1 /* SPDX-License-Identifier: GPL-2.0
3 * IO cost model based controller.
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * paramters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
49 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
50 * device-specific coefficients.
54 * The device virtual time (vtime) is used as the primary control metric.
55 * The control strategy is composed of the following three parts.
57 * 2-1. Vtime Distribution
59 * When a cgroup becomes active in terms of IOs, its hierarchical share is
60 * calculated. Please consider the following hierarchy where the numbers
61 * inside parentheses denote the configured weights.
67 * A0 (w:100) A1 (w:100)
69 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
70 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
71 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
72 * 12.5% each. The distribution mechanism only cares about these flattened
73 * shares. They're called hweights (hierarchical weights) and always add
74 * upto 1 (HWEIGHT_WHOLE).
76 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
77 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
78 * against the device vtime - an IO which takes 10ms on the underlying
79 * device is considered to take 80ms on A0.
81 * This constitutes the basis of IO capacity distribution. Each cgroup's
82 * vtime is running at a rate determined by its hweight. A cgroup tracks
83 * the vtime consumed by past IOs and can issue a new IO iff doing so
84 * wouldn't outrun the current device vtime. Otherwise, the IO is
85 * suspended until the vtime has progressed enough to cover it.
87 * 2-2. Vrate Adjustment
89 * It's unrealistic to expect the cost model to be perfect. There are too
90 * many devices and even on the same device the overall performance
91 * fluctuates depending on numerous factors such as IO mixture and device
92 * internal garbage collection. The controller needs to adapt dynamically.
94 * This is achieved by adjusting the overall IO rate according to how busy
95 * the device is. If the device becomes overloaded, we're sending down too
96 * many IOs and should generally slow down. If there are waiting issuers
97 * but the device isn't saturated, we're issuing too few and should
100 * To slow down, we lower the vrate - the rate at which the device vtime
101 * passes compared to the wall clock. For example, if the vtime is running
102 * at the vrate of 75%, all cgroups added up would only be able to issue
103 * 750ms worth of IOs per second, and vice-versa for speeding up.
105 * Device business is determined using two criteria - rq wait and
106 * completion latencies.
108 * When a device gets saturated, the on-device and then the request queues
109 * fill up and a bio which is ready to be issued has to wait for a request
110 * to become available. When this delay becomes noticeable, it's a clear
111 * indication that the device is saturated and we lower the vrate. This
112 * saturation signal is fairly conservative as it only triggers when both
113 * hardware and software queues are filled up, and is used as the default
116 * As devices can have deep queues and be unfair in how the queued commands
117 * are executed, soley depending on rq wait may not result in satisfactory
118 * control quality. For a better control quality, completion latency QoS
119 * parameters can be configured so that the device is considered saturated
120 * if N'th percentile completion latency rises above the set point.
122 * The completion latency requirements are a function of both the
123 * underlying device characteristics and the desired IO latency quality of
124 * service. There is an inherent trade-off - the tighter the latency QoS,
125 * the higher the bandwidth lossage. Latency QoS is disabled by default
126 * and can be set through /sys/fs/cgroup/io.cost.qos.
128 * 2-3. Work Conservation
130 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
131 * periodically while B is sending out enough parallel IOs to saturate the
132 * device on its own. Let's say A's usage amounts to 100ms worth of IO
133 * cost per second, i.e., 10% of the device capacity. The naive
134 * distribution of half and half would lead to 60% utilization of the
135 * device, a significant reduction in the total amount of work done
136 * compared to free-for-all competition. This is too high a cost to pay
139 * To conserve the total amount of work done, we keep track of how much
140 * each active cgroup is actually using and yield part of its weight if
141 * there are other cgroups which can make use of it. In the above case,
142 * A's weight will be lowered so that it hovers above the actual usage and
143 * B would be able to use the rest.
145 * As we don't want to penalize a cgroup for donating its weight, the
146 * surplus weight adjustment factors in a margin and has an immediate
147 * snapback mechanism in case the cgroup needs more IO vtime for itself.
149 * Note that adjusting down surplus weights has the same effects as
150 * accelerating vtime for other cgroups and work conservation can also be
151 * implemented by adjusting vrate dynamically. However, squaring who can
152 * donate and should take back how much requires hweight propagations
153 * anyway making it easier to implement and understand as a separate
158 * Instead of debugfs or other clumsy monitoring mechanisms, this
159 * controller uses a drgn based monitoring script -
160 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
161 * https://github.com/osandov/drgn. The ouput looks like the following.
163 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
164 * active weight hweight% inflt% dbt delay usages%
165 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
166 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
168 * - per : Timer period
169 * - cur_per : Internal wall and device vtime clock
170 * - vrate : Device virtual time rate against wall clock
171 * - weight : Surplus-adjusted and configured weights
172 * - hweight : Surplus-adjusted and configured hierarchical weights
173 * - inflt : The percentage of in-flight IO cost at the end of last period
174 * - del_ms : Deferred issuer delay induction level and duration
175 * - usages : Usage history
178 #include <linux/kernel.h>
179 #include <linux/module.h>
180 #include <linux/timer.h>
181 #include <linux/time64.h>
182 #include <linux/parser.h>
183 #include <linux/sched/signal.h>
184 #include <linux/blk-cgroup.h>
185 #include "blk-rq-qos.h"
186 #include "blk-stat.h"
189 #ifdef CONFIG_TRACEPOINTS
191 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
192 #define TRACE_IOCG_PATH_LEN 1024
193 static DEFINE_SPINLOCK(trace_iocg_path_lock);
194 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
196 #define TRACE_IOCG_PATH(type, iocg, ...) \
198 unsigned long flags; \
199 if (trace_iocost_##type##_enabled()) { \
200 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
201 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
202 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
203 trace_iocost_##type(iocg, trace_iocg_path, \
205 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
209 #else /* CONFIG_TRACE_POINTS */
210 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
211 #endif /* CONFIG_TRACE_POINTS */
216 /* timer period is calculated from latency requirements, bound it */
217 MIN_PERIOD = USEC_PER_MSEC,
218 MAX_PERIOD = USEC_PER_SEC,
221 * A cgroup's vtime can run 50% behind the device vtime, which
222 * serves as its IO credit buffer. Surplus weight adjustment is
223 * immediately canceled if the vtime margin runs below 10%.
226 INUSE_MARGIN_PCT = 10,
228 /* Have some play in waitq timer operations */
229 WAITQ_TIMER_MARGIN_PCT = 5,
232 * vtime can wrap well within a reasonable uptime when vrate is
233 * consistently raised. Don't trust recorded cgroup vtime if the
234 * period counter indicates that it's older than 5mins.
236 VTIME_VALID_DUR = 300 * USEC_PER_SEC,
239 * Remember the past three non-zero usages and use the max for
240 * surplus calculation. Three slots guarantee that we remember one
241 * full period usage from the last active stretch even after
242 * partial deactivation and re-activation periods. Don't start
243 * giving away weight before collecting two data points to prevent
244 * hweight adjustments based on one partial activation period.
247 MIN_VALID_USAGES = 2,
249 /* 1/64k is granular enough and can easily be handled w/ u32 */
250 HWEIGHT_WHOLE = 1 << 16,
253 * As vtime is used to calculate the cost of each IO, it needs to
254 * be fairly high precision. For example, it should be able to
255 * represent the cost of a single page worth of discard with
256 * suffificient accuracy. At the same time, it should be able to
257 * represent reasonably long enough durations to be useful and
258 * convenient during operation.
260 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
261 * granularity and days of wrap-around time even at extreme vrates.
263 VTIME_PER_SEC_SHIFT = 37,
264 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT,
265 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC,
267 /* bound vrate adjustments within two orders of magnitude */
268 VRATE_MIN_PPM = 10000, /* 1% */
269 VRATE_MAX_PPM = 100000000, /* 10000% */
271 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
272 VRATE_CLAMP_ADJ_PCT = 4,
274 /* if IOs end up waiting for requests, issue less */
275 RQ_WAIT_BUSY_PCT = 5,
277 /* unbusy hysterisis */
280 /* don't let cmds which take a very long time pin lagging for too long */
281 MAX_LAGGING_PERIODS = 10,
284 * If usage% * 1.25 + 2% is lower than hweight% by more than 3%,
285 * donate the surplus.
287 SURPLUS_SCALE_PCT = 125, /* * 125% */
288 SURPLUS_SCALE_ABS = HWEIGHT_WHOLE / 50, /* + 2% */
289 SURPLUS_MIN_ADJ_DELTA = HWEIGHT_WHOLE / 33, /* 3% */
291 /* switch iff the conditions are met for longer than this */
292 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC,
295 * Count IO size in 4k pages. The 12bit shift helps keeping
296 * size-proportional components of cost calculation in closer
297 * numbers of digits to per-IO cost components.
300 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT,
301 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT,
303 /* if apart further than 16M, consider randio for linear model */
304 LCOEF_RANDIO_PAGES = 4096,
313 /* io.cost.qos controls including per-dev enable of the whole controller */
320 /* io.cost.qos params */
331 /* io.cost.model controls */
338 /* builtin linear cost model coefficients */
370 u32 qos[NR_QOS_PARAMS];
371 u64 i_lcoefs[NR_I_LCOEFS];
372 u64 lcoefs[NR_LCOEFS];
373 u32 too_fast_vrate_pct;
374 u32 too_slow_vrate_pct;
384 struct ioc_pcpu_stat {
385 struct ioc_missed missed[2];
397 struct ioc_params params;
404 struct timer_list timer;
405 struct list_head active_iocgs; /* active cgroups */
406 struct ioc_pcpu_stat __percpu *pcpu_stat;
408 enum ioc_running running;
409 atomic64_t vtime_rate;
411 seqcount_t period_seqcount;
412 u32 period_at; /* wallclock starttime */
413 u64 period_at_vtime; /* vtime starttime */
415 atomic64_t cur_period; /* inc'd each period */
416 int busy_level; /* saturation history */
418 u64 inuse_margin_vtime;
419 bool weights_updated;
420 atomic_t hweight_gen; /* for lazy hweights */
422 u64 autop_too_fast_at;
423 u64 autop_too_slow_at;
425 bool user_qos_params:1;
426 bool user_cost_model:1;
429 /* per device-cgroup pair */
431 struct blkg_policy_data pd;
435 * A iocg can get its weight from two sources - an explicit
436 * per-device-cgroup configuration or the default weight of the
437 * cgroup. `cfg_weight` is the explicit per-device-cgroup
438 * configuration. `weight` is the effective considering both
441 * When an idle cgroup becomes active its `active` goes from 0 to
442 * `weight`. `inuse` is the surplus adjusted active weight.
443 * `active` and `inuse` are used to calculate `hweight_active` and
446 * `last_inuse` remembers `inuse` while an iocg is idle to persist
447 * surplus adjustments.
455 sector_t cursor; /* to detect randio */
458 * `vtime` is this iocg's vtime cursor which progresses as IOs are
459 * issued. If lagging behind device vtime, the delta represents
460 * the currently available IO budget. If runnning ahead, the
463 * `vtime_done` is the same but progressed on completion rather
464 * than issue. The delta behind `vtime` represents the cost of
465 * currently in-flight IOs.
467 * `last_vtime` is used to remember `vtime` at the end of the last
468 * period to calculate utilization.
471 atomic64_t done_vtime;
472 atomic64_t abs_vdebt;
476 * The period this iocg was last active in. Used for deactivation
477 * and invalidating `vtime`.
479 atomic64_t active_period;
480 struct list_head active_list;
482 /* see __propagate_active_weight() and current_hweight() for details */
483 u64 child_active_sum;
490 struct wait_queue_head waitq;
491 struct hrtimer waitq_timer;
492 struct hrtimer delay_timer;
494 /* usage is recorded as fractions of HWEIGHT_WHOLE */
496 u32 usages[NR_USAGE_SLOTS];
498 /* this iocg's depth in the hierarchy and ancestors including self */
500 struct ioc_gq *ancestors[];
505 struct blkcg_policy_data cpd;
506 unsigned int dfl_weight;
517 struct wait_queue_entry wait;
523 struct iocg_wake_ctx {
529 static const struct ioc_params autop[] = {
532 [QOS_RLAT] = 250000, /* 250ms */
534 [QOS_MIN] = VRATE_MIN_PPM,
535 [QOS_MAX] = VRATE_MAX_PPM,
538 [I_LCOEF_RBPS] = 174019176,
539 [I_LCOEF_RSEQIOPS] = 41708,
540 [I_LCOEF_RRANDIOPS] = 370,
541 [I_LCOEF_WBPS] = 178075866,
542 [I_LCOEF_WSEQIOPS] = 42705,
543 [I_LCOEF_WRANDIOPS] = 378,
548 [QOS_RLAT] = 25000, /* 25ms */
550 [QOS_MIN] = VRATE_MIN_PPM,
551 [QOS_MAX] = VRATE_MAX_PPM,
554 [I_LCOEF_RBPS] = 245855193,
555 [I_LCOEF_RSEQIOPS] = 61575,
556 [I_LCOEF_RRANDIOPS] = 6946,
557 [I_LCOEF_WBPS] = 141365009,
558 [I_LCOEF_WSEQIOPS] = 33716,
559 [I_LCOEF_WRANDIOPS] = 26796,
564 [QOS_RLAT] = 25000, /* 25ms */
566 [QOS_MIN] = VRATE_MIN_PPM,
567 [QOS_MAX] = VRATE_MAX_PPM,
570 [I_LCOEF_RBPS] = 488636629,
571 [I_LCOEF_RSEQIOPS] = 8932,
572 [I_LCOEF_RRANDIOPS] = 8518,
573 [I_LCOEF_WBPS] = 427891549,
574 [I_LCOEF_WSEQIOPS] = 28755,
575 [I_LCOEF_WRANDIOPS] = 21940,
577 .too_fast_vrate_pct = 500,
581 [QOS_RLAT] = 5000, /* 5ms */
583 [QOS_MIN] = VRATE_MIN_PPM,
584 [QOS_MAX] = VRATE_MAX_PPM,
587 [I_LCOEF_RBPS] = 3102524156LLU,
588 [I_LCOEF_RSEQIOPS] = 724816,
589 [I_LCOEF_RRANDIOPS] = 778122,
590 [I_LCOEF_WBPS] = 1742780862LLU,
591 [I_LCOEF_WSEQIOPS] = 425702,
592 [I_LCOEF_WRANDIOPS] = 443193,
594 .too_slow_vrate_pct = 10,
599 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
600 * vtime credit shortage and down on device saturation.
602 static u32 vrate_adj_pct[] =
604 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
605 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
606 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
608 static struct blkcg_policy blkcg_policy_iocost;
610 /* accessors and helpers */
611 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
613 return container_of(rqos, struct ioc, rqos);
616 static struct ioc *q_to_ioc(struct request_queue *q)
618 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
621 static const char *q_name(struct request_queue *q)
623 if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
624 return kobject_name(q->kobj.parent);
629 static const char __maybe_unused *ioc_name(struct ioc *ioc)
631 return q_name(ioc->rqos.q);
634 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
636 return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
639 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
641 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
644 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
646 return pd_to_blkg(&iocg->pd);
649 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
651 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
652 struct ioc_cgrp, cpd);
656 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
657 * weight, the more expensive each IO. Must round up.
659 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
661 return DIV64_U64_ROUND_UP(abs_cost * HWEIGHT_WHOLE, hw_inuse);
665 * The inverse of abs_cost_to_cost(). Must round up.
667 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
669 return DIV64_U64_ROUND_UP(cost * hw_inuse, HWEIGHT_WHOLE);
672 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, u64 cost)
674 bio->bi_iocost_cost = cost;
675 atomic64_add(cost, &iocg->vtime);
678 #define CREATE_TRACE_POINTS
679 #include <trace/events/iocost.h>
681 /* latency Qos params changed, update period_us and all the dependent params */
682 static void ioc_refresh_period_us(struct ioc *ioc)
684 u32 ppm, lat, multi, period_us;
686 lockdep_assert_held(&ioc->lock);
688 /* pick the higher latency target */
689 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
690 ppm = ioc->params.qos[QOS_RPPM];
691 lat = ioc->params.qos[QOS_RLAT];
693 ppm = ioc->params.qos[QOS_WPPM];
694 lat = ioc->params.qos[QOS_WLAT];
698 * We want the period to be long enough to contain a healthy number
699 * of IOs while short enough for granular control. Define it as a
700 * multiple of the latency target. Ideally, the multiplier should
701 * be scaled according to the percentile so that it would nominally
702 * contain a certain number of requests. Let's be simpler and
703 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
706 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
709 period_us = multi * lat;
710 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
712 /* calculate dependent params */
713 ioc->period_us = period_us;
714 ioc->margin_us = period_us * MARGIN_PCT / 100;
715 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
716 period_us * VTIME_PER_USEC * INUSE_MARGIN_PCT, 100);
719 static int ioc_autop_idx(struct ioc *ioc)
721 int idx = ioc->autop_idx;
722 const struct ioc_params *p = &autop[idx];
727 if (!blk_queue_nonrot(ioc->rqos.q))
730 /* handle SATA SSDs w/ broken NCQ */
731 if (blk_queue_depth(ioc->rqos.q) == 1)
732 return AUTOP_SSD_QD1;
734 /* use one of the normal ssd sets */
735 if (idx < AUTOP_SSD_DFL)
736 return AUTOP_SSD_DFL;
738 /* if user is overriding anything, maintain what was there */
739 if (ioc->user_qos_params || ioc->user_cost_model)
742 /* step up/down based on the vrate */
743 vrate_pct = div64_u64(atomic64_read(&ioc->vtime_rate) * 100,
745 now_ns = ktime_get_ns();
747 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
748 if (!ioc->autop_too_fast_at)
749 ioc->autop_too_fast_at = now_ns;
750 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
753 ioc->autop_too_fast_at = 0;
756 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
757 if (!ioc->autop_too_slow_at)
758 ioc->autop_too_slow_at = now_ns;
759 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
762 ioc->autop_too_slow_at = 0;
769 * Take the followings as input
771 * @bps maximum sequential throughput
772 * @seqiops maximum sequential 4k iops
773 * @randiops maximum random 4k iops
775 * and calculate the linear model cost coefficients.
777 * *@page per-page cost 1s / (@bps / 4096)
778 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
779 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
781 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
782 u64 *page, u64 *seqio, u64 *randio)
786 *page = *seqio = *randio = 0;
789 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
790 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
793 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
799 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
805 static void ioc_refresh_lcoefs(struct ioc *ioc)
807 u64 *u = ioc->params.i_lcoefs;
808 u64 *c = ioc->params.lcoefs;
810 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
811 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
812 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
813 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
816 static bool ioc_refresh_params(struct ioc *ioc, bool force)
818 const struct ioc_params *p;
821 lockdep_assert_held(&ioc->lock);
823 idx = ioc_autop_idx(ioc);
826 if (idx == ioc->autop_idx && !force)
829 if (idx != ioc->autop_idx)
830 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
832 ioc->autop_idx = idx;
833 ioc->autop_too_fast_at = 0;
834 ioc->autop_too_slow_at = 0;
836 if (!ioc->user_qos_params)
837 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
838 if (!ioc->user_cost_model)
839 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
841 ioc_refresh_period_us(ioc);
842 ioc_refresh_lcoefs(ioc);
844 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
845 VTIME_PER_USEC, MILLION);
846 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
847 VTIME_PER_USEC, MILLION);
852 /* take a snapshot of the current [v]time and vrate */
853 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
857 now->now_ns = ktime_get();
858 now->now = ktime_to_us(now->now_ns);
859 now->vrate = atomic64_read(&ioc->vtime_rate);
862 * The current vtime is
864 * vtime at period start + (wallclock time since the start) * vrate
866 * As a consistent snapshot of `period_at_vtime` and `period_at` is
867 * needed, they're seqcount protected.
870 seq = read_seqcount_begin(&ioc->period_seqcount);
871 now->vnow = ioc->period_at_vtime +
872 (now->now - ioc->period_at) * now->vrate;
873 } while (read_seqcount_retry(&ioc->period_seqcount, seq));
876 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
878 lockdep_assert_held(&ioc->lock);
879 WARN_ON_ONCE(ioc->running != IOC_RUNNING);
881 write_seqcount_begin(&ioc->period_seqcount);
882 ioc->period_at = now->now;
883 ioc->period_at_vtime = now->vnow;
884 write_seqcount_end(&ioc->period_seqcount);
886 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
887 add_timer(&ioc->timer);
891 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
892 * weight sums and propagate upwards accordingly.
894 static void __propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
896 struct ioc *ioc = iocg->ioc;
899 lockdep_assert_held(&ioc->lock);
901 inuse = min(active, inuse);
903 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
904 struct ioc_gq *parent = iocg->ancestors[lvl];
905 struct ioc_gq *child = iocg->ancestors[lvl + 1];
906 u32 parent_active = 0, parent_inuse = 0;
908 /* update the level sums */
909 parent->child_active_sum += (s32)(active - child->active);
910 parent->child_inuse_sum += (s32)(inuse - child->inuse);
911 /* apply the udpates */
912 child->active = active;
913 child->inuse = inuse;
916 * The delta between inuse and active sums indicates that
917 * that much of weight is being given away. Parent's inuse
918 * and active should reflect the ratio.
920 if (parent->child_active_sum) {
921 parent_active = parent->weight;
922 parent_inuse = DIV64_U64_ROUND_UP(
923 parent_active * parent->child_inuse_sum,
924 parent->child_active_sum);
927 /* do we need to keep walking up? */
928 if (parent_active == parent->active &&
929 parent_inuse == parent->inuse)
932 active = parent_active;
933 inuse = parent_inuse;
936 ioc->weights_updated = true;
939 static void commit_active_weights(struct ioc *ioc)
941 lockdep_assert_held(&ioc->lock);
943 if (ioc->weights_updated) {
944 /* paired with rmb in current_hweight(), see there */
946 atomic_inc(&ioc->hweight_gen);
947 ioc->weights_updated = false;
951 static void propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
953 __propagate_active_weight(iocg, active, inuse);
954 commit_active_weights(iocg->ioc);
957 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
959 struct ioc *ioc = iocg->ioc;
964 /* hot path - if uptodate, use cached */
965 ioc_gen = atomic_read(&ioc->hweight_gen);
966 if (ioc_gen == iocg->hweight_gen)
970 * Paired with wmb in commit_active_weights(). If we saw the
971 * updated hweight_gen, all the weight updates from
972 * __propagate_active_weight() are visible too.
974 * We can race with weight updates during calculation and get it
975 * wrong. However, hweight_gen would have changed and a future
976 * reader will recalculate and we're guaranteed to discard the
981 hwa = hwi = HWEIGHT_WHOLE;
982 for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
983 struct ioc_gq *parent = iocg->ancestors[lvl];
984 struct ioc_gq *child = iocg->ancestors[lvl + 1];
985 u32 active_sum = READ_ONCE(parent->child_active_sum);
986 u32 inuse_sum = READ_ONCE(parent->child_inuse_sum);
987 u32 active = READ_ONCE(child->active);
988 u32 inuse = READ_ONCE(child->inuse);
990 /* we can race with deactivations and either may read as zero */
991 if (!active_sum || !inuse_sum)
994 active_sum = max(active, active_sum);
995 hwa = hwa * active / active_sum; /* max 16bits * 10000 */
997 inuse_sum = max(inuse, inuse_sum);
998 hwi = hwi * inuse / inuse_sum; /* max 16bits * 10000 */
1001 iocg->hweight_active = max_t(u32, hwa, 1);
1002 iocg->hweight_inuse = max_t(u32, hwi, 1);
1003 iocg->hweight_gen = ioc_gen;
1006 *hw_activep = iocg->hweight_active;
1008 *hw_inusep = iocg->hweight_inuse;
1011 static void weight_updated(struct ioc_gq *iocg)
1013 struct ioc *ioc = iocg->ioc;
1014 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1015 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1018 lockdep_assert_held(&ioc->lock);
1020 weight = iocg->cfg_weight ?: iocc->dfl_weight;
1021 if (weight != iocg->weight && iocg->active)
1022 propagate_active_weight(iocg, weight,
1023 DIV64_U64_ROUND_UP(iocg->inuse * weight, iocg->weight));
1024 iocg->weight = weight;
1027 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1029 struct ioc *ioc = iocg->ioc;
1030 u64 last_period, cur_period, max_period_delta;
1031 u64 vtime, vmargin, vmin;
1035 * If seem to be already active, just update the stamp to tell the
1036 * timer that we're still active. We don't mind occassional races.
1038 if (!list_empty(&iocg->active_list)) {
1040 cur_period = atomic64_read(&ioc->cur_period);
1041 if (atomic64_read(&iocg->active_period) != cur_period)
1042 atomic64_set(&iocg->active_period, cur_period);
1046 /* racy check on internal node IOs, treat as root level IOs */
1047 if (iocg->child_active_sum)
1050 spin_lock_irq(&ioc->lock);
1055 cur_period = atomic64_read(&ioc->cur_period);
1056 last_period = atomic64_read(&iocg->active_period);
1057 atomic64_set(&iocg->active_period, cur_period);
1059 /* already activated or breaking leaf-only constraint? */
1060 if (!list_empty(&iocg->active_list))
1061 goto succeed_unlock;
1062 for (i = iocg->level - 1; i > 0; i--)
1063 if (!list_empty(&iocg->ancestors[i]->active_list))
1066 if (iocg->child_active_sum)
1070 * vtime may wrap when vrate is raised substantially due to
1071 * underestimated IO costs. Look at the period and ignore its
1072 * vtime if the iocg has been idle for too long. Also, cap the
1073 * budget it can start with to the margin.
1075 max_period_delta = DIV64_U64_ROUND_UP(VTIME_VALID_DUR, ioc->period_us);
1076 vtime = atomic64_read(&iocg->vtime);
1077 vmargin = ioc->margin_us * now->vrate;
1078 vmin = now->vnow - vmargin;
1080 if (last_period + max_period_delta < cur_period ||
1081 time_before64(vtime, vmin)) {
1082 atomic64_add(vmin - vtime, &iocg->vtime);
1083 atomic64_add(vmin - vtime, &iocg->done_vtime);
1088 * Activate, propagate weight and start period timer if not
1089 * running. Reset hweight_gen to avoid accidental match from
1092 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1093 list_add(&iocg->active_list, &ioc->active_iocgs);
1094 propagate_active_weight(iocg, iocg->weight,
1095 iocg->last_inuse ?: iocg->weight);
1097 TRACE_IOCG_PATH(iocg_activate, iocg, now,
1098 last_period, cur_period, vtime);
1100 iocg->last_vtime = vtime;
1102 if (ioc->running == IOC_IDLE) {
1103 ioc->running = IOC_RUNNING;
1104 ioc_start_period(ioc, now);
1108 spin_unlock_irq(&ioc->lock);
1112 spin_unlock_irq(&ioc->lock);
1116 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1117 int flags, void *key)
1119 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1120 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1121 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1123 ctx->vbudget -= cost;
1125 if (ctx->vbudget < 0)
1128 iocg_commit_bio(ctx->iocg, wait->bio, cost);
1131 * autoremove_wake_function() removes the wait entry only when it
1132 * actually changed the task state. We want the wait always
1133 * removed. Remove explicitly and use default_wake_function().
1135 list_del_init(&wq_entry->entry);
1136 wait->committed = true;
1138 default_wake_function(wq_entry, mode, flags, key);
1142 static void iocg_kick_waitq(struct ioc_gq *iocg, struct ioc_now *now)
1144 struct ioc *ioc = iocg->ioc;
1145 struct iocg_wake_ctx ctx = { .iocg = iocg };
1146 u64 margin_ns = (u64)(ioc->period_us *
1147 WAITQ_TIMER_MARGIN_PCT / 100) * NSEC_PER_USEC;
1148 u64 abs_vdebt, vdebt, vshortage, expires, oexpires;
1152 lockdep_assert_held(&iocg->waitq.lock);
1154 current_hweight(iocg, NULL, &hw_inuse);
1155 vbudget = now->vnow - atomic64_read(&iocg->vtime);
1158 abs_vdebt = atomic64_read(&iocg->abs_vdebt);
1159 vdebt = abs_cost_to_cost(abs_vdebt, hw_inuse);
1160 if (vdebt && vbudget > 0) {
1161 u64 delta = min_t(u64, vbudget, vdebt);
1162 u64 abs_delta = min(cost_to_abs_cost(delta, hw_inuse),
1165 atomic64_add(delta, &iocg->vtime);
1166 atomic64_add(delta, &iocg->done_vtime);
1167 atomic64_sub(abs_delta, &iocg->abs_vdebt);
1168 if (WARN_ON_ONCE(atomic64_read(&iocg->abs_vdebt) < 0))
1169 atomic64_set(&iocg->abs_vdebt, 0);
1173 * Wake up the ones which are due and see how much vtime we'll need
1176 ctx.hw_inuse = hw_inuse;
1177 ctx.vbudget = vbudget - vdebt;
1178 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1179 if (!waitqueue_active(&iocg->waitq))
1181 if (WARN_ON_ONCE(ctx.vbudget >= 0))
1184 /* determine next wakeup, add a quarter margin to guarantee chunking */
1185 vshortage = -ctx.vbudget;
1186 expires = now->now_ns +
1187 DIV64_U64_ROUND_UP(vshortage, now->vrate) * NSEC_PER_USEC;
1188 expires += margin_ns / 4;
1190 /* if already active and close enough, don't bother */
1191 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1192 if (hrtimer_is_queued(&iocg->waitq_timer) &&
1193 abs(oexpires - expires) <= margin_ns / 4)
1196 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1197 margin_ns / 4, HRTIMER_MODE_ABS);
1200 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1202 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1204 unsigned long flags;
1206 ioc_now(iocg->ioc, &now);
1208 spin_lock_irqsave(&iocg->waitq.lock, flags);
1209 iocg_kick_waitq(iocg, &now);
1210 spin_unlock_irqrestore(&iocg->waitq.lock, flags);
1212 return HRTIMER_NORESTART;
1215 static void iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now, u64 cost)
1217 struct ioc *ioc = iocg->ioc;
1218 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1219 u64 vtime = atomic64_read(&iocg->vtime);
1220 u64 vmargin = ioc->margin_us * now->vrate;
1221 u64 margin_ns = ioc->margin_us * NSEC_PER_USEC;
1222 u64 expires, oexpires;
1225 /* debt-adjust vtime */
1226 current_hweight(iocg, NULL, &hw_inuse);
1227 vtime += abs_cost_to_cost(atomic64_read(&iocg->abs_vdebt), hw_inuse);
1229 /* clear or maintain depending on the overage */
1230 if (time_before_eq64(vtime, now->vnow)) {
1231 blkcg_clear_delay(blkg);
1234 if (!atomic_read(&blkg->use_delay) &&
1235 time_before_eq64(vtime, now->vnow + vmargin))
1240 u64 cost_ns = DIV64_U64_ROUND_UP(cost * NSEC_PER_USEC,
1242 blkcg_add_delay(blkg, now->now_ns, cost_ns);
1244 blkcg_use_delay(blkg);
1246 expires = now->now_ns + DIV64_U64_ROUND_UP(vtime - now->vnow,
1247 now->vrate) * NSEC_PER_USEC;
1249 /* if already active and close enough, don't bother */
1250 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->delay_timer));
1251 if (hrtimer_is_queued(&iocg->delay_timer) &&
1252 abs(oexpires - expires) <= margin_ns / 4)
1255 hrtimer_start_range_ns(&iocg->delay_timer, ns_to_ktime(expires),
1256 margin_ns / 4, HRTIMER_MODE_ABS);
1259 static enum hrtimer_restart iocg_delay_timer_fn(struct hrtimer *timer)
1261 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, delay_timer);
1264 ioc_now(iocg->ioc, &now);
1265 iocg_kick_delay(iocg, &now, 0);
1267 return HRTIMER_NORESTART;
1270 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1272 u32 nr_met[2] = { };
1273 u32 nr_missed[2] = { };
1277 for_each_online_cpu(cpu) {
1278 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1279 u64 this_rq_wait_ns;
1281 for (rw = READ; rw <= WRITE; rw++) {
1282 u32 this_met = READ_ONCE(stat->missed[rw].nr_met);
1283 u32 this_missed = READ_ONCE(stat->missed[rw].nr_missed);
1285 nr_met[rw] += this_met - stat->missed[rw].last_met;
1286 nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1287 stat->missed[rw].last_met = this_met;
1288 stat->missed[rw].last_missed = this_missed;
1291 this_rq_wait_ns = READ_ONCE(stat->rq_wait_ns);
1292 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1293 stat->last_rq_wait_ns = this_rq_wait_ns;
1296 for (rw = READ; rw <= WRITE; rw++) {
1297 if (nr_met[rw] + nr_missed[rw])
1299 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1300 nr_met[rw] + nr_missed[rw]);
1302 missed_ppm_ar[rw] = 0;
1305 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1306 ioc->period_us * NSEC_PER_USEC);
1309 /* was iocg idle this period? */
1310 static bool iocg_is_idle(struct ioc_gq *iocg)
1312 struct ioc *ioc = iocg->ioc;
1314 /* did something get issued this period? */
1315 if (atomic64_read(&iocg->active_period) ==
1316 atomic64_read(&ioc->cur_period))
1319 /* is something in flight? */
1320 if (atomic64_read(&iocg->done_vtime) < atomic64_read(&iocg->vtime))
1326 /* returns usage with margin added if surplus is large enough */
1327 static u32 surplus_adjusted_hweight_inuse(u32 usage, u32 hw_inuse)
1330 usage = DIV_ROUND_UP(usage * SURPLUS_SCALE_PCT, 100);
1331 usage += SURPLUS_SCALE_ABS;
1333 /* don't bother if the surplus is too small */
1334 if (usage + SURPLUS_MIN_ADJ_DELTA > hw_inuse)
1340 static void ioc_timer_fn(struct timer_list *timer)
1342 struct ioc *ioc = container_of(timer, struct ioc, timer);
1343 struct ioc_gq *iocg, *tiocg;
1345 int nr_surpluses = 0, nr_shortages = 0, nr_lagging = 0;
1346 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
1347 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
1348 u32 missed_ppm[2], rq_wait_pct;
1350 int prev_busy_level, i;
1352 /* how were the latencies during the period? */
1353 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
1355 /* take care of active iocgs */
1356 spin_lock_irq(&ioc->lock);
1360 period_vtime = now.vnow - ioc->period_at_vtime;
1361 if (WARN_ON_ONCE(!period_vtime)) {
1362 spin_unlock_irq(&ioc->lock);
1367 * Waiters determine the sleep durations based on the vrate they
1368 * saw at the time of sleep. If vrate has increased, some waiters
1369 * could be sleeping for too long. Wake up tardy waiters which
1370 * should have woken up in the last period and expire idle iocgs.
1372 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
1373 if (!waitqueue_active(&iocg->waitq) &&
1374 !atomic64_read(&iocg->abs_vdebt) && !iocg_is_idle(iocg))
1377 spin_lock(&iocg->waitq.lock);
1379 if (waitqueue_active(&iocg->waitq) ||
1380 atomic64_read(&iocg->abs_vdebt)) {
1381 /* might be oversleeping vtime / hweight changes, kick */
1382 iocg_kick_waitq(iocg, &now);
1383 iocg_kick_delay(iocg, &now, 0);
1384 } else if (iocg_is_idle(iocg)) {
1385 /* no waiter and idle, deactivate */
1386 iocg->last_inuse = iocg->inuse;
1387 __propagate_active_weight(iocg, 0, 0);
1388 list_del_init(&iocg->active_list);
1391 spin_unlock(&iocg->waitq.lock);
1393 commit_active_weights(ioc);
1395 /* calc usages and see whether some weights need to be moved around */
1396 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1397 u64 vdone, vtime, vusage, vmargin, vmin;
1398 u32 hw_active, hw_inuse, usage;
1401 * Collect unused and wind vtime closer to vnow to prevent
1402 * iocgs from accumulating a large amount of budget.
1404 vdone = atomic64_read(&iocg->done_vtime);
1405 vtime = atomic64_read(&iocg->vtime);
1406 current_hweight(iocg, &hw_active, &hw_inuse);
1409 * Latency QoS detection doesn't account for IOs which are
1410 * in-flight for longer than a period. Detect them by
1411 * comparing vdone against period start. If lagging behind
1412 * IOs from past periods, don't increase vrate.
1414 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
1415 !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
1416 time_after64(vtime, vdone) &&
1417 time_after64(vtime, now.vnow -
1418 MAX_LAGGING_PERIODS * period_vtime) &&
1419 time_before64(vdone, now.vnow - period_vtime))
1422 if (waitqueue_active(&iocg->waitq))
1423 vusage = now.vnow - iocg->last_vtime;
1424 else if (time_before64(iocg->last_vtime, vtime))
1425 vusage = vtime - iocg->last_vtime;
1429 iocg->last_vtime += vusage;
1431 * Factor in in-flight vtime into vusage to avoid
1432 * high-latency completions appearing as idle. This should
1433 * be done after the above ->last_time adjustment.
1435 vusage = max(vusage, vtime - vdone);
1437 /* calculate hweight based usage ratio and record */
1439 usage = DIV64_U64_ROUND_UP(vusage * hw_inuse,
1441 iocg->usage_idx = (iocg->usage_idx + 1) % NR_USAGE_SLOTS;
1442 iocg->usages[iocg->usage_idx] = usage;
1447 /* see whether there's surplus vtime */
1448 vmargin = ioc->margin_us * now.vrate;
1449 vmin = now.vnow - vmargin;
1451 iocg->has_surplus = false;
1453 if (!waitqueue_active(&iocg->waitq) &&
1454 time_before64(vtime, vmin)) {
1455 u64 delta = vmin - vtime;
1457 /* throw away surplus vtime */
1458 atomic64_add(delta, &iocg->vtime);
1459 atomic64_add(delta, &iocg->done_vtime);
1460 iocg->last_vtime += delta;
1461 /* if usage is sufficiently low, maybe it can donate */
1462 if (surplus_adjusted_hweight_inuse(usage, hw_inuse)) {
1463 iocg->has_surplus = true;
1466 } else if (hw_inuse < hw_active) {
1467 u32 new_hwi, new_inuse;
1469 /* was donating but might need to take back some */
1470 if (waitqueue_active(&iocg->waitq)) {
1471 new_hwi = hw_active;
1473 new_hwi = max(hw_inuse,
1474 usage * SURPLUS_SCALE_PCT / 100 +
1478 new_inuse = div64_u64((u64)iocg->inuse * new_hwi,
1480 new_inuse = clamp_t(u32, new_inuse, 1, iocg->active);
1482 if (new_inuse > iocg->inuse) {
1483 TRACE_IOCG_PATH(inuse_takeback, iocg, &now,
1484 iocg->inuse, new_inuse,
1486 __propagate_active_weight(iocg, iocg->weight,
1490 /* genuninely out of vtime */
1495 if (!nr_shortages || !nr_surpluses)
1496 goto skip_surplus_transfers;
1498 /* there are both shortages and surpluses, transfer surpluses */
1499 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1500 u32 usage, hw_active, hw_inuse, new_hwi, new_inuse;
1503 if (!iocg->has_surplus)
1506 /* base the decision on max historical usage */
1507 for (i = 0, usage = 0; i < NR_USAGE_SLOTS; i++) {
1508 if (iocg->usages[i]) {
1509 usage = max(usage, iocg->usages[i]);
1513 if (nr_valid < MIN_VALID_USAGES)
1516 current_hweight(iocg, &hw_active, &hw_inuse);
1517 new_hwi = surplus_adjusted_hweight_inuse(usage, hw_inuse);
1521 new_inuse = DIV64_U64_ROUND_UP((u64)iocg->inuse * new_hwi,
1523 if (new_inuse < iocg->inuse) {
1524 TRACE_IOCG_PATH(inuse_giveaway, iocg, &now,
1525 iocg->inuse, new_inuse,
1527 __propagate_active_weight(iocg, iocg->weight, new_inuse);
1530 skip_surplus_transfers:
1531 commit_active_weights(ioc);
1534 * If q is getting clogged or we're missing too much, we're issuing
1535 * too much IO and should lower vtime rate. If we're not missing
1536 * and experiencing shortages but not surpluses, we're too stingy
1537 * and should increase vtime rate.
1539 prev_busy_level = ioc->busy_level;
1540 if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
1541 missed_ppm[READ] > ppm_rthr ||
1542 missed_ppm[WRITE] > ppm_wthr) {
1543 ioc->busy_level = max(ioc->busy_level, 0);
1545 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
1546 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
1547 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
1548 /* take action iff there is contention */
1549 if (nr_shortages && !nr_lagging) {
1550 ioc->busy_level = min(ioc->busy_level, 0);
1551 /* redistribute surpluses first */
1556 ioc->busy_level = 0;
1559 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
1561 if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
1562 u64 vrate = atomic64_read(&ioc->vtime_rate);
1563 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
1565 /* rq_wait signal is always reliable, ignore user vrate_min */
1566 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
1567 vrate_min = VRATE_MIN;
1570 * If vrate is out of bounds, apply clamp gradually as the
1571 * bounds can change abruptly. Otherwise, apply busy_level
1574 if (vrate < vrate_min) {
1575 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
1577 vrate = min(vrate, vrate_min);
1578 } else if (vrate > vrate_max) {
1579 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
1581 vrate = max(vrate, vrate_max);
1583 int idx = min_t(int, abs(ioc->busy_level),
1584 ARRAY_SIZE(vrate_adj_pct) - 1);
1585 u32 adj_pct = vrate_adj_pct[idx];
1587 if (ioc->busy_level > 0)
1588 adj_pct = 100 - adj_pct;
1590 adj_pct = 100 + adj_pct;
1592 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1593 vrate_min, vrate_max);
1596 trace_iocost_ioc_vrate_adj(ioc, vrate, &missed_ppm, rq_wait_pct,
1597 nr_lagging, nr_shortages,
1600 atomic64_set(&ioc->vtime_rate, vrate);
1601 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
1602 ioc->period_us * vrate * INUSE_MARGIN_PCT, 100);
1603 } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
1604 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
1605 &missed_ppm, rq_wait_pct, nr_lagging,
1606 nr_shortages, nr_surpluses);
1609 ioc_refresh_params(ioc, false);
1612 * This period is done. Move onto the next one. If nothing's
1613 * going on with the device, stop the timer.
1615 atomic64_inc(&ioc->cur_period);
1617 if (ioc->running != IOC_STOP) {
1618 if (!list_empty(&ioc->active_iocgs)) {
1619 ioc_start_period(ioc, &now);
1621 ioc->busy_level = 0;
1622 ioc->running = IOC_IDLE;
1626 spin_unlock_irq(&ioc->lock);
1629 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
1630 bool is_merge, u64 *costp)
1632 struct ioc *ioc = iocg->ioc;
1633 u64 coef_seqio, coef_randio, coef_page;
1634 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
1638 switch (bio_op(bio)) {
1640 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO];
1641 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO];
1642 coef_page = ioc->params.lcoefs[LCOEF_RPAGE];
1645 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO];
1646 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO];
1647 coef_page = ioc->params.lcoefs[LCOEF_WPAGE];
1654 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
1655 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
1659 if (seek_pages > LCOEF_RANDIO_PAGES) {
1660 cost += coef_randio;
1665 cost += pages * coef_page;
1670 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
1674 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
1678 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
1680 struct blkcg_gq *blkg = bio->bi_blkg;
1681 struct ioc *ioc = rqos_to_ioc(rqos);
1682 struct ioc_gq *iocg = blkg_to_iocg(blkg);
1684 struct iocg_wait wait;
1685 u32 hw_active, hw_inuse;
1686 u64 abs_cost, cost, vtime;
1688 /* bypass IOs if disabled or for root cgroup */
1689 if (!ioc->enabled || !iocg->level)
1692 /* always activate so that even 0 cost IOs get protected to some level */
1693 if (!iocg_activate(iocg, &now))
1696 /* calculate the absolute vtime cost */
1697 abs_cost = calc_vtime_cost(bio, iocg, false);
1701 iocg->cursor = bio_end_sector(bio);
1703 vtime = atomic64_read(&iocg->vtime);
1704 current_hweight(iocg, &hw_active, &hw_inuse);
1706 if (hw_inuse < hw_active &&
1707 time_after_eq64(vtime + ioc->inuse_margin_vtime, now.vnow)) {
1708 TRACE_IOCG_PATH(inuse_reset, iocg, &now,
1709 iocg->inuse, iocg->weight, hw_inuse, hw_active);
1710 spin_lock_irq(&ioc->lock);
1711 propagate_active_weight(iocg, iocg->weight, iocg->weight);
1712 spin_unlock_irq(&ioc->lock);
1713 current_hweight(iocg, &hw_active, &hw_inuse);
1716 cost = abs_cost_to_cost(abs_cost, hw_inuse);
1719 * If no one's waiting and within budget, issue right away. The
1720 * tests are racy but the races aren't systemic - we only miss once
1721 * in a while which is fine.
1723 if (!waitqueue_active(&iocg->waitq) &&
1724 !atomic64_read(&iocg->abs_vdebt) &&
1725 time_before_eq64(vtime + cost, now.vnow)) {
1726 iocg_commit_bio(iocg, bio, cost);
1731 * We're over budget. If @bio has to be issued regardless,
1732 * remember the abs_cost instead of advancing vtime.
1733 * iocg_kick_waitq() will pay off the debt before waking more IOs.
1734 * This way, the debt is continuously paid off each period with the
1735 * actual budget available to the cgroup. If we just wound vtime,
1736 * we would incorrectly use the current hw_inuse for the entire
1737 * amount which, for example, can lead to the cgroup staying
1738 * blocked for a long time even with substantially raised hw_inuse.
1740 if (bio_issue_as_root_blkg(bio) || fatal_signal_pending(current)) {
1741 atomic64_add(abs_cost, &iocg->abs_vdebt);
1742 iocg_kick_delay(iocg, &now, cost);
1747 * Append self to the waitq and schedule the wakeup timer if we're
1748 * the first waiter. The timer duration is calculated based on the
1749 * current vrate. vtime and hweight changes can make it too short
1750 * or too long. Each wait entry records the absolute cost it's
1751 * waiting for to allow re-evaluation using a custom wait entry.
1753 * If too short, the timer simply reschedules itself. If too long,
1754 * the period timer will notice and trigger wakeups.
1756 * All waiters are on iocg->waitq and the wait states are
1757 * synchronized using waitq.lock.
1759 spin_lock_irq(&iocg->waitq.lock);
1762 * We activated above but w/o any synchronization. Deactivation is
1763 * synchronized with waitq.lock and we won't get deactivated as
1764 * long as we're waiting, so we're good if we're activated here.
1765 * In the unlikely case that we are deactivated, just issue the IO.
1767 if (unlikely(list_empty(&iocg->active_list))) {
1768 spin_unlock_irq(&iocg->waitq.lock);
1769 iocg_commit_bio(iocg, bio, cost);
1773 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
1774 wait.wait.private = current;
1776 wait.abs_cost = abs_cost;
1777 wait.committed = false; /* will be set true by waker */
1779 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
1780 iocg_kick_waitq(iocg, &now);
1782 spin_unlock_irq(&iocg->waitq.lock);
1785 set_current_state(TASK_UNINTERRUPTIBLE);
1791 /* waker already committed us, proceed */
1792 finish_wait(&iocg->waitq, &wait.wait);
1795 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
1798 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1799 struct ioc *ioc = iocg->ioc;
1800 sector_t bio_end = bio_end_sector(bio);
1805 /* bypass if disabled or for root cgroup */
1806 if (!ioc->enabled || !iocg->level)
1809 abs_cost = calc_vtime_cost(bio, iocg, true);
1814 current_hweight(iocg, NULL, &hw_inuse);
1815 cost = abs_cost_to_cost(abs_cost, hw_inuse);
1817 /* update cursor if backmerging into the request at the cursor */
1818 if (blk_rq_pos(rq) < bio_end &&
1819 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
1820 iocg->cursor = bio_end;
1823 * Charge if there's enough vtime budget and the existing request
1824 * has cost assigned. Otherwise, account it as debt. See debt
1825 * handling in ioc_rqos_throttle() for details.
1827 if (rq->bio && rq->bio->bi_iocost_cost &&
1828 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow))
1829 iocg_commit_bio(iocg, bio, cost);
1831 atomic64_add(abs_cost, &iocg->abs_vdebt);
1834 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
1836 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1838 if (iocg && bio->bi_iocost_cost)
1839 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
1842 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
1844 struct ioc *ioc = rqos_to_ioc(rqos);
1845 u64 on_q_ns, rq_wait_ns;
1848 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
1851 switch (req_op(rq) & REQ_OP_MASK) {
1864 on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
1865 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
1867 if (on_q_ns <= ioc->params.qos[pidx] * NSEC_PER_USEC)
1868 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_met);
1870 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_missed);
1872 this_cpu_add(ioc->pcpu_stat->rq_wait_ns, rq_wait_ns);
1875 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
1877 struct ioc *ioc = rqos_to_ioc(rqos);
1879 spin_lock_irq(&ioc->lock);
1880 ioc_refresh_params(ioc, false);
1881 spin_unlock_irq(&ioc->lock);
1884 static void ioc_rqos_exit(struct rq_qos *rqos)
1886 struct ioc *ioc = rqos_to_ioc(rqos);
1888 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
1890 spin_lock_irq(&ioc->lock);
1891 ioc->running = IOC_STOP;
1892 spin_unlock_irq(&ioc->lock);
1894 del_timer_sync(&ioc->timer);
1895 free_percpu(ioc->pcpu_stat);
1899 static struct rq_qos_ops ioc_rqos_ops = {
1900 .throttle = ioc_rqos_throttle,
1901 .merge = ioc_rqos_merge,
1902 .done_bio = ioc_rqos_done_bio,
1903 .done = ioc_rqos_done,
1904 .queue_depth_changed = ioc_rqos_queue_depth_changed,
1905 .exit = ioc_rqos_exit,
1908 static int blk_iocost_init(struct request_queue *q)
1911 struct rq_qos *rqos;
1914 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
1918 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
1919 if (!ioc->pcpu_stat) {
1925 rqos->id = RQ_QOS_COST;
1926 rqos->ops = &ioc_rqos_ops;
1929 spin_lock_init(&ioc->lock);
1930 timer_setup(&ioc->timer, ioc_timer_fn, 0);
1931 INIT_LIST_HEAD(&ioc->active_iocgs);
1933 ioc->running = IOC_IDLE;
1934 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
1935 seqcount_init(&ioc->period_seqcount);
1936 ioc->period_at = ktime_to_us(ktime_get());
1937 atomic64_set(&ioc->cur_period, 0);
1938 atomic_set(&ioc->hweight_gen, 0);
1940 spin_lock_irq(&ioc->lock);
1941 ioc->autop_idx = AUTOP_INVALID;
1942 ioc_refresh_params(ioc, true);
1943 spin_unlock_irq(&ioc->lock);
1945 rq_qos_add(q, rqos);
1946 ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
1948 rq_qos_del(q, rqos);
1949 free_percpu(ioc->pcpu_stat);
1956 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
1958 struct ioc_cgrp *iocc;
1960 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
1964 iocc->dfl_weight = CGROUP_WEIGHT_DFL;
1968 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
1970 kfree(container_of(cpd, struct ioc_cgrp, cpd));
1973 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
1974 struct blkcg *blkcg)
1976 int levels = blkcg->css.cgroup->level + 1;
1977 struct ioc_gq *iocg;
1979 iocg = kzalloc_node(sizeof(*iocg) + levels * sizeof(iocg->ancestors[0]),
1987 static void ioc_pd_init(struct blkg_policy_data *pd)
1989 struct ioc_gq *iocg = pd_to_iocg(pd);
1990 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
1991 struct ioc *ioc = q_to_ioc(blkg->q);
1993 struct blkcg_gq *tblkg;
1994 unsigned long flags;
1999 atomic64_set(&iocg->vtime, now.vnow);
2000 atomic64_set(&iocg->done_vtime, now.vnow);
2001 atomic64_set(&iocg->abs_vdebt, 0);
2002 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2003 INIT_LIST_HEAD(&iocg->active_list);
2004 iocg->hweight_active = HWEIGHT_WHOLE;
2005 iocg->hweight_inuse = HWEIGHT_WHOLE;
2007 init_waitqueue_head(&iocg->waitq);
2008 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2009 iocg->waitq_timer.function = iocg_waitq_timer_fn;
2010 hrtimer_init(&iocg->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2011 iocg->delay_timer.function = iocg_delay_timer_fn;
2013 iocg->level = blkg->blkcg->css.cgroup->level;
2015 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2016 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2017 iocg->ancestors[tiocg->level] = tiocg;
2020 spin_lock_irqsave(&ioc->lock, flags);
2021 weight_updated(iocg);
2022 spin_unlock_irqrestore(&ioc->lock, flags);
2025 static void ioc_pd_free(struct blkg_policy_data *pd)
2027 struct ioc_gq *iocg = pd_to_iocg(pd);
2028 struct ioc *ioc = iocg->ioc;
2031 spin_lock(&ioc->lock);
2032 if (!list_empty(&iocg->active_list)) {
2033 propagate_active_weight(iocg, 0, 0);
2034 list_del_init(&iocg->active_list);
2036 spin_unlock(&ioc->lock);
2038 hrtimer_cancel(&iocg->waitq_timer);
2039 hrtimer_cancel(&iocg->delay_timer);
2044 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2047 const char *dname = blkg_dev_name(pd->blkg);
2048 struct ioc_gq *iocg = pd_to_iocg(pd);
2050 if (dname && iocg->cfg_weight)
2051 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight);
2056 static int ioc_weight_show(struct seq_file *sf, void *v)
2058 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2059 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2061 seq_printf(sf, "default %u\n", iocc->dfl_weight);
2062 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
2063 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2067 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
2068 size_t nbytes, loff_t off)
2070 struct blkcg *blkcg = css_to_blkcg(of_css(of));
2071 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2072 struct blkg_conf_ctx ctx;
2073 struct ioc_gq *iocg;
2077 if (!strchr(buf, ':')) {
2078 struct blkcg_gq *blkg;
2080 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
2083 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2086 spin_lock(&blkcg->lock);
2087 iocc->dfl_weight = v;
2088 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
2089 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2092 spin_lock_irq(&iocg->ioc->lock);
2093 weight_updated(iocg);
2094 spin_unlock_irq(&iocg->ioc->lock);
2097 spin_unlock(&blkcg->lock);
2102 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
2106 iocg = blkg_to_iocg(ctx.blkg);
2108 if (!strncmp(ctx.body, "default", 7)) {
2111 if (!sscanf(ctx.body, "%u", &v))
2113 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2117 spin_lock(&iocg->ioc->lock);
2118 iocg->cfg_weight = v;
2119 weight_updated(iocg);
2120 spin_unlock(&iocg->ioc->lock);
2122 blkg_conf_finish(&ctx);
2126 blkg_conf_finish(&ctx);
2130 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2133 const char *dname = blkg_dev_name(pd->blkg);
2134 struct ioc *ioc = pd_to_iocg(pd)->ioc;
2139 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
2140 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
2141 ioc->params.qos[QOS_RPPM] / 10000,
2142 ioc->params.qos[QOS_RPPM] % 10000 / 100,
2143 ioc->params.qos[QOS_RLAT],
2144 ioc->params.qos[QOS_WPPM] / 10000,
2145 ioc->params.qos[QOS_WPPM] % 10000 / 100,
2146 ioc->params.qos[QOS_WLAT],
2147 ioc->params.qos[QOS_MIN] / 10000,
2148 ioc->params.qos[QOS_MIN] % 10000 / 100,
2149 ioc->params.qos[QOS_MAX] / 10000,
2150 ioc->params.qos[QOS_MAX] % 10000 / 100);
2154 static int ioc_qos_show(struct seq_file *sf, void *v)
2156 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2158 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
2159 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2163 static const match_table_t qos_ctrl_tokens = {
2164 { QOS_ENABLE, "enable=%u" },
2165 { QOS_CTRL, "ctrl=%s" },
2166 { NR_QOS_CTRL_PARAMS, NULL },
2169 static const match_table_t qos_tokens = {
2170 { QOS_RPPM, "rpct=%s" },
2171 { QOS_RLAT, "rlat=%u" },
2172 { QOS_WPPM, "wpct=%s" },
2173 { QOS_WLAT, "wlat=%u" },
2174 { QOS_MIN, "min=%s" },
2175 { QOS_MAX, "max=%s" },
2176 { NR_QOS_PARAMS, NULL },
2179 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
2180 size_t nbytes, loff_t off)
2182 struct gendisk *disk;
2184 u32 qos[NR_QOS_PARAMS];
2189 disk = blkcg_conf_get_disk(&input);
2191 return PTR_ERR(disk);
2193 ioc = q_to_ioc(disk->queue);
2195 ret = blk_iocost_init(disk->queue);
2198 ioc = q_to_ioc(disk->queue);
2201 spin_lock_irq(&ioc->lock);
2202 memcpy(qos, ioc->params.qos, sizeof(qos));
2203 enable = ioc->enabled;
2204 user = ioc->user_qos_params;
2205 spin_unlock_irq(&ioc->lock);
2207 while ((p = strsep(&input, " \t\n"))) {
2208 substring_t args[MAX_OPT_ARGS];
2216 switch (match_token(p, qos_ctrl_tokens, args)) {
2218 match_u64(&args[0], &v);
2222 match_strlcpy(buf, &args[0], sizeof(buf));
2223 if (!strcmp(buf, "auto"))
2225 else if (!strcmp(buf, "user"))
2232 tok = match_token(p, qos_tokens, args);
2236 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2239 if (cgroup_parse_float(buf, 2, &v))
2241 if (v < 0 || v > 10000)
2247 if (match_u64(&args[0], &v))
2253 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2256 if (cgroup_parse_float(buf, 2, &v))
2260 qos[tok] = clamp_t(s64, v * 100,
2261 VRATE_MIN_PPM, VRATE_MAX_PPM);
2269 if (qos[QOS_MIN] > qos[QOS_MAX])
2272 spin_lock_irq(&ioc->lock);
2275 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2276 ioc->enabled = true;
2278 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2279 ioc->enabled = false;
2283 memcpy(ioc->params.qos, qos, sizeof(qos));
2284 ioc->user_qos_params = true;
2286 ioc->user_qos_params = false;
2289 ioc_refresh_params(ioc, true);
2290 spin_unlock_irq(&ioc->lock);
2292 put_disk_and_module(disk);
2297 put_disk_and_module(disk);
2301 static u64 ioc_cost_model_prfill(struct seq_file *sf,
2302 struct blkg_policy_data *pd, int off)
2304 const char *dname = blkg_dev_name(pd->blkg);
2305 struct ioc *ioc = pd_to_iocg(pd)->ioc;
2306 u64 *u = ioc->params.i_lcoefs;
2311 seq_printf(sf, "%s ctrl=%s model=linear "
2312 "rbps=%llu rseqiops=%llu rrandiops=%llu "
2313 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
2314 dname, ioc->user_cost_model ? "user" : "auto",
2315 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
2316 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
2320 static int ioc_cost_model_show(struct seq_file *sf, void *v)
2322 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2324 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
2325 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2329 static const match_table_t cost_ctrl_tokens = {
2330 { COST_CTRL, "ctrl=%s" },
2331 { COST_MODEL, "model=%s" },
2332 { NR_COST_CTRL_PARAMS, NULL },
2335 static const match_table_t i_lcoef_tokens = {
2336 { I_LCOEF_RBPS, "rbps=%u" },
2337 { I_LCOEF_RSEQIOPS, "rseqiops=%u" },
2338 { I_LCOEF_RRANDIOPS, "rrandiops=%u" },
2339 { I_LCOEF_WBPS, "wbps=%u" },
2340 { I_LCOEF_WSEQIOPS, "wseqiops=%u" },
2341 { I_LCOEF_WRANDIOPS, "wrandiops=%u" },
2342 { NR_I_LCOEFS, NULL },
2345 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
2346 size_t nbytes, loff_t off)
2348 struct gendisk *disk;
2355 disk = blkcg_conf_get_disk(&input);
2357 return PTR_ERR(disk);
2359 ioc = q_to_ioc(disk->queue);
2361 ret = blk_iocost_init(disk->queue);
2364 ioc = q_to_ioc(disk->queue);
2367 spin_lock_irq(&ioc->lock);
2368 memcpy(u, ioc->params.i_lcoefs, sizeof(u));
2369 user = ioc->user_cost_model;
2370 spin_unlock_irq(&ioc->lock);
2372 while ((p = strsep(&input, " \t\n"))) {
2373 substring_t args[MAX_OPT_ARGS];
2381 switch (match_token(p, cost_ctrl_tokens, args)) {
2383 match_strlcpy(buf, &args[0], sizeof(buf));
2384 if (!strcmp(buf, "auto"))
2386 else if (!strcmp(buf, "user"))
2392 match_strlcpy(buf, &args[0], sizeof(buf));
2393 if (strcmp(buf, "linear"))
2398 tok = match_token(p, i_lcoef_tokens, args);
2399 if (tok == NR_I_LCOEFS)
2401 if (match_u64(&args[0], &v))
2407 spin_lock_irq(&ioc->lock);
2409 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
2410 ioc->user_cost_model = true;
2412 ioc->user_cost_model = false;
2414 ioc_refresh_params(ioc, true);
2415 spin_unlock_irq(&ioc->lock);
2417 put_disk_and_module(disk);
2423 put_disk_and_module(disk);
2427 static struct cftype ioc_files[] = {
2430 .flags = CFTYPE_NOT_ON_ROOT,
2431 .seq_show = ioc_weight_show,
2432 .write = ioc_weight_write,
2436 .flags = CFTYPE_ONLY_ON_ROOT,
2437 .seq_show = ioc_qos_show,
2438 .write = ioc_qos_write,
2441 .name = "cost.model",
2442 .flags = CFTYPE_ONLY_ON_ROOT,
2443 .seq_show = ioc_cost_model_show,
2444 .write = ioc_cost_model_write,
2449 static struct blkcg_policy blkcg_policy_iocost = {
2450 .dfl_cftypes = ioc_files,
2451 .cpd_alloc_fn = ioc_cpd_alloc,
2452 .cpd_free_fn = ioc_cpd_free,
2453 .pd_alloc_fn = ioc_pd_alloc,
2454 .pd_init_fn = ioc_pd_init,
2455 .pd_free_fn = ioc_pd_free,
2458 static int __init ioc_init(void)
2460 return blkcg_policy_register(&blkcg_policy_iocost);
2463 static void __exit ioc_exit(void)
2465 return blkcg_policy_unregister(&blkcg_policy_iocost);
2468 module_init(ioc_init);
2469 module_exit(ioc_exit);