Linux 6.1.66
[platform/kernel/linux-starfive.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * parameters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO if doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, soley depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per        : Timer period
166  * - cur_per    : Internal wall and device vtime clock
167  * - vrate      : Device virtual time rate against wall clock
168  * - weight     : Surplus-adjusted and configured weights
169  * - hweight    : Surplus-adjusted and configured hierarchical weights
170  * - inflt      : The percentage of in-flight IO cost at the end of last period
171  * - del_ms     : Deferred issuer delay induction level and duration
172  * - usages     : Usage history
173  */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
185 #include "blk-wbt.h"
186 #include "blk-cgroup.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
196         do {                                                                    \
197                 unsigned long flags;                                            \
198                 if (trace_iocost_##type##_enabled()) {                          \
199                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
200                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
201                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
202                         trace_iocost_##type(iocg, trace_iocg_path,              \
203                                               ##__VA_ARGS__);                   \
204                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
205                 }                                                               \
206         } while (0)
207
208 #else   /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
210 #endif  /* CONFIG_TRACE_POINTS */
211
212 enum {
213         MILLION                 = 1000000,
214
215         /* timer period is calculated from latency requirements, bound it */
216         MIN_PERIOD              = USEC_PER_MSEC,
217         MAX_PERIOD              = USEC_PER_SEC,
218
219         /*
220          * iocg->vtime is targeted at 50% behind the device vtime, which
221          * serves as its IO credit buffer.  Surplus weight adjustment is
222          * immediately canceled if the vtime margin runs below 10%.
223          */
224         MARGIN_MIN_PCT          = 10,
225         MARGIN_LOW_PCT          = 20,
226         MARGIN_TARGET_PCT       = 50,
227
228         INUSE_ADJ_STEP_PCT      = 25,
229
230         /* Have some play in timer operations */
231         TIMER_SLACK_PCT         = 1,
232
233         /* 1/64k is granular enough and can easily be handled w/ u32 */
234         WEIGHT_ONE              = 1 << 16,
235 };
236
237 enum {
238         /*
239          * As vtime is used to calculate the cost of each IO, it needs to
240          * be fairly high precision.  For example, it should be able to
241          * represent the cost of a single page worth of discard with
242          * suffificient accuracy.  At the same time, it should be able to
243          * represent reasonably long enough durations to be useful and
244          * convenient during operation.
245          *
246          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
247          * granularity and days of wrap-around time even at extreme vrates.
248          */
249         VTIME_PER_SEC_SHIFT     = 37,
250         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
251         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
252         VTIME_PER_NSEC          = VTIME_PER_SEC / NSEC_PER_SEC,
253
254         /* bound vrate adjustments within two orders of magnitude */
255         VRATE_MIN_PPM           = 10000,        /* 1% */
256         VRATE_MAX_PPM           = 100000000,    /* 10000% */
257
258         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259         VRATE_CLAMP_ADJ_PCT     = 4,
260
261         /* switch iff the conditions are met for longer than this */
262         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
263 };
264
265 enum {
266         /* if IOs end up waiting for requests, issue less */
267         RQ_WAIT_BUSY_PCT        = 5,
268
269         /* unbusy hysterisis */
270         UNBUSY_THR_PCT          = 75,
271
272         /*
273          * The effect of delay is indirect and non-linear and a huge amount of
274          * future debt can accumulate abruptly while unthrottled. Linearly scale
275          * up delay as debt is going up and then let it decay exponentially.
276          * This gives us quick ramp ups while delay is accumulating and long
277          * tails which can help reducing the frequency of debt explosions on
278          * unthrottle. The parameters are experimentally determined.
279          *
280          * The delay mechanism provides adequate protection and behavior in many
281          * cases. However, this is far from ideal and falls shorts on both
282          * fronts. The debtors are often throttled too harshly costing a
283          * significant level of fairness and possibly total work while the
284          * protection against their impacts on the system can be choppy and
285          * unreliable.
286          *
287          * The shortcoming primarily stems from the fact that, unlike for page
288          * cache, the kernel doesn't have well-defined back-pressure propagation
289          * mechanism and policies for anonymous memory. Fully addressing this
290          * issue will likely require substantial improvements in the area.
291          */
292         MIN_DELAY_THR_PCT       = 500,
293         MAX_DELAY_THR_PCT       = 25000,
294         MIN_DELAY               = 250,
295         MAX_DELAY               = 250 * USEC_PER_MSEC,
296
297         /* halve debts if avg usage over 100ms is under 50% */
298         DFGV_USAGE_PCT          = 50,
299         DFGV_PERIOD             = 100 * USEC_PER_MSEC,
300
301         /* don't let cmds which take a very long time pin lagging for too long */
302         MAX_LAGGING_PERIODS     = 10,
303
304         /*
305          * Count IO size in 4k pages.  The 12bit shift helps keeping
306          * size-proportional components of cost calculation in closer
307          * numbers of digits to per-IO cost components.
308          */
309         IOC_PAGE_SHIFT          = 12,
310         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
311         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
312
313         /* if apart further than 16M, consider randio for linear model */
314         LCOEF_RANDIO_PAGES      = 4096,
315 };
316
317 enum ioc_running {
318         IOC_IDLE,
319         IOC_RUNNING,
320         IOC_STOP,
321 };
322
323 /* io.cost.qos controls including per-dev enable of the whole controller */
324 enum {
325         QOS_ENABLE,
326         QOS_CTRL,
327         NR_QOS_CTRL_PARAMS,
328 };
329
330 /* io.cost.qos params */
331 enum {
332         QOS_RPPM,
333         QOS_RLAT,
334         QOS_WPPM,
335         QOS_WLAT,
336         QOS_MIN,
337         QOS_MAX,
338         NR_QOS_PARAMS,
339 };
340
341 /* io.cost.model controls */
342 enum {
343         COST_CTRL,
344         COST_MODEL,
345         NR_COST_CTRL_PARAMS,
346 };
347
348 /* builtin linear cost model coefficients */
349 enum {
350         I_LCOEF_RBPS,
351         I_LCOEF_RSEQIOPS,
352         I_LCOEF_RRANDIOPS,
353         I_LCOEF_WBPS,
354         I_LCOEF_WSEQIOPS,
355         I_LCOEF_WRANDIOPS,
356         NR_I_LCOEFS,
357 };
358
359 enum {
360         LCOEF_RPAGE,
361         LCOEF_RSEQIO,
362         LCOEF_RRANDIO,
363         LCOEF_WPAGE,
364         LCOEF_WSEQIO,
365         LCOEF_WRANDIO,
366         NR_LCOEFS,
367 };
368
369 enum {
370         AUTOP_INVALID,
371         AUTOP_HDD,
372         AUTOP_SSD_QD1,
373         AUTOP_SSD_DFL,
374         AUTOP_SSD_FAST,
375 };
376
377 struct ioc_params {
378         u32                             qos[NR_QOS_PARAMS];
379         u64                             i_lcoefs[NR_I_LCOEFS];
380         u64                             lcoefs[NR_LCOEFS];
381         u32                             too_fast_vrate_pct;
382         u32                             too_slow_vrate_pct;
383 };
384
385 struct ioc_margins {
386         s64                             min;
387         s64                             low;
388         s64                             target;
389 };
390
391 struct ioc_missed {
392         local_t                         nr_met;
393         local_t                         nr_missed;
394         u32                             last_met;
395         u32                             last_missed;
396 };
397
398 struct ioc_pcpu_stat {
399         struct ioc_missed               missed[2];
400
401         local64_t                       rq_wait_ns;
402         u64                             last_rq_wait_ns;
403 };
404
405 /* per device */
406 struct ioc {
407         struct rq_qos                   rqos;
408
409         bool                            enabled;
410
411         struct ioc_params               params;
412         struct ioc_margins              margins;
413         u32                             period_us;
414         u32                             timer_slack_ns;
415         u64                             vrate_min;
416         u64                             vrate_max;
417
418         spinlock_t                      lock;
419         struct timer_list               timer;
420         struct list_head                active_iocgs;   /* active cgroups */
421         struct ioc_pcpu_stat __percpu   *pcpu_stat;
422
423         enum ioc_running                running;
424         atomic64_t                      vtime_rate;
425         u64                             vtime_base_rate;
426         s64                             vtime_err;
427
428         seqcount_spinlock_t             period_seqcount;
429         u64                             period_at;      /* wallclock starttime */
430         u64                             period_at_vtime; /* vtime starttime */
431
432         atomic64_t                      cur_period;     /* inc'd each period */
433         int                             busy_level;     /* saturation history */
434
435         bool                            weights_updated;
436         atomic_t                        hweight_gen;    /* for lazy hweights */
437
438         /* debt forgivness */
439         u64                             dfgv_period_at;
440         u64                             dfgv_period_rem;
441         u64                             dfgv_usage_us_sum;
442
443         u64                             autop_too_fast_at;
444         u64                             autop_too_slow_at;
445         int                             autop_idx;
446         bool                            user_qos_params:1;
447         bool                            user_cost_model:1;
448 };
449
450 struct iocg_pcpu_stat {
451         local64_t                       abs_vusage;
452 };
453
454 struct iocg_stat {
455         u64                             usage_us;
456         u64                             wait_us;
457         u64                             indebt_us;
458         u64                             indelay_us;
459 };
460
461 /* per device-cgroup pair */
462 struct ioc_gq {
463         struct blkg_policy_data         pd;
464         struct ioc                      *ioc;
465
466         /*
467          * A iocg can get its weight from two sources - an explicit
468          * per-device-cgroup configuration or the default weight of the
469          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
470          * configuration.  `weight` is the effective considering both
471          * sources.
472          *
473          * When an idle cgroup becomes active its `active` goes from 0 to
474          * `weight`.  `inuse` is the surplus adjusted active weight.
475          * `active` and `inuse` are used to calculate `hweight_active` and
476          * `hweight_inuse`.
477          *
478          * `last_inuse` remembers `inuse` while an iocg is idle to persist
479          * surplus adjustments.
480          *
481          * `inuse` may be adjusted dynamically during period. `saved_*` are used
482          * to determine and track adjustments.
483          */
484         u32                             cfg_weight;
485         u32                             weight;
486         u32                             active;
487         u32                             inuse;
488
489         u32                             last_inuse;
490         s64                             saved_margin;
491
492         sector_t                        cursor;         /* to detect randio */
493
494         /*
495          * `vtime` is this iocg's vtime cursor which progresses as IOs are
496          * issued.  If lagging behind device vtime, the delta represents
497          * the currently available IO budget.  If running ahead, the
498          * overage.
499          *
500          * `vtime_done` is the same but progressed on completion rather
501          * than issue.  The delta behind `vtime` represents the cost of
502          * currently in-flight IOs.
503          */
504         atomic64_t                      vtime;
505         atomic64_t                      done_vtime;
506         u64                             abs_vdebt;
507
508         /* current delay in effect and when it started */
509         u64                             delay;
510         u64                             delay_at;
511
512         /*
513          * The period this iocg was last active in.  Used for deactivation
514          * and invalidating `vtime`.
515          */
516         atomic64_t                      active_period;
517         struct list_head                active_list;
518
519         /* see __propagate_weights() and current_hweight() for details */
520         u64                             child_active_sum;
521         u64                             child_inuse_sum;
522         u64                             child_adjusted_sum;
523         int                             hweight_gen;
524         u32                             hweight_active;
525         u32                             hweight_inuse;
526         u32                             hweight_donating;
527         u32                             hweight_after_donation;
528
529         struct list_head                walk_list;
530         struct list_head                surplus_list;
531
532         struct wait_queue_head          waitq;
533         struct hrtimer                  waitq_timer;
534
535         /* timestamp at the latest activation */
536         u64                             activated_at;
537
538         /* statistics */
539         struct iocg_pcpu_stat __percpu  *pcpu_stat;
540         struct iocg_stat                stat;
541         struct iocg_stat                last_stat;
542         u64                             last_stat_abs_vusage;
543         u64                             usage_delta_us;
544         u64                             wait_since;
545         u64                             indebt_since;
546         u64                             indelay_since;
547
548         /* this iocg's depth in the hierarchy and ancestors including self */
549         int                             level;
550         struct ioc_gq                   *ancestors[];
551 };
552
553 /* per cgroup */
554 struct ioc_cgrp {
555         struct blkcg_policy_data        cpd;
556         unsigned int                    dfl_weight;
557 };
558
559 struct ioc_now {
560         u64                             now_ns;
561         u64                             now;
562         u64                             vnow;
563         u64                             vrate;
564 };
565
566 struct iocg_wait {
567         struct wait_queue_entry         wait;
568         struct bio                      *bio;
569         u64                             abs_cost;
570         bool                            committed;
571 };
572
573 struct iocg_wake_ctx {
574         struct ioc_gq                   *iocg;
575         u32                             hw_inuse;
576         s64                             vbudget;
577 };
578
579 static const struct ioc_params autop[] = {
580         [AUTOP_HDD] = {
581                 .qos                            = {
582                         [QOS_RLAT]              =        250000, /* 250ms */
583                         [QOS_WLAT]              =        250000,
584                         [QOS_MIN]               = VRATE_MIN_PPM,
585                         [QOS_MAX]               = VRATE_MAX_PPM,
586                 },
587                 .i_lcoefs                       = {
588                         [I_LCOEF_RBPS]          =     174019176,
589                         [I_LCOEF_RSEQIOPS]      =         41708,
590                         [I_LCOEF_RRANDIOPS]     =           370,
591                         [I_LCOEF_WBPS]          =     178075866,
592                         [I_LCOEF_WSEQIOPS]      =         42705,
593                         [I_LCOEF_WRANDIOPS]     =           378,
594                 },
595         },
596         [AUTOP_SSD_QD1] = {
597                 .qos                            = {
598                         [QOS_RLAT]              =         25000, /* 25ms */
599                         [QOS_WLAT]              =         25000,
600                         [QOS_MIN]               = VRATE_MIN_PPM,
601                         [QOS_MAX]               = VRATE_MAX_PPM,
602                 },
603                 .i_lcoefs                       = {
604                         [I_LCOEF_RBPS]          =     245855193,
605                         [I_LCOEF_RSEQIOPS]      =         61575,
606                         [I_LCOEF_RRANDIOPS]     =          6946,
607                         [I_LCOEF_WBPS]          =     141365009,
608                         [I_LCOEF_WSEQIOPS]      =         33716,
609                         [I_LCOEF_WRANDIOPS]     =         26796,
610                 },
611         },
612         [AUTOP_SSD_DFL] = {
613                 .qos                            = {
614                         [QOS_RLAT]              =         25000, /* 25ms */
615                         [QOS_WLAT]              =         25000,
616                         [QOS_MIN]               = VRATE_MIN_PPM,
617                         [QOS_MAX]               = VRATE_MAX_PPM,
618                 },
619                 .i_lcoefs                       = {
620                         [I_LCOEF_RBPS]          =     488636629,
621                         [I_LCOEF_RSEQIOPS]      =          8932,
622                         [I_LCOEF_RRANDIOPS]     =          8518,
623                         [I_LCOEF_WBPS]          =     427891549,
624                         [I_LCOEF_WSEQIOPS]      =         28755,
625                         [I_LCOEF_WRANDIOPS]     =         21940,
626                 },
627                 .too_fast_vrate_pct             =           500,
628         },
629         [AUTOP_SSD_FAST] = {
630                 .qos                            = {
631                         [QOS_RLAT]              =          5000, /* 5ms */
632                         [QOS_WLAT]              =          5000,
633                         [QOS_MIN]               = VRATE_MIN_PPM,
634                         [QOS_MAX]               = VRATE_MAX_PPM,
635                 },
636                 .i_lcoefs                       = {
637                         [I_LCOEF_RBPS]          =    3102524156LLU,
638                         [I_LCOEF_RSEQIOPS]      =        724816,
639                         [I_LCOEF_RRANDIOPS]     =        778122,
640                         [I_LCOEF_WBPS]          =    1742780862LLU,
641                         [I_LCOEF_WSEQIOPS]      =        425702,
642                         [I_LCOEF_WRANDIOPS]     =        443193,
643                 },
644                 .too_slow_vrate_pct             =            10,
645         },
646 };
647
648 /*
649  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
650  * vtime credit shortage and down on device saturation.
651  */
652 static u32 vrate_adj_pct[] =
653         { 0, 0, 0, 0,
654           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
655           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
656           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
657
658 static struct blkcg_policy blkcg_policy_iocost;
659
660 /* accessors and helpers */
661 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
662 {
663         return container_of(rqos, struct ioc, rqos);
664 }
665
666 static struct ioc *q_to_ioc(struct request_queue *q)
667 {
668         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
669 }
670
671 static const char __maybe_unused *ioc_name(struct ioc *ioc)
672 {
673         struct gendisk *disk = ioc->rqos.q->disk;
674
675         if (!disk)
676                 return "<unknown>";
677         return disk->disk_name;
678 }
679
680 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
681 {
682         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
683 }
684
685 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
686 {
687         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
688 }
689
690 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
691 {
692         return pd_to_blkg(&iocg->pd);
693 }
694
695 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
696 {
697         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
698                             struct ioc_cgrp, cpd);
699 }
700
701 /*
702  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
703  * weight, the more expensive each IO.  Must round up.
704  */
705 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
706 {
707         return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
708 }
709
710 /*
711  * The inverse of abs_cost_to_cost().  Must round up.
712  */
713 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
714 {
715         return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
716 }
717
718 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
719                             u64 abs_cost, u64 cost)
720 {
721         struct iocg_pcpu_stat *gcs;
722
723         bio->bi_iocost_cost = cost;
724         atomic64_add(cost, &iocg->vtime);
725
726         gcs = get_cpu_ptr(iocg->pcpu_stat);
727         local64_add(abs_cost, &gcs->abs_vusage);
728         put_cpu_ptr(gcs);
729 }
730
731 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
732 {
733         if (lock_ioc) {
734                 spin_lock_irqsave(&iocg->ioc->lock, *flags);
735                 spin_lock(&iocg->waitq.lock);
736         } else {
737                 spin_lock_irqsave(&iocg->waitq.lock, *flags);
738         }
739 }
740
741 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
742 {
743         if (unlock_ioc) {
744                 spin_unlock(&iocg->waitq.lock);
745                 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
746         } else {
747                 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
748         }
749 }
750
751 #define CREATE_TRACE_POINTS
752 #include <trace/events/iocost.h>
753
754 static void ioc_refresh_margins(struct ioc *ioc)
755 {
756         struct ioc_margins *margins = &ioc->margins;
757         u32 period_us = ioc->period_us;
758         u64 vrate = ioc->vtime_base_rate;
759
760         margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
761         margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
762         margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
763 }
764
765 /* latency Qos params changed, update period_us and all the dependent params */
766 static void ioc_refresh_period_us(struct ioc *ioc)
767 {
768         u32 ppm, lat, multi, period_us;
769
770         lockdep_assert_held(&ioc->lock);
771
772         /* pick the higher latency target */
773         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
774                 ppm = ioc->params.qos[QOS_RPPM];
775                 lat = ioc->params.qos[QOS_RLAT];
776         } else {
777                 ppm = ioc->params.qos[QOS_WPPM];
778                 lat = ioc->params.qos[QOS_WLAT];
779         }
780
781         /*
782          * We want the period to be long enough to contain a healthy number
783          * of IOs while short enough for granular control.  Define it as a
784          * multiple of the latency target.  Ideally, the multiplier should
785          * be scaled according to the percentile so that it would nominally
786          * contain a certain number of requests.  Let's be simpler and
787          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
788          */
789         if (ppm)
790                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
791         else
792                 multi = 2;
793         period_us = multi * lat;
794         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
795
796         /* calculate dependent params */
797         ioc->period_us = period_us;
798         ioc->timer_slack_ns = div64_u64(
799                 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
800                 100);
801         ioc_refresh_margins(ioc);
802 }
803
804 static int ioc_autop_idx(struct ioc *ioc)
805 {
806         int idx = ioc->autop_idx;
807         const struct ioc_params *p = &autop[idx];
808         u32 vrate_pct;
809         u64 now_ns;
810
811         /* rotational? */
812         if (!blk_queue_nonrot(ioc->rqos.q))
813                 return AUTOP_HDD;
814
815         /* handle SATA SSDs w/ broken NCQ */
816         if (blk_queue_depth(ioc->rqos.q) == 1)
817                 return AUTOP_SSD_QD1;
818
819         /* use one of the normal ssd sets */
820         if (idx < AUTOP_SSD_DFL)
821                 return AUTOP_SSD_DFL;
822
823         /* if user is overriding anything, maintain what was there */
824         if (ioc->user_qos_params || ioc->user_cost_model)
825                 return idx;
826
827         /* step up/down based on the vrate */
828         vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
829         now_ns = ktime_get_ns();
830
831         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
832                 if (!ioc->autop_too_fast_at)
833                         ioc->autop_too_fast_at = now_ns;
834                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
835                         return idx + 1;
836         } else {
837                 ioc->autop_too_fast_at = 0;
838         }
839
840         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
841                 if (!ioc->autop_too_slow_at)
842                         ioc->autop_too_slow_at = now_ns;
843                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
844                         return idx - 1;
845         } else {
846                 ioc->autop_too_slow_at = 0;
847         }
848
849         return idx;
850 }
851
852 /*
853  * Take the followings as input
854  *
855  *  @bps        maximum sequential throughput
856  *  @seqiops    maximum sequential 4k iops
857  *  @randiops   maximum random 4k iops
858  *
859  * and calculate the linear model cost coefficients.
860  *
861  *  *@page      per-page cost           1s / (@bps / 4096)
862  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
863  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
864  */
865 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
866                         u64 *page, u64 *seqio, u64 *randio)
867 {
868         u64 v;
869
870         *page = *seqio = *randio = 0;
871
872         if (bps) {
873                 u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE);
874
875                 if (bps_pages)
876                         *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages);
877                 else
878                         *page = 1;
879         }
880
881         if (seqiops) {
882                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
883                 if (v > *page)
884                         *seqio = v - *page;
885         }
886
887         if (randiops) {
888                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
889                 if (v > *page)
890                         *randio = v - *page;
891         }
892 }
893
894 static void ioc_refresh_lcoefs(struct ioc *ioc)
895 {
896         u64 *u = ioc->params.i_lcoefs;
897         u64 *c = ioc->params.lcoefs;
898
899         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
900                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
901         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
902                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
903 }
904
905 static bool ioc_refresh_params(struct ioc *ioc, bool force)
906 {
907         const struct ioc_params *p;
908         int idx;
909
910         lockdep_assert_held(&ioc->lock);
911
912         idx = ioc_autop_idx(ioc);
913         p = &autop[idx];
914
915         if (idx == ioc->autop_idx && !force)
916                 return false;
917
918         if (idx != ioc->autop_idx)
919                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
920
921         ioc->autop_idx = idx;
922         ioc->autop_too_fast_at = 0;
923         ioc->autop_too_slow_at = 0;
924
925         if (!ioc->user_qos_params)
926                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
927         if (!ioc->user_cost_model)
928                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
929
930         ioc_refresh_period_us(ioc);
931         ioc_refresh_lcoefs(ioc);
932
933         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
934                                             VTIME_PER_USEC, MILLION);
935         ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
936                                    VTIME_PER_USEC, MILLION);
937
938         return true;
939 }
940
941 /*
942  * When an iocg accumulates too much vtime or gets deactivated, we throw away
943  * some vtime, which lowers the overall device utilization. As the exact amount
944  * which is being thrown away is known, we can compensate by accelerating the
945  * vrate accordingly so that the extra vtime generated in the current period
946  * matches what got lost.
947  */
948 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
949 {
950         s64 pleft = ioc->period_at + ioc->period_us - now->now;
951         s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
952         s64 vcomp, vcomp_min, vcomp_max;
953
954         lockdep_assert_held(&ioc->lock);
955
956         /* we need some time left in this period */
957         if (pleft <= 0)
958                 goto done;
959
960         /*
961          * Calculate how much vrate should be adjusted to offset the error.
962          * Limit the amount of adjustment and deduct the adjusted amount from
963          * the error.
964          */
965         vcomp = -div64_s64(ioc->vtime_err, pleft);
966         vcomp_min = -(ioc->vtime_base_rate >> 1);
967         vcomp_max = ioc->vtime_base_rate;
968         vcomp = clamp(vcomp, vcomp_min, vcomp_max);
969
970         ioc->vtime_err += vcomp * pleft;
971
972         atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
973 done:
974         /* bound how much error can accumulate */
975         ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
976 }
977
978 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
979                                   int nr_lagging, int nr_shortages,
980                                   int prev_busy_level, u32 *missed_ppm)
981 {
982         u64 vrate = ioc->vtime_base_rate;
983         u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
984
985         if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
986                 if (ioc->busy_level != prev_busy_level || nr_lagging)
987                         trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
988                                                    missed_ppm, rq_wait_pct,
989                                                    nr_lagging, nr_shortages);
990
991                 return;
992         }
993
994         /*
995          * If vrate is out of bounds, apply clamp gradually as the
996          * bounds can change abruptly.  Otherwise, apply busy_level
997          * based adjustment.
998          */
999         if (vrate < vrate_min) {
1000                 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
1001                 vrate = min(vrate, vrate_min);
1002         } else if (vrate > vrate_max) {
1003                 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
1004                 vrate = max(vrate, vrate_max);
1005         } else {
1006                 int idx = min_t(int, abs(ioc->busy_level),
1007                                 ARRAY_SIZE(vrate_adj_pct) - 1);
1008                 u32 adj_pct = vrate_adj_pct[idx];
1009
1010                 if (ioc->busy_level > 0)
1011                         adj_pct = 100 - adj_pct;
1012                 else
1013                         adj_pct = 100 + adj_pct;
1014
1015                 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1016                               vrate_min, vrate_max);
1017         }
1018
1019         trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1020                                    nr_lagging, nr_shortages);
1021
1022         ioc->vtime_base_rate = vrate;
1023         ioc_refresh_margins(ioc);
1024 }
1025
1026 /* take a snapshot of the current [v]time and vrate */
1027 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1028 {
1029         unsigned seq;
1030
1031         now->now_ns = ktime_get();
1032         now->now = ktime_to_us(now->now_ns);
1033         now->vrate = atomic64_read(&ioc->vtime_rate);
1034
1035         /*
1036          * The current vtime is
1037          *
1038          *   vtime at period start + (wallclock time since the start) * vrate
1039          *
1040          * As a consistent snapshot of `period_at_vtime` and `period_at` is
1041          * needed, they're seqcount protected.
1042          */
1043         do {
1044                 seq = read_seqcount_begin(&ioc->period_seqcount);
1045                 now->vnow = ioc->period_at_vtime +
1046                         (now->now - ioc->period_at) * now->vrate;
1047         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1048 }
1049
1050 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1051 {
1052         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1053
1054         write_seqcount_begin(&ioc->period_seqcount);
1055         ioc->period_at = now->now;
1056         ioc->period_at_vtime = now->vnow;
1057         write_seqcount_end(&ioc->period_seqcount);
1058
1059         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1060         add_timer(&ioc->timer);
1061 }
1062
1063 /*
1064  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1065  * weight sums and propagate upwards accordingly. If @save, the current margin
1066  * is saved to be used as reference for later inuse in-period adjustments.
1067  */
1068 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1069                                 bool save, struct ioc_now *now)
1070 {
1071         struct ioc *ioc = iocg->ioc;
1072         int lvl;
1073
1074         lockdep_assert_held(&ioc->lock);
1075
1076         /*
1077          * For an active leaf node, its inuse shouldn't be zero or exceed
1078          * @active. An active internal node's inuse is solely determined by the
1079          * inuse to active ratio of its children regardless of @inuse.
1080          */
1081         if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1082                 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1083                                            iocg->child_active_sum);
1084         } else {
1085                 inuse = clamp_t(u32, inuse, 1, active);
1086         }
1087
1088         iocg->last_inuse = iocg->inuse;
1089         if (save)
1090                 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1091
1092         if (active == iocg->active && inuse == iocg->inuse)
1093                 return;
1094
1095         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1096                 struct ioc_gq *parent = iocg->ancestors[lvl];
1097                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1098                 u32 parent_active = 0, parent_inuse = 0;
1099
1100                 /* update the level sums */
1101                 parent->child_active_sum += (s32)(active - child->active);
1102                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1103                 /* apply the updates */
1104                 child->active = active;
1105                 child->inuse = inuse;
1106
1107                 /*
1108                  * The delta between inuse and active sums indicates that
1109                  * much of weight is being given away.  Parent's inuse
1110                  * and active should reflect the ratio.
1111                  */
1112                 if (parent->child_active_sum) {
1113                         parent_active = parent->weight;
1114                         parent_inuse = DIV64_U64_ROUND_UP(
1115                                 parent_active * parent->child_inuse_sum,
1116                                 parent->child_active_sum);
1117                 }
1118
1119                 /* do we need to keep walking up? */
1120                 if (parent_active == parent->active &&
1121                     parent_inuse == parent->inuse)
1122                         break;
1123
1124                 active = parent_active;
1125                 inuse = parent_inuse;
1126         }
1127
1128         ioc->weights_updated = true;
1129 }
1130
1131 static void commit_weights(struct ioc *ioc)
1132 {
1133         lockdep_assert_held(&ioc->lock);
1134
1135         if (ioc->weights_updated) {
1136                 /* paired with rmb in current_hweight(), see there */
1137                 smp_wmb();
1138                 atomic_inc(&ioc->hweight_gen);
1139                 ioc->weights_updated = false;
1140         }
1141 }
1142
1143 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1144                               bool save, struct ioc_now *now)
1145 {
1146         __propagate_weights(iocg, active, inuse, save, now);
1147         commit_weights(iocg->ioc);
1148 }
1149
1150 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1151 {
1152         struct ioc *ioc = iocg->ioc;
1153         int lvl;
1154         u32 hwa, hwi;
1155         int ioc_gen;
1156
1157         /* hot path - if uptodate, use cached */
1158         ioc_gen = atomic_read(&ioc->hweight_gen);
1159         if (ioc_gen == iocg->hweight_gen)
1160                 goto out;
1161
1162         /*
1163          * Paired with wmb in commit_weights(). If we saw the updated
1164          * hweight_gen, all the weight updates from __propagate_weights() are
1165          * visible too.
1166          *
1167          * We can race with weight updates during calculation and get it
1168          * wrong.  However, hweight_gen would have changed and a future
1169          * reader will recalculate and we're guaranteed to discard the
1170          * wrong result soon.
1171          */
1172         smp_rmb();
1173
1174         hwa = hwi = WEIGHT_ONE;
1175         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1176                 struct ioc_gq *parent = iocg->ancestors[lvl];
1177                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1178                 u64 active_sum = READ_ONCE(parent->child_active_sum);
1179                 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1180                 u32 active = READ_ONCE(child->active);
1181                 u32 inuse = READ_ONCE(child->inuse);
1182
1183                 /* we can race with deactivations and either may read as zero */
1184                 if (!active_sum || !inuse_sum)
1185                         continue;
1186
1187                 active_sum = max_t(u64, active, active_sum);
1188                 hwa = div64_u64((u64)hwa * active, active_sum);
1189
1190                 inuse_sum = max_t(u64, inuse, inuse_sum);
1191                 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1192         }
1193
1194         iocg->hweight_active = max_t(u32, hwa, 1);
1195         iocg->hweight_inuse = max_t(u32, hwi, 1);
1196         iocg->hweight_gen = ioc_gen;
1197 out:
1198         if (hw_activep)
1199                 *hw_activep = iocg->hweight_active;
1200         if (hw_inusep)
1201                 *hw_inusep = iocg->hweight_inuse;
1202 }
1203
1204 /*
1205  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1206  * other weights stay unchanged.
1207  */
1208 static u32 current_hweight_max(struct ioc_gq *iocg)
1209 {
1210         u32 hwm = WEIGHT_ONE;
1211         u32 inuse = iocg->active;
1212         u64 child_inuse_sum;
1213         int lvl;
1214
1215         lockdep_assert_held(&iocg->ioc->lock);
1216
1217         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1218                 struct ioc_gq *parent = iocg->ancestors[lvl];
1219                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1220
1221                 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1222                 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1223                 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1224                                            parent->child_active_sum);
1225         }
1226
1227         return max_t(u32, hwm, 1);
1228 }
1229
1230 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1231 {
1232         struct ioc *ioc = iocg->ioc;
1233         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1234         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1235         u32 weight;
1236
1237         lockdep_assert_held(&ioc->lock);
1238
1239         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1240         if (weight != iocg->weight && iocg->active)
1241                 propagate_weights(iocg, weight, iocg->inuse, true, now);
1242         iocg->weight = weight;
1243 }
1244
1245 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1246 {
1247         struct ioc *ioc = iocg->ioc;
1248         u64 last_period, cur_period;
1249         u64 vtime, vtarget;
1250         int i;
1251
1252         /*
1253          * If seem to be already active, just update the stamp to tell the
1254          * timer that we're still active.  We don't mind occassional races.
1255          */
1256         if (!list_empty(&iocg->active_list)) {
1257                 ioc_now(ioc, now);
1258                 cur_period = atomic64_read(&ioc->cur_period);
1259                 if (atomic64_read(&iocg->active_period) != cur_period)
1260                         atomic64_set(&iocg->active_period, cur_period);
1261                 return true;
1262         }
1263
1264         /* racy check on internal node IOs, treat as root level IOs */
1265         if (iocg->child_active_sum)
1266                 return false;
1267
1268         spin_lock_irq(&ioc->lock);
1269
1270         ioc_now(ioc, now);
1271
1272         /* update period */
1273         cur_period = atomic64_read(&ioc->cur_period);
1274         last_period = atomic64_read(&iocg->active_period);
1275         atomic64_set(&iocg->active_period, cur_period);
1276
1277         /* already activated or breaking leaf-only constraint? */
1278         if (!list_empty(&iocg->active_list))
1279                 goto succeed_unlock;
1280         for (i = iocg->level - 1; i > 0; i--)
1281                 if (!list_empty(&iocg->ancestors[i]->active_list))
1282                         goto fail_unlock;
1283
1284         if (iocg->child_active_sum)
1285                 goto fail_unlock;
1286
1287         /*
1288          * Always start with the target budget. On deactivation, we throw away
1289          * anything above it.
1290          */
1291         vtarget = now->vnow - ioc->margins.target;
1292         vtime = atomic64_read(&iocg->vtime);
1293
1294         atomic64_add(vtarget - vtime, &iocg->vtime);
1295         atomic64_add(vtarget - vtime, &iocg->done_vtime);
1296         vtime = vtarget;
1297
1298         /*
1299          * Activate, propagate weight and start period timer if not
1300          * running.  Reset hweight_gen to avoid accidental match from
1301          * wrapping.
1302          */
1303         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1304         list_add(&iocg->active_list, &ioc->active_iocgs);
1305
1306         propagate_weights(iocg, iocg->weight,
1307                           iocg->last_inuse ?: iocg->weight, true, now);
1308
1309         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1310                         last_period, cur_period, vtime);
1311
1312         iocg->activated_at = now->now;
1313
1314         if (ioc->running == IOC_IDLE) {
1315                 ioc->running = IOC_RUNNING;
1316                 ioc->dfgv_period_at = now->now;
1317                 ioc->dfgv_period_rem = 0;
1318                 ioc_start_period(ioc, now);
1319         }
1320
1321 succeed_unlock:
1322         spin_unlock_irq(&ioc->lock);
1323         return true;
1324
1325 fail_unlock:
1326         spin_unlock_irq(&ioc->lock);
1327         return false;
1328 }
1329
1330 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1331 {
1332         struct ioc *ioc = iocg->ioc;
1333         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1334         u64 tdelta, delay, new_delay;
1335         s64 vover, vover_pct;
1336         u32 hwa;
1337
1338         lockdep_assert_held(&iocg->waitq.lock);
1339
1340         /* calculate the current delay in effect - 1/2 every second */
1341         tdelta = now->now - iocg->delay_at;
1342         if (iocg->delay)
1343                 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1344         else
1345                 delay = 0;
1346
1347         /* calculate the new delay from the debt amount */
1348         current_hweight(iocg, &hwa, NULL);
1349         vover = atomic64_read(&iocg->vtime) +
1350                 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1351         vover_pct = div64_s64(100 * vover,
1352                               ioc->period_us * ioc->vtime_base_rate);
1353
1354         if (vover_pct <= MIN_DELAY_THR_PCT)
1355                 new_delay = 0;
1356         else if (vover_pct >= MAX_DELAY_THR_PCT)
1357                 new_delay = MAX_DELAY;
1358         else
1359                 new_delay = MIN_DELAY +
1360                         div_u64((MAX_DELAY - MIN_DELAY) *
1361                                 (vover_pct - MIN_DELAY_THR_PCT),
1362                                 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1363
1364         /* pick the higher one and apply */
1365         if (new_delay > delay) {
1366                 iocg->delay = new_delay;
1367                 iocg->delay_at = now->now;
1368                 delay = new_delay;
1369         }
1370
1371         if (delay >= MIN_DELAY) {
1372                 if (!iocg->indelay_since)
1373                         iocg->indelay_since = now->now;
1374                 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1375                 return true;
1376         } else {
1377                 if (iocg->indelay_since) {
1378                         iocg->stat.indelay_us += now->now - iocg->indelay_since;
1379                         iocg->indelay_since = 0;
1380                 }
1381                 iocg->delay = 0;
1382                 blkcg_clear_delay(blkg);
1383                 return false;
1384         }
1385 }
1386
1387 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1388                             struct ioc_now *now)
1389 {
1390         struct iocg_pcpu_stat *gcs;
1391
1392         lockdep_assert_held(&iocg->ioc->lock);
1393         lockdep_assert_held(&iocg->waitq.lock);
1394         WARN_ON_ONCE(list_empty(&iocg->active_list));
1395
1396         /*
1397          * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1398          * inuse donating all of it share to others until its debt is paid off.
1399          */
1400         if (!iocg->abs_vdebt && abs_cost) {
1401                 iocg->indebt_since = now->now;
1402                 propagate_weights(iocg, iocg->active, 0, false, now);
1403         }
1404
1405         iocg->abs_vdebt += abs_cost;
1406
1407         gcs = get_cpu_ptr(iocg->pcpu_stat);
1408         local64_add(abs_cost, &gcs->abs_vusage);
1409         put_cpu_ptr(gcs);
1410 }
1411
1412 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1413                           struct ioc_now *now)
1414 {
1415         lockdep_assert_held(&iocg->ioc->lock);
1416         lockdep_assert_held(&iocg->waitq.lock);
1417
1418         /* make sure that nobody messed with @iocg */
1419         WARN_ON_ONCE(list_empty(&iocg->active_list));
1420         WARN_ON_ONCE(iocg->inuse > 1);
1421
1422         iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1423
1424         /* if debt is paid in full, restore inuse */
1425         if (!iocg->abs_vdebt) {
1426                 iocg->stat.indebt_us += now->now - iocg->indebt_since;
1427                 iocg->indebt_since = 0;
1428
1429                 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1430                                   false, now);
1431         }
1432 }
1433
1434 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1435                         int flags, void *key)
1436 {
1437         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1438         struct iocg_wake_ctx *ctx = key;
1439         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1440
1441         ctx->vbudget -= cost;
1442
1443         if (ctx->vbudget < 0)
1444                 return -1;
1445
1446         iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1447         wait->committed = true;
1448
1449         /*
1450          * autoremove_wake_function() removes the wait entry only when it
1451          * actually changed the task state. We want the wait always removed.
1452          * Remove explicitly and use default_wake_function(). Note that the
1453          * order of operations is important as finish_wait() tests whether
1454          * @wq_entry is removed without grabbing the lock.
1455          */
1456         default_wake_function(wq_entry, mode, flags, key);
1457         list_del_init_careful(&wq_entry->entry);
1458         return 0;
1459 }
1460
1461 /*
1462  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1463  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1464  * addition to iocg->waitq.lock.
1465  */
1466 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1467                             struct ioc_now *now)
1468 {
1469         struct ioc *ioc = iocg->ioc;
1470         struct iocg_wake_ctx ctx = { .iocg = iocg };
1471         u64 vshortage, expires, oexpires;
1472         s64 vbudget;
1473         u32 hwa;
1474
1475         lockdep_assert_held(&iocg->waitq.lock);
1476
1477         current_hweight(iocg, &hwa, NULL);
1478         vbudget = now->vnow - atomic64_read(&iocg->vtime);
1479
1480         /* pay off debt */
1481         if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1482                 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1483                 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1484                 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1485
1486                 lockdep_assert_held(&ioc->lock);
1487
1488                 atomic64_add(vpay, &iocg->vtime);
1489                 atomic64_add(vpay, &iocg->done_vtime);
1490                 iocg_pay_debt(iocg, abs_vpay, now);
1491                 vbudget -= vpay;
1492         }
1493
1494         if (iocg->abs_vdebt || iocg->delay)
1495                 iocg_kick_delay(iocg, now);
1496
1497         /*
1498          * Debt can still be outstanding if we haven't paid all yet or the
1499          * caller raced and called without @pay_debt. Shouldn't wake up waiters
1500          * under debt. Make sure @vbudget reflects the outstanding amount and is
1501          * not positive.
1502          */
1503         if (iocg->abs_vdebt) {
1504                 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1505                 vbudget = min_t(s64, 0, vbudget - vdebt);
1506         }
1507
1508         /*
1509          * Wake up the ones which are due and see how much vtime we'll need for
1510          * the next one. As paying off debt restores hw_inuse, it must be read
1511          * after the above debt payment.
1512          */
1513         ctx.vbudget = vbudget;
1514         current_hweight(iocg, NULL, &ctx.hw_inuse);
1515
1516         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1517
1518         if (!waitqueue_active(&iocg->waitq)) {
1519                 if (iocg->wait_since) {
1520                         iocg->stat.wait_us += now->now - iocg->wait_since;
1521                         iocg->wait_since = 0;
1522                 }
1523                 return;
1524         }
1525
1526         if (!iocg->wait_since)
1527                 iocg->wait_since = now->now;
1528
1529         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1530                 return;
1531
1532         /* determine next wakeup, add a timer margin to guarantee chunking */
1533         vshortage = -ctx.vbudget;
1534         expires = now->now_ns +
1535                 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1536                 NSEC_PER_USEC;
1537         expires += ioc->timer_slack_ns;
1538
1539         /* if already active and close enough, don't bother */
1540         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1541         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1542             abs(oexpires - expires) <= ioc->timer_slack_ns)
1543                 return;
1544
1545         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1546                                ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1547 }
1548
1549 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1550 {
1551         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1552         bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1553         struct ioc_now now;
1554         unsigned long flags;
1555
1556         ioc_now(iocg->ioc, &now);
1557
1558         iocg_lock(iocg, pay_debt, &flags);
1559         iocg_kick_waitq(iocg, pay_debt, &now);
1560         iocg_unlock(iocg, pay_debt, &flags);
1561
1562         return HRTIMER_NORESTART;
1563 }
1564
1565 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1566 {
1567         u32 nr_met[2] = { };
1568         u32 nr_missed[2] = { };
1569         u64 rq_wait_ns = 0;
1570         int cpu, rw;
1571
1572         for_each_online_cpu(cpu) {
1573                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1574                 u64 this_rq_wait_ns;
1575
1576                 for (rw = READ; rw <= WRITE; rw++) {
1577                         u32 this_met = local_read(&stat->missed[rw].nr_met);
1578                         u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1579
1580                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1581                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1582                         stat->missed[rw].last_met = this_met;
1583                         stat->missed[rw].last_missed = this_missed;
1584                 }
1585
1586                 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1587                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1588                 stat->last_rq_wait_ns = this_rq_wait_ns;
1589         }
1590
1591         for (rw = READ; rw <= WRITE; rw++) {
1592                 if (nr_met[rw] + nr_missed[rw])
1593                         missed_ppm_ar[rw] =
1594                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1595                                                    nr_met[rw] + nr_missed[rw]);
1596                 else
1597                         missed_ppm_ar[rw] = 0;
1598         }
1599
1600         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1601                                    ioc->period_us * NSEC_PER_USEC);
1602 }
1603
1604 /* was iocg idle this period? */
1605 static bool iocg_is_idle(struct ioc_gq *iocg)
1606 {
1607         struct ioc *ioc = iocg->ioc;
1608
1609         /* did something get issued this period? */
1610         if (atomic64_read(&iocg->active_period) ==
1611             atomic64_read(&ioc->cur_period))
1612                 return false;
1613
1614         /* is something in flight? */
1615         if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1616                 return false;
1617
1618         return true;
1619 }
1620
1621 /*
1622  * Call this function on the target leaf @iocg's to build pre-order traversal
1623  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1624  * ->walk_list and the caller is responsible for dissolving the list after use.
1625  */
1626 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1627                                   struct list_head *inner_walk)
1628 {
1629         int lvl;
1630
1631         WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1632
1633         /* find the first ancestor which hasn't been visited yet */
1634         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1635                 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1636                         break;
1637         }
1638
1639         /* walk down and visit the inner nodes to get pre-order traversal */
1640         while (++lvl <= iocg->level - 1) {
1641                 struct ioc_gq *inner = iocg->ancestors[lvl];
1642
1643                 /* record traversal order */
1644                 list_add_tail(&inner->walk_list, inner_walk);
1645         }
1646 }
1647
1648 /* propagate the deltas to the parent */
1649 static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1650 {
1651         if (iocg->level > 0) {
1652                 struct iocg_stat *parent_stat =
1653                         &iocg->ancestors[iocg->level - 1]->stat;
1654
1655                 parent_stat->usage_us +=
1656                         iocg->stat.usage_us - iocg->last_stat.usage_us;
1657                 parent_stat->wait_us +=
1658                         iocg->stat.wait_us - iocg->last_stat.wait_us;
1659                 parent_stat->indebt_us +=
1660                         iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1661                 parent_stat->indelay_us +=
1662                         iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1663         }
1664
1665         iocg->last_stat = iocg->stat;
1666 }
1667
1668 /* collect per-cpu counters and propagate the deltas to the parent */
1669 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1670 {
1671         struct ioc *ioc = iocg->ioc;
1672         u64 abs_vusage = 0;
1673         u64 vusage_delta;
1674         int cpu;
1675
1676         lockdep_assert_held(&iocg->ioc->lock);
1677
1678         /* collect per-cpu counters */
1679         for_each_possible_cpu(cpu) {
1680                 abs_vusage += local64_read(
1681                                 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1682         }
1683         vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1684         iocg->last_stat_abs_vusage = abs_vusage;
1685
1686         iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1687         iocg->stat.usage_us += iocg->usage_delta_us;
1688
1689         iocg_flush_stat_upward(iocg);
1690 }
1691
1692 /* get stat counters ready for reading on all active iocgs */
1693 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1694 {
1695         LIST_HEAD(inner_walk);
1696         struct ioc_gq *iocg, *tiocg;
1697
1698         /* flush leaves and build inner node walk list */
1699         list_for_each_entry(iocg, target_iocgs, active_list) {
1700                 iocg_flush_stat_leaf(iocg, now);
1701                 iocg_build_inner_walk(iocg, &inner_walk);
1702         }
1703
1704         /* keep flushing upwards by walking the inner list backwards */
1705         list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1706                 iocg_flush_stat_upward(iocg);
1707                 list_del_init(&iocg->walk_list);
1708         }
1709 }
1710
1711 /*
1712  * Determine what @iocg's hweight_inuse should be after donating unused
1713  * capacity. @hwm is the upper bound and used to signal no donation. This
1714  * function also throws away @iocg's excess budget.
1715  */
1716 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1717                                   u32 usage, struct ioc_now *now)
1718 {
1719         struct ioc *ioc = iocg->ioc;
1720         u64 vtime = atomic64_read(&iocg->vtime);
1721         s64 excess, delta, target, new_hwi;
1722
1723         /* debt handling owns inuse for debtors */
1724         if (iocg->abs_vdebt)
1725                 return 1;
1726
1727         /* see whether minimum margin requirement is met */
1728         if (waitqueue_active(&iocg->waitq) ||
1729             time_after64(vtime, now->vnow - ioc->margins.min))
1730                 return hwm;
1731
1732         /* throw away excess above target */
1733         excess = now->vnow - vtime - ioc->margins.target;
1734         if (excess > 0) {
1735                 atomic64_add(excess, &iocg->vtime);
1736                 atomic64_add(excess, &iocg->done_vtime);
1737                 vtime += excess;
1738                 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1739         }
1740
1741         /*
1742          * Let's say the distance between iocg's and device's vtimes as a
1743          * fraction of period duration is delta. Assuming that the iocg will
1744          * consume the usage determined above, we want to determine new_hwi so
1745          * that delta equals MARGIN_TARGET at the end of the next period.
1746          *
1747          * We need to execute usage worth of IOs while spending the sum of the
1748          * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1749          * (delta):
1750          *
1751          *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1752          *
1753          * Therefore, the new_hwi is:
1754          *
1755          *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1756          */
1757         delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1758                           now->vnow - ioc->period_at_vtime);
1759         target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1760         new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1761
1762         return clamp_t(s64, new_hwi, 1, hwm);
1763 }
1764
1765 /*
1766  * For work-conservation, an iocg which isn't using all of its share should
1767  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1768  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1769  *
1770  * #1 is mathematically simpler but has the drawback of requiring synchronous
1771  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1772  * change due to donation snapbacks as it has the possibility of grossly
1773  * overshooting what's allowed by the model and vrate.
1774  *
1775  * #2 is inherently safe with local operations. The donating iocg can easily
1776  * snap back to higher weights when needed without worrying about impacts on
1777  * other nodes as the impacts will be inherently correct. This also makes idle
1778  * iocg activations safe. The only effect activations have is decreasing
1779  * hweight_inuse of others, the right solution to which is for those iocgs to
1780  * snap back to higher weights.
1781  *
1782  * So, we go with #2. The challenge is calculating how each donating iocg's
1783  * inuse should be adjusted to achieve the target donation amounts. This is done
1784  * using Andy's method described in the following pdf.
1785  *
1786  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1787  *
1788  * Given the weights and target after-donation hweight_inuse values, Andy's
1789  * method determines how the proportional distribution should look like at each
1790  * sibling level to maintain the relative relationship between all non-donating
1791  * pairs. To roughly summarize, it divides the tree into donating and
1792  * non-donating parts, calculates global donation rate which is used to
1793  * determine the target hweight_inuse for each node, and then derives per-level
1794  * proportions.
1795  *
1796  * The following pdf shows that global distribution calculated this way can be
1797  * achieved by scaling inuse weights of donating leaves and propagating the
1798  * adjustments upwards proportionally.
1799  *
1800  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1801  *
1802  * Combining the above two, we can determine how each leaf iocg's inuse should
1803  * be adjusted to achieve the target donation.
1804  *
1805  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1806  *
1807  * The inline comments use symbols from the last pdf.
1808  *
1809  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1810  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1811  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1812  *   w is the weight of the node. w = w_f + w_t
1813  *   w_f is the non-donating portion of w. w_f = w * f / b
1814  *   w_b is the donating portion of w. w_t = w * t / b
1815  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1816  *   s_f and s_t are the non-donating and donating portions of s.
1817  *
1818  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1819  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1820  * after adjustments. Subscript r denotes the root node's values.
1821  */
1822 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1823 {
1824         LIST_HEAD(over_hwa);
1825         LIST_HEAD(inner_walk);
1826         struct ioc_gq *iocg, *tiocg, *root_iocg;
1827         u32 after_sum, over_sum, over_target, gamma;
1828
1829         /*
1830          * It's pretty unlikely but possible for the total sum of
1831          * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1832          * confuse the following calculations. If such condition is detected,
1833          * scale down everyone over its full share equally to keep the sum below
1834          * WEIGHT_ONE.
1835          */
1836         after_sum = 0;
1837         over_sum = 0;
1838         list_for_each_entry(iocg, surpluses, surplus_list) {
1839                 u32 hwa;
1840
1841                 current_hweight(iocg, &hwa, NULL);
1842                 after_sum += iocg->hweight_after_donation;
1843
1844                 if (iocg->hweight_after_donation > hwa) {
1845                         over_sum += iocg->hweight_after_donation;
1846                         list_add(&iocg->walk_list, &over_hwa);
1847                 }
1848         }
1849
1850         if (after_sum >= WEIGHT_ONE) {
1851                 /*
1852                  * The delta should be deducted from the over_sum, calculate
1853                  * target over_sum value.
1854                  */
1855                 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1856                 WARN_ON_ONCE(over_sum <= over_delta);
1857                 over_target = over_sum - over_delta;
1858         } else {
1859                 over_target = 0;
1860         }
1861
1862         list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1863                 if (over_target)
1864                         iocg->hweight_after_donation =
1865                                 div_u64((u64)iocg->hweight_after_donation *
1866                                         over_target, over_sum);
1867                 list_del_init(&iocg->walk_list);
1868         }
1869
1870         /*
1871          * Build pre-order inner node walk list and prepare for donation
1872          * adjustment calculations.
1873          */
1874         list_for_each_entry(iocg, surpluses, surplus_list) {
1875                 iocg_build_inner_walk(iocg, &inner_walk);
1876         }
1877
1878         root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1879         WARN_ON_ONCE(root_iocg->level > 0);
1880
1881         list_for_each_entry(iocg, &inner_walk, walk_list) {
1882                 iocg->child_adjusted_sum = 0;
1883                 iocg->hweight_donating = 0;
1884                 iocg->hweight_after_donation = 0;
1885         }
1886
1887         /*
1888          * Propagate the donating budget (b_t) and after donation budget (b'_t)
1889          * up the hierarchy.
1890          */
1891         list_for_each_entry(iocg, surpluses, surplus_list) {
1892                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1893
1894                 parent->hweight_donating += iocg->hweight_donating;
1895                 parent->hweight_after_donation += iocg->hweight_after_donation;
1896         }
1897
1898         list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1899                 if (iocg->level > 0) {
1900                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1901
1902                         parent->hweight_donating += iocg->hweight_donating;
1903                         parent->hweight_after_donation += iocg->hweight_after_donation;
1904                 }
1905         }
1906
1907         /*
1908          * Calculate inner hwa's (b) and make sure the donation values are
1909          * within the accepted ranges as we're doing low res calculations with
1910          * roundups.
1911          */
1912         list_for_each_entry(iocg, &inner_walk, walk_list) {
1913                 if (iocg->level) {
1914                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1915
1916                         iocg->hweight_active = DIV64_U64_ROUND_UP(
1917                                 (u64)parent->hweight_active * iocg->active,
1918                                 parent->child_active_sum);
1919
1920                 }
1921
1922                 iocg->hweight_donating = min(iocg->hweight_donating,
1923                                              iocg->hweight_active);
1924                 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1925                                                    iocg->hweight_donating - 1);
1926                 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1927                                  iocg->hweight_donating <= 1 ||
1928                                  iocg->hweight_after_donation == 0)) {
1929                         pr_warn("iocg: invalid donation weights in ");
1930                         pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1931                         pr_cont(": active=%u donating=%u after=%u\n",
1932                                 iocg->hweight_active, iocg->hweight_donating,
1933                                 iocg->hweight_after_donation);
1934                 }
1935         }
1936
1937         /*
1938          * Calculate the global donation rate (gamma) - the rate to adjust
1939          * non-donating budgets by.
1940          *
1941          * No need to use 64bit multiplication here as the first operand is
1942          * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1943          *
1944          * We know that there are beneficiary nodes and the sum of the donating
1945          * hweights can't be whole; however, due to the round-ups during hweight
1946          * calculations, root_iocg->hweight_donating might still end up equal to
1947          * or greater than whole. Limit the range when calculating the divider.
1948          *
1949          * gamma = (1 - t_r') / (1 - t_r)
1950          */
1951         gamma = DIV_ROUND_UP(
1952                 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1953                 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1954
1955         /*
1956          * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1957          * nodes.
1958          */
1959         list_for_each_entry(iocg, &inner_walk, walk_list) {
1960                 struct ioc_gq *parent;
1961                 u32 inuse, wpt, wptp;
1962                 u64 st, sf;
1963
1964                 if (iocg->level == 0) {
1965                         /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1966                         iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1967                                 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1968                                 WEIGHT_ONE - iocg->hweight_after_donation);
1969                         continue;
1970                 }
1971
1972                 parent = iocg->ancestors[iocg->level - 1];
1973
1974                 /* b' = gamma * b_f + b_t' */
1975                 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1976                         (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1977                         WEIGHT_ONE) + iocg->hweight_after_donation;
1978
1979                 /* w' = s' * b' / b'_p */
1980                 inuse = DIV64_U64_ROUND_UP(
1981                         (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1982                         parent->hweight_inuse);
1983
1984                 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1985                 st = DIV64_U64_ROUND_UP(
1986                         iocg->child_active_sum * iocg->hweight_donating,
1987                         iocg->hweight_active);
1988                 sf = iocg->child_active_sum - st;
1989                 wpt = DIV64_U64_ROUND_UP(
1990                         (u64)iocg->active * iocg->hweight_donating,
1991                         iocg->hweight_active);
1992                 wptp = DIV64_U64_ROUND_UP(
1993                         (u64)inuse * iocg->hweight_after_donation,
1994                         iocg->hweight_inuse);
1995
1996                 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1997         }
1998
1999         /*
2000          * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
2001          * we can finally determine leaf adjustments.
2002          */
2003         list_for_each_entry(iocg, surpluses, surplus_list) {
2004                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2005                 u32 inuse;
2006
2007                 /*
2008                  * In-debt iocgs participated in the donation calculation with
2009                  * the minimum target hweight_inuse. Configuring inuse
2010                  * accordingly would work fine but debt handling expects
2011                  * @iocg->inuse stay at the minimum and we don't wanna
2012                  * interfere.
2013                  */
2014                 if (iocg->abs_vdebt) {
2015                         WARN_ON_ONCE(iocg->inuse > 1);
2016                         continue;
2017                 }
2018
2019                 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2020                 inuse = DIV64_U64_ROUND_UP(
2021                         parent->child_adjusted_sum * iocg->hweight_after_donation,
2022                         parent->hweight_inuse);
2023
2024                 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2025                                 iocg->inuse, inuse,
2026                                 iocg->hweight_inuse,
2027                                 iocg->hweight_after_donation);
2028
2029                 __propagate_weights(iocg, iocg->active, inuse, true, now);
2030         }
2031
2032         /* walk list should be dissolved after use */
2033         list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2034                 list_del_init(&iocg->walk_list);
2035 }
2036
2037 /*
2038  * A low weight iocg can amass a large amount of debt, for example, when
2039  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2040  * memory paired with a slow IO device, the debt can span multiple seconds or
2041  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2042  * up blocked paying its debt while the IO device is idle.
2043  *
2044  * The following protects against such cases. If the device has been
2045  * sufficiently idle for a while, the debts are halved and delays are
2046  * recalculated.
2047  */
2048 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2049                               struct ioc_now *now)
2050 {
2051         struct ioc_gq *iocg;
2052         u64 dur, usage_pct, nr_cycles;
2053
2054         /* if no debtor, reset the cycle */
2055         if (!nr_debtors) {
2056                 ioc->dfgv_period_at = now->now;
2057                 ioc->dfgv_period_rem = 0;
2058                 ioc->dfgv_usage_us_sum = 0;
2059                 return;
2060         }
2061
2062         /*
2063          * Debtors can pass through a lot of writes choking the device and we
2064          * don't want to be forgiving debts while the device is struggling from
2065          * write bursts. If we're missing latency targets, consider the device
2066          * fully utilized.
2067          */
2068         if (ioc->busy_level > 0)
2069                 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2070
2071         ioc->dfgv_usage_us_sum += usage_us_sum;
2072         if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2073                 return;
2074
2075         /*
2076          * At least DFGV_PERIOD has passed since the last period. Calculate the
2077          * average usage and reset the period counters.
2078          */
2079         dur = now->now - ioc->dfgv_period_at;
2080         usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2081
2082         ioc->dfgv_period_at = now->now;
2083         ioc->dfgv_usage_us_sum = 0;
2084
2085         /* if was too busy, reset everything */
2086         if (usage_pct > DFGV_USAGE_PCT) {
2087                 ioc->dfgv_period_rem = 0;
2088                 return;
2089         }
2090
2091         /*
2092          * Usage is lower than threshold. Let's forgive some debts. Debt
2093          * forgiveness runs off of the usual ioc timer but its period usually
2094          * doesn't match ioc's. Compensate the difference by performing the
2095          * reduction as many times as would fit in the duration since the last
2096          * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2097          * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2098          * reductions is doubled.
2099          */
2100         nr_cycles = dur + ioc->dfgv_period_rem;
2101         ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2102
2103         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2104                 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2105
2106                 if (!iocg->abs_vdebt && !iocg->delay)
2107                         continue;
2108
2109                 spin_lock(&iocg->waitq.lock);
2110
2111                 old_debt = iocg->abs_vdebt;
2112                 old_delay = iocg->delay;
2113
2114                 if (iocg->abs_vdebt)
2115                         iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2116                 if (iocg->delay)
2117                         iocg->delay = iocg->delay >> nr_cycles ?: 1;
2118
2119                 iocg_kick_waitq(iocg, true, now);
2120
2121                 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2122                                 old_debt, iocg->abs_vdebt,
2123                                 old_delay, iocg->delay);
2124
2125                 spin_unlock(&iocg->waitq.lock);
2126         }
2127 }
2128
2129 /*
2130  * Check the active iocgs' state to avoid oversleeping and deactive
2131  * idle iocgs.
2132  *
2133  * Since waiters determine the sleep durations based on the vrate
2134  * they saw at the time of sleep, if vrate has increased, some
2135  * waiters could be sleeping for too long. Wake up tardy waiters
2136  * which should have woken up in the last period and expire idle
2137  * iocgs.
2138  */
2139 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2140 {
2141         int nr_debtors = 0;
2142         struct ioc_gq *iocg, *tiocg;
2143
2144         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2145                 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2146                     !iocg->delay && !iocg_is_idle(iocg))
2147                         continue;
2148
2149                 spin_lock(&iocg->waitq.lock);
2150
2151                 /* flush wait and indebt stat deltas */
2152                 if (iocg->wait_since) {
2153                         iocg->stat.wait_us += now->now - iocg->wait_since;
2154                         iocg->wait_since = now->now;
2155                 }
2156                 if (iocg->indebt_since) {
2157                         iocg->stat.indebt_us +=
2158                                 now->now - iocg->indebt_since;
2159                         iocg->indebt_since = now->now;
2160                 }
2161                 if (iocg->indelay_since) {
2162                         iocg->stat.indelay_us +=
2163                                 now->now - iocg->indelay_since;
2164                         iocg->indelay_since = now->now;
2165                 }
2166
2167                 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2168                     iocg->delay) {
2169                         /* might be oversleeping vtime / hweight changes, kick */
2170                         iocg_kick_waitq(iocg, true, now);
2171                         if (iocg->abs_vdebt || iocg->delay)
2172                                 nr_debtors++;
2173                 } else if (iocg_is_idle(iocg)) {
2174                         /* no waiter and idle, deactivate */
2175                         u64 vtime = atomic64_read(&iocg->vtime);
2176                         s64 excess;
2177
2178                         /*
2179                          * @iocg has been inactive for a full duration and will
2180                          * have a high budget. Account anything above target as
2181                          * error and throw away. On reactivation, it'll start
2182                          * with the target budget.
2183                          */
2184                         excess = now->vnow - vtime - ioc->margins.target;
2185                         if (excess > 0) {
2186                                 u32 old_hwi;
2187
2188                                 current_hweight(iocg, NULL, &old_hwi);
2189                                 ioc->vtime_err -= div64_u64(excess * old_hwi,
2190                                                             WEIGHT_ONE);
2191                         }
2192
2193                         TRACE_IOCG_PATH(iocg_idle, iocg, now,
2194                                         atomic64_read(&iocg->active_period),
2195                                         atomic64_read(&ioc->cur_period), vtime);
2196                         __propagate_weights(iocg, 0, 0, false, now);
2197                         list_del_init(&iocg->active_list);
2198                 }
2199
2200                 spin_unlock(&iocg->waitq.lock);
2201         }
2202
2203         commit_weights(ioc);
2204         return nr_debtors;
2205 }
2206
2207 static void ioc_timer_fn(struct timer_list *timer)
2208 {
2209         struct ioc *ioc = container_of(timer, struct ioc, timer);
2210         struct ioc_gq *iocg, *tiocg;
2211         struct ioc_now now;
2212         LIST_HEAD(surpluses);
2213         int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2214         u64 usage_us_sum = 0;
2215         u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2216         u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2217         u32 missed_ppm[2], rq_wait_pct;
2218         u64 period_vtime;
2219         int prev_busy_level;
2220
2221         /* how were the latencies during the period? */
2222         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2223
2224         /* take care of active iocgs */
2225         spin_lock_irq(&ioc->lock);
2226
2227         ioc_now(ioc, &now);
2228
2229         period_vtime = now.vnow - ioc->period_at_vtime;
2230         if (WARN_ON_ONCE(!period_vtime)) {
2231                 spin_unlock_irq(&ioc->lock);
2232                 return;
2233         }
2234
2235         nr_debtors = ioc_check_iocgs(ioc, &now);
2236
2237         /*
2238          * Wait and indebt stat are flushed above and the donation calculation
2239          * below needs updated usage stat. Let's bring stat up-to-date.
2240          */
2241         iocg_flush_stat(&ioc->active_iocgs, &now);
2242
2243         /* calc usage and see whether some weights need to be moved around */
2244         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2245                 u64 vdone, vtime, usage_us;
2246                 u32 hw_active, hw_inuse;
2247
2248                 /*
2249                  * Collect unused and wind vtime closer to vnow to prevent
2250                  * iocgs from accumulating a large amount of budget.
2251                  */
2252                 vdone = atomic64_read(&iocg->done_vtime);
2253                 vtime = atomic64_read(&iocg->vtime);
2254                 current_hweight(iocg, &hw_active, &hw_inuse);
2255
2256                 /*
2257                  * Latency QoS detection doesn't account for IOs which are
2258                  * in-flight for longer than a period.  Detect them by
2259                  * comparing vdone against period start.  If lagging behind
2260                  * IOs from past periods, don't increase vrate.
2261                  */
2262                 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2263                     !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2264                     time_after64(vtime, vdone) &&
2265                     time_after64(vtime, now.vnow -
2266                                  MAX_LAGGING_PERIODS * period_vtime) &&
2267                     time_before64(vdone, now.vnow - period_vtime))
2268                         nr_lagging++;
2269
2270                 /*
2271                  * Determine absolute usage factoring in in-flight IOs to avoid
2272                  * high-latency completions appearing as idle.
2273                  */
2274                 usage_us = iocg->usage_delta_us;
2275                 usage_us_sum += usage_us;
2276
2277                 /* see whether there's surplus vtime */
2278                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2279                 if (hw_inuse < hw_active ||
2280                     (!waitqueue_active(&iocg->waitq) &&
2281                      time_before64(vtime, now.vnow - ioc->margins.low))) {
2282                         u32 hwa, old_hwi, hwm, new_hwi, usage;
2283                         u64 usage_dur;
2284
2285                         if (vdone != vtime) {
2286                                 u64 inflight_us = DIV64_U64_ROUND_UP(
2287                                         cost_to_abs_cost(vtime - vdone, hw_inuse),
2288                                         ioc->vtime_base_rate);
2289
2290                                 usage_us = max(usage_us, inflight_us);
2291                         }
2292
2293                         /* convert to hweight based usage ratio */
2294                         if (time_after64(iocg->activated_at, ioc->period_at))
2295                                 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2296                         else
2297                                 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2298
2299                         usage = clamp_t(u32,
2300                                 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2301                                                    usage_dur),
2302                                 1, WEIGHT_ONE);
2303
2304                         /*
2305                          * Already donating or accumulated enough to start.
2306                          * Determine the donation amount.
2307                          */
2308                         current_hweight(iocg, &hwa, &old_hwi);
2309                         hwm = current_hweight_max(iocg);
2310                         new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2311                                                          usage, &now);
2312                         /*
2313                          * Donation calculation assumes hweight_after_donation
2314                          * to be positive, a condition that a donor w/ hwa < 2
2315                          * can't meet. Don't bother with donation if hwa is
2316                          * below 2. It's not gonna make a meaningful difference
2317                          * anyway.
2318                          */
2319                         if (new_hwi < hwm && hwa >= 2) {
2320                                 iocg->hweight_donating = hwa;
2321                                 iocg->hweight_after_donation = new_hwi;
2322                                 list_add(&iocg->surplus_list, &surpluses);
2323                         } else if (!iocg->abs_vdebt) {
2324                                 /*
2325                                  * @iocg doesn't have enough to donate. Reset
2326                                  * its inuse to active.
2327                                  *
2328                                  * Don't reset debtors as their inuse's are
2329                                  * owned by debt handling. This shouldn't affect
2330                                  * donation calculuation in any meaningful way
2331                                  * as @iocg doesn't have a meaningful amount of
2332                                  * share anyway.
2333                                  */
2334                                 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2335                                                 iocg->inuse, iocg->active,
2336                                                 iocg->hweight_inuse, new_hwi);
2337
2338                                 __propagate_weights(iocg, iocg->active,
2339                                                     iocg->active, true, &now);
2340                                 nr_shortages++;
2341                         }
2342                 } else {
2343                         /* genuinely short on vtime */
2344                         nr_shortages++;
2345                 }
2346         }
2347
2348         if (!list_empty(&surpluses) && nr_shortages)
2349                 transfer_surpluses(&surpluses, &now);
2350
2351         commit_weights(ioc);
2352
2353         /* surplus list should be dissolved after use */
2354         list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2355                 list_del_init(&iocg->surplus_list);
2356
2357         /*
2358          * If q is getting clogged or we're missing too much, we're issuing
2359          * too much IO and should lower vtime rate.  If we're not missing
2360          * and experiencing shortages but not surpluses, we're too stingy
2361          * and should increase vtime rate.
2362          */
2363         prev_busy_level = ioc->busy_level;
2364         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2365             missed_ppm[READ] > ppm_rthr ||
2366             missed_ppm[WRITE] > ppm_wthr) {
2367                 /* clearly missing QoS targets, slow down vrate */
2368                 ioc->busy_level = max(ioc->busy_level, 0);
2369                 ioc->busy_level++;
2370         } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2371                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2372                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2373                 /* QoS targets are being met with >25% margin */
2374                 if (nr_shortages) {
2375                         /*
2376                          * We're throttling while the device has spare
2377                          * capacity.  If vrate was being slowed down, stop.
2378                          */
2379                         ioc->busy_level = min(ioc->busy_level, 0);
2380
2381                         /*
2382                          * If there are IOs spanning multiple periods, wait
2383                          * them out before pushing the device harder.
2384                          */
2385                         if (!nr_lagging)
2386                                 ioc->busy_level--;
2387                 } else {
2388                         /*
2389                          * Nobody is being throttled and the users aren't
2390                          * issuing enough IOs to saturate the device.  We
2391                          * simply don't know how close the device is to
2392                          * saturation.  Coast.
2393                          */
2394                         ioc->busy_level = 0;
2395                 }
2396         } else {
2397                 /* inside the hysterisis margin, we're good */
2398                 ioc->busy_level = 0;
2399         }
2400
2401         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2402
2403         ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2404                               prev_busy_level, missed_ppm);
2405
2406         ioc_refresh_params(ioc, false);
2407
2408         ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2409
2410         /*
2411          * This period is done.  Move onto the next one.  If nothing's
2412          * going on with the device, stop the timer.
2413          */
2414         atomic64_inc(&ioc->cur_period);
2415
2416         if (ioc->running != IOC_STOP) {
2417                 if (!list_empty(&ioc->active_iocgs)) {
2418                         ioc_start_period(ioc, &now);
2419                 } else {
2420                         ioc->busy_level = 0;
2421                         ioc->vtime_err = 0;
2422                         ioc->running = IOC_IDLE;
2423                 }
2424
2425                 ioc_refresh_vrate(ioc, &now);
2426         }
2427
2428         spin_unlock_irq(&ioc->lock);
2429 }
2430
2431 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2432                                       u64 abs_cost, struct ioc_now *now)
2433 {
2434         struct ioc *ioc = iocg->ioc;
2435         struct ioc_margins *margins = &ioc->margins;
2436         u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2437         u32 hwi, adj_step;
2438         s64 margin;
2439         u64 cost, new_inuse;
2440         unsigned long flags;
2441
2442         current_hweight(iocg, NULL, &hwi);
2443         old_hwi = hwi;
2444         cost = abs_cost_to_cost(abs_cost, hwi);
2445         margin = now->vnow - vtime - cost;
2446
2447         /* debt handling owns inuse for debtors */
2448         if (iocg->abs_vdebt)
2449                 return cost;
2450
2451         /*
2452          * We only increase inuse during period and do so if the margin has
2453          * deteriorated since the previous adjustment.
2454          */
2455         if (margin >= iocg->saved_margin || margin >= margins->low ||
2456             iocg->inuse == iocg->active)
2457                 return cost;
2458
2459         spin_lock_irqsave(&ioc->lock, flags);
2460
2461         /* we own inuse only when @iocg is in the normal active state */
2462         if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2463                 spin_unlock_irqrestore(&ioc->lock, flags);
2464                 return cost;
2465         }
2466
2467         /*
2468          * Bump up inuse till @abs_cost fits in the existing budget.
2469          * adj_step must be determined after acquiring ioc->lock - we might
2470          * have raced and lost to another thread for activation and could
2471          * be reading 0 iocg->active before ioc->lock which will lead to
2472          * infinite loop.
2473          */
2474         new_inuse = iocg->inuse;
2475         adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2476         do {
2477                 new_inuse = new_inuse + adj_step;
2478                 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2479                 current_hweight(iocg, NULL, &hwi);
2480                 cost = abs_cost_to_cost(abs_cost, hwi);
2481         } while (time_after64(vtime + cost, now->vnow) &&
2482                  iocg->inuse != iocg->active);
2483
2484         spin_unlock_irqrestore(&ioc->lock, flags);
2485
2486         TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2487                         old_inuse, iocg->inuse, old_hwi, hwi);
2488
2489         return cost;
2490 }
2491
2492 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2493                                     bool is_merge, u64 *costp)
2494 {
2495         struct ioc *ioc = iocg->ioc;
2496         u64 coef_seqio, coef_randio, coef_page;
2497         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2498         u64 seek_pages = 0;
2499         u64 cost = 0;
2500
2501         switch (bio_op(bio)) {
2502         case REQ_OP_READ:
2503                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
2504                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
2505                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
2506                 break;
2507         case REQ_OP_WRITE:
2508                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
2509                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
2510                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
2511                 break;
2512         default:
2513                 goto out;
2514         }
2515
2516         if (iocg->cursor) {
2517                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2518                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2519         }
2520
2521         if (!is_merge) {
2522                 if (seek_pages > LCOEF_RANDIO_PAGES) {
2523                         cost += coef_randio;
2524                 } else {
2525                         cost += coef_seqio;
2526                 }
2527         }
2528         cost += pages * coef_page;
2529 out:
2530         *costp = cost;
2531 }
2532
2533 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2534 {
2535         u64 cost;
2536
2537         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2538         return cost;
2539 }
2540
2541 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2542                                          u64 *costp)
2543 {
2544         unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2545
2546         switch (req_op(rq)) {
2547         case REQ_OP_READ:
2548                 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2549                 break;
2550         case REQ_OP_WRITE:
2551                 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2552                 break;
2553         default:
2554                 *costp = 0;
2555         }
2556 }
2557
2558 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2559 {
2560         u64 cost;
2561
2562         calc_size_vtime_cost_builtin(rq, ioc, &cost);
2563         return cost;
2564 }
2565
2566 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2567 {
2568         struct blkcg_gq *blkg = bio->bi_blkg;
2569         struct ioc *ioc = rqos_to_ioc(rqos);
2570         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2571         struct ioc_now now;
2572         struct iocg_wait wait;
2573         u64 abs_cost, cost, vtime;
2574         bool use_debt, ioc_locked;
2575         unsigned long flags;
2576
2577         /* bypass IOs if disabled, still initializing, or for root cgroup */
2578         if (!ioc->enabled || !iocg || !iocg->level)
2579                 return;
2580
2581         /* calculate the absolute vtime cost */
2582         abs_cost = calc_vtime_cost(bio, iocg, false);
2583         if (!abs_cost)
2584                 return;
2585
2586         if (!iocg_activate(iocg, &now))
2587                 return;
2588
2589         iocg->cursor = bio_end_sector(bio);
2590         vtime = atomic64_read(&iocg->vtime);
2591         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2592
2593         /*
2594          * If no one's waiting and within budget, issue right away.  The
2595          * tests are racy but the races aren't systemic - we only miss once
2596          * in a while which is fine.
2597          */
2598         if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2599             time_before_eq64(vtime + cost, now.vnow)) {
2600                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2601                 return;
2602         }
2603
2604         /*
2605          * We're over budget. This can be handled in two ways. IOs which may
2606          * cause priority inversions are punted to @ioc->aux_iocg and charged as
2607          * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2608          * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2609          * whether debt handling is needed and acquire locks accordingly.
2610          */
2611         use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2612         ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2613 retry_lock:
2614         iocg_lock(iocg, ioc_locked, &flags);
2615
2616         /*
2617          * @iocg must stay activated for debt and waitq handling. Deactivation
2618          * is synchronized against both ioc->lock and waitq.lock and we won't
2619          * get deactivated as long as we're waiting or has debt, so we're good
2620          * if we're activated here. In the unlikely cases that we aren't, just
2621          * issue the IO.
2622          */
2623         if (unlikely(list_empty(&iocg->active_list))) {
2624                 iocg_unlock(iocg, ioc_locked, &flags);
2625                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2626                 return;
2627         }
2628
2629         /*
2630          * We're over budget. If @bio has to be issued regardless, remember
2631          * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2632          * off the debt before waking more IOs.
2633          *
2634          * This way, the debt is continuously paid off each period with the
2635          * actual budget available to the cgroup. If we just wound vtime, we
2636          * would incorrectly use the current hw_inuse for the entire amount
2637          * which, for example, can lead to the cgroup staying blocked for a
2638          * long time even with substantially raised hw_inuse.
2639          *
2640          * An iocg with vdebt should stay online so that the timer can keep
2641          * deducting its vdebt and [de]activate use_delay mechanism
2642          * accordingly. We don't want to race against the timer trying to
2643          * clear them and leave @iocg inactive w/ dangling use_delay heavily
2644          * penalizing the cgroup and its descendants.
2645          */
2646         if (use_debt) {
2647                 iocg_incur_debt(iocg, abs_cost, &now);
2648                 if (iocg_kick_delay(iocg, &now))
2649                         blkcg_schedule_throttle(rqos->q->disk,
2650                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2651                 iocg_unlock(iocg, ioc_locked, &flags);
2652                 return;
2653         }
2654
2655         /* guarantee that iocgs w/ waiters have maximum inuse */
2656         if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2657                 if (!ioc_locked) {
2658                         iocg_unlock(iocg, false, &flags);
2659                         ioc_locked = true;
2660                         goto retry_lock;
2661                 }
2662                 propagate_weights(iocg, iocg->active, iocg->active, true,
2663                                   &now);
2664         }
2665
2666         /*
2667          * Append self to the waitq and schedule the wakeup timer if we're
2668          * the first waiter.  The timer duration is calculated based on the
2669          * current vrate.  vtime and hweight changes can make it too short
2670          * or too long.  Each wait entry records the absolute cost it's
2671          * waiting for to allow re-evaluation using a custom wait entry.
2672          *
2673          * If too short, the timer simply reschedules itself.  If too long,
2674          * the period timer will notice and trigger wakeups.
2675          *
2676          * All waiters are on iocg->waitq and the wait states are
2677          * synchronized using waitq.lock.
2678          */
2679         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2680         wait.wait.private = current;
2681         wait.bio = bio;
2682         wait.abs_cost = abs_cost;
2683         wait.committed = false; /* will be set true by waker */
2684
2685         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2686         iocg_kick_waitq(iocg, ioc_locked, &now);
2687
2688         iocg_unlock(iocg, ioc_locked, &flags);
2689
2690         while (true) {
2691                 set_current_state(TASK_UNINTERRUPTIBLE);
2692                 if (wait.committed)
2693                         break;
2694                 io_schedule();
2695         }
2696
2697         /* waker already committed us, proceed */
2698         finish_wait(&iocg->waitq, &wait.wait);
2699 }
2700
2701 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2702                            struct bio *bio)
2703 {
2704         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2705         struct ioc *ioc = rqos_to_ioc(rqos);
2706         sector_t bio_end = bio_end_sector(bio);
2707         struct ioc_now now;
2708         u64 vtime, abs_cost, cost;
2709         unsigned long flags;
2710
2711         /* bypass if disabled, still initializing, or for root cgroup */
2712         if (!ioc->enabled || !iocg || !iocg->level)
2713                 return;
2714
2715         abs_cost = calc_vtime_cost(bio, iocg, true);
2716         if (!abs_cost)
2717                 return;
2718
2719         ioc_now(ioc, &now);
2720
2721         vtime = atomic64_read(&iocg->vtime);
2722         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2723
2724         /* update cursor if backmerging into the request at the cursor */
2725         if (blk_rq_pos(rq) < bio_end &&
2726             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2727                 iocg->cursor = bio_end;
2728
2729         /*
2730          * Charge if there's enough vtime budget and the existing request has
2731          * cost assigned.
2732          */
2733         if (rq->bio && rq->bio->bi_iocost_cost &&
2734             time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2735                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2736                 return;
2737         }
2738
2739         /*
2740          * Otherwise, account it as debt if @iocg is online, which it should
2741          * be for the vast majority of cases. See debt handling in
2742          * ioc_rqos_throttle() for details.
2743          */
2744         spin_lock_irqsave(&ioc->lock, flags);
2745         spin_lock(&iocg->waitq.lock);
2746
2747         if (likely(!list_empty(&iocg->active_list))) {
2748                 iocg_incur_debt(iocg, abs_cost, &now);
2749                 if (iocg_kick_delay(iocg, &now))
2750                         blkcg_schedule_throttle(rqos->q->disk,
2751                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2752         } else {
2753                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2754         }
2755
2756         spin_unlock(&iocg->waitq.lock);
2757         spin_unlock_irqrestore(&ioc->lock, flags);
2758 }
2759
2760 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2761 {
2762         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2763
2764         if (iocg && bio->bi_iocost_cost)
2765                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2766 }
2767
2768 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2769 {
2770         struct ioc *ioc = rqos_to_ioc(rqos);
2771         struct ioc_pcpu_stat *ccs;
2772         u64 on_q_ns, rq_wait_ns, size_nsec;
2773         int pidx, rw;
2774
2775         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2776                 return;
2777
2778         switch (req_op(rq)) {
2779         case REQ_OP_READ:
2780                 pidx = QOS_RLAT;
2781                 rw = READ;
2782                 break;
2783         case REQ_OP_WRITE:
2784                 pidx = QOS_WLAT;
2785                 rw = WRITE;
2786                 break;
2787         default:
2788                 return;
2789         }
2790
2791         on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2792         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2793         size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2794
2795         ccs = get_cpu_ptr(ioc->pcpu_stat);
2796
2797         if (on_q_ns <= size_nsec ||
2798             on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2799                 local_inc(&ccs->missed[rw].nr_met);
2800         else
2801                 local_inc(&ccs->missed[rw].nr_missed);
2802
2803         local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2804
2805         put_cpu_ptr(ccs);
2806 }
2807
2808 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2809 {
2810         struct ioc *ioc = rqos_to_ioc(rqos);
2811
2812         spin_lock_irq(&ioc->lock);
2813         ioc_refresh_params(ioc, false);
2814         spin_unlock_irq(&ioc->lock);
2815 }
2816
2817 static void ioc_rqos_exit(struct rq_qos *rqos)
2818 {
2819         struct ioc *ioc = rqos_to_ioc(rqos);
2820
2821         blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2822
2823         spin_lock_irq(&ioc->lock);
2824         ioc->running = IOC_STOP;
2825         spin_unlock_irq(&ioc->lock);
2826
2827         del_timer_sync(&ioc->timer);
2828         free_percpu(ioc->pcpu_stat);
2829         kfree(ioc);
2830 }
2831
2832 static struct rq_qos_ops ioc_rqos_ops = {
2833         .throttle = ioc_rqos_throttle,
2834         .merge = ioc_rqos_merge,
2835         .done_bio = ioc_rqos_done_bio,
2836         .done = ioc_rqos_done,
2837         .queue_depth_changed = ioc_rqos_queue_depth_changed,
2838         .exit = ioc_rqos_exit,
2839 };
2840
2841 static int blk_iocost_init(struct gendisk *disk)
2842 {
2843         struct request_queue *q = disk->queue;
2844         struct ioc *ioc;
2845         struct rq_qos *rqos;
2846         int i, cpu, ret;
2847
2848         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2849         if (!ioc)
2850                 return -ENOMEM;
2851
2852         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2853         if (!ioc->pcpu_stat) {
2854                 kfree(ioc);
2855                 return -ENOMEM;
2856         }
2857
2858         for_each_possible_cpu(cpu) {
2859                 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2860
2861                 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2862                         local_set(&ccs->missed[i].nr_met, 0);
2863                         local_set(&ccs->missed[i].nr_missed, 0);
2864                 }
2865                 local64_set(&ccs->rq_wait_ns, 0);
2866         }
2867
2868         rqos = &ioc->rqos;
2869         rqos->id = RQ_QOS_COST;
2870         rqos->ops = &ioc_rqos_ops;
2871         rqos->q = q;
2872
2873         spin_lock_init(&ioc->lock);
2874         timer_setup(&ioc->timer, ioc_timer_fn, 0);
2875         INIT_LIST_HEAD(&ioc->active_iocgs);
2876
2877         ioc->running = IOC_IDLE;
2878         ioc->vtime_base_rate = VTIME_PER_USEC;
2879         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2880         seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2881         ioc->period_at = ktime_to_us(ktime_get());
2882         atomic64_set(&ioc->cur_period, 0);
2883         atomic_set(&ioc->hweight_gen, 0);
2884
2885         spin_lock_irq(&ioc->lock);
2886         ioc->autop_idx = AUTOP_INVALID;
2887         ioc_refresh_params(ioc, true);
2888         spin_unlock_irq(&ioc->lock);
2889
2890         /*
2891          * rqos must be added before activation to allow iocg_pd_init() to
2892          * lookup the ioc from q. This means that the rqos methods may get
2893          * called before policy activation completion, can't assume that the
2894          * target bio has an iocg associated and need to test for NULL iocg.
2895          */
2896         ret = rq_qos_add(q, rqos);
2897         if (ret)
2898                 goto err_free_ioc;
2899
2900         ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2901         if (ret)
2902                 goto err_del_qos;
2903         return 0;
2904
2905 err_del_qos:
2906         rq_qos_del(q, rqos);
2907 err_free_ioc:
2908         free_percpu(ioc->pcpu_stat);
2909         kfree(ioc);
2910         return ret;
2911 }
2912
2913 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2914 {
2915         struct ioc_cgrp *iocc;
2916
2917         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2918         if (!iocc)
2919                 return NULL;
2920
2921         iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2922         return &iocc->cpd;
2923 }
2924
2925 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2926 {
2927         kfree(container_of(cpd, struct ioc_cgrp, cpd));
2928 }
2929
2930 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2931                                              struct blkcg *blkcg)
2932 {
2933         int levels = blkcg->css.cgroup->level + 1;
2934         struct ioc_gq *iocg;
2935
2936         iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2937         if (!iocg)
2938                 return NULL;
2939
2940         iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2941         if (!iocg->pcpu_stat) {
2942                 kfree(iocg);
2943                 return NULL;
2944         }
2945
2946         return &iocg->pd;
2947 }
2948
2949 static void ioc_pd_init(struct blkg_policy_data *pd)
2950 {
2951         struct ioc_gq *iocg = pd_to_iocg(pd);
2952         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2953         struct ioc *ioc = q_to_ioc(blkg->q);
2954         struct ioc_now now;
2955         struct blkcg_gq *tblkg;
2956         unsigned long flags;
2957
2958         ioc_now(ioc, &now);
2959
2960         iocg->ioc = ioc;
2961         atomic64_set(&iocg->vtime, now.vnow);
2962         atomic64_set(&iocg->done_vtime, now.vnow);
2963         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2964         INIT_LIST_HEAD(&iocg->active_list);
2965         INIT_LIST_HEAD(&iocg->walk_list);
2966         INIT_LIST_HEAD(&iocg->surplus_list);
2967         iocg->hweight_active = WEIGHT_ONE;
2968         iocg->hweight_inuse = WEIGHT_ONE;
2969
2970         init_waitqueue_head(&iocg->waitq);
2971         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2972         iocg->waitq_timer.function = iocg_waitq_timer_fn;
2973
2974         iocg->level = blkg->blkcg->css.cgroup->level;
2975
2976         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2977                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2978                 iocg->ancestors[tiocg->level] = tiocg;
2979         }
2980
2981         spin_lock_irqsave(&ioc->lock, flags);
2982         weight_updated(iocg, &now);
2983         spin_unlock_irqrestore(&ioc->lock, flags);
2984 }
2985
2986 static void ioc_pd_free(struct blkg_policy_data *pd)
2987 {
2988         struct ioc_gq *iocg = pd_to_iocg(pd);
2989         struct ioc *ioc = iocg->ioc;
2990         unsigned long flags;
2991
2992         if (ioc) {
2993                 spin_lock_irqsave(&ioc->lock, flags);
2994
2995                 if (!list_empty(&iocg->active_list)) {
2996                         struct ioc_now now;
2997
2998                         ioc_now(ioc, &now);
2999                         propagate_weights(iocg, 0, 0, false, &now);
3000                         list_del_init(&iocg->active_list);
3001                 }
3002
3003                 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
3004                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
3005
3006                 spin_unlock_irqrestore(&ioc->lock, flags);
3007
3008                 hrtimer_cancel(&iocg->waitq_timer);
3009         }
3010         free_percpu(iocg->pcpu_stat);
3011         kfree(iocg);
3012 }
3013
3014 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3015 {
3016         struct ioc_gq *iocg = pd_to_iocg(pd);
3017         struct ioc *ioc = iocg->ioc;
3018
3019         if (!ioc->enabled)
3020                 return;
3021
3022         if (iocg->level == 0) {
3023                 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3024                         ioc->vtime_base_rate * 10000,
3025                         VTIME_PER_USEC);
3026                 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3027         }
3028
3029         seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3030
3031         if (blkcg_debug_stats)
3032                 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3033                         iocg->last_stat.wait_us,
3034                         iocg->last_stat.indebt_us,
3035                         iocg->last_stat.indelay_us);
3036 }
3037
3038 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3039                              int off)
3040 {
3041         const char *dname = blkg_dev_name(pd->blkg);
3042         struct ioc_gq *iocg = pd_to_iocg(pd);
3043
3044         if (dname && iocg->cfg_weight)
3045                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3046         return 0;
3047 }
3048
3049
3050 static int ioc_weight_show(struct seq_file *sf, void *v)
3051 {
3052         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3053         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3054
3055         seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3056         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3057                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3058         return 0;
3059 }
3060
3061 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3062                                 size_t nbytes, loff_t off)
3063 {
3064         struct blkcg *blkcg = css_to_blkcg(of_css(of));
3065         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3066         struct blkg_conf_ctx ctx;
3067         struct ioc_now now;
3068         struct ioc_gq *iocg;
3069         u32 v;
3070         int ret;
3071
3072         if (!strchr(buf, ':')) {
3073                 struct blkcg_gq *blkg;
3074
3075                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3076                         return -EINVAL;
3077
3078                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3079                         return -EINVAL;
3080
3081                 spin_lock_irq(&blkcg->lock);
3082                 iocc->dfl_weight = v * WEIGHT_ONE;
3083                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3084                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
3085
3086                         if (iocg) {
3087                                 spin_lock(&iocg->ioc->lock);
3088                                 ioc_now(iocg->ioc, &now);
3089                                 weight_updated(iocg, &now);
3090                                 spin_unlock(&iocg->ioc->lock);
3091                         }
3092                 }
3093                 spin_unlock_irq(&blkcg->lock);
3094
3095                 return nbytes;
3096         }
3097
3098         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3099         if (ret)
3100                 return ret;
3101
3102         iocg = blkg_to_iocg(ctx.blkg);
3103
3104         if (!strncmp(ctx.body, "default", 7)) {
3105                 v = 0;
3106         } else {
3107                 if (!sscanf(ctx.body, "%u", &v))
3108                         goto einval;
3109                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3110                         goto einval;
3111         }
3112
3113         spin_lock(&iocg->ioc->lock);
3114         iocg->cfg_weight = v * WEIGHT_ONE;
3115         ioc_now(iocg->ioc, &now);
3116         weight_updated(iocg, &now);
3117         spin_unlock(&iocg->ioc->lock);
3118
3119         blkg_conf_finish(&ctx);
3120         return nbytes;
3121
3122 einval:
3123         blkg_conf_finish(&ctx);
3124         return -EINVAL;
3125 }
3126
3127 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3128                           int off)
3129 {
3130         const char *dname = blkg_dev_name(pd->blkg);
3131         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3132
3133         if (!dname)
3134                 return 0;
3135
3136         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3137                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3138                    ioc->params.qos[QOS_RPPM] / 10000,
3139                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
3140                    ioc->params.qos[QOS_RLAT],
3141                    ioc->params.qos[QOS_WPPM] / 10000,
3142                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
3143                    ioc->params.qos[QOS_WLAT],
3144                    ioc->params.qos[QOS_MIN] / 10000,
3145                    ioc->params.qos[QOS_MIN] % 10000 / 100,
3146                    ioc->params.qos[QOS_MAX] / 10000,
3147                    ioc->params.qos[QOS_MAX] % 10000 / 100);
3148         return 0;
3149 }
3150
3151 static int ioc_qos_show(struct seq_file *sf, void *v)
3152 {
3153         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3154
3155         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3156                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3157         return 0;
3158 }
3159
3160 static const match_table_t qos_ctrl_tokens = {
3161         { QOS_ENABLE,           "enable=%u"     },
3162         { QOS_CTRL,             "ctrl=%s"       },
3163         { NR_QOS_CTRL_PARAMS,   NULL            },
3164 };
3165
3166 static const match_table_t qos_tokens = {
3167         { QOS_RPPM,             "rpct=%s"       },
3168         { QOS_RLAT,             "rlat=%u"       },
3169         { QOS_WPPM,             "wpct=%s"       },
3170         { QOS_WLAT,             "wlat=%u"       },
3171         { QOS_MIN,              "min=%s"        },
3172         { QOS_MAX,              "max=%s"        },
3173         { NR_QOS_PARAMS,        NULL            },
3174 };
3175
3176 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3177                              size_t nbytes, loff_t off)
3178 {
3179         struct block_device *bdev;
3180         struct gendisk *disk;
3181         struct ioc *ioc;
3182         u32 qos[NR_QOS_PARAMS];
3183         bool enable, user;
3184         char *p;
3185         int ret;
3186
3187         bdev = blkcg_conf_open_bdev(&input);
3188         if (IS_ERR(bdev))
3189                 return PTR_ERR(bdev);
3190
3191         disk = bdev->bd_disk;
3192         ioc = q_to_ioc(disk->queue);
3193         if (!ioc) {
3194                 ret = blk_iocost_init(disk);
3195                 if (ret)
3196                         goto err;
3197                 ioc = q_to_ioc(disk->queue);
3198         }
3199
3200         spin_lock_irq(&ioc->lock);
3201         memcpy(qos, ioc->params.qos, sizeof(qos));
3202         enable = ioc->enabled;
3203         user = ioc->user_qos_params;
3204         spin_unlock_irq(&ioc->lock);
3205
3206         while ((p = strsep(&input, " \t\n"))) {
3207                 substring_t args[MAX_OPT_ARGS];
3208                 char buf[32];
3209                 int tok;
3210                 s64 v;
3211
3212                 if (!*p)
3213                         continue;
3214
3215                 switch (match_token(p, qos_ctrl_tokens, args)) {
3216                 case QOS_ENABLE:
3217                         match_u64(&args[0], &v);
3218                         enable = v;
3219                         continue;
3220                 case QOS_CTRL:
3221                         match_strlcpy(buf, &args[0], sizeof(buf));
3222                         if (!strcmp(buf, "auto"))
3223                                 user = false;
3224                         else if (!strcmp(buf, "user"))
3225                                 user = true;
3226                         else
3227                                 goto einval;
3228                         continue;
3229                 }
3230
3231                 tok = match_token(p, qos_tokens, args);
3232                 switch (tok) {
3233                 case QOS_RPPM:
3234                 case QOS_WPPM:
3235                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3236                             sizeof(buf))
3237                                 goto einval;
3238                         if (cgroup_parse_float(buf, 2, &v))
3239                                 goto einval;
3240                         if (v < 0 || v > 10000)
3241                                 goto einval;
3242                         qos[tok] = v * 100;
3243                         break;
3244                 case QOS_RLAT:
3245                 case QOS_WLAT:
3246                         if (match_u64(&args[0], &v))
3247                                 goto einval;
3248                         qos[tok] = v;
3249                         break;
3250                 case QOS_MIN:
3251                 case QOS_MAX:
3252                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3253                             sizeof(buf))
3254                                 goto einval;
3255                         if (cgroup_parse_float(buf, 2, &v))
3256                                 goto einval;
3257                         if (v < 0)
3258                                 goto einval;
3259                         qos[tok] = clamp_t(s64, v * 100,
3260                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
3261                         break;
3262                 default:
3263                         goto einval;
3264                 }
3265                 user = true;
3266         }
3267
3268         if (qos[QOS_MIN] > qos[QOS_MAX])
3269                 goto einval;
3270
3271         spin_lock_irq(&ioc->lock);
3272
3273         if (enable) {
3274                 blk_stat_enable_accounting(disk->queue);
3275                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3276                 ioc->enabled = true;
3277         } else {
3278                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3279                 ioc->enabled = false;
3280         }
3281
3282         if (user) {
3283                 memcpy(ioc->params.qos, qos, sizeof(qos));
3284                 ioc->user_qos_params = true;
3285         } else {
3286                 ioc->user_qos_params = false;
3287         }
3288
3289         ioc_refresh_params(ioc, true);
3290         spin_unlock_irq(&ioc->lock);
3291
3292         blkdev_put_no_open(bdev);
3293         return nbytes;
3294 einval:
3295         ret = -EINVAL;
3296 err:
3297         blkdev_put_no_open(bdev);
3298         return ret;
3299 }
3300
3301 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3302                                  struct blkg_policy_data *pd, int off)
3303 {
3304         const char *dname = blkg_dev_name(pd->blkg);
3305         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3306         u64 *u = ioc->params.i_lcoefs;
3307
3308         if (!dname)
3309                 return 0;
3310
3311         seq_printf(sf, "%s ctrl=%s model=linear "
3312                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
3313                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3314                    dname, ioc->user_cost_model ? "user" : "auto",
3315                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3316                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3317         return 0;
3318 }
3319
3320 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3321 {
3322         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3323
3324         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3325                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3326         return 0;
3327 }
3328
3329 static const match_table_t cost_ctrl_tokens = {
3330         { COST_CTRL,            "ctrl=%s"       },
3331         { COST_MODEL,           "model=%s"      },
3332         { NR_COST_CTRL_PARAMS,  NULL            },
3333 };
3334
3335 static const match_table_t i_lcoef_tokens = {
3336         { I_LCOEF_RBPS,         "rbps=%u"       },
3337         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
3338         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
3339         { I_LCOEF_WBPS,         "wbps=%u"       },
3340         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
3341         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
3342         { NR_I_LCOEFS,          NULL            },
3343 };
3344
3345 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3346                                     size_t nbytes, loff_t off)
3347 {
3348         struct block_device *bdev;
3349         struct ioc *ioc;
3350         u64 u[NR_I_LCOEFS];
3351         bool user;
3352         char *p;
3353         int ret;
3354
3355         bdev = blkcg_conf_open_bdev(&input);
3356         if (IS_ERR(bdev))
3357                 return PTR_ERR(bdev);
3358
3359         ioc = q_to_ioc(bdev_get_queue(bdev));
3360         if (!ioc) {
3361                 ret = blk_iocost_init(bdev->bd_disk);
3362                 if (ret)
3363                         goto err;
3364                 ioc = q_to_ioc(bdev_get_queue(bdev));
3365         }
3366
3367         spin_lock_irq(&ioc->lock);
3368         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3369         user = ioc->user_cost_model;
3370         spin_unlock_irq(&ioc->lock);
3371
3372         while ((p = strsep(&input, " \t\n"))) {
3373                 substring_t args[MAX_OPT_ARGS];
3374                 char buf[32];
3375                 int tok;
3376                 u64 v;
3377
3378                 if (!*p)
3379                         continue;
3380
3381                 switch (match_token(p, cost_ctrl_tokens, args)) {
3382                 case COST_CTRL:
3383                         match_strlcpy(buf, &args[0], sizeof(buf));
3384                         if (!strcmp(buf, "auto"))
3385                                 user = false;
3386                         else if (!strcmp(buf, "user"))
3387                                 user = true;
3388                         else
3389                                 goto einval;
3390                         continue;
3391                 case COST_MODEL:
3392                         match_strlcpy(buf, &args[0], sizeof(buf));
3393                         if (strcmp(buf, "linear"))
3394                                 goto einval;
3395                         continue;
3396                 }
3397
3398                 tok = match_token(p, i_lcoef_tokens, args);
3399                 if (tok == NR_I_LCOEFS)
3400                         goto einval;
3401                 if (match_u64(&args[0], &v))
3402                         goto einval;
3403                 u[tok] = v;
3404                 user = true;
3405         }
3406
3407         spin_lock_irq(&ioc->lock);
3408         if (user) {
3409                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3410                 ioc->user_cost_model = true;
3411         } else {
3412                 ioc->user_cost_model = false;
3413         }
3414         ioc_refresh_params(ioc, true);
3415         spin_unlock_irq(&ioc->lock);
3416
3417         blkdev_put_no_open(bdev);
3418         return nbytes;
3419
3420 einval:
3421         ret = -EINVAL;
3422 err:
3423         blkdev_put_no_open(bdev);
3424         return ret;
3425 }
3426
3427 static struct cftype ioc_files[] = {
3428         {
3429                 .name = "weight",
3430                 .flags = CFTYPE_NOT_ON_ROOT,
3431                 .seq_show = ioc_weight_show,
3432                 .write = ioc_weight_write,
3433         },
3434         {
3435                 .name = "cost.qos",
3436                 .flags = CFTYPE_ONLY_ON_ROOT,
3437                 .seq_show = ioc_qos_show,
3438                 .write = ioc_qos_write,
3439         },
3440         {
3441                 .name = "cost.model",
3442                 .flags = CFTYPE_ONLY_ON_ROOT,
3443                 .seq_show = ioc_cost_model_show,
3444                 .write = ioc_cost_model_write,
3445         },
3446         {}
3447 };
3448
3449 static struct blkcg_policy blkcg_policy_iocost = {
3450         .dfl_cftypes    = ioc_files,
3451         .cpd_alloc_fn   = ioc_cpd_alloc,
3452         .cpd_free_fn    = ioc_cpd_free,
3453         .pd_alloc_fn    = ioc_pd_alloc,
3454         .pd_init_fn     = ioc_pd_init,
3455         .pd_free_fn     = ioc_pd_free,
3456         .pd_stat_fn     = ioc_pd_stat,
3457 };
3458
3459 static int __init ioc_init(void)
3460 {
3461         return blkcg_policy_register(&blkcg_policy_iocost);
3462 }
3463
3464 static void __exit ioc_exit(void)
3465 {
3466         blkcg_policy_unregister(&blkcg_policy_iocost);
3467 }
3468
3469 module_init(ioc_init);
3470 module_exit(ioc_exit);