1 /* SPDX-License-Identifier: GPL-2.0
3 * IO cost model based controller.
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * paramters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
49 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
50 * device-specific coefficients.
54 * The device virtual time (vtime) is used as the primary control metric.
55 * The control strategy is composed of the following three parts.
57 * 2-1. Vtime Distribution
59 * When a cgroup becomes active in terms of IOs, its hierarchical share is
60 * calculated. Please consider the following hierarchy where the numbers
61 * inside parentheses denote the configured weights.
67 * A0 (w:100) A1 (w:100)
69 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
70 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
71 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
72 * 12.5% each. The distribution mechanism only cares about these flattened
73 * shares. They're called hweights (hierarchical weights) and always add
74 * upto 1 (HWEIGHT_WHOLE).
76 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
77 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
78 * against the device vtime - an IO which takes 10ms on the underlying
79 * device is considered to take 80ms on A0.
81 * This constitutes the basis of IO capacity distribution. Each cgroup's
82 * vtime is running at a rate determined by its hweight. A cgroup tracks
83 * the vtime consumed by past IOs and can issue a new IO iff doing so
84 * wouldn't outrun the current device vtime. Otherwise, the IO is
85 * suspended until the vtime has progressed enough to cover it.
87 * 2-2. Vrate Adjustment
89 * It's unrealistic to expect the cost model to be perfect. There are too
90 * many devices and even on the same device the overall performance
91 * fluctuates depending on numerous factors such as IO mixture and device
92 * internal garbage collection. The controller needs to adapt dynamically.
94 * This is achieved by adjusting the overall IO rate according to how busy
95 * the device is. If the device becomes overloaded, we're sending down too
96 * many IOs and should generally slow down. If there are waiting issuers
97 * but the device isn't saturated, we're issuing too few and should
100 * To slow down, we lower the vrate - the rate at which the device vtime
101 * passes compared to the wall clock. For example, if the vtime is running
102 * at the vrate of 75%, all cgroups added up would only be able to issue
103 * 750ms worth of IOs per second, and vice-versa for speeding up.
105 * Device business is determined using two criteria - rq wait and
106 * completion latencies.
108 * When a device gets saturated, the on-device and then the request queues
109 * fill up and a bio which is ready to be issued has to wait for a request
110 * to become available. When this delay becomes noticeable, it's a clear
111 * indication that the device is saturated and we lower the vrate. This
112 * saturation signal is fairly conservative as it only triggers when both
113 * hardware and software queues are filled up, and is used as the default
116 * As devices can have deep queues and be unfair in how the queued commands
117 * are executed, soley depending on rq wait may not result in satisfactory
118 * control quality. For a better control quality, completion latency QoS
119 * parameters can be configured so that the device is considered saturated
120 * if N'th percentile completion latency rises above the set point.
122 * The completion latency requirements are a function of both the
123 * underlying device characteristics and the desired IO latency quality of
124 * service. There is an inherent trade-off - the tighter the latency QoS,
125 * the higher the bandwidth lossage. Latency QoS is disabled by default
126 * and can be set through /sys/fs/cgroup/io.cost.qos.
128 * 2-3. Work Conservation
130 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
131 * periodically while B is sending out enough parallel IOs to saturate the
132 * device on its own. Let's say A's usage amounts to 100ms worth of IO
133 * cost per second, i.e., 10% of the device capacity. The naive
134 * distribution of half and half would lead to 60% utilization of the
135 * device, a significant reduction in the total amount of work done
136 * compared to free-for-all competition. This is too high a cost to pay
139 * To conserve the total amount of work done, we keep track of how much
140 * each active cgroup is actually using and yield part of its weight if
141 * there are other cgroups which can make use of it. In the above case,
142 * A's weight will be lowered so that it hovers above the actual usage and
143 * B would be able to use the rest.
145 * As we don't want to penalize a cgroup for donating its weight, the
146 * surplus weight adjustment factors in a margin and has an immediate
147 * snapback mechanism in case the cgroup needs more IO vtime for itself.
149 * Note that adjusting down surplus weights has the same effects as
150 * accelerating vtime for other cgroups and work conservation can also be
151 * implemented by adjusting vrate dynamically. However, squaring who can
152 * donate and should take back how much requires hweight propagations
153 * anyway making it easier to implement and understand as a separate
158 * Instead of debugfs or other clumsy monitoring mechanisms, this
159 * controller uses a drgn based monitoring script -
160 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
161 * https://github.com/osandov/drgn. The ouput looks like the following.
163 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
164 * active weight hweight% inflt% dbt delay usages%
165 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
166 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
168 * - per : Timer period
169 * - cur_per : Internal wall and device vtime clock
170 * - vrate : Device virtual time rate against wall clock
171 * - weight : Surplus-adjusted and configured weights
172 * - hweight : Surplus-adjusted and configured hierarchical weights
173 * - inflt : The percentage of in-flight IO cost at the end of last period
174 * - del_ms : Deferred issuer delay induction level and duration
175 * - usages : Usage history
178 #include <linux/kernel.h>
179 #include <linux/module.h>
180 #include <linux/timer.h>
181 #include <linux/time64.h>
182 #include <linux/parser.h>
183 #include <linux/sched/signal.h>
184 #include <linux/blk-cgroup.h>
185 #include "blk-rq-qos.h"
186 #include "blk-stat.h"
189 #ifdef CONFIG_TRACEPOINTS
191 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
192 #define TRACE_IOCG_PATH_LEN 1024
193 static DEFINE_SPINLOCK(trace_iocg_path_lock);
194 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
196 #define TRACE_IOCG_PATH(type, iocg, ...) \
198 unsigned long flags; \
199 if (trace_iocost_##type##_enabled()) { \
200 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
201 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
202 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
203 trace_iocost_##type(iocg, trace_iocg_path, \
205 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
209 #else /* CONFIG_TRACE_POINTS */
210 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
211 #endif /* CONFIG_TRACE_POINTS */
216 /* timer period is calculated from latency requirements, bound it */
217 MIN_PERIOD = USEC_PER_MSEC,
218 MAX_PERIOD = USEC_PER_SEC,
221 * A cgroup's vtime can run 50% behind the device vtime, which
222 * serves as its IO credit buffer. Surplus weight adjustment is
223 * immediately canceled if the vtime margin runs below 10%.
226 INUSE_MARGIN_PCT = 10,
228 /* Have some play in waitq timer operations */
229 WAITQ_TIMER_MARGIN_PCT = 5,
232 * vtime can wrap well within a reasonable uptime when vrate is
233 * consistently raised. Don't trust recorded cgroup vtime if the
234 * period counter indicates that it's older than 5mins.
236 VTIME_VALID_DUR = 300 * USEC_PER_SEC,
239 * Remember the past three non-zero usages and use the max for
240 * surplus calculation. Three slots guarantee that we remember one
241 * full period usage from the last active stretch even after
242 * partial deactivation and re-activation periods. Don't start
243 * giving away weight before collecting two data points to prevent
244 * hweight adjustments based on one partial activation period.
247 MIN_VALID_USAGES = 2,
249 /* 1/64k is granular enough and can easily be handled w/ u32 */
250 HWEIGHT_WHOLE = 1 << 16,
253 * As vtime is used to calculate the cost of each IO, it needs to
254 * be fairly high precision. For example, it should be able to
255 * represent the cost of a single page worth of discard with
256 * suffificient accuracy. At the same time, it should be able to
257 * represent reasonably long enough durations to be useful and
258 * convenient during operation.
260 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
261 * granularity and days of wrap-around time even at extreme vrates.
263 VTIME_PER_SEC_SHIFT = 37,
264 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT,
265 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC,
267 /* bound vrate adjustments within two orders of magnitude */
268 VRATE_MIN_PPM = 10000, /* 1% */
269 VRATE_MAX_PPM = 100000000, /* 10000% */
271 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
272 VRATE_CLAMP_ADJ_PCT = 4,
274 /* if IOs end up waiting for requests, issue less */
275 RQ_WAIT_BUSY_PCT = 5,
277 /* unbusy hysterisis */
280 /* don't let cmds which take a very long time pin lagging for too long */
281 MAX_LAGGING_PERIODS = 10,
284 * If usage% * 1.25 + 2% is lower than hweight% by more than 3%,
285 * donate the surplus.
287 SURPLUS_SCALE_PCT = 125, /* * 125% */
288 SURPLUS_SCALE_ABS = HWEIGHT_WHOLE / 50, /* + 2% */
289 SURPLUS_MIN_ADJ_DELTA = HWEIGHT_WHOLE / 33, /* 3% */
291 /* switch iff the conditions are met for longer than this */
292 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC,
295 * Count IO size in 4k pages. The 12bit shift helps keeping
296 * size-proportional components of cost calculation in closer
297 * numbers of digits to per-IO cost components.
300 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT,
301 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT,
303 /* if apart further than 16M, consider randio for linear model */
304 LCOEF_RANDIO_PAGES = 4096,
313 /* io.cost.qos controls including per-dev enable of the whole controller */
320 /* io.cost.qos params */
331 /* io.cost.model controls */
338 /* builtin linear cost model coefficients */
370 u32 qos[NR_QOS_PARAMS];
371 u64 i_lcoefs[NR_I_LCOEFS];
372 u64 lcoefs[NR_LCOEFS];
373 u32 too_fast_vrate_pct;
374 u32 too_slow_vrate_pct;
384 struct ioc_pcpu_stat {
385 struct ioc_missed missed[2];
397 struct ioc_params params;
404 struct timer_list timer;
405 struct list_head active_iocgs; /* active cgroups */
406 struct ioc_pcpu_stat __percpu *pcpu_stat;
408 enum ioc_running running;
409 atomic64_t vtime_rate;
411 seqcount_t period_seqcount;
412 u32 period_at; /* wallclock starttime */
413 u64 period_at_vtime; /* vtime starttime */
415 atomic64_t cur_period; /* inc'd each period */
416 int busy_level; /* saturation history */
418 u64 inuse_margin_vtime;
419 bool weights_updated;
420 atomic_t hweight_gen; /* for lazy hweights */
422 u64 autop_too_fast_at;
423 u64 autop_too_slow_at;
425 bool user_qos_params:1;
426 bool user_cost_model:1;
429 /* per device-cgroup pair */
431 struct blkg_policy_data pd;
435 * A iocg can get its weight from two sources - an explicit
436 * per-device-cgroup configuration or the default weight of the
437 * cgroup. `cfg_weight` is the explicit per-device-cgroup
438 * configuration. `weight` is the effective considering both
441 * When an idle cgroup becomes active its `active` goes from 0 to
442 * `weight`. `inuse` is the surplus adjusted active weight.
443 * `active` and `inuse` are used to calculate `hweight_active` and
446 * `last_inuse` remembers `inuse` while an iocg is idle to persist
447 * surplus adjustments.
455 sector_t cursor; /* to detect randio */
458 * `vtime` is this iocg's vtime cursor which progresses as IOs are
459 * issued. If lagging behind device vtime, the delta represents
460 * the currently available IO budget. If runnning ahead, the
463 * `vtime_done` is the same but progressed on completion rather
464 * than issue. The delta behind `vtime` represents the cost of
465 * currently in-flight IOs.
467 * `last_vtime` is used to remember `vtime` at the end of the last
468 * period to calculate utilization.
471 atomic64_t done_vtime;
472 atomic64_t abs_vdebt;
476 * The period this iocg was last active in. Used for deactivation
477 * and invalidating `vtime`.
479 atomic64_t active_period;
480 struct list_head active_list;
482 /* see __propagate_active_weight() and current_hweight() for details */
483 u64 child_active_sum;
490 struct wait_queue_head waitq;
491 struct hrtimer waitq_timer;
492 struct hrtimer delay_timer;
494 /* usage is recorded as fractions of HWEIGHT_WHOLE */
496 u32 usages[NR_USAGE_SLOTS];
498 /* this iocg's depth in the hierarchy and ancestors including self */
500 struct ioc_gq *ancestors[];
505 struct blkcg_policy_data cpd;
506 unsigned int dfl_weight;
517 struct wait_queue_entry wait;
523 struct iocg_wake_ctx {
529 static const struct ioc_params autop[] = {
532 [QOS_RLAT] = 250000, /* 250ms */
534 [QOS_MIN] = VRATE_MIN_PPM,
535 [QOS_MAX] = VRATE_MAX_PPM,
538 [I_LCOEF_RBPS] = 174019176,
539 [I_LCOEF_RSEQIOPS] = 41708,
540 [I_LCOEF_RRANDIOPS] = 370,
541 [I_LCOEF_WBPS] = 178075866,
542 [I_LCOEF_WSEQIOPS] = 42705,
543 [I_LCOEF_WRANDIOPS] = 378,
548 [QOS_RLAT] = 25000, /* 25ms */
550 [QOS_MIN] = VRATE_MIN_PPM,
551 [QOS_MAX] = VRATE_MAX_PPM,
554 [I_LCOEF_RBPS] = 245855193,
555 [I_LCOEF_RSEQIOPS] = 61575,
556 [I_LCOEF_RRANDIOPS] = 6946,
557 [I_LCOEF_WBPS] = 141365009,
558 [I_LCOEF_WSEQIOPS] = 33716,
559 [I_LCOEF_WRANDIOPS] = 26796,
564 [QOS_RLAT] = 25000, /* 25ms */
566 [QOS_MIN] = VRATE_MIN_PPM,
567 [QOS_MAX] = VRATE_MAX_PPM,
570 [I_LCOEF_RBPS] = 488636629,
571 [I_LCOEF_RSEQIOPS] = 8932,
572 [I_LCOEF_RRANDIOPS] = 8518,
573 [I_LCOEF_WBPS] = 427891549,
574 [I_LCOEF_WSEQIOPS] = 28755,
575 [I_LCOEF_WRANDIOPS] = 21940,
577 .too_fast_vrate_pct = 500,
581 [QOS_RLAT] = 5000, /* 5ms */
583 [QOS_MIN] = VRATE_MIN_PPM,
584 [QOS_MAX] = VRATE_MAX_PPM,
587 [I_LCOEF_RBPS] = 3102524156LLU,
588 [I_LCOEF_RSEQIOPS] = 724816,
589 [I_LCOEF_RRANDIOPS] = 778122,
590 [I_LCOEF_WBPS] = 1742780862LLU,
591 [I_LCOEF_WSEQIOPS] = 425702,
592 [I_LCOEF_WRANDIOPS] = 443193,
594 .too_slow_vrate_pct = 10,
599 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
600 * vtime credit shortage and down on device saturation.
602 static u32 vrate_adj_pct[] =
604 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
605 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
606 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
608 static struct blkcg_policy blkcg_policy_iocost;
610 /* accessors and helpers */
611 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
613 return container_of(rqos, struct ioc, rqos);
616 static struct ioc *q_to_ioc(struct request_queue *q)
618 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
621 static const char *q_name(struct request_queue *q)
623 if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
624 return kobject_name(q->kobj.parent);
629 static const char __maybe_unused *ioc_name(struct ioc *ioc)
631 return q_name(ioc->rqos.q);
634 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
636 return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
639 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
641 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
644 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
646 return pd_to_blkg(&iocg->pd);
649 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
651 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
652 struct ioc_cgrp, cpd);
656 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
657 * weight, the more expensive each IO. Must round up.
659 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
661 return DIV64_U64_ROUND_UP(abs_cost * HWEIGHT_WHOLE, hw_inuse);
665 * The inverse of abs_cost_to_cost(). Must round up.
667 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
669 return DIV64_U64_ROUND_UP(cost * hw_inuse, HWEIGHT_WHOLE);
672 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, u64 cost)
674 bio->bi_iocost_cost = cost;
675 atomic64_add(cost, &iocg->vtime);
678 #define CREATE_TRACE_POINTS
679 #include <trace/events/iocost.h>
681 /* latency Qos params changed, update period_us and all the dependent params */
682 static void ioc_refresh_period_us(struct ioc *ioc)
684 u32 ppm, lat, multi, period_us;
686 lockdep_assert_held(&ioc->lock);
688 /* pick the higher latency target */
689 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
690 ppm = ioc->params.qos[QOS_RPPM];
691 lat = ioc->params.qos[QOS_RLAT];
693 ppm = ioc->params.qos[QOS_WPPM];
694 lat = ioc->params.qos[QOS_WLAT];
698 * We want the period to be long enough to contain a healthy number
699 * of IOs while short enough for granular control. Define it as a
700 * multiple of the latency target. Ideally, the multiplier should
701 * be scaled according to the percentile so that it would nominally
702 * contain a certain number of requests. Let's be simpler and
703 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
706 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
709 period_us = multi * lat;
710 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
712 /* calculate dependent params */
713 ioc->period_us = period_us;
714 ioc->margin_us = period_us * MARGIN_PCT / 100;
715 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
716 period_us * VTIME_PER_USEC * INUSE_MARGIN_PCT, 100);
719 static int ioc_autop_idx(struct ioc *ioc)
721 int idx = ioc->autop_idx;
722 const struct ioc_params *p = &autop[idx];
727 if (!blk_queue_nonrot(ioc->rqos.q))
730 /* handle SATA SSDs w/ broken NCQ */
731 if (blk_queue_depth(ioc->rqos.q) == 1)
732 return AUTOP_SSD_QD1;
734 /* use one of the normal ssd sets */
735 if (idx < AUTOP_SSD_DFL)
736 return AUTOP_SSD_DFL;
738 /* if user is overriding anything, maintain what was there */
739 if (ioc->user_qos_params || ioc->user_cost_model)
742 /* step up/down based on the vrate */
743 vrate_pct = div64_u64(atomic64_read(&ioc->vtime_rate) * 100,
745 now_ns = ktime_get_ns();
747 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
748 if (!ioc->autop_too_fast_at)
749 ioc->autop_too_fast_at = now_ns;
750 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
753 ioc->autop_too_fast_at = 0;
756 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
757 if (!ioc->autop_too_slow_at)
758 ioc->autop_too_slow_at = now_ns;
759 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
762 ioc->autop_too_slow_at = 0;
769 * Take the followings as input
771 * @bps maximum sequential throughput
772 * @seqiops maximum sequential 4k iops
773 * @randiops maximum random 4k iops
775 * and calculate the linear model cost coefficients.
777 * *@page per-page cost 1s / (@bps / 4096)
778 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
779 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
781 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
782 u64 *page, u64 *seqio, u64 *randio)
786 *page = *seqio = *randio = 0;
789 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
790 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
793 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
799 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
805 static void ioc_refresh_lcoefs(struct ioc *ioc)
807 u64 *u = ioc->params.i_lcoefs;
808 u64 *c = ioc->params.lcoefs;
810 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
811 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
812 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
813 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
816 static bool ioc_refresh_params(struct ioc *ioc, bool force)
818 const struct ioc_params *p;
821 lockdep_assert_held(&ioc->lock);
823 idx = ioc_autop_idx(ioc);
826 if (idx == ioc->autop_idx && !force)
829 if (idx != ioc->autop_idx)
830 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
832 ioc->autop_idx = idx;
833 ioc->autop_too_fast_at = 0;
834 ioc->autop_too_slow_at = 0;
836 if (!ioc->user_qos_params)
837 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
838 if (!ioc->user_cost_model)
839 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
841 ioc_refresh_period_us(ioc);
842 ioc_refresh_lcoefs(ioc);
844 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
845 VTIME_PER_USEC, MILLION);
846 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
847 VTIME_PER_USEC, MILLION);
852 /* take a snapshot of the current [v]time and vrate */
853 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
857 now->now_ns = ktime_get();
858 now->now = ktime_to_us(now->now_ns);
859 now->vrate = atomic64_read(&ioc->vtime_rate);
862 * The current vtime is
864 * vtime at period start + (wallclock time since the start) * vrate
866 * As a consistent snapshot of `period_at_vtime` and `period_at` is
867 * needed, they're seqcount protected.
870 seq = read_seqcount_begin(&ioc->period_seqcount);
871 now->vnow = ioc->period_at_vtime +
872 (now->now - ioc->period_at) * now->vrate;
873 } while (read_seqcount_retry(&ioc->period_seqcount, seq));
876 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
878 lockdep_assert_held(&ioc->lock);
879 WARN_ON_ONCE(ioc->running != IOC_RUNNING);
881 write_seqcount_begin(&ioc->period_seqcount);
882 ioc->period_at = now->now;
883 ioc->period_at_vtime = now->vnow;
884 write_seqcount_end(&ioc->period_seqcount);
886 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
887 add_timer(&ioc->timer);
891 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
892 * weight sums and propagate upwards accordingly.
894 static void __propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
896 struct ioc *ioc = iocg->ioc;
899 lockdep_assert_held(&ioc->lock);
901 inuse = min(active, inuse);
903 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
904 struct ioc_gq *parent = iocg->ancestors[lvl];
905 struct ioc_gq *child = iocg->ancestors[lvl + 1];
906 u32 parent_active = 0, parent_inuse = 0;
908 /* update the level sums */
909 parent->child_active_sum += (s32)(active - child->active);
910 parent->child_inuse_sum += (s32)(inuse - child->inuse);
911 /* apply the udpates */
912 child->active = active;
913 child->inuse = inuse;
916 * The delta between inuse and active sums indicates that
917 * that much of weight is being given away. Parent's inuse
918 * and active should reflect the ratio.
920 if (parent->child_active_sum) {
921 parent_active = parent->weight;
922 parent_inuse = DIV64_U64_ROUND_UP(
923 parent_active * parent->child_inuse_sum,
924 parent->child_active_sum);
927 /* do we need to keep walking up? */
928 if (parent_active == parent->active &&
929 parent_inuse == parent->inuse)
932 active = parent_active;
933 inuse = parent_inuse;
936 ioc->weights_updated = true;
939 static void commit_active_weights(struct ioc *ioc)
941 lockdep_assert_held(&ioc->lock);
943 if (ioc->weights_updated) {
944 /* paired with rmb in current_hweight(), see there */
946 atomic_inc(&ioc->hweight_gen);
947 ioc->weights_updated = false;
951 static void propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
953 __propagate_active_weight(iocg, active, inuse);
954 commit_active_weights(iocg->ioc);
957 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
959 struct ioc *ioc = iocg->ioc;
964 /* hot path - if uptodate, use cached */
965 ioc_gen = atomic_read(&ioc->hweight_gen);
966 if (ioc_gen == iocg->hweight_gen)
970 * Paired with wmb in commit_active_weights(). If we saw the
971 * updated hweight_gen, all the weight updates from
972 * __propagate_active_weight() are visible too.
974 * We can race with weight updates during calculation and get it
975 * wrong. However, hweight_gen would have changed and a future
976 * reader will recalculate and we're guaranteed to discard the
981 hwa = hwi = HWEIGHT_WHOLE;
982 for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
983 struct ioc_gq *parent = iocg->ancestors[lvl];
984 struct ioc_gq *child = iocg->ancestors[lvl + 1];
985 u32 active_sum = READ_ONCE(parent->child_active_sum);
986 u32 inuse_sum = READ_ONCE(parent->child_inuse_sum);
987 u32 active = READ_ONCE(child->active);
988 u32 inuse = READ_ONCE(child->inuse);
990 /* we can race with deactivations and either may read as zero */
991 if (!active_sum || !inuse_sum)
994 active_sum = max(active, active_sum);
995 hwa = hwa * active / active_sum; /* max 16bits * 10000 */
997 inuse_sum = max(inuse, inuse_sum);
998 hwi = hwi * inuse / inuse_sum; /* max 16bits * 10000 */
1001 iocg->hweight_active = max_t(u32, hwa, 1);
1002 iocg->hweight_inuse = max_t(u32, hwi, 1);
1003 iocg->hweight_gen = ioc_gen;
1006 *hw_activep = iocg->hweight_active;
1008 *hw_inusep = iocg->hweight_inuse;
1011 static void weight_updated(struct ioc_gq *iocg)
1013 struct ioc *ioc = iocg->ioc;
1014 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1015 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1018 lockdep_assert_held(&ioc->lock);
1020 weight = iocg->cfg_weight ?: iocc->dfl_weight;
1021 if (weight != iocg->weight && iocg->active)
1022 propagate_active_weight(iocg, weight,
1023 DIV64_U64_ROUND_UP(iocg->inuse * weight, iocg->weight));
1024 iocg->weight = weight;
1027 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1029 struct ioc *ioc = iocg->ioc;
1030 u64 last_period, cur_period, max_period_delta;
1031 u64 vtime, vmargin, vmin;
1035 * If seem to be already active, just update the stamp to tell the
1036 * timer that we're still active. We don't mind occassional races.
1038 if (!list_empty(&iocg->active_list)) {
1040 cur_period = atomic64_read(&ioc->cur_period);
1041 if (atomic64_read(&iocg->active_period) != cur_period)
1042 atomic64_set(&iocg->active_period, cur_period);
1046 /* racy check on internal node IOs, treat as root level IOs */
1047 if (iocg->child_active_sum)
1050 spin_lock_irq(&ioc->lock);
1055 cur_period = atomic64_read(&ioc->cur_period);
1056 last_period = atomic64_read(&iocg->active_period);
1057 atomic64_set(&iocg->active_period, cur_period);
1059 /* already activated or breaking leaf-only constraint? */
1060 for (i = iocg->level; i > 0; i--)
1061 if (!list_empty(&iocg->active_list))
1063 if (iocg->child_active_sum)
1067 * vtime may wrap when vrate is raised substantially due to
1068 * underestimated IO costs. Look at the period and ignore its
1069 * vtime if the iocg has been idle for too long. Also, cap the
1070 * budget it can start with to the margin.
1072 max_period_delta = DIV64_U64_ROUND_UP(VTIME_VALID_DUR, ioc->period_us);
1073 vtime = atomic64_read(&iocg->vtime);
1074 vmargin = ioc->margin_us * now->vrate;
1075 vmin = now->vnow - vmargin;
1077 if (last_period + max_period_delta < cur_period ||
1078 time_before64(vtime, vmin)) {
1079 atomic64_add(vmin - vtime, &iocg->vtime);
1080 atomic64_add(vmin - vtime, &iocg->done_vtime);
1085 * Activate, propagate weight and start period timer if not
1086 * running. Reset hweight_gen to avoid accidental match from
1089 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1090 list_add(&iocg->active_list, &ioc->active_iocgs);
1091 propagate_active_weight(iocg, iocg->weight,
1092 iocg->last_inuse ?: iocg->weight);
1094 TRACE_IOCG_PATH(iocg_activate, iocg, now,
1095 last_period, cur_period, vtime);
1097 iocg->last_vtime = vtime;
1099 if (ioc->running == IOC_IDLE) {
1100 ioc->running = IOC_RUNNING;
1101 ioc_start_period(ioc, now);
1104 spin_unlock_irq(&ioc->lock);
1108 spin_unlock_irq(&ioc->lock);
1112 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1113 int flags, void *key)
1115 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1116 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1117 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1119 ctx->vbudget -= cost;
1121 if (ctx->vbudget < 0)
1124 iocg_commit_bio(ctx->iocg, wait->bio, cost);
1127 * autoremove_wake_function() removes the wait entry only when it
1128 * actually changed the task state. We want the wait always
1129 * removed. Remove explicitly and use default_wake_function().
1131 list_del_init(&wq_entry->entry);
1132 wait->committed = true;
1134 default_wake_function(wq_entry, mode, flags, key);
1138 static void iocg_kick_waitq(struct ioc_gq *iocg, struct ioc_now *now)
1140 struct ioc *ioc = iocg->ioc;
1141 struct iocg_wake_ctx ctx = { .iocg = iocg };
1142 u64 margin_ns = (u64)(ioc->period_us *
1143 WAITQ_TIMER_MARGIN_PCT / 100) * NSEC_PER_USEC;
1144 u64 abs_vdebt, vdebt, vshortage, expires, oexpires;
1148 lockdep_assert_held(&iocg->waitq.lock);
1150 current_hweight(iocg, NULL, &hw_inuse);
1151 vbudget = now->vnow - atomic64_read(&iocg->vtime);
1154 abs_vdebt = atomic64_read(&iocg->abs_vdebt);
1155 vdebt = abs_cost_to_cost(abs_vdebt, hw_inuse);
1156 if (vdebt && vbudget > 0) {
1157 u64 delta = min_t(u64, vbudget, vdebt);
1158 u64 abs_delta = min(cost_to_abs_cost(delta, hw_inuse),
1161 atomic64_add(delta, &iocg->vtime);
1162 atomic64_add(delta, &iocg->done_vtime);
1163 atomic64_sub(abs_delta, &iocg->abs_vdebt);
1164 if (WARN_ON_ONCE(atomic64_read(&iocg->abs_vdebt) < 0))
1165 atomic64_set(&iocg->abs_vdebt, 0);
1169 * Wake up the ones which are due and see how much vtime we'll need
1172 ctx.hw_inuse = hw_inuse;
1173 ctx.vbudget = vbudget - vdebt;
1174 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1175 if (!waitqueue_active(&iocg->waitq))
1177 if (WARN_ON_ONCE(ctx.vbudget >= 0))
1180 /* determine next wakeup, add a quarter margin to guarantee chunking */
1181 vshortage = -ctx.vbudget;
1182 expires = now->now_ns +
1183 DIV64_U64_ROUND_UP(vshortage, now->vrate) * NSEC_PER_USEC;
1184 expires += margin_ns / 4;
1186 /* if already active and close enough, don't bother */
1187 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1188 if (hrtimer_is_queued(&iocg->waitq_timer) &&
1189 abs(oexpires - expires) <= margin_ns / 4)
1192 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1193 margin_ns / 4, HRTIMER_MODE_ABS);
1196 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1198 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1200 unsigned long flags;
1202 ioc_now(iocg->ioc, &now);
1204 spin_lock_irqsave(&iocg->waitq.lock, flags);
1205 iocg_kick_waitq(iocg, &now);
1206 spin_unlock_irqrestore(&iocg->waitq.lock, flags);
1208 return HRTIMER_NORESTART;
1211 static void iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now, u64 cost)
1213 struct ioc *ioc = iocg->ioc;
1214 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1215 u64 vtime = atomic64_read(&iocg->vtime);
1216 u64 vmargin = ioc->margin_us * now->vrate;
1217 u64 margin_ns = ioc->margin_us * NSEC_PER_USEC;
1218 u64 expires, oexpires;
1221 /* debt-adjust vtime */
1222 current_hweight(iocg, NULL, &hw_inuse);
1223 vtime += abs_cost_to_cost(atomic64_read(&iocg->abs_vdebt), hw_inuse);
1225 /* clear or maintain depending on the overage */
1226 if (time_before_eq64(vtime, now->vnow)) {
1227 blkcg_clear_delay(blkg);
1230 if (!atomic_read(&blkg->use_delay) &&
1231 time_before_eq64(vtime, now->vnow + vmargin))
1236 u64 cost_ns = DIV64_U64_ROUND_UP(cost * NSEC_PER_USEC,
1238 blkcg_add_delay(blkg, now->now_ns, cost_ns);
1240 blkcg_use_delay(blkg);
1242 expires = now->now_ns + DIV64_U64_ROUND_UP(vtime - now->vnow,
1243 now->vrate) * NSEC_PER_USEC;
1245 /* if already active and close enough, don't bother */
1246 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->delay_timer));
1247 if (hrtimer_is_queued(&iocg->delay_timer) &&
1248 abs(oexpires - expires) <= margin_ns / 4)
1251 hrtimer_start_range_ns(&iocg->delay_timer, ns_to_ktime(expires),
1252 margin_ns / 4, HRTIMER_MODE_ABS);
1255 static enum hrtimer_restart iocg_delay_timer_fn(struct hrtimer *timer)
1257 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, delay_timer);
1260 ioc_now(iocg->ioc, &now);
1261 iocg_kick_delay(iocg, &now, 0);
1263 return HRTIMER_NORESTART;
1266 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1268 u32 nr_met[2] = { };
1269 u32 nr_missed[2] = { };
1273 for_each_online_cpu(cpu) {
1274 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1275 u64 this_rq_wait_ns;
1277 for (rw = READ; rw <= WRITE; rw++) {
1278 u32 this_met = READ_ONCE(stat->missed[rw].nr_met);
1279 u32 this_missed = READ_ONCE(stat->missed[rw].nr_missed);
1281 nr_met[rw] += this_met - stat->missed[rw].last_met;
1282 nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1283 stat->missed[rw].last_met = this_met;
1284 stat->missed[rw].last_missed = this_missed;
1287 this_rq_wait_ns = READ_ONCE(stat->rq_wait_ns);
1288 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1289 stat->last_rq_wait_ns = this_rq_wait_ns;
1292 for (rw = READ; rw <= WRITE; rw++) {
1293 if (nr_met[rw] + nr_missed[rw])
1295 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1296 nr_met[rw] + nr_missed[rw]);
1298 missed_ppm_ar[rw] = 0;
1301 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1302 ioc->period_us * NSEC_PER_USEC);
1305 /* was iocg idle this period? */
1306 static bool iocg_is_idle(struct ioc_gq *iocg)
1308 struct ioc *ioc = iocg->ioc;
1310 /* did something get issued this period? */
1311 if (atomic64_read(&iocg->active_period) ==
1312 atomic64_read(&ioc->cur_period))
1315 /* is something in flight? */
1316 if (atomic64_read(&iocg->done_vtime) < atomic64_read(&iocg->vtime))
1322 /* returns usage with margin added if surplus is large enough */
1323 static u32 surplus_adjusted_hweight_inuse(u32 usage, u32 hw_inuse)
1326 usage = DIV_ROUND_UP(usage * SURPLUS_SCALE_PCT, 100);
1327 usage += SURPLUS_SCALE_ABS;
1329 /* don't bother if the surplus is too small */
1330 if (usage + SURPLUS_MIN_ADJ_DELTA > hw_inuse)
1336 static void ioc_timer_fn(struct timer_list *timer)
1338 struct ioc *ioc = container_of(timer, struct ioc, timer);
1339 struct ioc_gq *iocg, *tiocg;
1341 int nr_surpluses = 0, nr_shortages = 0, nr_lagging = 0;
1342 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
1343 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
1344 u32 missed_ppm[2], rq_wait_pct;
1346 int prev_busy_level, i;
1348 /* how were the latencies during the period? */
1349 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
1351 /* take care of active iocgs */
1352 spin_lock_irq(&ioc->lock);
1356 period_vtime = now.vnow - ioc->period_at_vtime;
1357 if (WARN_ON_ONCE(!period_vtime)) {
1358 spin_unlock_irq(&ioc->lock);
1363 * Waiters determine the sleep durations based on the vrate they
1364 * saw at the time of sleep. If vrate has increased, some waiters
1365 * could be sleeping for too long. Wake up tardy waiters which
1366 * should have woken up in the last period and expire idle iocgs.
1368 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
1369 if (!waitqueue_active(&iocg->waitq) &&
1370 !atomic64_read(&iocg->abs_vdebt) && !iocg_is_idle(iocg))
1373 spin_lock(&iocg->waitq.lock);
1375 if (waitqueue_active(&iocg->waitq) ||
1376 atomic64_read(&iocg->abs_vdebt)) {
1377 /* might be oversleeping vtime / hweight changes, kick */
1378 iocg_kick_waitq(iocg, &now);
1379 iocg_kick_delay(iocg, &now, 0);
1380 } else if (iocg_is_idle(iocg)) {
1381 /* no waiter and idle, deactivate */
1382 iocg->last_inuse = iocg->inuse;
1383 __propagate_active_weight(iocg, 0, 0);
1384 list_del_init(&iocg->active_list);
1387 spin_unlock(&iocg->waitq.lock);
1389 commit_active_weights(ioc);
1391 /* calc usages and see whether some weights need to be moved around */
1392 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1393 u64 vdone, vtime, vusage, vmargin, vmin;
1394 u32 hw_active, hw_inuse, usage;
1397 * Collect unused and wind vtime closer to vnow to prevent
1398 * iocgs from accumulating a large amount of budget.
1400 vdone = atomic64_read(&iocg->done_vtime);
1401 vtime = atomic64_read(&iocg->vtime);
1402 current_hweight(iocg, &hw_active, &hw_inuse);
1405 * Latency QoS detection doesn't account for IOs which are
1406 * in-flight for longer than a period. Detect them by
1407 * comparing vdone against period start. If lagging behind
1408 * IOs from past periods, don't increase vrate.
1410 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
1411 !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
1412 time_after64(vtime, vdone) &&
1413 time_after64(vtime, now.vnow -
1414 MAX_LAGGING_PERIODS * period_vtime) &&
1415 time_before64(vdone, now.vnow - period_vtime))
1418 if (waitqueue_active(&iocg->waitq))
1419 vusage = now.vnow - iocg->last_vtime;
1420 else if (time_before64(iocg->last_vtime, vtime))
1421 vusage = vtime - iocg->last_vtime;
1425 iocg->last_vtime += vusage;
1427 * Factor in in-flight vtime into vusage to avoid
1428 * high-latency completions appearing as idle. This should
1429 * be done after the above ->last_time adjustment.
1431 vusage = max(vusage, vtime - vdone);
1433 /* calculate hweight based usage ratio and record */
1435 usage = DIV64_U64_ROUND_UP(vusage * hw_inuse,
1437 iocg->usage_idx = (iocg->usage_idx + 1) % NR_USAGE_SLOTS;
1438 iocg->usages[iocg->usage_idx] = usage;
1443 /* see whether there's surplus vtime */
1444 vmargin = ioc->margin_us * now.vrate;
1445 vmin = now.vnow - vmargin;
1447 iocg->has_surplus = false;
1449 if (!waitqueue_active(&iocg->waitq) &&
1450 time_before64(vtime, vmin)) {
1451 u64 delta = vmin - vtime;
1453 /* throw away surplus vtime */
1454 atomic64_add(delta, &iocg->vtime);
1455 atomic64_add(delta, &iocg->done_vtime);
1456 iocg->last_vtime += delta;
1457 /* if usage is sufficiently low, maybe it can donate */
1458 if (surplus_adjusted_hweight_inuse(usage, hw_inuse)) {
1459 iocg->has_surplus = true;
1462 } else if (hw_inuse < hw_active) {
1463 u32 new_hwi, new_inuse;
1465 /* was donating but might need to take back some */
1466 if (waitqueue_active(&iocg->waitq)) {
1467 new_hwi = hw_active;
1469 new_hwi = max(hw_inuse,
1470 usage * SURPLUS_SCALE_PCT / 100 +
1474 new_inuse = div64_u64((u64)iocg->inuse * new_hwi,
1476 new_inuse = clamp_t(u32, new_inuse, 1, iocg->active);
1478 if (new_inuse > iocg->inuse) {
1479 TRACE_IOCG_PATH(inuse_takeback, iocg, &now,
1480 iocg->inuse, new_inuse,
1482 __propagate_active_weight(iocg, iocg->weight,
1486 /* genuninely out of vtime */
1491 if (!nr_shortages || !nr_surpluses)
1492 goto skip_surplus_transfers;
1494 /* there are both shortages and surpluses, transfer surpluses */
1495 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1496 u32 usage, hw_active, hw_inuse, new_hwi, new_inuse;
1499 if (!iocg->has_surplus)
1502 /* base the decision on max historical usage */
1503 for (i = 0, usage = 0; i < NR_USAGE_SLOTS; i++) {
1504 if (iocg->usages[i]) {
1505 usage = max(usage, iocg->usages[i]);
1509 if (nr_valid < MIN_VALID_USAGES)
1512 current_hweight(iocg, &hw_active, &hw_inuse);
1513 new_hwi = surplus_adjusted_hweight_inuse(usage, hw_inuse);
1517 new_inuse = DIV64_U64_ROUND_UP((u64)iocg->inuse * new_hwi,
1519 if (new_inuse < iocg->inuse) {
1520 TRACE_IOCG_PATH(inuse_giveaway, iocg, &now,
1521 iocg->inuse, new_inuse,
1523 __propagate_active_weight(iocg, iocg->weight, new_inuse);
1526 skip_surplus_transfers:
1527 commit_active_weights(ioc);
1530 * If q is getting clogged or we're missing too much, we're issuing
1531 * too much IO and should lower vtime rate. If we're not missing
1532 * and experiencing shortages but not surpluses, we're too stingy
1533 * and should increase vtime rate.
1535 prev_busy_level = ioc->busy_level;
1536 if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
1537 missed_ppm[READ] > ppm_rthr ||
1538 missed_ppm[WRITE] > ppm_wthr) {
1539 ioc->busy_level = max(ioc->busy_level, 0);
1541 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
1542 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
1543 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
1544 /* take action iff there is contention */
1545 if (nr_shortages && !nr_lagging) {
1546 ioc->busy_level = min(ioc->busy_level, 0);
1547 /* redistribute surpluses first */
1552 ioc->busy_level = 0;
1555 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
1557 if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
1558 u64 vrate = atomic64_read(&ioc->vtime_rate);
1559 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
1561 /* rq_wait signal is always reliable, ignore user vrate_min */
1562 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
1563 vrate_min = VRATE_MIN;
1566 * If vrate is out of bounds, apply clamp gradually as the
1567 * bounds can change abruptly. Otherwise, apply busy_level
1570 if (vrate < vrate_min) {
1571 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
1573 vrate = min(vrate, vrate_min);
1574 } else if (vrate > vrate_max) {
1575 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
1577 vrate = max(vrate, vrate_max);
1579 int idx = min_t(int, abs(ioc->busy_level),
1580 ARRAY_SIZE(vrate_adj_pct) - 1);
1581 u32 adj_pct = vrate_adj_pct[idx];
1583 if (ioc->busy_level > 0)
1584 adj_pct = 100 - adj_pct;
1586 adj_pct = 100 + adj_pct;
1588 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1589 vrate_min, vrate_max);
1592 trace_iocost_ioc_vrate_adj(ioc, vrate, &missed_ppm, rq_wait_pct,
1593 nr_lagging, nr_shortages,
1596 atomic64_set(&ioc->vtime_rate, vrate);
1597 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
1598 ioc->period_us * vrate * INUSE_MARGIN_PCT, 100);
1599 } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
1600 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
1601 &missed_ppm, rq_wait_pct, nr_lagging,
1602 nr_shortages, nr_surpluses);
1605 ioc_refresh_params(ioc, false);
1608 * This period is done. Move onto the next one. If nothing's
1609 * going on with the device, stop the timer.
1611 atomic64_inc(&ioc->cur_period);
1613 if (ioc->running != IOC_STOP) {
1614 if (!list_empty(&ioc->active_iocgs)) {
1615 ioc_start_period(ioc, &now);
1617 ioc->busy_level = 0;
1618 ioc->running = IOC_IDLE;
1622 spin_unlock_irq(&ioc->lock);
1625 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
1626 bool is_merge, u64 *costp)
1628 struct ioc *ioc = iocg->ioc;
1629 u64 coef_seqio, coef_randio, coef_page;
1630 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
1634 switch (bio_op(bio)) {
1636 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO];
1637 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO];
1638 coef_page = ioc->params.lcoefs[LCOEF_RPAGE];
1641 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO];
1642 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO];
1643 coef_page = ioc->params.lcoefs[LCOEF_WPAGE];
1650 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
1651 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
1655 if (seek_pages > LCOEF_RANDIO_PAGES) {
1656 cost += coef_randio;
1661 cost += pages * coef_page;
1666 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
1670 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
1674 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
1676 struct blkcg_gq *blkg = bio->bi_blkg;
1677 struct ioc *ioc = rqos_to_ioc(rqos);
1678 struct ioc_gq *iocg = blkg_to_iocg(blkg);
1680 struct iocg_wait wait;
1681 u32 hw_active, hw_inuse;
1682 u64 abs_cost, cost, vtime;
1684 /* bypass IOs if disabled or for root cgroup */
1685 if (!ioc->enabled || !iocg->level)
1688 /* always activate so that even 0 cost IOs get protected to some level */
1689 if (!iocg_activate(iocg, &now))
1692 /* calculate the absolute vtime cost */
1693 abs_cost = calc_vtime_cost(bio, iocg, false);
1697 iocg->cursor = bio_end_sector(bio);
1699 vtime = atomic64_read(&iocg->vtime);
1700 current_hweight(iocg, &hw_active, &hw_inuse);
1702 if (hw_inuse < hw_active &&
1703 time_after_eq64(vtime + ioc->inuse_margin_vtime, now.vnow)) {
1704 TRACE_IOCG_PATH(inuse_reset, iocg, &now,
1705 iocg->inuse, iocg->weight, hw_inuse, hw_active);
1706 spin_lock_irq(&ioc->lock);
1707 propagate_active_weight(iocg, iocg->weight, iocg->weight);
1708 spin_unlock_irq(&ioc->lock);
1709 current_hweight(iocg, &hw_active, &hw_inuse);
1712 cost = abs_cost_to_cost(abs_cost, hw_inuse);
1715 * If no one's waiting and within budget, issue right away. The
1716 * tests are racy but the races aren't systemic - we only miss once
1717 * in a while which is fine.
1719 if (!waitqueue_active(&iocg->waitq) &&
1720 !atomic64_read(&iocg->abs_vdebt) &&
1721 time_before_eq64(vtime + cost, now.vnow)) {
1722 iocg_commit_bio(iocg, bio, cost);
1727 * We're over budget. If @bio has to be issued regardless,
1728 * remember the abs_cost instead of advancing vtime.
1729 * iocg_kick_waitq() will pay off the debt before waking more IOs.
1730 * This way, the debt is continuously paid off each period with the
1731 * actual budget available to the cgroup. If we just wound vtime,
1732 * we would incorrectly use the current hw_inuse for the entire
1733 * amount which, for example, can lead to the cgroup staying
1734 * blocked for a long time even with substantially raised hw_inuse.
1736 if (bio_issue_as_root_blkg(bio) || fatal_signal_pending(current)) {
1737 atomic64_add(abs_cost, &iocg->abs_vdebt);
1738 iocg_kick_delay(iocg, &now, cost);
1743 * Append self to the waitq and schedule the wakeup timer if we're
1744 * the first waiter. The timer duration is calculated based on the
1745 * current vrate. vtime and hweight changes can make it too short
1746 * or too long. Each wait entry records the absolute cost it's
1747 * waiting for to allow re-evaluation using a custom wait entry.
1749 * If too short, the timer simply reschedules itself. If too long,
1750 * the period timer will notice and trigger wakeups.
1752 * All waiters are on iocg->waitq and the wait states are
1753 * synchronized using waitq.lock.
1755 spin_lock_irq(&iocg->waitq.lock);
1758 * We activated above but w/o any synchronization. Deactivation is
1759 * synchronized with waitq.lock and we won't get deactivated as
1760 * long as we're waiting, so we're good if we're activated here.
1761 * In the unlikely case that we are deactivated, just issue the IO.
1763 if (unlikely(list_empty(&iocg->active_list))) {
1764 spin_unlock_irq(&iocg->waitq.lock);
1765 iocg_commit_bio(iocg, bio, cost);
1769 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
1770 wait.wait.private = current;
1772 wait.abs_cost = abs_cost;
1773 wait.committed = false; /* will be set true by waker */
1775 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
1776 iocg_kick_waitq(iocg, &now);
1778 spin_unlock_irq(&iocg->waitq.lock);
1781 set_current_state(TASK_UNINTERRUPTIBLE);
1787 /* waker already committed us, proceed */
1788 finish_wait(&iocg->waitq, &wait.wait);
1791 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
1794 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1795 struct ioc *ioc = iocg->ioc;
1796 sector_t bio_end = bio_end_sector(bio);
1801 /* bypass if disabled or for root cgroup */
1802 if (!ioc->enabled || !iocg->level)
1805 abs_cost = calc_vtime_cost(bio, iocg, true);
1810 current_hweight(iocg, NULL, &hw_inuse);
1811 cost = abs_cost_to_cost(abs_cost, hw_inuse);
1813 /* update cursor if backmerging into the request at the cursor */
1814 if (blk_rq_pos(rq) < bio_end &&
1815 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
1816 iocg->cursor = bio_end;
1819 * Charge if there's enough vtime budget and the existing request
1820 * has cost assigned. Otherwise, account it as debt. See debt
1821 * handling in ioc_rqos_throttle() for details.
1823 if (rq->bio && rq->bio->bi_iocost_cost &&
1824 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow))
1825 iocg_commit_bio(iocg, bio, cost);
1827 atomic64_add(abs_cost, &iocg->abs_vdebt);
1830 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
1832 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1834 if (iocg && bio->bi_iocost_cost)
1835 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
1838 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
1840 struct ioc *ioc = rqos_to_ioc(rqos);
1841 u64 on_q_ns, rq_wait_ns;
1844 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
1847 switch (req_op(rq) & REQ_OP_MASK) {
1860 on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
1861 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
1863 if (on_q_ns <= ioc->params.qos[pidx] * NSEC_PER_USEC)
1864 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_met);
1866 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_missed);
1868 this_cpu_add(ioc->pcpu_stat->rq_wait_ns, rq_wait_ns);
1871 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
1873 struct ioc *ioc = rqos_to_ioc(rqos);
1875 spin_lock_irq(&ioc->lock);
1876 ioc_refresh_params(ioc, false);
1877 spin_unlock_irq(&ioc->lock);
1880 static void ioc_rqos_exit(struct rq_qos *rqos)
1882 struct ioc *ioc = rqos_to_ioc(rqos);
1884 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
1886 spin_lock_irq(&ioc->lock);
1887 ioc->running = IOC_STOP;
1888 spin_unlock_irq(&ioc->lock);
1890 del_timer_sync(&ioc->timer);
1891 free_percpu(ioc->pcpu_stat);
1895 static struct rq_qos_ops ioc_rqos_ops = {
1896 .throttle = ioc_rqos_throttle,
1897 .merge = ioc_rqos_merge,
1898 .done_bio = ioc_rqos_done_bio,
1899 .done = ioc_rqos_done,
1900 .queue_depth_changed = ioc_rqos_queue_depth_changed,
1901 .exit = ioc_rqos_exit,
1904 static int blk_iocost_init(struct request_queue *q)
1907 struct rq_qos *rqos;
1910 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
1914 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
1915 if (!ioc->pcpu_stat) {
1921 rqos->id = RQ_QOS_COST;
1922 rqos->ops = &ioc_rqos_ops;
1925 spin_lock_init(&ioc->lock);
1926 timer_setup(&ioc->timer, ioc_timer_fn, 0);
1927 INIT_LIST_HEAD(&ioc->active_iocgs);
1929 ioc->running = IOC_IDLE;
1930 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
1931 seqcount_init(&ioc->period_seqcount);
1932 ioc->period_at = ktime_to_us(ktime_get());
1933 atomic64_set(&ioc->cur_period, 0);
1934 atomic_set(&ioc->hweight_gen, 0);
1936 spin_lock_irq(&ioc->lock);
1937 ioc->autop_idx = AUTOP_INVALID;
1938 ioc_refresh_params(ioc, true);
1939 spin_unlock_irq(&ioc->lock);
1941 rq_qos_add(q, rqos);
1942 ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
1944 rq_qos_del(q, rqos);
1945 free_percpu(ioc->pcpu_stat);
1952 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
1954 struct ioc_cgrp *iocc;
1956 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
1960 iocc->dfl_weight = CGROUP_WEIGHT_DFL;
1964 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
1966 kfree(container_of(cpd, struct ioc_cgrp, cpd));
1969 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
1970 struct blkcg *blkcg)
1972 int levels = blkcg->css.cgroup->level + 1;
1973 struct ioc_gq *iocg;
1975 iocg = kzalloc_node(sizeof(*iocg) + levels * sizeof(iocg->ancestors[0]),
1983 static void ioc_pd_init(struct blkg_policy_data *pd)
1985 struct ioc_gq *iocg = pd_to_iocg(pd);
1986 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
1987 struct ioc *ioc = q_to_ioc(blkg->q);
1989 struct blkcg_gq *tblkg;
1990 unsigned long flags;
1995 atomic64_set(&iocg->vtime, now.vnow);
1996 atomic64_set(&iocg->done_vtime, now.vnow);
1997 atomic64_set(&iocg->abs_vdebt, 0);
1998 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
1999 INIT_LIST_HEAD(&iocg->active_list);
2000 iocg->hweight_active = HWEIGHT_WHOLE;
2001 iocg->hweight_inuse = HWEIGHT_WHOLE;
2003 init_waitqueue_head(&iocg->waitq);
2004 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2005 iocg->waitq_timer.function = iocg_waitq_timer_fn;
2006 hrtimer_init(&iocg->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2007 iocg->delay_timer.function = iocg_delay_timer_fn;
2009 iocg->level = blkg->blkcg->css.cgroup->level;
2011 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2012 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2013 iocg->ancestors[tiocg->level] = tiocg;
2016 spin_lock_irqsave(&ioc->lock, flags);
2017 weight_updated(iocg);
2018 spin_unlock_irqrestore(&ioc->lock, flags);
2021 static void ioc_pd_free(struct blkg_policy_data *pd)
2023 struct ioc_gq *iocg = pd_to_iocg(pd);
2024 struct ioc *ioc = iocg->ioc;
2027 spin_lock(&ioc->lock);
2028 if (!list_empty(&iocg->active_list)) {
2029 propagate_active_weight(iocg, 0, 0);
2030 list_del_init(&iocg->active_list);
2032 spin_unlock(&ioc->lock);
2034 hrtimer_cancel(&iocg->waitq_timer);
2035 hrtimer_cancel(&iocg->delay_timer);
2040 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2043 const char *dname = blkg_dev_name(pd->blkg);
2044 struct ioc_gq *iocg = pd_to_iocg(pd);
2046 if (dname && iocg->cfg_weight)
2047 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight);
2052 static int ioc_weight_show(struct seq_file *sf, void *v)
2054 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2055 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2057 seq_printf(sf, "default %u\n", iocc->dfl_weight);
2058 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
2059 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2063 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
2064 size_t nbytes, loff_t off)
2066 struct blkcg *blkcg = css_to_blkcg(of_css(of));
2067 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2068 struct blkg_conf_ctx ctx;
2069 struct ioc_gq *iocg;
2073 if (!strchr(buf, ':')) {
2074 struct blkcg_gq *blkg;
2076 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
2079 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2082 spin_lock(&blkcg->lock);
2083 iocc->dfl_weight = v;
2084 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
2085 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2088 spin_lock_irq(&iocg->ioc->lock);
2089 weight_updated(iocg);
2090 spin_unlock_irq(&iocg->ioc->lock);
2093 spin_unlock(&blkcg->lock);
2098 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
2102 iocg = blkg_to_iocg(ctx.blkg);
2104 if (!strncmp(ctx.body, "default", 7)) {
2107 if (!sscanf(ctx.body, "%u", &v))
2109 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2113 spin_lock_irq(&iocg->ioc->lock);
2114 iocg->cfg_weight = v;
2115 weight_updated(iocg);
2116 spin_unlock_irq(&iocg->ioc->lock);
2118 blkg_conf_finish(&ctx);
2122 blkg_conf_finish(&ctx);
2126 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2129 const char *dname = blkg_dev_name(pd->blkg);
2130 struct ioc *ioc = pd_to_iocg(pd)->ioc;
2135 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
2136 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
2137 ioc->params.qos[QOS_RPPM] / 10000,
2138 ioc->params.qos[QOS_RPPM] % 10000 / 100,
2139 ioc->params.qos[QOS_RLAT],
2140 ioc->params.qos[QOS_WPPM] / 10000,
2141 ioc->params.qos[QOS_WPPM] % 10000 / 100,
2142 ioc->params.qos[QOS_WLAT],
2143 ioc->params.qos[QOS_MIN] / 10000,
2144 ioc->params.qos[QOS_MIN] % 10000 / 100,
2145 ioc->params.qos[QOS_MAX] / 10000,
2146 ioc->params.qos[QOS_MAX] % 10000 / 100);
2150 static int ioc_qos_show(struct seq_file *sf, void *v)
2152 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2154 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
2155 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2159 static const match_table_t qos_ctrl_tokens = {
2160 { QOS_ENABLE, "enable=%u" },
2161 { QOS_CTRL, "ctrl=%s" },
2162 { NR_QOS_CTRL_PARAMS, NULL },
2165 static const match_table_t qos_tokens = {
2166 { QOS_RPPM, "rpct=%s" },
2167 { QOS_RLAT, "rlat=%u" },
2168 { QOS_WPPM, "wpct=%s" },
2169 { QOS_WLAT, "wlat=%u" },
2170 { QOS_MIN, "min=%s" },
2171 { QOS_MAX, "max=%s" },
2172 { NR_QOS_PARAMS, NULL },
2175 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
2176 size_t nbytes, loff_t off)
2178 struct gendisk *disk;
2180 u32 qos[NR_QOS_PARAMS];
2185 disk = blkcg_conf_get_disk(&input);
2187 return PTR_ERR(disk);
2189 ioc = q_to_ioc(disk->queue);
2191 ret = blk_iocost_init(disk->queue);
2194 ioc = q_to_ioc(disk->queue);
2197 spin_lock_irq(&ioc->lock);
2198 memcpy(qos, ioc->params.qos, sizeof(qos));
2199 enable = ioc->enabled;
2200 user = ioc->user_qos_params;
2201 spin_unlock_irq(&ioc->lock);
2203 while ((p = strsep(&input, " \t\n"))) {
2204 substring_t args[MAX_OPT_ARGS];
2212 switch (match_token(p, qos_ctrl_tokens, args)) {
2214 match_u64(&args[0], &v);
2218 match_strlcpy(buf, &args[0], sizeof(buf));
2219 if (!strcmp(buf, "auto"))
2221 else if (!strcmp(buf, "user"))
2228 tok = match_token(p, qos_tokens, args);
2232 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2235 if (cgroup_parse_float(buf, 2, &v))
2237 if (v < 0 || v > 10000)
2243 if (match_u64(&args[0], &v))
2249 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2252 if (cgroup_parse_float(buf, 2, &v))
2256 qos[tok] = clamp_t(s64, v * 100,
2257 VRATE_MIN_PPM, VRATE_MAX_PPM);
2265 if (qos[QOS_MIN] > qos[QOS_MAX])
2268 spin_lock_irq(&ioc->lock);
2271 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2272 ioc->enabled = true;
2274 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2275 ioc->enabled = false;
2279 memcpy(ioc->params.qos, qos, sizeof(qos));
2280 ioc->user_qos_params = true;
2282 ioc->user_qos_params = false;
2285 ioc_refresh_params(ioc, true);
2286 spin_unlock_irq(&ioc->lock);
2288 put_disk_and_module(disk);
2293 put_disk_and_module(disk);
2297 static u64 ioc_cost_model_prfill(struct seq_file *sf,
2298 struct blkg_policy_data *pd, int off)
2300 const char *dname = blkg_dev_name(pd->blkg);
2301 struct ioc *ioc = pd_to_iocg(pd)->ioc;
2302 u64 *u = ioc->params.i_lcoefs;
2307 seq_printf(sf, "%s ctrl=%s model=linear "
2308 "rbps=%llu rseqiops=%llu rrandiops=%llu "
2309 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
2310 dname, ioc->user_cost_model ? "user" : "auto",
2311 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
2312 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
2316 static int ioc_cost_model_show(struct seq_file *sf, void *v)
2318 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2320 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
2321 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2325 static const match_table_t cost_ctrl_tokens = {
2326 { COST_CTRL, "ctrl=%s" },
2327 { COST_MODEL, "model=%s" },
2328 { NR_COST_CTRL_PARAMS, NULL },
2331 static const match_table_t i_lcoef_tokens = {
2332 { I_LCOEF_RBPS, "rbps=%u" },
2333 { I_LCOEF_RSEQIOPS, "rseqiops=%u" },
2334 { I_LCOEF_RRANDIOPS, "rrandiops=%u" },
2335 { I_LCOEF_WBPS, "wbps=%u" },
2336 { I_LCOEF_WSEQIOPS, "wseqiops=%u" },
2337 { I_LCOEF_WRANDIOPS, "wrandiops=%u" },
2338 { NR_I_LCOEFS, NULL },
2341 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
2342 size_t nbytes, loff_t off)
2344 struct gendisk *disk;
2351 disk = blkcg_conf_get_disk(&input);
2353 return PTR_ERR(disk);
2355 ioc = q_to_ioc(disk->queue);
2357 ret = blk_iocost_init(disk->queue);
2360 ioc = q_to_ioc(disk->queue);
2363 spin_lock_irq(&ioc->lock);
2364 memcpy(u, ioc->params.i_lcoefs, sizeof(u));
2365 user = ioc->user_cost_model;
2366 spin_unlock_irq(&ioc->lock);
2368 while ((p = strsep(&input, " \t\n"))) {
2369 substring_t args[MAX_OPT_ARGS];
2377 switch (match_token(p, cost_ctrl_tokens, args)) {
2379 match_strlcpy(buf, &args[0], sizeof(buf));
2380 if (!strcmp(buf, "auto"))
2382 else if (!strcmp(buf, "user"))
2388 match_strlcpy(buf, &args[0], sizeof(buf));
2389 if (strcmp(buf, "linear"))
2394 tok = match_token(p, i_lcoef_tokens, args);
2395 if (tok == NR_I_LCOEFS)
2397 if (match_u64(&args[0], &v))
2403 spin_lock_irq(&ioc->lock);
2405 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
2406 ioc->user_cost_model = true;
2408 ioc->user_cost_model = false;
2410 ioc_refresh_params(ioc, true);
2411 spin_unlock_irq(&ioc->lock);
2413 put_disk_and_module(disk);
2419 put_disk_and_module(disk);
2423 static struct cftype ioc_files[] = {
2426 .flags = CFTYPE_NOT_ON_ROOT,
2427 .seq_show = ioc_weight_show,
2428 .write = ioc_weight_write,
2432 .flags = CFTYPE_ONLY_ON_ROOT,
2433 .seq_show = ioc_qos_show,
2434 .write = ioc_qos_write,
2437 .name = "cost.model",
2438 .flags = CFTYPE_ONLY_ON_ROOT,
2439 .seq_show = ioc_cost_model_show,
2440 .write = ioc_cost_model_write,
2445 static struct blkcg_policy blkcg_policy_iocost = {
2446 .dfl_cftypes = ioc_files,
2447 .cpd_alloc_fn = ioc_cpd_alloc,
2448 .cpd_free_fn = ioc_cpd_free,
2449 .pd_alloc_fn = ioc_pd_alloc,
2450 .pd_init_fn = ioc_pd_init,
2451 .pd_free_fn = ioc_pd_free,
2454 static int __init ioc_init(void)
2456 return blkcg_policy_register(&blkcg_policy_iocost);
2459 static void __exit ioc_exit(void)
2461 return blkcg_policy_unregister(&blkcg_policy_iocost);
2464 module_init(ioc_init);
2465 module_exit(ioc_exit);