1 /* SPDX-License-Identifier: GPL-2.0
3 * IO cost model based controller.
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * paramters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
54 * 2-1. Vtime Distribution
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated. Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
64 * A0 (w:100) A1 (w:100)
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each. The distribution mechanism only cares about these flattened
70 * shares. They're called hweights (hierarchical weights) and always add
71 * upto 1 (WEIGHT_ONE).
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
78 * This constitutes the basis of IO capacity distribution. Each cgroup's
79 * vtime is running at a rate determined by its hweight. A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO iff doing so
81 * wouldn't outrun the current device vtime. Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
84 * 2-2. Vrate Adjustment
86 * It's unrealistic to expect the cost model to be perfect. There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection. The controller needs to adapt dynamically.
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is. If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down. If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock. For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available. When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate. This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, soley depending on rq wait may not result in satisfactory
115 * control quality. For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service. There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage. Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
125 * 2-3. Work Conservation
127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own. Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity. The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition. This is too high a cost to pay
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it. In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically. However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
158 * https://github.com/osandov/drgn. The ouput looks like the following.
160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161 * active weight hweight% inflt% dbt delay usages%
162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
165 * - per : Timer period
166 * - cur_per : Internal wall and device vtime clock
167 * - vrate : Device virtual time rate against wall clock
168 * - weight : Surplus-adjusted and configured weights
169 * - hweight : Surplus-adjusted and configured hierarchical weights
170 * - inflt : The percentage of in-flight IO cost at the end of last period
171 * - del_ms : Deferred issuer delay induction level and duration
172 * - usages : Usage history
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include <asm/local.h>
183 #include <asm/local64.h>
184 #include "blk-rq-qos.h"
185 #include "blk-stat.h"
188 #ifdef CONFIG_TRACEPOINTS
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
195 #define TRACE_IOCG_PATH(type, iocg, ...) \
197 unsigned long flags; \
198 if (trace_iocost_##type##_enabled()) { \
199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
202 trace_iocost_##type(iocg, trace_iocg_path, \
204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
208 #else /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
210 #endif /* CONFIG_TRACE_POINTS */
215 /* timer period is calculated from latency requirements, bound it */
216 MIN_PERIOD = USEC_PER_MSEC,
217 MAX_PERIOD = USEC_PER_SEC,
220 * iocg->vtime is targeted at 50% behind the device vtime, which
221 * serves as its IO credit buffer. Surplus weight adjustment is
222 * immediately canceled if the vtime margin runs below 10%.
226 MARGIN_TARGET_PCT = 50,
228 INUSE_ADJ_STEP_PCT = 25,
230 /* Have some play in timer operations */
233 /* 1/64k is granular enough and can easily be handled w/ u32 */
234 WEIGHT_ONE = 1 << 16,
237 * As vtime is used to calculate the cost of each IO, it needs to
238 * be fairly high precision. For example, it should be able to
239 * represent the cost of a single page worth of discard with
240 * suffificient accuracy. At the same time, it should be able to
241 * represent reasonably long enough durations to be useful and
242 * convenient during operation.
244 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
245 * granularity and days of wrap-around time even at extreme vrates.
247 VTIME_PER_SEC_SHIFT = 37,
248 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT,
249 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC,
250 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC,
252 /* bound vrate adjustments within two orders of magnitude */
253 VRATE_MIN_PPM = 10000, /* 1% */
254 VRATE_MAX_PPM = 100000000, /* 10000% */
256 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
257 VRATE_CLAMP_ADJ_PCT = 4,
259 /* if IOs end up waiting for requests, issue less */
260 RQ_WAIT_BUSY_PCT = 5,
262 /* unbusy hysterisis */
266 * The effect of delay is indirect and non-linear and a huge amount of
267 * future debt can accumulate abruptly while unthrottled. Linearly scale
268 * up delay as debt is going up and then let it decay exponentially.
269 * This gives us quick ramp ups while delay is accumulating and long
270 * tails which can help reducing the frequency of debt explosions on
271 * unthrottle. The parameters are experimentally determined.
273 * The delay mechanism provides adequate protection and behavior in many
274 * cases. However, this is far from ideal and falls shorts on both
275 * fronts. The debtors are often throttled too harshly costing a
276 * significant level of fairness and possibly total work while the
277 * protection against their impacts on the system can be choppy and
280 * The shortcoming primarily stems from the fact that, unlike for page
281 * cache, the kernel doesn't have well-defined back-pressure propagation
282 * mechanism and policies for anonymous memory. Fully addressing this
283 * issue will likely require substantial improvements in the area.
285 MIN_DELAY_THR_PCT = 500,
286 MAX_DELAY_THR_PCT = 25000,
288 MAX_DELAY = 250 * USEC_PER_MSEC,
290 /* halve debts if avg usage over 100ms is under 50% */
292 DFGV_PERIOD = 100 * USEC_PER_MSEC,
294 /* don't let cmds which take a very long time pin lagging for too long */
295 MAX_LAGGING_PERIODS = 10,
297 /* switch iff the conditions are met for longer than this */
298 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC,
301 * Count IO size in 4k pages. The 12bit shift helps keeping
302 * size-proportional components of cost calculation in closer
303 * numbers of digits to per-IO cost components.
306 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT,
307 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT,
309 /* if apart further than 16M, consider randio for linear model */
310 LCOEF_RANDIO_PAGES = 4096,
319 /* io.cost.qos controls including per-dev enable of the whole controller */
326 /* io.cost.qos params */
337 /* io.cost.model controls */
344 /* builtin linear cost model coefficients */
376 u32 qos[NR_QOS_PARAMS];
377 u64 i_lcoefs[NR_I_LCOEFS];
378 u64 lcoefs[NR_LCOEFS];
379 u32 too_fast_vrate_pct;
380 u32 too_slow_vrate_pct;
396 struct ioc_pcpu_stat {
397 struct ioc_missed missed[2];
399 local64_t rq_wait_ns;
409 struct ioc_params params;
410 struct ioc_margins margins;
417 struct timer_list timer;
418 struct list_head active_iocgs; /* active cgroups */
419 struct ioc_pcpu_stat __percpu *pcpu_stat;
421 enum ioc_running running;
422 atomic64_t vtime_rate;
426 seqcount_spinlock_t period_seqcount;
427 u64 period_at; /* wallclock starttime */
428 u64 period_at_vtime; /* vtime starttime */
430 atomic64_t cur_period; /* inc'd each period */
431 int busy_level; /* saturation history */
433 bool weights_updated;
434 atomic_t hweight_gen; /* for lazy hweights */
436 /* debt forgivness */
439 u64 dfgv_usage_us_sum;
441 u64 autop_too_fast_at;
442 u64 autop_too_slow_at;
444 bool user_qos_params:1;
445 bool user_cost_model:1;
448 struct iocg_pcpu_stat {
449 local64_t abs_vusage;
459 /* per device-cgroup pair */
461 struct blkg_policy_data pd;
465 * A iocg can get its weight from two sources - an explicit
466 * per-device-cgroup configuration or the default weight of the
467 * cgroup. `cfg_weight` is the explicit per-device-cgroup
468 * configuration. `weight` is the effective considering both
471 * When an idle cgroup becomes active its `active` goes from 0 to
472 * `weight`. `inuse` is the surplus adjusted active weight.
473 * `active` and `inuse` are used to calculate `hweight_active` and
476 * `last_inuse` remembers `inuse` while an iocg is idle to persist
477 * surplus adjustments.
479 * `inuse` may be adjusted dynamically during period. `saved_*` are used
480 * to determine and track adjustments.
490 sector_t cursor; /* to detect randio */
493 * `vtime` is this iocg's vtime cursor which progresses as IOs are
494 * issued. If lagging behind device vtime, the delta represents
495 * the currently available IO budget. If runnning ahead, the
498 * `vtime_done` is the same but progressed on completion rather
499 * than issue. The delta behind `vtime` represents the cost of
500 * currently in-flight IOs.
503 atomic64_t done_vtime;
506 /* current delay in effect and when it started */
511 * The period this iocg was last active in. Used for deactivation
512 * and invalidating `vtime`.
514 atomic64_t active_period;
515 struct list_head active_list;
517 /* see __propagate_weights() and current_hweight() for details */
518 u64 child_active_sum;
520 u64 child_adjusted_sum;
524 u32 hweight_donating;
525 u32 hweight_after_donation;
527 struct list_head walk_list;
528 struct list_head surplus_list;
530 struct wait_queue_head waitq;
531 struct hrtimer waitq_timer;
533 /* timestamp at the latest activation */
537 struct iocg_pcpu_stat __percpu *pcpu_stat;
538 struct iocg_stat local_stat;
539 struct iocg_stat desc_stat;
540 struct iocg_stat last_stat;
541 u64 last_stat_abs_vusage;
547 /* this iocg's depth in the hierarchy and ancestors including self */
549 struct ioc_gq *ancestors[];
554 struct blkcg_policy_data cpd;
555 unsigned int dfl_weight;
566 struct wait_queue_entry wait;
572 struct iocg_wake_ctx {
578 static const struct ioc_params autop[] = {
581 [QOS_RLAT] = 250000, /* 250ms */
583 [QOS_MIN] = VRATE_MIN_PPM,
584 [QOS_MAX] = VRATE_MAX_PPM,
587 [I_LCOEF_RBPS] = 174019176,
588 [I_LCOEF_RSEQIOPS] = 41708,
589 [I_LCOEF_RRANDIOPS] = 370,
590 [I_LCOEF_WBPS] = 178075866,
591 [I_LCOEF_WSEQIOPS] = 42705,
592 [I_LCOEF_WRANDIOPS] = 378,
597 [QOS_RLAT] = 25000, /* 25ms */
599 [QOS_MIN] = VRATE_MIN_PPM,
600 [QOS_MAX] = VRATE_MAX_PPM,
603 [I_LCOEF_RBPS] = 245855193,
604 [I_LCOEF_RSEQIOPS] = 61575,
605 [I_LCOEF_RRANDIOPS] = 6946,
606 [I_LCOEF_WBPS] = 141365009,
607 [I_LCOEF_WSEQIOPS] = 33716,
608 [I_LCOEF_WRANDIOPS] = 26796,
613 [QOS_RLAT] = 25000, /* 25ms */
615 [QOS_MIN] = VRATE_MIN_PPM,
616 [QOS_MAX] = VRATE_MAX_PPM,
619 [I_LCOEF_RBPS] = 488636629,
620 [I_LCOEF_RSEQIOPS] = 8932,
621 [I_LCOEF_RRANDIOPS] = 8518,
622 [I_LCOEF_WBPS] = 427891549,
623 [I_LCOEF_WSEQIOPS] = 28755,
624 [I_LCOEF_WRANDIOPS] = 21940,
626 .too_fast_vrate_pct = 500,
630 [QOS_RLAT] = 5000, /* 5ms */
632 [QOS_MIN] = VRATE_MIN_PPM,
633 [QOS_MAX] = VRATE_MAX_PPM,
636 [I_LCOEF_RBPS] = 3102524156LLU,
637 [I_LCOEF_RSEQIOPS] = 724816,
638 [I_LCOEF_RRANDIOPS] = 778122,
639 [I_LCOEF_WBPS] = 1742780862LLU,
640 [I_LCOEF_WSEQIOPS] = 425702,
641 [I_LCOEF_WRANDIOPS] = 443193,
643 .too_slow_vrate_pct = 10,
648 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
649 * vtime credit shortage and down on device saturation.
651 static u32 vrate_adj_pct[] =
653 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
654 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
655 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
657 static struct blkcg_policy blkcg_policy_iocost;
659 /* accessors and helpers */
660 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
662 return container_of(rqos, struct ioc, rqos);
665 static struct ioc *q_to_ioc(struct request_queue *q)
667 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
670 static const char *q_name(struct request_queue *q)
672 if (blk_queue_registered(q))
673 return kobject_name(q->kobj.parent);
678 static const char __maybe_unused *ioc_name(struct ioc *ioc)
680 return q_name(ioc->rqos.q);
683 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
685 return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
688 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
690 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
693 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
695 return pd_to_blkg(&iocg->pd);
698 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
700 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
701 struct ioc_cgrp, cpd);
705 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
706 * weight, the more expensive each IO. Must round up.
708 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
710 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
714 * The inverse of abs_cost_to_cost(). Must round up.
716 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
718 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
721 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
722 u64 abs_cost, u64 cost)
724 struct iocg_pcpu_stat *gcs;
726 bio->bi_iocost_cost = cost;
727 atomic64_add(cost, &iocg->vtime);
729 gcs = get_cpu_ptr(iocg->pcpu_stat);
730 local64_add(abs_cost, &gcs->abs_vusage);
734 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
737 spin_lock_irqsave(&iocg->ioc->lock, *flags);
738 spin_lock(&iocg->waitq.lock);
740 spin_lock_irqsave(&iocg->waitq.lock, *flags);
744 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
747 spin_unlock(&iocg->waitq.lock);
748 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
750 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
754 #define CREATE_TRACE_POINTS
755 #include <trace/events/iocost.h>
757 static void ioc_refresh_margins(struct ioc *ioc)
759 struct ioc_margins *margins = &ioc->margins;
760 u32 period_us = ioc->period_us;
761 u64 vrate = ioc->vtime_base_rate;
763 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
764 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
765 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
768 /* latency Qos params changed, update period_us and all the dependent params */
769 static void ioc_refresh_period_us(struct ioc *ioc)
771 u32 ppm, lat, multi, period_us;
773 lockdep_assert_held(&ioc->lock);
775 /* pick the higher latency target */
776 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
777 ppm = ioc->params.qos[QOS_RPPM];
778 lat = ioc->params.qos[QOS_RLAT];
780 ppm = ioc->params.qos[QOS_WPPM];
781 lat = ioc->params.qos[QOS_WLAT];
785 * We want the period to be long enough to contain a healthy number
786 * of IOs while short enough for granular control. Define it as a
787 * multiple of the latency target. Ideally, the multiplier should
788 * be scaled according to the percentile so that it would nominally
789 * contain a certain number of requests. Let's be simpler and
790 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
793 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
796 period_us = multi * lat;
797 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
799 /* calculate dependent params */
800 ioc->period_us = period_us;
801 ioc->timer_slack_ns = div64_u64(
802 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
804 ioc_refresh_margins(ioc);
807 static int ioc_autop_idx(struct ioc *ioc)
809 int idx = ioc->autop_idx;
810 const struct ioc_params *p = &autop[idx];
815 if (!blk_queue_nonrot(ioc->rqos.q))
818 /* handle SATA SSDs w/ broken NCQ */
819 if (blk_queue_depth(ioc->rqos.q) == 1)
820 return AUTOP_SSD_QD1;
822 /* use one of the normal ssd sets */
823 if (idx < AUTOP_SSD_DFL)
824 return AUTOP_SSD_DFL;
826 /* if user is overriding anything, maintain what was there */
827 if (ioc->user_qos_params || ioc->user_cost_model)
830 /* step up/down based on the vrate */
831 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
832 now_ns = ktime_get_ns();
834 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
835 if (!ioc->autop_too_fast_at)
836 ioc->autop_too_fast_at = now_ns;
837 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
840 ioc->autop_too_fast_at = 0;
843 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
844 if (!ioc->autop_too_slow_at)
845 ioc->autop_too_slow_at = now_ns;
846 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
849 ioc->autop_too_slow_at = 0;
856 * Take the followings as input
858 * @bps maximum sequential throughput
859 * @seqiops maximum sequential 4k iops
860 * @randiops maximum random 4k iops
862 * and calculate the linear model cost coefficients.
864 * *@page per-page cost 1s / (@bps / 4096)
865 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
866 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
868 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
869 u64 *page, u64 *seqio, u64 *randio)
873 *page = *seqio = *randio = 0;
876 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
877 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
880 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
886 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
892 static void ioc_refresh_lcoefs(struct ioc *ioc)
894 u64 *u = ioc->params.i_lcoefs;
895 u64 *c = ioc->params.lcoefs;
897 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
898 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
899 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
900 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
903 static bool ioc_refresh_params(struct ioc *ioc, bool force)
905 const struct ioc_params *p;
908 lockdep_assert_held(&ioc->lock);
910 idx = ioc_autop_idx(ioc);
913 if (idx == ioc->autop_idx && !force)
916 if (idx != ioc->autop_idx)
917 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
919 ioc->autop_idx = idx;
920 ioc->autop_too_fast_at = 0;
921 ioc->autop_too_slow_at = 0;
923 if (!ioc->user_qos_params)
924 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
925 if (!ioc->user_cost_model)
926 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
928 ioc_refresh_period_us(ioc);
929 ioc_refresh_lcoefs(ioc);
931 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
932 VTIME_PER_USEC, MILLION);
933 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
934 VTIME_PER_USEC, MILLION);
940 * When an iocg accumulates too much vtime or gets deactivated, we throw away
941 * some vtime, which lowers the overall device utilization. As the exact amount
942 * which is being thrown away is known, we can compensate by accelerating the
943 * vrate accordingly so that the extra vtime generated in the current period
944 * matches what got lost.
946 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
948 s64 pleft = ioc->period_at + ioc->period_us - now->now;
949 s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
950 s64 vcomp, vcomp_min, vcomp_max;
952 lockdep_assert_held(&ioc->lock);
954 /* we need some time left in this period */
959 * Calculate how much vrate should be adjusted to offset the error.
960 * Limit the amount of adjustment and deduct the adjusted amount from
963 vcomp = -div64_s64(ioc->vtime_err, pleft);
964 vcomp_min = -(ioc->vtime_base_rate >> 1);
965 vcomp_max = ioc->vtime_base_rate;
966 vcomp = clamp(vcomp, vcomp_min, vcomp_max);
968 ioc->vtime_err += vcomp * pleft;
970 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
972 /* bound how much error can accumulate */
973 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
976 /* take a snapshot of the current [v]time and vrate */
977 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
981 now->now_ns = ktime_get();
982 now->now = ktime_to_us(now->now_ns);
983 now->vrate = atomic64_read(&ioc->vtime_rate);
986 * The current vtime is
988 * vtime at period start + (wallclock time since the start) * vrate
990 * As a consistent snapshot of `period_at_vtime` and `period_at` is
991 * needed, they're seqcount protected.
994 seq = read_seqcount_begin(&ioc->period_seqcount);
995 now->vnow = ioc->period_at_vtime +
996 (now->now - ioc->period_at) * now->vrate;
997 } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1000 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1002 WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1004 write_seqcount_begin(&ioc->period_seqcount);
1005 ioc->period_at = now->now;
1006 ioc->period_at_vtime = now->vnow;
1007 write_seqcount_end(&ioc->period_seqcount);
1009 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1010 add_timer(&ioc->timer);
1014 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1015 * weight sums and propagate upwards accordingly. If @save, the current margin
1016 * is saved to be used as reference for later inuse in-period adjustments.
1018 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1019 bool save, struct ioc_now *now)
1021 struct ioc *ioc = iocg->ioc;
1024 lockdep_assert_held(&ioc->lock);
1026 inuse = clamp_t(u32, inuse, 1, active);
1028 iocg->last_inuse = iocg->inuse;
1030 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1032 if (active == iocg->active && inuse == iocg->inuse)
1035 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1036 struct ioc_gq *parent = iocg->ancestors[lvl];
1037 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1038 u32 parent_active = 0, parent_inuse = 0;
1040 /* update the level sums */
1041 parent->child_active_sum += (s32)(active - child->active);
1042 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1043 /* apply the udpates */
1044 child->active = active;
1045 child->inuse = inuse;
1048 * The delta between inuse and active sums indicates that
1049 * that much of weight is being given away. Parent's inuse
1050 * and active should reflect the ratio.
1052 if (parent->child_active_sum) {
1053 parent_active = parent->weight;
1054 parent_inuse = DIV64_U64_ROUND_UP(
1055 parent_active * parent->child_inuse_sum,
1056 parent->child_active_sum);
1059 /* do we need to keep walking up? */
1060 if (parent_active == parent->active &&
1061 parent_inuse == parent->inuse)
1064 active = parent_active;
1065 inuse = parent_inuse;
1068 ioc->weights_updated = true;
1071 static void commit_weights(struct ioc *ioc)
1073 lockdep_assert_held(&ioc->lock);
1075 if (ioc->weights_updated) {
1076 /* paired with rmb in current_hweight(), see there */
1078 atomic_inc(&ioc->hweight_gen);
1079 ioc->weights_updated = false;
1083 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1084 bool save, struct ioc_now *now)
1086 __propagate_weights(iocg, active, inuse, save, now);
1087 commit_weights(iocg->ioc);
1090 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1092 struct ioc *ioc = iocg->ioc;
1097 /* hot path - if uptodate, use cached */
1098 ioc_gen = atomic_read(&ioc->hweight_gen);
1099 if (ioc_gen == iocg->hweight_gen)
1103 * Paired with wmb in commit_weights(). If we saw the updated
1104 * hweight_gen, all the weight updates from __propagate_weights() are
1107 * We can race with weight updates during calculation and get it
1108 * wrong. However, hweight_gen would have changed and a future
1109 * reader will recalculate and we're guaranteed to discard the
1110 * wrong result soon.
1114 hwa = hwi = WEIGHT_ONE;
1115 for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1116 struct ioc_gq *parent = iocg->ancestors[lvl];
1117 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1118 u64 active_sum = READ_ONCE(parent->child_active_sum);
1119 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1120 u32 active = READ_ONCE(child->active);
1121 u32 inuse = READ_ONCE(child->inuse);
1123 /* we can race with deactivations and either may read as zero */
1124 if (!active_sum || !inuse_sum)
1127 active_sum = max_t(u64, active, active_sum);
1128 hwa = div64_u64((u64)hwa * active, active_sum);
1130 inuse_sum = max_t(u64, inuse, inuse_sum);
1131 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1134 iocg->hweight_active = max_t(u32, hwa, 1);
1135 iocg->hweight_inuse = max_t(u32, hwi, 1);
1136 iocg->hweight_gen = ioc_gen;
1139 *hw_activep = iocg->hweight_active;
1141 *hw_inusep = iocg->hweight_inuse;
1145 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1146 * other weights stay unchanged.
1148 static u32 current_hweight_max(struct ioc_gq *iocg)
1150 u32 hwm = WEIGHT_ONE;
1151 u32 inuse = iocg->active;
1152 u64 child_inuse_sum;
1155 lockdep_assert_held(&iocg->ioc->lock);
1157 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1158 struct ioc_gq *parent = iocg->ancestors[lvl];
1159 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1161 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1162 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1163 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1164 parent->child_active_sum);
1167 return max_t(u32, hwm, 1);
1170 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1172 struct ioc *ioc = iocg->ioc;
1173 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1174 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1177 lockdep_assert_held(&ioc->lock);
1179 weight = iocg->cfg_weight ?: iocc->dfl_weight;
1180 if (weight != iocg->weight && iocg->active)
1181 propagate_weights(iocg, weight, iocg->inuse, true, now);
1182 iocg->weight = weight;
1185 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1187 struct ioc *ioc = iocg->ioc;
1188 u64 last_period, cur_period;
1193 * If seem to be already active, just update the stamp to tell the
1194 * timer that we're still active. We don't mind occassional races.
1196 if (!list_empty(&iocg->active_list)) {
1198 cur_period = atomic64_read(&ioc->cur_period);
1199 if (atomic64_read(&iocg->active_period) != cur_period)
1200 atomic64_set(&iocg->active_period, cur_period);
1204 /* racy check on internal node IOs, treat as root level IOs */
1205 if (iocg->child_active_sum)
1208 spin_lock_irq(&ioc->lock);
1213 cur_period = atomic64_read(&ioc->cur_period);
1214 last_period = atomic64_read(&iocg->active_period);
1215 atomic64_set(&iocg->active_period, cur_period);
1217 /* already activated or breaking leaf-only constraint? */
1218 if (!list_empty(&iocg->active_list))
1219 goto succeed_unlock;
1220 for (i = iocg->level - 1; i > 0; i--)
1221 if (!list_empty(&iocg->ancestors[i]->active_list))
1224 if (iocg->child_active_sum)
1228 * Always start with the target budget. On deactivation, we throw away
1229 * anything above it.
1231 vtarget = now->vnow - ioc->margins.target;
1232 vtime = atomic64_read(&iocg->vtime);
1234 atomic64_add(vtarget - vtime, &iocg->vtime);
1235 atomic64_add(vtarget - vtime, &iocg->done_vtime);
1239 * Activate, propagate weight and start period timer if not
1240 * running. Reset hweight_gen to avoid accidental match from
1243 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1244 list_add(&iocg->active_list, &ioc->active_iocgs);
1246 propagate_weights(iocg, iocg->weight,
1247 iocg->last_inuse ?: iocg->weight, true, now);
1249 TRACE_IOCG_PATH(iocg_activate, iocg, now,
1250 last_period, cur_period, vtime);
1252 iocg->activated_at = now->now;
1254 if (ioc->running == IOC_IDLE) {
1255 ioc->running = IOC_RUNNING;
1256 ioc->dfgv_period_at = now->now;
1257 ioc->dfgv_period_rem = 0;
1258 ioc_start_period(ioc, now);
1262 spin_unlock_irq(&ioc->lock);
1266 spin_unlock_irq(&ioc->lock);
1270 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1272 struct ioc *ioc = iocg->ioc;
1273 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1274 u64 tdelta, delay, new_delay;
1275 s64 vover, vover_pct;
1278 lockdep_assert_held(&iocg->waitq.lock);
1280 /* calculate the current delay in effect - 1/2 every second */
1281 tdelta = now->now - iocg->delay_at;
1283 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1287 /* calculate the new delay from the debt amount */
1288 current_hweight(iocg, &hwa, NULL);
1289 vover = atomic64_read(&iocg->vtime) +
1290 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1291 vover_pct = div64_s64(100 * vover,
1292 ioc->period_us * ioc->vtime_base_rate);
1294 if (vover_pct <= MIN_DELAY_THR_PCT)
1296 else if (vover_pct >= MAX_DELAY_THR_PCT)
1297 new_delay = MAX_DELAY;
1299 new_delay = MIN_DELAY +
1300 div_u64((MAX_DELAY - MIN_DELAY) *
1301 (vover_pct - MIN_DELAY_THR_PCT),
1302 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1304 /* pick the higher one and apply */
1305 if (new_delay > delay) {
1306 iocg->delay = new_delay;
1307 iocg->delay_at = now->now;
1311 if (delay >= MIN_DELAY) {
1312 if (!iocg->indelay_since)
1313 iocg->indelay_since = now->now;
1314 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1317 if (iocg->indelay_since) {
1318 iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
1319 iocg->indelay_since = 0;
1322 blkcg_clear_delay(blkg);
1327 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1328 struct ioc_now *now)
1330 struct iocg_pcpu_stat *gcs;
1332 lockdep_assert_held(&iocg->ioc->lock);
1333 lockdep_assert_held(&iocg->waitq.lock);
1334 WARN_ON_ONCE(list_empty(&iocg->active_list));
1337 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1338 * inuse donating all of it share to others until its debt is paid off.
1340 if (!iocg->abs_vdebt && abs_cost) {
1341 iocg->indebt_since = now->now;
1342 propagate_weights(iocg, iocg->active, 0, false, now);
1345 iocg->abs_vdebt += abs_cost;
1347 gcs = get_cpu_ptr(iocg->pcpu_stat);
1348 local64_add(abs_cost, &gcs->abs_vusage);
1352 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1353 struct ioc_now *now)
1355 lockdep_assert_held(&iocg->ioc->lock);
1356 lockdep_assert_held(&iocg->waitq.lock);
1358 /* make sure that nobody messed with @iocg */
1359 WARN_ON_ONCE(list_empty(&iocg->active_list));
1360 WARN_ON_ONCE(iocg->inuse > 1);
1362 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1364 /* if debt is paid in full, restore inuse */
1365 if (!iocg->abs_vdebt) {
1366 iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
1367 iocg->indebt_since = 0;
1369 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1374 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1375 int flags, void *key)
1377 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1378 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1379 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1381 ctx->vbudget -= cost;
1383 if (ctx->vbudget < 0)
1386 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1389 * autoremove_wake_function() removes the wait entry only when it
1390 * actually changed the task state. We want the wait always
1391 * removed. Remove explicitly and use default_wake_function().
1393 list_del_init(&wq_entry->entry);
1394 wait->committed = true;
1396 default_wake_function(wq_entry, mode, flags, key);
1401 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1402 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1403 * addition to iocg->waitq.lock.
1405 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1406 struct ioc_now *now)
1408 struct ioc *ioc = iocg->ioc;
1409 struct iocg_wake_ctx ctx = { .iocg = iocg };
1410 u64 vshortage, expires, oexpires;
1414 lockdep_assert_held(&iocg->waitq.lock);
1416 current_hweight(iocg, &hwa, NULL);
1417 vbudget = now->vnow - atomic64_read(&iocg->vtime);
1420 if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1421 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1422 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1423 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1425 lockdep_assert_held(&ioc->lock);
1427 atomic64_add(vpay, &iocg->vtime);
1428 atomic64_add(vpay, &iocg->done_vtime);
1429 iocg_pay_debt(iocg, abs_vpay, now);
1433 if (iocg->abs_vdebt || iocg->delay)
1434 iocg_kick_delay(iocg, now);
1437 * Debt can still be outstanding if we haven't paid all yet or the
1438 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1439 * under debt. Make sure @vbudget reflects the outstanding amount and is
1442 if (iocg->abs_vdebt) {
1443 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1444 vbudget = min_t(s64, 0, vbudget - vdebt);
1448 * Wake up the ones which are due and see how much vtime we'll need for
1449 * the next one. As paying off debt restores hw_inuse, it must be read
1450 * after the above debt payment.
1452 ctx.vbudget = vbudget;
1453 current_hweight(iocg, NULL, &ctx.hw_inuse);
1455 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1457 if (!waitqueue_active(&iocg->waitq)) {
1458 if (iocg->wait_since) {
1459 iocg->local_stat.wait_us += now->now - iocg->wait_since;
1460 iocg->wait_since = 0;
1465 if (!iocg->wait_since)
1466 iocg->wait_since = now->now;
1468 if (WARN_ON_ONCE(ctx.vbudget >= 0))
1471 /* determine next wakeup, add a timer margin to guarantee chunking */
1472 vshortage = -ctx.vbudget;
1473 expires = now->now_ns +
1474 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1476 expires += ioc->timer_slack_ns;
1478 /* if already active and close enough, don't bother */
1479 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1480 if (hrtimer_is_queued(&iocg->waitq_timer) &&
1481 abs(oexpires - expires) <= ioc->timer_slack_ns)
1484 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1485 ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1488 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1490 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1491 bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1493 unsigned long flags;
1495 ioc_now(iocg->ioc, &now);
1497 iocg_lock(iocg, pay_debt, &flags);
1498 iocg_kick_waitq(iocg, pay_debt, &now);
1499 iocg_unlock(iocg, pay_debt, &flags);
1501 return HRTIMER_NORESTART;
1504 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1506 u32 nr_met[2] = { };
1507 u32 nr_missed[2] = { };
1511 for_each_online_cpu(cpu) {
1512 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1513 u64 this_rq_wait_ns;
1515 for (rw = READ; rw <= WRITE; rw++) {
1516 u32 this_met = local_read(&stat->missed[rw].nr_met);
1517 u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1519 nr_met[rw] += this_met - stat->missed[rw].last_met;
1520 nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1521 stat->missed[rw].last_met = this_met;
1522 stat->missed[rw].last_missed = this_missed;
1525 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1526 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1527 stat->last_rq_wait_ns = this_rq_wait_ns;
1530 for (rw = READ; rw <= WRITE; rw++) {
1531 if (nr_met[rw] + nr_missed[rw])
1533 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1534 nr_met[rw] + nr_missed[rw]);
1536 missed_ppm_ar[rw] = 0;
1539 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1540 ioc->period_us * NSEC_PER_USEC);
1543 /* was iocg idle this period? */
1544 static bool iocg_is_idle(struct ioc_gq *iocg)
1546 struct ioc *ioc = iocg->ioc;
1548 /* did something get issued this period? */
1549 if (atomic64_read(&iocg->active_period) ==
1550 atomic64_read(&ioc->cur_period))
1553 /* is something in flight? */
1554 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1561 * Call this function on the target leaf @iocg's to build pre-order traversal
1562 * list of all the ancestors in @inner_walk. The inner nodes are linked through
1563 * ->walk_list and the caller is responsible for dissolving the list after use.
1565 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1566 struct list_head *inner_walk)
1570 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1572 /* find the first ancestor which hasn't been visited yet */
1573 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1574 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1578 /* walk down and visit the inner nodes to get pre-order traversal */
1579 while (++lvl <= iocg->level - 1) {
1580 struct ioc_gq *inner = iocg->ancestors[lvl];
1582 /* record traversal order */
1583 list_add_tail(&inner->walk_list, inner_walk);
1587 /* collect per-cpu counters and propagate the deltas to the parent */
1588 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1590 struct ioc *ioc = iocg->ioc;
1591 struct iocg_stat new_stat;
1596 lockdep_assert_held(&iocg->ioc->lock);
1598 /* collect per-cpu counters */
1599 for_each_possible_cpu(cpu) {
1600 abs_vusage += local64_read(
1601 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1603 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1604 iocg->last_stat_abs_vusage = abs_vusage;
1606 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1607 iocg->local_stat.usage_us += iocg->usage_delta_us;
1609 /* propagate upwards */
1611 iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
1613 iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
1614 new_stat.indebt_us =
1615 iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
1616 new_stat.indelay_us =
1617 iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
1619 /* propagate the deltas to the parent */
1620 if (iocg->level > 0) {
1621 struct iocg_stat *parent_stat =
1622 &iocg->ancestors[iocg->level - 1]->desc_stat;
1624 parent_stat->usage_us +=
1625 new_stat.usage_us - iocg->last_stat.usage_us;
1626 parent_stat->wait_us +=
1627 new_stat.wait_us - iocg->last_stat.wait_us;
1628 parent_stat->indebt_us +=
1629 new_stat.indebt_us - iocg->last_stat.indebt_us;
1630 parent_stat->indelay_us +=
1631 new_stat.indelay_us - iocg->last_stat.indelay_us;
1634 iocg->last_stat = new_stat;
1637 /* get stat counters ready for reading on all active iocgs */
1638 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1640 LIST_HEAD(inner_walk);
1641 struct ioc_gq *iocg, *tiocg;
1643 /* flush leaves and build inner node walk list */
1644 list_for_each_entry(iocg, target_iocgs, active_list) {
1645 iocg_flush_stat_one(iocg, now);
1646 iocg_build_inner_walk(iocg, &inner_walk);
1649 /* keep flushing upwards by walking the inner list backwards */
1650 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1651 iocg_flush_stat_one(iocg, now);
1652 list_del_init(&iocg->walk_list);
1657 * Determine what @iocg's hweight_inuse should be after donating unused
1658 * capacity. @hwm is the upper bound and used to signal no donation. This
1659 * function also throws away @iocg's excess budget.
1661 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1662 u32 usage, struct ioc_now *now)
1664 struct ioc *ioc = iocg->ioc;
1665 u64 vtime = atomic64_read(&iocg->vtime);
1666 s64 excess, delta, target, new_hwi;
1668 /* debt handling owns inuse for debtors */
1669 if (iocg->abs_vdebt)
1672 /* see whether minimum margin requirement is met */
1673 if (waitqueue_active(&iocg->waitq) ||
1674 time_after64(vtime, now->vnow - ioc->margins.min))
1677 /* throw away excess above target */
1678 excess = now->vnow - vtime - ioc->margins.target;
1680 atomic64_add(excess, &iocg->vtime);
1681 atomic64_add(excess, &iocg->done_vtime);
1683 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1687 * Let's say the distance between iocg's and device's vtimes as a
1688 * fraction of period duration is delta. Assuming that the iocg will
1689 * consume the usage determined above, we want to determine new_hwi so
1690 * that delta equals MARGIN_TARGET at the end of the next period.
1692 * We need to execute usage worth of IOs while spending the sum of the
1693 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1696 * usage = (1 - MARGIN_TARGET + delta) * new_hwi
1698 * Therefore, the new_hwi is:
1700 * new_hwi = usage / (1 - MARGIN_TARGET + delta)
1702 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1703 now->vnow - ioc->period_at_vtime);
1704 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1705 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1707 return clamp_t(s64, new_hwi, 1, hwm);
1711 * For work-conservation, an iocg which isn't using all of its share should
1712 * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1713 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1715 * #1 is mathematically simpler but has the drawback of requiring synchronous
1716 * global hweight_inuse updates when idle iocg's get activated or inuse weights
1717 * change due to donation snapbacks as it has the possibility of grossly
1718 * overshooting what's allowed by the model and vrate.
1720 * #2 is inherently safe with local operations. The donating iocg can easily
1721 * snap back to higher weights when needed without worrying about impacts on
1722 * other nodes as the impacts will be inherently correct. This also makes idle
1723 * iocg activations safe. The only effect activations have is decreasing
1724 * hweight_inuse of others, the right solution to which is for those iocgs to
1725 * snap back to higher weights.
1727 * So, we go with #2. The challenge is calculating how each donating iocg's
1728 * inuse should be adjusted to achieve the target donation amounts. This is done
1729 * using Andy's method described in the following pdf.
1731 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1733 * Given the weights and target after-donation hweight_inuse values, Andy's
1734 * method determines how the proportional distribution should look like at each
1735 * sibling level to maintain the relative relationship between all non-donating
1736 * pairs. To roughly summarize, it divides the tree into donating and
1737 * non-donating parts, calculates global donation rate which is used to
1738 * determine the target hweight_inuse for each node, and then derives per-level
1741 * The following pdf shows that global distribution calculated this way can be
1742 * achieved by scaling inuse weights of donating leaves and propagating the
1743 * adjustments upwards proportionally.
1745 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1747 * Combining the above two, we can determine how each leaf iocg's inuse should
1748 * be adjusted to achieve the target donation.
1750 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1752 * The inline comments use symbols from the last pdf.
1754 * b is the sum of the absolute budgets in the subtree. 1 for the root node.
1755 * f is the sum of the absolute budgets of non-donating nodes in the subtree.
1756 * t is the sum of the absolute budgets of donating nodes in the subtree.
1757 * w is the weight of the node. w = w_f + w_t
1758 * w_f is the non-donating portion of w. w_f = w * f / b
1759 * w_b is the donating portion of w. w_t = w * t / b
1760 * s is the sum of all sibling weights. s = Sum(w) for siblings
1761 * s_f and s_t are the non-donating and donating portions of s.
1763 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1764 * w_pt is the donating portion of the parent's weight and w'_pt the same value
1765 * after adjustments. Subscript r denotes the root node's values.
1767 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1769 LIST_HEAD(over_hwa);
1770 LIST_HEAD(inner_walk);
1771 struct ioc_gq *iocg, *tiocg, *root_iocg;
1772 u32 after_sum, over_sum, over_target, gamma;
1775 * It's pretty unlikely but possible for the total sum of
1776 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1777 * confuse the following calculations. If such condition is detected,
1778 * scale down everyone over its full share equally to keep the sum below
1783 list_for_each_entry(iocg, surpluses, surplus_list) {
1786 current_hweight(iocg, &hwa, NULL);
1787 after_sum += iocg->hweight_after_donation;
1789 if (iocg->hweight_after_donation > hwa) {
1790 over_sum += iocg->hweight_after_donation;
1791 list_add(&iocg->walk_list, &over_hwa);
1795 if (after_sum >= WEIGHT_ONE) {
1797 * The delta should be deducted from the over_sum, calculate
1798 * target over_sum value.
1800 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1801 WARN_ON_ONCE(over_sum <= over_delta);
1802 over_target = over_sum - over_delta;
1807 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1809 iocg->hweight_after_donation =
1810 div_u64((u64)iocg->hweight_after_donation *
1811 over_target, over_sum);
1812 list_del_init(&iocg->walk_list);
1816 * Build pre-order inner node walk list and prepare for donation
1817 * adjustment calculations.
1819 list_for_each_entry(iocg, surpluses, surplus_list) {
1820 iocg_build_inner_walk(iocg, &inner_walk);
1823 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1824 WARN_ON_ONCE(root_iocg->level > 0);
1826 list_for_each_entry(iocg, &inner_walk, walk_list) {
1827 iocg->child_adjusted_sum = 0;
1828 iocg->hweight_donating = 0;
1829 iocg->hweight_after_donation = 0;
1833 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1836 list_for_each_entry(iocg, surpluses, surplus_list) {
1837 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1839 parent->hweight_donating += iocg->hweight_donating;
1840 parent->hweight_after_donation += iocg->hweight_after_donation;
1843 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1844 if (iocg->level > 0) {
1845 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1847 parent->hweight_donating += iocg->hweight_donating;
1848 parent->hweight_after_donation += iocg->hweight_after_donation;
1853 * Calculate inner hwa's (b) and make sure the donation values are
1854 * within the accepted ranges as we're doing low res calculations with
1857 list_for_each_entry(iocg, &inner_walk, walk_list) {
1859 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1861 iocg->hweight_active = DIV64_U64_ROUND_UP(
1862 (u64)parent->hweight_active * iocg->active,
1863 parent->child_active_sum);
1867 iocg->hweight_donating = min(iocg->hweight_donating,
1868 iocg->hweight_active);
1869 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1870 iocg->hweight_donating - 1);
1871 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1872 iocg->hweight_donating <= 1 ||
1873 iocg->hweight_after_donation == 0)) {
1874 pr_warn("iocg: invalid donation weights in ");
1875 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1876 pr_cont(": active=%u donating=%u after=%u\n",
1877 iocg->hweight_active, iocg->hweight_donating,
1878 iocg->hweight_after_donation);
1883 * Calculate the global donation rate (gamma) - the rate to adjust
1884 * non-donating budgets by.
1886 * No need to use 64bit multiplication here as the first operand is
1887 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1889 * We know that there are beneficiary nodes and the sum of the donating
1890 * hweights can't be whole; however, due to the round-ups during hweight
1891 * calculations, root_iocg->hweight_donating might still end up equal to
1892 * or greater than whole. Limit the range when calculating the divider.
1894 * gamma = (1 - t_r') / (1 - t_r)
1896 gamma = DIV_ROUND_UP(
1897 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1898 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1901 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1904 list_for_each_entry(iocg, &inner_walk, walk_list) {
1905 struct ioc_gq *parent;
1906 u32 inuse, wpt, wptp;
1909 if (iocg->level == 0) {
1910 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1911 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1912 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1913 WEIGHT_ONE - iocg->hweight_after_donation);
1917 parent = iocg->ancestors[iocg->level - 1];
1919 /* b' = gamma * b_f + b_t' */
1920 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1921 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1922 WEIGHT_ONE) + iocg->hweight_after_donation;
1924 /* w' = s' * b' / b'_p */
1925 inuse = DIV64_U64_ROUND_UP(
1926 (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1927 parent->hweight_inuse);
1929 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1930 st = DIV64_U64_ROUND_UP(
1931 iocg->child_active_sum * iocg->hweight_donating,
1932 iocg->hweight_active);
1933 sf = iocg->child_active_sum - st;
1934 wpt = DIV64_U64_ROUND_UP(
1935 (u64)iocg->active * iocg->hweight_donating,
1936 iocg->hweight_active);
1937 wptp = DIV64_U64_ROUND_UP(
1938 (u64)inuse * iocg->hweight_after_donation,
1939 iocg->hweight_inuse);
1941 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1945 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1946 * we can finally determine leaf adjustments.
1948 list_for_each_entry(iocg, surpluses, surplus_list) {
1949 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1953 * In-debt iocgs participated in the donation calculation with
1954 * the minimum target hweight_inuse. Configuring inuse
1955 * accordingly would work fine but debt handling expects
1956 * @iocg->inuse stay at the minimum and we don't wanna
1959 if (iocg->abs_vdebt) {
1960 WARN_ON_ONCE(iocg->inuse > 1);
1964 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
1965 inuse = DIV64_U64_ROUND_UP(
1966 parent->child_adjusted_sum * iocg->hweight_after_donation,
1967 parent->hweight_inuse);
1969 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
1971 iocg->hweight_inuse,
1972 iocg->hweight_after_donation);
1974 __propagate_weights(iocg, iocg->active, inuse, true, now);
1977 /* walk list should be dissolved after use */
1978 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
1979 list_del_init(&iocg->walk_list);
1983 * A low weight iocg can amass a large amount of debt, for example, when
1984 * anonymous memory gets reclaimed aggressively. If the system has a lot of
1985 * memory paired with a slow IO device, the debt can span multiple seconds or
1986 * more. If there are no other subsequent IO issuers, the in-debt iocg may end
1987 * up blocked paying its debt while the IO device is idle.
1989 * The following protects against such cases. If the device has been
1990 * sufficiently idle for a while, the debts are halved and delays are
1993 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
1994 struct ioc_now *now)
1996 struct ioc_gq *iocg;
1997 u64 dur, usage_pct, nr_cycles;
1999 /* if no debtor, reset the cycle */
2001 ioc->dfgv_period_at = now->now;
2002 ioc->dfgv_period_rem = 0;
2003 ioc->dfgv_usage_us_sum = 0;
2008 * Debtors can pass through a lot of writes choking the device and we
2009 * don't want to be forgiving debts while the device is struggling from
2010 * write bursts. If we're missing latency targets, consider the device
2013 if (ioc->busy_level > 0)
2014 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2016 ioc->dfgv_usage_us_sum += usage_us_sum;
2017 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2021 * At least DFGV_PERIOD has passed since the last period. Calculate the
2022 * average usage and reset the period counters.
2024 dur = now->now - ioc->dfgv_period_at;
2025 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2027 ioc->dfgv_period_at = now->now;
2028 ioc->dfgv_usage_us_sum = 0;
2030 /* if was too busy, reset everything */
2031 if (usage_pct > DFGV_USAGE_PCT) {
2032 ioc->dfgv_period_rem = 0;
2037 * Usage is lower than threshold. Let's forgive some debts. Debt
2038 * forgiveness runs off of the usual ioc timer but its period usually
2039 * doesn't match ioc's. Compensate the difference by performing the
2040 * reduction as many times as would fit in the duration since the last
2041 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2042 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2043 * reductions is doubled.
2045 nr_cycles = dur + ioc->dfgv_period_rem;
2046 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2048 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2049 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2051 if (!iocg->abs_vdebt && !iocg->delay)
2054 spin_lock(&iocg->waitq.lock);
2056 old_debt = iocg->abs_vdebt;
2057 old_delay = iocg->delay;
2059 if (iocg->abs_vdebt)
2060 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2062 iocg->delay = iocg->delay >> nr_cycles ?: 1;
2064 iocg_kick_waitq(iocg, true, now);
2066 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2067 old_debt, iocg->abs_vdebt,
2068 old_delay, iocg->delay);
2070 spin_unlock(&iocg->waitq.lock);
2074 static void ioc_timer_fn(struct timer_list *timer)
2076 struct ioc *ioc = container_of(timer, struct ioc, timer);
2077 struct ioc_gq *iocg, *tiocg;
2079 LIST_HEAD(surpluses);
2080 int nr_debtors = 0, nr_shortages = 0, nr_lagging = 0;
2081 u64 usage_us_sum = 0;
2082 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2083 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2084 u32 missed_ppm[2], rq_wait_pct;
2086 int prev_busy_level;
2088 /* how were the latencies during the period? */
2089 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2091 /* take care of active iocgs */
2092 spin_lock_irq(&ioc->lock);
2096 period_vtime = now.vnow - ioc->period_at_vtime;
2097 if (WARN_ON_ONCE(!period_vtime)) {
2098 spin_unlock_irq(&ioc->lock);
2103 * Waiters determine the sleep durations based on the vrate they
2104 * saw at the time of sleep. If vrate has increased, some waiters
2105 * could be sleeping for too long. Wake up tardy waiters which
2106 * should have woken up in the last period and expire idle iocgs.
2108 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2109 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2110 !iocg->delay && !iocg_is_idle(iocg))
2113 spin_lock(&iocg->waitq.lock);
2115 /* flush wait and indebt stat deltas */
2116 if (iocg->wait_since) {
2117 iocg->local_stat.wait_us += now.now - iocg->wait_since;
2118 iocg->wait_since = now.now;
2120 if (iocg->indebt_since) {
2121 iocg->local_stat.indebt_us +=
2122 now.now - iocg->indebt_since;
2123 iocg->indebt_since = now.now;
2125 if (iocg->indelay_since) {
2126 iocg->local_stat.indelay_us +=
2127 now.now - iocg->indelay_since;
2128 iocg->indelay_since = now.now;
2131 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2133 /* might be oversleeping vtime / hweight changes, kick */
2134 iocg_kick_waitq(iocg, true, &now);
2135 if (iocg->abs_vdebt || iocg->delay)
2137 } else if (iocg_is_idle(iocg)) {
2138 /* no waiter and idle, deactivate */
2139 u64 vtime = atomic64_read(&iocg->vtime);
2143 * @iocg has been inactive for a full duration and will
2144 * have a high budget. Account anything above target as
2145 * error and throw away. On reactivation, it'll start
2146 * with the target budget.
2148 excess = now.vnow - vtime - ioc->margins.target;
2152 current_hweight(iocg, NULL, &old_hwi);
2153 ioc->vtime_err -= div64_u64(excess * old_hwi,
2157 __propagate_weights(iocg, 0, 0, false, &now);
2158 list_del_init(&iocg->active_list);
2161 spin_unlock(&iocg->waitq.lock);
2163 commit_weights(ioc);
2166 * Wait and indebt stat are flushed above and the donation calculation
2167 * below needs updated usage stat. Let's bring stat up-to-date.
2169 iocg_flush_stat(&ioc->active_iocgs, &now);
2171 /* calc usage and see whether some weights need to be moved around */
2172 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2173 u64 vdone, vtime, usage_us, usage_dur;
2174 u32 usage, hw_active, hw_inuse;
2177 * Collect unused and wind vtime closer to vnow to prevent
2178 * iocgs from accumulating a large amount of budget.
2180 vdone = atomic64_read(&iocg->done_vtime);
2181 vtime = atomic64_read(&iocg->vtime);
2182 current_hweight(iocg, &hw_active, &hw_inuse);
2185 * Latency QoS detection doesn't account for IOs which are
2186 * in-flight for longer than a period. Detect them by
2187 * comparing vdone against period start. If lagging behind
2188 * IOs from past periods, don't increase vrate.
2190 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2191 !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2192 time_after64(vtime, vdone) &&
2193 time_after64(vtime, now.vnow -
2194 MAX_LAGGING_PERIODS * period_vtime) &&
2195 time_before64(vdone, now.vnow - period_vtime))
2199 * Determine absolute usage factoring in in-flight IOs to avoid
2200 * high-latency completions appearing as idle.
2202 usage_us = iocg->usage_delta_us;
2203 usage_us_sum += usage_us;
2205 if (vdone != vtime) {
2206 u64 inflight_us = DIV64_U64_ROUND_UP(
2207 cost_to_abs_cost(vtime - vdone, hw_inuse),
2208 ioc->vtime_base_rate);
2209 usage_us = max(usage_us, inflight_us);
2212 /* convert to hweight based usage ratio */
2213 if (time_after64(iocg->activated_at, ioc->period_at))
2214 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2216 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2218 usage = clamp_t(u32,
2219 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2223 /* see whether there's surplus vtime */
2224 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2225 if (hw_inuse < hw_active ||
2226 (!waitqueue_active(&iocg->waitq) &&
2227 time_before64(vtime, now.vnow - ioc->margins.low))) {
2228 u32 hwa, old_hwi, hwm, new_hwi;
2231 * Already donating or accumulated enough to start.
2232 * Determine the donation amount.
2234 current_hweight(iocg, &hwa, &old_hwi);
2235 hwm = current_hweight_max(iocg);
2236 new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2238 if (new_hwi < hwm) {
2239 iocg->hweight_donating = hwa;
2240 iocg->hweight_after_donation = new_hwi;
2241 list_add(&iocg->surplus_list, &surpluses);
2243 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2244 iocg->inuse, iocg->active,
2245 iocg->hweight_inuse, new_hwi);
2247 __propagate_weights(iocg, iocg->active,
2248 iocg->active, true, &now);
2252 /* genuinely short on vtime */
2257 if (!list_empty(&surpluses) && nr_shortages)
2258 transfer_surpluses(&surpluses, &now);
2260 commit_weights(ioc);
2262 /* surplus list should be dissolved after use */
2263 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2264 list_del_init(&iocg->surplus_list);
2267 * If q is getting clogged or we're missing too much, we're issuing
2268 * too much IO and should lower vtime rate. If we're not missing
2269 * and experiencing shortages but not surpluses, we're too stingy
2270 * and should increase vtime rate.
2272 prev_busy_level = ioc->busy_level;
2273 if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2274 missed_ppm[READ] > ppm_rthr ||
2275 missed_ppm[WRITE] > ppm_wthr) {
2276 /* clearly missing QoS targets, slow down vrate */
2277 ioc->busy_level = max(ioc->busy_level, 0);
2279 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2280 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2281 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2282 /* QoS targets are being met with >25% margin */
2285 * We're throttling while the device has spare
2286 * capacity. If vrate was being slowed down, stop.
2288 ioc->busy_level = min(ioc->busy_level, 0);
2291 * If there are IOs spanning multiple periods, wait
2292 * them out before pushing the device harder.
2298 * Nobody is being throttled and the users aren't
2299 * issuing enough IOs to saturate the device. We
2300 * simply don't know how close the device is to
2301 * saturation. Coast.
2303 ioc->busy_level = 0;
2306 /* inside the hysterisis margin, we're good */
2307 ioc->busy_level = 0;
2310 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2312 if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
2313 u64 vrate = ioc->vtime_base_rate;
2314 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
2316 /* rq_wait signal is always reliable, ignore user vrate_min */
2317 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
2318 vrate_min = VRATE_MIN;
2321 * If vrate is out of bounds, apply clamp gradually as the
2322 * bounds can change abruptly. Otherwise, apply busy_level
2325 if (vrate < vrate_min) {
2326 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
2328 vrate = min(vrate, vrate_min);
2329 } else if (vrate > vrate_max) {
2330 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
2332 vrate = max(vrate, vrate_max);
2334 int idx = min_t(int, abs(ioc->busy_level),
2335 ARRAY_SIZE(vrate_adj_pct) - 1);
2336 u32 adj_pct = vrate_adj_pct[idx];
2338 if (ioc->busy_level > 0)
2339 adj_pct = 100 - adj_pct;
2341 adj_pct = 100 + adj_pct;
2343 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
2344 vrate_min, vrate_max);
2347 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
2348 nr_lagging, nr_shortages);
2350 ioc->vtime_base_rate = vrate;
2351 ioc_refresh_margins(ioc);
2352 } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
2353 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
2354 missed_ppm, rq_wait_pct, nr_lagging,
2358 ioc_refresh_params(ioc, false);
2360 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2363 * This period is done. Move onto the next one. If nothing's
2364 * going on with the device, stop the timer.
2366 atomic64_inc(&ioc->cur_period);
2368 if (ioc->running != IOC_STOP) {
2369 if (!list_empty(&ioc->active_iocgs)) {
2370 ioc_start_period(ioc, &now);
2372 ioc->busy_level = 0;
2374 ioc->running = IOC_IDLE;
2377 ioc_refresh_vrate(ioc, &now);
2380 spin_unlock_irq(&ioc->lock);
2383 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2384 u64 abs_cost, struct ioc_now *now)
2386 struct ioc *ioc = iocg->ioc;
2387 struct ioc_margins *margins = &ioc->margins;
2388 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2391 u64 cost, new_inuse;
2393 current_hweight(iocg, NULL, &hwi);
2395 cost = abs_cost_to_cost(abs_cost, hwi);
2396 margin = now->vnow - vtime - cost;
2398 /* debt handling owns inuse for debtors */
2399 if (iocg->abs_vdebt)
2403 * We only increase inuse during period and do so iff the margin has
2404 * deteriorated since the previous adjustment.
2406 if (margin >= iocg->saved_margin || margin >= margins->low ||
2407 iocg->inuse == iocg->active)
2410 spin_lock_irq(&ioc->lock);
2412 /* we own inuse only when @iocg is in the normal active state */
2413 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2414 spin_unlock_irq(&ioc->lock);
2419 * Bump up inuse till @abs_cost fits in the existing budget.
2420 * adj_step must be determined after acquiring ioc->lock - we might
2421 * have raced and lost to another thread for activation and could
2422 * be reading 0 iocg->active before ioc->lock which will lead to
2425 new_inuse = iocg->inuse;
2426 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2428 new_inuse = new_inuse + adj_step;
2429 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2430 current_hweight(iocg, NULL, &hwi);
2431 cost = abs_cost_to_cost(abs_cost, hwi);
2432 } while (time_after64(vtime + cost, now->vnow) &&
2433 iocg->inuse != iocg->active);
2435 spin_unlock_irq(&ioc->lock);
2437 TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2438 old_inuse, iocg->inuse, old_hwi, hwi);
2443 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2444 bool is_merge, u64 *costp)
2446 struct ioc *ioc = iocg->ioc;
2447 u64 coef_seqio, coef_randio, coef_page;
2448 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2452 switch (bio_op(bio)) {
2454 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO];
2455 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO];
2456 coef_page = ioc->params.lcoefs[LCOEF_RPAGE];
2459 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO];
2460 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO];
2461 coef_page = ioc->params.lcoefs[LCOEF_WPAGE];
2468 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2469 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2473 if (seek_pages > LCOEF_RANDIO_PAGES) {
2474 cost += coef_randio;
2479 cost += pages * coef_page;
2484 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2488 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2492 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2495 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2497 switch (req_op(rq)) {
2499 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2502 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2509 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2513 calc_size_vtime_cost_builtin(rq, ioc, &cost);
2517 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2519 struct blkcg_gq *blkg = bio->bi_blkg;
2520 struct ioc *ioc = rqos_to_ioc(rqos);
2521 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2523 struct iocg_wait wait;
2524 u64 abs_cost, cost, vtime;
2525 bool use_debt, ioc_locked;
2526 unsigned long flags;
2528 /* bypass IOs if disabled or for root cgroup */
2529 if (!ioc->enabled || !iocg->level)
2532 /* calculate the absolute vtime cost */
2533 abs_cost = calc_vtime_cost(bio, iocg, false);
2537 if (!iocg_activate(iocg, &now))
2540 iocg->cursor = bio_end_sector(bio);
2541 vtime = atomic64_read(&iocg->vtime);
2542 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2545 * If no one's waiting and within budget, issue right away. The
2546 * tests are racy but the races aren't systemic - we only miss once
2547 * in a while which is fine.
2549 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2550 time_before_eq64(vtime + cost, now.vnow)) {
2551 iocg_commit_bio(iocg, bio, abs_cost, cost);
2556 * We're over budget. This can be handled in two ways. IOs which may
2557 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2558 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2559 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2560 * whether debt handling is needed and acquire locks accordingly.
2562 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2563 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2565 iocg_lock(iocg, ioc_locked, &flags);
2568 * @iocg must stay activated for debt and waitq handling. Deactivation
2569 * is synchronized against both ioc->lock and waitq.lock and we won't
2570 * get deactivated as long as we're waiting or has debt, so we're good
2571 * if we're activated here. In the unlikely cases that we aren't, just
2574 if (unlikely(list_empty(&iocg->active_list))) {
2575 iocg_unlock(iocg, ioc_locked, &flags);
2576 iocg_commit_bio(iocg, bio, abs_cost, cost);
2581 * We're over budget. If @bio has to be issued regardless, remember
2582 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2583 * off the debt before waking more IOs.
2585 * This way, the debt is continuously paid off each period with the
2586 * actual budget available to the cgroup. If we just wound vtime, we
2587 * would incorrectly use the current hw_inuse for the entire amount
2588 * which, for example, can lead to the cgroup staying blocked for a
2589 * long time even with substantially raised hw_inuse.
2591 * An iocg with vdebt should stay online so that the timer can keep
2592 * deducting its vdebt and [de]activate use_delay mechanism
2593 * accordingly. We don't want to race against the timer trying to
2594 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2595 * penalizing the cgroup and its descendants.
2598 iocg_incur_debt(iocg, abs_cost, &now);
2599 if (iocg_kick_delay(iocg, &now))
2600 blkcg_schedule_throttle(rqos->q,
2601 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2602 iocg_unlock(iocg, ioc_locked, &flags);
2606 /* guarantee that iocgs w/ waiters have maximum inuse */
2607 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2609 iocg_unlock(iocg, false, &flags);
2613 propagate_weights(iocg, iocg->active, iocg->active, true,
2618 * Append self to the waitq and schedule the wakeup timer if we're
2619 * the first waiter. The timer duration is calculated based on the
2620 * current vrate. vtime and hweight changes can make it too short
2621 * or too long. Each wait entry records the absolute cost it's
2622 * waiting for to allow re-evaluation using a custom wait entry.
2624 * If too short, the timer simply reschedules itself. If too long,
2625 * the period timer will notice and trigger wakeups.
2627 * All waiters are on iocg->waitq and the wait states are
2628 * synchronized using waitq.lock.
2630 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2631 wait.wait.private = current;
2633 wait.abs_cost = abs_cost;
2634 wait.committed = false; /* will be set true by waker */
2636 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2637 iocg_kick_waitq(iocg, ioc_locked, &now);
2639 iocg_unlock(iocg, ioc_locked, &flags);
2642 set_current_state(TASK_UNINTERRUPTIBLE);
2648 /* waker already committed us, proceed */
2649 finish_wait(&iocg->waitq, &wait.wait);
2652 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2655 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2656 struct ioc *ioc = iocg->ioc;
2657 sector_t bio_end = bio_end_sector(bio);
2659 u64 vtime, abs_cost, cost;
2660 unsigned long flags;
2662 /* bypass if disabled or for root cgroup */
2663 if (!ioc->enabled || !iocg->level)
2666 abs_cost = calc_vtime_cost(bio, iocg, true);
2672 vtime = atomic64_read(&iocg->vtime);
2673 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2675 /* update cursor if backmerging into the request at the cursor */
2676 if (blk_rq_pos(rq) < bio_end &&
2677 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2678 iocg->cursor = bio_end;
2681 * Charge if there's enough vtime budget and the existing request has
2684 if (rq->bio && rq->bio->bi_iocost_cost &&
2685 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2686 iocg_commit_bio(iocg, bio, abs_cost, cost);
2691 * Otherwise, account it as debt if @iocg is online, which it should
2692 * be for the vast majority of cases. See debt handling in
2693 * ioc_rqos_throttle() for details.
2695 spin_lock_irqsave(&ioc->lock, flags);
2696 spin_lock(&iocg->waitq.lock);
2698 if (likely(!list_empty(&iocg->active_list))) {
2699 iocg_incur_debt(iocg, abs_cost, &now);
2700 if (iocg_kick_delay(iocg, &now))
2701 blkcg_schedule_throttle(rqos->q,
2702 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2704 iocg_commit_bio(iocg, bio, abs_cost, cost);
2707 spin_unlock(&iocg->waitq.lock);
2708 spin_unlock_irqrestore(&ioc->lock, flags);
2711 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2713 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2715 if (iocg && bio->bi_iocost_cost)
2716 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2719 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2721 struct ioc *ioc = rqos_to_ioc(rqos);
2722 struct ioc_pcpu_stat *ccs;
2723 u64 on_q_ns, rq_wait_ns, size_nsec;
2726 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2729 switch (req_op(rq) & REQ_OP_MASK) {
2742 on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2743 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2744 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2746 ccs = get_cpu_ptr(ioc->pcpu_stat);
2748 if (on_q_ns <= size_nsec ||
2749 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2750 local_inc(&ccs->missed[rw].nr_met);
2752 local_inc(&ccs->missed[rw].nr_missed);
2754 local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2759 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2761 struct ioc *ioc = rqos_to_ioc(rqos);
2763 spin_lock_irq(&ioc->lock);
2764 ioc_refresh_params(ioc, false);
2765 spin_unlock_irq(&ioc->lock);
2768 static void ioc_rqos_exit(struct rq_qos *rqos)
2770 struct ioc *ioc = rqos_to_ioc(rqos);
2772 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2774 spin_lock_irq(&ioc->lock);
2775 ioc->running = IOC_STOP;
2776 spin_unlock_irq(&ioc->lock);
2778 del_timer_sync(&ioc->timer);
2779 free_percpu(ioc->pcpu_stat);
2783 static struct rq_qos_ops ioc_rqos_ops = {
2784 .throttle = ioc_rqos_throttle,
2785 .merge = ioc_rqos_merge,
2786 .done_bio = ioc_rqos_done_bio,
2787 .done = ioc_rqos_done,
2788 .queue_depth_changed = ioc_rqos_queue_depth_changed,
2789 .exit = ioc_rqos_exit,
2792 static int blk_iocost_init(struct request_queue *q)
2795 struct rq_qos *rqos;
2798 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2802 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2803 if (!ioc->pcpu_stat) {
2808 for_each_possible_cpu(cpu) {
2809 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2811 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2812 local_set(&ccs->missed[i].nr_met, 0);
2813 local_set(&ccs->missed[i].nr_missed, 0);
2815 local64_set(&ccs->rq_wait_ns, 0);
2819 rqos->id = RQ_QOS_COST;
2820 rqos->ops = &ioc_rqos_ops;
2823 spin_lock_init(&ioc->lock);
2824 timer_setup(&ioc->timer, ioc_timer_fn, 0);
2825 INIT_LIST_HEAD(&ioc->active_iocgs);
2827 ioc->running = IOC_IDLE;
2828 ioc->vtime_base_rate = VTIME_PER_USEC;
2829 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2830 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2831 ioc->period_at = ktime_to_us(ktime_get());
2832 atomic64_set(&ioc->cur_period, 0);
2833 atomic_set(&ioc->hweight_gen, 0);
2835 spin_lock_irq(&ioc->lock);
2836 ioc->autop_idx = AUTOP_INVALID;
2837 ioc_refresh_params(ioc, true);
2838 spin_unlock_irq(&ioc->lock);
2840 rq_qos_add(q, rqos);
2841 ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2843 rq_qos_del(q, rqos);
2844 free_percpu(ioc->pcpu_stat);
2851 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2853 struct ioc_cgrp *iocc;
2855 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2859 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2863 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2865 kfree(container_of(cpd, struct ioc_cgrp, cpd));
2868 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2869 struct blkcg *blkcg)
2871 int levels = blkcg->css.cgroup->level + 1;
2872 struct ioc_gq *iocg;
2874 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2878 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2879 if (!iocg->pcpu_stat) {
2887 static void ioc_pd_init(struct blkg_policy_data *pd)
2889 struct ioc_gq *iocg = pd_to_iocg(pd);
2890 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2891 struct ioc *ioc = q_to_ioc(blkg->q);
2893 struct blkcg_gq *tblkg;
2894 unsigned long flags;
2899 atomic64_set(&iocg->vtime, now.vnow);
2900 atomic64_set(&iocg->done_vtime, now.vnow);
2901 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2902 INIT_LIST_HEAD(&iocg->active_list);
2903 INIT_LIST_HEAD(&iocg->walk_list);
2904 INIT_LIST_HEAD(&iocg->surplus_list);
2905 iocg->hweight_active = WEIGHT_ONE;
2906 iocg->hweight_inuse = WEIGHT_ONE;
2908 init_waitqueue_head(&iocg->waitq);
2909 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2910 iocg->waitq_timer.function = iocg_waitq_timer_fn;
2912 iocg->level = blkg->blkcg->css.cgroup->level;
2914 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2915 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2916 iocg->ancestors[tiocg->level] = tiocg;
2919 spin_lock_irqsave(&ioc->lock, flags);
2920 weight_updated(iocg, &now);
2921 spin_unlock_irqrestore(&ioc->lock, flags);
2924 static void ioc_pd_free(struct blkg_policy_data *pd)
2926 struct ioc_gq *iocg = pd_to_iocg(pd);
2927 struct ioc *ioc = iocg->ioc;
2928 unsigned long flags;
2931 spin_lock_irqsave(&ioc->lock, flags);
2933 if (!list_empty(&iocg->active_list)) {
2937 propagate_weights(iocg, 0, 0, false, &now);
2938 list_del_init(&iocg->active_list);
2941 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2942 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2944 spin_unlock_irqrestore(&ioc->lock, flags);
2946 hrtimer_cancel(&iocg->waitq_timer);
2948 free_percpu(iocg->pcpu_stat);
2952 static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
2954 struct ioc_gq *iocg = pd_to_iocg(pd);
2955 struct ioc *ioc = iocg->ioc;
2961 if (iocg->level == 0) {
2962 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
2963 ioc->vtime_base_rate * 10000,
2965 pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
2966 vp10k / 100, vp10k % 100);
2969 pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
2970 iocg->last_stat.usage_us);
2972 if (blkcg_debug_stats)
2973 pos += scnprintf(buf + pos, size - pos,
2974 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
2975 iocg->last_stat.wait_us,
2976 iocg->last_stat.indebt_us,
2977 iocg->last_stat.indelay_us);
2982 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2985 const char *dname = blkg_dev_name(pd->blkg);
2986 struct ioc_gq *iocg = pd_to_iocg(pd);
2988 if (dname && iocg->cfg_weight)
2989 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
2994 static int ioc_weight_show(struct seq_file *sf, void *v)
2996 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2997 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2999 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3000 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3001 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3005 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3006 size_t nbytes, loff_t off)
3008 struct blkcg *blkcg = css_to_blkcg(of_css(of));
3009 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3010 struct blkg_conf_ctx ctx;
3012 struct ioc_gq *iocg;
3016 if (!strchr(buf, ':')) {
3017 struct blkcg_gq *blkg;
3019 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3022 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3025 spin_lock(&blkcg->lock);
3026 iocc->dfl_weight = v * WEIGHT_ONE;
3027 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3028 struct ioc_gq *iocg = blkg_to_iocg(blkg);
3031 spin_lock_irq(&iocg->ioc->lock);
3032 ioc_now(iocg->ioc, &now);
3033 weight_updated(iocg, &now);
3034 spin_unlock_irq(&iocg->ioc->lock);
3037 spin_unlock(&blkcg->lock);
3042 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3046 iocg = blkg_to_iocg(ctx.blkg);
3048 if (!strncmp(ctx.body, "default", 7)) {
3051 if (!sscanf(ctx.body, "%u", &v))
3053 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3057 spin_lock(&iocg->ioc->lock);
3058 iocg->cfg_weight = v * WEIGHT_ONE;
3059 ioc_now(iocg->ioc, &now);
3060 weight_updated(iocg, &now);
3061 spin_unlock(&iocg->ioc->lock);
3063 blkg_conf_finish(&ctx);
3067 blkg_conf_finish(&ctx);
3071 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3074 const char *dname = blkg_dev_name(pd->blkg);
3075 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3080 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3081 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3082 ioc->params.qos[QOS_RPPM] / 10000,
3083 ioc->params.qos[QOS_RPPM] % 10000 / 100,
3084 ioc->params.qos[QOS_RLAT],
3085 ioc->params.qos[QOS_WPPM] / 10000,
3086 ioc->params.qos[QOS_WPPM] % 10000 / 100,
3087 ioc->params.qos[QOS_WLAT],
3088 ioc->params.qos[QOS_MIN] / 10000,
3089 ioc->params.qos[QOS_MIN] % 10000 / 100,
3090 ioc->params.qos[QOS_MAX] / 10000,
3091 ioc->params.qos[QOS_MAX] % 10000 / 100);
3095 static int ioc_qos_show(struct seq_file *sf, void *v)
3097 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3099 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3100 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3104 static const match_table_t qos_ctrl_tokens = {
3105 { QOS_ENABLE, "enable=%u" },
3106 { QOS_CTRL, "ctrl=%s" },
3107 { NR_QOS_CTRL_PARAMS, NULL },
3110 static const match_table_t qos_tokens = {
3111 { QOS_RPPM, "rpct=%s" },
3112 { QOS_RLAT, "rlat=%u" },
3113 { QOS_WPPM, "wpct=%s" },
3114 { QOS_WLAT, "wlat=%u" },
3115 { QOS_MIN, "min=%s" },
3116 { QOS_MAX, "max=%s" },
3117 { NR_QOS_PARAMS, NULL },
3120 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3121 size_t nbytes, loff_t off)
3123 struct gendisk *disk;
3125 u32 qos[NR_QOS_PARAMS];
3130 disk = blkcg_conf_get_disk(&input);
3132 return PTR_ERR(disk);
3134 ioc = q_to_ioc(disk->queue);
3136 ret = blk_iocost_init(disk->queue);
3139 ioc = q_to_ioc(disk->queue);
3142 spin_lock_irq(&ioc->lock);
3143 memcpy(qos, ioc->params.qos, sizeof(qos));
3144 enable = ioc->enabled;
3145 user = ioc->user_qos_params;
3146 spin_unlock_irq(&ioc->lock);
3148 while ((p = strsep(&input, " \t\n"))) {
3149 substring_t args[MAX_OPT_ARGS];
3157 switch (match_token(p, qos_ctrl_tokens, args)) {
3159 match_u64(&args[0], &v);
3163 match_strlcpy(buf, &args[0], sizeof(buf));
3164 if (!strcmp(buf, "auto"))
3166 else if (!strcmp(buf, "user"))
3173 tok = match_token(p, qos_tokens, args);
3177 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3180 if (cgroup_parse_float(buf, 2, &v))
3182 if (v < 0 || v > 10000)
3188 if (match_u64(&args[0], &v))
3194 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3197 if (cgroup_parse_float(buf, 2, &v))
3201 qos[tok] = clamp_t(s64, v * 100,
3202 VRATE_MIN_PPM, VRATE_MAX_PPM);
3210 if (qos[QOS_MIN] > qos[QOS_MAX])
3213 spin_lock_irq(&ioc->lock);
3216 blk_stat_enable_accounting(ioc->rqos.q);
3217 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3218 ioc->enabled = true;
3220 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3221 ioc->enabled = false;
3225 memcpy(ioc->params.qos, qos, sizeof(qos));
3226 ioc->user_qos_params = true;
3228 ioc->user_qos_params = false;
3231 ioc_refresh_params(ioc, true);
3232 spin_unlock_irq(&ioc->lock);
3234 put_disk_and_module(disk);
3239 put_disk_and_module(disk);
3243 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3244 struct blkg_policy_data *pd, int off)
3246 const char *dname = blkg_dev_name(pd->blkg);
3247 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3248 u64 *u = ioc->params.i_lcoefs;
3253 seq_printf(sf, "%s ctrl=%s model=linear "
3254 "rbps=%llu rseqiops=%llu rrandiops=%llu "
3255 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3256 dname, ioc->user_cost_model ? "user" : "auto",
3257 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3258 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3262 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3264 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3266 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3267 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3271 static const match_table_t cost_ctrl_tokens = {
3272 { COST_CTRL, "ctrl=%s" },
3273 { COST_MODEL, "model=%s" },
3274 { NR_COST_CTRL_PARAMS, NULL },
3277 static const match_table_t i_lcoef_tokens = {
3278 { I_LCOEF_RBPS, "rbps=%u" },
3279 { I_LCOEF_RSEQIOPS, "rseqiops=%u" },
3280 { I_LCOEF_RRANDIOPS, "rrandiops=%u" },
3281 { I_LCOEF_WBPS, "wbps=%u" },
3282 { I_LCOEF_WSEQIOPS, "wseqiops=%u" },
3283 { I_LCOEF_WRANDIOPS, "wrandiops=%u" },
3284 { NR_I_LCOEFS, NULL },
3287 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3288 size_t nbytes, loff_t off)
3290 struct gendisk *disk;
3297 disk = blkcg_conf_get_disk(&input);
3299 return PTR_ERR(disk);
3301 ioc = q_to_ioc(disk->queue);
3303 ret = blk_iocost_init(disk->queue);
3306 ioc = q_to_ioc(disk->queue);
3309 spin_lock_irq(&ioc->lock);
3310 memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3311 user = ioc->user_cost_model;
3312 spin_unlock_irq(&ioc->lock);
3314 while ((p = strsep(&input, " \t\n"))) {
3315 substring_t args[MAX_OPT_ARGS];
3323 switch (match_token(p, cost_ctrl_tokens, args)) {
3325 match_strlcpy(buf, &args[0], sizeof(buf));
3326 if (!strcmp(buf, "auto"))
3328 else if (!strcmp(buf, "user"))
3334 match_strlcpy(buf, &args[0], sizeof(buf));
3335 if (strcmp(buf, "linear"))
3340 tok = match_token(p, i_lcoef_tokens, args);
3341 if (tok == NR_I_LCOEFS)
3343 if (match_u64(&args[0], &v))
3349 spin_lock_irq(&ioc->lock);
3351 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3352 ioc->user_cost_model = true;
3354 ioc->user_cost_model = false;
3356 ioc_refresh_params(ioc, true);
3357 spin_unlock_irq(&ioc->lock);
3359 put_disk_and_module(disk);
3365 put_disk_and_module(disk);
3369 static struct cftype ioc_files[] = {
3372 .flags = CFTYPE_NOT_ON_ROOT,
3373 .seq_show = ioc_weight_show,
3374 .write = ioc_weight_write,
3378 .flags = CFTYPE_ONLY_ON_ROOT,
3379 .seq_show = ioc_qos_show,
3380 .write = ioc_qos_write,
3383 .name = "cost.model",
3384 .flags = CFTYPE_ONLY_ON_ROOT,
3385 .seq_show = ioc_cost_model_show,
3386 .write = ioc_cost_model_write,
3391 static struct blkcg_policy blkcg_policy_iocost = {
3392 .dfl_cftypes = ioc_files,
3393 .cpd_alloc_fn = ioc_cpd_alloc,
3394 .cpd_free_fn = ioc_cpd_free,
3395 .pd_alloc_fn = ioc_pd_alloc,
3396 .pd_init_fn = ioc_pd_init,
3397 .pd_free_fn = ioc_pd_free,
3398 .pd_stat_fn = ioc_pd_stat,
3401 static int __init ioc_init(void)
3403 return blkcg_policy_register(&blkcg_policy_iocost);
3406 static void __exit ioc_exit(void)
3408 blkcg_policy_unregister(&blkcg_policy_iocost);
3411 module_init(ioc_init);
3412 module_exit(ioc_exit);