Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[platform/kernel/linux-starfive.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * parameters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO if doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, solely depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per        : Timer period
166  * - cur_per    : Internal wall and device vtime clock
167  * - vrate      : Device virtual time rate against wall clock
168  * - weight     : Surplus-adjusted and configured weights
169  * - hweight    : Surplus-adjusted and configured hierarchical weights
170  * - inflt      : The percentage of in-flight IO cost at the end of last period
171  * - del_ms     : Deferred issuer delay induction level and duration
172  * - usages     : Usage history
173  */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
185 #include "blk-wbt.h"
186 #include "blk-cgroup.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
196         do {                                                                    \
197                 unsigned long flags;                                            \
198                 if (trace_iocost_##type##_enabled()) {                          \
199                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
200                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
201                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
202                         trace_iocost_##type(iocg, trace_iocg_path,              \
203                                               ##__VA_ARGS__);                   \
204                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
205                 }                                                               \
206         } while (0)
207
208 #else   /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
210 #endif  /* CONFIG_TRACE_POINTS */
211
212 enum {
213         MILLION                 = 1000000,
214
215         /* timer period is calculated from latency requirements, bound it */
216         MIN_PERIOD              = USEC_PER_MSEC,
217         MAX_PERIOD              = USEC_PER_SEC,
218
219         /*
220          * iocg->vtime is targeted at 50% behind the device vtime, which
221          * serves as its IO credit buffer.  Surplus weight adjustment is
222          * immediately canceled if the vtime margin runs below 10%.
223          */
224         MARGIN_MIN_PCT          = 10,
225         MARGIN_LOW_PCT          = 20,
226         MARGIN_TARGET_PCT       = 50,
227
228         INUSE_ADJ_STEP_PCT      = 25,
229
230         /* Have some play in timer operations */
231         TIMER_SLACK_PCT         = 1,
232
233         /* 1/64k is granular enough and can easily be handled w/ u32 */
234         WEIGHT_ONE              = 1 << 16,
235
236         /*
237          * As vtime is used to calculate the cost of each IO, it needs to
238          * be fairly high precision.  For example, it should be able to
239          * represent the cost of a single page worth of discard with
240          * suffificient accuracy.  At the same time, it should be able to
241          * represent reasonably long enough durations to be useful and
242          * convenient during operation.
243          *
244          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
245          * granularity and days of wrap-around time even at extreme vrates.
246          */
247         VTIME_PER_SEC_SHIFT     = 37,
248         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
249         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
250         VTIME_PER_NSEC          = VTIME_PER_SEC / NSEC_PER_SEC,
251
252         /* bound vrate adjustments within two orders of magnitude */
253         VRATE_MIN_PPM           = 10000,        /* 1% */
254         VRATE_MAX_PPM           = 100000000,    /* 10000% */
255
256         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
257         VRATE_CLAMP_ADJ_PCT     = 4,
258
259         /* if IOs end up waiting for requests, issue less */
260         RQ_WAIT_BUSY_PCT        = 5,
261
262         /* unbusy hysterisis */
263         UNBUSY_THR_PCT          = 75,
264
265         /*
266          * The effect of delay is indirect and non-linear and a huge amount of
267          * future debt can accumulate abruptly while unthrottled. Linearly scale
268          * up delay as debt is going up and then let it decay exponentially.
269          * This gives us quick ramp ups while delay is accumulating and long
270          * tails which can help reducing the frequency of debt explosions on
271          * unthrottle. The parameters are experimentally determined.
272          *
273          * The delay mechanism provides adequate protection and behavior in many
274          * cases. However, this is far from ideal and falls shorts on both
275          * fronts. The debtors are often throttled too harshly costing a
276          * significant level of fairness and possibly total work while the
277          * protection against their impacts on the system can be choppy and
278          * unreliable.
279          *
280          * The shortcoming primarily stems from the fact that, unlike for page
281          * cache, the kernel doesn't have well-defined back-pressure propagation
282          * mechanism and policies for anonymous memory. Fully addressing this
283          * issue will likely require substantial improvements in the area.
284          */
285         MIN_DELAY_THR_PCT       = 500,
286         MAX_DELAY_THR_PCT       = 25000,
287         MIN_DELAY               = 250,
288         MAX_DELAY               = 250 * USEC_PER_MSEC,
289
290         /* halve debts if avg usage over 100ms is under 50% */
291         DFGV_USAGE_PCT          = 50,
292         DFGV_PERIOD             = 100 * USEC_PER_MSEC,
293
294         /* don't let cmds which take a very long time pin lagging for too long */
295         MAX_LAGGING_PERIODS     = 10,
296
297         /* switch iff the conditions are met for longer than this */
298         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
299
300         /*
301          * Count IO size in 4k pages.  The 12bit shift helps keeping
302          * size-proportional components of cost calculation in closer
303          * numbers of digits to per-IO cost components.
304          */
305         IOC_PAGE_SHIFT          = 12,
306         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
307         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
308
309         /* if apart further than 16M, consider randio for linear model */
310         LCOEF_RANDIO_PAGES      = 4096,
311 };
312
313 enum ioc_running {
314         IOC_IDLE,
315         IOC_RUNNING,
316         IOC_STOP,
317 };
318
319 /* io.cost.qos controls including per-dev enable of the whole controller */
320 enum {
321         QOS_ENABLE,
322         QOS_CTRL,
323         NR_QOS_CTRL_PARAMS,
324 };
325
326 /* io.cost.qos params */
327 enum {
328         QOS_RPPM,
329         QOS_RLAT,
330         QOS_WPPM,
331         QOS_WLAT,
332         QOS_MIN,
333         QOS_MAX,
334         NR_QOS_PARAMS,
335 };
336
337 /* io.cost.model controls */
338 enum {
339         COST_CTRL,
340         COST_MODEL,
341         NR_COST_CTRL_PARAMS,
342 };
343
344 /* builtin linear cost model coefficients */
345 enum {
346         I_LCOEF_RBPS,
347         I_LCOEF_RSEQIOPS,
348         I_LCOEF_RRANDIOPS,
349         I_LCOEF_WBPS,
350         I_LCOEF_WSEQIOPS,
351         I_LCOEF_WRANDIOPS,
352         NR_I_LCOEFS,
353 };
354
355 enum {
356         LCOEF_RPAGE,
357         LCOEF_RSEQIO,
358         LCOEF_RRANDIO,
359         LCOEF_WPAGE,
360         LCOEF_WSEQIO,
361         LCOEF_WRANDIO,
362         NR_LCOEFS,
363 };
364
365 enum {
366         AUTOP_INVALID,
367         AUTOP_HDD,
368         AUTOP_SSD_QD1,
369         AUTOP_SSD_DFL,
370         AUTOP_SSD_FAST,
371 };
372
373 struct ioc_params {
374         u32                             qos[NR_QOS_PARAMS];
375         u64                             i_lcoefs[NR_I_LCOEFS];
376         u64                             lcoefs[NR_LCOEFS];
377         u32                             too_fast_vrate_pct;
378         u32                             too_slow_vrate_pct;
379 };
380
381 struct ioc_margins {
382         s64                             min;
383         s64                             low;
384         s64                             target;
385 };
386
387 struct ioc_missed {
388         local_t                         nr_met;
389         local_t                         nr_missed;
390         u32                             last_met;
391         u32                             last_missed;
392 };
393
394 struct ioc_pcpu_stat {
395         struct ioc_missed               missed[2];
396
397         local64_t                       rq_wait_ns;
398         u64                             last_rq_wait_ns;
399 };
400
401 /* per device */
402 struct ioc {
403         struct rq_qos                   rqos;
404
405         bool                            enabled;
406
407         struct ioc_params               params;
408         struct ioc_margins              margins;
409         u32                             period_us;
410         u32                             timer_slack_ns;
411         u64                             vrate_min;
412         u64                             vrate_max;
413
414         spinlock_t                      lock;
415         struct timer_list               timer;
416         struct list_head                active_iocgs;   /* active cgroups */
417         struct ioc_pcpu_stat __percpu   *pcpu_stat;
418
419         enum ioc_running                running;
420         atomic64_t                      vtime_rate;
421         u64                             vtime_base_rate;
422         s64                             vtime_err;
423
424         seqcount_spinlock_t             period_seqcount;
425         u64                             period_at;      /* wallclock starttime */
426         u64                             period_at_vtime; /* vtime starttime */
427
428         atomic64_t                      cur_period;     /* inc'd each period */
429         int                             busy_level;     /* saturation history */
430
431         bool                            weights_updated;
432         atomic_t                        hweight_gen;    /* for lazy hweights */
433
434         /* debt forgivness */
435         u64                             dfgv_period_at;
436         u64                             dfgv_period_rem;
437         u64                             dfgv_usage_us_sum;
438
439         u64                             autop_too_fast_at;
440         u64                             autop_too_slow_at;
441         int                             autop_idx;
442         bool                            user_qos_params:1;
443         bool                            user_cost_model:1;
444 };
445
446 struct iocg_pcpu_stat {
447         local64_t                       abs_vusage;
448 };
449
450 struct iocg_stat {
451         u64                             usage_us;
452         u64                             wait_us;
453         u64                             indebt_us;
454         u64                             indelay_us;
455 };
456
457 /* per device-cgroup pair */
458 struct ioc_gq {
459         struct blkg_policy_data         pd;
460         struct ioc                      *ioc;
461
462         /*
463          * A iocg can get its weight from two sources - an explicit
464          * per-device-cgroup configuration or the default weight of the
465          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
466          * configuration.  `weight` is the effective considering both
467          * sources.
468          *
469          * When an idle cgroup becomes active its `active` goes from 0 to
470          * `weight`.  `inuse` is the surplus adjusted active weight.
471          * `active` and `inuse` are used to calculate `hweight_active` and
472          * `hweight_inuse`.
473          *
474          * `last_inuse` remembers `inuse` while an iocg is idle to persist
475          * surplus adjustments.
476          *
477          * `inuse` may be adjusted dynamically during period. `saved_*` are used
478          * to determine and track adjustments.
479          */
480         u32                             cfg_weight;
481         u32                             weight;
482         u32                             active;
483         u32                             inuse;
484
485         u32                             last_inuse;
486         s64                             saved_margin;
487
488         sector_t                        cursor;         /* to detect randio */
489
490         /*
491          * `vtime` is this iocg's vtime cursor which progresses as IOs are
492          * issued.  If lagging behind device vtime, the delta represents
493          * the currently available IO budget.  If running ahead, the
494          * overage.
495          *
496          * `vtime_done` is the same but progressed on completion rather
497          * than issue.  The delta behind `vtime` represents the cost of
498          * currently in-flight IOs.
499          */
500         atomic64_t                      vtime;
501         atomic64_t                      done_vtime;
502         u64                             abs_vdebt;
503
504         /* current delay in effect and when it started */
505         u64                             delay;
506         u64                             delay_at;
507
508         /*
509          * The period this iocg was last active in.  Used for deactivation
510          * and invalidating `vtime`.
511          */
512         atomic64_t                      active_period;
513         struct list_head                active_list;
514
515         /* see __propagate_weights() and current_hweight() for details */
516         u64                             child_active_sum;
517         u64                             child_inuse_sum;
518         u64                             child_adjusted_sum;
519         int                             hweight_gen;
520         u32                             hweight_active;
521         u32                             hweight_inuse;
522         u32                             hweight_donating;
523         u32                             hweight_after_donation;
524
525         struct list_head                walk_list;
526         struct list_head                surplus_list;
527
528         struct wait_queue_head          waitq;
529         struct hrtimer                  waitq_timer;
530
531         /* timestamp at the latest activation */
532         u64                             activated_at;
533
534         /* statistics */
535         struct iocg_pcpu_stat __percpu  *pcpu_stat;
536         struct iocg_stat                stat;
537         struct iocg_stat                last_stat;
538         u64                             last_stat_abs_vusage;
539         u64                             usage_delta_us;
540         u64                             wait_since;
541         u64                             indebt_since;
542         u64                             indelay_since;
543
544         /* this iocg's depth in the hierarchy and ancestors including self */
545         int                             level;
546         struct ioc_gq                   *ancestors[];
547 };
548
549 /* per cgroup */
550 struct ioc_cgrp {
551         struct blkcg_policy_data        cpd;
552         unsigned int                    dfl_weight;
553 };
554
555 struct ioc_now {
556         u64                             now_ns;
557         u64                             now;
558         u64                             vnow;
559 };
560
561 struct iocg_wait {
562         struct wait_queue_entry         wait;
563         struct bio                      *bio;
564         u64                             abs_cost;
565         bool                            committed;
566 };
567
568 struct iocg_wake_ctx {
569         struct ioc_gq                   *iocg;
570         u32                             hw_inuse;
571         s64                             vbudget;
572 };
573
574 static const struct ioc_params autop[] = {
575         [AUTOP_HDD] = {
576                 .qos                            = {
577                         [QOS_RLAT]              =        250000, /* 250ms */
578                         [QOS_WLAT]              =        250000,
579                         [QOS_MIN]               = VRATE_MIN_PPM,
580                         [QOS_MAX]               = VRATE_MAX_PPM,
581                 },
582                 .i_lcoefs                       = {
583                         [I_LCOEF_RBPS]          =     174019176,
584                         [I_LCOEF_RSEQIOPS]      =         41708,
585                         [I_LCOEF_RRANDIOPS]     =           370,
586                         [I_LCOEF_WBPS]          =     178075866,
587                         [I_LCOEF_WSEQIOPS]      =         42705,
588                         [I_LCOEF_WRANDIOPS]     =           378,
589                 },
590         },
591         [AUTOP_SSD_QD1] = {
592                 .qos                            = {
593                         [QOS_RLAT]              =         25000, /* 25ms */
594                         [QOS_WLAT]              =         25000,
595                         [QOS_MIN]               = VRATE_MIN_PPM,
596                         [QOS_MAX]               = VRATE_MAX_PPM,
597                 },
598                 .i_lcoefs                       = {
599                         [I_LCOEF_RBPS]          =     245855193,
600                         [I_LCOEF_RSEQIOPS]      =         61575,
601                         [I_LCOEF_RRANDIOPS]     =          6946,
602                         [I_LCOEF_WBPS]          =     141365009,
603                         [I_LCOEF_WSEQIOPS]      =         33716,
604                         [I_LCOEF_WRANDIOPS]     =         26796,
605                 },
606         },
607         [AUTOP_SSD_DFL] = {
608                 .qos                            = {
609                         [QOS_RLAT]              =         25000, /* 25ms */
610                         [QOS_WLAT]              =         25000,
611                         [QOS_MIN]               = VRATE_MIN_PPM,
612                         [QOS_MAX]               = VRATE_MAX_PPM,
613                 },
614                 .i_lcoefs                       = {
615                         [I_LCOEF_RBPS]          =     488636629,
616                         [I_LCOEF_RSEQIOPS]      =          8932,
617                         [I_LCOEF_RRANDIOPS]     =          8518,
618                         [I_LCOEF_WBPS]          =     427891549,
619                         [I_LCOEF_WSEQIOPS]      =         28755,
620                         [I_LCOEF_WRANDIOPS]     =         21940,
621                 },
622                 .too_fast_vrate_pct             =           500,
623         },
624         [AUTOP_SSD_FAST] = {
625                 .qos                            = {
626                         [QOS_RLAT]              =          5000, /* 5ms */
627                         [QOS_WLAT]              =          5000,
628                         [QOS_MIN]               = VRATE_MIN_PPM,
629                         [QOS_MAX]               = VRATE_MAX_PPM,
630                 },
631                 .i_lcoefs                       = {
632                         [I_LCOEF_RBPS]          =    3102524156LLU,
633                         [I_LCOEF_RSEQIOPS]      =        724816,
634                         [I_LCOEF_RRANDIOPS]     =        778122,
635                         [I_LCOEF_WBPS]          =    1742780862LLU,
636                         [I_LCOEF_WSEQIOPS]      =        425702,
637                         [I_LCOEF_WRANDIOPS]     =        443193,
638                 },
639                 .too_slow_vrate_pct             =            10,
640         },
641 };
642
643 /*
644  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
645  * vtime credit shortage and down on device saturation.
646  */
647 static u32 vrate_adj_pct[] =
648         { 0, 0, 0, 0,
649           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
650           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
651           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
652
653 static struct blkcg_policy blkcg_policy_iocost;
654
655 /* accessors and helpers */
656 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
657 {
658         return container_of(rqos, struct ioc, rqos);
659 }
660
661 static struct ioc *q_to_ioc(struct request_queue *q)
662 {
663         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
664 }
665
666 static const char __maybe_unused *ioc_name(struct ioc *ioc)
667 {
668         struct gendisk *disk = ioc->rqos.q->disk;
669
670         if (!disk)
671                 return "<unknown>";
672         return disk->disk_name;
673 }
674
675 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
676 {
677         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
678 }
679
680 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
681 {
682         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
683 }
684
685 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
686 {
687         return pd_to_blkg(&iocg->pd);
688 }
689
690 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
691 {
692         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
693                             struct ioc_cgrp, cpd);
694 }
695
696 /*
697  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
698  * weight, the more expensive each IO.  Must round up.
699  */
700 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
701 {
702         return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
703 }
704
705 /*
706  * The inverse of abs_cost_to_cost().  Must round up.
707  */
708 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
709 {
710         return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
711 }
712
713 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
714                             u64 abs_cost, u64 cost)
715 {
716         struct iocg_pcpu_stat *gcs;
717
718         bio->bi_iocost_cost = cost;
719         atomic64_add(cost, &iocg->vtime);
720
721         gcs = get_cpu_ptr(iocg->pcpu_stat);
722         local64_add(abs_cost, &gcs->abs_vusage);
723         put_cpu_ptr(gcs);
724 }
725
726 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
727 {
728         if (lock_ioc) {
729                 spin_lock_irqsave(&iocg->ioc->lock, *flags);
730                 spin_lock(&iocg->waitq.lock);
731         } else {
732                 spin_lock_irqsave(&iocg->waitq.lock, *flags);
733         }
734 }
735
736 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
737 {
738         if (unlock_ioc) {
739                 spin_unlock(&iocg->waitq.lock);
740                 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
741         } else {
742                 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
743         }
744 }
745
746 #define CREATE_TRACE_POINTS
747 #include <trace/events/iocost.h>
748
749 static void ioc_refresh_margins(struct ioc *ioc)
750 {
751         struct ioc_margins *margins = &ioc->margins;
752         u32 period_us = ioc->period_us;
753         u64 vrate = ioc->vtime_base_rate;
754
755         margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
756         margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
757         margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
758 }
759
760 /* latency Qos params changed, update period_us and all the dependent params */
761 static void ioc_refresh_period_us(struct ioc *ioc)
762 {
763         u32 ppm, lat, multi, period_us;
764
765         lockdep_assert_held(&ioc->lock);
766
767         /* pick the higher latency target */
768         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
769                 ppm = ioc->params.qos[QOS_RPPM];
770                 lat = ioc->params.qos[QOS_RLAT];
771         } else {
772                 ppm = ioc->params.qos[QOS_WPPM];
773                 lat = ioc->params.qos[QOS_WLAT];
774         }
775
776         /*
777          * We want the period to be long enough to contain a healthy number
778          * of IOs while short enough for granular control.  Define it as a
779          * multiple of the latency target.  Ideally, the multiplier should
780          * be scaled according to the percentile so that it would nominally
781          * contain a certain number of requests.  Let's be simpler and
782          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
783          */
784         if (ppm)
785                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
786         else
787                 multi = 2;
788         period_us = multi * lat;
789         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
790
791         /* calculate dependent params */
792         ioc->period_us = period_us;
793         ioc->timer_slack_ns = div64_u64(
794                 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
795                 100);
796         ioc_refresh_margins(ioc);
797 }
798
799 static int ioc_autop_idx(struct ioc *ioc)
800 {
801         int idx = ioc->autop_idx;
802         const struct ioc_params *p = &autop[idx];
803         u32 vrate_pct;
804         u64 now_ns;
805
806         /* rotational? */
807         if (!blk_queue_nonrot(ioc->rqos.q))
808                 return AUTOP_HDD;
809
810         /* handle SATA SSDs w/ broken NCQ */
811         if (blk_queue_depth(ioc->rqos.q) == 1)
812                 return AUTOP_SSD_QD1;
813
814         /* use one of the normal ssd sets */
815         if (idx < AUTOP_SSD_DFL)
816                 return AUTOP_SSD_DFL;
817
818         /* if user is overriding anything, maintain what was there */
819         if (ioc->user_qos_params || ioc->user_cost_model)
820                 return idx;
821
822         /* step up/down based on the vrate */
823         vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
824         now_ns = ktime_get_ns();
825
826         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
827                 if (!ioc->autop_too_fast_at)
828                         ioc->autop_too_fast_at = now_ns;
829                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
830                         return idx + 1;
831         } else {
832                 ioc->autop_too_fast_at = 0;
833         }
834
835         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
836                 if (!ioc->autop_too_slow_at)
837                         ioc->autop_too_slow_at = now_ns;
838                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
839                         return idx - 1;
840         } else {
841                 ioc->autop_too_slow_at = 0;
842         }
843
844         return idx;
845 }
846
847 /*
848  * Take the followings as input
849  *
850  *  @bps        maximum sequential throughput
851  *  @seqiops    maximum sequential 4k iops
852  *  @randiops   maximum random 4k iops
853  *
854  * and calculate the linear model cost coefficients.
855  *
856  *  *@page      per-page cost           1s / (@bps / 4096)
857  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
858  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
859  */
860 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
861                         u64 *page, u64 *seqio, u64 *randio)
862 {
863         u64 v;
864
865         *page = *seqio = *randio = 0;
866
867         if (bps)
868                 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
869                                            DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
870
871         if (seqiops) {
872                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
873                 if (v > *page)
874                         *seqio = v - *page;
875         }
876
877         if (randiops) {
878                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
879                 if (v > *page)
880                         *randio = v - *page;
881         }
882 }
883
884 static void ioc_refresh_lcoefs(struct ioc *ioc)
885 {
886         u64 *u = ioc->params.i_lcoefs;
887         u64 *c = ioc->params.lcoefs;
888
889         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
890                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
891         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
892                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
893 }
894
895 static bool ioc_refresh_params(struct ioc *ioc, bool force)
896 {
897         const struct ioc_params *p;
898         int idx;
899
900         lockdep_assert_held(&ioc->lock);
901
902         idx = ioc_autop_idx(ioc);
903         p = &autop[idx];
904
905         if (idx == ioc->autop_idx && !force)
906                 return false;
907
908         if (idx != ioc->autop_idx) {
909                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
910                 ioc->vtime_base_rate = VTIME_PER_USEC;
911         }
912
913         ioc->autop_idx = idx;
914         ioc->autop_too_fast_at = 0;
915         ioc->autop_too_slow_at = 0;
916
917         if (!ioc->user_qos_params)
918                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
919         if (!ioc->user_cost_model)
920                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
921
922         ioc_refresh_period_us(ioc);
923         ioc_refresh_lcoefs(ioc);
924
925         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
926                                             VTIME_PER_USEC, MILLION);
927         ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
928                                    VTIME_PER_USEC, MILLION);
929
930         return true;
931 }
932
933 /*
934  * When an iocg accumulates too much vtime or gets deactivated, we throw away
935  * some vtime, which lowers the overall device utilization. As the exact amount
936  * which is being thrown away is known, we can compensate by accelerating the
937  * vrate accordingly so that the extra vtime generated in the current period
938  * matches what got lost.
939  */
940 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
941 {
942         s64 pleft = ioc->period_at + ioc->period_us - now->now;
943         s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
944         s64 vcomp, vcomp_min, vcomp_max;
945
946         lockdep_assert_held(&ioc->lock);
947
948         /* we need some time left in this period */
949         if (pleft <= 0)
950                 goto done;
951
952         /*
953          * Calculate how much vrate should be adjusted to offset the error.
954          * Limit the amount of adjustment and deduct the adjusted amount from
955          * the error.
956          */
957         vcomp = -div64_s64(ioc->vtime_err, pleft);
958         vcomp_min = -(ioc->vtime_base_rate >> 1);
959         vcomp_max = ioc->vtime_base_rate;
960         vcomp = clamp(vcomp, vcomp_min, vcomp_max);
961
962         ioc->vtime_err += vcomp * pleft;
963
964         atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
965 done:
966         /* bound how much error can accumulate */
967         ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
968 }
969
970 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
971                                   int nr_lagging, int nr_shortages,
972                                   int prev_busy_level, u32 *missed_ppm)
973 {
974         u64 vrate = ioc->vtime_base_rate;
975         u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
976
977         if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
978                 if (ioc->busy_level != prev_busy_level || nr_lagging)
979                         trace_iocost_ioc_vrate_adj(ioc, vrate,
980                                                    missed_ppm, rq_wait_pct,
981                                                    nr_lagging, nr_shortages);
982
983                 return;
984         }
985
986         /*
987          * If vrate is out of bounds, apply clamp gradually as the
988          * bounds can change abruptly.  Otherwise, apply busy_level
989          * based adjustment.
990          */
991         if (vrate < vrate_min) {
992                 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
993                 vrate = min(vrate, vrate_min);
994         } else if (vrate > vrate_max) {
995                 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
996                 vrate = max(vrate, vrate_max);
997         } else {
998                 int idx = min_t(int, abs(ioc->busy_level),
999                                 ARRAY_SIZE(vrate_adj_pct) - 1);
1000                 u32 adj_pct = vrate_adj_pct[idx];
1001
1002                 if (ioc->busy_level > 0)
1003                         adj_pct = 100 - adj_pct;
1004                 else
1005                         adj_pct = 100 + adj_pct;
1006
1007                 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1008                               vrate_min, vrate_max);
1009         }
1010
1011         trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1012                                    nr_lagging, nr_shortages);
1013
1014         ioc->vtime_base_rate = vrate;
1015         ioc_refresh_margins(ioc);
1016 }
1017
1018 /* take a snapshot of the current [v]time and vrate */
1019 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1020 {
1021         unsigned seq;
1022         u64 vrate;
1023
1024         now->now_ns = ktime_get();
1025         now->now = ktime_to_us(now->now_ns);
1026         vrate = atomic64_read(&ioc->vtime_rate);
1027
1028         /*
1029          * The current vtime is
1030          *
1031          *   vtime at period start + (wallclock time since the start) * vrate
1032          *
1033          * As a consistent snapshot of `period_at_vtime` and `period_at` is
1034          * needed, they're seqcount protected.
1035          */
1036         do {
1037                 seq = read_seqcount_begin(&ioc->period_seqcount);
1038                 now->vnow = ioc->period_at_vtime +
1039                         (now->now - ioc->period_at) * vrate;
1040         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1041 }
1042
1043 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1044 {
1045         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1046
1047         write_seqcount_begin(&ioc->period_seqcount);
1048         ioc->period_at = now->now;
1049         ioc->period_at_vtime = now->vnow;
1050         write_seqcount_end(&ioc->period_seqcount);
1051
1052         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1053         add_timer(&ioc->timer);
1054 }
1055
1056 /*
1057  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1058  * weight sums and propagate upwards accordingly. If @save, the current margin
1059  * is saved to be used as reference for later inuse in-period adjustments.
1060  */
1061 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1062                                 bool save, struct ioc_now *now)
1063 {
1064         struct ioc *ioc = iocg->ioc;
1065         int lvl;
1066
1067         lockdep_assert_held(&ioc->lock);
1068
1069         /*
1070          * For an active leaf node, its inuse shouldn't be zero or exceed
1071          * @active. An active internal node's inuse is solely determined by the
1072          * inuse to active ratio of its children regardless of @inuse.
1073          */
1074         if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1075                 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1076                                            iocg->child_active_sum);
1077         } else {
1078                 inuse = clamp_t(u32, inuse, 1, active);
1079         }
1080
1081         iocg->last_inuse = iocg->inuse;
1082         if (save)
1083                 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1084
1085         if (active == iocg->active && inuse == iocg->inuse)
1086                 return;
1087
1088         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1089                 struct ioc_gq *parent = iocg->ancestors[lvl];
1090                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1091                 u32 parent_active = 0, parent_inuse = 0;
1092
1093                 /* update the level sums */
1094                 parent->child_active_sum += (s32)(active - child->active);
1095                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1096                 /* apply the updates */
1097                 child->active = active;
1098                 child->inuse = inuse;
1099
1100                 /*
1101                  * The delta between inuse and active sums indicates that
1102                  * much of weight is being given away.  Parent's inuse
1103                  * and active should reflect the ratio.
1104                  */
1105                 if (parent->child_active_sum) {
1106                         parent_active = parent->weight;
1107                         parent_inuse = DIV64_U64_ROUND_UP(
1108                                 parent_active * parent->child_inuse_sum,
1109                                 parent->child_active_sum);
1110                 }
1111
1112                 /* do we need to keep walking up? */
1113                 if (parent_active == parent->active &&
1114                     parent_inuse == parent->inuse)
1115                         break;
1116
1117                 active = parent_active;
1118                 inuse = parent_inuse;
1119         }
1120
1121         ioc->weights_updated = true;
1122 }
1123
1124 static void commit_weights(struct ioc *ioc)
1125 {
1126         lockdep_assert_held(&ioc->lock);
1127
1128         if (ioc->weights_updated) {
1129                 /* paired with rmb in current_hweight(), see there */
1130                 smp_wmb();
1131                 atomic_inc(&ioc->hweight_gen);
1132                 ioc->weights_updated = false;
1133         }
1134 }
1135
1136 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1137                               bool save, struct ioc_now *now)
1138 {
1139         __propagate_weights(iocg, active, inuse, save, now);
1140         commit_weights(iocg->ioc);
1141 }
1142
1143 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1144 {
1145         struct ioc *ioc = iocg->ioc;
1146         int lvl;
1147         u32 hwa, hwi;
1148         int ioc_gen;
1149
1150         /* hot path - if uptodate, use cached */
1151         ioc_gen = atomic_read(&ioc->hweight_gen);
1152         if (ioc_gen == iocg->hweight_gen)
1153                 goto out;
1154
1155         /*
1156          * Paired with wmb in commit_weights(). If we saw the updated
1157          * hweight_gen, all the weight updates from __propagate_weights() are
1158          * visible too.
1159          *
1160          * We can race with weight updates during calculation and get it
1161          * wrong.  However, hweight_gen would have changed and a future
1162          * reader will recalculate and we're guaranteed to discard the
1163          * wrong result soon.
1164          */
1165         smp_rmb();
1166
1167         hwa = hwi = WEIGHT_ONE;
1168         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1169                 struct ioc_gq *parent = iocg->ancestors[lvl];
1170                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1171                 u64 active_sum = READ_ONCE(parent->child_active_sum);
1172                 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1173                 u32 active = READ_ONCE(child->active);
1174                 u32 inuse = READ_ONCE(child->inuse);
1175
1176                 /* we can race with deactivations and either may read as zero */
1177                 if (!active_sum || !inuse_sum)
1178                         continue;
1179
1180                 active_sum = max_t(u64, active, active_sum);
1181                 hwa = div64_u64((u64)hwa * active, active_sum);
1182
1183                 inuse_sum = max_t(u64, inuse, inuse_sum);
1184                 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1185         }
1186
1187         iocg->hweight_active = max_t(u32, hwa, 1);
1188         iocg->hweight_inuse = max_t(u32, hwi, 1);
1189         iocg->hweight_gen = ioc_gen;
1190 out:
1191         if (hw_activep)
1192                 *hw_activep = iocg->hweight_active;
1193         if (hw_inusep)
1194                 *hw_inusep = iocg->hweight_inuse;
1195 }
1196
1197 /*
1198  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1199  * other weights stay unchanged.
1200  */
1201 static u32 current_hweight_max(struct ioc_gq *iocg)
1202 {
1203         u32 hwm = WEIGHT_ONE;
1204         u32 inuse = iocg->active;
1205         u64 child_inuse_sum;
1206         int lvl;
1207
1208         lockdep_assert_held(&iocg->ioc->lock);
1209
1210         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1211                 struct ioc_gq *parent = iocg->ancestors[lvl];
1212                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1213
1214                 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1215                 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1216                 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1217                                            parent->child_active_sum);
1218         }
1219
1220         return max_t(u32, hwm, 1);
1221 }
1222
1223 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1224 {
1225         struct ioc *ioc = iocg->ioc;
1226         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1227         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1228         u32 weight;
1229
1230         lockdep_assert_held(&ioc->lock);
1231
1232         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1233         if (weight != iocg->weight && iocg->active)
1234                 propagate_weights(iocg, weight, iocg->inuse, true, now);
1235         iocg->weight = weight;
1236 }
1237
1238 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1239 {
1240         struct ioc *ioc = iocg->ioc;
1241         u64 last_period, cur_period;
1242         u64 vtime, vtarget;
1243         int i;
1244
1245         /*
1246          * If seem to be already active, just update the stamp to tell the
1247          * timer that we're still active.  We don't mind occassional races.
1248          */
1249         if (!list_empty(&iocg->active_list)) {
1250                 ioc_now(ioc, now);
1251                 cur_period = atomic64_read(&ioc->cur_period);
1252                 if (atomic64_read(&iocg->active_period) != cur_period)
1253                         atomic64_set(&iocg->active_period, cur_period);
1254                 return true;
1255         }
1256
1257         /* racy check on internal node IOs, treat as root level IOs */
1258         if (iocg->child_active_sum)
1259                 return false;
1260
1261         spin_lock_irq(&ioc->lock);
1262
1263         ioc_now(ioc, now);
1264
1265         /* update period */
1266         cur_period = atomic64_read(&ioc->cur_period);
1267         last_period = atomic64_read(&iocg->active_period);
1268         atomic64_set(&iocg->active_period, cur_period);
1269
1270         /* already activated or breaking leaf-only constraint? */
1271         if (!list_empty(&iocg->active_list))
1272                 goto succeed_unlock;
1273         for (i = iocg->level - 1; i > 0; i--)
1274                 if (!list_empty(&iocg->ancestors[i]->active_list))
1275                         goto fail_unlock;
1276
1277         if (iocg->child_active_sum)
1278                 goto fail_unlock;
1279
1280         /*
1281          * Always start with the target budget. On deactivation, we throw away
1282          * anything above it.
1283          */
1284         vtarget = now->vnow - ioc->margins.target;
1285         vtime = atomic64_read(&iocg->vtime);
1286
1287         atomic64_add(vtarget - vtime, &iocg->vtime);
1288         atomic64_add(vtarget - vtime, &iocg->done_vtime);
1289         vtime = vtarget;
1290
1291         /*
1292          * Activate, propagate weight and start period timer if not
1293          * running.  Reset hweight_gen to avoid accidental match from
1294          * wrapping.
1295          */
1296         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1297         list_add(&iocg->active_list, &ioc->active_iocgs);
1298
1299         propagate_weights(iocg, iocg->weight,
1300                           iocg->last_inuse ?: iocg->weight, true, now);
1301
1302         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1303                         last_period, cur_period, vtime);
1304
1305         iocg->activated_at = now->now;
1306
1307         if (ioc->running == IOC_IDLE) {
1308                 ioc->running = IOC_RUNNING;
1309                 ioc->dfgv_period_at = now->now;
1310                 ioc->dfgv_period_rem = 0;
1311                 ioc_start_period(ioc, now);
1312         }
1313
1314 succeed_unlock:
1315         spin_unlock_irq(&ioc->lock);
1316         return true;
1317
1318 fail_unlock:
1319         spin_unlock_irq(&ioc->lock);
1320         return false;
1321 }
1322
1323 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1324 {
1325         struct ioc *ioc = iocg->ioc;
1326         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1327         u64 tdelta, delay, new_delay;
1328         s64 vover, vover_pct;
1329         u32 hwa;
1330
1331         lockdep_assert_held(&iocg->waitq.lock);
1332
1333         /* calculate the current delay in effect - 1/2 every second */
1334         tdelta = now->now - iocg->delay_at;
1335         if (iocg->delay)
1336                 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1337         else
1338                 delay = 0;
1339
1340         /* calculate the new delay from the debt amount */
1341         current_hweight(iocg, &hwa, NULL);
1342         vover = atomic64_read(&iocg->vtime) +
1343                 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1344         vover_pct = div64_s64(100 * vover,
1345                               ioc->period_us * ioc->vtime_base_rate);
1346
1347         if (vover_pct <= MIN_DELAY_THR_PCT)
1348                 new_delay = 0;
1349         else if (vover_pct >= MAX_DELAY_THR_PCT)
1350                 new_delay = MAX_DELAY;
1351         else
1352                 new_delay = MIN_DELAY +
1353                         div_u64((MAX_DELAY - MIN_DELAY) *
1354                                 (vover_pct - MIN_DELAY_THR_PCT),
1355                                 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1356
1357         /* pick the higher one and apply */
1358         if (new_delay > delay) {
1359                 iocg->delay = new_delay;
1360                 iocg->delay_at = now->now;
1361                 delay = new_delay;
1362         }
1363
1364         if (delay >= MIN_DELAY) {
1365                 if (!iocg->indelay_since)
1366                         iocg->indelay_since = now->now;
1367                 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1368                 return true;
1369         } else {
1370                 if (iocg->indelay_since) {
1371                         iocg->stat.indelay_us += now->now - iocg->indelay_since;
1372                         iocg->indelay_since = 0;
1373                 }
1374                 iocg->delay = 0;
1375                 blkcg_clear_delay(blkg);
1376                 return false;
1377         }
1378 }
1379
1380 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1381                             struct ioc_now *now)
1382 {
1383         struct iocg_pcpu_stat *gcs;
1384
1385         lockdep_assert_held(&iocg->ioc->lock);
1386         lockdep_assert_held(&iocg->waitq.lock);
1387         WARN_ON_ONCE(list_empty(&iocg->active_list));
1388
1389         /*
1390          * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1391          * inuse donating all of it share to others until its debt is paid off.
1392          */
1393         if (!iocg->abs_vdebt && abs_cost) {
1394                 iocg->indebt_since = now->now;
1395                 propagate_weights(iocg, iocg->active, 0, false, now);
1396         }
1397
1398         iocg->abs_vdebt += abs_cost;
1399
1400         gcs = get_cpu_ptr(iocg->pcpu_stat);
1401         local64_add(abs_cost, &gcs->abs_vusage);
1402         put_cpu_ptr(gcs);
1403 }
1404
1405 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1406                           struct ioc_now *now)
1407 {
1408         lockdep_assert_held(&iocg->ioc->lock);
1409         lockdep_assert_held(&iocg->waitq.lock);
1410
1411         /* make sure that nobody messed with @iocg */
1412         WARN_ON_ONCE(list_empty(&iocg->active_list));
1413         WARN_ON_ONCE(iocg->inuse > 1);
1414
1415         iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1416
1417         /* if debt is paid in full, restore inuse */
1418         if (!iocg->abs_vdebt) {
1419                 iocg->stat.indebt_us += now->now - iocg->indebt_since;
1420                 iocg->indebt_since = 0;
1421
1422                 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1423                                   false, now);
1424         }
1425 }
1426
1427 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1428                         int flags, void *key)
1429 {
1430         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1431         struct iocg_wake_ctx *ctx = key;
1432         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1433
1434         ctx->vbudget -= cost;
1435
1436         if (ctx->vbudget < 0)
1437                 return -1;
1438
1439         iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1440         wait->committed = true;
1441
1442         /*
1443          * autoremove_wake_function() removes the wait entry only when it
1444          * actually changed the task state. We want the wait always removed.
1445          * Remove explicitly and use default_wake_function(). Note that the
1446          * order of operations is important as finish_wait() tests whether
1447          * @wq_entry is removed without grabbing the lock.
1448          */
1449         default_wake_function(wq_entry, mode, flags, key);
1450         list_del_init_careful(&wq_entry->entry);
1451         return 0;
1452 }
1453
1454 /*
1455  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1456  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1457  * addition to iocg->waitq.lock.
1458  */
1459 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1460                             struct ioc_now *now)
1461 {
1462         struct ioc *ioc = iocg->ioc;
1463         struct iocg_wake_ctx ctx = { .iocg = iocg };
1464         u64 vshortage, expires, oexpires;
1465         s64 vbudget;
1466         u32 hwa;
1467
1468         lockdep_assert_held(&iocg->waitq.lock);
1469
1470         current_hweight(iocg, &hwa, NULL);
1471         vbudget = now->vnow - atomic64_read(&iocg->vtime);
1472
1473         /* pay off debt */
1474         if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1475                 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1476                 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1477                 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1478
1479                 lockdep_assert_held(&ioc->lock);
1480
1481                 atomic64_add(vpay, &iocg->vtime);
1482                 atomic64_add(vpay, &iocg->done_vtime);
1483                 iocg_pay_debt(iocg, abs_vpay, now);
1484                 vbudget -= vpay;
1485         }
1486
1487         if (iocg->abs_vdebt || iocg->delay)
1488                 iocg_kick_delay(iocg, now);
1489
1490         /*
1491          * Debt can still be outstanding if we haven't paid all yet or the
1492          * caller raced and called without @pay_debt. Shouldn't wake up waiters
1493          * under debt. Make sure @vbudget reflects the outstanding amount and is
1494          * not positive.
1495          */
1496         if (iocg->abs_vdebt) {
1497                 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1498                 vbudget = min_t(s64, 0, vbudget - vdebt);
1499         }
1500
1501         /*
1502          * Wake up the ones which are due and see how much vtime we'll need for
1503          * the next one. As paying off debt restores hw_inuse, it must be read
1504          * after the above debt payment.
1505          */
1506         ctx.vbudget = vbudget;
1507         current_hweight(iocg, NULL, &ctx.hw_inuse);
1508
1509         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1510
1511         if (!waitqueue_active(&iocg->waitq)) {
1512                 if (iocg->wait_since) {
1513                         iocg->stat.wait_us += now->now - iocg->wait_since;
1514                         iocg->wait_since = 0;
1515                 }
1516                 return;
1517         }
1518
1519         if (!iocg->wait_since)
1520                 iocg->wait_since = now->now;
1521
1522         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1523                 return;
1524
1525         /* determine next wakeup, add a timer margin to guarantee chunking */
1526         vshortage = -ctx.vbudget;
1527         expires = now->now_ns +
1528                 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1529                 NSEC_PER_USEC;
1530         expires += ioc->timer_slack_ns;
1531
1532         /* if already active and close enough, don't bother */
1533         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1534         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1535             abs(oexpires - expires) <= ioc->timer_slack_ns)
1536                 return;
1537
1538         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1539                                ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1540 }
1541
1542 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1543 {
1544         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1545         bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1546         struct ioc_now now;
1547         unsigned long flags;
1548
1549         ioc_now(iocg->ioc, &now);
1550
1551         iocg_lock(iocg, pay_debt, &flags);
1552         iocg_kick_waitq(iocg, pay_debt, &now);
1553         iocg_unlock(iocg, pay_debt, &flags);
1554
1555         return HRTIMER_NORESTART;
1556 }
1557
1558 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1559 {
1560         u32 nr_met[2] = { };
1561         u32 nr_missed[2] = { };
1562         u64 rq_wait_ns = 0;
1563         int cpu, rw;
1564
1565         for_each_online_cpu(cpu) {
1566                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1567                 u64 this_rq_wait_ns;
1568
1569                 for (rw = READ; rw <= WRITE; rw++) {
1570                         u32 this_met = local_read(&stat->missed[rw].nr_met);
1571                         u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1572
1573                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1574                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1575                         stat->missed[rw].last_met = this_met;
1576                         stat->missed[rw].last_missed = this_missed;
1577                 }
1578
1579                 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1580                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1581                 stat->last_rq_wait_ns = this_rq_wait_ns;
1582         }
1583
1584         for (rw = READ; rw <= WRITE; rw++) {
1585                 if (nr_met[rw] + nr_missed[rw])
1586                         missed_ppm_ar[rw] =
1587                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1588                                                    nr_met[rw] + nr_missed[rw]);
1589                 else
1590                         missed_ppm_ar[rw] = 0;
1591         }
1592
1593         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1594                                    ioc->period_us * NSEC_PER_USEC);
1595 }
1596
1597 /* was iocg idle this period? */
1598 static bool iocg_is_idle(struct ioc_gq *iocg)
1599 {
1600         struct ioc *ioc = iocg->ioc;
1601
1602         /* did something get issued this period? */
1603         if (atomic64_read(&iocg->active_period) ==
1604             atomic64_read(&ioc->cur_period))
1605                 return false;
1606
1607         /* is something in flight? */
1608         if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1609                 return false;
1610
1611         return true;
1612 }
1613
1614 /*
1615  * Call this function on the target leaf @iocg's to build pre-order traversal
1616  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1617  * ->walk_list and the caller is responsible for dissolving the list after use.
1618  */
1619 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1620                                   struct list_head *inner_walk)
1621 {
1622         int lvl;
1623
1624         WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1625
1626         /* find the first ancestor which hasn't been visited yet */
1627         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1628                 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1629                         break;
1630         }
1631
1632         /* walk down and visit the inner nodes to get pre-order traversal */
1633         while (++lvl <= iocg->level - 1) {
1634                 struct ioc_gq *inner = iocg->ancestors[lvl];
1635
1636                 /* record traversal order */
1637                 list_add_tail(&inner->walk_list, inner_walk);
1638         }
1639 }
1640
1641 /* propagate the deltas to the parent */
1642 static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1643 {
1644         if (iocg->level > 0) {
1645                 struct iocg_stat *parent_stat =
1646                         &iocg->ancestors[iocg->level - 1]->stat;
1647
1648                 parent_stat->usage_us +=
1649                         iocg->stat.usage_us - iocg->last_stat.usage_us;
1650                 parent_stat->wait_us +=
1651                         iocg->stat.wait_us - iocg->last_stat.wait_us;
1652                 parent_stat->indebt_us +=
1653                         iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1654                 parent_stat->indelay_us +=
1655                         iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1656         }
1657
1658         iocg->last_stat = iocg->stat;
1659 }
1660
1661 /* collect per-cpu counters and propagate the deltas to the parent */
1662 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1663 {
1664         struct ioc *ioc = iocg->ioc;
1665         u64 abs_vusage = 0;
1666         u64 vusage_delta;
1667         int cpu;
1668
1669         lockdep_assert_held(&iocg->ioc->lock);
1670
1671         /* collect per-cpu counters */
1672         for_each_possible_cpu(cpu) {
1673                 abs_vusage += local64_read(
1674                                 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1675         }
1676         vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1677         iocg->last_stat_abs_vusage = abs_vusage;
1678
1679         iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1680         iocg->stat.usage_us += iocg->usage_delta_us;
1681
1682         iocg_flush_stat_upward(iocg);
1683 }
1684
1685 /* get stat counters ready for reading on all active iocgs */
1686 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1687 {
1688         LIST_HEAD(inner_walk);
1689         struct ioc_gq *iocg, *tiocg;
1690
1691         /* flush leaves and build inner node walk list */
1692         list_for_each_entry(iocg, target_iocgs, active_list) {
1693                 iocg_flush_stat_leaf(iocg, now);
1694                 iocg_build_inner_walk(iocg, &inner_walk);
1695         }
1696
1697         /* keep flushing upwards by walking the inner list backwards */
1698         list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1699                 iocg_flush_stat_upward(iocg);
1700                 list_del_init(&iocg->walk_list);
1701         }
1702 }
1703
1704 /*
1705  * Determine what @iocg's hweight_inuse should be after donating unused
1706  * capacity. @hwm is the upper bound and used to signal no donation. This
1707  * function also throws away @iocg's excess budget.
1708  */
1709 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1710                                   u32 usage, struct ioc_now *now)
1711 {
1712         struct ioc *ioc = iocg->ioc;
1713         u64 vtime = atomic64_read(&iocg->vtime);
1714         s64 excess, delta, target, new_hwi;
1715
1716         /* debt handling owns inuse for debtors */
1717         if (iocg->abs_vdebt)
1718                 return 1;
1719
1720         /* see whether minimum margin requirement is met */
1721         if (waitqueue_active(&iocg->waitq) ||
1722             time_after64(vtime, now->vnow - ioc->margins.min))
1723                 return hwm;
1724
1725         /* throw away excess above target */
1726         excess = now->vnow - vtime - ioc->margins.target;
1727         if (excess > 0) {
1728                 atomic64_add(excess, &iocg->vtime);
1729                 atomic64_add(excess, &iocg->done_vtime);
1730                 vtime += excess;
1731                 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1732         }
1733
1734         /*
1735          * Let's say the distance between iocg's and device's vtimes as a
1736          * fraction of period duration is delta. Assuming that the iocg will
1737          * consume the usage determined above, we want to determine new_hwi so
1738          * that delta equals MARGIN_TARGET at the end of the next period.
1739          *
1740          * We need to execute usage worth of IOs while spending the sum of the
1741          * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1742          * (delta):
1743          *
1744          *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1745          *
1746          * Therefore, the new_hwi is:
1747          *
1748          *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1749          */
1750         delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1751                           now->vnow - ioc->period_at_vtime);
1752         target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1753         new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1754
1755         return clamp_t(s64, new_hwi, 1, hwm);
1756 }
1757
1758 /*
1759  * For work-conservation, an iocg which isn't using all of its share should
1760  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1761  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1762  *
1763  * #1 is mathematically simpler but has the drawback of requiring synchronous
1764  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1765  * change due to donation snapbacks as it has the possibility of grossly
1766  * overshooting what's allowed by the model and vrate.
1767  *
1768  * #2 is inherently safe with local operations. The donating iocg can easily
1769  * snap back to higher weights when needed without worrying about impacts on
1770  * other nodes as the impacts will be inherently correct. This also makes idle
1771  * iocg activations safe. The only effect activations have is decreasing
1772  * hweight_inuse of others, the right solution to which is for those iocgs to
1773  * snap back to higher weights.
1774  *
1775  * So, we go with #2. The challenge is calculating how each donating iocg's
1776  * inuse should be adjusted to achieve the target donation amounts. This is done
1777  * using Andy's method described in the following pdf.
1778  *
1779  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1780  *
1781  * Given the weights and target after-donation hweight_inuse values, Andy's
1782  * method determines how the proportional distribution should look like at each
1783  * sibling level to maintain the relative relationship between all non-donating
1784  * pairs. To roughly summarize, it divides the tree into donating and
1785  * non-donating parts, calculates global donation rate which is used to
1786  * determine the target hweight_inuse for each node, and then derives per-level
1787  * proportions.
1788  *
1789  * The following pdf shows that global distribution calculated this way can be
1790  * achieved by scaling inuse weights of donating leaves and propagating the
1791  * adjustments upwards proportionally.
1792  *
1793  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1794  *
1795  * Combining the above two, we can determine how each leaf iocg's inuse should
1796  * be adjusted to achieve the target donation.
1797  *
1798  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1799  *
1800  * The inline comments use symbols from the last pdf.
1801  *
1802  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1803  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1804  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1805  *   w is the weight of the node. w = w_f + w_t
1806  *   w_f is the non-donating portion of w. w_f = w * f / b
1807  *   w_b is the donating portion of w. w_t = w * t / b
1808  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1809  *   s_f and s_t are the non-donating and donating portions of s.
1810  *
1811  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1812  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1813  * after adjustments. Subscript r denotes the root node's values.
1814  */
1815 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1816 {
1817         LIST_HEAD(over_hwa);
1818         LIST_HEAD(inner_walk);
1819         struct ioc_gq *iocg, *tiocg, *root_iocg;
1820         u32 after_sum, over_sum, over_target, gamma;
1821
1822         /*
1823          * It's pretty unlikely but possible for the total sum of
1824          * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1825          * confuse the following calculations. If such condition is detected,
1826          * scale down everyone over its full share equally to keep the sum below
1827          * WEIGHT_ONE.
1828          */
1829         after_sum = 0;
1830         over_sum = 0;
1831         list_for_each_entry(iocg, surpluses, surplus_list) {
1832                 u32 hwa;
1833
1834                 current_hweight(iocg, &hwa, NULL);
1835                 after_sum += iocg->hweight_after_donation;
1836
1837                 if (iocg->hweight_after_donation > hwa) {
1838                         over_sum += iocg->hweight_after_donation;
1839                         list_add(&iocg->walk_list, &over_hwa);
1840                 }
1841         }
1842
1843         if (after_sum >= WEIGHT_ONE) {
1844                 /*
1845                  * The delta should be deducted from the over_sum, calculate
1846                  * target over_sum value.
1847                  */
1848                 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1849                 WARN_ON_ONCE(over_sum <= over_delta);
1850                 over_target = over_sum - over_delta;
1851         } else {
1852                 over_target = 0;
1853         }
1854
1855         list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1856                 if (over_target)
1857                         iocg->hweight_after_donation =
1858                                 div_u64((u64)iocg->hweight_after_donation *
1859                                         over_target, over_sum);
1860                 list_del_init(&iocg->walk_list);
1861         }
1862
1863         /*
1864          * Build pre-order inner node walk list and prepare for donation
1865          * adjustment calculations.
1866          */
1867         list_for_each_entry(iocg, surpluses, surplus_list) {
1868                 iocg_build_inner_walk(iocg, &inner_walk);
1869         }
1870
1871         root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1872         WARN_ON_ONCE(root_iocg->level > 0);
1873
1874         list_for_each_entry(iocg, &inner_walk, walk_list) {
1875                 iocg->child_adjusted_sum = 0;
1876                 iocg->hweight_donating = 0;
1877                 iocg->hweight_after_donation = 0;
1878         }
1879
1880         /*
1881          * Propagate the donating budget (b_t) and after donation budget (b'_t)
1882          * up the hierarchy.
1883          */
1884         list_for_each_entry(iocg, surpluses, surplus_list) {
1885                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1886
1887                 parent->hweight_donating += iocg->hweight_donating;
1888                 parent->hweight_after_donation += iocg->hweight_after_donation;
1889         }
1890
1891         list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1892                 if (iocg->level > 0) {
1893                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1894
1895                         parent->hweight_donating += iocg->hweight_donating;
1896                         parent->hweight_after_donation += iocg->hweight_after_donation;
1897                 }
1898         }
1899
1900         /*
1901          * Calculate inner hwa's (b) and make sure the donation values are
1902          * within the accepted ranges as we're doing low res calculations with
1903          * roundups.
1904          */
1905         list_for_each_entry(iocg, &inner_walk, walk_list) {
1906                 if (iocg->level) {
1907                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1908
1909                         iocg->hweight_active = DIV64_U64_ROUND_UP(
1910                                 (u64)parent->hweight_active * iocg->active,
1911                                 parent->child_active_sum);
1912
1913                 }
1914
1915                 iocg->hweight_donating = min(iocg->hweight_donating,
1916                                              iocg->hweight_active);
1917                 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1918                                                    iocg->hweight_donating - 1);
1919                 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1920                                  iocg->hweight_donating <= 1 ||
1921                                  iocg->hweight_after_donation == 0)) {
1922                         pr_warn("iocg: invalid donation weights in ");
1923                         pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1924                         pr_cont(": active=%u donating=%u after=%u\n",
1925                                 iocg->hweight_active, iocg->hweight_donating,
1926                                 iocg->hweight_after_donation);
1927                 }
1928         }
1929
1930         /*
1931          * Calculate the global donation rate (gamma) - the rate to adjust
1932          * non-donating budgets by.
1933          *
1934          * No need to use 64bit multiplication here as the first operand is
1935          * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1936          *
1937          * We know that there are beneficiary nodes and the sum of the donating
1938          * hweights can't be whole; however, due to the round-ups during hweight
1939          * calculations, root_iocg->hweight_donating might still end up equal to
1940          * or greater than whole. Limit the range when calculating the divider.
1941          *
1942          * gamma = (1 - t_r') / (1 - t_r)
1943          */
1944         gamma = DIV_ROUND_UP(
1945                 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1946                 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1947
1948         /*
1949          * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1950          * nodes.
1951          */
1952         list_for_each_entry(iocg, &inner_walk, walk_list) {
1953                 struct ioc_gq *parent;
1954                 u32 inuse, wpt, wptp;
1955                 u64 st, sf;
1956
1957                 if (iocg->level == 0) {
1958                         /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1959                         iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1960                                 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1961                                 WEIGHT_ONE - iocg->hweight_after_donation);
1962                         continue;
1963                 }
1964
1965                 parent = iocg->ancestors[iocg->level - 1];
1966
1967                 /* b' = gamma * b_f + b_t' */
1968                 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1969                         (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1970                         WEIGHT_ONE) + iocg->hweight_after_donation;
1971
1972                 /* w' = s' * b' / b'_p */
1973                 inuse = DIV64_U64_ROUND_UP(
1974                         (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1975                         parent->hweight_inuse);
1976
1977                 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1978                 st = DIV64_U64_ROUND_UP(
1979                         iocg->child_active_sum * iocg->hweight_donating,
1980                         iocg->hweight_active);
1981                 sf = iocg->child_active_sum - st;
1982                 wpt = DIV64_U64_ROUND_UP(
1983                         (u64)iocg->active * iocg->hweight_donating,
1984                         iocg->hweight_active);
1985                 wptp = DIV64_U64_ROUND_UP(
1986                         (u64)inuse * iocg->hweight_after_donation,
1987                         iocg->hweight_inuse);
1988
1989                 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1990         }
1991
1992         /*
1993          * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1994          * we can finally determine leaf adjustments.
1995          */
1996         list_for_each_entry(iocg, surpluses, surplus_list) {
1997                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1998                 u32 inuse;
1999
2000                 /*
2001                  * In-debt iocgs participated in the donation calculation with
2002                  * the minimum target hweight_inuse. Configuring inuse
2003                  * accordingly would work fine but debt handling expects
2004                  * @iocg->inuse stay at the minimum and we don't wanna
2005                  * interfere.
2006                  */
2007                 if (iocg->abs_vdebt) {
2008                         WARN_ON_ONCE(iocg->inuse > 1);
2009                         continue;
2010                 }
2011
2012                 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2013                 inuse = DIV64_U64_ROUND_UP(
2014                         parent->child_adjusted_sum * iocg->hweight_after_donation,
2015                         parent->hweight_inuse);
2016
2017                 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2018                                 iocg->inuse, inuse,
2019                                 iocg->hweight_inuse,
2020                                 iocg->hweight_after_donation);
2021
2022                 __propagate_weights(iocg, iocg->active, inuse, true, now);
2023         }
2024
2025         /* walk list should be dissolved after use */
2026         list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2027                 list_del_init(&iocg->walk_list);
2028 }
2029
2030 /*
2031  * A low weight iocg can amass a large amount of debt, for example, when
2032  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2033  * memory paired with a slow IO device, the debt can span multiple seconds or
2034  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2035  * up blocked paying its debt while the IO device is idle.
2036  *
2037  * The following protects against such cases. If the device has been
2038  * sufficiently idle for a while, the debts are halved and delays are
2039  * recalculated.
2040  */
2041 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2042                               struct ioc_now *now)
2043 {
2044         struct ioc_gq *iocg;
2045         u64 dur, usage_pct, nr_cycles;
2046
2047         /* if no debtor, reset the cycle */
2048         if (!nr_debtors) {
2049                 ioc->dfgv_period_at = now->now;
2050                 ioc->dfgv_period_rem = 0;
2051                 ioc->dfgv_usage_us_sum = 0;
2052                 return;
2053         }
2054
2055         /*
2056          * Debtors can pass through a lot of writes choking the device and we
2057          * don't want to be forgiving debts while the device is struggling from
2058          * write bursts. If we're missing latency targets, consider the device
2059          * fully utilized.
2060          */
2061         if (ioc->busy_level > 0)
2062                 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2063
2064         ioc->dfgv_usage_us_sum += usage_us_sum;
2065         if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2066                 return;
2067
2068         /*
2069          * At least DFGV_PERIOD has passed since the last period. Calculate the
2070          * average usage and reset the period counters.
2071          */
2072         dur = now->now - ioc->dfgv_period_at;
2073         usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2074
2075         ioc->dfgv_period_at = now->now;
2076         ioc->dfgv_usage_us_sum = 0;
2077
2078         /* if was too busy, reset everything */
2079         if (usage_pct > DFGV_USAGE_PCT) {
2080                 ioc->dfgv_period_rem = 0;
2081                 return;
2082         }
2083
2084         /*
2085          * Usage is lower than threshold. Let's forgive some debts. Debt
2086          * forgiveness runs off of the usual ioc timer but its period usually
2087          * doesn't match ioc's. Compensate the difference by performing the
2088          * reduction as many times as would fit in the duration since the last
2089          * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2090          * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2091          * reductions is doubled.
2092          */
2093         nr_cycles = dur + ioc->dfgv_period_rem;
2094         ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2095
2096         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2097                 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2098
2099                 if (!iocg->abs_vdebt && !iocg->delay)
2100                         continue;
2101
2102                 spin_lock(&iocg->waitq.lock);
2103
2104                 old_debt = iocg->abs_vdebt;
2105                 old_delay = iocg->delay;
2106
2107                 if (iocg->abs_vdebt)
2108                         iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2109                 if (iocg->delay)
2110                         iocg->delay = iocg->delay >> nr_cycles ?: 1;
2111
2112                 iocg_kick_waitq(iocg, true, now);
2113
2114                 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2115                                 old_debt, iocg->abs_vdebt,
2116                                 old_delay, iocg->delay);
2117
2118                 spin_unlock(&iocg->waitq.lock);
2119         }
2120 }
2121
2122 /*
2123  * Check the active iocgs' state to avoid oversleeping and deactive
2124  * idle iocgs.
2125  *
2126  * Since waiters determine the sleep durations based on the vrate
2127  * they saw at the time of sleep, if vrate has increased, some
2128  * waiters could be sleeping for too long. Wake up tardy waiters
2129  * which should have woken up in the last period and expire idle
2130  * iocgs.
2131  */
2132 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2133 {
2134         int nr_debtors = 0;
2135         struct ioc_gq *iocg, *tiocg;
2136
2137         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2138                 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2139                     !iocg->delay && !iocg_is_idle(iocg))
2140                         continue;
2141
2142                 spin_lock(&iocg->waitq.lock);
2143
2144                 /* flush wait and indebt stat deltas */
2145                 if (iocg->wait_since) {
2146                         iocg->stat.wait_us += now->now - iocg->wait_since;
2147                         iocg->wait_since = now->now;
2148                 }
2149                 if (iocg->indebt_since) {
2150                         iocg->stat.indebt_us +=
2151                                 now->now - iocg->indebt_since;
2152                         iocg->indebt_since = now->now;
2153                 }
2154                 if (iocg->indelay_since) {
2155                         iocg->stat.indelay_us +=
2156                                 now->now - iocg->indelay_since;
2157                         iocg->indelay_since = now->now;
2158                 }
2159
2160                 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2161                     iocg->delay) {
2162                         /* might be oversleeping vtime / hweight changes, kick */
2163                         iocg_kick_waitq(iocg, true, now);
2164                         if (iocg->abs_vdebt || iocg->delay)
2165                                 nr_debtors++;
2166                 } else if (iocg_is_idle(iocg)) {
2167                         /* no waiter and idle, deactivate */
2168                         u64 vtime = atomic64_read(&iocg->vtime);
2169                         s64 excess;
2170
2171                         /*
2172                          * @iocg has been inactive for a full duration and will
2173                          * have a high budget. Account anything above target as
2174                          * error and throw away. On reactivation, it'll start
2175                          * with the target budget.
2176                          */
2177                         excess = now->vnow - vtime - ioc->margins.target;
2178                         if (excess > 0) {
2179                                 u32 old_hwi;
2180
2181                                 current_hweight(iocg, NULL, &old_hwi);
2182                                 ioc->vtime_err -= div64_u64(excess * old_hwi,
2183                                                             WEIGHT_ONE);
2184                         }
2185
2186                         TRACE_IOCG_PATH(iocg_idle, iocg, now,
2187                                         atomic64_read(&iocg->active_period),
2188                                         atomic64_read(&ioc->cur_period), vtime);
2189                         __propagate_weights(iocg, 0, 0, false, now);
2190                         list_del_init(&iocg->active_list);
2191                 }
2192
2193                 spin_unlock(&iocg->waitq.lock);
2194         }
2195
2196         commit_weights(ioc);
2197         return nr_debtors;
2198 }
2199
2200 static void ioc_timer_fn(struct timer_list *timer)
2201 {
2202         struct ioc *ioc = container_of(timer, struct ioc, timer);
2203         struct ioc_gq *iocg, *tiocg;
2204         struct ioc_now now;
2205         LIST_HEAD(surpluses);
2206         int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2207         u64 usage_us_sum = 0;
2208         u32 ppm_rthr;
2209         u32 ppm_wthr;
2210         u32 missed_ppm[2], rq_wait_pct;
2211         u64 period_vtime;
2212         int prev_busy_level;
2213
2214         /* how were the latencies during the period? */
2215         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2216
2217         /* take care of active iocgs */
2218         spin_lock_irq(&ioc->lock);
2219
2220         ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2221         ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2222         ioc_now(ioc, &now);
2223
2224         period_vtime = now.vnow - ioc->period_at_vtime;
2225         if (WARN_ON_ONCE(!period_vtime)) {
2226                 spin_unlock_irq(&ioc->lock);
2227                 return;
2228         }
2229
2230         nr_debtors = ioc_check_iocgs(ioc, &now);
2231
2232         /*
2233          * Wait and indebt stat are flushed above and the donation calculation
2234          * below needs updated usage stat. Let's bring stat up-to-date.
2235          */
2236         iocg_flush_stat(&ioc->active_iocgs, &now);
2237
2238         /* calc usage and see whether some weights need to be moved around */
2239         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2240                 u64 vdone, vtime, usage_us;
2241                 u32 hw_active, hw_inuse;
2242
2243                 /*
2244                  * Collect unused and wind vtime closer to vnow to prevent
2245                  * iocgs from accumulating a large amount of budget.
2246                  */
2247                 vdone = atomic64_read(&iocg->done_vtime);
2248                 vtime = atomic64_read(&iocg->vtime);
2249                 current_hweight(iocg, &hw_active, &hw_inuse);
2250
2251                 /*
2252                  * Latency QoS detection doesn't account for IOs which are
2253                  * in-flight for longer than a period.  Detect them by
2254                  * comparing vdone against period start.  If lagging behind
2255                  * IOs from past periods, don't increase vrate.
2256                  */
2257                 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2258                     !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2259                     time_after64(vtime, vdone) &&
2260                     time_after64(vtime, now.vnow -
2261                                  MAX_LAGGING_PERIODS * period_vtime) &&
2262                     time_before64(vdone, now.vnow - period_vtime))
2263                         nr_lagging++;
2264
2265                 /*
2266                  * Determine absolute usage factoring in in-flight IOs to avoid
2267                  * high-latency completions appearing as idle.
2268                  */
2269                 usage_us = iocg->usage_delta_us;
2270                 usage_us_sum += usage_us;
2271
2272                 /* see whether there's surplus vtime */
2273                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2274                 if (hw_inuse < hw_active ||
2275                     (!waitqueue_active(&iocg->waitq) &&
2276                      time_before64(vtime, now.vnow - ioc->margins.low))) {
2277                         u32 hwa, old_hwi, hwm, new_hwi, usage;
2278                         u64 usage_dur;
2279
2280                         if (vdone != vtime) {
2281                                 u64 inflight_us = DIV64_U64_ROUND_UP(
2282                                         cost_to_abs_cost(vtime - vdone, hw_inuse),
2283                                         ioc->vtime_base_rate);
2284
2285                                 usage_us = max(usage_us, inflight_us);
2286                         }
2287
2288                         /* convert to hweight based usage ratio */
2289                         if (time_after64(iocg->activated_at, ioc->period_at))
2290                                 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2291                         else
2292                                 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2293
2294                         usage = clamp_t(u32,
2295                                 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2296                                                    usage_dur),
2297                                 1, WEIGHT_ONE);
2298
2299                         /*
2300                          * Already donating or accumulated enough to start.
2301                          * Determine the donation amount.
2302                          */
2303                         current_hweight(iocg, &hwa, &old_hwi);
2304                         hwm = current_hweight_max(iocg);
2305                         new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2306                                                          usage, &now);
2307                         /*
2308                          * Donation calculation assumes hweight_after_donation
2309                          * to be positive, a condition that a donor w/ hwa < 2
2310                          * can't meet. Don't bother with donation if hwa is
2311                          * below 2. It's not gonna make a meaningful difference
2312                          * anyway.
2313                          */
2314                         if (new_hwi < hwm && hwa >= 2) {
2315                                 iocg->hweight_donating = hwa;
2316                                 iocg->hweight_after_donation = new_hwi;
2317                                 list_add(&iocg->surplus_list, &surpluses);
2318                         } else if (!iocg->abs_vdebt) {
2319                                 /*
2320                                  * @iocg doesn't have enough to donate. Reset
2321                                  * its inuse to active.
2322                                  *
2323                                  * Don't reset debtors as their inuse's are
2324                                  * owned by debt handling. This shouldn't affect
2325                                  * donation calculuation in any meaningful way
2326                                  * as @iocg doesn't have a meaningful amount of
2327                                  * share anyway.
2328                                  */
2329                                 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2330                                                 iocg->inuse, iocg->active,
2331                                                 iocg->hweight_inuse, new_hwi);
2332
2333                                 __propagate_weights(iocg, iocg->active,
2334                                                     iocg->active, true, &now);
2335                                 nr_shortages++;
2336                         }
2337                 } else {
2338                         /* genuinely short on vtime */
2339                         nr_shortages++;
2340                 }
2341         }
2342
2343         if (!list_empty(&surpluses) && nr_shortages)
2344                 transfer_surpluses(&surpluses, &now);
2345
2346         commit_weights(ioc);
2347
2348         /* surplus list should be dissolved after use */
2349         list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2350                 list_del_init(&iocg->surplus_list);
2351
2352         /*
2353          * If q is getting clogged or we're missing too much, we're issuing
2354          * too much IO and should lower vtime rate.  If we're not missing
2355          * and experiencing shortages but not surpluses, we're too stingy
2356          * and should increase vtime rate.
2357          */
2358         prev_busy_level = ioc->busy_level;
2359         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2360             missed_ppm[READ] > ppm_rthr ||
2361             missed_ppm[WRITE] > ppm_wthr) {
2362                 /* clearly missing QoS targets, slow down vrate */
2363                 ioc->busy_level = max(ioc->busy_level, 0);
2364                 ioc->busy_level++;
2365         } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2366                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2367                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2368                 /* QoS targets are being met with >25% margin */
2369                 if (nr_shortages) {
2370                         /*
2371                          * We're throttling while the device has spare
2372                          * capacity.  If vrate was being slowed down, stop.
2373                          */
2374                         ioc->busy_level = min(ioc->busy_level, 0);
2375
2376                         /*
2377                          * If there are IOs spanning multiple periods, wait
2378                          * them out before pushing the device harder.
2379                          */
2380                         if (!nr_lagging)
2381                                 ioc->busy_level--;
2382                 } else {
2383                         /*
2384                          * Nobody is being throttled and the users aren't
2385                          * issuing enough IOs to saturate the device.  We
2386                          * simply don't know how close the device is to
2387                          * saturation.  Coast.
2388                          */
2389                         ioc->busy_level = 0;
2390                 }
2391         } else {
2392                 /* inside the hysterisis margin, we're good */
2393                 ioc->busy_level = 0;
2394         }
2395
2396         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2397
2398         ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2399                               prev_busy_level, missed_ppm);
2400
2401         ioc_refresh_params(ioc, false);
2402
2403         ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2404
2405         /*
2406          * This period is done.  Move onto the next one.  If nothing's
2407          * going on with the device, stop the timer.
2408          */
2409         atomic64_inc(&ioc->cur_period);
2410
2411         if (ioc->running != IOC_STOP) {
2412                 if (!list_empty(&ioc->active_iocgs)) {
2413                         ioc_start_period(ioc, &now);
2414                 } else {
2415                         ioc->busy_level = 0;
2416                         ioc->vtime_err = 0;
2417                         ioc->running = IOC_IDLE;
2418                 }
2419
2420                 ioc_refresh_vrate(ioc, &now);
2421         }
2422
2423         spin_unlock_irq(&ioc->lock);
2424 }
2425
2426 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2427                                       u64 abs_cost, struct ioc_now *now)
2428 {
2429         struct ioc *ioc = iocg->ioc;
2430         struct ioc_margins *margins = &ioc->margins;
2431         u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2432         u32 hwi, adj_step;
2433         s64 margin;
2434         u64 cost, new_inuse;
2435
2436         current_hweight(iocg, NULL, &hwi);
2437         old_hwi = hwi;
2438         cost = abs_cost_to_cost(abs_cost, hwi);
2439         margin = now->vnow - vtime - cost;
2440
2441         /* debt handling owns inuse for debtors */
2442         if (iocg->abs_vdebt)
2443                 return cost;
2444
2445         /*
2446          * We only increase inuse during period and do so if the margin has
2447          * deteriorated since the previous adjustment.
2448          */
2449         if (margin >= iocg->saved_margin || margin >= margins->low ||
2450             iocg->inuse == iocg->active)
2451                 return cost;
2452
2453         spin_lock_irq(&ioc->lock);
2454
2455         /* we own inuse only when @iocg is in the normal active state */
2456         if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2457                 spin_unlock_irq(&ioc->lock);
2458                 return cost;
2459         }
2460
2461         /*
2462          * Bump up inuse till @abs_cost fits in the existing budget.
2463          * adj_step must be determined after acquiring ioc->lock - we might
2464          * have raced and lost to another thread for activation and could
2465          * be reading 0 iocg->active before ioc->lock which will lead to
2466          * infinite loop.
2467          */
2468         new_inuse = iocg->inuse;
2469         adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2470         do {
2471                 new_inuse = new_inuse + adj_step;
2472                 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2473                 current_hweight(iocg, NULL, &hwi);
2474                 cost = abs_cost_to_cost(abs_cost, hwi);
2475         } while (time_after64(vtime + cost, now->vnow) &&
2476                  iocg->inuse != iocg->active);
2477
2478         spin_unlock_irq(&ioc->lock);
2479
2480         TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2481                         old_inuse, iocg->inuse, old_hwi, hwi);
2482
2483         return cost;
2484 }
2485
2486 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2487                                     bool is_merge, u64 *costp)
2488 {
2489         struct ioc *ioc = iocg->ioc;
2490         u64 coef_seqio, coef_randio, coef_page;
2491         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2492         u64 seek_pages = 0;
2493         u64 cost = 0;
2494
2495         switch (bio_op(bio)) {
2496         case REQ_OP_READ:
2497                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
2498                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
2499                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
2500                 break;
2501         case REQ_OP_WRITE:
2502                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
2503                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
2504                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
2505                 break;
2506         default:
2507                 goto out;
2508         }
2509
2510         if (iocg->cursor) {
2511                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2512                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2513         }
2514
2515         if (!is_merge) {
2516                 if (seek_pages > LCOEF_RANDIO_PAGES) {
2517                         cost += coef_randio;
2518                 } else {
2519                         cost += coef_seqio;
2520                 }
2521         }
2522         cost += pages * coef_page;
2523 out:
2524         *costp = cost;
2525 }
2526
2527 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2528 {
2529         u64 cost;
2530
2531         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2532         return cost;
2533 }
2534
2535 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2536                                          u64 *costp)
2537 {
2538         unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2539
2540         switch (req_op(rq)) {
2541         case REQ_OP_READ:
2542                 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2543                 break;
2544         case REQ_OP_WRITE:
2545                 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2546                 break;
2547         default:
2548                 *costp = 0;
2549         }
2550 }
2551
2552 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2553 {
2554         u64 cost;
2555
2556         calc_size_vtime_cost_builtin(rq, ioc, &cost);
2557         return cost;
2558 }
2559
2560 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2561 {
2562         struct blkcg_gq *blkg = bio->bi_blkg;
2563         struct ioc *ioc = rqos_to_ioc(rqos);
2564         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2565         struct ioc_now now;
2566         struct iocg_wait wait;
2567         u64 abs_cost, cost, vtime;
2568         bool use_debt, ioc_locked;
2569         unsigned long flags;
2570
2571         /* bypass IOs if disabled, still initializing, or for root cgroup */
2572         if (!ioc->enabled || !iocg || !iocg->level)
2573                 return;
2574
2575         /* calculate the absolute vtime cost */
2576         abs_cost = calc_vtime_cost(bio, iocg, false);
2577         if (!abs_cost)
2578                 return;
2579
2580         if (!iocg_activate(iocg, &now))
2581                 return;
2582
2583         iocg->cursor = bio_end_sector(bio);
2584         vtime = atomic64_read(&iocg->vtime);
2585         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2586
2587         /*
2588          * If no one's waiting and within budget, issue right away.  The
2589          * tests are racy but the races aren't systemic - we only miss once
2590          * in a while which is fine.
2591          */
2592         if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2593             time_before_eq64(vtime + cost, now.vnow)) {
2594                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2595                 return;
2596         }
2597
2598         /*
2599          * We're over budget. This can be handled in two ways. IOs which may
2600          * cause priority inversions are punted to @ioc->aux_iocg and charged as
2601          * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2602          * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2603          * whether debt handling is needed and acquire locks accordingly.
2604          */
2605         use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2606         ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2607 retry_lock:
2608         iocg_lock(iocg, ioc_locked, &flags);
2609
2610         /*
2611          * @iocg must stay activated for debt and waitq handling. Deactivation
2612          * is synchronized against both ioc->lock and waitq.lock and we won't
2613          * get deactivated as long as we're waiting or has debt, so we're good
2614          * if we're activated here. In the unlikely cases that we aren't, just
2615          * issue the IO.
2616          */
2617         if (unlikely(list_empty(&iocg->active_list))) {
2618                 iocg_unlock(iocg, ioc_locked, &flags);
2619                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2620                 return;
2621         }
2622
2623         /*
2624          * We're over budget. If @bio has to be issued regardless, remember
2625          * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2626          * off the debt before waking more IOs.
2627          *
2628          * This way, the debt is continuously paid off each period with the
2629          * actual budget available to the cgroup. If we just wound vtime, we
2630          * would incorrectly use the current hw_inuse for the entire amount
2631          * which, for example, can lead to the cgroup staying blocked for a
2632          * long time even with substantially raised hw_inuse.
2633          *
2634          * An iocg with vdebt should stay online so that the timer can keep
2635          * deducting its vdebt and [de]activate use_delay mechanism
2636          * accordingly. We don't want to race against the timer trying to
2637          * clear them and leave @iocg inactive w/ dangling use_delay heavily
2638          * penalizing the cgroup and its descendants.
2639          */
2640         if (use_debt) {
2641                 iocg_incur_debt(iocg, abs_cost, &now);
2642                 if (iocg_kick_delay(iocg, &now))
2643                         blkcg_schedule_throttle(rqos->q->disk,
2644                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2645                 iocg_unlock(iocg, ioc_locked, &flags);
2646                 return;
2647         }
2648
2649         /* guarantee that iocgs w/ waiters have maximum inuse */
2650         if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2651                 if (!ioc_locked) {
2652                         iocg_unlock(iocg, false, &flags);
2653                         ioc_locked = true;
2654                         goto retry_lock;
2655                 }
2656                 propagate_weights(iocg, iocg->active, iocg->active, true,
2657                                   &now);
2658         }
2659
2660         /*
2661          * Append self to the waitq and schedule the wakeup timer if we're
2662          * the first waiter.  The timer duration is calculated based on the
2663          * current vrate.  vtime and hweight changes can make it too short
2664          * or too long.  Each wait entry records the absolute cost it's
2665          * waiting for to allow re-evaluation using a custom wait entry.
2666          *
2667          * If too short, the timer simply reschedules itself.  If too long,
2668          * the period timer will notice and trigger wakeups.
2669          *
2670          * All waiters are on iocg->waitq and the wait states are
2671          * synchronized using waitq.lock.
2672          */
2673         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2674         wait.wait.private = current;
2675         wait.bio = bio;
2676         wait.abs_cost = abs_cost;
2677         wait.committed = false; /* will be set true by waker */
2678
2679         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2680         iocg_kick_waitq(iocg, ioc_locked, &now);
2681
2682         iocg_unlock(iocg, ioc_locked, &flags);
2683
2684         while (true) {
2685                 set_current_state(TASK_UNINTERRUPTIBLE);
2686                 if (wait.committed)
2687                         break;
2688                 io_schedule();
2689         }
2690
2691         /* waker already committed us, proceed */
2692         finish_wait(&iocg->waitq, &wait.wait);
2693 }
2694
2695 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2696                            struct bio *bio)
2697 {
2698         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2699         struct ioc *ioc = rqos_to_ioc(rqos);
2700         sector_t bio_end = bio_end_sector(bio);
2701         struct ioc_now now;
2702         u64 vtime, abs_cost, cost;
2703         unsigned long flags;
2704
2705         /* bypass if disabled, still initializing, or for root cgroup */
2706         if (!ioc->enabled || !iocg || !iocg->level)
2707                 return;
2708
2709         abs_cost = calc_vtime_cost(bio, iocg, true);
2710         if (!abs_cost)
2711                 return;
2712
2713         ioc_now(ioc, &now);
2714
2715         vtime = atomic64_read(&iocg->vtime);
2716         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2717
2718         /* update cursor if backmerging into the request at the cursor */
2719         if (blk_rq_pos(rq) < bio_end &&
2720             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2721                 iocg->cursor = bio_end;
2722
2723         /*
2724          * Charge if there's enough vtime budget and the existing request has
2725          * cost assigned.
2726          */
2727         if (rq->bio && rq->bio->bi_iocost_cost &&
2728             time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2729                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2730                 return;
2731         }
2732
2733         /*
2734          * Otherwise, account it as debt if @iocg is online, which it should
2735          * be for the vast majority of cases. See debt handling in
2736          * ioc_rqos_throttle() for details.
2737          */
2738         spin_lock_irqsave(&ioc->lock, flags);
2739         spin_lock(&iocg->waitq.lock);
2740
2741         if (likely(!list_empty(&iocg->active_list))) {
2742                 iocg_incur_debt(iocg, abs_cost, &now);
2743                 if (iocg_kick_delay(iocg, &now))
2744                         blkcg_schedule_throttle(rqos->q->disk,
2745                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2746         } else {
2747                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2748         }
2749
2750         spin_unlock(&iocg->waitq.lock);
2751         spin_unlock_irqrestore(&ioc->lock, flags);
2752 }
2753
2754 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2755 {
2756         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2757
2758         if (iocg && bio->bi_iocost_cost)
2759                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2760 }
2761
2762 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2763 {
2764         struct ioc *ioc = rqos_to_ioc(rqos);
2765         struct ioc_pcpu_stat *ccs;
2766         u64 on_q_ns, rq_wait_ns, size_nsec;
2767         int pidx, rw;
2768
2769         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2770                 return;
2771
2772         switch (req_op(rq)) {
2773         case REQ_OP_READ:
2774                 pidx = QOS_RLAT;
2775                 rw = READ;
2776                 break;
2777         case REQ_OP_WRITE:
2778                 pidx = QOS_WLAT;
2779                 rw = WRITE;
2780                 break;
2781         default:
2782                 return;
2783         }
2784
2785         on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2786         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2787         size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2788
2789         ccs = get_cpu_ptr(ioc->pcpu_stat);
2790
2791         if (on_q_ns <= size_nsec ||
2792             on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2793                 local_inc(&ccs->missed[rw].nr_met);
2794         else
2795                 local_inc(&ccs->missed[rw].nr_missed);
2796
2797         local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2798
2799         put_cpu_ptr(ccs);
2800 }
2801
2802 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2803 {
2804         struct ioc *ioc = rqos_to_ioc(rqos);
2805
2806         spin_lock_irq(&ioc->lock);
2807         ioc_refresh_params(ioc, false);
2808         spin_unlock_irq(&ioc->lock);
2809 }
2810
2811 static void ioc_rqos_exit(struct rq_qos *rqos)
2812 {
2813         struct ioc *ioc = rqos_to_ioc(rqos);
2814
2815         blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2816
2817         spin_lock_irq(&ioc->lock);
2818         ioc->running = IOC_STOP;
2819         spin_unlock_irq(&ioc->lock);
2820
2821         del_timer_sync(&ioc->timer);
2822         free_percpu(ioc->pcpu_stat);
2823         kfree(ioc);
2824 }
2825
2826 static struct rq_qos_ops ioc_rqos_ops = {
2827         .throttle = ioc_rqos_throttle,
2828         .merge = ioc_rqos_merge,
2829         .done_bio = ioc_rqos_done_bio,
2830         .done = ioc_rqos_done,
2831         .queue_depth_changed = ioc_rqos_queue_depth_changed,
2832         .exit = ioc_rqos_exit,
2833 };
2834
2835 static int blk_iocost_init(struct gendisk *disk)
2836 {
2837         struct request_queue *q = disk->queue;
2838         struct ioc *ioc;
2839         struct rq_qos *rqos;
2840         int i, cpu, ret;
2841
2842         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2843         if (!ioc)
2844                 return -ENOMEM;
2845
2846         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2847         if (!ioc->pcpu_stat) {
2848                 kfree(ioc);
2849                 return -ENOMEM;
2850         }
2851
2852         for_each_possible_cpu(cpu) {
2853                 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2854
2855                 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2856                         local_set(&ccs->missed[i].nr_met, 0);
2857                         local_set(&ccs->missed[i].nr_missed, 0);
2858                 }
2859                 local64_set(&ccs->rq_wait_ns, 0);
2860         }
2861
2862         rqos = &ioc->rqos;
2863         rqos->id = RQ_QOS_COST;
2864         rqos->ops = &ioc_rqos_ops;
2865         rqos->q = q;
2866
2867         spin_lock_init(&ioc->lock);
2868         timer_setup(&ioc->timer, ioc_timer_fn, 0);
2869         INIT_LIST_HEAD(&ioc->active_iocgs);
2870
2871         ioc->running = IOC_IDLE;
2872         ioc->vtime_base_rate = VTIME_PER_USEC;
2873         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2874         seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2875         ioc->period_at = ktime_to_us(ktime_get());
2876         atomic64_set(&ioc->cur_period, 0);
2877         atomic_set(&ioc->hweight_gen, 0);
2878
2879         spin_lock_irq(&ioc->lock);
2880         ioc->autop_idx = AUTOP_INVALID;
2881         ioc_refresh_params(ioc, true);
2882         spin_unlock_irq(&ioc->lock);
2883
2884         /*
2885          * rqos must be added before activation to allow ioc_pd_init() to
2886          * lookup the ioc from q. This means that the rqos methods may get
2887          * called before policy activation completion, can't assume that the
2888          * target bio has an iocg associated and need to test for NULL iocg.
2889          */
2890         ret = rq_qos_add(q, rqos);
2891         if (ret)
2892                 goto err_free_ioc;
2893
2894         ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2895         if (ret)
2896                 goto err_del_qos;
2897         return 0;
2898
2899 err_del_qos:
2900         rq_qos_del(q, rqos);
2901 err_free_ioc:
2902         free_percpu(ioc->pcpu_stat);
2903         kfree(ioc);
2904         return ret;
2905 }
2906
2907 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2908 {
2909         struct ioc_cgrp *iocc;
2910
2911         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2912         if (!iocc)
2913                 return NULL;
2914
2915         iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2916         return &iocc->cpd;
2917 }
2918
2919 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2920 {
2921         kfree(container_of(cpd, struct ioc_cgrp, cpd));
2922 }
2923
2924 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2925                                              struct blkcg *blkcg)
2926 {
2927         int levels = blkcg->css.cgroup->level + 1;
2928         struct ioc_gq *iocg;
2929
2930         iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2931         if (!iocg)
2932                 return NULL;
2933
2934         iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2935         if (!iocg->pcpu_stat) {
2936                 kfree(iocg);
2937                 return NULL;
2938         }
2939
2940         return &iocg->pd;
2941 }
2942
2943 static void ioc_pd_init(struct blkg_policy_data *pd)
2944 {
2945         struct ioc_gq *iocg = pd_to_iocg(pd);
2946         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2947         struct ioc *ioc = q_to_ioc(blkg->q);
2948         struct ioc_now now;
2949         struct blkcg_gq *tblkg;
2950         unsigned long flags;
2951
2952         ioc_now(ioc, &now);
2953
2954         iocg->ioc = ioc;
2955         atomic64_set(&iocg->vtime, now.vnow);
2956         atomic64_set(&iocg->done_vtime, now.vnow);
2957         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2958         INIT_LIST_HEAD(&iocg->active_list);
2959         INIT_LIST_HEAD(&iocg->walk_list);
2960         INIT_LIST_HEAD(&iocg->surplus_list);
2961         iocg->hweight_active = WEIGHT_ONE;
2962         iocg->hweight_inuse = WEIGHT_ONE;
2963
2964         init_waitqueue_head(&iocg->waitq);
2965         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2966         iocg->waitq_timer.function = iocg_waitq_timer_fn;
2967
2968         iocg->level = blkg->blkcg->css.cgroup->level;
2969
2970         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2971                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2972                 iocg->ancestors[tiocg->level] = tiocg;
2973         }
2974
2975         spin_lock_irqsave(&ioc->lock, flags);
2976         weight_updated(iocg, &now);
2977         spin_unlock_irqrestore(&ioc->lock, flags);
2978 }
2979
2980 static void ioc_pd_free(struct blkg_policy_data *pd)
2981 {
2982         struct ioc_gq *iocg = pd_to_iocg(pd);
2983         struct ioc *ioc = iocg->ioc;
2984         unsigned long flags;
2985
2986         if (ioc) {
2987                 spin_lock_irqsave(&ioc->lock, flags);
2988
2989                 if (!list_empty(&iocg->active_list)) {
2990                         struct ioc_now now;
2991
2992                         ioc_now(ioc, &now);
2993                         propagate_weights(iocg, 0, 0, false, &now);
2994                         list_del_init(&iocg->active_list);
2995                 }
2996
2997                 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2998                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2999
3000                 spin_unlock_irqrestore(&ioc->lock, flags);
3001
3002                 hrtimer_cancel(&iocg->waitq_timer);
3003         }
3004         free_percpu(iocg->pcpu_stat);
3005         kfree(iocg);
3006 }
3007
3008 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3009 {
3010         struct ioc_gq *iocg = pd_to_iocg(pd);
3011         struct ioc *ioc = iocg->ioc;
3012
3013         if (!ioc->enabled)
3014                 return;
3015
3016         if (iocg->level == 0) {
3017                 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3018                         ioc->vtime_base_rate * 10000,
3019                         VTIME_PER_USEC);
3020                 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3021         }
3022
3023         seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3024
3025         if (blkcg_debug_stats)
3026                 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3027                         iocg->last_stat.wait_us,
3028                         iocg->last_stat.indebt_us,
3029                         iocg->last_stat.indelay_us);
3030 }
3031
3032 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3033                              int off)
3034 {
3035         const char *dname = blkg_dev_name(pd->blkg);
3036         struct ioc_gq *iocg = pd_to_iocg(pd);
3037
3038         if (dname && iocg->cfg_weight)
3039                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3040         return 0;
3041 }
3042
3043
3044 static int ioc_weight_show(struct seq_file *sf, void *v)
3045 {
3046         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3047         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3048
3049         seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3050         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3051                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3052         return 0;
3053 }
3054
3055 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3056                                 size_t nbytes, loff_t off)
3057 {
3058         struct blkcg *blkcg = css_to_blkcg(of_css(of));
3059         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3060         struct blkg_conf_ctx ctx;
3061         struct ioc_now now;
3062         struct ioc_gq *iocg;
3063         u32 v;
3064         int ret;
3065
3066         if (!strchr(buf, ':')) {
3067                 struct blkcg_gq *blkg;
3068
3069                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3070                         return -EINVAL;
3071
3072                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3073                         return -EINVAL;
3074
3075                 spin_lock_irq(&blkcg->lock);
3076                 iocc->dfl_weight = v * WEIGHT_ONE;
3077                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3078                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
3079
3080                         if (iocg) {
3081                                 spin_lock(&iocg->ioc->lock);
3082                                 ioc_now(iocg->ioc, &now);
3083                                 weight_updated(iocg, &now);
3084                                 spin_unlock(&iocg->ioc->lock);
3085                         }
3086                 }
3087                 spin_unlock_irq(&blkcg->lock);
3088
3089                 return nbytes;
3090         }
3091
3092         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3093         if (ret)
3094                 return ret;
3095
3096         iocg = blkg_to_iocg(ctx.blkg);
3097
3098         if (!strncmp(ctx.body, "default", 7)) {
3099                 v = 0;
3100         } else {
3101                 if (!sscanf(ctx.body, "%u", &v))
3102                         goto einval;
3103                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3104                         goto einval;
3105         }
3106
3107         spin_lock(&iocg->ioc->lock);
3108         iocg->cfg_weight = v * WEIGHT_ONE;
3109         ioc_now(iocg->ioc, &now);
3110         weight_updated(iocg, &now);
3111         spin_unlock(&iocg->ioc->lock);
3112
3113         blkg_conf_finish(&ctx);
3114         return nbytes;
3115
3116 einval:
3117         blkg_conf_finish(&ctx);
3118         return -EINVAL;
3119 }
3120
3121 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3122                           int off)
3123 {
3124         const char *dname = blkg_dev_name(pd->blkg);
3125         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3126
3127         if (!dname)
3128                 return 0;
3129
3130         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3131                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3132                    ioc->params.qos[QOS_RPPM] / 10000,
3133                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
3134                    ioc->params.qos[QOS_RLAT],
3135                    ioc->params.qos[QOS_WPPM] / 10000,
3136                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
3137                    ioc->params.qos[QOS_WLAT],
3138                    ioc->params.qos[QOS_MIN] / 10000,
3139                    ioc->params.qos[QOS_MIN] % 10000 / 100,
3140                    ioc->params.qos[QOS_MAX] / 10000,
3141                    ioc->params.qos[QOS_MAX] % 10000 / 100);
3142         return 0;
3143 }
3144
3145 static int ioc_qos_show(struct seq_file *sf, void *v)
3146 {
3147         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3148
3149         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3150                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3151         return 0;
3152 }
3153
3154 static const match_table_t qos_ctrl_tokens = {
3155         { QOS_ENABLE,           "enable=%u"     },
3156         { QOS_CTRL,             "ctrl=%s"       },
3157         { NR_QOS_CTRL_PARAMS,   NULL            },
3158 };
3159
3160 static const match_table_t qos_tokens = {
3161         { QOS_RPPM,             "rpct=%s"       },
3162         { QOS_RLAT,             "rlat=%u"       },
3163         { QOS_WPPM,             "wpct=%s"       },
3164         { QOS_WLAT,             "wlat=%u"       },
3165         { QOS_MIN,              "min=%s"        },
3166         { QOS_MAX,              "max=%s"        },
3167         { NR_QOS_PARAMS,        NULL            },
3168 };
3169
3170 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3171                              size_t nbytes, loff_t off)
3172 {
3173         struct block_device *bdev;
3174         struct gendisk *disk;
3175         struct ioc *ioc;
3176         u32 qos[NR_QOS_PARAMS];
3177         bool enable, user;
3178         char *p;
3179         int ret;
3180
3181         bdev = blkcg_conf_open_bdev(&input);
3182         if (IS_ERR(bdev))
3183                 return PTR_ERR(bdev);
3184
3185         disk = bdev->bd_disk;
3186         ioc = q_to_ioc(disk->queue);
3187         if (!ioc) {
3188                 ret = blk_iocost_init(disk);
3189                 if (ret)
3190                         goto err;
3191                 ioc = q_to_ioc(disk->queue);
3192         }
3193
3194         blk_mq_freeze_queue(disk->queue);
3195         blk_mq_quiesce_queue(disk->queue);
3196
3197         spin_lock_irq(&ioc->lock);
3198         memcpy(qos, ioc->params.qos, sizeof(qos));
3199         enable = ioc->enabled;
3200         user = ioc->user_qos_params;
3201
3202         while ((p = strsep(&input, " \t\n"))) {
3203                 substring_t args[MAX_OPT_ARGS];
3204                 char buf[32];
3205                 int tok;
3206                 s64 v;
3207
3208                 if (!*p)
3209                         continue;
3210
3211                 switch (match_token(p, qos_ctrl_tokens, args)) {
3212                 case QOS_ENABLE:
3213                         match_u64(&args[0], &v);
3214                         enable = v;
3215                         continue;
3216                 case QOS_CTRL:
3217                         match_strlcpy(buf, &args[0], sizeof(buf));
3218                         if (!strcmp(buf, "auto"))
3219                                 user = false;
3220                         else if (!strcmp(buf, "user"))
3221                                 user = true;
3222                         else
3223                                 goto einval;
3224                         continue;
3225                 }
3226
3227                 tok = match_token(p, qos_tokens, args);
3228                 switch (tok) {
3229                 case QOS_RPPM:
3230                 case QOS_WPPM:
3231                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3232                             sizeof(buf))
3233                                 goto einval;
3234                         if (cgroup_parse_float(buf, 2, &v))
3235                                 goto einval;
3236                         if (v < 0 || v > 10000)
3237                                 goto einval;
3238                         qos[tok] = v * 100;
3239                         break;
3240                 case QOS_RLAT:
3241                 case QOS_WLAT:
3242                         if (match_u64(&args[0], &v))
3243                                 goto einval;
3244                         qos[tok] = v;
3245                         break;
3246                 case QOS_MIN:
3247                 case QOS_MAX:
3248                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3249                             sizeof(buf))
3250                                 goto einval;
3251                         if (cgroup_parse_float(buf, 2, &v))
3252                                 goto einval;
3253                         if (v < 0)
3254                                 goto einval;
3255                         qos[tok] = clamp_t(s64, v * 100,
3256                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
3257                         break;
3258                 default:
3259                         goto einval;
3260                 }
3261                 user = true;
3262         }
3263
3264         if (qos[QOS_MIN] > qos[QOS_MAX])
3265                 goto einval;
3266
3267         if (enable) {
3268                 blk_stat_enable_accounting(disk->queue);
3269                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3270                 ioc->enabled = true;
3271                 wbt_disable_default(disk->queue);
3272         } else {
3273                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3274                 ioc->enabled = false;
3275                 wbt_enable_default(disk->queue);
3276         }
3277
3278         if (user) {
3279                 memcpy(ioc->params.qos, qos, sizeof(qos));
3280                 ioc->user_qos_params = true;
3281         } else {
3282                 ioc->user_qos_params = false;
3283         }
3284
3285         ioc_refresh_params(ioc, true);
3286         spin_unlock_irq(&ioc->lock);
3287
3288         blk_mq_unquiesce_queue(disk->queue);
3289         blk_mq_unfreeze_queue(disk->queue);
3290
3291         blkdev_put_no_open(bdev);
3292         return nbytes;
3293 einval:
3294         spin_unlock_irq(&ioc->lock);
3295
3296         blk_mq_unquiesce_queue(disk->queue);
3297         blk_mq_unfreeze_queue(disk->queue);
3298
3299         ret = -EINVAL;
3300 err:
3301         blkdev_put_no_open(bdev);
3302         return ret;
3303 }
3304
3305 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3306                                  struct blkg_policy_data *pd, int off)
3307 {
3308         const char *dname = blkg_dev_name(pd->blkg);
3309         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3310         u64 *u = ioc->params.i_lcoefs;
3311
3312         if (!dname)
3313                 return 0;
3314
3315         seq_printf(sf, "%s ctrl=%s model=linear "
3316                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
3317                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3318                    dname, ioc->user_cost_model ? "user" : "auto",
3319                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3320                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3321         return 0;
3322 }
3323
3324 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3325 {
3326         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3327
3328         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3329                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3330         return 0;
3331 }
3332
3333 static const match_table_t cost_ctrl_tokens = {
3334         { COST_CTRL,            "ctrl=%s"       },
3335         { COST_MODEL,           "model=%s"      },
3336         { NR_COST_CTRL_PARAMS,  NULL            },
3337 };
3338
3339 static const match_table_t i_lcoef_tokens = {
3340         { I_LCOEF_RBPS,         "rbps=%u"       },
3341         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
3342         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
3343         { I_LCOEF_WBPS,         "wbps=%u"       },
3344         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
3345         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
3346         { NR_I_LCOEFS,          NULL            },
3347 };
3348
3349 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3350                                     size_t nbytes, loff_t off)
3351 {
3352         struct block_device *bdev;
3353         struct request_queue *q;
3354         struct ioc *ioc;
3355         u64 u[NR_I_LCOEFS];
3356         bool user;
3357         char *p;
3358         int ret;
3359
3360         bdev = blkcg_conf_open_bdev(&input);
3361         if (IS_ERR(bdev))
3362                 return PTR_ERR(bdev);
3363
3364         q = bdev_get_queue(bdev);
3365         ioc = q_to_ioc(q);
3366         if (!ioc) {
3367                 ret = blk_iocost_init(bdev->bd_disk);
3368                 if (ret)
3369                         goto err;
3370                 ioc = q_to_ioc(q);
3371         }
3372
3373         blk_mq_freeze_queue(q);
3374         blk_mq_quiesce_queue(q);
3375
3376         spin_lock_irq(&ioc->lock);
3377         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3378         user = ioc->user_cost_model;
3379
3380         while ((p = strsep(&input, " \t\n"))) {
3381                 substring_t args[MAX_OPT_ARGS];
3382                 char buf[32];
3383                 int tok;
3384                 u64 v;
3385
3386                 if (!*p)
3387                         continue;
3388
3389                 switch (match_token(p, cost_ctrl_tokens, args)) {
3390                 case COST_CTRL:
3391                         match_strlcpy(buf, &args[0], sizeof(buf));
3392                         if (!strcmp(buf, "auto"))
3393                                 user = false;
3394                         else if (!strcmp(buf, "user"))
3395                                 user = true;
3396                         else
3397                                 goto einval;
3398                         continue;
3399                 case COST_MODEL:
3400                         match_strlcpy(buf, &args[0], sizeof(buf));
3401                         if (strcmp(buf, "linear"))
3402                                 goto einval;
3403                         continue;
3404                 }
3405
3406                 tok = match_token(p, i_lcoef_tokens, args);
3407                 if (tok == NR_I_LCOEFS)
3408                         goto einval;
3409                 if (match_u64(&args[0], &v))
3410                         goto einval;
3411                 u[tok] = v;
3412                 user = true;
3413         }
3414
3415         if (user) {
3416                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3417                 ioc->user_cost_model = true;
3418         } else {
3419                 ioc->user_cost_model = false;
3420         }
3421         ioc_refresh_params(ioc, true);
3422         spin_unlock_irq(&ioc->lock);
3423
3424         blk_mq_unquiesce_queue(q);
3425         blk_mq_unfreeze_queue(q);
3426
3427         blkdev_put_no_open(bdev);
3428         return nbytes;
3429
3430 einval:
3431         spin_unlock_irq(&ioc->lock);
3432
3433         blk_mq_unquiesce_queue(q);
3434         blk_mq_unfreeze_queue(q);
3435
3436         ret = -EINVAL;
3437 err:
3438         blkdev_put_no_open(bdev);
3439         return ret;
3440 }
3441
3442 static struct cftype ioc_files[] = {
3443         {
3444                 .name = "weight",
3445                 .flags = CFTYPE_NOT_ON_ROOT,
3446                 .seq_show = ioc_weight_show,
3447                 .write = ioc_weight_write,
3448         },
3449         {
3450                 .name = "cost.qos",
3451                 .flags = CFTYPE_ONLY_ON_ROOT,
3452                 .seq_show = ioc_qos_show,
3453                 .write = ioc_qos_write,
3454         },
3455         {
3456                 .name = "cost.model",
3457                 .flags = CFTYPE_ONLY_ON_ROOT,
3458                 .seq_show = ioc_cost_model_show,
3459                 .write = ioc_cost_model_write,
3460         },
3461         {}
3462 };
3463
3464 static struct blkcg_policy blkcg_policy_iocost = {
3465         .dfl_cftypes    = ioc_files,
3466         .cpd_alloc_fn   = ioc_cpd_alloc,
3467         .cpd_free_fn    = ioc_cpd_free,
3468         .pd_alloc_fn    = ioc_pd_alloc,
3469         .pd_init_fn     = ioc_pd_init,
3470         .pd_free_fn     = ioc_pd_free,
3471         .pd_stat_fn     = ioc_pd_stat,
3472 };
3473
3474 static int __init ioc_init(void)
3475 {
3476         return blkcg_policy_register(&blkcg_policy_iocost);
3477 }
3478
3479 static void __exit ioc_exit(void)
3480 {
3481         blkcg_policy_unregister(&blkcg_policy_iocost);
3482 }
3483
3484 module_init(ioc_init);
3485 module_exit(ioc_exit);