iocg_flush_stat_upward(iocg);
1702                 list_del_init(&iocg->walk_list);
1703         }
1704 }
1705
1706 /*
1707  * Determine what @iocg's hweight_inuse should be after donating unused
1708  * capacity. @hwm is the upper bound and used to signal no donation. This
1709  * function also throws away @iocg's excess budget.
1710  */
1711 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1712                                   u32 usage, struct ioc_now *now)
1713 {
1714         struct ioc *ioc = iocg->ioc;
1715         u64 vtime = atomic64_read(&iocg->vtime);
1716         s64 excess, delta, target, new_hwi;
1717
1718         /* debt handling owns inuse for debtors */
1719         if (iocg->abs_vdebt)
1720                 return 1;
1721
1722         /* see whether minimum margin requirement is met */
1723         if (waitqueue_active(&iocg->waitq) ||
1724             time_after64(vtime, now->vnow - ioc->margins.min))
1725                 return hwm;
1726
1727         /* throw away excess above target */
1728         excess = now->vnow - vtime - ioc->margins.target;
1729         if (excess > 0) {
1730                 atomic64_add(excess, &iocg->vtime);
1731                 atomic64_add(excess, &iocg->done_vtime);
1732                 vtime += excess;
1733                 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1734         }
1735
1736         /*
1737          * Let's say the distance between iocg's and device's vtimes as a
1738          * fraction of period duration is delta. Assuming that the iocg will
1739          * consume the usage determined above, we want to determine new_hwi so
1740          * that delta equals MARGIN_TARGET at the end of the next period.
1741          *
1742          * We need to execute usage worth of IOs while spending the sum of the
1743          * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1744          * (delta):
1745          *
1746          *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1747          *
1748          * Therefore, the new_hwi is:
1749          *
1750          *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1751          */
1752         delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1753                           now->vnow - ioc->period_at_vtime);
1754         target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1755         new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1756
1757         return clamp_t(s64, new_hwi, 1, hwm);
1758 }
1759
1760 /*
1761  * For work-conservation, an iocg which isn't using all of its share should
1762  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1763  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1764  *
1765  * #1 is mathematically simpler but has the drawback of requiring synchronous
1766  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1767  * change due to donation snapbacks as it has the possibility of grossly
1768  * overshooting what's allowed by the model and vrate.
1769  *
1770  * #2 is inherently safe with local operations. The donating iocg can easily
1771  * snap back to higher weights when needed without worrying about impacts on
1772  * other nodes as the impacts will be inherently correct. This also makes idle
1773  * iocg activations safe. The only effect activations have is decreasing
1774  * hweight_inuse of others, the right solution to which is for those iocgs to
1775  * snap back to higher weights.
1776  *
1777  * So, we go with #2. The challenge is calculating how each donating iocg's
1778  * inuse should be adjusted to achieve the target donation amounts. This is done
1779  * using Andy's method described in the following pdf.
1780  *
1781  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1782  *
1783  * Given the weights and target after-donation hweight_inuse values, Andy's
1784  * method determines how the proportional distribution should look like at each
1785  * sibling level to maintain the relative relationship between all non-donating
1786  * pairs. To roughly summarize, it divides the tree into donating and
1787  * non-donating parts, calculates global donation rate which is used to
1788  * determine the target hweight_inuse for each node, and then derives per-level
1789  * proportions.
1790  *
1791  * The following pdf shows that global distribution calculated this way can be
1792  * achieved by scaling inuse weights of donating leaves and propagating the
1793  * adjustments upwards proportionally.
1794  *
1795  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1796  *
1797  * Combining the above two, we can determine how each leaf iocg's inuse should
1798  * be adjusted to achieve the target donation.
1799  *
1800  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1801  *
1802  * The inline comments use symbols from the last pdf.
1803  *
1804  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1805  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1806  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1807  *   w is the weight of the node. w = w_f + w_t
1808  *   w_f is the non-donating portion of w. w_f = w * f / b
1809  *   w_b is the donating portion of w. w_t = w * t / b
1810  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1811  *   s_f and s_t are the non-donating and donating portions of s.
1812  *
1813  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1814  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1815  * after adjustments. Subscript r denotes the root node's values.
1816  */
1817 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1818 {
1819         LIST_HEAD(over_hwa);
1820         LIST_HEAD(inner_walk);
1821         struct ioc_gq *iocg, *tiocg, *root_iocg;
1822         u32 after_sum, over_sum, over_target, gamma;
1823
1824         /*
1825          * It's pretty unlikely but possible for the total sum of
1826          * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1827          * confuse the following calculations. If such condition is detected,
1828          * scale down everyone over its full share equally to keep the sum below
1829          * WEIGHT_ONE.
1830          */
1831         after_sum = 0;
1832         over_sum = 0;
1833         list_for_each_entry(iocg, surpluses, surplus_list) {
1834                 u32 hwa;
1835
1836                 current_hweight(iocg, &hwa, NULL);
1837                 after_sum += iocg->hweight_after_donation;
1838
1839                 if (iocg->hweight_after_donation > hwa) {
1840                         over_sum += iocg->hweight_after_donation;
1841                         list_add(&iocg->walk_list, &over_hwa);
1842                 }
1843         }
1844
1845         if (after_sum >= WEIGHT_ONE) {
1846                 /*
1847                  * The delta should be deducted from the over_sum, calculate
1848                  * target over_sum value.
1849                  */
1850                 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1851                 WARN_ON_ONCE(over_sum <= over_delta);
1852                 over_target = over_sum - over_delta;
1853         } else {
1854                 over_target = 0;
1855         }
1856
1857         list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1858                 if (over_target)
1859                         iocg->hweight_after_donation =
1860                                 div_u64((u64)iocg->hweight_after_donation *
1861                                         over_target, over_sum);
1862                 list_del_init(&iocg->walk_list);
1863         }
1864
1865         /*
1866          * Build pre-order inner node walk list and prepare for donation
1867          * adjustment calculations.
1868          */
1869         list_for_each_entry(iocg, surpluses, surplus_list) {
1870                 iocg_build_inner_walk(iocg, &inner_walk);
1871         }
1872
1873         root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1874         WARN_ON_ONCE(root_iocg->level > 0);
1875
1876         list_for_each_entry(iocg, &inner_walk, walk_list) {
1877                 iocg->child_adjusted_sum = 0;
1878                 iocg->hweight_donating = 0;
1879                 iocg->hweight_after_donation = 0;
1880         }
1881
1882         /*
1883          * Propagate the donating budget (b_t) and after donation budget (b'_t)
1884          * up the hierarchy.
1885          */
1886         list_for_each_entry(iocg, surpluses, surplus_list) {
1887                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1888
1889                 parent->hweight_donating += iocg->hweight_donating;
1890                 parent->hweight_after_donation += iocg->hweight_after_donation;
1891         }
1892
1893         list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1894                 if (iocg->level > 0) {
1895                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1896
1897                         parent->hweight_donating += iocg->hweight_donating;
1898                         parent->hweight_after_donation += iocg->hweight_after_donation;
1899                 }
1900         }
1901
1902         /*
1903          * Calculate inner hwa's (b) and make sure the donation values are
1904          * within the accepted ranges as we're doing low res calculations with
1905          * roundups.
1906          */
1907         list_for_each_entry(iocg, &inner_walk, walk_list) {
1908                 if (iocg->level) {
1909                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1910
1911                         iocg->hweight_active = DIV64_U64_ROUND_UP(
1912                                 (u64)parent->hweight_active * iocg->active,
1913                                 parent->child_active_sum);
1914
1915                 }
1916
1917                 iocg->hweight_donating = min(iocg->hweight_donating,
1918                                              iocg->hweight_active);
1919                 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1920                                                    iocg->hweight_donating - 1);
1921                 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1922                                  iocg->hweight_donating <= 1 ||
1923                                  iocg->hweight_after_donation == 0)) {
1924                         pr_warn("iocg: invalid donation weights in ");
1925                         pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1926                         pr_cont(": active=%u donating=%u after=%u\n",
1927                                 iocg->hweight_active, iocg->hweight_donating,
1928                                 iocg->hweight_after_donation);
1929                 }
1930         }
1931
1932         /*
1933          * Calculate the global donation rate (gamma) - the rate to adjust
1934          * non-donating budgets by.
1935          *
1936          * No need to use 64bit multiplication here as the first operand is
1937          * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1938          *
1939          * We know that there are beneficiary nodes and the sum of the donating
1940          * hweights can't be whole; however, due to the round-ups during hweight
1941          * calculations, root_iocg->hweight_donating might still end up equal to
1942          * or greater than whole. Limit the range when calculating the divider.
1943          *
1944          * gamma = (1 - t_r') / (1 - t_r)
1945          */
1946         gamma = DIV_ROUND_UP(
1947                 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1948                 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1949
1950         /*
1951          * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1952          * nodes.
1953          */
1954         list_for_each_entry(iocg, &inner_walk, walk_list) {
1955                 struct ioc_gq *parent;
1956                 u32 inuse, wpt, wptp;
1957                 u64 st, sf;
1958
1959                 if (iocg->level == 0) {
1960                         /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1961                         iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1962                                 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1963                                 WEIGHT_ONE - iocg->hweight_after_donation);
1964                         continue;
1965                 }
1966
1967                 parent = iocg->ancestors[iocg->level - 1];
1968
1969                 /* b' = gamma * b_f + b_t' */
1970                 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1971                         (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1972                         WEIGHT_ONE) + iocg->hweight_after_donation;
1973
1974                 /* w' = s' * b' / b'_p */
1975                 inuse = DIV64_U64_ROUND_UP(
1976                         (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1977                         parent->hweight_inuse);
1978
1979                 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1980                 st = DIV64_U64_ROUND_UP(
1981                         iocg->child_active_sum * iocg->hweight_donating,
1982                         iocg->hweight_active);
1983                 sf = iocg->child_active_sum - st;
1984                 wpt = DIV64_U64_ROUND_UP(
1985                         (u64)iocg->active * iocg->hweight_donating,
1986                         iocg->hweight_active);
1987                 wptp = DIV64_U64_ROUND_UP(
1988                         (u64)inuse * iocg->hweight_after_donation,
1989                         iocg->hweight_inuse);
1990
1991                 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1992         }
1993
1994         /*
1995          * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1996          * we can finally determine leaf adjustments.
1997          */
1998         list_for_each_entry(iocg, surpluses, surplus_list) {
1999                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2000                 u32 inuse;
2001
2002                 /*
2003                  * In-debt iocgs participated in the donation calculation with
2004                  * the minimum target hweight_inuse. Configuring inuse
2005                  * accordingly would work fine but debt handling expects
2006                  * @iocg->inuse stay at the minimum and we don't wanna
2007                  * interfere.
2008                  */
2009                 if (iocg->abs_vdebt) {
2010                         WARN_ON_ONCE(iocg->inuse > 1);
2011                         continue;
2012                 }
2013
2014                 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2015                 inuse = DIV64_U64_ROUND_UP(
2016                         parent->child_adjusted_sum * iocg->hweight_after_donation,
2017                         parent->hweight_inuse);
2018
2019                 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2020                                 iocg->inuse, inuse,
2021                                 iocg->hweight_inuse,
2022                                 iocg->hweight_after_donation);
2023
2024                 __propagate_weights(iocg, iocg->active, inuse, true, now);
2025         }
2026
2027         /* walk list should be dissolved after use */
2028         list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2029                 list_del_init(&iocg->walk_list);
2030 }
2031
2032 /*
2033  * A low weight iocg can amass a large amount of debt, for example, when
2034  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2035  * memory paired with a slow IO device, the debt can span multiple seconds or
2036  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2037  * up blocked paying its debt while the IO device is idle.
2038  *
2039  * The following protects against such cases. If the device has been
2040  * sufficiently idle for a while, the debts are halved and delays are
2041  * recalculated.
2042  */
2043 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2044                               struct ioc_now *now)
2045 {
2046         struct ioc_gq *iocg;
2047         u64 dur, usage_pct, nr_cycles;
2048
2049         /* if no debtor, reset the cycle */
2050         if (!nr_debtors) {
2051                 ioc->dfgv_period_at = now->now;
2052                 ioc->dfgv_period_rem = 0;
2053                 ioc->dfgv_usage_us_sum = 0;
2054                 return;
2055         }
2056
2057         /*
2058          * Debtors can pass through a lot of writes choking the device and we
2059          * don't want to be forgiving debts while the device is struggling from
2060          * write bursts. If we're missing latency targets, consider the device
2061          * fully utilized.
2062          */
2063         if (ioc->busy_level > 0)
2064                 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2065
2066         ioc->dfgv_usage_us_sum += usage_us_sum;
2067         if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2068                 return;
2069
2070         /*
2071          * At least DFGV_PERIOD has passed since the last period. Calculate the
2072          * average usage and reset the period counters.
2073          */
2074         dur = now->now - ioc->dfgv_period_at;
2075         usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2076
2077         ioc->dfgv_period_at = now->now;
2078         ioc->dfgv_usage_us_sum = 0;
2079
2080         /* if was too busy, reset everything */
2081         if (usage_pct > DFGV_USAGE_PCT) {
2082                 ioc->dfgv_period_rem = 0;
2083                 return;
2084         }
2085
2086         /*
2087          * Usage is lower than threshold. Let's forgive some debts. Debt
2088          * forgiveness runs off of the usual ioc timer but its period usually
2089          * doesn't match ioc's. Compensate the difference by performing the
2090          * reduction as many times as would fit in the duration since the last
2091          * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2092          * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2093          * reductions is doubled.
2094          */
2095         nr_cycles = dur + ioc->dfgv_period_rem;
2096         ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2097
2098         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2099                 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2100
2101                 if (!iocg->abs_vdebt && !iocg->delay)
2102                         continue;
2103
2104                 spin_lock(&iocg->waitq.lock);
2105
2106                 old_debt = iocg->abs_vdebt;
2107                 old_delay = iocg->delay;
2108
2109                 if (iocg->abs_vdebt)
2110                         iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2111                 if (iocg->delay)
2112                         iocg->delay = iocg->delay >> nr_cycles ?: 1;
2113
2114                 iocg_kick_waitq(iocg, true, now);
2115
2116                 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2117                                 old_debt, iocg->abs_vdebt,
2118                                 old_delay, iocg->delay);
2119
2120                 spin_unlock(&iocg->waitq.lock);
2121         }
2122 }
2123
2124 /*
2125  * Check the active iocgs' state to avoid oversleeping and deactive
2126  * idle iocgs.
2127  *
2128  * Since waiters determine the sleep durations based on the vrate
2129  * they saw at the time of sleep, if vrate has increased, some
2130  * waiters could be sleeping for too long. Wake up tardy waiters
2131  * which should have woken up in the last period and expire idle
2132  * iocgs.
2133  */
2134 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2135 {
2136         int nr_debtors = 0;
2137         struct ioc_gq *iocg, *tiocg;
2138
2139         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2140                 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2141                     !iocg->delay && !iocg_is_idle(iocg))
2142                         continue;
2143
2144                 spin_lock(&iocg->waitq.lock);
2145
2146                 /* flush wait and indebt stat deltas */
2147                 if (iocg->wait_since) {
2148                         iocg->stat.wait_us += now->now - iocg->wait_since;
2149                         iocg->wait_since = now->now;
2150                 }
2151                 if (iocg->indebt_since) {
2152                         iocg->stat.indebt_us +=
2153                                 now->now - iocg->indebt_since;
2154                         iocg->indebt_since = now->now;
2155                 }
2156                 if (iocg->indelay_since) {
2157                         iocg->stat.indelay_us +=
2158                                 now->now - iocg->indelay_since;
2159                         iocg->indelay_since = now->now;
2160                 }
2161
2162                 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2163                     iocg->delay) {
2164                         /* might be oversleeping vtime / hweight changes, kick */
2165                         iocg_kick_waitq(iocg, true, now);
2166                         if (iocg->abs_vdebt || iocg->delay)
2167                                 nr_debtors++;
2168                 } else if (iocg_is_idle(iocg)) {
2169                         /* no waiter and idle, deactivate */
2170                         u64 vtime = atomic64_read(&iocg->vtime);
2171                         s64 excess;
2172
2173                         /*
2174                          * @iocg has been inactive for a full duration and will
2175                          * have a high budget. Account anything above target as
2176                          * error and throw away. On reactivation, it'll start
2177                          * with the target budget.
2178                          */
2179                         excess = now->vnow - vtime - ioc->margins.target;
2180                         if (excess > 0) {
2181                                 u32 old_hwi;
2182
2183                                 current_hweight(iocg, NULL, &old_hwi);
2184                                 ioc->vtime_err -= div64_u64(excess * old_hwi,
2185                                                             WEIGHT_ONE);
2186                         }
2187
2188                         TRACE_IOCG_PATH(iocg_idle, iocg, now,
2189                                         atomic64_read(&iocg->active_period),
2190                                         atomic64_read(&ioc->cur_period), vtime);
2191                         __propagate_weights(iocg, 0, 0, false, now);
2192                         list_del_init(&iocg->active_list);
2193                 }
2194
2195                 spin_unlock(&iocg->waitq.lock);
2196         }
2197
2198         commit_weights(ioc);
2199         return nr_debtors;
2200 }
2201
2202 static void ioc_timer_fn(struct timer_list *timer)
2203 {
2204         struct ioc *ioc = container_of(timer, struct ioc, timer);
2205         struct ioc_gq *iocg, *tiocg;
2206         struct ioc_now now;
2207         LIST_HEAD(surpluses);
2208         int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2209         u64 usage_us_sum = 0;
2210         u32 ppm_rthr;
2211         u32 ppm_wthr;
2212         u32 missed_ppm[2], rq_wait_pct;
2213         u64 period_vtime;
2214         int prev_busy_level;
2215
2216         /* how were the latencies during the period? */
2217         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2218
2219         /* take care of active iocgs */
2220         spin_lock_irq(&ioc->lock);
2221
2222         ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2223         ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2224         ioc_now(ioc, &now);
2225
2226         period_vtime = now.vnow - ioc->period_at_vtime;
2227         if (WARN_ON_ONCE(!period_vtime)) {
2228                 spin_unlock_irq(&ioc->lock);
2229                 return;
2230         }
2231
2232         nr_debtors = ioc_check_iocgs(ioc, &now);
2233
2234         /*
2235          * Wait and indebt stat are flushed above and the donation calculation
2236          * below needs updated usage stat. Let's bring stat up-to-date.
2237          */
2238         iocg_flush_stat(&ioc->active_iocgs, &now);
2239
2240         /* calc usage and see whether some weights need to be moved around */
2241         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2242                 u64 vdone, vtime, usage_us;
2243                 u32 hw_active, hw_inuse;
2244
2245                 /*
2246                  * Collect unused and wind vtime closer to vnow to prevent
2247                  * iocgs from accumulating a large amount of budget.
2248                  */
2249                 vdone = atomic64_read(&iocg->done_vtime);
2250                 vtime = atomic64_read(&iocg->vtime);
2251                 current_hweight(iocg, &hw_active, &hw_inuse);
2252
2253                 /*
2254                  * Latency QoS detection doesn't account for IOs which are
2255                  * in-flight for longer than a period.  Detect them by
2256                  * comparing vdone against period start.  If lagging behind
2257                  * IOs from past periods, don't increase vrate.
2258                  */
2259                 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2260                     !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2261                     time_after64(vtime, vdone) &&
2262                     time_after64(vtime, now.vnow -
2263                                  MAX_LAGGING_PERIODS * period_vtime) &&
2264                     time_before64(vdone, now.vnow - period_vtime))
2265                         nr_lagging++;
2266
2267                 /*
2268                  * Determine absolute usage factoring in in-flight IOs to avoid
2269                  * high-latency completions appearing as idle.
2270                  */
2271                 usage_us = iocg->usage_delta_us;
2272                 usage_us_sum += usage_us;
2273
2274                 /* see whether there's surplus vtime */
2275                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2276                 if (hw_inuse < hw_active ||
2277                     (!waitqueue_active(&iocg->waitq) &&
2278                      time_before64(vtime, now.vnow - ioc->margins.low))) {
2279                         u32 hwa, old_hwi, hwm, new_hwi, usage;
2280                         u64 usage_dur;
2281
2282                         if (vdone != vtime) {
2283                                 u64 inflight_us = DIV64_U64_ROUND_UP(
2284                                         cost_to_abs_cost(vtime - vdone, hw_inuse),
2285                                         ioc->vtime_base_rate);
2286
2287                                 usage_us = max(usage_us, inflight_us);
2288                         }
2289
2290                         /* convert to hweight based usage ratio */
2291                         if (time_after64(iocg->activated_at, ioc->period_at))
2292                                 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2293                         else
2294                                 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2295
2296                         usage = clamp_t(u32,
2297                                 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2298                                                    usage_dur),
2299                                 1, WEIGHT_ONE);
2300
2301                         /*
2302                          * Already donating or accumulated enough to start.
2303                          * Determine the donation amount.
2304                          */
2305                         current_hweight(iocg, &hwa, &old_hwi);
2306                         hwm = current_hweight_max(iocg);
2307                         new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2308                                                          usage, &now);
2309                         /*
2310                          * Donation calculation assumes hweight_after_donation
2311                          * to be positive, a condition that a donor w/ hwa < 2
2312                          * can't meet. Don't bother with donation if hwa is
2313                          * below 2. It's not gonna make a meaningful difference
2314                          * anyway.
2315                          */
2316                         if (new_hwi < hwm && hwa >= 2) {
2317                                 iocg->hweight_donating = hwa;
2318                                 iocg->hweight_after_donation = new_hwi;
2319                                 list_add(&iocg->surplus_list, &surpluses);
2320                         } else if (!iocg->abs_vdebt) {
2321                                 /*
2322                                  * @iocg doesn't have enough to donate. Reset
2323                                  * its inuse to active.
2324                                  *
2325                                  * Don't reset debtors as their inuse's are
2326                                  * owned by debt handling. This shouldn't affect
2327                                  * donation calculuation in any meaningful way
2328                                  * as @iocg doesn't have a meaningful amount of
2329                                  * share anyway.
2330                                  */
2331                                 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2332                                                 iocg->inuse, iocg->active,
2333                                                 iocg->hweight_inuse, new_hwi);
2334
2335                                 __propagate_weights(iocg, iocg->active,
2336                                                     iocg->active, true, &now);
2337                                 nr_shortages++;
2338                         }
2339                 } else {
2340                         /* genuinely short on vtime */
2341                         nr_shortages++;
2342                 }
2343         }
2344
2345         if (!list_empty(&surpluses) && nr_shortages)
2346                 transfer_surpluses(&surpluses, &now);
2347
2348         commit_weights(ioc);
2349
2350         /* surplus list should be dissolved after use */
2351         list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2352                 list_del_init(&iocg->surplus_list);
2353
2354         /*
2355          * If q is getting clogged or we're missing too much, we're issuing
2356          * too much IO and should lower vtime rate.  If we're not missing
2357          * and experiencing shortages but not surpluses, we're too stingy
2358          * and should increase vtime rate.
2359          */
2360         prev_busy_level = ioc->busy_level;
2361         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2362             missed_ppm[READ] > ppm_rthr ||
2363             missed_ppm[WRITE] > ppm_wthr) {
2364                 /* clearly missing QoS targets, slow down vrate */
2365                 ioc->busy_level = max(ioc->busy_level, 0);
2366                 ioc->busy_level++;
2367         } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2368                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2369                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2370                 /* QoS targets are being met with >25% margin */
2371                 if (nr_shortages) {
2372                         /*
2373                          * We're throttling while the device has spare
2374                          * capacity.  If vrate was being slowed down, stop.
2375                          */
2376                         ioc->busy_level = min(ioc->busy_level, 0);
2377
2378                         /*
2379                          * If there are IOs spanning multiple periods, wait
2380                          * them out before pushing the device harder.
2381                          */
2382                         if (!nr_lagging)
2383                                 ioc->busy_level--;
2384                 } else {
2385                         /*
2386                          * Nobody is being throttled and the users aren't
2387                          * issuing enough IOs to saturate the device.  We
2388                          * simply don't know how close the device is to
2389                          * saturation.  Coast.
2390                          */
2391                         ioc->busy_level = 0;
2392                 }
2393         } else {
2394                 /* inside the hysterisis margin, we're good */
2395                 ioc->busy_level = 0;
2396         }
2397
2398         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2399
2400         ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2401                               prev_busy_level, missed_ppm);
2402
2403         ioc_refresh_params(ioc, false);
2404
2405         ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2406
2407         /*
2408          * This period is done.  Move onto the next one.  If nothing's
2409          * going on with the device, stop the timer.
2410          */
2411         atomic64_inc(&ioc->cur_period);
2412
2413         if (ioc->running != IOC_STOP) {
2414                 if (!list_empty(&ioc->active_iocgs)) {
2415                         ioc_start_period(ioc, &now);
2416                 } else {
2417                         ioc->busy_level = 0;
2418                         ioc->vtime_err = 0;
2419                         ioc->running = IOC_IDLE;
2420                 }
2421
2422                 ioc_refresh_vrate(ioc, &now);
2423         }
2424
2425         spin_unlock_irq(&ioc->lock);
2426 }
2427
2428 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2429                                       u64 abs_cost, struct ioc_now *now)
2430 {
2431         struct ioc *ioc = iocg->ioc;
2432         struct ioc_margins *margins = &ioc->margins;
2433         u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2434         u32 hwi, adj_step;
2435         s64 margin;
2436         u64 cost, new_inuse;
2437
2438         current_hweight(iocg, NULL, &hwi);
2439         old_hwi = hwi;
2440         cost = abs_cost_to_cost(abs_cost, hwi);
2441         margin = now->vnow - vtime - cost;
2442
2443         /* debt handling owns inuse for debtors */
2444         if (iocg->abs_vdebt)
2445                 return cost;
2446
2447         /*
2448          * We only increase inuse during period and do so if the margin has
2449          * deteriorated since the previous adjustment.
2450          */
2451         if (margin >= iocg->saved_margin || margin >= margins->low ||
2452             iocg->inuse == iocg->active)
2453                 return cost;
2454
2455         spin_lock_irq(&ioc->lock);
2456
2457         /* we own inuse only when @iocg is in the normal active state */
2458         if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2459                 spin_unlock_irq(&ioc->lock);
2460                 return cost;
2461         }
2462
2463         /*
2464          * Bump up inuse till @abs_cost fits in the existing budget.
2465          * adj_step must be determined after acquiring ioc->lock - we might
2466          * have raced and lost to another thread for activation and could
2467          * be reading 0 iocg->active before ioc->lock which will lead to
2468          * infinite loop.
2469          */
2470         new_inuse = iocg->inuse;
2471         adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2472         do {
2473                 new_inuse = new_inuse + adj_step;
2474                 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2475                 current_hweight(iocg, NULL, &hwi);
2476                 cost = abs_cost_to_cost(abs_cost, hwi);
2477         } while (time_after64(vtime + cost, now->vnow) &&
2478                  iocg->inuse != iocg->active);
2479
2480         spin_unlock_irq(&ioc->lock);
2481
2482         TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2483                         old_inuse, iocg->inuse, old_hwi, hwi);
2484
2485         return cost;
2486 }
2487
2488 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2489                                     bool is_merge, u64 *costp)
2490 {
2491         struct ioc *ioc = iocg->ioc;
2492         u64 coef_seqio, coef_randio, coef_page;
2493         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2494         u64 seek_pages = 0;
2495         u64 cost = 0;
2496
2497         switch (bio_op(bio)) {
2498         case REQ_OP_READ:
2499                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
2500                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
2501                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
2502                 break;
2503         case REQ_OP_WRITE:
2504                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
2505                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
2506                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
2507                 break;
2508         default:
2509                 goto out;
2510         }
2511
2512         if (iocg->cursor) {
2513                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2514                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2515         }
2516
2517         if (!is_merge) {
2518                 if (seek_pages > LCOEF_RANDIO_PAGES) {
2519                         cost += coef_randio;
2520                 } else {
2521                         cost += coef_seqio;
2522                 }
2523         }
2524         cost += pages * coef_page;
2525 out:
2526         *costp = cost;
2527 }
2528
2529 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2530 {
2531         u64 cost;
2532
2533         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2534         return cost;
2535 }
2536
2537 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2538                                          u64 *costp)
2539 {
2540         unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2541
2542         switch (req_op(rq)) {
2543         case REQ_OP_READ:
2544                 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2545                 break;
2546         case REQ_OP_WRITE:
2547                 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2548                 break;
2549         default:
2550                 *costp = 0;
2551         }
2552 }
2553
2554 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2555 {
2556         u64 cost;
2557
2558         calc_size_vtime_cost_builtin(rq, ioc, &cost);
2559         return cost;
2560 }
2561
2562 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2563 {
2564         struct blkcg_gq *blkg = bio->bi_blkg;
2565         struct ioc *ioc = rqos_to_ioc(rqos);
2566         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2567         struct ioc_now now;
2568         struct iocg_wait wait;
2569         u64 abs_cost, cost, vtime;
2570         bool use_debt, ioc_locked;
2571         unsigned long flags;
2572
2573         /* bypass IOs if disabled, still initializing, or for root cgroup */
2574         if (!ioc->enabled || !iocg || !iocg->level)
2575                 return;
2576
2577         /* calculate the absolute vtime cost */
2578         abs_cost = calc_vtime_cost(bio, iocg, false);
2579         if (!abs_cost)
2580                 return;
2581
2582         if (!iocg_activate(iocg, &now))
2583                 return;
2584
2585         iocg->cursor = bio_end_sector(bio);
2586         vtime = atomic64_read(&iocg->vtime);
2587         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2588
2589         /*
2590          * If no one's waiting and within budget, issue right away.  The
2591          * tests are racy but the races aren't systemic - we only miss once
2592          * in a while which is fine.
2593          */
2594         if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2595             time_before_eq64(vtime + cost, now.vnow)) {
2596                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2597                 return;
2598         }
2599
2600         /*
2601          * We're over budget. This can be handled in two ways. IOs which may
2602          * cause priority inversions are punted to @ioc->aux_iocg and charged as
2603          * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2604          * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2605          * whether debt handling is needed and acquire locks accordingly.
2606          */
2607         use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2608         ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2609 retry_lock:
2610         iocg_lock(iocg, ioc_locked, &flags);
2611
2612         /*
2613          * @iocg must stay activated for debt and waitq handling. Deactivation
2614          * is synchronized against both ioc->lock and waitq.lock and we won't
2615          * get deactivated as long as we're waiting or has debt, so we're good
2616          * if we're activated here. In the unlikely cases that we aren't, just
2617          * issue the IO.
2618          */
2619         if (unlikely(list_empty(&iocg->active_list))) {
2620                 iocg_unlock(iocg, ioc_locked, &flags);
2621                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2622                 return;
2623         }
2624
2625         /*
2626          * We're over budget. If @bio has to be issued regardless, remember
2627          * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2628          * off the debt before waking more IOs.
2629          *
2630          * This way, the debt is continuously paid off each period with the
2631          * actual budget available to the cgroup. If we just wound vtime, we
2632          * would incorrectly use the current hw_inuse for the entire amount
2633          * which, for example, can lead to the cgroup staying blocked for a
2634          * long time even with substantially raised hw_inuse.
2635          *
2636          * An iocg with vdebt should stay online so that the timer can keep
2637          * deducting its vdebt and [de]activate use_delay mechanism
2638          * accordingly. We don't want to race against the timer trying to
2639          * clear them and leave @iocg inactive w/ dangling use_delay heavily
2640          * penalizing the cgroup and its descendants.
2641          */
2642         if (use_debt) {
2643                 iocg_incur_debt(iocg, abs_cost, &now);
2644                 if (iocg_kick_delay(iocg, &now))
2645                         blkcg_schedule_throttle(rqos->q->disk,
2646                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2647                 iocg_unlock(iocg, ioc_locked, &flags);
2648                 return;
2649         }
2650
2651         /* guarantee that iocgs w/ waiters have maximum inuse */
2652         if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2653                 if (!ioc_locked) {
2654                         iocg_unlock(iocg, false, &flags);
2655                         ioc_locked = true;
2656                         goto retry_lock;
2657                 }
2658                 propagate_weights(iocg, iocg->active, iocg->active, true,
2659                                   &now);
2660         }
2661
2662         /*
2663          * Append self to the waitq and schedule the wakeup timer if we're
2664          * the first waiter.  The timer duration is calculated based on the
2665          * current vrate.  vtime and hweight changes can make it too short
2666          * or too long.  Each wait entry records the absolute cost it's
2667          * waiting for to allow re-evaluation using a custom wait entry.
2668          *
2669          * If too short, the timer simply reschedules itself.  If too long,
2670          * the period timer will notice and trigger wakeups.
2671          *
2672          * All waiters are on iocg->waitq and the wait states are
2673          * synchronized using waitq.lock.
2674          */
2675         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2676         wait.wait.private = current;
2677         wait.bio = bio;
2678         wait.abs_cost = abs_cost;
2679         wait.committed = false; /* will be set true by waker */
2680
2681         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2682         iocg_kick_waitq(iocg, ioc_locked, &now);
2683
2684         iocg_unlock(iocg, ioc_locked, &flags);
2685
2686         while (true) {
2687                 set_current_state(TASK_UNINTERRUPTIBLE);
2688                 if (wait.committed)
2689                         break;
2690                 io_schedule();
2691         }
2692
2693         /* waker already committed us, proceed */
2694         finish_wait(&iocg->waitq, &wait.wait);
2695 }
2696
2697 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2698                            struct bio *bio)
2699 {
2700         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2701         struct ioc *ioc = rqos_to_ioc(rqos);
2702         sector_t bio_end = bio_end_sector(bio);
2703         struct ioc_now now;
2704         u64 vtime, abs_cost, cost;
2705         unsigned long flags;
2706
2707         /* bypass if disabled, still initializing, or for root cgroup */
2708         if (!ioc->enabled || !iocg || !iocg->level)
2709                 return;
2710
2711         abs_cost = calc_vtime_cost(bio, iocg, true);
2712         if (!abs_cost)
2713                 return;
2714
2715         ioc_now(ioc, &now);
2716
2717         vtime = atomic64_read(&iocg->vtime);
2718         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2719
2720         /* update cursor if backmerging into the request at the cursor */
2721         if (blk_rq_pos(rq) < bio_end &&
2722             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2723                 iocg->cursor = bio_end;
2724
2725         /*
2726          * Charge if there's enough vtime budget and the existing request has
2727          * cost assigned.
2728          */
2729         if (rq->bio && rq->bio->bi_iocost_cost &&
2730             time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2731                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2732                 return;
2733         }
2734
2735         /*
2736          * Otherwise, account it as debt if @iocg is online, which it should
2737          * be for the vast majority of cases. See debt handling in
2738          * ioc_rqos_throttle() for details.
2739          */
2740         spin_lock_irqsave(&ioc->lock, flags);
2741         spin_lock(&iocg->waitq.lock);
2742
2743         if (likely(!list_empty(&iocg->active_list))) {
2744                 iocg_incur_debt(iocg, abs_cost, &now);
2745                 if (iocg_kick_delay(iocg, &now))
2746                         blkcg_schedule_throttle(rqos->q->disk,
2747                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2748         } else {
2749                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2750         }
2751
2752         spin_unlock(&iocg->waitq.lock);
2753         spin_unlock_irqrestore(&ioc->lock, flags);
2754 }
2755
2756 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2757 {
2758         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2759
2760         if (iocg && bio->bi_iocost_cost)
2761                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2762 }
2763
2764 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2765 {
2766         struct ioc *ioc = rqos_to_ioc(rqos);
2767         struct ioc_pcpu_stat *ccs;
2768         u64 on_q_ns, rq_wait_ns, size_nsec;
2769         int pidx, rw;
2770
2771         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2772                 return;
2773
2774         switch (req_op(rq)) {
2775         case REQ_OP_READ:
2776                 pidx = QOS_RLAT;
2777                 rw = READ;
2778                 break;
2779         case REQ_OP_WRITE:
2780                 pidx = QOS_WLAT;
2781                 rw = WRITE;
2782                 break;
2783         default:
2784                 return;
2785         }
2786
2787         on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2788         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2789         size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2790
2791         ccs = get_cpu_ptr(ioc->pcpu_stat);
2792
2793         if (on_q_ns <= size_nsec ||
2794             on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2795                 local_inc(&ccs->missed[rw].nr_met);
2796         else
2797                 local_inc(&ccs->missed[rw].nr_missed);
2798
2799         local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2800
2801         put_cpu_ptr(ccs);
2802 }
2803
2804 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2805 {
2806         struct ioc *ioc = rqos_to_ioc(rqos);
2807
2808         spin_lock_irq(&ioc->lock);
2809         ioc_refresh_params(ioc, false);
2810         spin_unlock_irq(&ioc->lock);
2811 }
2812
2813 static void ioc_rqos_exit(struct rq_qos *rqos)
2814 {
2815         struct ioc *ioc = rqos_to_ioc(rqos);
2816
2817         blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2818
2819         spin_lock_irq(&ioc->lock);
2820         ioc->running = IOC_STOP;
2821         spin_unlock_irq(&ioc->lock);
2822
2823         del_timer_sync(&ioc->timer);
2824         free_percpu(ioc->pcpu_stat);
2825         kfree(ioc);
2826 }
2827
2828 static struct rq_qos_ops ioc_rqos_ops = {
2829         .throttle = ioc_rqos_throttle,
2830         .merge = ioc_rqos_merge,
2831         .done_bio = ioc_rqos_done_bio,
2832         .done = ioc_rqos_done,
2833         .queue_depth_changed = ioc_rqos_queue_depth_changed,
2834         .exit = ioc_rqos_exit,
2835 };
2836
2837 static int blk_iocost_init(struct gendisk *disk)
2838 {
2839         struct request_queue *q = disk->queue;
2840         struct ioc *ioc;
2841         struct rq_qos *rqos;
2842         int i, cpu, ret;
2843
2844         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2845         if (!ioc)
2846                 return -ENOMEM;
2847
2848         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2849         if (!ioc->pcpu_stat) {
2850                 kfree(ioc);
2851                 return -ENOMEM;
2852         }
2853
2854         for_each_possible_cpu(cpu) {
2855                 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2856
2857                 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2858                         local_set(&ccs->missed[i].nr_met, 0);
2859                         local_set(&ccs->missed[i].nr_missed, 0);
2860                 }
2861                 local64_set(&ccs->rq_wait_ns, 0);
2862         }
2863
2864         rqos = &ioc->rqos;
2865         rqos->id = RQ_QOS_COST;
2866         rqos->ops = &ioc_rqos_ops;
2867         rqos->q = q;
2868
2869         spin_lock_init(&ioc->lock);
2870         timer_setup(&ioc->timer, ioc_timer_fn, 0);
2871         INIT_LIST_HEAD(&ioc->active_iocgs);
2872
2873         ioc->running = IOC_IDLE;
2874         ioc->vtime_base_rate = VTIME_PER_USEC;
2875         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2876         seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2877         ioc->period_at = ktime_to_us(ktime_get());
2878         atomic64_set(&ioc->cur_period, 0);
2879         atomic_set(&ioc->hweight_gen, 0);
2880
2881         spin_lock_irq(&ioc->lock);
2882         ioc->autop_idx = AUTOP_INVALID;
2883         ioc_refresh_params(ioc, true);
2884         spin_unlock_irq(&ioc->lock);
2885
2886         /*
2887          * rqos must be added before activation to allow ioc_pd_init() to
2888          * lookup the ioc from q. This means that the rqos methods may get
2889          * called before policy activation completion, can't assume that the
2890          * target bio has an iocg associated and need to test for NULL iocg.
2891          */
2892         ret = rq_qos_add(q, rqos);
2893         if (ret)
2894                 goto err_free_ioc;
2895
2896         ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2897         if (ret)
2898                 goto err_del_qos;
2899         return 0;
2900
2901 err_del_qos:
2902         rq_qos_del(q, rqos);
2903 err_free_ioc:
2904         free_percpu(ioc->pcpu_stat);
2905         kfree(ioc);
2906         return ret;
2907 }
2908
2909 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2910 {
2911         struct ioc_cgrp *iocc;
2912
2913         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2914         if (!iocc)
2915                 return NULL;
2916
2917         iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2918         return &iocc->cpd;
2919 }
2920
2921 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2922 {
2923         kfree(container_of(cpd, struct ioc_cgrp, cpd));
2924 }
2925
2926 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2927                                              struct blkcg *blkcg)
2928 {
2929         int levels = blkcg->css.cgroup->level + 1;
2930         struct ioc_gq *iocg;
2931
2932         iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2933         if (!iocg)
2934                 return NULL;
2935
2936         iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2937         if (!iocg->pcpu_stat) {
2938                 kfree(iocg);
2939                 return NULL;
2940         }
2941
2942         return &iocg->pd;
2943 }
2944
2945 static void ioc_pd_init(struct blkg_policy_data *pd)
2946 {
2947         struct ioc_gq *iocg = pd_to_iocg(pd);
2948         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2949         struct ioc *ioc = q_to_ioc(blkg->q);
2950         struct ioc_now now;
2951         struct blkcg_gq *tblkg;
2952         unsigned long flags;
2953
2954         ioc_now(ioc, &now);
2955
2956         iocg->ioc = ioc;
2957         atomic64_set(&iocg->vtime, now.vnow);
2958         atomic64_set(&iocg->done_vtime, now.vnow);
2959         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2960         INIT_LIST_HEAD(&iocg->active_list);
2961         INIT_LIST_HEAD(&iocg->walk_list);
2962         INIT_LIST_HEAD(&iocg->surplus_list);
2963         iocg->hweight_active = WEIGHT_ONE;
2964         iocg->hweight_inuse = WEIGHT_ONE;
2965
2966         init_waitqueue_head(&iocg->waitq);
2967         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2968         iocg->waitq_timer.function = iocg_waitq_timer_fn;
2969
2970         iocg->level = blkg->blkcg->css.cgroup->level;
2971
2972         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2973                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2974                 iocg->ancestors[tiocg->level] = tiocg;
2975         }
2976
2977         spin_lock_irqsave(&ioc->lock, flags);
2978         weight_updated(iocg, &now);
2979         spin_unlock_irqrestore(&ioc->lock, flags);
2980 }
2981
2982 static void ioc_pd_free(struct blkg_policy_data *pd)
2983 {
2984         struct ioc_gq *iocg = pd_to_iocg(pd);
2985         struct ioc *ioc = iocg->ioc;
2986         unsigned long flags;
2987
2988         if (ioc) {
2989                 spin_lock_irqsave(&ioc->lock, flags);
2990
2991                 if (!list_empty(&iocg->active_list)) {
2992                         struct ioc_now now;
2993
2994                         ioc_now(ioc, &now);
2995                         propagate_weights(iocg, 0, 0, false, &now);
2996                         list_del_init(&iocg->active_list);
2997                 }
2998
2999                 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
3000                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
3001
3002                 spin_unlock_irqrestore(&ioc->lock, flags);
3003
3004                 hrtimer_cancel(&iocg->waitq_timer);
3005         }
3006         free_percpu(iocg->pcpu_stat);
3007         kfree(iocg);
3008 }
3009
3010 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3011 {
3012         struct ioc_gq *iocg = pd_to_iocg(pd);
3013         struct ioc *ioc = iocg->ioc;
3014
3015         if (!ioc->enabled)
3016                 return;
3017
3018         if (iocg->level == 0) {
3019                 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3020                         ioc->vtime_base_rate * 10000,
3021                         VTIME_PER_USEC);
3022                 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3023         }
3024
3025         seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3026
3027         if (blkcg_debug_stats)
3028                 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3029                         iocg->last_stat.wait_us,
3030                         iocg->last_stat.indebt_us,
3031                         iocg->last_stat.indelay_us);
3032 }
3033
3034 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3035                              int off)
3036 {
3037         const char *dname = blkg_dev_name(pd->blkg);
3038         struct ioc_gq *iocg = pd_to_iocg(pd);
3039
3040         if (dname && iocg->cfg_weight)
3041                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3042         return 0;
3043 }
3044
3045
3046 static int ioc_weight_show(struct seq_file *sf, void *v)
3047 {
3048         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3049         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3050
3051         seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3052         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3053                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3054         return 0;
3055 }
3056
3057 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3058                                 size_t nbytes, loff_t off)
3059 {
3060         struct blkcg *blkcg = css_to_blkcg(of_css(of));
3061         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3062         struct blkg_conf_ctx ctx;
3063         struct ioc_now now;
3064         struct ioc_gq *iocg;
3065         u32 v;
3066         int ret;
3067
3068         if (!strchr(buf, ':')) {
3069                 struct blkcg_gq *blkg;
3070
3071                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3072                         return -EINVAL;
3073
3074                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3075                         return -EINVAL;
3076
3077                 spin_lock_irq(&blkcg->lock);
3078                 iocc->dfl_weight = v * WEIGHT_ONE;
3079                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3080                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
3081
3082                         if (iocg) {
3083                                 spin_lock(&iocg->ioc->lock);
3084                                 ioc_now(iocg->ioc, &now);
3085                                 weight_updated(iocg, &now);
3086                                 spin_unlock(&iocg->ioc->lock);
3087                         }
3088                 }
3089                 spin_unlock_irq(&blkcg->lock);
3090
3091                 return nbytes;
3092         }
3093
3094         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3095         if (ret)
3096                 return ret;
3097
3098         iocg = blkg_to_iocg(ctx.blkg);
3099
3100         if (!strncmp(ctx.body, "default", 7)) {
3101                 v = 0;
3102         } else {
3103                 if (!sscanf(ctx.body, "%u", &v))
3104                         goto einval;
3105                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3106                         goto einval;
3107         }
3108
3109         spin_lock(&iocg->ioc->lock);
3110         iocg->cfg_weight = v * WEIGHT_ONE;
3111         ioc_now(iocg->ioc, &now);
3112         weight_updated(iocg, &now);
3113         spin_unlock(&iocg->ioc->lock);
3114
3115         blkg_conf_finish(&ctx);
3116         return nbytes;
3117
3118 einval:
3119         blkg_conf_finish(&ctx);
3120         return -EINVAL;
3121 }
3122
3123 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3124                           int off)
3125 {
3126         const char *dname = blkg_dev_name(pd->blkg);
3127         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3128
3129         if (!dname)
3130                 return 0;
3131
3132         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3133                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3134                    ioc->params.qos[QOS_RPPM] / 10000,
3135                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
3136                    ioc->params.qos[QOS_RLAT],
3137                    ioc->params.qos[QOS_WPPM] / 10000,
3138                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
3139                    ioc->params.qos[QOS_WLAT],
3140                    ioc->params.qos[QOS_MIN] / 10000,
3141                    ioc->params.qos[QOS_MIN] % 10000 / 100,
3142                    ioc->params.qos[QOS_MAX] / 10000,
3143                    ioc->params.qos[QOS_MAX] % 10000 / 100);
3144         return 0;
3145 }
3146
3147 static int ioc_qos_show(struct seq_file *sf, void *v)
3148 {
3149         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3150
3151         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3152                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3153         return 0;
3154 }
3155
3156 static const match_table_t qos_ctrl_tokens = {
3157         { QOS_ENABLE,           "enable=%u"     },
3158         { QOS_CTRL,             "ctrl=%s"       },
3159         { NR_QOS_CTRL_PARAMS,   NULL            },
3160 };
3161
3162 static const match_table_t qos_tokens = {
3163         { QOS_RPPM,             "rpct=%s"       },
3164         { QOS_RLAT,             "rlat=%u"       },
3165         { QOS_WPPM,             "wpct=%s"       },
3166         { QOS_WLAT,             "wlat=%u"       },
3167         { QOS_MIN,              "min=%s"        },
3168         { QOS_MAX,              "max=%s"        },
3169         { NR_QOS_PARAMS,        NULL            },
3170 };
3171
3172 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3173                              size_t nbytes, loff_t off)
3174 {
3175         struct block_device *bdev;
3176         struct gendisk *disk;
3177         struct ioc *ioc;
3178         u32 qos[NR_QOS_PARAMS];
3179         bool enable, user;
3180         char *p;
3181         int ret;
3182
3183         bdev = blkcg_conf_open_bdev(&input);
3184         if (IS_ERR(bdev))
3185                 return PTR_ERR(bdev);
3186
3187         disk = bdev->bd_disk;
3188         ioc = q_to_ioc(disk->queue);
3189         if (!ioc) {
3190                 ret = blk_iocost_init(disk);
3191                 if (ret)
3192                         goto err;
3193                 ioc = q_to_ioc(disk->queue);
3194         }
3195
3196         blk_mq_freeze_queue(disk->queue);
3197         blk_mq_quiesce_queue(disk->queue);
3198
3199         spin_lock_irq(&ioc->lock);
3200         memcpy(qos, ioc->params.qos, sizeof(qos));
3201         enable = ioc->enabled;
3202         user = ioc->user_qos_params;
3203
3204         while ((p = strsep(&input, " \t\n"))) {
3205                 substring_t args[MAX_OPT_ARGS];
3206                 char buf[32];
3207                 int tok;
3208                 s64 v;
3209
3210                 if (!*p)
3211                         continue;
3212
3213                 switch (match_token(p, qos_ctrl_tokens, args)) {
3214                 case QOS_ENABLE:
3215                         match_u64(&args[0], &v);
3216                         enable = v;
3217                         continue;
3218                 case QOS_CTRL:
3219                         match_strlcpy(buf, &args[0], sizeof(buf));
3220                         if (!strcmp(buf, "auto"))
3221                                 user = false;
3222                         else if (!strcmp(buf, "user"))
3223                                 user = true;
3224                         else
3225                                 goto einval;
3226                         continue;
3227                 }
3228
3229                 tok = match_token(p, qos_tokens, args);
3230                 switch (tok) {
3231                 case QOS_RPPM:
3232                 case QOS_WPPM:
3233                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3234                             sizeof(buf))
3235                                 goto einval;
3236                         if (cgroup_parse_float(buf, 2, &v))
3237                                 goto einval;
3238                         if (v < 0 || v > 10000)
3239                                 goto einval;
3240                         qos[tok] = v * 100;
3241                         break;
3242                 case QOS_RLAT:
3243                 case QOS_WLAT:
3244                         if (match_u64(&args[0], &v))
3245                                 goto einval;
3246                         qos[tok] = v;
3247                         break;
3248                 case QOS_MIN:
3249                 case QOS_MAX:
3250                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3251                             sizeof(buf))
3252                                 goto einval;
3253                         if (cgroup_parse_float(buf, 2, &v))
3254                                 goto einval;
3255                         if (v < 0)
3256                                 goto einval;
3257                         qos[tok] = clamp_t(s64, v * 100,
3258                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
3259                         break;
3260                 default:
3261                         goto einval;
3262                 }
3263                 user = true;
3264         }
3265
3266         if (qos[QOS_MIN] > qos[QOS_MAX])
3267                 goto einval;
3268
3269         if (enable) {
3270                 blk_stat_enable_accounting(disk->queue);
3271                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3272                 ioc->enabled = true;
3273                 wbt_disable_default(disk->queue);
3274         } else {
3275                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3276                 ioc->enabled = false;
3277                 wbt_enable_default(disk->queue);
3278         }
3279
3280         if (user) {
3281                 memcpy(ioc->params.qos, qos, sizeof(qos));
3282                 ioc->user_qos_params = true;
3283         } else {
3284                 ioc->user_qos_params = false;
3285         }
3286
3287         ioc_refresh_params(ioc, true);
3288         spin_unlock_irq(&ioc->lock);
3289
3290         blk_mq_unquiesce_queue(disk->queue);
3291         blk_mq_unfreeze_queue(disk->queue);
3292
3293         blkdev_put_no_open(bdev);
3294         return nbytes;
3295 einval:
3296         spin_unlock_irq(&ioc->lock);
3297
3298         blk_mq_unquiesce_queue(disk->queue);
3299         blk_mq_unfreeze_queue(disk->queue);
3300
3301         ret = -EINVAL;
3302 err:
3303         blkdev_put_no_open(bdev);
3304         return ret;
3305 }
3306
3307 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3308                                  struct blkg_policy_data *pd, int off)
3309 {
3310         const char *dname = blkg_dev_name(pd->blkg);
3311         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3312         u64 *u = ioc->params.i_lcoefs;
3313
3314         if (!dname)
3315                 return 0;
3316
3317         seq_printf(sf, "%s ctrl=%s model=linear "
3318                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
3319                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3320                    dname, ioc->user_cost_model ? "user" : "auto",
3321                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3322                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3323         return 0;
3324 }
3325
3326 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3327 {
3328         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3329
3330         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3331                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3332         return 0;
3333 }
3334
3335 static const match_table_t cost_ctrl_tokens = {
3336         { COST_CTRL,            "ctrl=%s"       },
3337         { COST_MODEL,           "model=%s"      },
3338         { NR_COST_CTRL_PARAMS,  NULL            },
3339 };
3340
3341 static const match_table_t i_lcoef_tokens = {
3342         { I_LCOEF_RBPS,         "rbps=%u"       },
3343         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
3344         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
3345         { I_LCOEF_WBPS,         "wbps=%u"       },
3346         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
3347         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
3348         { NR_I_LCOEFS,          NULL            },
3349 };
3350
3351 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3352                                     size_t nbytes, loff_t off)
3353 {
3354         struct block_device *bdev;
3355         struct request_queue *q;
3356         struct ioc *ioc;
3357         u64 u[NR_I_LCOEFS];
3358         bool user;
3359         char *p;
3360         int ret;
3361
3362         bdev = blkcg_conf_open_bdev(&input);
3363         if (IS_ERR(bdev))
3364                 return PTR_ERR(bdev);
3365
3366         q = bdev_get_queue(bdev);
3367         ioc = q_to_ioc(q);
3368         if (!ioc) {
3369                 ret = blk_iocost_init(bdev->bd_disk);
3370                 if (ret)
3371                         goto err;
3372                 ioc = q_to_ioc(q);
3373         }
3374
3375         blk_mq_freeze_queue(q);
3376         blk_mq_quiesce_queue(q);
3377
3378         spin_lock_irq(&ioc->lock);
3379         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3380         user = ioc->user_cost_model;
3381
3382         while ((p = strsep(&input, " \t\n"))) {
3383                 substring_t args[MAX_OPT_ARGS];
3384                 char buf[32];
3385                 int tok;
3386                 u64 v;
3387
3388                 if (!*p)
3389                         continue;
3390
3391                 switch (match_token(p, cost_ctrl_tokens, args)) {
3392                 case COST_CTRL:
3393                         match_strlcpy(buf, &args[0], sizeof(buf));
3394                         if (!strcmp(buf, "auto"))
3395                                 user = false;
3396                         else if (!strcmp(buf, "user"))
3397                                 user = true;
3398                         else
3399                                 goto einval;
3400                         continue;
3401                 case COST_MODEL:
3402                         match_strlcpy(buf, &args[0], sizeof(buf));
3403                         if (strcmp(buf, "linear"))
3404                                 goto einval;
3405                         continue;
3406                 }
3407
3408                 tok = match_token(p, i_lcoef_tokens, args);
3409                 if (tok == NR_I_LCOEFS)
3410                         goto einval;
3411                 if (match_u64(&args[0], &v))
3412                         goto einval;
3413                 u[tok] = v;
3414                 user = true;
3415         }
3416
3417         if (user) {
3418                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3419                 ioc->user_cost_model = true;
3420         } else {
3421                 ioc->user_cost_model = false;
3422         }
3423         ioc_refresh_params(ioc, true);
3424         spin_unlock_irq(&ioc->lock);
3425
3426         blk_mq_unquiesce_queue(q);
3427         blk_mq_unfreeze_queue(q);
3428
3429         blkdev_put_no_open(bdev);
3430         return nbytes;
3431
3432 einval:
3433         spin_unlock_irq(&ioc->lock);
3434
3435         blk_mq_unquiesce_queue(q);
3436         blk_mq_unfreeze_queue(q);
3437
3438         ret = -EINVAL;
3439 err:
3440         blkdev_put_no_open(bdev);
3441         return ret;
3442 }
3443
3444 static struct cftype ioc_files[] = {
3445         {
3446                 .name = "weight",
3447                 .flags = CFTYPE_NOT_ON_ROOT,
3448                 .seq_show = ioc_weight_show,
3449                 .write = ioc_weight_write,
3450         },
3451         {
3452                 .name = "cost.qos",
3453                 .flags = CFTYPE_ONLY_ON_ROOT,
3454                 .seq_show = ioc_qos_show,
3455                 .write = ioc_qos_write,
3456         },
3457         {
3458                 .name = "cost.model",
3459                 .flags = CFTYPE_ONLY_ON_ROOT,
3460                 .seq_show = ioc_cost_model_show,
3461                 .write = ioc_cost_model_write,
3462         },
3463         {}
3464 };
3465
3466 static struct blkcg_policy blkcg_policy_iocost = {
3467         .dfl_cftypes    = ioc_files,
3468         .cpd_alloc_fn   = ioc_cpd_alloc,
3469         .cpd_free_fn    = ioc_cpd_free,
3470         .pd_alloc_fn    = ioc_pd_alloc,
3471         .pd_init_fn     = ioc_pd_init,
3472         .pd_free_fn     = ioc_pd_free,
3473         .pd_stat_fn     = ioc_pd_stat,
3474 };
3475
3476 static int __init ioc_init(void)
3477 {
3478         return blkcg_policy_register(&blkcg_policy_iocost);
3479 }
3480
3481 static void __exit ioc_exit(void)
3482 {
3483         blkcg_policy_unregister(&blkcg_policy_iocost);
3484 }
3485
3486 module_init(ioc_init);
3487 module_exit(ioc_exit);