blk-iocost: fix divide-by-zero in transfer_surpluses()
[platform/kernel/linux-starfive.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * paramters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO iff doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, soley depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The ouput looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per        : Timer period
166  * - cur_per    : Internal wall and device vtime clock
167  * - vrate      : Device virtual time rate against wall clock
168  * - weight     : Surplus-adjusted and configured weights
169  * - hweight    : Surplus-adjusted and configured hierarchical weights
170  * - inflt      : The percentage of in-flight IO cost at the end of last period
171  * - del_ms     : Deferred issuer delay induction level and duration
172  * - usages     : Usage history
173  */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include <asm/local.h>
183 #include <asm/local64.h>
184 #include "blk-rq-qos.h"
185 #include "blk-stat.h"
186 #include "blk-wbt.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
196         do {                                                                    \
197                 unsigned long flags;                                            \
198                 if (trace_iocost_##type##_enabled()) {                          \
199                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
200                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
201                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
202                         trace_iocost_##type(iocg, trace_iocg_path,              \
203                                               ##__VA_ARGS__);                   \
204                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
205                 }                                                               \
206         } while (0)
207
208 #else   /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
210 #endif  /* CONFIG_TRACE_POINTS */
211
212 enum {
213         MILLION                 = 1000000,
214
215         /* timer period is calculated from latency requirements, bound it */
216         MIN_PERIOD              = USEC_PER_MSEC,
217         MAX_PERIOD              = USEC_PER_SEC,
218
219         /*
220          * iocg->vtime is targeted at 50% behind the device vtime, which
221          * serves as its IO credit buffer.  Surplus weight adjustment is
222          * immediately canceled if the vtime margin runs below 10%.
223          */
224         MARGIN_MIN_PCT          = 10,
225         MARGIN_LOW_PCT          = 20,
226         MARGIN_TARGET_PCT       = 50,
227
228         INUSE_ADJ_STEP_PCT      = 25,
229
230         /* Have some play in timer operations */
231         TIMER_SLACK_PCT         = 1,
232
233         /* 1/64k is granular enough and can easily be handled w/ u32 */
234         WEIGHT_ONE              = 1 << 16,
235
236         /*
237          * As vtime is used to calculate the cost of each IO, it needs to
238          * be fairly high precision.  For example, it should be able to
239          * represent the cost of a single page worth of discard with
240          * suffificient accuracy.  At the same time, it should be able to
241          * represent reasonably long enough durations to be useful and
242          * convenient during operation.
243          *
244          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
245          * granularity and days of wrap-around time even at extreme vrates.
246          */
247         VTIME_PER_SEC_SHIFT     = 37,
248         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
249         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
250         VTIME_PER_NSEC          = VTIME_PER_SEC / NSEC_PER_SEC,
251
252         /* bound vrate adjustments within two orders of magnitude */
253         VRATE_MIN_PPM           = 10000,        /* 1% */
254         VRATE_MAX_PPM           = 100000000,    /* 10000% */
255
256         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
257         VRATE_CLAMP_ADJ_PCT     = 4,
258
259         /* if IOs end up waiting for requests, issue less */
260         RQ_WAIT_BUSY_PCT        = 5,
261
262         /* unbusy hysterisis */
263         UNBUSY_THR_PCT          = 75,
264
265         /*
266          * The effect of delay is indirect and non-linear and a huge amount of
267          * future debt can accumulate abruptly while unthrottled. Linearly scale
268          * up delay as debt is going up and then let it decay exponentially.
269          * This gives us quick ramp ups while delay is accumulating and long
270          * tails which can help reducing the frequency of debt explosions on
271          * unthrottle. The parameters are experimentally determined.
272          *
273          * The delay mechanism provides adequate protection and behavior in many
274          * cases. However, this is far from ideal and falls shorts on both
275          * fronts. The debtors are often throttled too harshly costing a
276          * significant level of fairness and possibly total work while the
277          * protection against their impacts on the system can be choppy and
278          * unreliable.
279          *
280          * The shortcoming primarily stems from the fact that, unlike for page
281          * cache, the kernel doesn't have well-defined back-pressure propagation
282          * mechanism and policies for anonymous memory. Fully addressing this
283          * issue will likely require substantial improvements in the area.
284          */
285         MIN_DELAY_THR_PCT       = 500,
286         MAX_DELAY_THR_PCT       = 25000,
287         MIN_DELAY               = 250,
288         MAX_DELAY               = 250 * USEC_PER_MSEC,
289
290         /*
291          * Halve debts if total usage keeps staying under 25% w/o any shortages
292          * for over 100ms.
293          */
294         DEBT_BUSY_USAGE_PCT     = 25,
295         DEBT_REDUCTION_IDLE_DUR = 100 * USEC_PER_MSEC,
296
297         /* don't let cmds which take a very long time pin lagging for too long */
298         MAX_LAGGING_PERIODS     = 10,
299
300         /* switch iff the conditions are met for longer than this */
301         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
302
303         /*
304          * Count IO size in 4k pages.  The 12bit shift helps keeping
305          * size-proportional components of cost calculation in closer
306          * numbers of digits to per-IO cost components.
307          */
308         IOC_PAGE_SHIFT          = 12,
309         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
310         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
311
312         /* if apart further than 16M, consider randio for linear model */
313         LCOEF_RANDIO_PAGES      = 4096,
314 };
315
316 enum ioc_running {
317         IOC_IDLE,
318         IOC_RUNNING,
319         IOC_STOP,
320 };
321
322 /* io.cost.qos controls including per-dev enable of the whole controller */
323 enum {
324         QOS_ENABLE,
325         QOS_CTRL,
326         NR_QOS_CTRL_PARAMS,
327 };
328
329 /* io.cost.qos params */
330 enum {
331         QOS_RPPM,
332         QOS_RLAT,
333         QOS_WPPM,
334         QOS_WLAT,
335         QOS_MIN,
336         QOS_MAX,
337         NR_QOS_PARAMS,
338 };
339
340 /* io.cost.model controls */
341 enum {
342         COST_CTRL,
343         COST_MODEL,
344         NR_COST_CTRL_PARAMS,
345 };
346
347 /* builtin linear cost model coefficients */
348 enum {
349         I_LCOEF_RBPS,
350         I_LCOEF_RSEQIOPS,
351         I_LCOEF_RRANDIOPS,
352         I_LCOEF_WBPS,
353         I_LCOEF_WSEQIOPS,
354         I_LCOEF_WRANDIOPS,
355         NR_I_LCOEFS,
356 };
357
358 enum {
359         LCOEF_RPAGE,
360         LCOEF_RSEQIO,
361         LCOEF_RRANDIO,
362         LCOEF_WPAGE,
363         LCOEF_WSEQIO,
364         LCOEF_WRANDIO,
365         NR_LCOEFS,
366 };
367
368 enum {
369         AUTOP_INVALID,
370         AUTOP_HDD,
371         AUTOP_SSD_QD1,
372         AUTOP_SSD_DFL,
373         AUTOP_SSD_FAST,
374 };
375
376 struct ioc_gq;
377
378 struct ioc_params {
379         u32                             qos[NR_QOS_PARAMS];
380         u64                             i_lcoefs[NR_I_LCOEFS];
381         u64                             lcoefs[NR_LCOEFS];
382         u32                             too_fast_vrate_pct;
383         u32                             too_slow_vrate_pct;
384 };
385
386 struct ioc_margins {
387         s64                             min;
388         s64                             low;
389         s64                             target;
390 };
391
392 struct ioc_missed {
393         local_t                         nr_met;
394         local_t                         nr_missed;
395         u32                             last_met;
396         u32                             last_missed;
397 };
398
399 struct ioc_pcpu_stat {
400         struct ioc_missed               missed[2];
401
402         local64_t                       rq_wait_ns;
403         u64                             last_rq_wait_ns;
404 };
405
406 /* per device */
407 struct ioc {
408         struct rq_qos                   rqos;
409
410         bool                            enabled;
411
412         struct ioc_params               params;
413         struct ioc_margins              margins;
414         u32                             period_us;
415         u32                             timer_slack_ns;
416         u64                             vrate_min;
417         u64                             vrate_max;
418
419         spinlock_t                      lock;
420         struct timer_list               timer;
421         struct list_head                active_iocgs;   /* active cgroups */
422         struct ioc_pcpu_stat __percpu   *pcpu_stat;
423
424         enum ioc_running                running;
425         atomic64_t                      vtime_rate;
426         u64                             vtime_base_rate;
427         s64                             vtime_err;
428
429         seqcount_spinlock_t             period_seqcount;
430         u64                             period_at;      /* wallclock starttime */
431         u64                             period_at_vtime; /* vtime starttime */
432
433         atomic64_t                      cur_period;     /* inc'd each period */
434         int                             busy_level;     /* saturation history */
435
436         bool                            weights_updated;
437         atomic_t                        hweight_gen;    /* for lazy hweights */
438
439         /* the last time debt cancel condition wasn't met */
440         u64                             debt_busy_at;
441
442         u64                             autop_too_fast_at;
443         u64                             autop_too_slow_at;
444         int                             autop_idx;
445         bool                            user_qos_params:1;
446         bool                            user_cost_model:1;
447 };
448
449 struct iocg_pcpu_stat {
450         local64_t                       abs_vusage;
451 };
452
453 struct iocg_stat {
454         u64                             usage_us;
455         u64                             wait_us;
456         u64                             indebt_us;
457         u64                             indelay_us;
458 };
459
460 /* per device-cgroup pair */
461 struct ioc_gq {
462         struct blkg_policy_data         pd;
463         struct ioc                      *ioc;
464
465         /*
466          * A iocg can get its weight from two sources - an explicit
467          * per-device-cgroup configuration or the default weight of the
468          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
469          * configuration.  `weight` is the effective considering both
470          * sources.
471          *
472          * When an idle cgroup becomes active its `active` goes from 0 to
473          * `weight`.  `inuse` is the surplus adjusted active weight.
474          * `active` and `inuse` are used to calculate `hweight_active` and
475          * `hweight_inuse`.
476          *
477          * `last_inuse` remembers `inuse` while an iocg is idle to persist
478          * surplus adjustments.
479          *
480          * `inuse` may be adjusted dynamically during period. `saved_*` are used
481          * to determine and track adjustments.
482          */
483         u32                             cfg_weight;
484         u32                             weight;
485         u32                             active;
486         u32                             inuse;
487
488         u32                             last_inuse;
489         s64                             saved_margin;
490
491         sector_t                        cursor;         /* to detect randio */
492
493         /*
494          * `vtime` is this iocg's vtime cursor which progresses as IOs are
495          * issued.  If lagging behind device vtime, the delta represents
496          * the currently available IO budget.  If runnning ahead, the
497          * overage.
498          *
499          * `vtime_done` is the same but progressed on completion rather
500          * than issue.  The delta behind `vtime` represents the cost of
501          * currently in-flight IOs.
502          */
503         atomic64_t                      vtime;
504         atomic64_t                      done_vtime;
505         u64                             abs_vdebt;
506
507         /* current delay in effect and when it started */
508         u64                             delay;
509         u64                             delay_at;
510
511         /*
512          * The period this iocg was last active in.  Used for deactivation
513          * and invalidating `vtime`.
514          */
515         atomic64_t                      active_period;
516         struct list_head                active_list;
517
518         /* see __propagate_weights() and current_hweight() for details */
519         u64                             child_active_sum;
520         u64                             child_inuse_sum;
521         u64                             child_adjusted_sum;
522         int                             hweight_gen;
523         u32                             hweight_active;
524         u32                             hweight_inuse;
525         u32                             hweight_donating;
526         u32                             hweight_after_donation;
527
528         struct list_head                walk_list;
529         struct list_head                surplus_list;
530
531         struct wait_queue_head          waitq;
532         struct hrtimer                  waitq_timer;
533
534         /* timestamp at the latest activation */
535         u64                             activated_at;
536
537         /* statistics */
538         struct iocg_pcpu_stat __percpu  *pcpu_stat;
539         struct iocg_stat                local_stat;
540         struct iocg_stat                desc_stat;
541         struct iocg_stat                last_stat;
542         u64                             last_stat_abs_vusage;
543         u64                             usage_delta_us;
544         u64                             wait_since;
545         u64                             indebt_since;
546         u64                             indelay_since;
547
548         /* this iocg's depth in the hierarchy and ancestors including self */
549         int                             level;
550         struct ioc_gq                   *ancestors[];
551 };
552
553 /* per cgroup */
554 struct ioc_cgrp {
555         struct blkcg_policy_data        cpd;
556         unsigned int                    dfl_weight;
557 };
558
559 struct ioc_now {
560         u64                             now_ns;
561         u64                             now;
562         u64                             vnow;
563         u64                             vrate;
564 };
565
566 struct iocg_wait {
567         struct wait_queue_entry         wait;
568         struct bio                      *bio;
569         u64                             abs_cost;
570         bool                            committed;
571 };
572
573 struct iocg_wake_ctx {
574         struct ioc_gq                   *iocg;
575         u32                             hw_inuse;
576         s64                             vbudget;
577 };
578
579 static const struct ioc_params autop[] = {
580         [AUTOP_HDD] = {
581                 .qos                            = {
582                         [QOS_RLAT]              =        250000, /* 250ms */
583                         [QOS_WLAT]              =        250000,
584                         [QOS_MIN]               = VRATE_MIN_PPM,
585                         [QOS_MAX]               = VRATE_MAX_PPM,
586                 },
587                 .i_lcoefs                       = {
588                         [I_LCOEF_RBPS]          =     174019176,
589                         [I_LCOEF_RSEQIOPS]      =         41708,
590                         [I_LCOEF_RRANDIOPS]     =           370,
591                         [I_LCOEF_WBPS]          =     178075866,
592                         [I_LCOEF_WSEQIOPS]      =         42705,
593                         [I_LCOEF_WRANDIOPS]     =           378,
594                 },
595         },
596         [AUTOP_SSD_QD1] = {
597                 .qos                            = {
598                         [QOS_RLAT]              =         25000, /* 25ms */
599                         [QOS_WLAT]              =         25000,
600                         [QOS_MIN]               = VRATE_MIN_PPM,
601                         [QOS_MAX]               = VRATE_MAX_PPM,
602                 },
603                 .i_lcoefs                       = {
604                         [I_LCOEF_RBPS]          =     245855193,
605                         [I_LCOEF_RSEQIOPS]      =         61575,
606                         [I_LCOEF_RRANDIOPS]     =          6946,
607                         [I_LCOEF_WBPS]          =     141365009,
608                         [I_LCOEF_WSEQIOPS]      =         33716,
609                         [I_LCOEF_WRANDIOPS]     =         26796,
610                 },
611         },
612         [AUTOP_SSD_DFL] = {
613                 .qos                            = {
614                         [QOS_RLAT]              =         25000, /* 25ms */
615                         [QOS_WLAT]              =         25000,
616                         [QOS_MIN]               = VRATE_MIN_PPM,
617                         [QOS_MAX]               = VRATE_MAX_PPM,
618                 },
619                 .i_lcoefs                       = {
620                         [I_LCOEF_RBPS]          =     488636629,
621                         [I_LCOEF_RSEQIOPS]      =          8932,
622                         [I_LCOEF_RRANDIOPS]     =          8518,
623                         [I_LCOEF_WBPS]          =     427891549,
624                         [I_LCOEF_WSEQIOPS]      =         28755,
625                         [I_LCOEF_WRANDIOPS]     =         21940,
626                 },
627                 .too_fast_vrate_pct             =           500,
628         },
629         [AUTOP_SSD_FAST] = {
630                 .qos                            = {
631                         [QOS_RLAT]              =          5000, /* 5ms */
632                         [QOS_WLAT]              =          5000,
633                         [QOS_MIN]               = VRATE_MIN_PPM,
634                         [QOS_MAX]               = VRATE_MAX_PPM,
635                 },
636                 .i_lcoefs                       = {
637                         [I_LCOEF_RBPS]          =    3102524156LLU,
638                         [I_LCOEF_RSEQIOPS]      =        724816,
639                         [I_LCOEF_RRANDIOPS]     =        778122,
640                         [I_LCOEF_WBPS]          =    1742780862LLU,
641                         [I_LCOEF_WSEQIOPS]      =        425702,
642                         [I_LCOEF_WRANDIOPS]     =        443193,
643                 },
644                 .too_slow_vrate_pct             =            10,
645         },
646 };
647
648 /*
649  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
650  * vtime credit shortage and down on device saturation.
651  */
652 static u32 vrate_adj_pct[] =
653         { 0, 0, 0, 0,
654           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
655           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
656           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
657
658 static struct blkcg_policy blkcg_policy_iocost;
659
660 /* accessors and helpers */
661 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
662 {
663         return container_of(rqos, struct ioc, rqos);
664 }
665
666 static struct ioc *q_to_ioc(struct request_queue *q)
667 {
668         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
669 }
670
671 static const char *q_name(struct request_queue *q)
672 {
673         if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
674                 return kobject_name(q->kobj.parent);
675         else
676                 return "<unknown>";
677 }
678
679 static const char __maybe_unused *ioc_name(struct ioc *ioc)
680 {
681         return q_name(ioc->rqos.q);
682 }
683
684 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
685 {
686         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
687 }
688
689 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
690 {
691         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
692 }
693
694 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
695 {
696         return pd_to_blkg(&iocg->pd);
697 }
698
699 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
700 {
701         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
702                             struct ioc_cgrp, cpd);
703 }
704
705 /*
706  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
707  * weight, the more expensive each IO.  Must round up.
708  */
709 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
710 {
711         return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
712 }
713
714 /*
715  * The inverse of abs_cost_to_cost().  Must round up.
716  */
717 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
718 {
719         return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
720 }
721
722 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
723                             u64 abs_cost, u64 cost)
724 {
725         struct iocg_pcpu_stat *gcs;
726
727         bio->bi_iocost_cost = cost;
728         atomic64_add(cost, &iocg->vtime);
729
730         gcs = get_cpu_ptr(iocg->pcpu_stat);
731         local64_add(abs_cost, &gcs->abs_vusage);
732         put_cpu_ptr(gcs);
733 }
734
735 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
736 {
737         if (lock_ioc) {
738                 spin_lock_irqsave(&iocg->ioc->lock, *flags);
739                 spin_lock(&iocg->waitq.lock);
740         } else {
741                 spin_lock_irqsave(&iocg->waitq.lock, *flags);
742         }
743 }
744
745 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
746 {
747         if (unlock_ioc) {
748                 spin_unlock(&iocg->waitq.lock);
749                 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
750         } else {
751                 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
752         }
753 }
754
755 #define CREATE_TRACE_POINTS
756 #include <trace/events/iocost.h>
757
758 static void ioc_refresh_margins(struct ioc *ioc)
759 {
760         struct ioc_margins *margins = &ioc->margins;
761         u32 period_us = ioc->period_us;
762         u64 vrate = ioc->vtime_base_rate;
763
764         margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
765         margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
766         margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
767 }
768
769 /* latency Qos params changed, update period_us and all the dependent params */
770 static void ioc_refresh_period_us(struct ioc *ioc)
771 {
772         u32 ppm, lat, multi, period_us;
773
774         lockdep_assert_held(&ioc->lock);
775
776         /* pick the higher latency target */
777         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
778                 ppm = ioc->params.qos[QOS_RPPM];
779                 lat = ioc->params.qos[QOS_RLAT];
780         } else {
781                 ppm = ioc->params.qos[QOS_WPPM];
782                 lat = ioc->params.qos[QOS_WLAT];
783         }
784
785         /*
786          * We want the period to be long enough to contain a healthy number
787          * of IOs while short enough for granular control.  Define it as a
788          * multiple of the latency target.  Ideally, the multiplier should
789          * be scaled according to the percentile so that it would nominally
790          * contain a certain number of requests.  Let's be simpler and
791          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
792          */
793         if (ppm)
794                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
795         else
796                 multi = 2;
797         period_us = multi * lat;
798         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
799
800         /* calculate dependent params */
801         ioc->period_us = period_us;
802         ioc->timer_slack_ns = div64_u64(
803                 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
804                 100);
805         ioc_refresh_margins(ioc);
806 }
807
808 static int ioc_autop_idx(struct ioc *ioc)
809 {
810         int idx = ioc->autop_idx;
811         const struct ioc_params *p = &autop[idx];
812         u32 vrate_pct;
813         u64 now_ns;
814
815         /* rotational? */
816         if (!blk_queue_nonrot(ioc->rqos.q))
817                 return AUTOP_HDD;
818
819         /* handle SATA SSDs w/ broken NCQ */
820         if (blk_queue_depth(ioc->rqos.q) == 1)
821                 return AUTOP_SSD_QD1;
822
823         /* use one of the normal ssd sets */
824         if (idx < AUTOP_SSD_DFL)
825                 return AUTOP_SSD_DFL;
826
827         /* if user is overriding anything, maintain what was there */
828         if (ioc->user_qos_params || ioc->user_cost_model)
829                 return idx;
830
831         /* step up/down based on the vrate */
832         vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
833         now_ns = ktime_get_ns();
834
835         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
836                 if (!ioc->autop_too_fast_at)
837                         ioc->autop_too_fast_at = now_ns;
838                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
839                         return idx + 1;
840         } else {
841                 ioc->autop_too_fast_at = 0;
842         }
843
844         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
845                 if (!ioc->autop_too_slow_at)
846                         ioc->autop_too_slow_at = now_ns;
847                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
848                         return idx - 1;
849         } else {
850                 ioc->autop_too_slow_at = 0;
851         }
852
853         return idx;
854 }
855
856 /*
857  * Take the followings as input
858  *
859  *  @bps        maximum sequential throughput
860  *  @seqiops    maximum sequential 4k iops
861  *  @randiops   maximum random 4k iops
862  *
863  * and calculate the linear model cost coefficients.
864  *
865  *  *@page      per-page cost           1s / (@bps / 4096)
866  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
867  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
868  */
869 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
870                         u64 *page, u64 *seqio, u64 *randio)
871 {
872         u64 v;
873
874         *page = *seqio = *randio = 0;
875
876         if (bps)
877                 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
878                                            DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
879
880         if (seqiops) {
881                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
882                 if (v > *page)
883                         *seqio = v - *page;
884         }
885
886         if (randiops) {
887                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
888                 if (v > *page)
889                         *randio = v - *page;
890         }
891 }
892
893 static void ioc_refresh_lcoefs(struct ioc *ioc)
894 {
895         u64 *u = ioc->params.i_lcoefs;
896         u64 *c = ioc->params.lcoefs;
897
898         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
899                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
900         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
901                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
902 }
903
904 static bool ioc_refresh_params(struct ioc *ioc, bool force)
905 {
906         const struct ioc_params *p;
907         int idx;
908
909         lockdep_assert_held(&ioc->lock);
910
911         idx = ioc_autop_idx(ioc);
912         p = &autop[idx];
913
914         if (idx == ioc->autop_idx && !force)
915                 return false;
916
917         if (idx != ioc->autop_idx)
918                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
919
920         ioc->autop_idx = idx;
921         ioc->autop_too_fast_at = 0;
922         ioc->autop_too_slow_at = 0;
923
924         if (!ioc->user_qos_params)
925                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
926         if (!ioc->user_cost_model)
927                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
928
929         ioc_refresh_period_us(ioc);
930         ioc_refresh_lcoefs(ioc);
931
932         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
933                                             VTIME_PER_USEC, MILLION);
934         ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
935                                    VTIME_PER_USEC, MILLION);
936
937         return true;
938 }
939
940 /*
941  * When an iocg accumulates too much vtime or gets deactivated, we throw away
942  * some vtime, which lowers the overall device utilization. As the exact amount
943  * which is being thrown away is known, we can compensate by accelerating the
944  * vrate accordingly so that the extra vtime generated in the current period
945  * matches what got lost.
946  */
947 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
948 {
949         s64 pleft = ioc->period_at + ioc->period_us - now->now;
950         s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
951         s64 vcomp, vcomp_min, vcomp_max;
952
953         lockdep_assert_held(&ioc->lock);
954
955         /* we need some time left in this period */
956         if (pleft <= 0)
957                 goto done;
958
959         /*
960          * Calculate how much vrate should be adjusted to offset the error.
961          * Limit the amount of adjustment and deduct the adjusted amount from
962          * the error.
963          */
964         vcomp = -div64_s64(ioc->vtime_err, pleft);
965         vcomp_min = -(ioc->vtime_base_rate >> 1);
966         vcomp_max = ioc->vtime_base_rate;
967         vcomp = clamp(vcomp, vcomp_min, vcomp_max);
968
969         ioc->vtime_err += vcomp * pleft;
970
971         atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
972 done:
973         /* bound how much error can accumulate */
974         ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
975 }
976
977 /* take a snapshot of the current [v]time and vrate */
978 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
979 {
980         unsigned seq;
981
982         now->now_ns = ktime_get();
983         now->now = ktime_to_us(now->now_ns);
984         now->vrate = atomic64_read(&ioc->vtime_rate);
985
986         /*
987          * The current vtime is
988          *
989          *   vtime at period start + (wallclock time since the start) * vrate
990          *
991          * As a consistent snapshot of `period_at_vtime` and `period_at` is
992          * needed, they're seqcount protected.
993          */
994         do {
995                 seq = read_seqcount_begin(&ioc->period_seqcount);
996                 now->vnow = ioc->period_at_vtime +
997                         (now->now - ioc->period_at) * now->vrate;
998         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
999 }
1000
1001 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1002 {
1003         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1004
1005         write_seqcount_begin(&ioc->period_seqcount);
1006         ioc->period_at = now->now;
1007         ioc->period_at_vtime = now->vnow;
1008         write_seqcount_end(&ioc->period_seqcount);
1009
1010         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1011         add_timer(&ioc->timer);
1012 }
1013
1014 /*
1015  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1016  * weight sums and propagate upwards accordingly. If @save, the current margin
1017  * is saved to be used as reference for later inuse in-period adjustments.
1018  */
1019 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1020                                 bool save, struct ioc_now *now)
1021 {
1022         struct ioc *ioc = iocg->ioc;
1023         int lvl;
1024
1025         lockdep_assert_held(&ioc->lock);
1026
1027         inuse = clamp_t(u32, inuse, 1, active);
1028
1029         iocg->last_inuse = iocg->inuse;
1030         if (save)
1031                 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1032
1033         if (active == iocg->active && inuse == iocg->inuse)
1034                 return;
1035
1036         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1037                 struct ioc_gq *parent = iocg->ancestors[lvl];
1038                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1039                 u32 parent_active = 0, parent_inuse = 0;
1040
1041                 /* update the level sums */
1042                 parent->child_active_sum += (s32)(active - child->active);
1043                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1044                 /* apply the udpates */
1045                 child->active = active;
1046                 child->inuse = inuse;
1047
1048                 /*
1049                  * The delta between inuse and active sums indicates that
1050                  * that much of weight is being given away.  Parent's inuse
1051                  * and active should reflect the ratio.
1052                  */
1053                 if (parent->child_active_sum) {
1054                         parent_active = parent->weight;
1055                         parent_inuse = DIV64_U64_ROUND_UP(
1056                                 parent_active * parent->child_inuse_sum,
1057                                 parent->child_active_sum);
1058                 }
1059
1060                 /* do we need to keep walking up? */
1061                 if (parent_active == parent->active &&
1062                     parent_inuse == parent->inuse)
1063                         break;
1064
1065                 active = parent_active;
1066                 inuse = parent_inuse;
1067         }
1068
1069         ioc->weights_updated = true;
1070 }
1071
1072 static void commit_weights(struct ioc *ioc)
1073 {
1074         lockdep_assert_held(&ioc->lock);
1075
1076         if (ioc->weights_updated) {
1077                 /* paired with rmb in current_hweight(), see there */
1078                 smp_wmb();
1079                 atomic_inc(&ioc->hweight_gen);
1080                 ioc->weights_updated = false;
1081         }
1082 }
1083
1084 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1085                               bool save, struct ioc_now *now)
1086 {
1087         __propagate_weights(iocg, active, inuse, save, now);
1088         commit_weights(iocg->ioc);
1089 }
1090
1091 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1092 {
1093         struct ioc *ioc = iocg->ioc;
1094         int lvl;
1095         u32 hwa, hwi;
1096         int ioc_gen;
1097
1098         /* hot path - if uptodate, use cached */
1099         ioc_gen = atomic_read(&ioc->hweight_gen);
1100         if (ioc_gen == iocg->hweight_gen)
1101                 goto out;
1102
1103         /*
1104          * Paired with wmb in commit_weights(). If we saw the updated
1105          * hweight_gen, all the weight updates from __propagate_weights() are
1106          * visible too.
1107          *
1108          * We can race with weight updates during calculation and get it
1109          * wrong.  However, hweight_gen would have changed and a future
1110          * reader will recalculate and we're guaranteed to discard the
1111          * wrong result soon.
1112          */
1113         smp_rmb();
1114
1115         hwa = hwi = WEIGHT_ONE;
1116         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1117                 struct ioc_gq *parent = iocg->ancestors[lvl];
1118                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1119                 u64 active_sum = READ_ONCE(parent->child_active_sum);
1120                 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1121                 u32 active = READ_ONCE(child->active);
1122                 u32 inuse = READ_ONCE(child->inuse);
1123
1124                 /* we can race with deactivations and either may read as zero */
1125                 if (!active_sum || !inuse_sum)
1126                         continue;
1127
1128                 active_sum = max_t(u64, active, active_sum);
1129                 hwa = div64_u64((u64)hwa * active, active_sum);
1130
1131                 inuse_sum = max_t(u64, inuse, inuse_sum);
1132                 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1133         }
1134
1135         iocg->hweight_active = max_t(u32, hwa, 1);
1136         iocg->hweight_inuse = max_t(u32, hwi, 1);
1137         iocg->hweight_gen = ioc_gen;
1138 out:
1139         if (hw_activep)
1140                 *hw_activep = iocg->hweight_active;
1141         if (hw_inusep)
1142                 *hw_inusep = iocg->hweight_inuse;
1143 }
1144
1145 /*
1146  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1147  * other weights stay unchanged.
1148  */
1149 static u32 current_hweight_max(struct ioc_gq *iocg)
1150 {
1151         u32 hwm = WEIGHT_ONE;
1152         u32 inuse = iocg->active;
1153         u64 child_inuse_sum;
1154         int lvl;
1155
1156         lockdep_assert_held(&iocg->ioc->lock);
1157
1158         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1159                 struct ioc_gq *parent = iocg->ancestors[lvl];
1160                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1161
1162                 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1163                 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1164                 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1165                                            parent->child_active_sum);
1166         }
1167
1168         return max_t(u32, hwm, 1);
1169 }
1170
1171 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1172 {
1173         struct ioc *ioc = iocg->ioc;
1174         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1175         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1176         u32 weight;
1177
1178         lockdep_assert_held(&ioc->lock);
1179
1180         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1181         if (weight != iocg->weight && iocg->active)
1182                 propagate_weights(iocg, weight, iocg->inuse, true, now);
1183         iocg->weight = weight;
1184 }
1185
1186 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1187 {
1188         struct ioc *ioc = iocg->ioc;
1189         u64 last_period, cur_period;
1190         u64 vtime, vtarget;
1191         int i;
1192
1193         /*
1194          * If seem to be already active, just update the stamp to tell the
1195          * timer that we're still active.  We don't mind occassional races.
1196          */
1197         if (!list_empty(&iocg->active_list)) {
1198                 ioc_now(ioc, now);
1199                 cur_period = atomic64_read(&ioc->cur_period);
1200                 if (atomic64_read(&iocg->active_period) != cur_period)
1201                         atomic64_set(&iocg->active_period, cur_period);
1202                 return true;
1203         }
1204
1205         /* racy check on internal node IOs, treat as root level IOs */
1206         if (iocg->child_active_sum)
1207                 return false;
1208
1209         spin_lock_irq(&ioc->lock);
1210
1211         ioc_now(ioc, now);
1212
1213         /* update period */
1214         cur_period = atomic64_read(&ioc->cur_period);
1215         last_period = atomic64_read(&iocg->active_period);
1216         atomic64_set(&iocg->active_period, cur_period);
1217
1218         /* already activated or breaking leaf-only constraint? */
1219         if (!list_empty(&iocg->active_list))
1220                 goto succeed_unlock;
1221         for (i = iocg->level - 1; i > 0; i--)
1222                 if (!list_empty(&iocg->ancestors[i]->active_list))
1223                         goto fail_unlock;
1224
1225         if (iocg->child_active_sum)
1226                 goto fail_unlock;
1227
1228         /*
1229          * Always start with the target budget. On deactivation, we throw away
1230          * anything above it.
1231          */
1232         vtarget = now->vnow - ioc->margins.target;
1233         vtime = atomic64_read(&iocg->vtime);
1234
1235         atomic64_add(vtarget - vtime, &iocg->vtime);
1236         atomic64_add(vtarget - vtime, &iocg->done_vtime);
1237         vtime = vtarget;
1238
1239         /*
1240          * Activate, propagate weight and start period timer if not
1241          * running.  Reset hweight_gen to avoid accidental match from
1242          * wrapping.
1243          */
1244         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1245         list_add(&iocg->active_list, &ioc->active_iocgs);
1246
1247         propagate_weights(iocg, iocg->weight,
1248                           iocg->last_inuse ?: iocg->weight, true, now);
1249
1250         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1251                         last_period, cur_period, vtime);
1252
1253         iocg->activated_at = now->now;
1254
1255         if (ioc->running == IOC_IDLE) {
1256                 ioc->running = IOC_RUNNING;
1257                 ioc->debt_busy_at = now->now;
1258                 ioc_start_period(ioc, now);
1259         }
1260
1261 succeed_unlock:
1262         spin_unlock_irq(&ioc->lock);
1263         return true;
1264
1265 fail_unlock:
1266         spin_unlock_irq(&ioc->lock);
1267         return false;
1268 }
1269
1270 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1271 {
1272         struct ioc *ioc = iocg->ioc;
1273         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1274         u64 tdelta, delay, new_delay;
1275         s64 vover, vover_pct;
1276         u32 hwa;
1277
1278         lockdep_assert_held(&iocg->waitq.lock);
1279
1280         /* calculate the current delay in effect - 1/2 every second */
1281         tdelta = now->now - iocg->delay_at;
1282         if (iocg->delay)
1283                 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1284         else
1285                 delay = 0;
1286
1287         /* calculate the new delay from the debt amount */
1288         current_hweight(iocg, &hwa, NULL);
1289         vover = atomic64_read(&iocg->vtime) +
1290                 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1291         vover_pct = div64_s64(100 * vover,
1292                               ioc->period_us * ioc->vtime_base_rate);
1293
1294         if (vover_pct <= MIN_DELAY_THR_PCT)
1295                 new_delay = 0;
1296         else if (vover_pct >= MAX_DELAY_THR_PCT)
1297                 new_delay = MAX_DELAY;
1298         else
1299                 new_delay = MIN_DELAY +
1300                         div_u64((MAX_DELAY - MIN_DELAY) *
1301                                 (vover_pct - MIN_DELAY_THR_PCT),
1302                                 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1303
1304         /* pick the higher one and apply */
1305         if (new_delay > delay) {
1306                 iocg->delay = new_delay;
1307                 iocg->delay_at = now->now;
1308                 delay = new_delay;
1309         }
1310
1311         if (delay >= MIN_DELAY) {
1312                 if (!iocg->indelay_since)
1313                         iocg->indelay_since = now->now;
1314                 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1315                 return true;
1316         } else {
1317                 if (iocg->indelay_since) {
1318                         iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
1319                         iocg->indelay_since = 0;
1320                 }
1321                 iocg->delay = 0;
1322                 blkcg_clear_delay(blkg);
1323                 return false;
1324         }
1325 }
1326
1327 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1328                             struct ioc_now *now)
1329 {
1330         struct iocg_pcpu_stat *gcs;
1331
1332         lockdep_assert_held(&iocg->ioc->lock);
1333         lockdep_assert_held(&iocg->waitq.lock);
1334         WARN_ON_ONCE(list_empty(&iocg->active_list));
1335
1336         /*
1337          * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1338          * inuse donating all of it share to others until its debt is paid off.
1339          */
1340         if (!iocg->abs_vdebt && abs_cost) {
1341                 iocg->indebt_since = now->now;
1342                 propagate_weights(iocg, iocg->active, 0, false, now);
1343         }
1344
1345         iocg->abs_vdebt += abs_cost;
1346
1347         gcs = get_cpu_ptr(iocg->pcpu_stat);
1348         local64_add(abs_cost, &gcs->abs_vusage);
1349         put_cpu_ptr(gcs);
1350 }
1351
1352 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1353                           struct ioc_now *now)
1354 {
1355         lockdep_assert_held(&iocg->ioc->lock);
1356         lockdep_assert_held(&iocg->waitq.lock);
1357
1358         /* make sure that nobody messed with @iocg */
1359         WARN_ON_ONCE(list_empty(&iocg->active_list));
1360         WARN_ON_ONCE(iocg->inuse > 1);
1361
1362         iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1363
1364         /* if debt is paid in full, restore inuse */
1365         if (!iocg->abs_vdebt) {
1366                 iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
1367                 iocg->indebt_since = 0;
1368
1369                 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1370                                   false, now);
1371         }
1372 }
1373
1374 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1375                         int flags, void *key)
1376 {
1377         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1378         struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1379         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1380
1381         ctx->vbudget -= cost;
1382
1383         if (ctx->vbudget < 0)
1384                 return -1;
1385
1386         iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1387
1388         /*
1389          * autoremove_wake_function() removes the wait entry only when it
1390          * actually changed the task state.  We want the wait always
1391          * removed.  Remove explicitly and use default_wake_function().
1392          */
1393         list_del_init(&wq_entry->entry);
1394         wait->committed = true;
1395
1396         default_wake_function(wq_entry, mode, flags, key);
1397         return 0;
1398 }
1399
1400 /*
1401  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1402  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1403  * addition to iocg->waitq.lock.
1404  */
1405 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1406                             struct ioc_now *now)
1407 {
1408         struct ioc *ioc = iocg->ioc;
1409         struct iocg_wake_ctx ctx = { .iocg = iocg };
1410         u64 vshortage, expires, oexpires;
1411         s64 vbudget;
1412         u32 hwa;
1413
1414         lockdep_assert_held(&iocg->waitq.lock);
1415
1416         current_hweight(iocg, &hwa, NULL);
1417         vbudget = now->vnow - atomic64_read(&iocg->vtime);
1418
1419         /* pay off debt */
1420         if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1421                 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1422                 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1423                 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1424
1425                 lockdep_assert_held(&ioc->lock);
1426
1427                 atomic64_add(vpay, &iocg->vtime);
1428                 atomic64_add(vpay, &iocg->done_vtime);
1429                 iocg_pay_debt(iocg, abs_vpay, now);
1430                 vbudget -= vpay;
1431         }
1432
1433         if (iocg->abs_vdebt || iocg->delay)
1434                 iocg_kick_delay(iocg, now);
1435
1436         /*
1437          * Debt can still be outstanding if we haven't paid all yet or the
1438          * caller raced and called without @pay_debt. Shouldn't wake up waiters
1439          * under debt. Make sure @vbudget reflects the outstanding amount and is
1440          * not positive.
1441          */
1442         if (iocg->abs_vdebt) {
1443                 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1444                 vbudget = min_t(s64, 0, vbudget - vdebt);
1445         }
1446
1447         /*
1448          * Wake up the ones which are due and see how much vtime we'll need for
1449          * the next one. As paying off debt restores hw_inuse, it must be read
1450          * after the above debt payment.
1451          */
1452         ctx.vbudget = vbudget;
1453         current_hweight(iocg, NULL, &ctx.hw_inuse);
1454
1455         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1456
1457         if (!waitqueue_active(&iocg->waitq)) {
1458                 if (iocg->wait_since) {
1459                         iocg->local_stat.wait_us += now->now - iocg->wait_since;
1460                         iocg->wait_since = 0;
1461                 }
1462                 return;
1463         }
1464
1465         if (!iocg->wait_since)
1466                 iocg->wait_since = now->now;
1467
1468         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1469                 return;
1470
1471         /* determine next wakeup, add a timer margin to guarantee chunking */
1472         vshortage = -ctx.vbudget;
1473         expires = now->now_ns +
1474                 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1475                 NSEC_PER_USEC;
1476         expires += ioc->timer_slack_ns;
1477
1478         /* if already active and close enough, don't bother */
1479         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1480         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1481             abs(oexpires - expires) <= ioc->timer_slack_ns)
1482                 return;
1483
1484         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1485                                ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1486 }
1487
1488 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1489 {
1490         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1491         bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1492         struct ioc_now now;
1493         unsigned long flags;
1494
1495         ioc_now(iocg->ioc, &now);
1496
1497         iocg_lock(iocg, pay_debt, &flags);
1498         iocg_kick_waitq(iocg, pay_debt, &now);
1499         iocg_unlock(iocg, pay_debt, &flags);
1500
1501         return HRTIMER_NORESTART;
1502 }
1503
1504 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1505 {
1506         u32 nr_met[2] = { };
1507         u32 nr_missed[2] = { };
1508         u64 rq_wait_ns = 0;
1509         int cpu, rw;
1510
1511         for_each_online_cpu(cpu) {
1512                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1513                 u64 this_rq_wait_ns;
1514
1515                 for (rw = READ; rw <= WRITE; rw++) {
1516                         u32 this_met = local_read(&stat->missed[rw].nr_met);
1517                         u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1518
1519                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1520                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1521                         stat->missed[rw].last_met = this_met;
1522                         stat->missed[rw].last_missed = this_missed;
1523                 }
1524
1525                 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1526                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1527                 stat->last_rq_wait_ns = this_rq_wait_ns;
1528         }
1529
1530         for (rw = READ; rw <= WRITE; rw++) {
1531                 if (nr_met[rw] + nr_missed[rw])
1532                         missed_ppm_ar[rw] =
1533                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1534                                                    nr_met[rw] + nr_missed[rw]);
1535                 else
1536                         missed_ppm_ar[rw] = 0;
1537         }
1538
1539         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1540                                    ioc->period_us * NSEC_PER_USEC);
1541 }
1542
1543 /* was iocg idle this period? */
1544 static bool iocg_is_idle(struct ioc_gq *iocg)
1545 {
1546         struct ioc *ioc = iocg->ioc;
1547
1548         /* did something get issued this period? */
1549         if (atomic64_read(&iocg->active_period) ==
1550             atomic64_read(&ioc->cur_period))
1551                 return false;
1552
1553         /* is something in flight? */
1554         if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1555                 return false;
1556
1557         return true;
1558 }
1559
1560 /*
1561  * Call this function on the target leaf @iocg's to build pre-order traversal
1562  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1563  * ->walk_list and the caller is responsible for dissolving the list after use.
1564  */
1565 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1566                                   struct list_head *inner_walk)
1567 {
1568         int lvl;
1569
1570         WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1571
1572         /* find the first ancestor which hasn't been visited yet */
1573         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1574                 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1575                         break;
1576         }
1577
1578         /* walk down and visit the inner nodes to get pre-order traversal */
1579         while (++lvl <= iocg->level - 1) {
1580                 struct ioc_gq *inner = iocg->ancestors[lvl];
1581
1582                 /* record traversal order */
1583                 list_add_tail(&inner->walk_list, inner_walk);
1584         }
1585 }
1586
1587 /* collect per-cpu counters and propagate the deltas to the parent */
1588 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1589 {
1590         struct ioc *ioc = iocg->ioc;
1591         struct iocg_stat new_stat;
1592         u64 abs_vusage = 0;
1593         u64 vusage_delta;
1594         int cpu;
1595
1596         lockdep_assert_held(&iocg->ioc->lock);
1597
1598         /* collect per-cpu counters */
1599         for_each_possible_cpu(cpu) {
1600                 abs_vusage += local64_read(
1601                                 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1602         }
1603         vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1604         iocg->last_stat_abs_vusage = abs_vusage;
1605
1606         iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1607         iocg->local_stat.usage_us += iocg->usage_delta_us;
1608
1609         /* propagate upwards */
1610         new_stat.usage_us =
1611                 iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
1612         new_stat.wait_us =
1613                 iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
1614         new_stat.indebt_us =
1615                 iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
1616         new_stat.indelay_us =
1617                 iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
1618
1619         /* propagate the deltas to the parent */
1620         if (iocg->level > 0) {
1621                 struct iocg_stat *parent_stat =
1622                         &iocg->ancestors[iocg->level - 1]->desc_stat;
1623
1624                 parent_stat->usage_us +=
1625                         new_stat.usage_us - iocg->last_stat.usage_us;
1626                 parent_stat->wait_us +=
1627                         new_stat.wait_us - iocg->last_stat.wait_us;
1628                 parent_stat->indebt_us +=
1629                         new_stat.indebt_us - iocg->last_stat.indebt_us;
1630                 parent_stat->indelay_us +=
1631                         new_stat.indelay_us - iocg->last_stat.indelay_us;
1632         }
1633
1634         iocg->last_stat = new_stat;
1635 }
1636
1637 /* get stat counters ready for reading on all active iocgs */
1638 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1639 {
1640         LIST_HEAD(inner_walk);
1641         struct ioc_gq *iocg, *tiocg;
1642
1643         /* flush leaves and build inner node walk list */
1644         list_for_each_entry(iocg, target_iocgs, active_list) {
1645                 iocg_flush_stat_one(iocg, now);
1646                 iocg_build_inner_walk(iocg, &inner_walk);
1647         }
1648
1649         /* keep flushing upwards by walking the inner list backwards */
1650         list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1651                 iocg_flush_stat_one(iocg, now);
1652                 list_del_init(&iocg->walk_list);
1653         }
1654 }
1655
1656 /*
1657  * Determine what @iocg's hweight_inuse should be after donating unused
1658  * capacity. @hwm is the upper bound and used to signal no donation. This
1659  * function also throws away @iocg's excess budget.
1660  */
1661 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1662                                   u32 usage, struct ioc_now *now)
1663 {
1664         struct ioc *ioc = iocg->ioc;
1665         u64 vtime = atomic64_read(&iocg->vtime);
1666         s64 excess, delta, target, new_hwi;
1667
1668         /* debt handling owns inuse for debtors */
1669         if (iocg->abs_vdebt)
1670                 return 1;
1671
1672         /* see whether minimum margin requirement is met */
1673         if (waitqueue_active(&iocg->waitq) ||
1674             time_after64(vtime, now->vnow - ioc->margins.min))
1675                 return hwm;
1676
1677         /* throw away excess above target */
1678         excess = now->vnow - vtime - ioc->margins.target;
1679         if (excess > 0) {
1680                 atomic64_add(excess, &iocg->vtime);
1681                 atomic64_add(excess, &iocg->done_vtime);
1682                 vtime += excess;
1683                 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1684         }
1685
1686         /*
1687          * Let's say the distance between iocg's and device's vtimes as a
1688          * fraction of period duration is delta. Assuming that the iocg will
1689          * consume the usage determined above, we want to determine new_hwi so
1690          * that delta equals MARGIN_TARGET at the end of the next period.
1691          *
1692          * We need to execute usage worth of IOs while spending the sum of the
1693          * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1694          * (delta):
1695          *
1696          *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1697          *
1698          * Therefore, the new_hwi is:
1699          *
1700          *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1701          */
1702         delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1703                           now->vnow - ioc->period_at_vtime);
1704         target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1705         new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1706
1707         return clamp_t(s64, new_hwi, 1, hwm);
1708 }
1709
1710 /*
1711  * For work-conservation, an iocg which isn't using all of its share should
1712  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1713  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1714  *
1715  * #1 is mathematically simpler but has the drawback of requiring synchronous
1716  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1717  * change due to donation snapbacks as it has the possibility of grossly
1718  * overshooting what's allowed by the model and vrate.
1719  *
1720  * #2 is inherently safe with local operations. The donating iocg can easily
1721  * snap back to higher weights when needed without worrying about impacts on
1722  * other nodes as the impacts will be inherently correct. This also makes idle
1723  * iocg activations safe. The only effect activations have is decreasing
1724  * hweight_inuse of others, the right solution to which is for those iocgs to
1725  * snap back to higher weights.
1726  *
1727  * So, we go with #2. The challenge is calculating how each donating iocg's
1728  * inuse should be adjusted to achieve the target donation amounts. This is done
1729  * using Andy's method described in the following pdf.
1730  *
1731  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1732  *
1733  * Given the weights and target after-donation hweight_inuse values, Andy's
1734  * method determines how the proportional distribution should look like at each
1735  * sibling level to maintain the relative relationship between all non-donating
1736  * pairs. To roughly summarize, it divides the tree into donating and
1737  * non-donating parts, calculates global donation rate which is used to
1738  * determine the target hweight_inuse for each node, and then derives per-level
1739  * proportions.
1740  *
1741  * The following pdf shows that global distribution calculated this way can be
1742  * achieved by scaling inuse weights of donating leaves and propagating the
1743  * adjustments upwards proportionally.
1744  *
1745  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1746  *
1747  * Combining the above two, we can determine how each leaf iocg's inuse should
1748  * be adjusted to achieve the target donation.
1749  *
1750  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1751  *
1752  * The inline comments use symbols from the last pdf.
1753  *
1754  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1755  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1756  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1757  *   w is the weight of the node. w = w_f + w_t
1758  *   w_f is the non-donating portion of w. w_f = w * f / b
1759  *   w_b is the donating portion of w. w_t = w * t / b
1760  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1761  *   s_f and s_t are the non-donating and donating portions of s.
1762  *
1763  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1764  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1765  * after adjustments. Subscript r denotes the root node's values.
1766  */
1767 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1768 {
1769         LIST_HEAD(over_hwa);
1770         LIST_HEAD(inner_walk);
1771         struct ioc_gq *iocg, *tiocg, *root_iocg;
1772         u32 after_sum, over_sum, over_target, gamma;
1773
1774         /*
1775          * It's pretty unlikely but possible for the total sum of
1776          * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1777          * confuse the following calculations. If such condition is detected,
1778          * scale down everyone over its full share equally to keep the sum below
1779          * WEIGHT_ONE.
1780          */
1781         after_sum = 0;
1782         over_sum = 0;
1783         list_for_each_entry(iocg, surpluses, surplus_list) {
1784                 u32 hwa;
1785
1786                 current_hweight(iocg, &hwa, NULL);
1787                 after_sum += iocg->hweight_after_donation;
1788
1789                 if (iocg->hweight_after_donation > hwa) {
1790                         over_sum += iocg->hweight_after_donation;
1791                         list_add(&iocg->walk_list, &over_hwa);
1792                 }
1793         }
1794
1795         if (after_sum >= WEIGHT_ONE) {
1796                 /*
1797                  * The delta should be deducted from the over_sum, calculate
1798                  * target over_sum value.
1799                  */
1800                 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1801                 WARN_ON_ONCE(over_sum <= over_delta);
1802                 over_target = over_sum - over_delta;
1803         } else {
1804                 over_target = 0;
1805         }
1806
1807         list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1808                 if (over_target)
1809                         iocg->hweight_after_donation =
1810                                 div_u64((u64)iocg->hweight_after_donation *
1811                                         over_target, over_sum);
1812                 list_del_init(&iocg->walk_list);
1813         }
1814
1815         /*
1816          * Build pre-order inner node walk list and prepare for donation
1817          * adjustment calculations.
1818          */
1819         list_for_each_entry(iocg, surpluses, surplus_list) {
1820                 iocg_build_inner_walk(iocg, &inner_walk);
1821         }
1822
1823         root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1824         WARN_ON_ONCE(root_iocg->level > 0);
1825
1826         list_for_each_entry(iocg, &inner_walk, walk_list) {
1827                 iocg->child_adjusted_sum = 0;
1828                 iocg->hweight_donating = 0;
1829                 iocg->hweight_after_donation = 0;
1830         }
1831
1832         /*
1833          * Propagate the donating budget (b_t) and after donation budget (b'_t)
1834          * up the hierarchy.
1835          */
1836         list_for_each_entry(iocg, surpluses, surplus_list) {
1837                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1838
1839                 parent->hweight_donating += iocg->hweight_donating;
1840                 parent->hweight_after_donation += iocg->hweight_after_donation;
1841         }
1842
1843         list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1844                 if (iocg->level > 0) {
1845                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1846
1847                         parent->hweight_donating += iocg->hweight_donating;
1848                         parent->hweight_after_donation += iocg->hweight_after_donation;
1849                 }
1850         }
1851
1852         /*
1853          * Calculate inner hwa's (b) and make sure the donation values are
1854          * within the accepted ranges as we're doing low res calculations with
1855          * roundups.
1856          */
1857         list_for_each_entry(iocg, &inner_walk, walk_list) {
1858                 if (iocg->level) {
1859                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1860
1861                         iocg->hweight_active = DIV64_U64_ROUND_UP(
1862                                 (u64)parent->hweight_active * iocg->active,
1863                                 parent->child_active_sum);
1864
1865                 }
1866
1867                 iocg->hweight_donating = min(iocg->hweight_donating,
1868                                              iocg->hweight_active);
1869                 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1870                                                    iocg->hweight_donating - 1);
1871                 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1872                                  iocg->hweight_donating <= 1 ||
1873                                  iocg->hweight_after_donation == 0)) {
1874                         pr_warn("iocg: invalid donation weights in ");
1875                         pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1876                         pr_cont(": active=%u donating=%u after=%u\n",
1877                                 iocg->hweight_active, iocg->hweight_donating,
1878                                 iocg->hweight_after_donation);
1879                 }
1880         }
1881
1882         /*
1883          * Calculate the global donation rate (gamma) - the rate to adjust
1884          * non-donating budgets by.
1885          *
1886          * No need to use 64bit multiplication here as the first operand is
1887          * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1888          *
1889          * We know that there are beneficiary nodes and the sum of the donating
1890          * hweights can't be whole; however, due to the round-ups during hweight
1891          * calculations, root_iocg->hweight_donating might still end up equal to
1892          * or greater than whole. Limit the range when calculating the divider.
1893          *
1894          * gamma = (1 - t_r') / (1 - t_r)
1895          */
1896         gamma = DIV_ROUND_UP(
1897                 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1898                 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1899
1900         /*
1901          * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1902          * nodes.
1903          */
1904         list_for_each_entry(iocg, &inner_walk, walk_list) {
1905                 struct ioc_gq *parent;
1906                 u32 inuse, wpt, wptp;
1907                 u64 st, sf;
1908
1909                 if (iocg->level == 0) {
1910                         /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1911                         iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1912                                 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1913                                 WEIGHT_ONE - iocg->hweight_after_donation);
1914                         continue;
1915                 }
1916
1917                 parent = iocg->ancestors[iocg->level - 1];
1918
1919                 /* b' = gamma * b_f + b_t' */
1920                 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1921                         (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1922                         WEIGHT_ONE) + iocg->hweight_after_donation;
1923
1924                 /* w' = s' * b' / b'_p */
1925                 inuse = DIV64_U64_ROUND_UP(
1926                         (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1927                         parent->hweight_inuse);
1928
1929                 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1930                 st = DIV64_U64_ROUND_UP(
1931                         iocg->child_active_sum * iocg->hweight_donating,
1932                         iocg->hweight_active);
1933                 sf = iocg->child_active_sum - st;
1934                 wpt = DIV64_U64_ROUND_UP(
1935                         (u64)iocg->active * iocg->hweight_donating,
1936                         iocg->hweight_active);
1937                 wptp = DIV64_U64_ROUND_UP(
1938                         (u64)inuse * iocg->hweight_after_donation,
1939                         iocg->hweight_inuse);
1940
1941                 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1942         }
1943
1944         /*
1945          * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1946          * we can finally determine leaf adjustments.
1947          */
1948         list_for_each_entry(iocg, surpluses, surplus_list) {
1949                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1950                 u32 inuse;
1951
1952                 /*
1953                  * In-debt iocgs participated in the donation calculation with
1954                  * the minimum target hweight_inuse. Configuring inuse
1955                  * accordingly would work fine but debt handling expects
1956                  * @iocg->inuse stay at the minimum and we don't wanna
1957                  * interfere.
1958                  */
1959                 if (iocg->abs_vdebt) {
1960                         WARN_ON_ONCE(iocg->inuse > 1);
1961                         continue;
1962                 }
1963
1964                 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
1965                 inuse = DIV64_U64_ROUND_UP(
1966                         parent->child_adjusted_sum * iocg->hweight_after_donation,
1967                         parent->hweight_inuse);
1968
1969                 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
1970                                 iocg->inuse, inuse,
1971                                 iocg->hweight_inuse,
1972                                 iocg->hweight_after_donation);
1973
1974                 __propagate_weights(iocg, iocg->active, inuse, true, now);
1975         }
1976
1977         /* walk list should be dissolved after use */
1978         list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
1979                 list_del_init(&iocg->walk_list);
1980 }
1981
1982 static void ioc_timer_fn(struct timer_list *timer)
1983 {
1984         struct ioc *ioc = container_of(timer, struct ioc, timer);
1985         struct ioc_gq *iocg, *tiocg;
1986         struct ioc_now now;
1987         LIST_HEAD(surpluses);
1988         int nr_debtors = 0, nr_shortages = 0, nr_lagging = 0;
1989         u64 usage_us_sum = 0;
1990         u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
1991         u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
1992         u32 missed_ppm[2], rq_wait_pct;
1993         u64 period_vtime;
1994         int prev_busy_level;
1995
1996         /* how were the latencies during the period? */
1997         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
1998
1999         /* take care of active iocgs */
2000         spin_lock_irq(&ioc->lock);
2001
2002         ioc_now(ioc, &now);
2003
2004         period_vtime = now.vnow - ioc->period_at_vtime;
2005         if (WARN_ON_ONCE(!period_vtime)) {
2006                 spin_unlock_irq(&ioc->lock);
2007                 return;
2008         }
2009
2010         /*
2011          * Waiters determine the sleep durations based on the vrate they
2012          * saw at the time of sleep.  If vrate has increased, some waiters
2013          * could be sleeping for too long.  Wake up tardy waiters which
2014          * should have woken up in the last period and expire idle iocgs.
2015          */
2016         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2017                 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2018                     !iocg->delay && !iocg_is_idle(iocg))
2019                         continue;
2020
2021                 spin_lock(&iocg->waitq.lock);
2022
2023                 /* flush wait and indebt stat deltas */
2024                 if (iocg->wait_since) {
2025                         iocg->local_stat.wait_us += now.now - iocg->wait_since;
2026                         iocg->wait_since = now.now;
2027                 }
2028                 if (iocg->indebt_since) {
2029                         iocg->local_stat.indebt_us +=
2030                                 now.now - iocg->indebt_since;
2031                         iocg->indebt_since = now.now;
2032                 }
2033                 if (iocg->indelay_since) {
2034                         iocg->local_stat.indelay_us +=
2035                                 now.now - iocg->indelay_since;
2036                         iocg->indelay_since = now.now;
2037                 }
2038
2039                 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2040                     iocg->delay) {
2041                         /* might be oversleeping vtime / hweight changes, kick */
2042                         iocg_kick_waitq(iocg, true, &now);
2043                         if (iocg->abs_vdebt)
2044                                 nr_debtors++;
2045                 } else if (iocg_is_idle(iocg)) {
2046                         /* no waiter and idle, deactivate */
2047                         u64 vtime = atomic64_read(&iocg->vtime);
2048                         s64 excess;
2049
2050                         /*
2051                          * @iocg has been inactive for a full duration and will
2052                          * have a high budget. Account anything above target as
2053                          * error and throw away. On reactivation, it'll start
2054                          * with the target budget.
2055                          */
2056                         excess = now.vnow - vtime - ioc->margins.target;
2057                         if (excess > 0) {
2058                                 u32 old_hwi;
2059
2060                                 current_hweight(iocg, NULL, &old_hwi);
2061                                 ioc->vtime_err -= div64_u64(excess * old_hwi,
2062                                                             WEIGHT_ONE);
2063                         }
2064
2065                         __propagate_weights(iocg, 0, 0, false, &now);
2066                         list_del_init(&iocg->active_list);
2067                 }
2068
2069                 spin_unlock(&iocg->waitq.lock);
2070         }
2071         commit_weights(ioc);
2072
2073         /*
2074          * Wait and indebt stat are flushed above and the donation calculation
2075          * below needs updated usage stat. Let's bring stat up-to-date.
2076          */
2077         iocg_flush_stat(&ioc->active_iocgs, &now);
2078
2079         /* calc usage and see whether some weights need to be moved around */
2080         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2081                 u64 vdone, vtime, usage_us, usage_dur;
2082                 u32 usage, hw_active, hw_inuse;
2083
2084                 /*
2085                  * Collect unused and wind vtime closer to vnow to prevent
2086                  * iocgs from accumulating a large amount of budget.
2087                  */
2088                 vdone = atomic64_read(&iocg->done_vtime);
2089                 vtime = atomic64_read(&iocg->vtime);
2090                 current_hweight(iocg, &hw_active, &hw_inuse);
2091
2092                 /*
2093                  * Latency QoS detection doesn't account for IOs which are
2094                  * in-flight for longer than a period.  Detect them by
2095                  * comparing vdone against period start.  If lagging behind
2096                  * IOs from past periods, don't increase vrate.
2097                  */
2098                 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2099                     !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2100                     time_after64(vtime, vdone) &&
2101                     time_after64(vtime, now.vnow -
2102                                  MAX_LAGGING_PERIODS * period_vtime) &&
2103                     time_before64(vdone, now.vnow - period_vtime))
2104                         nr_lagging++;
2105
2106                 /*
2107                  * Determine absolute usage factoring in in-flight IOs to avoid
2108                  * high-latency completions appearing as idle.
2109                  */
2110                 usage_us = iocg->usage_delta_us;
2111                 usage_us_sum += usage_us;
2112
2113                 if (vdone != vtime) {
2114                         u64 inflight_us = DIV64_U64_ROUND_UP(
2115                                 cost_to_abs_cost(vtime - vdone, hw_inuse),
2116                                 ioc->vtime_base_rate);
2117                         usage_us = max(usage_us, inflight_us);
2118                 }
2119
2120                 /* convert to hweight based usage ratio */
2121                 if (time_after64(iocg->activated_at, ioc->period_at))
2122                         usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2123                 else
2124                         usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2125
2126                 usage = clamp_t(u32,
2127                                 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2128                                                    usage_dur),
2129                                 1, WEIGHT_ONE);
2130
2131                 /* see whether there's surplus vtime */
2132                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2133                 if (hw_inuse < hw_active ||
2134                     (!waitqueue_active(&iocg->waitq) &&
2135                      time_before64(vtime, now.vnow - ioc->margins.low))) {
2136                         u32 hwa, old_hwi, hwm, new_hwi;
2137
2138                         /*
2139                          * Already donating or accumulated enough to start.
2140                          * Determine the donation amount.
2141                          */
2142                         current_hweight(iocg, &hwa, &old_hwi);
2143                         hwm = current_hweight_max(iocg);
2144                         new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2145                                                          usage, &now);
2146                         if (new_hwi < hwm) {
2147                                 iocg->hweight_donating = hwa;
2148                                 iocg->hweight_after_donation = new_hwi;
2149                                 list_add(&iocg->surplus_list, &surpluses);
2150                         } else {
2151                                 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2152                                                 iocg->inuse, iocg->active,
2153                                                 iocg->hweight_inuse, new_hwi);
2154
2155                                 __propagate_weights(iocg, iocg->active,
2156                                                     iocg->active, true, &now);
2157                                 nr_shortages++;
2158                         }
2159                 } else {
2160                         /* genuinely short on vtime */
2161                         nr_shortages++;
2162                 }
2163         }
2164
2165         if (!list_empty(&surpluses) && nr_shortages)
2166                 transfer_surpluses(&surpluses, &now);
2167
2168         commit_weights(ioc);
2169
2170         /* surplus list should be dissolved after use */
2171         list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2172                 list_del_init(&iocg->surplus_list);
2173
2174         /*
2175          * A low weight iocg can amass a large amount of debt, for example, when
2176          * anonymous memory gets reclaimed aggressively. If the system has a lot
2177          * of memory paired with a slow IO device, the debt can span multiple
2178          * seconds or more. If there are no other subsequent IO issuers, the
2179          * in-debt iocg may end up blocked paying its debt while the IO device
2180          * is idle.
2181          *
2182          * The following protects against such pathological cases. If the device
2183          * has been sufficiently idle for a substantial amount of time, the
2184          * debts are halved. The criteria are on the conservative side as we
2185          * want to resolve the rare extreme cases without impacting regular
2186          * operation by forgiving debts too readily.
2187          */
2188         if (nr_shortages ||
2189             div64_u64(100 * usage_us_sum, now.now - ioc->period_at) >=
2190             DEBT_BUSY_USAGE_PCT)
2191                 ioc->debt_busy_at = now.now;
2192
2193         if (nr_debtors &&
2194             now.now - ioc->debt_busy_at >= DEBT_REDUCTION_IDLE_DUR) {
2195                 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2196                         if (iocg->abs_vdebt) {
2197                                 spin_lock(&iocg->waitq.lock);
2198                                 iocg->abs_vdebt /= 2;
2199                                 iocg_kick_waitq(iocg, true, &now);
2200                                 spin_unlock(&iocg->waitq.lock);
2201                         }
2202                 }
2203                 ioc->debt_busy_at = now.now;
2204         }
2205
2206         /*
2207          * If q is getting clogged or we're missing too much, we're issuing
2208          * too much IO and should lower vtime rate.  If we're not missing
2209          * and experiencing shortages but not surpluses, we're too stingy
2210          * and should increase vtime rate.
2211          */
2212         prev_busy_level = ioc->busy_level;
2213         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2214             missed_ppm[READ] > ppm_rthr ||
2215             missed_ppm[WRITE] > ppm_wthr) {
2216                 /* clearly missing QoS targets, slow down vrate */
2217                 ioc->busy_level = max(ioc->busy_level, 0);
2218                 ioc->busy_level++;
2219         } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2220                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2221                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2222                 /* QoS targets are being met with >25% margin */
2223                 if (nr_shortages) {
2224                         /*
2225                          * We're throttling while the device has spare
2226                          * capacity.  If vrate was being slowed down, stop.
2227                          */
2228                         ioc->busy_level = min(ioc->busy_level, 0);
2229
2230                         /*
2231                          * If there are IOs spanning multiple periods, wait
2232                          * them out before pushing the device harder.
2233                          */
2234                         if (!nr_lagging)
2235                                 ioc->busy_level--;
2236                 } else {
2237                         /*
2238                          * Nobody is being throttled and the users aren't
2239                          * issuing enough IOs to saturate the device.  We
2240                          * simply don't know how close the device is to
2241                          * saturation.  Coast.
2242                          */
2243                         ioc->busy_level = 0;
2244                 }
2245         } else {
2246                 /* inside the hysterisis margin, we're good */
2247                 ioc->busy_level = 0;
2248         }
2249
2250         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2251
2252         if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
2253                 u64 vrate = ioc->vtime_base_rate;
2254                 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
2255
2256                 /* rq_wait signal is always reliable, ignore user vrate_min */
2257                 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
2258                         vrate_min = VRATE_MIN;
2259
2260                 /*
2261                  * If vrate is out of bounds, apply clamp gradually as the
2262                  * bounds can change abruptly.  Otherwise, apply busy_level
2263                  * based adjustment.
2264                  */
2265                 if (vrate < vrate_min) {
2266                         vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
2267                                           100);
2268                         vrate = min(vrate, vrate_min);
2269                 } else if (vrate > vrate_max) {
2270                         vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
2271                                           100);
2272                         vrate = max(vrate, vrate_max);
2273                 } else {
2274                         int idx = min_t(int, abs(ioc->busy_level),
2275                                         ARRAY_SIZE(vrate_adj_pct) - 1);
2276                         u32 adj_pct = vrate_adj_pct[idx];
2277
2278                         if (ioc->busy_level > 0)
2279                                 adj_pct = 100 - adj_pct;
2280                         else
2281                                 adj_pct = 100 + adj_pct;
2282
2283                         vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
2284                                       vrate_min, vrate_max);
2285                 }
2286
2287                 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
2288                                            nr_lagging, nr_shortages);
2289
2290                 ioc->vtime_base_rate = vrate;
2291                 ioc_refresh_margins(ioc);
2292         } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
2293                 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
2294                                            missed_ppm, rq_wait_pct, nr_lagging,
2295                                            nr_shortages);
2296         }
2297
2298         ioc_refresh_params(ioc, false);
2299
2300         /*
2301          * This period is done.  Move onto the next one.  If nothing's
2302          * going on with the device, stop the timer.
2303          */
2304         atomic64_inc(&ioc->cur_period);
2305
2306         if (ioc->running != IOC_STOP) {
2307                 if (!list_empty(&ioc->active_iocgs)) {
2308                         ioc_start_period(ioc, &now);
2309                 } else {
2310                         ioc->busy_level = 0;
2311                         ioc->vtime_err = 0;
2312                         ioc->running = IOC_IDLE;
2313                 }
2314
2315                 ioc_refresh_vrate(ioc, &now);
2316         }
2317
2318         spin_unlock_irq(&ioc->lock);
2319 }
2320
2321 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2322                                       u64 abs_cost, struct ioc_now *now)
2323 {
2324         struct ioc *ioc = iocg->ioc;
2325         struct ioc_margins *margins = &ioc->margins;
2326         u32 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2327         u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2328         u32 hwi;
2329         s64 margin;
2330         u64 cost, new_inuse;
2331
2332         current_hweight(iocg, NULL, &hwi);
2333         old_hwi = hwi;
2334         cost = abs_cost_to_cost(abs_cost, hwi);
2335         margin = now->vnow - vtime - cost;
2336
2337         /* debt handling owns inuse for debtors */
2338         if (iocg->abs_vdebt)
2339                 return cost;
2340
2341         /*
2342          * We only increase inuse during period and do so iff the margin has
2343          * deteriorated since the previous adjustment.
2344          */
2345         if (margin >= iocg->saved_margin || margin >= margins->low ||
2346             iocg->inuse == iocg->active)
2347                 return cost;
2348
2349         spin_lock_irq(&ioc->lock);
2350
2351         /* we own inuse only when @iocg is in the normal active state */
2352         if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2353                 spin_unlock_irq(&ioc->lock);
2354                 return cost;
2355         }
2356
2357         /* bump up inuse till @abs_cost fits in the existing budget */
2358         new_inuse = iocg->inuse;
2359         do {
2360                 new_inuse = new_inuse + adj_step;
2361                 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2362                 current_hweight(iocg, NULL, &hwi);
2363                 cost = abs_cost_to_cost(abs_cost, hwi);
2364         } while (time_after64(vtime + cost, now->vnow) &&
2365                  iocg->inuse != iocg->active);
2366
2367         spin_unlock_irq(&ioc->lock);
2368
2369         TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2370                         old_inuse, iocg->inuse, old_hwi, hwi);
2371
2372         return cost;
2373 }
2374
2375 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2376                                     bool is_merge, u64 *costp)
2377 {
2378         struct ioc *ioc = iocg->ioc;
2379         u64 coef_seqio, coef_randio, coef_page;
2380         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2381         u64 seek_pages = 0;
2382         u64 cost = 0;
2383
2384         switch (bio_op(bio)) {
2385         case REQ_OP_READ:
2386                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
2387                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
2388                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
2389                 break;
2390         case REQ_OP_WRITE:
2391                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
2392                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
2393                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
2394                 break;
2395         default:
2396                 goto out;
2397         }
2398
2399         if (iocg->cursor) {
2400                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2401                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2402         }
2403
2404         if (!is_merge) {
2405                 if (seek_pages > LCOEF_RANDIO_PAGES) {
2406                         cost += coef_randio;
2407                 } else {
2408                         cost += coef_seqio;
2409                 }
2410         }
2411         cost += pages * coef_page;
2412 out:
2413         *costp = cost;
2414 }
2415
2416 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2417 {
2418         u64 cost;
2419
2420         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2421         return cost;
2422 }
2423
2424 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2425                                          u64 *costp)
2426 {
2427         unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2428
2429         switch (req_op(rq)) {
2430         case REQ_OP_READ:
2431                 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2432                 break;
2433         case REQ_OP_WRITE:
2434                 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2435                 break;
2436         default:
2437                 *costp = 0;
2438         }
2439 }
2440
2441 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2442 {
2443         u64 cost;
2444
2445         calc_size_vtime_cost_builtin(rq, ioc, &cost);
2446         return cost;
2447 }
2448
2449 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2450 {
2451         struct blkcg_gq *blkg = bio->bi_blkg;
2452         struct ioc *ioc = rqos_to_ioc(rqos);
2453         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2454         struct ioc_now now;
2455         struct iocg_wait wait;
2456         u64 abs_cost, cost, vtime;
2457         bool use_debt, ioc_locked;
2458         unsigned long flags;
2459
2460         /* bypass IOs if disabled or for root cgroup */
2461         if (!ioc->enabled || !iocg->level)
2462                 return;
2463
2464         /* calculate the absolute vtime cost */
2465         abs_cost = calc_vtime_cost(bio, iocg, false);
2466         if (!abs_cost)
2467                 return;
2468
2469         if (!iocg_activate(iocg, &now))
2470                 return;
2471
2472         iocg->cursor = bio_end_sector(bio);
2473         vtime = atomic64_read(&iocg->vtime);
2474         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2475
2476         /*
2477          * If no one's waiting and within budget, issue right away.  The
2478          * tests are racy but the races aren't systemic - we only miss once
2479          * in a while which is fine.
2480          */
2481         if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2482             time_before_eq64(vtime + cost, now.vnow)) {
2483                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2484                 return;
2485         }
2486
2487         /*
2488          * We're over budget. This can be handled in two ways. IOs which may
2489          * cause priority inversions are punted to @ioc->aux_iocg and charged as
2490          * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2491          * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2492          * whether debt handling is needed and acquire locks accordingly.
2493          */
2494         use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2495         ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2496 retry_lock:
2497         iocg_lock(iocg, ioc_locked, &flags);
2498
2499         /*
2500          * @iocg must stay activated for debt and waitq handling. Deactivation
2501          * is synchronized against both ioc->lock and waitq.lock and we won't
2502          * get deactivated as long as we're waiting or has debt, so we're good
2503          * if we're activated here. In the unlikely cases that we aren't, just
2504          * issue the IO.
2505          */
2506         if (unlikely(list_empty(&iocg->active_list))) {
2507                 iocg_unlock(iocg, ioc_locked, &flags);
2508                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2509                 return;
2510         }
2511
2512         /*
2513          * We're over budget. If @bio has to be issued regardless, remember
2514          * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2515          * off the debt before waking more IOs.
2516          *
2517          * This way, the debt is continuously paid off each period with the
2518          * actual budget available to the cgroup. If we just wound vtime, we
2519          * would incorrectly use the current hw_inuse for the entire amount
2520          * which, for example, can lead to the cgroup staying blocked for a
2521          * long time even with substantially raised hw_inuse.
2522          *
2523          * An iocg with vdebt should stay online so that the timer can keep
2524          * deducting its vdebt and [de]activate use_delay mechanism
2525          * accordingly. We don't want to race against the timer trying to
2526          * clear them and leave @iocg inactive w/ dangling use_delay heavily
2527          * penalizing the cgroup and its descendants.
2528          */
2529         if (use_debt) {
2530                 iocg_incur_debt(iocg, abs_cost, &now);
2531                 if (iocg_kick_delay(iocg, &now))
2532                         blkcg_schedule_throttle(rqos->q,
2533                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2534                 iocg_unlock(iocg, ioc_locked, &flags);
2535                 return;
2536         }
2537
2538         /* guarantee that iocgs w/ waiters have maximum inuse */
2539         if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2540                 if (!ioc_locked) {
2541                         iocg_unlock(iocg, false, &flags);
2542                         ioc_locked = true;
2543                         goto retry_lock;
2544                 }
2545                 propagate_weights(iocg, iocg->active, iocg->active, true,
2546                                   &now);
2547         }
2548
2549         /*
2550          * Append self to the waitq and schedule the wakeup timer if we're
2551          * the first waiter.  The timer duration is calculated based on the
2552          * current vrate.  vtime and hweight changes can make it too short
2553          * or too long.  Each wait entry records the absolute cost it's
2554          * waiting for to allow re-evaluation using a custom wait entry.
2555          *
2556          * If too short, the timer simply reschedules itself.  If too long,
2557          * the period timer will notice and trigger wakeups.
2558          *
2559          * All waiters are on iocg->waitq and the wait states are
2560          * synchronized using waitq.lock.
2561          */
2562         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2563         wait.wait.private = current;
2564         wait.bio = bio;
2565         wait.abs_cost = abs_cost;
2566         wait.committed = false; /* will be set true by waker */
2567
2568         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2569         iocg_kick_waitq(iocg, ioc_locked, &now);
2570
2571         iocg_unlock(iocg, ioc_locked, &flags);
2572
2573         while (true) {
2574                 set_current_state(TASK_UNINTERRUPTIBLE);
2575                 if (wait.committed)
2576                         break;
2577                 io_schedule();
2578         }
2579
2580         /* waker already committed us, proceed */
2581         finish_wait(&iocg->waitq, &wait.wait);
2582 }
2583
2584 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2585                            struct bio *bio)
2586 {
2587         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2588         struct ioc *ioc = iocg->ioc;
2589         sector_t bio_end = bio_end_sector(bio);
2590         struct ioc_now now;
2591         u64 vtime, abs_cost, cost;
2592         unsigned long flags;
2593
2594         /* bypass if disabled or for root cgroup */
2595         if (!ioc->enabled || !iocg->level)
2596                 return;
2597
2598         abs_cost = calc_vtime_cost(bio, iocg, true);
2599         if (!abs_cost)
2600                 return;
2601
2602         ioc_now(ioc, &now);
2603
2604         vtime = atomic64_read(&iocg->vtime);
2605         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2606
2607         /* update cursor if backmerging into the request at the cursor */
2608         if (blk_rq_pos(rq) < bio_end &&
2609             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2610                 iocg->cursor = bio_end;
2611
2612         /*
2613          * Charge if there's enough vtime budget and the existing request has
2614          * cost assigned.
2615          */
2616         if (rq->bio && rq->bio->bi_iocost_cost &&
2617             time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2618                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2619                 return;
2620         }
2621
2622         /*
2623          * Otherwise, account it as debt if @iocg is online, which it should
2624          * be for the vast majority of cases. See debt handling in
2625          * ioc_rqos_throttle() for details.
2626          */
2627         spin_lock_irqsave(&ioc->lock, flags);
2628         spin_lock(&iocg->waitq.lock);
2629
2630         if (likely(!list_empty(&iocg->active_list))) {
2631                 iocg_incur_debt(iocg, abs_cost, &now);
2632                 if (iocg_kick_delay(iocg, &now))
2633                         blkcg_schedule_throttle(rqos->q,
2634                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2635         } else {
2636                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2637         }
2638
2639         spin_unlock(&iocg->waitq.lock);
2640         spin_unlock_irqrestore(&ioc->lock, flags);
2641 }
2642
2643 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2644 {
2645         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2646
2647         if (iocg && bio->bi_iocost_cost)
2648                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2649 }
2650
2651 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2652 {
2653         struct ioc *ioc = rqos_to_ioc(rqos);
2654         struct ioc_pcpu_stat *ccs;
2655         u64 on_q_ns, rq_wait_ns, size_nsec;
2656         int pidx, rw;
2657
2658         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2659                 return;
2660
2661         switch (req_op(rq) & REQ_OP_MASK) {
2662         case REQ_OP_READ:
2663                 pidx = QOS_RLAT;
2664                 rw = READ;
2665                 break;
2666         case REQ_OP_WRITE:
2667                 pidx = QOS_WLAT;
2668                 rw = WRITE;
2669                 break;
2670         default:
2671                 return;
2672         }
2673
2674         on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2675         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2676         size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2677
2678         ccs = get_cpu_ptr(ioc->pcpu_stat);
2679
2680         if (on_q_ns <= size_nsec ||
2681             on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2682                 local_inc(&ccs->missed[rw].nr_met);
2683         else
2684                 local_inc(&ccs->missed[rw].nr_missed);
2685
2686         local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2687
2688         put_cpu_ptr(ccs);
2689 }
2690
2691 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2692 {
2693         struct ioc *ioc = rqos_to_ioc(rqos);
2694
2695         spin_lock_irq(&ioc->lock);
2696         ioc_refresh_params(ioc, false);
2697         spin_unlock_irq(&ioc->lock);
2698 }
2699
2700 static void ioc_rqos_exit(struct rq_qos *rqos)
2701 {
2702         struct ioc *ioc = rqos_to_ioc(rqos);
2703
2704         blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2705
2706         spin_lock_irq(&ioc->lock);
2707         ioc->running = IOC_STOP;
2708         spin_unlock_irq(&ioc->lock);
2709
2710         del_timer_sync(&ioc->timer);
2711         free_percpu(ioc->pcpu_stat);
2712         kfree(ioc);
2713 }
2714
2715 static struct rq_qos_ops ioc_rqos_ops = {
2716         .throttle = ioc_rqos_throttle,
2717         .merge = ioc_rqos_merge,
2718         .done_bio = ioc_rqos_done_bio,
2719         .done = ioc_rqos_done,
2720         .queue_depth_changed = ioc_rqos_queue_depth_changed,
2721         .exit = ioc_rqos_exit,
2722 };
2723
2724 static int blk_iocost_init(struct request_queue *q)
2725 {
2726         struct ioc *ioc;
2727         struct rq_qos *rqos;
2728         int i, cpu, ret;
2729
2730         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2731         if (!ioc)
2732                 return -ENOMEM;
2733
2734         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2735         if (!ioc->pcpu_stat) {
2736                 kfree(ioc);
2737                 return -ENOMEM;
2738         }
2739
2740         for_each_possible_cpu(cpu) {
2741                 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2742
2743                 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2744                         local_set(&ccs->missed[i].nr_met, 0);
2745                         local_set(&ccs->missed[i].nr_missed, 0);
2746                 }
2747                 local64_set(&ccs->rq_wait_ns, 0);
2748         }
2749
2750         rqos = &ioc->rqos;
2751         rqos->id = RQ_QOS_COST;
2752         rqos->ops = &ioc_rqos_ops;
2753         rqos->q = q;
2754
2755         spin_lock_init(&ioc->lock);
2756         timer_setup(&ioc->timer, ioc_timer_fn, 0);
2757         INIT_LIST_HEAD(&ioc->active_iocgs);
2758
2759         ioc->running = IOC_IDLE;
2760         ioc->vtime_base_rate = VTIME_PER_USEC;
2761         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2762         seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2763         ioc->period_at = ktime_to_us(ktime_get());
2764         atomic64_set(&ioc->cur_period, 0);
2765         atomic_set(&ioc->hweight_gen, 0);
2766
2767         spin_lock_irq(&ioc->lock);
2768         ioc->autop_idx = AUTOP_INVALID;
2769         ioc_refresh_params(ioc, true);
2770         spin_unlock_irq(&ioc->lock);
2771
2772         rq_qos_add(q, rqos);
2773         ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2774         if (ret) {
2775                 rq_qos_del(q, rqos);
2776                 free_percpu(ioc->pcpu_stat);
2777                 kfree(ioc);
2778                 return ret;
2779         }
2780         return 0;
2781 }
2782
2783 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2784 {
2785         struct ioc_cgrp *iocc;
2786
2787         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2788         if (!iocc)
2789                 return NULL;
2790
2791         iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2792         return &iocc->cpd;
2793 }
2794
2795 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2796 {
2797         kfree(container_of(cpd, struct ioc_cgrp, cpd));
2798 }
2799
2800 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2801                                              struct blkcg *blkcg)
2802 {
2803         int levels = blkcg->css.cgroup->level + 1;
2804         struct ioc_gq *iocg;
2805
2806         iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2807         if (!iocg)
2808                 return NULL;
2809
2810         iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2811         if (!iocg->pcpu_stat) {
2812                 kfree(iocg);
2813                 return NULL;
2814         }
2815
2816         return &iocg->pd;
2817 }
2818
2819 static void ioc_pd_init(struct blkg_policy_data *pd)
2820 {
2821         struct ioc_gq *iocg = pd_to_iocg(pd);
2822         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2823         struct ioc *ioc = q_to_ioc(blkg->q);
2824         struct ioc_now now;
2825         struct blkcg_gq *tblkg;
2826         unsigned long flags;
2827
2828         ioc_now(ioc, &now);
2829
2830         iocg->ioc = ioc;
2831         atomic64_set(&iocg->vtime, now.vnow);
2832         atomic64_set(&iocg->done_vtime, now.vnow);
2833         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2834         INIT_LIST_HEAD(&iocg->active_list);
2835         INIT_LIST_HEAD(&iocg->walk_list);
2836         INIT_LIST_HEAD(&iocg->surplus_list);
2837         iocg->hweight_active = WEIGHT_ONE;
2838         iocg->hweight_inuse = WEIGHT_ONE;
2839
2840         init_waitqueue_head(&iocg->waitq);
2841         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2842         iocg->waitq_timer.function = iocg_waitq_timer_fn;
2843
2844         iocg->level = blkg->blkcg->css.cgroup->level;
2845
2846         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2847                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2848                 iocg->ancestors[tiocg->level] = tiocg;
2849         }
2850
2851         spin_lock_irqsave(&ioc->lock, flags);
2852         weight_updated(iocg, &now);
2853         spin_unlock_irqrestore(&ioc->lock, flags);
2854 }
2855
2856 static void ioc_pd_free(struct blkg_policy_data *pd)
2857 {
2858         struct ioc_gq *iocg = pd_to_iocg(pd);
2859         struct ioc *ioc = iocg->ioc;
2860         unsigned long flags;
2861
2862         if (ioc) {
2863                 spin_lock_irqsave(&ioc->lock, flags);
2864
2865                 if (!list_empty(&iocg->active_list)) {
2866                         struct ioc_now now;
2867
2868                         ioc_now(ioc, &now);
2869                         propagate_weights(iocg, 0, 0, false, &now);
2870                         list_del_init(&iocg->active_list);
2871                 }
2872
2873                 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2874                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2875
2876                 spin_unlock_irqrestore(&ioc->lock, flags);
2877
2878                 hrtimer_cancel(&iocg->waitq_timer);
2879         }
2880         free_percpu(iocg->pcpu_stat);
2881         kfree(iocg);
2882 }
2883
2884 static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
2885 {
2886         struct ioc_gq *iocg = pd_to_iocg(pd);
2887         struct ioc *ioc = iocg->ioc;
2888         size_t pos = 0;
2889
2890         if (!ioc->enabled)
2891                 return 0;
2892
2893         if (iocg->level == 0) {
2894                 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
2895                         ioc->vtime_base_rate * 10000,
2896                         VTIME_PER_USEC);
2897                 pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
2898                                   vp10k / 100, vp10k % 100);
2899         }
2900
2901         pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
2902                          iocg->last_stat.usage_us);
2903
2904         if (blkcg_debug_stats)
2905                 pos += scnprintf(buf + pos, size - pos,
2906                                  " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
2907                                  iocg->last_stat.wait_us,
2908                                  iocg->last_stat.indebt_us,
2909                                  iocg->last_stat.indelay_us);
2910
2911         return pos;
2912 }
2913
2914 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2915                              int off)
2916 {
2917         const char *dname = blkg_dev_name(pd->blkg);
2918         struct ioc_gq *iocg = pd_to_iocg(pd);
2919
2920         if (dname && iocg->cfg_weight)
2921                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
2922         return 0;
2923 }
2924
2925
2926 static int ioc_weight_show(struct seq_file *sf, void *v)
2927 {
2928         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2929         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2930
2931         seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
2932         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
2933                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
2934         return 0;
2935 }
2936
2937 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
2938                                 size_t nbytes, loff_t off)
2939 {
2940         struct blkcg *blkcg = css_to_blkcg(of_css(of));
2941         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2942         struct blkg_conf_ctx ctx;
2943         struct ioc_now now;
2944         struct ioc_gq *iocg;
2945         u32 v;
2946         int ret;
2947
2948         if (!strchr(buf, ':')) {
2949                 struct blkcg_gq *blkg;
2950
2951                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
2952                         return -EINVAL;
2953
2954                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2955                         return -EINVAL;
2956
2957                 spin_lock(&blkcg->lock);
2958                 iocc->dfl_weight = v * WEIGHT_ONE;
2959                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
2960                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2961
2962                         if (iocg) {
2963                                 spin_lock_irq(&iocg->ioc->lock);
2964                                 ioc_now(iocg->ioc, &now);
2965                                 weight_updated(iocg, &now);
2966                                 spin_unlock_irq(&iocg->ioc->lock);
2967                         }
2968                 }
2969                 spin_unlock(&blkcg->lock);
2970
2971                 return nbytes;
2972         }
2973
2974         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
2975         if (ret)
2976                 return ret;
2977
2978         iocg = blkg_to_iocg(ctx.blkg);
2979
2980         if (!strncmp(ctx.body, "default", 7)) {
2981                 v = 0;
2982         } else {
2983                 if (!sscanf(ctx.body, "%u", &v))
2984                         goto einval;
2985                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2986                         goto einval;
2987         }
2988
2989         spin_lock(&iocg->ioc->lock);
2990         iocg->cfg_weight = v * WEIGHT_ONE;
2991         ioc_now(iocg->ioc, &now);
2992         weight_updated(iocg, &now);
2993         spin_unlock(&iocg->ioc->lock);
2994
2995         blkg_conf_finish(&ctx);
2996         return nbytes;
2997
2998 einval:
2999         blkg_conf_finish(&ctx);
3000         return -EINVAL;
3001 }
3002
3003 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3004                           int off)
3005 {
3006         const char *dname = blkg_dev_name(pd->blkg);
3007         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3008
3009         if (!dname)
3010                 return 0;
3011
3012         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3013                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3014                    ioc->params.qos[QOS_RPPM] / 10000,
3015                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
3016                    ioc->params.qos[QOS_RLAT],
3017                    ioc->params.qos[QOS_WPPM] / 10000,
3018                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
3019                    ioc->params.qos[QOS_WLAT],
3020                    ioc->params.qos[QOS_MIN] / 10000,
3021                    ioc->params.qos[QOS_MIN] % 10000 / 100,
3022                    ioc->params.qos[QOS_MAX] / 10000,
3023                    ioc->params.qos[QOS_MAX] % 10000 / 100);
3024         return 0;
3025 }
3026
3027 static int ioc_qos_show(struct seq_file *sf, void *v)
3028 {
3029         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3030
3031         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3032                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3033         return 0;
3034 }
3035
3036 static const match_table_t qos_ctrl_tokens = {
3037         { QOS_ENABLE,           "enable=%u"     },
3038         { QOS_CTRL,             "ctrl=%s"       },
3039         { NR_QOS_CTRL_PARAMS,   NULL            },
3040 };
3041
3042 static const match_table_t qos_tokens = {
3043         { QOS_RPPM,             "rpct=%s"       },
3044         { QOS_RLAT,             "rlat=%u"       },
3045         { QOS_WPPM,             "wpct=%s"       },
3046         { QOS_WLAT,             "wlat=%u"       },
3047         { QOS_MIN,              "min=%s"        },
3048         { QOS_MAX,              "max=%s"        },
3049         { NR_QOS_PARAMS,        NULL            },
3050 };
3051
3052 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3053                              size_t nbytes, loff_t off)
3054 {
3055         struct gendisk *disk;
3056         struct ioc *ioc;
3057         u32 qos[NR_QOS_PARAMS];
3058         bool enable, user;
3059         char *p;
3060         int ret;
3061
3062         disk = blkcg_conf_get_disk(&input);
3063         if (IS_ERR(disk))
3064                 return PTR_ERR(disk);
3065
3066         ioc = q_to_ioc(disk->queue);
3067         if (!ioc) {
3068                 ret = blk_iocost_init(disk->queue);
3069                 if (ret)
3070                         goto err;
3071                 ioc = q_to_ioc(disk->queue);
3072         }
3073
3074         spin_lock_irq(&ioc->lock);
3075         memcpy(qos, ioc->params.qos, sizeof(qos));
3076         enable = ioc->enabled;
3077         user = ioc->user_qos_params;
3078         spin_unlock_irq(&ioc->lock);
3079
3080         while ((p = strsep(&input, " \t\n"))) {
3081                 substring_t args[MAX_OPT_ARGS];
3082                 char buf[32];
3083                 int tok;
3084                 s64 v;
3085
3086                 if (!*p)
3087                         continue;
3088
3089                 switch (match_token(p, qos_ctrl_tokens, args)) {
3090                 case QOS_ENABLE:
3091                         match_u64(&args[0], &v);
3092                         enable = v;
3093                         continue;
3094                 case QOS_CTRL:
3095                         match_strlcpy(buf, &args[0], sizeof(buf));
3096                         if (!strcmp(buf, "auto"))
3097                                 user = false;
3098                         else if (!strcmp(buf, "user"))
3099                                 user = true;
3100                         else
3101                                 goto einval;
3102                         continue;
3103                 }
3104
3105                 tok = match_token(p, qos_tokens, args);
3106                 switch (tok) {
3107                 case QOS_RPPM:
3108                 case QOS_WPPM:
3109                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3110                             sizeof(buf))
3111                                 goto einval;
3112                         if (cgroup_parse_float(buf, 2, &v))
3113                                 goto einval;
3114                         if (v < 0 || v > 10000)
3115                                 goto einval;
3116                         qos[tok] = v * 100;
3117                         break;
3118                 case QOS_RLAT:
3119                 case QOS_WLAT:
3120                         if (match_u64(&args[0], &v))
3121                                 goto einval;
3122                         qos[tok] = v;
3123                         break;
3124                 case QOS_MIN:
3125                 case QOS_MAX:
3126                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3127                             sizeof(buf))
3128                                 goto einval;
3129                         if (cgroup_parse_float(buf, 2, &v))
3130                                 goto einval;
3131                         if (v < 0)
3132                                 goto einval;
3133                         qos[tok] = clamp_t(s64, v * 100,
3134                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
3135                         break;
3136                 default:
3137                         goto einval;
3138                 }
3139                 user = true;
3140         }
3141
3142         if (qos[QOS_MIN] > qos[QOS_MAX])
3143                 goto einval;
3144
3145         spin_lock_irq(&ioc->lock);
3146
3147         if (enable) {
3148                 blk_stat_enable_accounting(ioc->rqos.q);
3149                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3150                 ioc->enabled = true;
3151         } else {
3152                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3153                 ioc->enabled = false;
3154         }
3155
3156         if (user) {
3157                 memcpy(ioc->params.qos, qos, sizeof(qos));
3158                 ioc->user_qos_params = true;
3159         } else {
3160                 ioc->user_qos_params = false;
3161         }
3162
3163         ioc_refresh_params(ioc, true);
3164         spin_unlock_irq(&ioc->lock);
3165
3166         put_disk_and_module(disk);
3167         return nbytes;
3168 einval:
3169         ret = -EINVAL;
3170 err:
3171         put_disk_and_module(disk);
3172         return ret;
3173 }
3174
3175 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3176                                  struct blkg_policy_data *pd, int off)
3177 {
3178         const char *dname = blkg_dev_name(pd->blkg);
3179         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3180         u64 *u = ioc->params.i_lcoefs;
3181
3182         if (!dname)
3183                 return 0;
3184
3185         seq_printf(sf, "%s ctrl=%s model=linear "
3186                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
3187                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3188                    dname, ioc->user_cost_model ? "user" : "auto",
3189                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3190                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3191         return 0;
3192 }
3193
3194 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3195 {
3196         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3197
3198         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3199                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3200         return 0;
3201 }
3202
3203 static const match_table_t cost_ctrl_tokens = {
3204         { COST_CTRL,            "ctrl=%s"       },
3205         { COST_MODEL,           "model=%s"      },
3206         { NR_COST_CTRL_PARAMS,  NULL            },
3207 };
3208
3209 static const match_table_t i_lcoef_tokens = {
3210         { I_LCOEF_RBPS,         "rbps=%u"       },
3211         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
3212         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
3213         { I_LCOEF_WBPS,         "wbps=%u"       },
3214         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
3215         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
3216         { NR_I_LCOEFS,          NULL            },
3217 };
3218
3219 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3220                                     size_t nbytes, loff_t off)
3221 {
3222         struct gendisk *disk;
3223         struct ioc *ioc;
3224         u64 u[NR_I_LCOEFS];
3225         bool user;
3226         char *p;
3227         int ret;
3228
3229         disk = blkcg_conf_get_disk(&input);
3230         if (IS_ERR(disk))
3231                 return PTR_ERR(disk);
3232
3233         ioc = q_to_ioc(disk->queue);
3234         if (!ioc) {
3235                 ret = blk_iocost_init(disk->queue);
3236                 if (ret)
3237                         goto err;
3238                 ioc = q_to_ioc(disk->queue);
3239         }
3240
3241         spin_lock_irq(&ioc->lock);
3242         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3243         user = ioc->user_cost_model;
3244         spin_unlock_irq(&ioc->lock);
3245
3246         while ((p = strsep(&input, " \t\n"))) {
3247                 substring_t args[MAX_OPT_ARGS];
3248                 char buf[32];
3249                 int tok;
3250                 u64 v;
3251
3252                 if (!*p)
3253                         continue;
3254
3255                 switch (match_token(p, cost_ctrl_tokens, args)) {
3256                 case COST_CTRL:
3257                         match_strlcpy(buf, &args[0], sizeof(buf));
3258                         if (!strcmp(buf, "auto"))
3259                                 user = false;
3260                         else if (!strcmp(buf, "user"))
3261                                 user = true;
3262                         else
3263                                 goto einval;
3264                         continue;
3265                 case COST_MODEL:
3266                         match_strlcpy(buf, &args[0], sizeof(buf));
3267                         if (strcmp(buf, "linear"))
3268                                 goto einval;
3269                         continue;
3270                 }
3271
3272                 tok = match_token(p, i_lcoef_tokens, args);
3273                 if (tok == NR_I_LCOEFS)
3274                         goto einval;
3275                 if (match_u64(&args[0], &v))
3276                         goto einval;
3277                 u[tok] = v;
3278                 user = true;
3279         }
3280
3281         spin_lock_irq(&ioc->lock);
3282         if (user) {
3283                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3284                 ioc->user_cost_model = true;
3285         } else {
3286                 ioc->user_cost_model = false;
3287         }
3288         ioc_refresh_params(ioc, true);
3289         spin_unlock_irq(&ioc->lock);
3290
3291         put_disk_and_module(disk);
3292         return nbytes;
3293
3294 einval:
3295         ret = -EINVAL;
3296 err:
3297         put_disk_and_module(disk);
3298         return ret;
3299 }
3300
3301 static struct cftype ioc_files[] = {
3302         {
3303                 .name = "weight",
3304                 .flags = CFTYPE_NOT_ON_ROOT,
3305                 .seq_show = ioc_weight_show,
3306                 .write = ioc_weight_write,
3307         },
3308         {
3309                 .name = "cost.qos",
3310                 .flags = CFTYPE_ONLY_ON_ROOT,
3311                 .seq_show = ioc_qos_show,
3312                 .write = ioc_qos_write,
3313         },
3314         {
3315                 .name = "cost.model",
3316                 .flags = CFTYPE_ONLY_ON_ROOT,
3317                 .seq_show = ioc_cost_model_show,
3318                 .write = ioc_cost_model_write,
3319         },
3320         {}
3321 };
3322
3323 static struct blkcg_policy blkcg_policy_iocost = {
3324         .dfl_cftypes    = ioc_files,
3325         .cpd_alloc_fn   = ioc_cpd_alloc,
3326         .cpd_free_fn    = ioc_cpd_free,
3327         .pd_alloc_fn    = ioc_pd_alloc,
3328         .pd_init_fn     = ioc_pd_init,
3329         .pd_free_fn     = ioc_pd_free,
3330         .pd_stat_fn     = ioc_pd_stat,
3331 };
3332
3333 static int __init ioc_init(void)
3334 {
3335         return blkcg_policy_register(&blkcg_policy_iocost);
3336 }
3337
3338 static void __exit ioc_exit(void)
3339 {
3340         return blkcg_policy_unregister(&blkcg_policy_iocost);
3341 }
3342
3343 module_init(ioc_init);
3344 module_exit(ioc_exit);