blk-mq: Swap two calls in blk_mq_exit_queue()
[platform/kernel/linux-rpi.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * paramters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO iff doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, soley depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The ouput looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per        : Timer period
166  * - cur_per    : Internal wall and device vtime clock
167  * - vrate      : Device virtual time rate against wall clock
168  * - weight     : Surplus-adjusted and configured weights
169  * - hweight    : Surplus-adjusted and configured hierarchical weights
170  * - inflt      : The percentage of in-flight IO cost at the end of last period
171  * - del_ms     : Deferred issuer delay induction level and duration
172  * - usages     : Usage history
173  */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include <asm/local.h>
183 #include <asm/local64.h>
184 #include "blk-rq-qos.h"
185 #include "blk-stat.h"
186 #include "blk-wbt.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
196         do {                                                                    \
197                 unsigned long flags;                                            \
198                 if (trace_iocost_##type##_enabled()) {                          \
199                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
200                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
201                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
202                         trace_iocost_##type(iocg, trace_iocg_path,              \
203                                               ##__VA_ARGS__);                   \
204                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
205                 }                                                               \
206         } while (0)
207
208 #else   /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
210 #endif  /* CONFIG_TRACE_POINTS */
211
212 enum {
213         MILLION                 = 1000000,
214
215         /* timer period is calculated from latency requirements, bound it */
216         MIN_PERIOD              = USEC_PER_MSEC,
217         MAX_PERIOD              = USEC_PER_SEC,
218
219         /*
220          * iocg->vtime is targeted at 50% behind the device vtime, which
221          * serves as its IO credit buffer.  Surplus weight adjustment is
222          * immediately canceled if the vtime margin runs below 10%.
223          */
224         MARGIN_MIN_PCT          = 10,
225         MARGIN_LOW_PCT          = 20,
226         MARGIN_TARGET_PCT       = 50,
227
228         INUSE_ADJ_STEP_PCT      = 25,
229
230         /* Have some play in timer operations */
231         TIMER_SLACK_PCT         = 1,
232
233         /* 1/64k is granular enough and can easily be handled w/ u32 */
234         WEIGHT_ONE              = 1 << 16,
235
236         /*
237          * As vtime is used to calculate the cost of each IO, it needs to
238          * be fairly high precision.  For example, it should be able to
239          * represent the cost of a single page worth of discard with
240          * suffificient accuracy.  At the same time, it should be able to
241          * represent reasonably long enough durations to be useful and
242          * convenient during operation.
243          *
244          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
245          * granularity and days of wrap-around time even at extreme vrates.
246          */
247         VTIME_PER_SEC_SHIFT     = 37,
248         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
249         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
250         VTIME_PER_NSEC          = VTIME_PER_SEC / NSEC_PER_SEC,
251
252         /* bound vrate adjustments within two orders of magnitude */
253         VRATE_MIN_PPM           = 10000,        /* 1% */
254         VRATE_MAX_PPM           = 100000000,    /* 10000% */
255
256         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
257         VRATE_CLAMP_ADJ_PCT     = 4,
258
259         /* if IOs end up waiting for requests, issue less */
260         RQ_WAIT_BUSY_PCT        = 5,
261
262         /* unbusy hysterisis */
263         UNBUSY_THR_PCT          = 75,
264
265         /*
266          * The effect of delay is indirect and non-linear and a huge amount of
267          * future debt can accumulate abruptly while unthrottled. Linearly scale
268          * up delay as debt is going up and then let it decay exponentially.
269          * This gives us quick ramp ups while delay is accumulating and long
270          * tails which can help reducing the frequency of debt explosions on
271          * unthrottle. The parameters are experimentally determined.
272          *
273          * The delay mechanism provides adequate protection and behavior in many
274          * cases. However, this is far from ideal and falls shorts on both
275          * fronts. The debtors are often throttled too harshly costing a
276          * significant level of fairness and possibly total work while the
277          * protection against their impacts on the system can be choppy and
278          * unreliable.
279          *
280          * The shortcoming primarily stems from the fact that, unlike for page
281          * cache, the kernel doesn't have well-defined back-pressure propagation
282          * mechanism and policies for anonymous memory. Fully addressing this
283          * issue will likely require substantial improvements in the area.
284          */
285         MIN_DELAY_THR_PCT       = 500,
286         MAX_DELAY_THR_PCT       = 25000,
287         MIN_DELAY               = 250,
288         MAX_DELAY               = 250 * USEC_PER_MSEC,
289
290         /* halve debts if avg usage over 100ms is under 50% */
291         DFGV_USAGE_PCT          = 50,
292         DFGV_PERIOD             = 100 * USEC_PER_MSEC,
293
294         /* don't let cmds which take a very long time pin lagging for too long */
295         MAX_LAGGING_PERIODS     = 10,
296
297         /* switch iff the conditions are met for longer than this */
298         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
299
300         /*
301          * Count IO size in 4k pages.  The 12bit shift helps keeping
302          * size-proportional components of cost calculation in closer
303          * numbers of digits to per-IO cost components.
304          */
305         IOC_PAGE_SHIFT          = 12,
306         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
307         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
308
309         /* if apart further than 16M, consider randio for linear model */
310         LCOEF_RANDIO_PAGES      = 4096,
311 };
312
313 enum ioc_running {
314         IOC_IDLE,
315         IOC_RUNNING,
316         IOC_STOP,
317 };
318
319 /* io.cost.qos controls including per-dev enable of the whole controller */
320 enum {
321         QOS_ENABLE,
322         QOS_CTRL,
323         NR_QOS_CTRL_PARAMS,
324 };
325
326 /* io.cost.qos params */
327 enum {
328         QOS_RPPM,
329         QOS_RLAT,
330         QOS_WPPM,
331         QOS_WLAT,
332         QOS_MIN,
333         QOS_MAX,
334         NR_QOS_PARAMS,
335 };
336
337 /* io.cost.model controls */
338 enum {
339         COST_CTRL,
340         COST_MODEL,
341         NR_COST_CTRL_PARAMS,
342 };
343
344 /* builtin linear cost model coefficients */
345 enum {
346         I_LCOEF_RBPS,
347         I_LCOEF_RSEQIOPS,
348         I_LCOEF_RRANDIOPS,
349         I_LCOEF_WBPS,
350         I_LCOEF_WSEQIOPS,
351         I_LCOEF_WRANDIOPS,
352         NR_I_LCOEFS,
353 };
354
355 enum {
356         LCOEF_RPAGE,
357         LCOEF_RSEQIO,
358         LCOEF_RRANDIO,
359         LCOEF_WPAGE,
360         LCOEF_WSEQIO,
361         LCOEF_WRANDIO,
362         NR_LCOEFS,
363 };
364
365 enum {
366         AUTOP_INVALID,
367         AUTOP_HDD,
368         AUTOP_SSD_QD1,
369         AUTOP_SSD_DFL,
370         AUTOP_SSD_FAST,
371 };
372
373 struct ioc_gq;
374
375 struct ioc_params {
376         u32                             qos[NR_QOS_PARAMS];
377         u64                             i_lcoefs[NR_I_LCOEFS];
378         u64                             lcoefs[NR_LCOEFS];
379         u32                             too_fast_vrate_pct;
380         u32                             too_slow_vrate_pct;
381 };
382
383 struct ioc_margins {
384         s64                             min;
385         s64                             low;
386         s64                             target;
387 };
388
389 struct ioc_missed {
390         local_t                         nr_met;
391         local_t                         nr_missed;
392         u32                             last_met;
393         u32                             last_missed;
394 };
395
396 struct ioc_pcpu_stat {
397         struct ioc_missed               missed[2];
398
399         local64_t                       rq_wait_ns;
400         u64                             last_rq_wait_ns;
401 };
402
403 /* per device */
404 struct ioc {
405         struct rq_qos                   rqos;
406
407         bool                            enabled;
408
409         struct ioc_params               params;
410         struct ioc_margins              margins;
411         u32                             period_us;
412         u32                             timer_slack_ns;
413         u64                             vrate_min;
414         u64                             vrate_max;
415
416         spinlock_t                      lock;
417         struct timer_list               timer;
418         struct list_head                active_iocgs;   /* active cgroups */
419         struct ioc_pcpu_stat __percpu   *pcpu_stat;
420
421         enum ioc_running                running;
422         atomic64_t                      vtime_rate;
423         u64                             vtime_base_rate;
424         s64                             vtime_err;
425
426         seqcount_spinlock_t             period_seqcount;
427         u64                             period_at;      /* wallclock starttime */
428         u64                             period_at_vtime; /* vtime starttime */
429
430         atomic64_t                      cur_period;     /* inc'd each period */
431         int                             busy_level;     /* saturation history */
432
433         bool                            weights_updated;
434         atomic_t                        hweight_gen;    /* for lazy hweights */
435
436         /* debt forgivness */
437         u64                             dfgv_period_at;
438         u64                             dfgv_period_rem;
439         u64                             dfgv_usage_us_sum;
440
441         u64                             autop_too_fast_at;
442         u64                             autop_too_slow_at;
443         int                             autop_idx;
444         bool                            user_qos_params:1;
445         bool                            user_cost_model:1;
446 };
447
448 struct iocg_pcpu_stat {
449         local64_t                       abs_vusage;
450 };
451
452 struct iocg_stat {
453         u64                             usage_us;
454         u64                             wait_us;
455         u64                             indebt_us;
456         u64                             indelay_us;
457 };
458
459 /* per device-cgroup pair */
460 struct ioc_gq {
461         struct blkg_policy_data         pd;
462         struct ioc                      *ioc;
463
464         /*
465          * A iocg can get its weight from two sources - an explicit
466          * per-device-cgroup configuration or the default weight of the
467          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
468          * configuration.  `weight` is the effective considering both
469          * sources.
470          *
471          * When an idle cgroup becomes active its `active` goes from 0 to
472          * `weight`.  `inuse` is the surplus adjusted active weight.
473          * `active` and `inuse` are used to calculate `hweight_active` and
474          * `hweight_inuse`.
475          *
476          * `last_inuse` remembers `inuse` while an iocg is idle to persist
477          * surplus adjustments.
478          *
479          * `inuse` may be adjusted dynamically during period. `saved_*` are used
480          * to determine and track adjustments.
481          */
482         u32                             cfg_weight;
483         u32                             weight;
484         u32                             active;
485         u32                             inuse;
486
487         u32                             last_inuse;
488         s64                             saved_margin;
489
490         sector_t                        cursor;         /* to detect randio */
491
492         /*
493          * `vtime` is this iocg's vtime cursor which progresses as IOs are
494          * issued.  If lagging behind device vtime, the delta represents
495          * the currently available IO budget.  If runnning ahead, the
496          * overage.
497          *
498          * `vtime_done` is the same but progressed on completion rather
499          * than issue.  The delta behind `vtime` represents the cost of
500          * currently in-flight IOs.
501          */
502         atomic64_t                      vtime;
503         atomic64_t                      done_vtime;
504         u64                             abs_vdebt;
505
506         /* current delay in effect and when it started */
507         u64                             delay;
508         u64                             delay_at;
509
510         /*
511          * The period this iocg was last active in.  Used for deactivation
512          * and invalidating `vtime`.
513          */
514         atomic64_t                      active_period;
515         struct list_head                active_list;
516
517         /* see __propagate_weights() and current_hweight() for details */
518         u64                             child_active_sum;
519         u64                             child_inuse_sum;
520         u64                             child_adjusted_sum;
521         int                             hweight_gen;
522         u32                             hweight_active;
523         u32                             hweight_inuse;
524         u32                             hweight_donating;
525         u32                             hweight_after_donation;
526
527         struct list_head                walk_list;
528         struct list_head                surplus_list;
529
530         struct wait_queue_head          waitq;
531         struct hrtimer                  waitq_timer;
532
533         /* timestamp at the latest activation */
534         u64                             activated_at;
535
536         /* statistics */
537         struct iocg_pcpu_stat __percpu  *pcpu_stat;
538         struct iocg_stat                local_stat;
539         struct iocg_stat                desc_stat;
540         struct iocg_stat                last_stat;
541         u64                             last_stat_abs_vusage;
542         u64                             usage_delta_us;
543         u64                             wait_since;
544         u64                             indebt_since;
545         u64                             indelay_since;
546
547         /* this iocg's depth in the hierarchy and ancestors including self */
548         int                             level;
549         struct ioc_gq                   *ancestors[];
550 };
551
552 /* per cgroup */
553 struct ioc_cgrp {
554         struct blkcg_policy_data        cpd;
555         unsigned int                    dfl_weight;
556 };
557
558 struct ioc_now {
559         u64                             now_ns;
560         u64                             now;
561         u64                             vnow;
562         u64                             vrate;
563 };
564
565 struct iocg_wait {
566         struct wait_queue_entry         wait;
567         struct bio                      *bio;
568         u64                             abs_cost;
569         bool                            committed;
570 };
571
572 struct iocg_wake_ctx {
573         struct ioc_gq                   *iocg;
574         u32                             hw_inuse;
575         s64                             vbudget;
576 };
577
578 static const struct ioc_params autop[] = {
579         [AUTOP_HDD] = {
580                 .qos                            = {
581                         [QOS_RLAT]              =        250000, /* 250ms */
582                         [QOS_WLAT]              =        250000,
583                         [QOS_MIN]               = VRATE_MIN_PPM,
584                         [QOS_MAX]               = VRATE_MAX_PPM,
585                 },
586                 .i_lcoefs                       = {
587                         [I_LCOEF_RBPS]          =     174019176,
588                         [I_LCOEF_RSEQIOPS]      =         41708,
589                         [I_LCOEF_RRANDIOPS]     =           370,
590                         [I_LCOEF_WBPS]          =     178075866,
591                         [I_LCOEF_WSEQIOPS]      =         42705,
592                         [I_LCOEF_WRANDIOPS]     =           378,
593                 },
594         },
595         [AUTOP_SSD_QD1] = {
596                 .qos                            = {
597                         [QOS_RLAT]              =         25000, /* 25ms */
598                         [QOS_WLAT]              =         25000,
599                         [QOS_MIN]               = VRATE_MIN_PPM,
600                         [QOS_MAX]               = VRATE_MAX_PPM,
601                 },
602                 .i_lcoefs                       = {
603                         [I_LCOEF_RBPS]          =     245855193,
604                         [I_LCOEF_RSEQIOPS]      =         61575,
605                         [I_LCOEF_RRANDIOPS]     =          6946,
606                         [I_LCOEF_WBPS]          =     141365009,
607                         [I_LCOEF_WSEQIOPS]      =         33716,
608                         [I_LCOEF_WRANDIOPS]     =         26796,
609                 },
610         },
611         [AUTOP_SSD_DFL] = {
612                 .qos                            = {
613                         [QOS_RLAT]              =         25000, /* 25ms */
614                         [QOS_WLAT]              =         25000,
615                         [QOS_MIN]               = VRATE_MIN_PPM,
616                         [QOS_MAX]               = VRATE_MAX_PPM,
617                 },
618                 .i_lcoefs                       = {
619                         [I_LCOEF_RBPS]          =     488636629,
620                         [I_LCOEF_RSEQIOPS]      =          8932,
621                         [I_LCOEF_RRANDIOPS]     =          8518,
622                         [I_LCOEF_WBPS]          =     427891549,
623                         [I_LCOEF_WSEQIOPS]      =         28755,
624                         [I_LCOEF_WRANDIOPS]     =         21940,
625                 },
626                 .too_fast_vrate_pct             =           500,
627         },
628         [AUTOP_SSD_FAST] = {
629                 .qos                            = {
630                         [QOS_RLAT]              =          5000, /* 5ms */
631                         [QOS_WLAT]              =          5000,
632                         [QOS_MIN]               = VRATE_MIN_PPM,
633                         [QOS_MAX]               = VRATE_MAX_PPM,
634                 },
635                 .i_lcoefs                       = {
636                         [I_LCOEF_RBPS]          =    3102524156LLU,
637                         [I_LCOEF_RSEQIOPS]      =        724816,
638                         [I_LCOEF_RRANDIOPS]     =        778122,
639                         [I_LCOEF_WBPS]          =    1742780862LLU,
640                         [I_LCOEF_WSEQIOPS]      =        425702,
641                         [I_LCOEF_WRANDIOPS]     =        443193,
642                 },
643                 .too_slow_vrate_pct             =            10,
644         },
645 };
646
647 /*
648  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
649  * vtime credit shortage and down on device saturation.
650  */
651 static u32 vrate_adj_pct[] =
652         { 0, 0, 0, 0,
653           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
654           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
655           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
656
657 static struct blkcg_policy blkcg_policy_iocost;
658
659 /* accessors and helpers */
660 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
661 {
662         return container_of(rqos, struct ioc, rqos);
663 }
664
665 static struct ioc *q_to_ioc(struct request_queue *q)
666 {
667         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
668 }
669
670 static const char *q_name(struct request_queue *q)
671 {
672         if (blk_queue_registered(q))
673                 return kobject_name(q->kobj.parent);
674         else
675                 return "<unknown>";
676 }
677
678 static const char __maybe_unused *ioc_name(struct ioc *ioc)
679 {
680         return q_name(ioc->rqos.q);
681 }
682
683 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
684 {
685         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
686 }
687
688 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
689 {
690         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
691 }
692
693 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
694 {
695         return pd_to_blkg(&iocg->pd);
696 }
697
698 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
699 {
700         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
701                             struct ioc_cgrp, cpd);
702 }
703
704 /*
705  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
706  * weight, the more expensive each IO.  Must round up.
707  */
708 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
709 {
710         return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
711 }
712
713 /*
714  * The inverse of abs_cost_to_cost().  Must round up.
715  */
716 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
717 {
718         return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
719 }
720
721 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
722                             u64 abs_cost, u64 cost)
723 {
724         struct iocg_pcpu_stat *gcs;
725
726         bio->bi_iocost_cost = cost;
727         atomic64_add(cost, &iocg->vtime);
728
729         gcs = get_cpu_ptr(iocg->pcpu_stat);
730         local64_add(abs_cost, &gcs->abs_vusage);
731         put_cpu_ptr(gcs);
732 }
733
734 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
735 {
736         if (lock_ioc) {
737                 spin_lock_irqsave(&iocg->ioc->lock, *flags);
738                 spin_lock(&iocg->waitq.lock);
739         } else {
740                 spin_lock_irqsave(&iocg->waitq.lock, *flags);
741         }
742 }
743
744 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
745 {
746         if (unlock_ioc) {
747                 spin_unlock(&iocg->waitq.lock);
748                 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
749         } else {
750                 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
751         }
752 }
753
754 #define CREATE_TRACE_POINTS
755 #include <trace/events/iocost.h>
756
757 static void ioc_refresh_margins(struct ioc *ioc)
758 {
759         struct ioc_margins *margins = &ioc->margins;
760         u32 period_us = ioc->period_us;
761         u64 vrate = ioc->vtime_base_rate;
762
763         margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
764         margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
765         margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
766 }
767
768 /* latency Qos params changed, update period_us and all the dependent params */
769 static void ioc_refresh_period_us(struct ioc *ioc)
770 {
771         u32 ppm, lat, multi, period_us;
772
773         lockdep_assert_held(&ioc->lock);
774
775         /* pick the higher latency target */
776         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
777                 ppm = ioc->params.qos[QOS_RPPM];
778                 lat = ioc->params.qos[QOS_RLAT];
779         } else {
780                 ppm = ioc->params.qos[QOS_WPPM];
781                 lat = ioc->params.qos[QOS_WLAT];
782         }
783
784         /*
785          * We want the period to be long enough to contain a healthy number
786          * of IOs while short enough for granular control.  Define it as a
787          * multiple of the latency target.  Ideally, the multiplier should
788          * be scaled according to the percentile so that it would nominally
789          * contain a certain number of requests.  Let's be simpler and
790          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
791          */
792         if (ppm)
793                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
794         else
795                 multi = 2;
796         period_us = multi * lat;
797         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
798
799         /* calculate dependent params */
800         ioc->period_us = period_us;
801         ioc->timer_slack_ns = div64_u64(
802                 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
803                 100);
804         ioc_refresh_margins(ioc);
805 }
806
807 static int ioc_autop_idx(struct ioc *ioc)
808 {
809         int idx = ioc->autop_idx;
810         const struct ioc_params *p = &autop[idx];
811         u32 vrate_pct;
812         u64 now_ns;
813
814         /* rotational? */
815         if (!blk_queue_nonrot(ioc->rqos.q))
816                 return AUTOP_HDD;
817
818         /* handle SATA SSDs w/ broken NCQ */
819         if (blk_queue_depth(ioc->rqos.q) == 1)
820                 return AUTOP_SSD_QD1;
821
822         /* use one of the normal ssd sets */
823         if (idx < AUTOP_SSD_DFL)
824                 return AUTOP_SSD_DFL;
825
826         /* if user is overriding anything, maintain what was there */
827         if (ioc->user_qos_params || ioc->user_cost_model)
828                 return idx;
829
830         /* step up/down based on the vrate */
831         vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
832         now_ns = ktime_get_ns();
833
834         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
835                 if (!ioc->autop_too_fast_at)
836                         ioc->autop_too_fast_at = now_ns;
837                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
838                         return idx + 1;
839         } else {
840                 ioc->autop_too_fast_at = 0;
841         }
842
843         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
844                 if (!ioc->autop_too_slow_at)
845                         ioc->autop_too_slow_at = now_ns;
846                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
847                         return idx - 1;
848         } else {
849                 ioc->autop_too_slow_at = 0;
850         }
851
852         return idx;
853 }
854
855 /*
856  * Take the followings as input
857  *
858  *  @bps        maximum sequential throughput
859  *  @seqiops    maximum sequential 4k iops
860  *  @randiops   maximum random 4k iops
861  *
862  * and calculate the linear model cost coefficients.
863  *
864  *  *@page      per-page cost           1s / (@bps / 4096)
865  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
866  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
867  */
868 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
869                         u64 *page, u64 *seqio, u64 *randio)
870 {
871         u64 v;
872
873         *page = *seqio = *randio = 0;
874
875         if (bps)
876                 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
877                                            DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
878
879         if (seqiops) {
880                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
881                 if (v > *page)
882                         *seqio = v - *page;
883         }
884
885         if (randiops) {
886                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
887                 if (v > *page)
888                         *randio = v - *page;
889         }
890 }
891
892 static void ioc_refresh_lcoefs(struct ioc *ioc)
893 {
894         u64 *u = ioc->params.i_lcoefs;
895         u64 *c = ioc->params.lcoefs;
896
897         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
898                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
899         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
900                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
901 }
902
903 static bool ioc_refresh_params(struct ioc *ioc, bool force)
904 {
905         const struct ioc_params *p;
906         int idx;
907
908         lockdep_assert_held(&ioc->lock);
909
910         idx = ioc_autop_idx(ioc);
911         p = &autop[idx];
912
913         if (idx == ioc->autop_idx && !force)
914                 return false;
915
916         if (idx != ioc->autop_idx)
917                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
918
919         ioc->autop_idx = idx;
920         ioc->autop_too_fast_at = 0;
921         ioc->autop_too_slow_at = 0;
922
923         if (!ioc->user_qos_params)
924                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
925         if (!ioc->user_cost_model)
926                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
927
928         ioc_refresh_period_us(ioc);
929         ioc_refresh_lcoefs(ioc);
930
931         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
932                                             VTIME_PER_USEC, MILLION);
933         ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
934                                    VTIME_PER_USEC, MILLION);
935
936         return true;
937 }
938
939 /*
940  * When an iocg accumulates too much vtime or gets deactivated, we throw away
941  * some vtime, which lowers the overall device utilization. As the exact amount
942  * which is being thrown away is known, we can compensate by accelerating the
943  * vrate accordingly so that the extra vtime generated in the current period
944  * matches what got lost.
945  */
946 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
947 {
948         s64 pleft = ioc->period_at + ioc->period_us - now->now;
949         s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
950         s64 vcomp, vcomp_min, vcomp_max;
951
952         lockdep_assert_held(&ioc->lock);
953
954         /* we need some time left in this period */
955         if (pleft <= 0)
956                 goto done;
957
958         /*
959          * Calculate how much vrate should be adjusted to offset the error.
960          * Limit the amount of adjustment and deduct the adjusted amount from
961          * the error.
962          */
963         vcomp = -div64_s64(ioc->vtime_err, pleft);
964         vcomp_min = -(ioc->vtime_base_rate >> 1);
965         vcomp_max = ioc->vtime_base_rate;
966         vcomp = clamp(vcomp, vcomp_min, vcomp_max);
967
968         ioc->vtime_err += vcomp * pleft;
969
970         atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
971 done:
972         /* bound how much error can accumulate */
973         ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
974 }
975
976 /* take a snapshot of the current [v]time and vrate */
977 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
978 {
979         unsigned seq;
980
981         now->now_ns = ktime_get();
982         now->now = ktime_to_us(now->now_ns);
983         now->vrate = atomic64_read(&ioc->vtime_rate);
984
985         /*
986          * The current vtime is
987          *
988          *   vtime at period start + (wallclock time since the start) * vrate
989          *
990          * As a consistent snapshot of `period_at_vtime` and `period_at` is
991          * needed, they're seqcount protected.
992          */
993         do {
994                 seq = read_seqcount_begin(&ioc->period_seqcount);
995                 now->vnow = ioc->period_at_vtime +
996                         (now->now - ioc->period_at) * now->vrate;
997         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
998 }
999
1000 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1001 {
1002         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1003
1004         write_seqcount_begin(&ioc->period_seqcount);
1005         ioc->period_at = now->now;
1006         ioc->period_at_vtime = now->vnow;
1007         write_seqcount_end(&ioc->period_seqcount);
1008
1009         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1010         add_timer(&ioc->timer);
1011 }
1012
1013 /*
1014  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1015  * weight sums and propagate upwards accordingly. If @save, the current margin
1016  * is saved to be used as reference for later inuse in-period adjustments.
1017  */
1018 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1019                                 bool save, struct ioc_now *now)
1020 {
1021         struct ioc *ioc = iocg->ioc;
1022         int lvl;
1023
1024         lockdep_assert_held(&ioc->lock);
1025
1026         /*
1027          * For an active leaf node, its inuse shouldn't be zero or exceed
1028          * @active. An active internal node's inuse is solely determined by the
1029          * inuse to active ratio of its children regardless of @inuse.
1030          */
1031         if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1032                 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1033                                            iocg->child_active_sum);
1034         } else {
1035                 inuse = clamp_t(u32, inuse, 1, active);
1036         }
1037
1038         iocg->last_inuse = iocg->inuse;
1039         if (save)
1040                 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1041
1042         if (active == iocg->active && inuse == iocg->inuse)
1043                 return;
1044
1045         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1046                 struct ioc_gq *parent = iocg->ancestors[lvl];
1047                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1048                 u32 parent_active = 0, parent_inuse = 0;
1049
1050                 /* update the level sums */
1051                 parent->child_active_sum += (s32)(active - child->active);
1052                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1053                 /* apply the updates */
1054                 child->active = active;
1055                 child->inuse = inuse;
1056
1057                 /*
1058                  * The delta between inuse and active sums indicates that
1059                  * that much of weight is being given away.  Parent's inuse
1060                  * and active should reflect the ratio.
1061                  */
1062                 if (parent->child_active_sum) {
1063                         parent_active = parent->weight;
1064                         parent_inuse = DIV64_U64_ROUND_UP(
1065                                 parent_active * parent->child_inuse_sum,
1066                                 parent->child_active_sum);
1067                 }
1068
1069                 /* do we need to keep walking up? */
1070                 if (parent_active == parent->active &&
1071                     parent_inuse == parent->inuse)
1072                         break;
1073
1074                 active = parent_active;
1075                 inuse = parent_inuse;
1076         }
1077
1078         ioc->weights_updated = true;
1079 }
1080
1081 static void commit_weights(struct ioc *ioc)
1082 {
1083         lockdep_assert_held(&ioc->lock);
1084
1085         if (ioc->weights_updated) {
1086                 /* paired with rmb in current_hweight(), see there */
1087                 smp_wmb();
1088                 atomic_inc(&ioc->hweight_gen);
1089                 ioc->weights_updated = false;
1090         }
1091 }
1092
1093 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1094                               bool save, struct ioc_now *now)
1095 {
1096         __propagate_weights(iocg, active, inuse, save, now);
1097         commit_weights(iocg->ioc);
1098 }
1099
1100 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1101 {
1102         struct ioc *ioc = iocg->ioc;
1103         int lvl;
1104         u32 hwa, hwi;
1105         int ioc_gen;
1106
1107         /* hot path - if uptodate, use cached */
1108         ioc_gen = atomic_read(&ioc->hweight_gen);
1109         if (ioc_gen == iocg->hweight_gen)
1110                 goto out;
1111
1112         /*
1113          * Paired with wmb in commit_weights(). If we saw the updated
1114          * hweight_gen, all the weight updates from __propagate_weights() are
1115          * visible too.
1116          *
1117          * We can race with weight updates during calculation and get it
1118          * wrong.  However, hweight_gen would have changed and a future
1119          * reader will recalculate and we're guaranteed to discard the
1120          * wrong result soon.
1121          */
1122         smp_rmb();
1123
1124         hwa = hwi = WEIGHT_ONE;
1125         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1126                 struct ioc_gq *parent = iocg->ancestors[lvl];
1127                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1128                 u64 active_sum = READ_ONCE(parent->child_active_sum);
1129                 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1130                 u32 active = READ_ONCE(child->active);
1131                 u32 inuse = READ_ONCE(child->inuse);
1132
1133                 /* we can race with deactivations and either may read as zero */
1134                 if (!active_sum || !inuse_sum)
1135                         continue;
1136
1137                 active_sum = max_t(u64, active, active_sum);
1138                 hwa = div64_u64((u64)hwa * active, active_sum);
1139
1140                 inuse_sum = max_t(u64, inuse, inuse_sum);
1141                 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1142         }
1143
1144         iocg->hweight_active = max_t(u32, hwa, 1);
1145         iocg->hweight_inuse = max_t(u32, hwi, 1);
1146         iocg->hweight_gen = ioc_gen;
1147 out:
1148         if (hw_activep)
1149                 *hw_activep = iocg->hweight_active;
1150         if (hw_inusep)
1151                 *hw_inusep = iocg->hweight_inuse;
1152 }
1153
1154 /*
1155  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1156  * other weights stay unchanged.
1157  */
1158 static u32 current_hweight_max(struct ioc_gq *iocg)
1159 {
1160         u32 hwm = WEIGHT_ONE;
1161         u32 inuse = iocg->active;
1162         u64 child_inuse_sum;
1163         int lvl;
1164
1165         lockdep_assert_held(&iocg->ioc->lock);
1166
1167         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1168                 struct ioc_gq *parent = iocg->ancestors[lvl];
1169                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1170
1171                 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1172                 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1173                 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1174                                            parent->child_active_sum);
1175         }
1176
1177         return max_t(u32, hwm, 1);
1178 }
1179
1180 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1181 {
1182         struct ioc *ioc = iocg->ioc;
1183         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1184         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1185         u32 weight;
1186
1187         lockdep_assert_held(&ioc->lock);
1188
1189         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1190         if (weight != iocg->weight && iocg->active)
1191                 propagate_weights(iocg, weight, iocg->inuse, true, now);
1192         iocg->weight = weight;
1193 }
1194
1195 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1196 {
1197         struct ioc *ioc = iocg->ioc;
1198         u64 last_period, cur_period;
1199         u64 vtime, vtarget;
1200         int i;
1201
1202         /*
1203          * If seem to be already active, just update the stamp to tell the
1204          * timer that we're still active.  We don't mind occassional races.
1205          */
1206         if (!list_empty(&iocg->active_list)) {
1207                 ioc_now(ioc, now);
1208                 cur_period = atomic64_read(&ioc->cur_period);
1209                 if (atomic64_read(&iocg->active_period) != cur_period)
1210                         atomic64_set(&iocg->active_period, cur_period);
1211                 return true;
1212         }
1213
1214         /* racy check on internal node IOs, treat as root level IOs */
1215         if (iocg->child_active_sum)
1216                 return false;
1217
1218         spin_lock_irq(&ioc->lock);
1219
1220         ioc_now(ioc, now);
1221
1222         /* update period */
1223         cur_period = atomic64_read(&ioc->cur_period);
1224         last_period = atomic64_read(&iocg->active_period);
1225         atomic64_set(&iocg->active_period, cur_period);
1226
1227         /* already activated or breaking leaf-only constraint? */
1228         if (!list_empty(&iocg->active_list))
1229                 goto succeed_unlock;
1230         for (i = iocg->level - 1; i > 0; i--)
1231                 if (!list_empty(&iocg->ancestors[i]->active_list))
1232                         goto fail_unlock;
1233
1234         if (iocg->child_active_sum)
1235                 goto fail_unlock;
1236
1237         /*
1238          * Always start with the target budget. On deactivation, we throw away
1239          * anything above it.
1240          */
1241         vtarget = now->vnow - ioc->margins.target;
1242         vtime = atomic64_read(&iocg->vtime);
1243
1244         atomic64_add(vtarget - vtime, &iocg->vtime);
1245         atomic64_add(vtarget - vtime, &iocg->done_vtime);
1246         vtime = vtarget;
1247
1248         /*
1249          * Activate, propagate weight and start period timer if not
1250          * running.  Reset hweight_gen to avoid accidental match from
1251          * wrapping.
1252          */
1253         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1254         list_add(&iocg->active_list, &ioc->active_iocgs);
1255
1256         propagate_weights(iocg, iocg->weight,
1257                           iocg->last_inuse ?: iocg->weight, true, now);
1258
1259         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1260                         last_period, cur_period, vtime);
1261
1262         iocg->activated_at = now->now;
1263
1264         if (ioc->running == IOC_IDLE) {
1265                 ioc->running = IOC_RUNNING;
1266                 ioc->dfgv_period_at = now->now;
1267                 ioc->dfgv_period_rem = 0;
1268                 ioc_start_period(ioc, now);
1269         }
1270
1271 succeed_unlock:
1272         spin_unlock_irq(&ioc->lock);
1273         return true;
1274
1275 fail_unlock:
1276         spin_unlock_irq(&ioc->lock);
1277         return false;
1278 }
1279
1280 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1281 {
1282         struct ioc *ioc = iocg->ioc;
1283         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1284         u64 tdelta, delay, new_delay;
1285         s64 vover, vover_pct;
1286         u32 hwa;
1287
1288         lockdep_assert_held(&iocg->waitq.lock);
1289
1290         /* calculate the current delay in effect - 1/2 every second */
1291         tdelta = now->now - iocg->delay_at;
1292         if (iocg->delay)
1293                 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1294         else
1295                 delay = 0;
1296
1297         /* calculate the new delay from the debt amount */
1298         current_hweight(iocg, &hwa, NULL);
1299         vover = atomic64_read(&iocg->vtime) +
1300                 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1301         vover_pct = div64_s64(100 * vover,
1302                               ioc->period_us * ioc->vtime_base_rate);
1303
1304         if (vover_pct <= MIN_DELAY_THR_PCT)
1305                 new_delay = 0;
1306         else if (vover_pct >= MAX_DELAY_THR_PCT)
1307                 new_delay = MAX_DELAY;
1308         else
1309                 new_delay = MIN_DELAY +
1310                         div_u64((MAX_DELAY - MIN_DELAY) *
1311                                 (vover_pct - MIN_DELAY_THR_PCT),
1312                                 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1313
1314         /* pick the higher one and apply */
1315         if (new_delay > delay) {
1316                 iocg->delay = new_delay;
1317                 iocg->delay_at = now->now;
1318                 delay = new_delay;
1319         }
1320
1321         if (delay >= MIN_DELAY) {
1322                 if (!iocg->indelay_since)
1323                         iocg->indelay_since = now->now;
1324                 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1325                 return true;
1326         } else {
1327                 if (iocg->indelay_since) {
1328                         iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
1329                         iocg->indelay_since = 0;
1330                 }
1331                 iocg->delay = 0;
1332                 blkcg_clear_delay(blkg);
1333                 return false;
1334         }
1335 }
1336
1337 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1338                             struct ioc_now *now)
1339 {
1340         struct iocg_pcpu_stat *gcs;
1341
1342         lockdep_assert_held(&iocg->ioc->lock);
1343         lockdep_assert_held(&iocg->waitq.lock);
1344         WARN_ON_ONCE(list_empty(&iocg->active_list));
1345
1346         /*
1347          * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1348          * inuse donating all of it share to others until its debt is paid off.
1349          */
1350         if (!iocg->abs_vdebt && abs_cost) {
1351                 iocg->indebt_since = now->now;
1352                 propagate_weights(iocg, iocg->active, 0, false, now);
1353         }
1354
1355         iocg->abs_vdebt += abs_cost;
1356
1357         gcs = get_cpu_ptr(iocg->pcpu_stat);
1358         local64_add(abs_cost, &gcs->abs_vusage);
1359         put_cpu_ptr(gcs);
1360 }
1361
1362 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1363                           struct ioc_now *now)
1364 {
1365         lockdep_assert_held(&iocg->ioc->lock);
1366         lockdep_assert_held(&iocg->waitq.lock);
1367
1368         /* make sure that nobody messed with @iocg */
1369         WARN_ON_ONCE(list_empty(&iocg->active_list));
1370         WARN_ON_ONCE(iocg->inuse > 1);
1371
1372         iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1373
1374         /* if debt is paid in full, restore inuse */
1375         if (!iocg->abs_vdebt) {
1376                 iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
1377                 iocg->indebt_since = 0;
1378
1379                 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1380                                   false, now);
1381         }
1382 }
1383
1384 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1385                         int flags, void *key)
1386 {
1387         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1388         struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1389         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1390
1391         ctx->vbudget -= cost;
1392
1393         if (ctx->vbudget < 0)
1394                 return -1;
1395
1396         iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1397
1398         /*
1399          * autoremove_wake_function() removes the wait entry only when it
1400          * actually changed the task state.  We want the wait always
1401          * removed.  Remove explicitly and use default_wake_function().
1402          */
1403         list_del_init(&wq_entry->entry);
1404         wait->committed = true;
1405
1406         default_wake_function(wq_entry, mode, flags, key);
1407         return 0;
1408 }
1409
1410 /*
1411  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1412  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1413  * addition to iocg->waitq.lock.
1414  */
1415 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1416                             struct ioc_now *now)
1417 {
1418         struct ioc *ioc = iocg->ioc;
1419         struct iocg_wake_ctx ctx = { .iocg = iocg };
1420         u64 vshortage, expires, oexpires;
1421         s64 vbudget;
1422         u32 hwa;
1423
1424         lockdep_assert_held(&iocg->waitq.lock);
1425
1426         current_hweight(iocg, &hwa, NULL);
1427         vbudget = now->vnow - atomic64_read(&iocg->vtime);
1428
1429         /* pay off debt */
1430         if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1431                 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1432                 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1433                 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1434
1435                 lockdep_assert_held(&ioc->lock);
1436
1437                 atomic64_add(vpay, &iocg->vtime);
1438                 atomic64_add(vpay, &iocg->done_vtime);
1439                 iocg_pay_debt(iocg, abs_vpay, now);
1440                 vbudget -= vpay;
1441         }
1442
1443         if (iocg->abs_vdebt || iocg->delay)
1444                 iocg_kick_delay(iocg, now);
1445
1446         /*
1447          * Debt can still be outstanding if we haven't paid all yet or the
1448          * caller raced and called without @pay_debt. Shouldn't wake up waiters
1449          * under debt. Make sure @vbudget reflects the outstanding amount and is
1450          * not positive.
1451          */
1452         if (iocg->abs_vdebt) {
1453                 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1454                 vbudget = min_t(s64, 0, vbudget - vdebt);
1455         }
1456
1457         /*
1458          * Wake up the ones which are due and see how much vtime we'll need for
1459          * the next one. As paying off debt restores hw_inuse, it must be read
1460          * after the above debt payment.
1461          */
1462         ctx.vbudget = vbudget;
1463         current_hweight(iocg, NULL, &ctx.hw_inuse);
1464
1465         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1466
1467         if (!waitqueue_active(&iocg->waitq)) {
1468                 if (iocg->wait_since) {
1469                         iocg->local_stat.wait_us += now->now - iocg->wait_since;
1470                         iocg->wait_since = 0;
1471                 }
1472                 return;
1473         }
1474
1475         if (!iocg->wait_since)
1476                 iocg->wait_since = now->now;
1477
1478         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1479                 return;
1480
1481         /* determine next wakeup, add a timer margin to guarantee chunking */
1482         vshortage = -ctx.vbudget;
1483         expires = now->now_ns +
1484                 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1485                 NSEC_PER_USEC;
1486         expires += ioc->timer_slack_ns;
1487
1488         /* if already active and close enough, don't bother */
1489         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1490         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1491             abs(oexpires - expires) <= ioc->timer_slack_ns)
1492                 return;
1493
1494         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1495                                ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1496 }
1497
1498 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1499 {
1500         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1501         bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1502         struct ioc_now now;
1503         unsigned long flags;
1504
1505         ioc_now(iocg->ioc, &now);
1506
1507         iocg_lock(iocg, pay_debt, &flags);
1508         iocg_kick_waitq(iocg, pay_debt, &now);
1509         iocg_unlock(iocg, pay_debt, &flags);
1510
1511         return HRTIMER_NORESTART;
1512 }
1513
1514 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1515 {
1516         u32 nr_met[2] = { };
1517         u32 nr_missed[2] = { };
1518         u64 rq_wait_ns = 0;
1519         int cpu, rw;
1520
1521         for_each_online_cpu(cpu) {
1522                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1523                 u64 this_rq_wait_ns;
1524
1525                 for (rw = READ; rw <= WRITE; rw++) {
1526                         u32 this_met = local_read(&stat->missed[rw].nr_met);
1527                         u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1528
1529                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1530                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1531                         stat->missed[rw].last_met = this_met;
1532                         stat->missed[rw].last_missed = this_missed;
1533                 }
1534
1535                 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1536                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1537                 stat->last_rq_wait_ns = this_rq_wait_ns;
1538         }
1539
1540         for (rw = READ; rw <= WRITE; rw++) {
1541                 if (nr_met[rw] + nr_missed[rw])
1542                         missed_ppm_ar[rw] =
1543                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1544                                                    nr_met[rw] + nr_missed[rw]);
1545                 else
1546                         missed_ppm_ar[rw] = 0;
1547         }
1548
1549         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1550                                    ioc->period_us * NSEC_PER_USEC);
1551 }
1552
1553 /* was iocg idle this period? */
1554 static bool iocg_is_idle(struct ioc_gq *iocg)
1555 {
1556         struct ioc *ioc = iocg->ioc;
1557
1558         /* did something get issued this period? */
1559         if (atomic64_read(&iocg->active_period) ==
1560             atomic64_read(&ioc->cur_period))
1561                 return false;
1562
1563         /* is something in flight? */
1564         if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1565                 return false;
1566
1567         return true;
1568 }
1569
1570 /*
1571  * Call this function on the target leaf @iocg's to build pre-order traversal
1572  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1573  * ->walk_list and the caller is responsible for dissolving the list after use.
1574  */
1575 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1576                                   struct list_head *inner_walk)
1577 {
1578         int lvl;
1579
1580         WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1581
1582         /* find the first ancestor which hasn't been visited yet */
1583         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1584                 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1585                         break;
1586         }
1587
1588         /* walk down and visit the inner nodes to get pre-order traversal */
1589         while (++lvl <= iocg->level - 1) {
1590                 struct ioc_gq *inner = iocg->ancestors[lvl];
1591
1592                 /* record traversal order */
1593                 list_add_tail(&inner->walk_list, inner_walk);
1594         }
1595 }
1596
1597 /* collect per-cpu counters and propagate the deltas to the parent */
1598 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1599 {
1600         struct ioc *ioc = iocg->ioc;
1601         struct iocg_stat new_stat;
1602         u64 abs_vusage = 0;
1603         u64 vusage_delta;
1604         int cpu;
1605
1606         lockdep_assert_held(&iocg->ioc->lock);
1607
1608         /* collect per-cpu counters */
1609         for_each_possible_cpu(cpu) {
1610                 abs_vusage += local64_read(
1611                                 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1612         }
1613         vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1614         iocg->last_stat_abs_vusage = abs_vusage;
1615
1616         iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1617         iocg->local_stat.usage_us += iocg->usage_delta_us;
1618
1619         /* propagate upwards */
1620         new_stat.usage_us =
1621                 iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
1622         new_stat.wait_us =
1623                 iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
1624         new_stat.indebt_us =
1625                 iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
1626         new_stat.indelay_us =
1627                 iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
1628
1629         /* propagate the deltas to the parent */
1630         if (iocg->level > 0) {
1631                 struct iocg_stat *parent_stat =
1632                         &iocg->ancestors[iocg->level - 1]->desc_stat;
1633
1634                 parent_stat->usage_us +=
1635                         new_stat.usage_us - iocg->last_stat.usage_us;
1636                 parent_stat->wait_us +=
1637                         new_stat.wait_us - iocg->last_stat.wait_us;
1638                 parent_stat->indebt_us +=
1639                         new_stat.indebt_us - iocg->last_stat.indebt_us;
1640                 parent_stat->indelay_us +=
1641                         new_stat.indelay_us - iocg->last_stat.indelay_us;
1642         }
1643
1644         iocg->last_stat = new_stat;
1645 }
1646
1647 /* get stat counters ready for reading on all active iocgs */
1648 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1649 {
1650         LIST_HEAD(inner_walk);
1651         struct ioc_gq *iocg, *tiocg;
1652
1653         /* flush leaves and build inner node walk list */
1654         list_for_each_entry(iocg, target_iocgs, active_list) {
1655                 iocg_flush_stat_one(iocg, now);
1656                 iocg_build_inner_walk(iocg, &inner_walk);
1657         }
1658
1659         /* keep flushing upwards by walking the inner list backwards */
1660         list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1661                 iocg_flush_stat_one(iocg, now);
1662                 list_del_init(&iocg->walk_list);
1663         }
1664 }
1665
1666 /*
1667  * Determine what @iocg's hweight_inuse should be after donating unused
1668  * capacity. @hwm is the upper bound and used to signal no donation. This
1669  * function also throws away @iocg's excess budget.
1670  */
1671 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1672                                   u32 usage, struct ioc_now *now)
1673 {
1674         struct ioc *ioc = iocg->ioc;
1675         u64 vtime = atomic64_read(&iocg->vtime);
1676         s64 excess, delta, target, new_hwi;
1677
1678         /* debt handling owns inuse for debtors */
1679         if (iocg->abs_vdebt)
1680                 return 1;
1681
1682         /* see whether minimum margin requirement is met */
1683         if (waitqueue_active(&iocg->waitq) ||
1684             time_after64(vtime, now->vnow - ioc->margins.min))
1685                 return hwm;
1686
1687         /* throw away excess above target */
1688         excess = now->vnow - vtime - ioc->margins.target;
1689         if (excess > 0) {
1690                 atomic64_add(excess, &iocg->vtime);
1691                 atomic64_add(excess, &iocg->done_vtime);
1692                 vtime += excess;
1693                 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1694         }
1695
1696         /*
1697          * Let's say the distance between iocg's and device's vtimes as a
1698          * fraction of period duration is delta. Assuming that the iocg will
1699          * consume the usage determined above, we want to determine new_hwi so
1700          * that delta equals MARGIN_TARGET at the end of the next period.
1701          *
1702          * We need to execute usage worth of IOs while spending the sum of the
1703          * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1704          * (delta):
1705          *
1706          *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1707          *
1708          * Therefore, the new_hwi is:
1709          *
1710          *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1711          */
1712         delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1713                           now->vnow - ioc->period_at_vtime);
1714         target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1715         new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1716
1717         return clamp_t(s64, new_hwi, 1, hwm);
1718 }
1719
1720 /*
1721  * For work-conservation, an iocg which isn't using all of its share should
1722  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1723  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1724  *
1725  * #1 is mathematically simpler but has the drawback of requiring synchronous
1726  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1727  * change due to donation snapbacks as it has the possibility of grossly
1728  * overshooting what's allowed by the model and vrate.
1729  *
1730  * #2 is inherently safe with local operations. The donating iocg can easily
1731  * snap back to higher weights when needed without worrying about impacts on
1732  * other nodes as the impacts will be inherently correct. This also makes idle
1733  * iocg activations safe. The only effect activations have is decreasing
1734  * hweight_inuse of others, the right solution to which is for those iocgs to
1735  * snap back to higher weights.
1736  *
1737  * So, we go with #2. The challenge is calculating how each donating iocg's
1738  * inuse should be adjusted to achieve the target donation amounts. This is done
1739  * using Andy's method described in the following pdf.
1740  *
1741  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1742  *
1743  * Given the weights and target after-donation hweight_inuse values, Andy's
1744  * method determines how the proportional distribution should look like at each
1745  * sibling level to maintain the relative relationship between all non-donating
1746  * pairs. To roughly summarize, it divides the tree into donating and
1747  * non-donating parts, calculates global donation rate which is used to
1748  * determine the target hweight_inuse for each node, and then derives per-level
1749  * proportions.
1750  *
1751  * The following pdf shows that global distribution calculated this way can be
1752  * achieved by scaling inuse weights of donating leaves and propagating the
1753  * adjustments upwards proportionally.
1754  *
1755  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1756  *
1757  * Combining the above two, we can determine how each leaf iocg's inuse should
1758  * be adjusted to achieve the target donation.
1759  *
1760  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1761  *
1762  * The inline comments use symbols from the last pdf.
1763  *
1764  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1765  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1766  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1767  *   w is the weight of the node. w = w_f + w_t
1768  *   w_f is the non-donating portion of w. w_f = w * f / b
1769  *   w_b is the donating portion of w. w_t = w * t / b
1770  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1771  *   s_f and s_t are the non-donating and donating portions of s.
1772  *
1773  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1774  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1775  * after adjustments. Subscript r denotes the root node's values.
1776  */
1777 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1778 {
1779         LIST_HEAD(over_hwa);
1780         LIST_HEAD(inner_walk);
1781         struct ioc_gq *iocg, *tiocg, *root_iocg;
1782         u32 after_sum, over_sum, over_target, gamma;
1783
1784         /*
1785          * It's pretty unlikely but possible for the total sum of
1786          * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1787          * confuse the following calculations. If such condition is detected,
1788          * scale down everyone over its full share equally to keep the sum below
1789          * WEIGHT_ONE.
1790          */
1791         after_sum = 0;
1792         over_sum = 0;
1793         list_for_each_entry(iocg, surpluses, surplus_list) {
1794                 u32 hwa;
1795
1796                 current_hweight(iocg, &hwa, NULL);
1797                 after_sum += iocg->hweight_after_donation;
1798
1799                 if (iocg->hweight_after_donation > hwa) {
1800                         over_sum += iocg->hweight_after_donation;
1801                         list_add(&iocg->walk_list, &over_hwa);
1802                 }
1803         }
1804
1805         if (after_sum >= WEIGHT_ONE) {
1806                 /*
1807                  * The delta should be deducted from the over_sum, calculate
1808                  * target over_sum value.
1809                  */
1810                 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1811                 WARN_ON_ONCE(over_sum <= over_delta);
1812                 over_target = over_sum - over_delta;
1813         } else {
1814                 over_target = 0;
1815         }
1816
1817         list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1818                 if (over_target)
1819                         iocg->hweight_after_donation =
1820                                 div_u64((u64)iocg->hweight_after_donation *
1821                                         over_target, over_sum);
1822                 list_del_init(&iocg->walk_list);
1823         }
1824
1825         /*
1826          * Build pre-order inner node walk list and prepare for donation
1827          * adjustment calculations.
1828          */
1829         list_for_each_entry(iocg, surpluses, surplus_list) {
1830                 iocg_build_inner_walk(iocg, &inner_walk);
1831         }
1832
1833         root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1834         WARN_ON_ONCE(root_iocg->level > 0);
1835
1836         list_for_each_entry(iocg, &inner_walk, walk_list) {
1837                 iocg->child_adjusted_sum = 0;
1838                 iocg->hweight_donating = 0;
1839                 iocg->hweight_after_donation = 0;
1840         }
1841
1842         /*
1843          * Propagate the donating budget (b_t) and after donation budget (b'_t)
1844          * up the hierarchy.
1845          */
1846         list_for_each_entry(iocg, surpluses, surplus_list) {
1847                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1848
1849                 parent->hweight_donating += iocg->hweight_donating;
1850                 parent->hweight_after_donation += iocg->hweight_after_donation;
1851         }
1852
1853         list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1854                 if (iocg->level > 0) {
1855                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1856
1857                         parent->hweight_donating += iocg->hweight_donating;
1858                         parent->hweight_after_donation += iocg->hweight_after_donation;
1859                 }
1860         }
1861
1862         /*
1863          * Calculate inner hwa's (b) and make sure the donation values are
1864          * within the accepted ranges as we're doing low res calculations with
1865          * roundups.
1866          */
1867         list_for_each_entry(iocg, &inner_walk, walk_list) {
1868                 if (iocg->level) {
1869                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1870
1871                         iocg->hweight_active = DIV64_U64_ROUND_UP(
1872                                 (u64)parent->hweight_active * iocg->active,
1873                                 parent->child_active_sum);
1874
1875                 }
1876
1877                 iocg->hweight_donating = min(iocg->hweight_donating,
1878                                              iocg->hweight_active);
1879                 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1880                                                    iocg->hweight_donating - 1);
1881                 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1882                                  iocg->hweight_donating <= 1 ||
1883                                  iocg->hweight_after_donation == 0)) {
1884                         pr_warn("iocg: invalid donation weights in ");
1885                         pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1886                         pr_cont(": active=%u donating=%u after=%u\n",
1887                                 iocg->hweight_active, iocg->hweight_donating,
1888                                 iocg->hweight_after_donation);
1889                 }
1890         }
1891
1892         /*
1893          * Calculate the global donation rate (gamma) - the rate to adjust
1894          * non-donating budgets by.
1895          *
1896          * No need to use 64bit multiplication here as the first operand is
1897          * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1898          *
1899          * We know that there are beneficiary nodes and the sum of the donating
1900          * hweights can't be whole; however, due to the round-ups during hweight
1901          * calculations, root_iocg->hweight_donating might still end up equal to
1902          * or greater than whole. Limit the range when calculating the divider.
1903          *
1904          * gamma = (1 - t_r') / (1 - t_r)
1905          */
1906         gamma = DIV_ROUND_UP(
1907                 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1908                 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1909
1910         /*
1911          * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1912          * nodes.
1913          */
1914         list_for_each_entry(iocg, &inner_walk, walk_list) {
1915                 struct ioc_gq *parent;
1916                 u32 inuse, wpt, wptp;
1917                 u64 st, sf;
1918
1919                 if (iocg->level == 0) {
1920                         /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1921                         iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1922                                 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1923                                 WEIGHT_ONE - iocg->hweight_after_donation);
1924                         continue;
1925                 }
1926
1927                 parent = iocg->ancestors[iocg->level - 1];
1928
1929                 /* b' = gamma * b_f + b_t' */
1930                 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1931                         (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1932                         WEIGHT_ONE) + iocg->hweight_after_donation;
1933
1934                 /* w' = s' * b' / b'_p */
1935                 inuse = DIV64_U64_ROUND_UP(
1936                         (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1937                         parent->hweight_inuse);
1938
1939                 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1940                 st = DIV64_U64_ROUND_UP(
1941                         iocg->child_active_sum * iocg->hweight_donating,
1942                         iocg->hweight_active);
1943                 sf = iocg->child_active_sum - st;
1944                 wpt = DIV64_U64_ROUND_UP(
1945                         (u64)iocg->active * iocg->hweight_donating,
1946                         iocg->hweight_active);
1947                 wptp = DIV64_U64_ROUND_UP(
1948                         (u64)inuse * iocg->hweight_after_donation,
1949                         iocg->hweight_inuse);
1950
1951                 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1952         }
1953
1954         /*
1955          * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1956          * we can finally determine leaf adjustments.
1957          */
1958         list_for_each_entry(iocg, surpluses, surplus_list) {
1959                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1960                 u32 inuse;
1961
1962                 /*
1963                  * In-debt iocgs participated in the donation calculation with
1964                  * the minimum target hweight_inuse. Configuring inuse
1965                  * accordingly would work fine but debt handling expects
1966                  * @iocg->inuse stay at the minimum and we don't wanna
1967                  * interfere.
1968                  */
1969                 if (iocg->abs_vdebt) {
1970                         WARN_ON_ONCE(iocg->inuse > 1);
1971                         continue;
1972                 }
1973
1974                 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
1975                 inuse = DIV64_U64_ROUND_UP(
1976                         parent->child_adjusted_sum * iocg->hweight_after_donation,
1977                         parent->hweight_inuse);
1978
1979                 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
1980                                 iocg->inuse, inuse,
1981                                 iocg->hweight_inuse,
1982                                 iocg->hweight_after_donation);
1983
1984                 __propagate_weights(iocg, iocg->active, inuse, true, now);
1985         }
1986
1987         /* walk list should be dissolved after use */
1988         list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
1989                 list_del_init(&iocg->walk_list);
1990 }
1991
1992 /*
1993  * A low weight iocg can amass a large amount of debt, for example, when
1994  * anonymous memory gets reclaimed aggressively. If the system has a lot of
1995  * memory paired with a slow IO device, the debt can span multiple seconds or
1996  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
1997  * up blocked paying its debt while the IO device is idle.
1998  *
1999  * The following protects against such cases. If the device has been
2000  * sufficiently idle for a while, the debts are halved and delays are
2001  * recalculated.
2002  */
2003 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2004                               struct ioc_now *now)
2005 {
2006         struct ioc_gq *iocg;
2007         u64 dur, usage_pct, nr_cycles;
2008
2009         /* if no debtor, reset the cycle */
2010         if (!nr_debtors) {
2011                 ioc->dfgv_period_at = now->now;
2012                 ioc->dfgv_period_rem = 0;
2013                 ioc->dfgv_usage_us_sum = 0;
2014                 return;
2015         }
2016
2017         /*
2018          * Debtors can pass through a lot of writes choking the device and we
2019          * don't want to be forgiving debts while the device is struggling from
2020          * write bursts. If we're missing latency targets, consider the device
2021          * fully utilized.
2022          */
2023         if (ioc->busy_level > 0)
2024                 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2025
2026         ioc->dfgv_usage_us_sum += usage_us_sum;
2027         if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2028                 return;
2029
2030         /*
2031          * At least DFGV_PERIOD has passed since the last period. Calculate the
2032          * average usage and reset the period counters.
2033          */
2034         dur = now->now - ioc->dfgv_period_at;
2035         usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2036
2037         ioc->dfgv_period_at = now->now;
2038         ioc->dfgv_usage_us_sum = 0;
2039
2040         /* if was too busy, reset everything */
2041         if (usage_pct > DFGV_USAGE_PCT) {
2042                 ioc->dfgv_period_rem = 0;
2043                 return;
2044         }
2045
2046         /*
2047          * Usage is lower than threshold. Let's forgive some debts. Debt
2048          * forgiveness runs off of the usual ioc timer but its period usually
2049          * doesn't match ioc's. Compensate the difference by performing the
2050          * reduction as many times as would fit in the duration since the last
2051          * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2052          * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2053          * reductions is doubled.
2054          */
2055         nr_cycles = dur + ioc->dfgv_period_rem;
2056         ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2057
2058         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2059                 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2060
2061                 if (!iocg->abs_vdebt && !iocg->delay)
2062                         continue;
2063
2064                 spin_lock(&iocg->waitq.lock);
2065
2066                 old_debt = iocg->abs_vdebt;
2067                 old_delay = iocg->delay;
2068
2069                 if (iocg->abs_vdebt)
2070                         iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2071                 if (iocg->delay)
2072                         iocg->delay = iocg->delay >> nr_cycles ?: 1;
2073
2074                 iocg_kick_waitq(iocg, true, now);
2075
2076                 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2077                                 old_debt, iocg->abs_vdebt,
2078                                 old_delay, iocg->delay);
2079
2080                 spin_unlock(&iocg->waitq.lock);
2081         }
2082 }
2083
2084 static void ioc_timer_fn(struct timer_list *timer)
2085 {
2086         struct ioc *ioc = container_of(timer, struct ioc, timer);
2087         struct ioc_gq *iocg, *tiocg;
2088         struct ioc_now now;
2089         LIST_HEAD(surpluses);
2090         int nr_debtors = 0, nr_shortages = 0, nr_lagging = 0;
2091         u64 usage_us_sum = 0;
2092         u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2093         u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2094         u32 missed_ppm[2], rq_wait_pct;
2095         u64 period_vtime;
2096         int prev_busy_level;
2097
2098         /* how were the latencies during the period? */
2099         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2100
2101         /* take care of active iocgs */
2102         spin_lock_irq(&ioc->lock);
2103
2104         ioc_now(ioc, &now);
2105
2106         period_vtime = now.vnow - ioc->period_at_vtime;
2107         if (WARN_ON_ONCE(!period_vtime)) {
2108                 spin_unlock_irq(&ioc->lock);
2109                 return;
2110         }
2111
2112         /*
2113          * Waiters determine the sleep durations based on the vrate they
2114          * saw at the time of sleep.  If vrate has increased, some waiters
2115          * could be sleeping for too long.  Wake up tardy waiters which
2116          * should have woken up in the last period and expire idle iocgs.
2117          */
2118         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2119                 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2120                     !iocg->delay && !iocg_is_idle(iocg))
2121                         continue;
2122
2123                 spin_lock(&iocg->waitq.lock);
2124
2125                 /* flush wait and indebt stat deltas */
2126                 if (iocg->wait_since) {
2127                         iocg->local_stat.wait_us += now.now - iocg->wait_since;
2128                         iocg->wait_since = now.now;
2129                 }
2130                 if (iocg->indebt_since) {
2131                         iocg->local_stat.indebt_us +=
2132                                 now.now - iocg->indebt_since;
2133                         iocg->indebt_since = now.now;
2134                 }
2135                 if (iocg->indelay_since) {
2136                         iocg->local_stat.indelay_us +=
2137                                 now.now - iocg->indelay_since;
2138                         iocg->indelay_since = now.now;
2139                 }
2140
2141                 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2142                     iocg->delay) {
2143                         /* might be oversleeping vtime / hweight changes, kick */
2144                         iocg_kick_waitq(iocg, true, &now);
2145                         if (iocg->abs_vdebt || iocg->delay)
2146                                 nr_debtors++;
2147                 } else if (iocg_is_idle(iocg)) {
2148                         /* no waiter and idle, deactivate */
2149                         u64 vtime = atomic64_read(&iocg->vtime);
2150                         s64 excess;
2151
2152                         /*
2153                          * @iocg has been inactive for a full duration and will
2154                          * have a high budget. Account anything above target as
2155                          * error and throw away. On reactivation, it'll start
2156                          * with the target budget.
2157                          */
2158                         excess = now.vnow - vtime - ioc->margins.target;
2159                         if (excess > 0) {
2160                                 u32 old_hwi;
2161
2162                                 current_hweight(iocg, NULL, &old_hwi);
2163                                 ioc->vtime_err -= div64_u64(excess * old_hwi,
2164                                                             WEIGHT_ONE);
2165                         }
2166
2167                         __propagate_weights(iocg, 0, 0, false, &now);
2168                         list_del_init(&iocg->active_list);
2169                 }
2170
2171                 spin_unlock(&iocg->waitq.lock);
2172         }
2173         commit_weights(ioc);
2174
2175         /*
2176          * Wait and indebt stat are flushed above and the donation calculation
2177          * below needs updated usage stat. Let's bring stat up-to-date.
2178          */
2179         iocg_flush_stat(&ioc->active_iocgs, &now);
2180
2181         /* calc usage and see whether some weights need to be moved around */
2182         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2183                 u64 vdone, vtime, usage_us, usage_dur;
2184                 u32 usage, hw_active, hw_inuse;
2185
2186                 /*
2187                  * Collect unused and wind vtime closer to vnow to prevent
2188                  * iocgs from accumulating a large amount of budget.
2189                  */
2190                 vdone = atomic64_read(&iocg->done_vtime);
2191                 vtime = atomic64_read(&iocg->vtime);
2192                 current_hweight(iocg, &hw_active, &hw_inuse);
2193
2194                 /*
2195                  * Latency QoS detection doesn't account for IOs which are
2196                  * in-flight for longer than a period.  Detect them by
2197                  * comparing vdone against period start.  If lagging behind
2198                  * IOs from past periods, don't increase vrate.
2199                  */
2200                 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2201                     !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2202                     time_after64(vtime, vdone) &&
2203                     time_after64(vtime, now.vnow -
2204                                  MAX_LAGGING_PERIODS * period_vtime) &&
2205                     time_before64(vdone, now.vnow - period_vtime))
2206                         nr_lagging++;
2207
2208                 /*
2209                  * Determine absolute usage factoring in in-flight IOs to avoid
2210                  * high-latency completions appearing as idle.
2211                  */
2212                 usage_us = iocg->usage_delta_us;
2213                 usage_us_sum += usage_us;
2214
2215                 if (vdone != vtime) {
2216                         u64 inflight_us = DIV64_U64_ROUND_UP(
2217                                 cost_to_abs_cost(vtime - vdone, hw_inuse),
2218                                 ioc->vtime_base_rate);
2219                         usage_us = max(usage_us, inflight_us);
2220                 }
2221
2222                 /* convert to hweight based usage ratio */
2223                 if (time_after64(iocg->activated_at, ioc->period_at))
2224                         usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2225                 else
2226                         usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2227
2228                 usage = clamp_t(u32,
2229                                 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2230                                                    usage_dur),
2231                                 1, WEIGHT_ONE);
2232
2233                 /* see whether there's surplus vtime */
2234                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2235                 if (hw_inuse < hw_active ||
2236                     (!waitqueue_active(&iocg->waitq) &&
2237                      time_before64(vtime, now.vnow - ioc->margins.low))) {
2238                         u32 hwa, old_hwi, hwm, new_hwi;
2239
2240                         /*
2241                          * Already donating or accumulated enough to start.
2242                          * Determine the donation amount.
2243                          */
2244                         current_hweight(iocg, &hwa, &old_hwi);
2245                         hwm = current_hweight_max(iocg);
2246                         new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2247                                                          usage, &now);
2248                         if (new_hwi < hwm) {
2249                                 iocg->hweight_donating = hwa;
2250                                 iocg->hweight_after_donation = new_hwi;
2251                                 list_add(&iocg->surplus_list, &surpluses);
2252                         } else {
2253                                 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2254                                                 iocg->inuse, iocg->active,
2255                                                 iocg->hweight_inuse, new_hwi);
2256
2257                                 __propagate_weights(iocg, iocg->active,
2258                                                     iocg->active, true, &now);
2259                                 nr_shortages++;
2260                         }
2261                 } else {
2262                         /* genuinely short on vtime */
2263                         nr_shortages++;
2264                 }
2265         }
2266
2267         if (!list_empty(&surpluses) && nr_shortages)
2268                 transfer_surpluses(&surpluses, &now);
2269
2270         commit_weights(ioc);
2271
2272         /* surplus list should be dissolved after use */
2273         list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2274                 list_del_init(&iocg->surplus_list);
2275
2276         /*
2277          * If q is getting clogged or we're missing too much, we're issuing
2278          * too much IO and should lower vtime rate.  If we're not missing
2279          * and experiencing shortages but not surpluses, we're too stingy
2280          * and should increase vtime rate.
2281          */
2282         prev_busy_level = ioc->busy_level;
2283         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2284             missed_ppm[READ] > ppm_rthr ||
2285             missed_ppm[WRITE] > ppm_wthr) {
2286                 /* clearly missing QoS targets, slow down vrate */
2287                 ioc->busy_level = max(ioc->busy_level, 0);
2288                 ioc->busy_level++;
2289         } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2290                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2291                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2292                 /* QoS targets are being met with >25% margin */
2293                 if (nr_shortages) {
2294                         /*
2295                          * We're throttling while the device has spare
2296                          * capacity.  If vrate was being slowed down, stop.
2297                          */
2298                         ioc->busy_level = min(ioc->busy_level, 0);
2299
2300                         /*
2301                          * If there are IOs spanning multiple periods, wait
2302                          * them out before pushing the device harder.
2303                          */
2304                         if (!nr_lagging)
2305                                 ioc->busy_level--;
2306                 } else {
2307                         /*
2308                          * Nobody is being throttled and the users aren't
2309                          * issuing enough IOs to saturate the device.  We
2310                          * simply don't know how close the device is to
2311                          * saturation.  Coast.
2312                          */
2313                         ioc->busy_level = 0;
2314                 }
2315         } else {
2316                 /* inside the hysterisis margin, we're good */
2317                 ioc->busy_level = 0;
2318         }
2319
2320         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2321
2322         if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
2323                 u64 vrate = ioc->vtime_base_rate;
2324                 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
2325
2326                 /* rq_wait signal is always reliable, ignore user vrate_min */
2327                 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
2328                         vrate_min = VRATE_MIN;
2329
2330                 /*
2331                  * If vrate is out of bounds, apply clamp gradually as the
2332                  * bounds can change abruptly.  Otherwise, apply busy_level
2333                  * based adjustment.
2334                  */
2335                 if (vrate < vrate_min) {
2336                         vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
2337                                           100);
2338                         vrate = min(vrate, vrate_min);
2339                 } else if (vrate > vrate_max) {
2340                         vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
2341                                           100);
2342                         vrate = max(vrate, vrate_max);
2343                 } else {
2344                         int idx = min_t(int, abs(ioc->busy_level),
2345                                         ARRAY_SIZE(vrate_adj_pct) - 1);
2346                         u32 adj_pct = vrate_adj_pct[idx];
2347
2348                         if (ioc->busy_level > 0)
2349                                 adj_pct = 100 - adj_pct;
2350                         else
2351                                 adj_pct = 100 + adj_pct;
2352
2353                         vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
2354                                       vrate_min, vrate_max);
2355                 }
2356
2357                 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
2358                                            nr_lagging, nr_shortages);
2359
2360                 ioc->vtime_base_rate = vrate;
2361                 ioc_refresh_margins(ioc);
2362         } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
2363                 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
2364                                            missed_ppm, rq_wait_pct, nr_lagging,
2365                                            nr_shortages);
2366         }
2367
2368         ioc_refresh_params(ioc, false);
2369
2370         ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2371
2372         /*
2373          * This period is done.  Move onto the next one.  If nothing's
2374          * going on with the device, stop the timer.
2375          */
2376         atomic64_inc(&ioc->cur_period);
2377
2378         if (ioc->running != IOC_STOP) {
2379                 if (!list_empty(&ioc->active_iocgs)) {
2380                         ioc_start_period(ioc, &now);
2381                 } else {
2382                         ioc->busy_level = 0;
2383                         ioc->vtime_err = 0;
2384                         ioc->running = IOC_IDLE;
2385                 }
2386
2387                 ioc_refresh_vrate(ioc, &now);
2388         }
2389
2390         spin_unlock_irq(&ioc->lock);
2391 }
2392
2393 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2394                                       u64 abs_cost, struct ioc_now *now)
2395 {
2396         struct ioc *ioc = iocg->ioc;
2397         struct ioc_margins *margins = &ioc->margins;
2398         u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2399         u32 hwi, adj_step;
2400         s64 margin;
2401         u64 cost, new_inuse;
2402
2403         current_hweight(iocg, NULL, &hwi);
2404         old_hwi = hwi;
2405         cost = abs_cost_to_cost(abs_cost, hwi);
2406         margin = now->vnow - vtime - cost;
2407
2408         /* debt handling owns inuse for debtors */
2409         if (iocg->abs_vdebt)
2410                 return cost;
2411
2412         /*
2413          * We only increase inuse during period and do so iff the margin has
2414          * deteriorated since the previous adjustment.
2415          */
2416         if (margin >= iocg->saved_margin || margin >= margins->low ||
2417             iocg->inuse == iocg->active)
2418                 return cost;
2419
2420         spin_lock_irq(&ioc->lock);
2421
2422         /* we own inuse only when @iocg is in the normal active state */
2423         if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2424                 spin_unlock_irq(&ioc->lock);
2425                 return cost;
2426         }
2427
2428         /*
2429          * Bump up inuse till @abs_cost fits in the existing budget.
2430          * adj_step must be determined after acquiring ioc->lock - we might
2431          * have raced and lost to another thread for activation and could
2432          * be reading 0 iocg->active before ioc->lock which will lead to
2433          * infinite loop.
2434          */
2435         new_inuse = iocg->inuse;
2436         adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2437         do {
2438                 new_inuse = new_inuse + adj_step;
2439                 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2440                 current_hweight(iocg, NULL, &hwi);
2441                 cost = abs_cost_to_cost(abs_cost, hwi);
2442         } while (time_after64(vtime + cost, now->vnow) &&
2443                  iocg->inuse != iocg->active);
2444
2445         spin_unlock_irq(&ioc->lock);
2446
2447         TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2448                         old_inuse, iocg->inuse, old_hwi, hwi);
2449
2450         return cost;
2451 }
2452
2453 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2454                                     bool is_merge, u64 *costp)
2455 {
2456         struct ioc *ioc = iocg->ioc;
2457         u64 coef_seqio, coef_randio, coef_page;
2458         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2459         u64 seek_pages = 0;
2460         u64 cost = 0;
2461
2462         switch (bio_op(bio)) {
2463         case REQ_OP_READ:
2464                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
2465                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
2466                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
2467                 break;
2468         case REQ_OP_WRITE:
2469                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
2470                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
2471                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
2472                 break;
2473         default:
2474                 goto out;
2475         }
2476
2477         if (iocg->cursor) {
2478                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2479                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2480         }
2481
2482         if (!is_merge) {
2483                 if (seek_pages > LCOEF_RANDIO_PAGES) {
2484                         cost += coef_randio;
2485                 } else {
2486                         cost += coef_seqio;
2487                 }
2488         }
2489         cost += pages * coef_page;
2490 out:
2491         *costp = cost;
2492 }
2493
2494 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2495 {
2496         u64 cost;
2497
2498         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2499         return cost;
2500 }
2501
2502 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2503                                          u64 *costp)
2504 {
2505         unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2506
2507         switch (req_op(rq)) {
2508         case REQ_OP_READ:
2509                 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2510                 break;
2511         case REQ_OP_WRITE:
2512                 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2513                 break;
2514         default:
2515                 *costp = 0;
2516         }
2517 }
2518
2519 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2520 {
2521         u64 cost;
2522
2523         calc_size_vtime_cost_builtin(rq, ioc, &cost);
2524         return cost;
2525 }
2526
2527 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2528 {
2529         struct blkcg_gq *blkg = bio->bi_blkg;
2530         struct ioc *ioc = rqos_to_ioc(rqos);
2531         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2532         struct ioc_now now;
2533         struct iocg_wait wait;
2534         u64 abs_cost, cost, vtime;
2535         bool use_debt, ioc_locked;
2536         unsigned long flags;
2537
2538         /* bypass IOs if disabled, still initializing, or for root cgroup */
2539         if (!ioc->enabled || !iocg || !iocg->level)
2540                 return;
2541
2542         /* calculate the absolute vtime cost */
2543         abs_cost = calc_vtime_cost(bio, iocg, false);
2544         if (!abs_cost)
2545                 return;
2546
2547         if (!iocg_activate(iocg, &now))
2548                 return;
2549
2550         iocg->cursor = bio_end_sector(bio);
2551         vtime = atomic64_read(&iocg->vtime);
2552         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2553
2554         /*
2555          * If no one's waiting and within budget, issue right away.  The
2556          * tests are racy but the races aren't systemic - we only miss once
2557          * in a while which is fine.
2558          */
2559         if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2560             time_before_eq64(vtime + cost, now.vnow)) {
2561                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2562                 return;
2563         }
2564
2565         /*
2566          * We're over budget. This can be handled in two ways. IOs which may
2567          * cause priority inversions are punted to @ioc->aux_iocg and charged as
2568          * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2569          * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2570          * whether debt handling is needed and acquire locks accordingly.
2571          */
2572         use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2573         ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2574 retry_lock:
2575         iocg_lock(iocg, ioc_locked, &flags);
2576
2577         /*
2578          * @iocg must stay activated for debt and waitq handling. Deactivation
2579          * is synchronized against both ioc->lock and waitq.lock and we won't
2580          * get deactivated as long as we're waiting or has debt, so we're good
2581          * if we're activated here. In the unlikely cases that we aren't, just
2582          * issue the IO.
2583          */
2584         if (unlikely(list_empty(&iocg->active_list))) {
2585                 iocg_unlock(iocg, ioc_locked, &flags);
2586                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2587                 return;
2588         }
2589
2590         /*
2591          * We're over budget. If @bio has to be issued regardless, remember
2592          * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2593          * off the debt before waking more IOs.
2594          *
2595          * This way, the debt is continuously paid off each period with the
2596          * actual budget available to the cgroup. If we just wound vtime, we
2597          * would incorrectly use the current hw_inuse for the entire amount
2598          * which, for example, can lead to the cgroup staying blocked for a
2599          * long time even with substantially raised hw_inuse.
2600          *
2601          * An iocg with vdebt should stay online so that the timer can keep
2602          * deducting its vdebt and [de]activate use_delay mechanism
2603          * accordingly. We don't want to race against the timer trying to
2604          * clear them and leave @iocg inactive w/ dangling use_delay heavily
2605          * penalizing the cgroup and its descendants.
2606          */
2607         if (use_debt) {
2608                 iocg_incur_debt(iocg, abs_cost, &now);
2609                 if (iocg_kick_delay(iocg, &now))
2610                         blkcg_schedule_throttle(rqos->q,
2611                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2612                 iocg_unlock(iocg, ioc_locked, &flags);
2613                 return;
2614         }
2615
2616         /* guarantee that iocgs w/ waiters have maximum inuse */
2617         if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2618                 if (!ioc_locked) {
2619                         iocg_unlock(iocg, false, &flags);
2620                         ioc_locked = true;
2621                         goto retry_lock;
2622                 }
2623                 propagate_weights(iocg, iocg->active, iocg->active, true,
2624                                   &now);
2625         }
2626
2627         /*
2628          * Append self to the waitq and schedule the wakeup timer if we're
2629          * the first waiter.  The timer duration is calculated based on the
2630          * current vrate.  vtime and hweight changes can make it too short
2631          * or too long.  Each wait entry records the absolute cost it's
2632          * waiting for to allow re-evaluation using a custom wait entry.
2633          *
2634          * If too short, the timer simply reschedules itself.  If too long,
2635          * the period timer will notice and trigger wakeups.
2636          *
2637          * All waiters are on iocg->waitq and the wait states are
2638          * synchronized using waitq.lock.
2639          */
2640         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2641         wait.wait.private = current;
2642         wait.bio = bio;
2643         wait.abs_cost = abs_cost;
2644         wait.committed = false; /* will be set true by waker */
2645
2646         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2647         iocg_kick_waitq(iocg, ioc_locked, &now);
2648
2649         iocg_unlock(iocg, ioc_locked, &flags);
2650
2651         while (true) {
2652                 set_current_state(TASK_UNINTERRUPTIBLE);
2653                 if (wait.committed)
2654                         break;
2655                 io_schedule();
2656         }
2657
2658         /* waker already committed us, proceed */
2659         finish_wait(&iocg->waitq, &wait.wait);
2660 }
2661
2662 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2663                            struct bio *bio)
2664 {
2665         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2666         struct ioc *ioc = rqos_to_ioc(rqos);
2667         sector_t bio_end = bio_end_sector(bio);
2668         struct ioc_now now;
2669         u64 vtime, abs_cost, cost;
2670         unsigned long flags;
2671
2672         /* bypass if disabled, still initializing, or for root cgroup */
2673         if (!ioc->enabled || !iocg || !iocg->level)
2674                 return;
2675
2676         abs_cost = calc_vtime_cost(bio, iocg, true);
2677         if (!abs_cost)
2678                 return;
2679
2680         ioc_now(ioc, &now);
2681
2682         vtime = atomic64_read(&iocg->vtime);
2683         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2684
2685         /* update cursor if backmerging into the request at the cursor */
2686         if (blk_rq_pos(rq) < bio_end &&
2687             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2688                 iocg->cursor = bio_end;
2689
2690         /*
2691          * Charge if there's enough vtime budget and the existing request has
2692          * cost assigned.
2693          */
2694         if (rq->bio && rq->bio->bi_iocost_cost &&
2695             time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2696                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2697                 return;
2698         }
2699
2700         /*
2701          * Otherwise, account it as debt if @iocg is online, which it should
2702          * be for the vast majority of cases. See debt handling in
2703          * ioc_rqos_throttle() for details.
2704          */
2705         spin_lock_irqsave(&ioc->lock, flags);
2706         spin_lock(&iocg->waitq.lock);
2707
2708         if (likely(!list_empty(&iocg->active_list))) {
2709                 iocg_incur_debt(iocg, abs_cost, &now);
2710                 if (iocg_kick_delay(iocg, &now))
2711                         blkcg_schedule_throttle(rqos->q,
2712                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2713         } else {
2714                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2715         }
2716
2717         spin_unlock(&iocg->waitq.lock);
2718         spin_unlock_irqrestore(&ioc->lock, flags);
2719 }
2720
2721 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2722 {
2723         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2724
2725         if (iocg && bio->bi_iocost_cost)
2726                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2727 }
2728
2729 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2730 {
2731         struct ioc *ioc = rqos_to_ioc(rqos);
2732         struct ioc_pcpu_stat *ccs;
2733         u64 on_q_ns, rq_wait_ns, size_nsec;
2734         int pidx, rw;
2735
2736         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2737                 return;
2738
2739         switch (req_op(rq) & REQ_OP_MASK) {
2740         case REQ_OP_READ:
2741                 pidx = QOS_RLAT;
2742                 rw = READ;
2743                 break;
2744         case REQ_OP_WRITE:
2745                 pidx = QOS_WLAT;
2746                 rw = WRITE;
2747                 break;
2748         default:
2749                 return;
2750         }
2751
2752         on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2753         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2754         size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2755
2756         ccs = get_cpu_ptr(ioc->pcpu_stat);
2757
2758         if (on_q_ns <= size_nsec ||
2759             on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2760                 local_inc(&ccs->missed[rw].nr_met);
2761         else
2762                 local_inc(&ccs->missed[rw].nr_missed);
2763
2764         local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2765
2766         put_cpu_ptr(ccs);
2767 }
2768
2769 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2770 {
2771         struct ioc *ioc = rqos_to_ioc(rqos);
2772
2773         spin_lock_irq(&ioc->lock);
2774         ioc_refresh_params(ioc, false);
2775         spin_unlock_irq(&ioc->lock);
2776 }
2777
2778 static void ioc_rqos_exit(struct rq_qos *rqos)
2779 {
2780         struct ioc *ioc = rqos_to_ioc(rqos);
2781
2782         blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2783
2784         spin_lock_irq(&ioc->lock);
2785         ioc->running = IOC_STOP;
2786         spin_unlock_irq(&ioc->lock);
2787
2788         del_timer_sync(&ioc->timer);
2789         free_percpu(ioc->pcpu_stat);
2790         kfree(ioc);
2791 }
2792
2793 static struct rq_qos_ops ioc_rqos_ops = {
2794         .throttle = ioc_rqos_throttle,
2795         .merge = ioc_rqos_merge,
2796         .done_bio = ioc_rqos_done_bio,
2797         .done = ioc_rqos_done,
2798         .queue_depth_changed = ioc_rqos_queue_depth_changed,
2799         .exit = ioc_rqos_exit,
2800 };
2801
2802 static int blk_iocost_init(struct request_queue *q)
2803 {
2804         struct ioc *ioc;
2805         struct rq_qos *rqos;
2806         int i, cpu, ret;
2807
2808         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2809         if (!ioc)
2810                 return -ENOMEM;
2811
2812         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2813         if (!ioc->pcpu_stat) {
2814                 kfree(ioc);
2815                 return -ENOMEM;
2816         }
2817
2818         for_each_possible_cpu(cpu) {
2819                 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2820
2821                 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2822                         local_set(&ccs->missed[i].nr_met, 0);
2823                         local_set(&ccs->missed[i].nr_missed, 0);
2824                 }
2825                 local64_set(&ccs->rq_wait_ns, 0);
2826         }
2827
2828         rqos = &ioc->rqos;
2829         rqos->id = RQ_QOS_COST;
2830         rqos->ops = &ioc_rqos_ops;
2831         rqos->q = q;
2832
2833         spin_lock_init(&ioc->lock);
2834         timer_setup(&ioc->timer, ioc_timer_fn, 0);
2835         INIT_LIST_HEAD(&ioc->active_iocgs);
2836
2837         ioc->running = IOC_IDLE;
2838         ioc->vtime_base_rate = VTIME_PER_USEC;
2839         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2840         seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2841         ioc->period_at = ktime_to_us(ktime_get());
2842         atomic64_set(&ioc->cur_period, 0);
2843         atomic_set(&ioc->hweight_gen, 0);
2844
2845         spin_lock_irq(&ioc->lock);
2846         ioc->autop_idx = AUTOP_INVALID;
2847         ioc_refresh_params(ioc, true);
2848         spin_unlock_irq(&ioc->lock);
2849
2850         /*
2851          * rqos must be added before activation to allow iocg_pd_init() to
2852          * lookup the ioc from q. This means that the rqos methods may get
2853          * called before policy activation completion, can't assume that the
2854          * target bio has an iocg associated and need to test for NULL iocg.
2855          */
2856         rq_qos_add(q, rqos);
2857         ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2858         if (ret) {
2859                 rq_qos_del(q, rqos);
2860                 free_percpu(ioc->pcpu_stat);
2861                 kfree(ioc);
2862                 return ret;
2863         }
2864         return 0;
2865 }
2866
2867 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2868 {
2869         struct ioc_cgrp *iocc;
2870
2871         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2872         if (!iocc)
2873                 return NULL;
2874
2875         iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2876         return &iocc->cpd;
2877 }
2878
2879 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2880 {
2881         kfree(container_of(cpd, struct ioc_cgrp, cpd));
2882 }
2883
2884 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2885                                              struct blkcg *blkcg)
2886 {
2887         int levels = blkcg->css.cgroup->level + 1;
2888         struct ioc_gq *iocg;
2889
2890         iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2891         if (!iocg)
2892                 return NULL;
2893
2894         iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2895         if (!iocg->pcpu_stat) {
2896                 kfree(iocg);
2897                 return NULL;
2898         }
2899
2900         return &iocg->pd;
2901 }
2902
2903 static void ioc_pd_init(struct blkg_policy_data *pd)
2904 {
2905         struct ioc_gq *iocg = pd_to_iocg(pd);
2906         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2907         struct ioc *ioc = q_to_ioc(blkg->q);
2908         struct ioc_now now;
2909         struct blkcg_gq *tblkg;
2910         unsigned long flags;
2911
2912         ioc_now(ioc, &now);
2913
2914         iocg->ioc = ioc;
2915         atomic64_set(&iocg->vtime, now.vnow);
2916         atomic64_set(&iocg->done_vtime, now.vnow);
2917         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2918         INIT_LIST_HEAD(&iocg->active_list);
2919         INIT_LIST_HEAD(&iocg->walk_list);
2920         INIT_LIST_HEAD(&iocg->surplus_list);
2921         iocg->hweight_active = WEIGHT_ONE;
2922         iocg->hweight_inuse = WEIGHT_ONE;
2923
2924         init_waitqueue_head(&iocg->waitq);
2925         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2926         iocg->waitq_timer.function = iocg_waitq_timer_fn;
2927
2928         iocg->level = blkg->blkcg->css.cgroup->level;
2929
2930         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2931                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2932                 iocg->ancestors[tiocg->level] = tiocg;
2933         }
2934
2935         spin_lock_irqsave(&ioc->lock, flags);
2936         weight_updated(iocg, &now);
2937         spin_unlock_irqrestore(&ioc->lock, flags);
2938 }
2939
2940 static void ioc_pd_free(struct blkg_policy_data *pd)
2941 {
2942         struct ioc_gq *iocg = pd_to_iocg(pd);
2943         struct ioc *ioc = iocg->ioc;
2944         unsigned long flags;
2945
2946         if (ioc) {
2947                 spin_lock_irqsave(&ioc->lock, flags);
2948
2949                 if (!list_empty(&iocg->active_list)) {
2950                         struct ioc_now now;
2951
2952                         ioc_now(ioc, &now);
2953                         propagate_weights(iocg, 0, 0, false, &now);
2954                         list_del_init(&iocg->active_list);
2955                 }
2956
2957                 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2958                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2959
2960                 spin_unlock_irqrestore(&ioc->lock, flags);
2961
2962                 hrtimer_cancel(&iocg->waitq_timer);
2963         }
2964         free_percpu(iocg->pcpu_stat);
2965         kfree(iocg);
2966 }
2967
2968 static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
2969 {
2970         struct ioc_gq *iocg = pd_to_iocg(pd);
2971         struct ioc *ioc = iocg->ioc;
2972         size_t pos = 0;
2973
2974         if (!ioc->enabled)
2975                 return 0;
2976
2977         if (iocg->level == 0) {
2978                 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
2979                         ioc->vtime_base_rate * 10000,
2980                         VTIME_PER_USEC);
2981                 pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
2982                                   vp10k / 100, vp10k % 100);
2983         }
2984
2985         pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
2986                          iocg->last_stat.usage_us);
2987
2988         if (blkcg_debug_stats)
2989                 pos += scnprintf(buf + pos, size - pos,
2990                                  " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
2991                                  iocg->last_stat.wait_us,
2992                                  iocg->last_stat.indebt_us,
2993                                  iocg->last_stat.indelay_us);
2994
2995         return pos;
2996 }
2997
2998 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2999                              int off)
3000 {
3001         const char *dname = blkg_dev_name(pd->blkg);
3002         struct ioc_gq *iocg = pd_to_iocg(pd);
3003
3004         if (dname && iocg->cfg_weight)
3005                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3006         return 0;
3007 }
3008
3009
3010 static int ioc_weight_show(struct seq_file *sf, void *v)
3011 {
3012         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3013         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3014
3015         seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3016         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3017                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3018         return 0;
3019 }
3020
3021 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3022                                 size_t nbytes, loff_t off)
3023 {
3024         struct blkcg *blkcg = css_to_blkcg(of_css(of));
3025         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3026         struct blkg_conf_ctx ctx;
3027         struct ioc_now now;
3028         struct ioc_gq *iocg;
3029         u32 v;
3030         int ret;
3031
3032         if (!strchr(buf, ':')) {
3033                 struct blkcg_gq *blkg;
3034
3035                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3036                         return -EINVAL;
3037
3038                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3039                         return -EINVAL;
3040
3041                 spin_lock(&blkcg->lock);
3042                 iocc->dfl_weight = v * WEIGHT_ONE;
3043                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3044                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
3045
3046                         if (iocg) {
3047                                 spin_lock_irq(&iocg->ioc->lock);
3048                                 ioc_now(iocg->ioc, &now);
3049                                 weight_updated(iocg, &now);
3050                                 spin_unlock_irq(&iocg->ioc->lock);
3051                         }
3052                 }
3053                 spin_unlock(&blkcg->lock);
3054
3055                 return nbytes;
3056         }
3057
3058         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3059         if (ret)
3060                 return ret;
3061
3062         iocg = blkg_to_iocg(ctx.blkg);
3063
3064         if (!strncmp(ctx.body, "default", 7)) {
3065                 v = 0;
3066         } else {
3067                 if (!sscanf(ctx.body, "%u", &v))
3068                         goto einval;
3069                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3070                         goto einval;
3071         }
3072
3073         spin_lock(&iocg->ioc->lock);
3074         iocg->cfg_weight = v * WEIGHT_ONE;
3075         ioc_now(iocg->ioc, &now);
3076         weight_updated(iocg, &now);
3077         spin_unlock(&iocg->ioc->lock);
3078
3079         blkg_conf_finish(&ctx);
3080         return nbytes;
3081
3082 einval:
3083         blkg_conf_finish(&ctx);
3084         return -EINVAL;
3085 }
3086
3087 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3088                           int off)
3089 {
3090         const char *dname = blkg_dev_name(pd->blkg);
3091         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3092
3093         if (!dname)
3094                 return 0;
3095
3096         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3097                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3098                    ioc->params.qos[QOS_RPPM] / 10000,
3099                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
3100                    ioc->params.qos[QOS_RLAT],
3101                    ioc->params.qos[QOS_WPPM] / 10000,
3102                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
3103                    ioc->params.qos[QOS_WLAT],
3104                    ioc->params.qos[QOS_MIN] / 10000,
3105                    ioc->params.qos[QOS_MIN] % 10000 / 100,
3106                    ioc->params.qos[QOS_MAX] / 10000,
3107                    ioc->params.qos[QOS_MAX] % 10000 / 100);
3108         return 0;
3109 }
3110
3111 static int ioc_qos_show(struct seq_file *sf, void *v)
3112 {
3113         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3114
3115         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3116                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3117         return 0;
3118 }
3119
3120 static const match_table_t qos_ctrl_tokens = {
3121         { QOS_ENABLE,           "enable=%u"     },
3122         { QOS_CTRL,             "ctrl=%s"       },
3123         { NR_QOS_CTRL_PARAMS,   NULL            },
3124 };
3125
3126 static const match_table_t qos_tokens = {
3127         { QOS_RPPM,             "rpct=%s"       },
3128         { QOS_RLAT,             "rlat=%u"       },
3129         { QOS_WPPM,             "wpct=%s"       },
3130         { QOS_WLAT,             "wlat=%u"       },
3131         { QOS_MIN,              "min=%s"        },
3132         { QOS_MAX,              "max=%s"        },
3133         { NR_QOS_PARAMS,        NULL            },
3134 };
3135
3136 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3137                              size_t nbytes, loff_t off)
3138 {
3139         struct gendisk *disk;
3140         struct ioc *ioc;
3141         u32 qos[NR_QOS_PARAMS];
3142         bool enable, user;
3143         char *p;
3144         int ret;
3145
3146         disk = blkcg_conf_get_disk(&input);
3147         if (IS_ERR(disk))
3148                 return PTR_ERR(disk);
3149
3150         ioc = q_to_ioc(disk->queue);
3151         if (!ioc) {
3152                 ret = blk_iocost_init(disk->queue);
3153                 if (ret)
3154                         goto err;
3155                 ioc = q_to_ioc(disk->queue);
3156         }
3157
3158         spin_lock_irq(&ioc->lock);
3159         memcpy(qos, ioc->params.qos, sizeof(qos));
3160         enable = ioc->enabled;
3161         user = ioc->user_qos_params;
3162         spin_unlock_irq(&ioc->lock);
3163
3164         while ((p = strsep(&input, " \t\n"))) {
3165                 substring_t args[MAX_OPT_ARGS];
3166                 char buf[32];
3167                 int tok;
3168                 s64 v;
3169
3170                 if (!*p)
3171                         continue;
3172
3173                 switch (match_token(p, qos_ctrl_tokens, args)) {
3174                 case QOS_ENABLE:
3175                         match_u64(&args[0], &v);
3176                         enable = v;
3177                         continue;
3178                 case QOS_CTRL:
3179                         match_strlcpy(buf, &args[0], sizeof(buf));
3180                         if (!strcmp(buf, "auto"))
3181                                 user = false;
3182                         else if (!strcmp(buf, "user"))
3183                                 user = true;
3184                         else
3185                                 goto einval;
3186                         continue;
3187                 }
3188
3189                 tok = match_token(p, qos_tokens, args);
3190                 switch (tok) {
3191                 case QOS_RPPM:
3192                 case QOS_WPPM:
3193                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3194                             sizeof(buf))
3195                                 goto einval;
3196                         if (cgroup_parse_float(buf, 2, &v))
3197                                 goto einval;
3198                         if (v < 0 || v > 10000)
3199                                 goto einval;
3200                         qos[tok] = v * 100;
3201                         break;
3202                 case QOS_RLAT:
3203                 case QOS_WLAT:
3204                         if (match_u64(&args[0], &v))
3205                                 goto einval;
3206                         qos[tok] = v;
3207                         break;
3208                 case QOS_MIN:
3209                 case QOS_MAX:
3210                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3211                             sizeof(buf))
3212                                 goto einval;
3213                         if (cgroup_parse_float(buf, 2, &v))
3214                                 goto einval;
3215                         if (v < 0)
3216                                 goto einval;
3217                         qos[tok] = clamp_t(s64, v * 100,
3218                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
3219                         break;
3220                 default:
3221                         goto einval;
3222                 }
3223                 user = true;
3224         }
3225
3226         if (qos[QOS_MIN] > qos[QOS_MAX])
3227                 goto einval;
3228
3229         spin_lock_irq(&ioc->lock);
3230
3231         if (enable) {
3232                 blk_stat_enable_accounting(ioc->rqos.q);
3233                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3234                 ioc->enabled = true;
3235         } else {
3236                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3237                 ioc->enabled = false;
3238         }
3239
3240         if (user) {
3241                 memcpy(ioc->params.qos, qos, sizeof(qos));
3242                 ioc->user_qos_params = true;
3243         } else {
3244                 ioc->user_qos_params = false;
3245         }
3246
3247         ioc_refresh_params(ioc, true);
3248         spin_unlock_irq(&ioc->lock);
3249
3250         put_disk_and_module(disk);
3251         return nbytes;
3252 einval:
3253         ret = -EINVAL;
3254 err:
3255         put_disk_and_module(disk);
3256         return ret;
3257 }
3258
3259 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3260                                  struct blkg_policy_data *pd, int off)
3261 {
3262         const char *dname = blkg_dev_name(pd->blkg);
3263         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3264         u64 *u = ioc->params.i_lcoefs;
3265
3266         if (!dname)
3267                 return 0;
3268
3269         seq_printf(sf, "%s ctrl=%s model=linear "
3270                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
3271                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3272                    dname, ioc->user_cost_model ? "user" : "auto",
3273                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3274                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3275         return 0;
3276 }
3277
3278 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3279 {
3280         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3281
3282         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3283                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3284         return 0;
3285 }
3286
3287 static const match_table_t cost_ctrl_tokens = {
3288         { COST_CTRL,            "ctrl=%s"       },
3289         { COST_MODEL,           "model=%s"      },
3290         { NR_COST_CTRL_PARAMS,  NULL            },
3291 };
3292
3293 static const match_table_t i_lcoef_tokens = {
3294         { I_LCOEF_RBPS,         "rbps=%u"       },
3295         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
3296         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
3297         { I_LCOEF_WBPS,         "wbps=%u"       },
3298         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
3299         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
3300         { NR_I_LCOEFS,          NULL            },
3301 };
3302
3303 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3304                                     size_t nbytes, loff_t off)
3305 {
3306         struct gendisk *disk;
3307         struct ioc *ioc;
3308         u64 u[NR_I_LCOEFS];
3309         bool user;
3310         char *p;
3311         int ret;
3312
3313         disk = blkcg_conf_get_disk(&input);
3314         if (IS_ERR(disk))
3315                 return PTR_ERR(disk);
3316
3317         ioc = q_to_ioc(disk->queue);
3318         if (!ioc) {
3319                 ret = blk_iocost_init(disk->queue);
3320                 if (ret)
3321                         goto err;
3322                 ioc = q_to_ioc(disk->queue);
3323         }
3324
3325         spin_lock_irq(&ioc->lock);
3326         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3327         user = ioc->user_cost_model;
3328         spin_unlock_irq(&ioc->lock);
3329
3330         while ((p = strsep(&input, " \t\n"))) {
3331                 substring_t args[MAX_OPT_ARGS];
3332                 char buf[32];
3333                 int tok;
3334                 u64 v;
3335
3336                 if (!*p)
3337                         continue;
3338
3339                 switch (match_token(p, cost_ctrl_tokens, args)) {
3340                 case COST_CTRL:
3341                         match_strlcpy(buf, &args[0], sizeof(buf));
3342                         if (!strcmp(buf, "auto"))
3343                                 user = false;
3344                         else if (!strcmp(buf, "user"))
3345                                 user = true;
3346                         else
3347                                 goto einval;
3348                         continue;
3349                 case COST_MODEL:
3350                         match_strlcpy(buf, &args[0], sizeof(buf));
3351                         if (strcmp(buf, "linear"))
3352                                 goto einval;
3353                         continue;
3354                 }
3355
3356                 tok = match_token(p, i_lcoef_tokens, args);
3357                 if (tok == NR_I_LCOEFS)
3358                         goto einval;
3359                 if (match_u64(&args[0], &v))
3360                         goto einval;
3361                 u[tok] = v;
3362                 user = true;
3363         }
3364
3365         spin_lock_irq(&ioc->lock);
3366         if (user) {
3367                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3368                 ioc->user_cost_model = true;
3369         } else {
3370                 ioc->user_cost_model = false;
3371         }
3372         ioc_refresh_params(ioc, true);
3373         spin_unlock_irq(&ioc->lock);
3374
3375         put_disk_and_module(disk);
3376         return nbytes;
3377
3378 einval:
3379         ret = -EINVAL;
3380 err:
3381         put_disk_and_module(disk);
3382         return ret;
3383 }
3384
3385 static struct cftype ioc_files[] = {
3386         {
3387                 .name = "weight",
3388                 .flags = CFTYPE_NOT_ON_ROOT,
3389                 .seq_show = ioc_weight_show,
3390                 .write = ioc_weight_write,
3391         },
3392         {
3393                 .name = "cost.qos",
3394                 .flags = CFTYPE_ONLY_ON_ROOT,
3395                 .seq_show = ioc_qos_show,
3396                 .write = ioc_qos_write,
3397         },
3398         {
3399                 .name = "cost.model",
3400                 .flags = CFTYPE_ONLY_ON_ROOT,
3401                 .seq_show = ioc_cost_model_show,
3402                 .write = ioc_cost_model_write,
3403         },
3404         {}
3405 };
3406
3407 static struct blkcg_policy blkcg_policy_iocost = {
3408         .dfl_cftypes    = ioc_files,
3409         .cpd_alloc_fn   = ioc_cpd_alloc,
3410         .cpd_free_fn    = ioc_cpd_free,
3411         .pd_alloc_fn    = ioc_pd_alloc,
3412         .pd_init_fn     = ioc_pd_init,
3413         .pd_free_fn     = ioc_pd_free,
3414         .pd_stat_fn     = ioc_pd_stat,
3415 };
3416
3417 static int __init ioc_init(void)
3418 {
3419         return blkcg_policy_register(&blkcg_policy_iocost);
3420 }
3421
3422 static void __exit ioc_exit(void)
3423 {
3424         blkcg_policy_unregister(&blkcg_policy_iocost);
3425 }
3426
3427 module_init(ioc_init);
3428 module_exit(ioc_exit);