reset: Create subdirectory for StarFive drivers
[platform/kernel/linux-starfive.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * parameters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO if doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, soley depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per        : Timer period
166  * - cur_per    : Internal wall and device vtime clock
167  * - vrate      : Device virtual time rate against wall clock
168  * - weight     : Surplus-adjusted and configured weights
169  * - hweight    : Surplus-adjusted and configured hierarchical weights
170  * - inflt      : The percentage of in-flight IO cost at the end of last period
171  * - del_ms     : Deferred issuer delay induction level and duration
172  * - usages     : Usage history
173  */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
185 #include "blk-wbt.h"
186 #include "blk-cgroup.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
196         do {                                                                    \
197                 unsigned long flags;                                            \
198                 if (trace_iocost_##type##_enabled()) {                          \
199                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
200                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
201                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
202                         trace_iocost_##type(iocg, trace_iocg_path,              \
203                                               ##__VA_ARGS__);                   \
204                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
205                 }                                                               \
206         } while (0)
207
208 #else   /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
210 #endif  /* CONFIG_TRACE_POINTS */
211
212 enum {
213         MILLION                 = 1000000,
214
215         /* timer period is calculated from latency requirements, bound it */
216         MIN_PERIOD              = USEC_PER_MSEC,
217         MAX_PERIOD              = USEC_PER_SEC,
218
219         /*
220          * iocg->vtime is targeted at 50% behind the device vtime, which
221          * serves as its IO credit buffer.  Surplus weight adjustment is
222          * immediately canceled if the vtime margin runs below 10%.
223          */
224         MARGIN_MIN_PCT          = 10,
225         MARGIN_LOW_PCT          = 20,
226         MARGIN_TARGET_PCT       = 50,
227
228         INUSE_ADJ_STEP_PCT      = 25,
229
230         /* Have some play in timer operations */
231         TIMER_SLACK_PCT         = 1,
232
233         /* 1/64k is granular enough and can easily be handled w/ u32 */
234         WEIGHT_ONE              = 1 << 16,
235
236         /*
237          * As vtime is used to calculate the cost of each IO, it needs to
238          * be fairly high precision.  For example, it should be able to
239          * represent the cost of a single page worth of discard with
240          * suffificient accuracy.  At the same time, it should be able to
241          * represent reasonably long enough durations to be useful and
242          * convenient during operation.
243          *
244          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
245          * granularity and days of wrap-around time even at extreme vrates.
246          */
247         VTIME_PER_SEC_SHIFT     = 37,
248         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
249         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
250         VTIME_PER_NSEC          = VTIME_PER_SEC / NSEC_PER_SEC,
251
252         /* bound vrate adjustments within two orders of magnitude */
253         VRATE_MIN_PPM           = 10000,        /* 1% */
254         VRATE_MAX_PPM           = 100000000,    /* 10000% */
255
256         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
257         VRATE_CLAMP_ADJ_PCT     = 4,
258
259         /* if IOs end up waiting for requests, issue less */
260         RQ_WAIT_BUSY_PCT        = 5,
261
262         /* unbusy hysterisis */
263         UNBUSY_THR_PCT          = 75,
264
265         /*
266          * The effect of delay is indirect and non-linear and a huge amount of
267          * future debt can accumulate abruptly while unthrottled. Linearly scale
268          * up delay as debt is going up and then let it decay exponentially.
269          * This gives us quick ramp ups while delay is accumulating and long
270          * tails which can help reducing the frequency of debt explosions on
271          * unthrottle. The parameters are experimentally determined.
272          *
273          * The delay mechanism provides adequate protection and behavior in many
274          * cases. However, this is far from ideal and falls shorts on both
275          * fronts. The debtors are often throttled too harshly costing a
276          * significant level of fairness and possibly total work while the
277          * protection against their impacts on the system can be choppy and
278          * unreliable.
279          *
280          * The shortcoming primarily stems from the fact that, unlike for page
281          * cache, the kernel doesn't have well-defined back-pressure propagation
282          * mechanism and policies for anonymous memory. Fully addressing this
283          * issue will likely require substantial improvements in the area.
284          */
285         MIN_DELAY_THR_PCT       = 500,
286         MAX_DELAY_THR_PCT       = 25000,
287         MIN_DELAY               = 250,
288         MAX_DELAY               = 250 * USEC_PER_MSEC,
289
290         /* halve debts if avg usage over 100ms is under 50% */
291         DFGV_USAGE_PCT          = 50,
292         DFGV_PERIOD             = 100 * USEC_PER_MSEC,
293
294         /* don't let cmds which take a very long time pin lagging for too long */
295         MAX_LAGGING_PERIODS     = 10,
296
297         /* switch iff the conditions are met for longer than this */
298         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
299
300         /*
301          * Count IO size in 4k pages.  The 12bit shift helps keeping
302          * size-proportional components of cost calculation in closer
303          * numbers of digits to per-IO cost components.
304          */
305         IOC_PAGE_SHIFT          = 12,
306         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
307         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
308
309         /* if apart further than 16M, consider randio for linear model */
310         LCOEF_RANDIO_PAGES      = 4096,
311 };
312
313 enum ioc_running {
314         IOC_IDLE,
315         IOC_RUNNING,
316         IOC_STOP,
317 };
318
319 /* io.cost.qos controls including per-dev enable of the whole controller */
320 enum {
321         QOS_ENABLE,
322         QOS_CTRL,
323         NR_QOS_CTRL_PARAMS,
324 };
325
326 /* io.cost.qos params */
327 enum {
328         QOS_RPPM,
329         QOS_RLAT,
330         QOS_WPPM,
331         QOS_WLAT,
332         QOS_MIN,
333         QOS_MAX,
334         NR_QOS_PARAMS,
335 };
336
337 /* io.cost.model controls */
338 enum {
339         COST_CTRL,
340         COST_MODEL,
341         NR_COST_CTRL_PARAMS,
342 };
343
344 /* builtin linear cost model coefficients */
345 enum {
346         I_LCOEF_RBPS,
347         I_LCOEF_RSEQIOPS,
348         I_LCOEF_RRANDIOPS,
349         I_LCOEF_WBPS,
350         I_LCOEF_WSEQIOPS,
351         I_LCOEF_WRANDIOPS,
352         NR_I_LCOEFS,
353 };
354
355 enum {
356         LCOEF_RPAGE,
357         LCOEF_RSEQIO,
358         LCOEF_RRANDIO,
359         LCOEF_WPAGE,
360         LCOEF_WSEQIO,
361         LCOEF_WRANDIO,
362         NR_LCOEFS,
363 };
364
365 enum {
366         AUTOP_INVALID,
367         AUTOP_HDD,
368         AUTOP_SSD_QD1,
369         AUTOP_SSD_DFL,
370         AUTOP_SSD_FAST,
371 };
372
373 struct ioc_params {
374         u32                             qos[NR_QOS_PARAMS];
375         u64                             i_lcoefs[NR_I_LCOEFS];
376         u64                             lcoefs[NR_LCOEFS];
377         u32                             too_fast_vrate_pct;
378         u32                             too_slow_vrate_pct;
379 };
380
381 struct ioc_margins {
382         s64                             min;
383         s64                             low;
384         s64                             target;
385 };
386
387 struct ioc_missed {
388         local_t                         nr_met;
389         local_t                         nr_missed;
390         u32                             last_met;
391         u32                             last_missed;
392 };
393
394 struct ioc_pcpu_stat {
395         struct ioc_missed               missed[2];
396
397         local64_t                       rq_wait_ns;
398         u64                             last_rq_wait_ns;
399 };
400
401 /* per device */
402 struct ioc {
403         struct rq_qos                   rqos;
404
405         bool                            enabled;
406
407         struct ioc_params               params;
408         struct ioc_margins              margins;
409         u32                             period_us;
410         u32                             timer_slack_ns;
411         u64                             vrate_min;
412         u64                             vrate_max;
413
414         spinlock_t                      lock;
415         struct timer_list               timer;
416         struct list_head                active_iocgs;   /* active cgroups */
417         struct ioc_pcpu_stat __percpu   *pcpu_stat;
418
419         enum ioc_running                running;
420         atomic64_t                      vtime_rate;
421         u64                             vtime_base_rate;
422         s64                             vtime_err;
423
424         seqcount_spinlock_t             period_seqcount;
425         u64                             period_at;      /* wallclock starttime */
426         u64                             period_at_vtime; /* vtime starttime */
427
428         atomic64_t                      cur_period;     /* inc'd each period */
429         int                             busy_level;     /* saturation history */
430
431         bool                            weights_updated;
432         atomic_t                        hweight_gen;    /* for lazy hweights */
433
434         /* debt forgivness */
435         u64                             dfgv_period_at;
436         u64                             dfgv_period_rem;
437         u64                             dfgv_usage_us_sum;
438
439         u64                             autop_too_fast_at;
440         u64                             autop_too_slow_at;
441         int                             autop_idx;
442         bool                            user_qos_params:1;
443         bool                            user_cost_model:1;
444 };
445
446 struct iocg_pcpu_stat {
447         local64_t                       abs_vusage;
448 };
449
450 struct iocg_stat {
451         u64                             usage_us;
452         u64                             wait_us;
453         u64                             indebt_us;
454         u64                             indelay_us;
455 };
456
457 /* per device-cgroup pair */
458 struct ioc_gq {
459         struct blkg_policy_data         pd;
460         struct ioc                      *ioc;
461
462         /*
463          * A iocg can get its weight from two sources - an explicit
464          * per-device-cgroup configuration or the default weight of the
465          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
466          * configuration.  `weight` is the effective considering both
467          * sources.
468          *
469          * When an idle cgroup becomes active its `active` goes from 0 to
470          * `weight`.  `inuse` is the surplus adjusted active weight.
471          * `active` and `inuse` are used to calculate `hweight_active` and
472          * `hweight_inuse`.
473          *
474          * `last_inuse` remembers `inuse` while an iocg is idle to persist
475          * surplus adjustments.
476          *
477          * `inuse` may be adjusted dynamically during period. `saved_*` are used
478          * to determine and track adjustments.
479          */
480         u32                             cfg_weight;
481         u32                             weight;
482         u32                             active;
483         u32                             inuse;
484
485         u32                             last_inuse;
486         s64                             saved_margin;
487
488         sector_t                        cursor;         /* to detect randio */
489
490         /*
491          * `vtime` is this iocg's vtime cursor which progresses as IOs are
492          * issued.  If lagging behind device vtime, the delta represents
493          * the currently available IO budget.  If running ahead, the
494          * overage.
495          *
496          * `vtime_done` is the same but progressed on completion rather
497          * than issue.  The delta behind `vtime` represents the cost of
498          * currently in-flight IOs.
499          */
500         atomic64_t                      vtime;
501         atomic64_t                      done_vtime;
502         u64                             abs_vdebt;
503
504         /* current delay in effect and when it started */
505         u64                             delay;
506         u64                             delay_at;
507
508         /*
509          * The period this iocg was last active in.  Used for deactivation
510          * and invalidating `vtime`.
511          */
512         atomic64_t                      active_period;
513         struct list_head                active_list;
514
515         /* see __propagate_weights() and current_hweight() for details */
516         u64                             child_active_sum;
517         u64                             child_inuse_sum;
518         u64                             child_adjusted_sum;
519         int                             hweight_gen;
520         u32                             hweight_active;
521         u32                             hweight_inuse;
522         u32                             hweight_donating;
523         u32                             hweight_after_donation;
524
525         struct list_head                walk_list;
526         struct list_head                surplus_list;
527
528         struct wait_queue_head          waitq;
529         struct hrtimer                  waitq_timer;
530
531         /* timestamp at the latest activation */
532         u64                             activated_at;
533
534         /* statistics */
535         struct iocg_pcpu_stat __percpu  *pcpu_stat;
536         struct iocg_stat                stat;
537         struct iocg_stat                last_stat;
538         u64                             last_stat_abs_vusage;
539         u64                             usage_delta_us;
540         u64                             wait_since;
541         u64                             indebt_since;
542         u64                             indelay_since;
543
544         /* this iocg's depth in the hierarchy and ancestors including self */
545         int                             level;
546         struct ioc_gq                   *ancestors[];
547 };
548
549 /* per cgroup */
550 struct ioc_cgrp {
551         struct blkcg_policy_data        cpd;
552         unsigned int                    dfl_weight;
553 };
554
555 struct ioc_now {
556         u64                             now_ns;
557         u64                             now;
558         u64                             vnow;
559         u64                             vrate;
560 };
561
562 struct iocg_wait {
563         struct wait_queue_entry         wait;
564         struct bio                      *bio;
565         u64                             abs_cost;
566         bool                            committed;
567 };
568
569 struct iocg_wake_ctx {
570         struct ioc_gq                   *iocg;
571         u32                             hw_inuse;
572         s64                             vbudget;
573 };
574
575 static const struct ioc_params autop[] = {
576         [AUTOP_HDD] = {
577                 .qos                            = {
578                         [QOS_RLAT]              =        250000, /* 250ms */
579                         [QOS_WLAT]              =        250000,
580                         [QOS_MIN]               = VRATE_MIN_PPM,
581                         [QOS_MAX]               = VRATE_MAX_PPM,
582                 },
583                 .i_lcoefs                       = {
584                         [I_LCOEF_RBPS]          =     174019176,
585                         [I_LCOEF_RSEQIOPS]      =         41708,
586                         [I_LCOEF_RRANDIOPS]     =           370,
587                         [I_LCOEF_WBPS]          =     178075866,
588                         [I_LCOEF_WSEQIOPS]      =         42705,
589                         [I_LCOEF_WRANDIOPS]     =           378,
590                 },
591         },
592         [AUTOP_SSD_QD1] = {
593                 .qos                            = {
594                         [QOS_RLAT]              =         25000, /* 25ms */
595                         [QOS_WLAT]              =         25000,
596                         [QOS_MIN]               = VRATE_MIN_PPM,
597                         [QOS_MAX]               = VRATE_MAX_PPM,
598                 },
599                 .i_lcoefs                       = {
600                         [I_LCOEF_RBPS]          =     245855193,
601                         [I_LCOEF_RSEQIOPS]      =         61575,
602                         [I_LCOEF_RRANDIOPS]     =          6946,
603                         [I_LCOEF_WBPS]          =     141365009,
604                         [I_LCOEF_WSEQIOPS]      =         33716,
605                         [I_LCOEF_WRANDIOPS]     =         26796,
606                 },
607         },
608         [AUTOP_SSD_DFL] = {
609                 .qos                            = {
610                         [QOS_RLAT]              =         25000, /* 25ms */
611                         [QOS_WLAT]              =         25000,
612                         [QOS_MIN]               = VRATE_MIN_PPM,
613                         [QOS_MAX]               = VRATE_MAX_PPM,
614                 },
615                 .i_lcoefs                       = {
616                         [I_LCOEF_RBPS]          =     488636629,
617                         [I_LCOEF_RSEQIOPS]      =          8932,
618                         [I_LCOEF_RRANDIOPS]     =          8518,
619                         [I_LCOEF_WBPS]          =     427891549,
620                         [I_LCOEF_WSEQIOPS]      =         28755,
621                         [I_LCOEF_WRANDIOPS]     =         21940,
622                 },
623                 .too_fast_vrate_pct             =           500,
624         },
625         [AUTOP_SSD_FAST] = {
626                 .qos                            = {
627                         [QOS_RLAT]              =          5000, /* 5ms */
628                         [QOS_WLAT]              =          5000,
629                         [QOS_MIN]               = VRATE_MIN_PPM,
630                         [QOS_MAX]               = VRATE_MAX_PPM,
631                 },
632                 .i_lcoefs                       = {
633                         [I_LCOEF_RBPS]          =    3102524156LLU,
634                         [I_LCOEF_RSEQIOPS]      =        724816,
635                         [I_LCOEF_RRANDIOPS]     =        778122,
636                         [I_LCOEF_WBPS]          =    1742780862LLU,
637                         [I_LCOEF_WSEQIOPS]      =        425702,
638                         [I_LCOEF_WRANDIOPS]     =        443193,
639                 },
640                 .too_slow_vrate_pct             =            10,
641         },
642 };
643
644 /*
645  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
646  * vtime credit shortage and down on device saturation.
647  */
648 static u32 vrate_adj_pct[] =
649         { 0, 0, 0, 0,
650           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
651           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
652           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
653
654 static struct blkcg_policy blkcg_policy_iocost;
655
656 /* accessors and helpers */
657 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
658 {
659         return container_of(rqos, struct ioc, rqos);
660 }
661
662 static struct ioc *q_to_ioc(struct request_queue *q)
663 {
664         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
665 }
666
667 static const char __maybe_unused *ioc_name(struct ioc *ioc)
668 {
669         struct gendisk *disk = ioc->rqos.q->disk;
670
671         if (!disk)
672                 return "<unknown>";
673         return disk->disk_name;
674 }
675
676 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
677 {
678         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
679 }
680
681 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
682 {
683         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
684 }
685
686 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
687 {
688         return pd_to_blkg(&iocg->pd);
689 }
690
691 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
692 {
693         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
694                             struct ioc_cgrp, cpd);
695 }
696
697 /*
698  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
699  * weight, the more expensive each IO.  Must round up.
700  */
701 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
702 {
703         return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
704 }
705
706 /*
707  * The inverse of abs_cost_to_cost().  Must round up.
708  */
709 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
710 {
711         return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
712 }
713
714 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
715                             u64 abs_cost, u64 cost)
716 {
717         struct iocg_pcpu_stat *gcs;
718
719         bio->bi_iocost_cost = cost;
720         atomic64_add(cost, &iocg->vtime);
721
722         gcs = get_cpu_ptr(iocg->pcpu_stat);
723         local64_add(abs_cost, &gcs->abs_vusage);
724         put_cpu_ptr(gcs);
725 }
726
727 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
728 {
729         if (lock_ioc) {
730                 spin_lock_irqsave(&iocg->ioc->lock, *flags);
731                 spin_lock(&iocg->waitq.lock);
732         } else {
733                 spin_lock_irqsave(&iocg->waitq.lock, *flags);
734         }
735 }
736
737 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
738 {
739         if (unlock_ioc) {
740                 spin_unlock(&iocg->waitq.lock);
741                 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
742         } else {
743                 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
744         }
745 }
746
747 #define CREATE_TRACE_POINTS
748 #include <trace/events/iocost.h>
749
750 static void ioc_refresh_margins(struct ioc *ioc)
751 {
752         struct ioc_margins *margins = &ioc->margins;
753         u32 period_us = ioc->period_us;
754         u64 vrate = ioc->vtime_base_rate;
755
756         margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
757         margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
758         margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
759 }
760
761 /* latency Qos params changed, update period_us and all the dependent params */
762 static void ioc_refresh_period_us(struct ioc *ioc)
763 {
764         u32 ppm, lat, multi, period_us;
765
766         lockdep_assert_held(&ioc->lock);
767
768         /* pick the higher latency target */
769         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
770                 ppm = ioc->params.qos[QOS_RPPM];
771                 lat = ioc->params.qos[QOS_RLAT];
772         } else {
773                 ppm = ioc->params.qos[QOS_WPPM];
774                 lat = ioc->params.qos[QOS_WLAT];
775         }
776
777         /*
778          * We want the period to be long enough to contain a healthy number
779          * of IOs while short enough for granular control.  Define it as a
780          * multiple of the latency target.  Ideally, the multiplier should
781          * be scaled according to the percentile so that it would nominally
782          * contain a certain number of requests.  Let's be simpler and
783          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
784          */
785         if (ppm)
786                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
787         else
788                 multi = 2;
789         period_us = multi * lat;
790         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
791
792         /* calculate dependent params */
793         ioc->period_us = period_us;
794         ioc->timer_slack_ns = div64_u64(
795                 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
796                 100);
797         ioc_refresh_margins(ioc);
798 }
799
800 static int ioc_autop_idx(struct ioc *ioc)
801 {
802         int idx = ioc->autop_idx;
803         const struct ioc_params *p = &autop[idx];
804         u32 vrate_pct;
805         u64 now_ns;
806
807         /* rotational? */
808         if (!blk_queue_nonrot(ioc->rqos.q))
809                 return AUTOP_HDD;
810
811         /* handle SATA SSDs w/ broken NCQ */
812         if (blk_queue_depth(ioc->rqos.q) == 1)
813                 return AUTOP_SSD_QD1;
814
815         /* use one of the normal ssd sets */
816         if (idx < AUTOP_SSD_DFL)
817                 return AUTOP_SSD_DFL;
818
819         /* if user is overriding anything, maintain what was there */
820         if (ioc->user_qos_params || ioc->user_cost_model)
821                 return idx;
822
823         /* step up/down based on the vrate */
824         vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
825         now_ns = ktime_get_ns();
826
827         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
828                 if (!ioc->autop_too_fast_at)
829                         ioc->autop_too_fast_at = now_ns;
830                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
831                         return idx + 1;
832         } else {
833                 ioc->autop_too_fast_at = 0;
834         }
835
836         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
837                 if (!ioc->autop_too_slow_at)
838                         ioc->autop_too_slow_at = now_ns;
839                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
840                         return idx - 1;
841         } else {
842                 ioc->autop_too_slow_at = 0;
843         }
844
845         return idx;
846 }
847
848 /*
849  * Take the followings as input
850  *
851  *  @bps        maximum sequential throughput
852  *  @seqiops    maximum sequential 4k iops
853  *  @randiops   maximum random 4k iops
854  *
855  * and calculate the linear model cost coefficients.
856  *
857  *  *@page      per-page cost           1s / (@bps / 4096)
858  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
859  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
860  */
861 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
862                         u64 *page, u64 *seqio, u64 *randio)
863 {
864         u64 v;
865
866         *page = *seqio = *randio = 0;
867
868         if (bps)
869                 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
870                                            DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
871
872         if (seqiops) {
873                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
874                 if (v > *page)
875                         *seqio = v - *page;
876         }
877
878         if (randiops) {
879                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
880                 if (v > *page)
881                         *randio = v - *page;
882         }
883 }
884
885 static void ioc_refresh_lcoefs(struct ioc *ioc)
886 {
887         u64 *u = ioc->params.i_lcoefs;
888         u64 *c = ioc->params.lcoefs;
889
890         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
891                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
892         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
893                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
894 }
895
896 static bool ioc_refresh_params(struct ioc *ioc, bool force)
897 {
898         const struct ioc_params *p;
899         int idx;
900
901         lockdep_assert_held(&ioc->lock);
902
903         idx = ioc_autop_idx(ioc);
904         p = &autop[idx];
905
906         if (idx == ioc->autop_idx && !force)
907                 return false;
908
909         if (idx != ioc->autop_idx)
910                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
911
912         ioc->autop_idx = idx;
913         ioc->autop_too_fast_at = 0;
914         ioc->autop_too_slow_at = 0;
915
916         if (!ioc->user_qos_params)
917                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
918         if (!ioc->user_cost_model)
919                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
920
921         ioc_refresh_period_us(ioc);
922         ioc_refresh_lcoefs(ioc);
923
924         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
925                                             VTIME_PER_USEC, MILLION);
926         ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
927                                    VTIME_PER_USEC, MILLION);
928
929         return true;
930 }
931
932 /*
933  * When an iocg accumulates too much vtime or gets deactivated, we throw away
934  * some vtime, which lowers the overall device utilization. As the exact amount
935  * which is being thrown away is known, we can compensate by accelerating the
936  * vrate accordingly so that the extra vtime generated in the current period
937  * matches what got lost.
938  */
939 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
940 {
941         s64 pleft = ioc->period_at + ioc->period_us - now->now;
942         s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
943         s64 vcomp, vcomp_min, vcomp_max;
944
945         lockdep_assert_held(&ioc->lock);
946
947         /* we need some time left in this period */
948         if (pleft <= 0)
949                 goto done;
950
951         /*
952          * Calculate how much vrate should be adjusted to offset the error.
953          * Limit the amount of adjustment and deduct the adjusted amount from
954          * the error.
955          */
956         vcomp = -div64_s64(ioc->vtime_err, pleft);
957         vcomp_min = -(ioc->vtime_base_rate >> 1);
958         vcomp_max = ioc->vtime_base_rate;
959         vcomp = clamp(vcomp, vcomp_min, vcomp_max);
960
961         ioc->vtime_err += vcomp * pleft;
962
963         atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
964 done:
965         /* bound how much error can accumulate */
966         ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
967 }
968
969 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
970                                   int nr_lagging, int nr_shortages,
971                                   int prev_busy_level, u32 *missed_ppm)
972 {
973         u64 vrate = ioc->vtime_base_rate;
974         u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
975
976         if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
977                 if (ioc->busy_level != prev_busy_level || nr_lagging)
978                         trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
979                                                    missed_ppm, rq_wait_pct,
980                                                    nr_lagging, nr_shortages);
981
982                 return;
983         }
984
985         /*
986          * If vrate is out of bounds, apply clamp gradually as the
987          * bounds can change abruptly.  Otherwise, apply busy_level
988          * based adjustment.
989          */
990         if (vrate < vrate_min) {
991                 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
992                 vrate = min(vrate, vrate_min);
993         } else if (vrate > vrate_max) {
994                 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
995                 vrate = max(vrate, vrate_max);
996         } else {
997                 int idx = min_t(int, abs(ioc->busy_level),
998                                 ARRAY_SIZE(vrate_adj_pct) - 1);
999                 u32 adj_pct = vrate_adj_pct[idx];
1000
1001                 if (ioc->busy_level > 0)
1002                         adj_pct = 100 - adj_pct;
1003                 else
1004                         adj_pct = 100 + adj_pct;
1005
1006                 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1007                               vrate_min, vrate_max);
1008         }
1009
1010         trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1011                                    nr_lagging, nr_shortages);
1012
1013         ioc->vtime_base_rate = vrate;
1014         ioc_refresh_margins(ioc);
1015 }
1016
1017 /* take a snapshot of the current [v]time and vrate */
1018 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1019 {
1020         unsigned seq;
1021
1022         now->now_ns = ktime_get();
1023         now->now = ktime_to_us(now->now_ns);
1024         now->vrate = atomic64_read(&ioc->vtime_rate);
1025
1026         /*
1027          * The current vtime is
1028          *
1029          *   vtime at period start + (wallclock time since the start) * vrate
1030          *
1031          * As a consistent snapshot of `period_at_vtime` and `period_at` is
1032          * needed, they're seqcount protected.
1033          */
1034         do {
1035                 seq = read_seqcount_begin(&ioc->period_seqcount);
1036                 now->vnow = ioc->period_at_vtime +
1037                         (now->now - ioc->period_at) * now->vrate;
1038         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1039 }
1040
1041 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1042 {
1043         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1044
1045         write_seqcount_begin(&ioc->period_seqcount);
1046         ioc->period_at = now->now;
1047         ioc->period_at_vtime = now->vnow;
1048         write_seqcount_end(&ioc->period_seqcount);
1049
1050         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1051         add_timer(&ioc->timer);
1052 }
1053
1054 /*
1055  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1056  * weight sums and propagate upwards accordingly. If @save, the current margin
1057  * is saved to be used as reference for later inuse in-period adjustments.
1058  */
1059 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1060                                 bool save, struct ioc_now *now)
1061 {
1062         struct ioc *ioc = iocg->ioc;
1063         int lvl;
1064
1065         lockdep_assert_held(&ioc->lock);
1066
1067         /*
1068          * For an active leaf node, its inuse shouldn't be zero or exceed
1069          * @active. An active internal node's inuse is solely determined by the
1070          * inuse to active ratio of its children regardless of @inuse.
1071          */
1072         if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1073                 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1074                                            iocg->child_active_sum);
1075         } else {
1076                 inuse = clamp_t(u32, inuse, 1, active);
1077         }
1078
1079         iocg->last_inuse = iocg->inuse;
1080         if (save)
1081                 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1082
1083         if (active == iocg->active && inuse == iocg->inuse)
1084                 return;
1085
1086         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1087                 struct ioc_gq *parent = iocg->ancestors[lvl];
1088                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1089                 u32 parent_active = 0, parent_inuse = 0;
1090
1091                 /* update the level sums */
1092                 parent->child_active_sum += (s32)(active - child->active);
1093                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1094                 /* apply the updates */
1095                 child->active = active;
1096                 child->inuse = inuse;
1097
1098                 /*
1099                  * The delta between inuse and active sums indicates that
1100                  * much of weight is being given away.  Parent's inuse
1101                  * and active should reflect the ratio.
1102                  */
1103                 if (parent->child_active_sum) {
1104                         parent_active = parent->weight;
1105                         parent_inuse = DIV64_U64_ROUND_UP(
1106                                 parent_active * parent->child_inuse_sum,
1107                                 parent->child_active_sum);
1108                 }
1109
1110                 /* do we need to keep walking up? */
1111                 if (parent_active == parent->active &&
1112                     parent_inuse == parent->inuse)
1113                         break;
1114
1115                 active = parent_active;
1116                 inuse = parent_inuse;
1117         }
1118
1119         ioc->weights_updated = true;
1120 }
1121
1122 static void commit_weights(struct ioc *ioc)
1123 {
1124         lockdep_assert_held(&ioc->lock);
1125
1126         if (ioc->weights_updated) {
1127                 /* paired with rmb in current_hweight(), see there */
1128                 smp_wmb();
1129                 atomic_inc(&ioc->hweight_gen);
1130                 ioc->weights_updated = false;
1131         }
1132 }
1133
1134 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1135                               bool save, struct ioc_now *now)
1136 {
1137         __propagate_weights(iocg, active, inuse, save, now);
1138         commit_weights(iocg->ioc);
1139 }
1140
1141 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1142 {
1143         struct ioc *ioc = iocg->ioc;
1144         int lvl;
1145         u32 hwa, hwi;
1146         int ioc_gen;
1147
1148         /* hot path - if uptodate, use cached */
1149         ioc_gen = atomic_read(&ioc->hweight_gen);
1150         if (ioc_gen == iocg->hweight_gen)
1151                 goto out;
1152
1153         /*
1154          * Paired with wmb in commit_weights(). If we saw the updated
1155          * hweight_gen, all the weight updates from __propagate_weights() are
1156          * visible too.
1157          *
1158          * We can race with weight updates during calculation and get it
1159          * wrong.  However, hweight_gen would have changed and a future
1160          * reader will recalculate and we're guaranteed to discard the
1161          * wrong result soon.
1162          */
1163         smp_rmb();
1164
1165         hwa = hwi = WEIGHT_ONE;
1166         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1167                 struct ioc_gq *parent = iocg->ancestors[lvl];
1168                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1169                 u64 active_sum = READ_ONCE(parent->child_active_sum);
1170                 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1171                 u32 active = READ_ONCE(child->active);
1172                 u32 inuse = READ_ONCE(child->inuse);
1173
1174                 /* we can race with deactivations and either may read as zero */
1175                 if (!active_sum || !inuse_sum)
1176                         continue;
1177
1178                 active_sum = max_t(u64, active, active_sum);
1179                 hwa = div64_u64((u64)hwa * active, active_sum);
1180
1181                 inuse_sum = max_t(u64, inuse, inuse_sum);
1182                 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1183         }
1184
1185         iocg->hweight_active = max_t(u32, hwa, 1);
1186         iocg->hweight_inuse = max_t(u32, hwi, 1);
1187         iocg->hweight_gen = ioc_gen;
1188 out:
1189         if (hw_activep)
1190                 *hw_activep = iocg->hweight_active;
1191         if (hw_inusep)
1192                 *hw_inusep = iocg->hweight_inuse;
1193 }
1194
1195 /*
1196  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1197  * other weights stay unchanged.
1198  */
1199 static u32 current_hweight_max(struct ioc_gq *iocg)
1200 {
1201         u32 hwm = WEIGHT_ONE;
1202         u32 inuse = iocg->active;
1203         u64 child_inuse_sum;
1204         int lvl;
1205
1206         lockdep_assert_held(&iocg->ioc->lock);
1207
1208         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1209                 struct ioc_gq *parent = iocg->ancestors[lvl];
1210                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1211
1212                 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1213                 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1214                 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1215                                            parent->child_active_sum);
1216         }
1217
1218         return max_t(u32, hwm, 1);
1219 }
1220
1221 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1222 {
1223         struct ioc *ioc = iocg->ioc;
1224         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1225         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1226         u32 weight;
1227
1228         lockdep_assert_held(&ioc->lock);
1229
1230         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1231         if (weight != iocg->weight && iocg->active)
1232                 propagate_weights(iocg, weight, iocg->inuse, true, now);
1233         iocg->weight = weight;
1234 }
1235
1236 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1237 {
1238         struct ioc *ioc = iocg->ioc;
1239         u64 last_period, cur_period;
1240         u64 vtime, vtarget;
1241         int i;
1242
1243         /*
1244          * If seem to be already active, just update the stamp to tell the
1245          * timer that we're still active.  We don't mind occassional races.
1246          */
1247         if (!list_empty(&iocg->active_list)) {
1248                 ioc_now(ioc, now);
1249                 cur_period = atomic64_read(&ioc->cur_period);
1250                 if (atomic64_read(&iocg->active_period) != cur_period)
1251                         atomic64_set(&iocg->active_period, cur_period);
1252                 return true;
1253         }
1254
1255         /* racy check on internal node IOs, treat as root level IOs */
1256         if (iocg->child_active_sum)
1257                 return false;
1258
1259         spin_lock_irq(&ioc->lock);
1260
1261         ioc_now(ioc, now);
1262
1263         /* update period */
1264         cur_period = atomic64_read(&ioc->cur_period);
1265         last_period = atomic64_read(&iocg->active_period);
1266         atomic64_set(&iocg->active_period, cur_period);
1267
1268         /* already activated or breaking leaf-only constraint? */
1269         if (!list_empty(&iocg->active_list))
1270                 goto succeed_unlock;
1271         for (i = iocg->level - 1; i > 0; i--)
1272                 if (!list_empty(&iocg->ancestors[i]->active_list))
1273                         goto fail_unlock;
1274
1275         if (iocg->child_active_sum)
1276                 goto fail_unlock;
1277
1278         /*
1279          * Always start with the target budget. On deactivation, we throw away
1280          * anything above it.
1281          */
1282         vtarget = now->vnow - ioc->margins.target;
1283         vtime = atomic64_read(&iocg->vtime);
1284
1285         atomic64_add(vtarget - vtime, &iocg->vtime);
1286         atomic64_add(vtarget - vtime, &iocg->done_vtime);
1287         vtime = vtarget;
1288
1289         /*
1290          * Activate, propagate weight and start period timer if not
1291          * running.  Reset hweight_gen to avoid accidental match from
1292          * wrapping.
1293          */
1294         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1295         list_add(&iocg->active_list, &ioc->active_iocgs);
1296
1297         propagate_weights(iocg, iocg->weight,
1298                           iocg->last_inuse ?: iocg->weight, true, now);
1299
1300         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1301                         last_period, cur_period, vtime);
1302
1303         iocg->activated_at = now->now;
1304
1305         if (ioc->running == IOC_IDLE) {
1306                 ioc->running = IOC_RUNNING;
1307                 ioc->dfgv_period_at = now->now;
1308                 ioc->dfgv_period_rem = 0;
1309                 ioc_start_period(ioc, now);
1310         }
1311
1312 succeed_unlock:
1313         spin_unlock_irq(&ioc->lock);
1314         return true;
1315
1316 fail_unlock:
1317         spin_unlock_irq(&ioc->lock);
1318         return false;
1319 }
1320
1321 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1322 {
1323         struct ioc *ioc = iocg->ioc;
1324         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1325         u64 tdelta, delay, new_delay;
1326         s64 vover, vover_pct;
1327         u32 hwa;
1328
1329         lockdep_assert_held(&iocg->waitq.lock);
1330
1331         /* calculate the current delay in effect - 1/2 every second */
1332         tdelta = now->now - iocg->delay_at;
1333         if (iocg->delay)
1334                 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1335         else
1336                 delay = 0;
1337
1338         /* calculate the new delay from the debt amount */
1339         current_hweight(iocg, &hwa, NULL);
1340         vover = atomic64_read(&iocg->vtime) +
1341                 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1342         vover_pct = div64_s64(100 * vover,
1343                               ioc->period_us * ioc->vtime_base_rate);
1344
1345         if (vover_pct <= MIN_DELAY_THR_PCT)
1346                 new_delay = 0;
1347         else if (vover_pct >= MAX_DELAY_THR_PCT)
1348                 new_delay = MAX_DELAY;
1349         else
1350                 new_delay = MIN_DELAY +
1351                         div_u64((MAX_DELAY - MIN_DELAY) *
1352                                 (vover_pct - MIN_DELAY_THR_PCT),
1353                                 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1354
1355         /* pick the higher one and apply */
1356         if (new_delay > delay) {
1357                 iocg->delay = new_delay;
1358                 iocg->delay_at = now->now;
1359                 delay = new_delay;
1360         }
1361
1362         if (delay >= MIN_DELAY) {
1363                 if (!iocg->indelay_since)
1364                         iocg->indelay_since = now->now;
1365                 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1366                 return true;
1367         } else {
1368                 if (iocg->indelay_since) {
1369                         iocg->stat.indelay_us += now->now - iocg->indelay_since;
1370                         iocg->indelay_since = 0;
1371                 }
1372                 iocg->delay = 0;
1373                 blkcg_clear_delay(blkg);
1374                 return false;
1375         }
1376 }
1377
1378 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1379                             struct ioc_now *now)
1380 {
1381         struct iocg_pcpu_stat *gcs;
1382
1383         lockdep_assert_held(&iocg->ioc->lock);
1384         lockdep_assert_held(&iocg->waitq.lock);
1385         WARN_ON_ONCE(list_empty(&iocg->active_list));
1386
1387         /*
1388          * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1389          * inuse donating all of it share to others until its debt is paid off.
1390          */
1391         if (!iocg->abs_vdebt && abs_cost) {
1392                 iocg->indebt_since = now->now;
1393                 propagate_weights(iocg, iocg->active, 0, false, now);
1394         }
1395
1396         iocg->abs_vdebt += abs_cost;
1397
1398         gcs = get_cpu_ptr(iocg->pcpu_stat);
1399         local64_add(abs_cost, &gcs->abs_vusage);
1400         put_cpu_ptr(gcs);
1401 }
1402
1403 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1404                           struct ioc_now *now)
1405 {
1406         lockdep_assert_held(&iocg->ioc->lock);
1407         lockdep_assert_held(&iocg->waitq.lock);
1408
1409         /* make sure that nobody messed with @iocg */
1410         WARN_ON_ONCE(list_empty(&iocg->active_list));
1411         WARN_ON_ONCE(iocg->inuse > 1);
1412
1413         iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1414
1415         /* if debt is paid in full, restore inuse */
1416         if (!iocg->abs_vdebt) {
1417                 iocg->stat.indebt_us += now->now - iocg->indebt_since;
1418                 iocg->indebt_since = 0;
1419
1420                 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1421                                   false, now);
1422         }
1423 }
1424
1425 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1426                         int flags, void *key)
1427 {
1428         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1429         struct iocg_wake_ctx *ctx = key;
1430         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1431
1432         ctx->vbudget -= cost;
1433
1434         if (ctx->vbudget < 0)
1435                 return -1;
1436
1437         iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1438         wait->committed = true;
1439
1440         /*
1441          * autoremove_wake_function() removes the wait entry only when it
1442          * actually changed the task state. We want the wait always removed.
1443          * Remove explicitly and use default_wake_function(). Note that the
1444          * order of operations is important as finish_wait() tests whether
1445          * @wq_entry is removed without grabbing the lock.
1446          */
1447         default_wake_function(wq_entry, mode, flags, key);
1448         list_del_init_careful(&wq_entry->entry);
1449         return 0;
1450 }
1451
1452 /*
1453  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1454  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1455  * addition to iocg->waitq.lock.
1456  */
1457 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1458                             struct ioc_now *now)
1459 {
1460         struct ioc *ioc = iocg->ioc;
1461         struct iocg_wake_ctx ctx = { .iocg = iocg };
1462         u64 vshortage, expires, oexpires;
1463         s64 vbudget;
1464         u32 hwa;
1465
1466         lockdep_assert_held(&iocg->waitq.lock);
1467
1468         current_hweight(iocg, &hwa, NULL);
1469         vbudget = now->vnow - atomic64_read(&iocg->vtime);
1470
1471         /* pay off debt */
1472         if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1473                 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1474                 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1475                 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1476
1477                 lockdep_assert_held(&ioc->lock);
1478
1479                 atomic64_add(vpay, &iocg->vtime);
1480                 atomic64_add(vpay, &iocg->done_vtime);
1481                 iocg_pay_debt(iocg, abs_vpay, now);
1482                 vbudget -= vpay;
1483         }
1484
1485         if (iocg->abs_vdebt || iocg->delay)
1486                 iocg_kick_delay(iocg, now);
1487
1488         /*
1489          * Debt can still be outstanding if we haven't paid all yet or the
1490          * caller raced and called without @pay_debt. Shouldn't wake up waiters
1491          * under debt. Make sure @vbudget reflects the outstanding amount and is
1492          * not positive.
1493          */
1494         if (iocg->abs_vdebt) {
1495                 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1496                 vbudget = min_t(s64, 0, vbudget - vdebt);
1497         }
1498
1499         /*
1500          * Wake up the ones which are due and see how much vtime we'll need for
1501          * the next one. As paying off debt restores hw_inuse, it must be read
1502          * after the above debt payment.
1503          */
1504         ctx.vbudget = vbudget;
1505         current_hweight(iocg, NULL, &ctx.hw_inuse);
1506
1507         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1508
1509         if (!waitqueue_active(&iocg->waitq)) {
1510                 if (iocg->wait_since) {
1511                         iocg->stat.wait_us += now->now - iocg->wait_since;
1512                         iocg->wait_since = 0;
1513                 }
1514                 return;
1515         }
1516
1517         if (!iocg->wait_since)
1518                 iocg->wait_since = now->now;
1519
1520         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1521                 return;
1522
1523         /* determine next wakeup, add a timer margin to guarantee chunking */
1524         vshortage = -ctx.vbudget;
1525         expires = now->now_ns +
1526                 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1527                 NSEC_PER_USEC;
1528         expires += ioc->timer_slack_ns;
1529
1530         /* if already active and close enough, don't bother */
1531         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1532         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1533             abs(oexpires - expires) <= ioc->timer_slack_ns)
1534                 return;
1535
1536         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1537                                ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1538 }
1539
1540 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1541 {
1542         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1543         bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1544         struct ioc_now now;
1545         unsigned long flags;
1546
1547         ioc_now(iocg->ioc, &now);
1548
1549         iocg_lock(iocg, pay_debt, &flags);
1550         iocg_kick_waitq(iocg, pay_debt, &now);
1551         iocg_unlock(iocg, pay_debt, &flags);
1552
1553         return HRTIMER_NORESTART;
1554 }
1555
1556 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1557 {
1558         u32 nr_met[2] = { };
1559         u32 nr_missed[2] = { };
1560         u64 rq_wait_ns = 0;
1561         int cpu, rw;
1562
1563         for_each_online_cpu(cpu) {
1564                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1565                 u64 this_rq_wait_ns;
1566
1567                 for (rw = READ; rw <= WRITE; rw++) {
1568                         u32 this_met = local_read(&stat->missed[rw].nr_met);
1569                         u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1570
1571                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1572                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1573                         stat->missed[rw].last_met = this_met;
1574                         stat->missed[rw].last_missed = this_missed;
1575                 }
1576
1577                 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1578                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1579                 stat->last_rq_wait_ns = this_rq_wait_ns;
1580         }
1581
1582         for (rw = READ; rw <= WRITE; rw++) {
1583                 if (nr_met[rw] + nr_missed[rw])
1584                         missed_ppm_ar[rw] =
1585                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1586                                                    nr_met[rw] + nr_missed[rw]);
1587                 else
1588                         missed_ppm_ar[rw] = 0;
1589         }
1590
1591         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1592                                    ioc->period_us * NSEC_PER_USEC);
1593 }
1594
1595 /* was iocg idle this period? */
1596 static bool iocg_is_idle(struct ioc_gq *iocg)
1597 {
1598         struct ioc *ioc = iocg->ioc;
1599
1600         /* did something get issued this period? */
1601         if (atomic64_read(&iocg->active_period) ==
1602             atomic64_read(&ioc->cur_period))
1603                 return false;
1604
1605         /* is something in flight? */
1606         if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1607                 return false;
1608
1609         return true;
1610 }
1611
1612 /*
1613  * Call this function on the target leaf @iocg's to build pre-order traversal
1614  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1615  * ->walk_list and the caller is responsible for dissolving the list after use.
1616  */
1617 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1618                                   struct list_head *inner_walk)
1619 {
1620         int lvl;
1621
1622         WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1623
1624         /* find the first ancestor which hasn't been visited yet */
1625         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1626                 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1627                         break;
1628         }
1629
1630         /* walk down and visit the inner nodes to get pre-order traversal */
1631         while (++lvl <= iocg->level - 1) {
1632                 struct ioc_gq *inner = iocg->ancestors[lvl];
1633
1634                 /* record traversal order */
1635                 list_add_tail(&inner->walk_list, inner_walk);
1636         }
1637 }
1638
1639 /* propagate the deltas to the parent */
1640 static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1641 {
1642         if (iocg->level > 0) {
1643                 struct iocg_stat *parent_stat =
1644                         &iocg->ancestors[iocg->level - 1]->stat;
1645
1646                 parent_stat->usage_us +=
1647                         iocg->stat.usage_us - iocg->last_stat.usage_us;
1648                 parent_stat->wait_us +=
1649                         iocg->stat.wait_us - iocg->last_stat.wait_us;
1650                 parent_stat->indebt_us +=
1651                         iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1652                 parent_stat->indelay_us +=
1653                         iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1654         }
1655
1656         iocg->last_stat = iocg->stat;
1657 }
1658
1659 /* collect per-cpu counters and propagate the deltas to the parent */
1660 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1661 {
1662         struct ioc *ioc = iocg->ioc;
1663         u64 abs_vusage = 0;
1664         u64 vusage_delta;
1665         int cpu;
1666
1667         lockdep_assert_held(&iocg->ioc->lock);
1668
1669         /* collect per-cpu counters */
1670         for_each_possible_cpu(cpu) {
1671                 abs_vusage += local64_read(
1672                                 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1673         }
1674         vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1675         iocg->last_stat_abs_vusage = abs_vusage;
1676
1677         iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1678         iocg->stat.usage_us += iocg->usage_delta_us;
1679
1680         iocg_flush_stat_upward(iocg);
1681 }
1682
1683 /* get stat counters ready for reading on all active iocgs */
1684 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1685 {
1686         LIST_HEAD(inner_walk);
1687         struct ioc_gq *iocg, *tiocg;
1688
1689         /* flush leaves and build inner node walk list */
1690         list_for_each_entry(iocg, target_iocgs, active_list) {
1691                 iocg_flush_stat_leaf(iocg, now);
1692                 iocg_build_inner_walk(iocg, &inner_walk);
1693         }
1694
1695         /* keep flushing upwards by walking the inner list backwards */
1696         list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1697                 iocg_flush_stat_upward(iocg);
1698                 list_del_init(&iocg->walk_list);
1699         }
1700 }
1701
1702 /*
1703  * Determine what @iocg's hweight_inuse should be after donating unused
1704  * capacity. @hwm is the upper bound and used to signal no donation. This
1705  * function also throws away @iocg's excess budget.
1706  */
1707 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1708                                   u32 usage, struct ioc_now *now)
1709 {
1710         struct ioc *ioc = iocg->ioc;
1711         u64 vtime = atomic64_read(&iocg->vtime);
1712         s64 excess, delta, target, new_hwi;
1713
1714         /* debt handling owns inuse for debtors */
1715         if (iocg->abs_vdebt)
1716                 return 1;
1717
1718         /* see whether minimum margin requirement is met */
1719         if (waitqueue_active(&iocg->waitq) ||
1720             time_after64(vtime, now->vnow - ioc->margins.min))
1721                 return hwm;
1722
1723         /* throw away excess above target */
1724         excess = now->vnow - vtime - ioc->margins.target;
1725         if (excess > 0) {
1726                 atomic64_add(excess, &iocg->vtime);
1727                 atomic64_add(excess, &iocg->done_vtime);
1728                 vtime += excess;
1729                 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1730         }
1731
1732         /*
1733          * Let's say the distance between iocg's and device's vtimes as a
1734          * fraction of period duration is delta. Assuming that the iocg will
1735          * consume the usage determined above, we want to determine new_hwi so
1736          * that delta equals MARGIN_TARGET at the end of the next period.
1737          *
1738          * We need to execute usage worth of IOs while spending the sum of the
1739          * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1740          * (delta):
1741          *
1742          *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1743          *
1744          * Therefore, the new_hwi is:
1745          *
1746          *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1747          */
1748         delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1749                           now->vnow - ioc->period_at_vtime);
1750         target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1751         new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1752
1753         return clamp_t(s64, new_hwi, 1, hwm);
1754 }
1755
1756 /*
1757  * For work-conservation, an iocg which isn't using all of its share should
1758  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1759  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1760  *
1761  * #1 is mathematically simpler but has the drawback of requiring synchronous
1762  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1763  * change due to donation snapbacks as it has the possibility of grossly
1764  * overshooting what's allowed by the model and vrate.
1765  *
1766  * #2 is inherently safe with local operations. The donating iocg can easily
1767  * snap back to higher weights when needed without worrying about impacts on
1768  * other nodes as the impacts will be inherently correct. This also makes idle
1769  * iocg activations safe. The only effect activations have is decreasing
1770  * hweight_inuse of others, the right solution to which is for those iocgs to
1771  * snap back to higher weights.
1772  *
1773  * So, we go with #2. The challenge is calculating how each donating iocg's
1774  * inuse should be adjusted to achieve the target donation amounts. This is done
1775  * using Andy's method described in the following pdf.
1776  *
1777  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1778  *
1779  * Given the weights and target after-donation hweight_inuse values, Andy's
1780  * method determines how the proportional distribution should look like at each
1781  * sibling level to maintain the relative relationship between all non-donating
1782  * pairs. To roughly summarize, it divides the tree into donating and
1783  * non-donating parts, calculates global donation rate which is used to
1784  * determine the target hweight_inuse for each node, and then derives per-level
1785  * proportions.
1786  *
1787  * The following pdf shows that global distribution calculated this way can be
1788  * achieved by scaling inuse weights of donating leaves and propagating the
1789  * adjustments upwards proportionally.
1790  *
1791  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1792  *
1793  * Combining the above two, we can determine how each leaf iocg's inuse should
1794  * be adjusted to achieve the target donation.
1795  *
1796  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1797  *
1798  * The inline comments use symbols from the last pdf.
1799  *
1800  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1801  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1802  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1803  *   w is the weight of the node. w = w_f + w_t
1804  *   w_f is the non-donating portion of w. w_f = w * f / b
1805  *   w_b is the donating portion of w. w_t = w * t / b
1806  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1807  *   s_f and s_t are the non-donating and donating portions of s.
1808  *
1809  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1810  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1811  * after adjustments. Subscript r denotes the root node's values.
1812  */
1813 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1814 {
1815         LIST_HEAD(over_hwa);
1816         LIST_HEAD(inner_walk);
1817         struct ioc_gq *iocg, *tiocg, *root_iocg;
1818         u32 after_sum, over_sum, over_target, gamma;
1819
1820         /*
1821          * It's pretty unlikely but possible for the total sum of
1822          * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1823          * confuse the following calculations. If such condition is detected,
1824          * scale down everyone over its full share equally to keep the sum below
1825          * WEIGHT_ONE.
1826          */
1827         after_sum = 0;
1828         over_sum = 0;
1829         list_for_each_entry(iocg, surpluses, surplus_list) {
1830                 u32 hwa;
1831
1832                 current_hweight(iocg, &hwa, NULL);
1833                 after_sum += iocg->hweight_after_donation;
1834
1835                 if (iocg->hweight_after_donation > hwa) {
1836                         over_sum += iocg->hweight_after_donation;
1837                         list_add(&iocg->walk_list, &over_hwa);
1838                 }
1839         }
1840
1841         if (after_sum >= WEIGHT_ONE) {
1842                 /*
1843                  * The delta should be deducted from the over_sum, calculate
1844                  * target over_sum value.
1845                  */
1846                 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1847                 WARN_ON_ONCE(over_sum <= over_delta);
1848                 over_target = over_sum - over_delta;
1849         } else {
1850                 over_target = 0;
1851         }
1852
1853         list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1854                 if (over_target)
1855                         iocg->hweight_after_donation =
1856                                 div_u64((u64)iocg->hweight_after_donation *
1857                                         over_target, over_sum);
1858                 list_del_init(&iocg->walk_list);
1859         }
1860
1861         /*
1862          * Build pre-order inner node walk list and prepare for donation
1863          * adjustment calculations.
1864          */
1865         list_for_each_entry(iocg, surpluses, surplus_list) {
1866                 iocg_build_inner_walk(iocg, &inner_walk);
1867         }
1868
1869         root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1870         WARN_ON_ONCE(root_iocg->level > 0);
1871
1872         list_for_each_entry(iocg, &inner_walk, walk_list) {
1873                 iocg->child_adjusted_sum = 0;
1874                 iocg->hweight_donating = 0;
1875                 iocg->hweight_after_donation = 0;
1876         }
1877
1878         /*
1879          * Propagate the donating budget (b_t) and after donation budget (b'_t)
1880          * up the hierarchy.
1881          */
1882         list_for_each_entry(iocg, surpluses, surplus_list) {
1883                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1884
1885                 parent->hweight_donating += iocg->hweight_donating;
1886                 parent->hweight_after_donation += iocg->hweight_after_donation;
1887         }
1888
1889         list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1890                 if (iocg->level > 0) {
1891                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1892
1893                         parent->hweight_donating += iocg->hweight_donating;
1894                         parent->hweight_after_donation += iocg->hweight_after_donation;
1895                 }
1896         }
1897
1898         /*
1899          * Calculate inner hwa's (b) and make sure the donation values are
1900          * within the accepted ranges as we're doing low res calculations with
1901          * roundups.
1902          */
1903         list_for_each_entry(iocg, &inner_walk, walk_list) {
1904                 if (iocg->level) {
1905                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1906
1907                         iocg->hweight_active = DIV64_U64_ROUND_UP(
1908                                 (u64)parent->hweight_active * iocg->active,
1909                                 parent->child_active_sum);
1910
1911                 }
1912
1913                 iocg->hweight_donating = min(iocg->hweight_donating,
1914                                              iocg->hweight_active);
1915                 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1916                                                    iocg->hweight_donating - 1);
1917                 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1918                                  iocg->hweight_donating <= 1 ||
1919                                  iocg->hweight_after_donation == 0)) {
1920                         pr_warn("iocg: invalid donation weights in ");
1921                         pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1922                         pr_cont(": active=%u donating=%u after=%u\n",
1923                                 iocg->hweight_active, iocg->hweight_donating,
1924                                 iocg->hweight_after_donation);
1925                 }
1926         }
1927
1928         /*
1929          * Calculate the global donation rate (gamma) - the rate to adjust
1930          * non-donating budgets by.
1931          *
1932          * No need to use 64bit multiplication here as the first operand is
1933          * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1934          *
1935          * We know that there are beneficiary nodes and the sum of the donating
1936          * hweights can't be whole; however, due to the round-ups during hweight
1937          * calculations, root_iocg->hweight_donating might still end up equal to
1938          * or greater than whole. Limit the range when calculating the divider.
1939          *
1940          * gamma = (1 - t_r') / (1 - t_r)
1941          */
1942         gamma = DIV_ROUND_UP(
1943                 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1944                 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1945
1946         /*
1947          * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1948          * nodes.
1949          */
1950         list_for_each_entry(iocg, &inner_walk, walk_list) {
1951                 struct ioc_gq *parent;
1952                 u32 inuse, wpt, wptp;
1953                 u64 st, sf;
1954
1955                 if (iocg->level == 0) {
1956                         /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1957                         iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1958                                 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1959                                 WEIGHT_ONE - iocg->hweight_after_donation);
1960                         continue;
1961                 }
1962
1963                 parent = iocg->ancestors[iocg->level - 1];
1964
1965                 /* b' = gamma * b_f + b_t' */
1966                 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1967                         (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1968                         WEIGHT_ONE) + iocg->hweight_after_donation;
1969
1970                 /* w' = s' * b' / b'_p */
1971                 inuse = DIV64_U64_ROUND_UP(
1972                         (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1973                         parent->hweight_inuse);
1974
1975                 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1976                 st = DIV64_U64_ROUND_UP(
1977                         iocg->child_active_sum * iocg->hweight_donating,
1978                         iocg->hweight_active);
1979                 sf = iocg->child_active_sum - st;
1980                 wpt = DIV64_U64_ROUND_UP(
1981                         (u64)iocg->active * iocg->hweight_donating,
1982                         iocg->hweight_active);
1983                 wptp = DIV64_U64_ROUND_UP(
1984                         (u64)inuse * iocg->hweight_after_donation,
1985                         iocg->hweight_inuse);
1986
1987                 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1988         }
1989
1990         /*
1991          * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1992          * we can finally determine leaf adjustments.
1993          */
1994         list_for_each_entry(iocg, surpluses, surplus_list) {
1995                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1996                 u32 inuse;
1997
1998                 /*
1999                  * In-debt iocgs participated in the donation calculation with
2000                  * the minimum target hweight_inuse. Configuring inuse
2001                  * accordingly would work fine but debt handling expects
2002                  * @iocg->inuse stay at the minimum and we don't wanna
2003                  * interfere.
2004                  */
2005                 if (iocg->abs_vdebt) {
2006                         WARN_ON_ONCE(iocg->inuse > 1);
2007                         continue;
2008                 }
2009
2010                 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2011                 inuse = DIV64_U64_ROUND_UP(
2012                         parent->child_adjusted_sum * iocg->hweight_after_donation,
2013                         parent->hweight_inuse);
2014
2015                 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2016                                 iocg->inuse, inuse,
2017                                 iocg->hweight_inuse,
2018                                 iocg->hweight_after_donation);
2019
2020                 __propagate_weights(iocg, iocg->active, inuse, true, now);
2021         }
2022
2023         /* walk list should be dissolved after use */
2024         list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2025                 list_del_init(&iocg->walk_list);
2026 }
2027
2028 /*
2029  * A low weight iocg can amass a large amount of debt, for example, when
2030  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2031  * memory paired with a slow IO device, the debt can span multiple seconds or
2032  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2033  * up blocked paying its debt while the IO device is idle.
2034  *
2035  * The following protects against such cases. If the device has been
2036  * sufficiently idle for a while, the debts are halved and delays are
2037  * recalculated.
2038  */
2039 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2040                               struct ioc_now *now)
2041 {
2042         struct ioc_gq *iocg;
2043         u64 dur, usage_pct, nr_cycles;
2044
2045         /* if no debtor, reset the cycle */
2046         if (!nr_debtors) {
2047                 ioc->dfgv_period_at = now->now;
2048                 ioc->dfgv_period_rem = 0;
2049                 ioc->dfgv_usage_us_sum = 0;
2050                 return;
2051         }
2052
2053         /*
2054          * Debtors can pass through a lot of writes choking the device and we
2055          * don't want to be forgiving debts while the device is struggling from
2056          * write bursts. If we're missing latency targets, consider the device
2057          * fully utilized.
2058          */
2059         if (ioc->busy_level > 0)
2060                 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2061
2062         ioc->dfgv_usage_us_sum += usage_us_sum;
2063         if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2064                 return;
2065
2066         /*
2067          * At least DFGV_PERIOD has passed since the last period. Calculate the
2068          * average usage and reset the period counters.
2069          */
2070         dur = now->now - ioc->dfgv_period_at;
2071         usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2072
2073         ioc->dfgv_period_at = now->now;
2074         ioc->dfgv_usage_us_sum = 0;
2075
2076         /* if was too busy, reset everything */
2077         if (usage_pct > DFGV_USAGE_PCT) {
2078                 ioc->dfgv_period_rem = 0;
2079                 return;
2080         }
2081
2082         /*
2083          * Usage is lower than threshold. Let's forgive some debts. Debt
2084          * forgiveness runs off of the usual ioc timer but its period usually
2085          * doesn't match ioc's. Compensate the difference by performing the
2086          * reduction as many times as would fit in the duration since the last
2087          * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2088          * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2089          * reductions is doubled.
2090          */
2091         nr_cycles = dur + ioc->dfgv_period_rem;
2092         ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2093
2094         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2095                 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2096
2097                 if (!iocg->abs_vdebt && !iocg->delay)
2098                         continue;
2099
2100                 spin_lock(&iocg->waitq.lock);
2101
2102                 old_debt = iocg->abs_vdebt;
2103                 old_delay = iocg->delay;
2104
2105                 if (iocg->abs_vdebt)
2106                         iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2107                 if (iocg->delay)
2108                         iocg->delay = iocg->delay >> nr_cycles ?: 1;
2109
2110                 iocg_kick_waitq(iocg, true, now);
2111
2112                 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2113                                 old_debt, iocg->abs_vdebt,
2114                                 old_delay, iocg->delay);
2115
2116                 spin_unlock(&iocg->waitq.lock);
2117         }
2118 }
2119
2120 /*
2121  * Check the active iocgs' state to avoid oversleeping and deactive
2122  * idle iocgs.
2123  *
2124  * Since waiters determine the sleep durations based on the vrate
2125  * they saw at the time of sleep, if vrate has increased, some
2126  * waiters could be sleeping for too long. Wake up tardy waiters
2127  * which should have woken up in the last period and expire idle
2128  * iocgs.
2129  */
2130 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2131 {
2132         int nr_debtors = 0;
2133         struct ioc_gq *iocg, *tiocg;
2134
2135         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2136                 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2137                     !iocg->delay && !iocg_is_idle(iocg))
2138                         continue;
2139
2140                 spin_lock(&iocg->waitq.lock);
2141
2142                 /* flush wait and indebt stat deltas */
2143                 if (iocg->wait_since) {
2144                         iocg->stat.wait_us += now->now - iocg->wait_since;
2145                         iocg->wait_since = now->now;
2146                 }
2147                 if (iocg->indebt_since) {
2148                         iocg->stat.indebt_us +=
2149                                 now->now - iocg->indebt_since;
2150                         iocg->indebt_since = now->now;
2151                 }
2152                 if (iocg->indelay_since) {
2153                         iocg->stat.indelay_us +=
2154                                 now->now - iocg->indelay_since;
2155                         iocg->indelay_since = now->now;
2156                 }
2157
2158                 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2159                     iocg->delay) {
2160                         /* might be oversleeping vtime / hweight changes, kick */
2161                         iocg_kick_waitq(iocg, true, now);
2162                         if (iocg->abs_vdebt || iocg->delay)
2163                                 nr_debtors++;
2164                 } else if (iocg_is_idle(iocg)) {
2165                         /* no waiter and idle, deactivate */
2166                         u64 vtime = atomic64_read(&iocg->vtime);
2167                         s64 excess;
2168
2169                         /*
2170                          * @iocg has been inactive for a full duration and will
2171                          * have a high budget. Account anything above target as
2172                          * error and throw away. On reactivation, it'll start
2173                          * with the target budget.
2174                          */
2175                         excess = now->vnow - vtime - ioc->margins.target;
2176                         if (excess > 0) {
2177                                 u32 old_hwi;
2178
2179                                 current_hweight(iocg, NULL, &old_hwi);
2180                                 ioc->vtime_err -= div64_u64(excess * old_hwi,
2181                                                             WEIGHT_ONE);
2182                         }
2183
2184                         TRACE_IOCG_PATH(iocg_idle, iocg, now,
2185                                         atomic64_read(&iocg->active_period),
2186                                         atomic64_read(&ioc->cur_period), vtime);
2187                         __propagate_weights(iocg, 0, 0, false, now);
2188                         list_del_init(&iocg->active_list);
2189                 }
2190
2191                 spin_unlock(&iocg->waitq.lock);
2192         }
2193
2194         commit_weights(ioc);
2195         return nr_debtors;
2196 }
2197
2198 static void ioc_timer_fn(struct timer_list *timer)
2199 {
2200         struct ioc *ioc = container_of(timer, struct ioc, timer);
2201         struct ioc_gq *iocg, *tiocg;
2202         struct ioc_now now;
2203         LIST_HEAD(surpluses);
2204         int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2205         u64 usage_us_sum = 0;
2206         u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2207         u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2208         u32 missed_ppm[2], rq_wait_pct;
2209         u64 period_vtime;
2210         int prev_busy_level;
2211
2212         /* how were the latencies during the period? */
2213         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2214
2215         /* take care of active iocgs */
2216         spin_lock_irq(&ioc->lock);
2217
2218         ioc_now(ioc, &now);
2219
2220         period_vtime = now.vnow - ioc->period_at_vtime;
2221         if (WARN_ON_ONCE(!period_vtime)) {
2222                 spin_unlock_irq(&ioc->lock);
2223                 return;
2224         }
2225
2226         nr_debtors = ioc_check_iocgs(ioc, &now);
2227
2228         /*
2229          * Wait and indebt stat are flushed above and the donation calculation
2230          * below needs updated usage stat. Let's bring stat up-to-date.
2231          */
2232         iocg_flush_stat(&ioc->active_iocgs, &now);
2233
2234         /* calc usage and see whether some weights need to be moved around */
2235         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2236                 u64 vdone, vtime, usage_us;
2237                 u32 hw_active, hw_inuse;
2238
2239                 /*
2240                  * Collect unused and wind vtime closer to vnow to prevent
2241                  * iocgs from accumulating a large amount of budget.
2242                  */
2243                 vdone = atomic64_read(&iocg->done_vtime);
2244                 vtime = atomic64_read(&iocg->vtime);
2245                 current_hweight(iocg, &hw_active, &hw_inuse);
2246
2247                 /*
2248                  * Latency QoS detection doesn't account for IOs which are
2249                  * in-flight for longer than a period.  Detect them by
2250                  * comparing vdone against period start.  If lagging behind
2251                  * IOs from past periods, don't increase vrate.
2252                  */
2253                 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2254                     !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2255                     time_after64(vtime, vdone) &&
2256                     time_after64(vtime, now.vnow -
2257                                  MAX_LAGGING_PERIODS * period_vtime) &&
2258                     time_before64(vdone, now.vnow - period_vtime))
2259                         nr_lagging++;
2260
2261                 /*
2262                  * Determine absolute usage factoring in in-flight IOs to avoid
2263                  * high-latency completions appearing as idle.
2264                  */
2265                 usage_us = iocg->usage_delta_us;
2266                 usage_us_sum += usage_us;
2267
2268                 /* see whether there's surplus vtime */
2269                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2270                 if (hw_inuse < hw_active ||
2271                     (!waitqueue_active(&iocg->waitq) &&
2272                      time_before64(vtime, now.vnow - ioc->margins.low))) {
2273                         u32 hwa, old_hwi, hwm, new_hwi, usage;
2274                         u64 usage_dur;
2275
2276                         if (vdone != vtime) {
2277                                 u64 inflight_us = DIV64_U64_ROUND_UP(
2278                                         cost_to_abs_cost(vtime - vdone, hw_inuse),
2279                                         ioc->vtime_base_rate);
2280
2281                                 usage_us = max(usage_us, inflight_us);
2282                         }
2283
2284                         /* convert to hweight based usage ratio */
2285                         if (time_after64(iocg->activated_at, ioc->period_at))
2286                                 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2287                         else
2288                                 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2289
2290                         usage = clamp_t(u32,
2291                                 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2292                                                    usage_dur),
2293                                 1, WEIGHT_ONE);
2294
2295                         /*
2296                          * Already donating or accumulated enough to start.
2297                          * Determine the donation amount.
2298                          */
2299                         current_hweight(iocg, &hwa, &old_hwi);
2300                         hwm = current_hweight_max(iocg);
2301                         new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2302                                                          usage, &now);
2303                         /*
2304                          * Donation calculation assumes hweight_after_donation
2305                          * to be positive, a condition that a donor w/ hwa < 2
2306                          * can't meet. Don't bother with donation if hwa is
2307                          * below 2. It's not gonna make a meaningful difference
2308                          * anyway.
2309                          */
2310                         if (new_hwi < hwm && hwa >= 2) {
2311                                 iocg->hweight_donating = hwa;
2312                                 iocg->hweight_after_donation = new_hwi;
2313                                 list_add(&iocg->surplus_list, &surpluses);
2314                         } else if (!iocg->abs_vdebt) {
2315                                 /*
2316                                  * @iocg doesn't have enough to donate. Reset
2317                                  * its inuse to active.
2318                                  *
2319                                  * Don't reset debtors as their inuse's are
2320                                  * owned by debt handling. This shouldn't affect
2321                                  * donation calculuation in any meaningful way
2322                                  * as @iocg doesn't have a meaningful amount of
2323                                  * share anyway.
2324                                  */
2325                                 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2326                                                 iocg->inuse, iocg->active,
2327                                                 iocg->hweight_inuse, new_hwi);
2328
2329                                 __propagate_weights(iocg, iocg->active,
2330                                                     iocg->active, true, &now);
2331                                 nr_shortages++;
2332                         }
2333                 } else {
2334                         /* genuinely short on vtime */
2335                         nr_shortages++;
2336                 }
2337         }
2338
2339         if (!list_empty(&surpluses) && nr_shortages)
2340                 transfer_surpluses(&surpluses, &now);
2341
2342         commit_weights(ioc);
2343
2344         /* surplus list should be dissolved after use */
2345         list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2346                 list_del_init(&iocg->surplus_list);
2347
2348         /*
2349          * If q is getting clogged or we're missing too much, we're issuing
2350          * too much IO and should lower vtime rate.  If we're not missing
2351          * and experiencing shortages but not surpluses, we're too stingy
2352          * and should increase vtime rate.
2353          */
2354         prev_busy_level = ioc->busy_level;
2355         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2356             missed_ppm[READ] > ppm_rthr ||
2357             missed_ppm[WRITE] > ppm_wthr) {
2358                 /* clearly missing QoS targets, slow down vrate */
2359                 ioc->busy_level = max(ioc->busy_level, 0);
2360                 ioc->busy_level++;
2361         } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2362                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2363                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2364                 /* QoS targets are being met with >25% margin */
2365                 if (nr_shortages) {
2366                         /*
2367                          * We're throttling while the device has spare
2368                          * capacity.  If vrate was being slowed down, stop.
2369                          */
2370                         ioc->busy_level = min(ioc->busy_level, 0);
2371
2372                         /*
2373                          * If there are IOs spanning multiple periods, wait
2374                          * them out before pushing the device harder.
2375                          */
2376                         if (!nr_lagging)
2377                                 ioc->busy_level--;
2378                 } else {
2379                         /*
2380                          * Nobody is being throttled and the users aren't
2381                          * issuing enough IOs to saturate the device.  We
2382                          * simply don't know how close the device is to
2383                          * saturation.  Coast.
2384                          */
2385                         ioc->busy_level = 0;
2386                 }
2387         } else {
2388                 /* inside the hysterisis margin, we're good */
2389                 ioc->busy_level = 0;
2390         }
2391
2392         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2393
2394         ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2395                               prev_busy_level, missed_ppm);
2396
2397         ioc_refresh_params(ioc, false);
2398
2399         ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2400
2401         /*
2402          * This period is done.  Move onto the next one.  If nothing's
2403          * going on with the device, stop the timer.
2404          */
2405         atomic64_inc(&ioc->cur_period);
2406
2407         if (ioc->running != IOC_STOP) {
2408                 if (!list_empty(&ioc->active_iocgs)) {
2409                         ioc_start_period(ioc, &now);
2410                 } else {
2411                         ioc->busy_level = 0;
2412                         ioc->vtime_err = 0;
2413                         ioc->running = IOC_IDLE;
2414                 }
2415
2416                 ioc_refresh_vrate(ioc, &now);
2417         }
2418
2419         spin_unlock_irq(&ioc->lock);
2420 }
2421
2422 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2423                                       u64 abs_cost, struct ioc_now *now)
2424 {
2425         struct ioc *ioc = iocg->ioc;
2426         struct ioc_margins *margins = &ioc->margins;
2427         u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2428         u32 hwi, adj_step;
2429         s64 margin;
2430         u64 cost, new_inuse;
2431
2432         current_hweight(iocg, NULL, &hwi);
2433         old_hwi = hwi;
2434         cost = abs_cost_to_cost(abs_cost, hwi);
2435         margin = now->vnow - vtime - cost;
2436
2437         /* debt handling owns inuse for debtors */
2438         if (iocg->abs_vdebt)
2439                 return cost;
2440
2441         /*
2442          * We only increase inuse during period and do so if the margin has
2443          * deteriorated since the previous adjustment.
2444          */
2445         if (margin >= iocg->saved_margin || margin >= margins->low ||
2446             iocg->inuse == iocg->active)
2447                 return cost;
2448
2449         spin_lock_irq(&ioc->lock);
2450
2451         /* we own inuse only when @iocg is in the normal active state */
2452         if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2453                 spin_unlock_irq(&ioc->lock);
2454                 return cost;
2455         }
2456
2457         /*
2458          * Bump up inuse till @abs_cost fits in the existing budget.
2459          * adj_step must be determined after acquiring ioc->lock - we might
2460          * have raced and lost to another thread for activation and could
2461          * be reading 0 iocg->active before ioc->lock which will lead to
2462          * infinite loop.
2463          */
2464         new_inuse = iocg->inuse;
2465         adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2466         do {
2467                 new_inuse = new_inuse + adj_step;
2468                 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2469                 current_hweight(iocg, NULL, &hwi);
2470                 cost = abs_cost_to_cost(abs_cost, hwi);
2471         } while (time_after64(vtime + cost, now->vnow) &&
2472                  iocg->inuse != iocg->active);
2473
2474         spin_unlock_irq(&ioc->lock);
2475
2476         TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2477                         old_inuse, iocg->inuse, old_hwi, hwi);
2478
2479         return cost;
2480 }
2481
2482 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2483                                     bool is_merge, u64 *costp)
2484 {
2485         struct ioc *ioc = iocg->ioc;
2486         u64 coef_seqio, coef_randio, coef_page;
2487         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2488         u64 seek_pages = 0;
2489         u64 cost = 0;
2490
2491         switch (bio_op(bio)) {
2492         case REQ_OP_READ:
2493                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
2494                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
2495                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
2496                 break;
2497         case REQ_OP_WRITE:
2498                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
2499                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
2500                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
2501                 break;
2502         default:
2503                 goto out;
2504         }
2505
2506         if (iocg->cursor) {
2507                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2508                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2509         }
2510
2511         if (!is_merge) {
2512                 if (seek_pages > LCOEF_RANDIO_PAGES) {
2513                         cost += coef_randio;
2514                 } else {
2515                         cost += coef_seqio;
2516                 }
2517         }
2518         cost += pages * coef_page;
2519 out:
2520         *costp = cost;
2521 }
2522
2523 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2524 {
2525         u64 cost;
2526
2527         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2528         return cost;
2529 }
2530
2531 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2532                                          u64 *costp)
2533 {
2534         unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2535
2536         switch (req_op(rq)) {
2537         case REQ_OP_READ:
2538                 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2539                 break;
2540         case REQ_OP_WRITE:
2541                 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2542                 break;
2543         default:
2544                 *costp = 0;
2545         }
2546 }
2547
2548 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2549 {
2550         u64 cost;
2551
2552         calc_size_vtime_cost_builtin(rq, ioc, &cost);
2553         return cost;
2554 }
2555
2556 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2557 {
2558         struct blkcg_gq *blkg = bio->bi_blkg;
2559         struct ioc *ioc = rqos_to_ioc(rqos);
2560         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2561         struct ioc_now now;
2562         struct iocg_wait wait;
2563         u64 abs_cost, cost, vtime;
2564         bool use_debt, ioc_locked;
2565         unsigned long flags;
2566
2567         /* bypass IOs if disabled, still initializing, or for root cgroup */
2568         if (!ioc->enabled || !iocg || !iocg->level)
2569                 return;
2570
2571         /* calculate the absolute vtime cost */
2572         abs_cost = calc_vtime_cost(bio, iocg, false);
2573         if (!abs_cost)
2574                 return;
2575
2576         if (!iocg_activate(iocg, &now))
2577                 return;
2578
2579         iocg->cursor = bio_end_sector(bio);
2580         vtime = atomic64_read(&iocg->vtime);
2581         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2582
2583         /*
2584          * If no one's waiting and within budget, issue right away.  The
2585          * tests are racy but the races aren't systemic - we only miss once
2586          * in a while which is fine.
2587          */
2588         if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2589             time_before_eq64(vtime + cost, now.vnow)) {
2590                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2591                 return;
2592         }
2593
2594         /*
2595          * We're over budget. This can be handled in two ways. IOs which may
2596          * cause priority inversions are punted to @ioc->aux_iocg and charged as
2597          * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2598          * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2599          * whether debt handling is needed and acquire locks accordingly.
2600          */
2601         use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2602         ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2603 retry_lock:
2604         iocg_lock(iocg, ioc_locked, &flags);
2605
2606         /*
2607          * @iocg must stay activated for debt and waitq handling. Deactivation
2608          * is synchronized against both ioc->lock and waitq.lock and we won't
2609          * get deactivated as long as we're waiting or has debt, so we're good
2610          * if we're activated here. In the unlikely cases that we aren't, just
2611          * issue the IO.
2612          */
2613         if (unlikely(list_empty(&iocg->active_list))) {
2614                 iocg_unlock(iocg, ioc_locked, &flags);
2615                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2616                 return;
2617         }
2618
2619         /*
2620          * We're over budget. If @bio has to be issued regardless, remember
2621          * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2622          * off the debt before waking more IOs.
2623          *
2624          * This way, the debt is continuously paid off each period with the
2625          * actual budget available to the cgroup. If we just wound vtime, we
2626          * would incorrectly use the current hw_inuse for the entire amount
2627          * which, for example, can lead to the cgroup staying blocked for a
2628          * long time even with substantially raised hw_inuse.
2629          *
2630          * An iocg with vdebt should stay online so that the timer can keep
2631          * deducting its vdebt and [de]activate use_delay mechanism
2632          * accordingly. We don't want to race against the timer trying to
2633          * clear them and leave @iocg inactive w/ dangling use_delay heavily
2634          * penalizing the cgroup and its descendants.
2635          */
2636         if (use_debt) {
2637                 iocg_incur_debt(iocg, abs_cost, &now);
2638                 if (iocg_kick_delay(iocg, &now))
2639                         blkcg_schedule_throttle(rqos->q->disk,
2640                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2641                 iocg_unlock(iocg, ioc_locked, &flags);
2642                 return;
2643         }
2644
2645         /* guarantee that iocgs w/ waiters have maximum inuse */
2646         if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2647                 if (!ioc_locked) {
2648                         iocg_unlock(iocg, false, &flags);
2649                         ioc_locked = true;
2650                         goto retry_lock;
2651                 }
2652                 propagate_weights(iocg, iocg->active, iocg->active, true,
2653                                   &now);
2654         }
2655
2656         /*
2657          * Append self to the waitq and schedule the wakeup timer if we're
2658          * the first waiter.  The timer duration is calculated based on the
2659          * current vrate.  vtime and hweight changes can make it too short
2660          * or too long.  Each wait entry records the absolute cost it's
2661          * waiting for to allow re-evaluation using a custom wait entry.
2662          *
2663          * If too short, the timer simply reschedules itself.  If too long,
2664          * the period timer will notice and trigger wakeups.
2665          *
2666          * All waiters are on iocg->waitq and the wait states are
2667          * synchronized using waitq.lock.
2668          */
2669         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2670         wait.wait.private = current;
2671         wait.bio = bio;
2672         wait.abs_cost = abs_cost;
2673         wait.committed = false; /* will be set true by waker */
2674
2675         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2676         iocg_kick_waitq(iocg, ioc_locked, &now);
2677
2678         iocg_unlock(iocg, ioc_locked, &flags);
2679
2680         while (true) {
2681                 set_current_state(TASK_UNINTERRUPTIBLE);
2682                 if (wait.committed)
2683                         break;
2684                 io_schedule();
2685         }
2686
2687         /* waker already committed us, proceed */
2688         finish_wait(&iocg->waitq, &wait.wait);
2689 }
2690
2691 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2692                            struct bio *bio)
2693 {
2694         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2695         struct ioc *ioc = rqos_to_ioc(rqos);
2696         sector_t bio_end = bio_end_sector(bio);
2697         struct ioc_now now;
2698         u64 vtime, abs_cost, cost;
2699         unsigned long flags;
2700
2701         /* bypass if disabled, still initializing, or for root cgroup */
2702         if (!ioc->enabled || !iocg || !iocg->level)
2703                 return;
2704
2705         abs_cost = calc_vtime_cost(bio, iocg, true);
2706         if (!abs_cost)
2707                 return;
2708
2709         ioc_now(ioc, &now);
2710
2711         vtime = atomic64_read(&iocg->vtime);
2712         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2713
2714         /* update cursor if backmerging into the request at the cursor */
2715         if (blk_rq_pos(rq) < bio_end &&
2716             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2717                 iocg->cursor = bio_end;
2718
2719         /*
2720          * Charge if there's enough vtime budget and the existing request has
2721          * cost assigned.
2722          */
2723         if (rq->bio && rq->bio->bi_iocost_cost &&
2724             time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2725                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2726                 return;
2727         }
2728
2729         /*
2730          * Otherwise, account it as debt if @iocg is online, which it should
2731          * be for the vast majority of cases. See debt handling in
2732          * ioc_rqos_throttle() for details.
2733          */
2734         spin_lock_irqsave(&ioc->lock, flags);
2735         spin_lock(&iocg->waitq.lock);
2736
2737         if (likely(!list_empty(&iocg->active_list))) {
2738                 iocg_incur_debt(iocg, abs_cost, &now);
2739                 if (iocg_kick_delay(iocg, &now))
2740                         blkcg_schedule_throttle(rqos->q->disk,
2741                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2742         } else {
2743                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2744         }
2745
2746         spin_unlock(&iocg->waitq.lock);
2747         spin_unlock_irqrestore(&ioc->lock, flags);
2748 }
2749
2750 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2751 {
2752         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2753
2754         if (iocg && bio->bi_iocost_cost)
2755                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2756 }
2757
2758 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2759 {
2760         struct ioc *ioc = rqos_to_ioc(rqos);
2761         struct ioc_pcpu_stat *ccs;
2762         u64 on_q_ns, rq_wait_ns, size_nsec;
2763         int pidx, rw;
2764
2765         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2766                 return;
2767
2768         switch (req_op(rq)) {
2769         case REQ_OP_READ:
2770                 pidx = QOS_RLAT;
2771                 rw = READ;
2772                 break;
2773         case REQ_OP_WRITE:
2774                 pidx = QOS_WLAT;
2775                 rw = WRITE;
2776                 break;
2777         default:
2778                 return;
2779         }
2780
2781         on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2782         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2783         size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2784
2785         ccs = get_cpu_ptr(ioc->pcpu_stat);
2786
2787         if (on_q_ns <= size_nsec ||
2788             on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2789                 local_inc(&ccs->missed[rw].nr_met);
2790         else
2791                 local_inc(&ccs->missed[rw].nr_missed);
2792
2793         local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2794
2795         put_cpu_ptr(ccs);
2796 }
2797
2798 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2799 {
2800         struct ioc *ioc = rqos_to_ioc(rqos);
2801
2802         spin_lock_irq(&ioc->lock);
2803         ioc_refresh_params(ioc, false);
2804         spin_unlock_irq(&ioc->lock);
2805 }
2806
2807 static void ioc_rqos_exit(struct rq_qos *rqos)
2808 {
2809         struct ioc *ioc = rqos_to_ioc(rqos);
2810
2811         blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2812
2813         spin_lock_irq(&ioc->lock);
2814         ioc->running = IOC_STOP;
2815         spin_unlock_irq(&ioc->lock);
2816
2817         del_timer_sync(&ioc->timer);
2818         free_percpu(ioc->pcpu_stat);
2819         kfree(ioc);
2820 }
2821
2822 static struct rq_qos_ops ioc_rqos_ops = {
2823         .throttle = ioc_rqos_throttle,
2824         .merge = ioc_rqos_merge,
2825         .done_bio = ioc_rqos_done_bio,
2826         .done = ioc_rqos_done,
2827         .queue_depth_changed = ioc_rqos_queue_depth_changed,
2828         .exit = ioc_rqos_exit,
2829 };
2830
2831 static int blk_iocost_init(struct gendisk *disk)
2832 {
2833         struct request_queue *q = disk->queue;
2834         struct ioc *ioc;
2835         struct rq_qos *rqos;
2836         int i, cpu, ret;
2837
2838         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2839         if (!ioc)
2840                 return -ENOMEM;
2841
2842         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2843         if (!ioc->pcpu_stat) {
2844                 kfree(ioc);
2845                 return -ENOMEM;
2846         }
2847
2848         for_each_possible_cpu(cpu) {
2849                 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2850
2851                 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2852                         local_set(&ccs->missed[i].nr_met, 0);
2853                         local_set(&ccs->missed[i].nr_missed, 0);
2854                 }
2855                 local64_set(&ccs->rq_wait_ns, 0);
2856         }
2857
2858         rqos = &ioc->rqos;
2859         rqos->id = RQ_QOS_COST;
2860         rqos->ops = &ioc_rqos_ops;
2861         rqos->q = q;
2862
2863         spin_lock_init(&ioc->lock);
2864         timer_setup(&ioc->timer, ioc_timer_fn, 0);
2865         INIT_LIST_HEAD(&ioc->active_iocgs);
2866
2867         ioc->running = IOC_IDLE;
2868         ioc->vtime_base_rate = VTIME_PER_USEC;
2869         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2870         seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2871         ioc->period_at = ktime_to_us(ktime_get());
2872         atomic64_set(&ioc->cur_period, 0);
2873         atomic_set(&ioc->hweight_gen, 0);
2874
2875         spin_lock_irq(&ioc->lock);
2876         ioc->autop_idx = AUTOP_INVALID;
2877         ioc_refresh_params(ioc, true);
2878         spin_unlock_irq(&ioc->lock);
2879
2880         /*
2881          * rqos must be added before activation to allow iocg_pd_init() to
2882          * lookup the ioc from q. This means that the rqos methods may get
2883          * called before policy activation completion, can't assume that the
2884          * target bio has an iocg associated and need to test for NULL iocg.
2885          */
2886         ret = rq_qos_add(q, rqos);
2887         if (ret)
2888                 goto err_free_ioc;
2889
2890         ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2891         if (ret)
2892                 goto err_del_qos;
2893         return 0;
2894
2895 err_del_qos:
2896         rq_qos_del(q, rqos);
2897 err_free_ioc:
2898         free_percpu(ioc->pcpu_stat);
2899         kfree(ioc);
2900         return ret;
2901 }
2902
2903 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2904 {
2905         struct ioc_cgrp *iocc;
2906
2907         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2908         if (!iocc)
2909                 return NULL;
2910
2911         iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2912         return &iocc->cpd;
2913 }
2914
2915 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2916 {
2917         kfree(container_of(cpd, struct ioc_cgrp, cpd));
2918 }
2919
2920 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2921                                              struct blkcg *blkcg)
2922 {
2923         int levels = blkcg->css.cgroup->level + 1;
2924         struct ioc_gq *iocg;
2925
2926         iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2927         if (!iocg)
2928                 return NULL;
2929
2930         iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2931         if (!iocg->pcpu_stat) {
2932                 kfree(iocg);
2933                 return NULL;
2934         }
2935
2936         return &iocg->pd;
2937 }
2938
2939 static void ioc_pd_init(struct blkg_policy_data *pd)
2940 {
2941         struct ioc_gq *iocg = pd_to_iocg(pd);
2942         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2943         struct ioc *ioc = q_to_ioc(blkg->q);
2944         struct ioc_now now;
2945         struct blkcg_gq *tblkg;
2946         unsigned long flags;
2947
2948         ioc_now(ioc, &now);
2949
2950         iocg->ioc = ioc;
2951         atomic64_set(&iocg->vtime, now.vnow);
2952         atomic64_set(&iocg->done_vtime, now.vnow);
2953         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2954         INIT_LIST_HEAD(&iocg->active_list);
2955         INIT_LIST_HEAD(&iocg->walk_list);
2956         INIT_LIST_HEAD(&iocg->surplus_list);
2957         iocg->hweight_active = WEIGHT_ONE;
2958         iocg->hweight_inuse = WEIGHT_ONE;
2959
2960         init_waitqueue_head(&iocg->waitq);
2961         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2962         iocg->waitq_timer.function = iocg_waitq_timer_fn;
2963
2964         iocg->level = blkg->blkcg->css.cgroup->level;
2965
2966         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2967                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2968                 iocg->ancestors[tiocg->level] = tiocg;
2969         }
2970
2971         spin_lock_irqsave(&ioc->lock, flags);
2972         weight_updated(iocg, &now);
2973         spin_unlock_irqrestore(&ioc->lock, flags);
2974 }
2975
2976 static void ioc_pd_free(struct blkg_policy_data *pd)
2977 {
2978         struct ioc_gq *iocg = pd_to_iocg(pd);
2979         struct ioc *ioc = iocg->ioc;
2980         unsigned long flags;
2981
2982         if (ioc) {
2983                 spin_lock_irqsave(&ioc->lock, flags);
2984
2985                 if (!list_empty(&iocg->active_list)) {
2986                         struct ioc_now now;
2987
2988                         ioc_now(ioc, &now);
2989                         propagate_weights(iocg, 0, 0, false, &now);
2990                         list_del_init(&iocg->active_list);
2991                 }
2992
2993                 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2994                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2995
2996                 spin_unlock_irqrestore(&ioc->lock, flags);
2997
2998                 hrtimer_cancel(&iocg->waitq_timer);
2999         }
3000         free_percpu(iocg->pcpu_stat);
3001         kfree(iocg);
3002 }
3003
3004 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3005 {
3006         struct ioc_gq *iocg = pd_to_iocg(pd);
3007         struct ioc *ioc = iocg->ioc;
3008
3009         if (!ioc->enabled)
3010                 return;
3011
3012         if (iocg->level == 0) {
3013                 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3014                         ioc->vtime_base_rate * 10000,
3015                         VTIME_PER_USEC);
3016                 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3017         }
3018
3019         seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3020
3021         if (blkcg_debug_stats)
3022                 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3023                         iocg->last_stat.wait_us,
3024                         iocg->last_stat.indebt_us,
3025                         iocg->last_stat.indelay_us);
3026 }
3027
3028 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3029                              int off)
3030 {
3031         const char *dname = blkg_dev_name(pd->blkg);
3032         struct ioc_gq *iocg = pd_to_iocg(pd);
3033
3034         if (dname && iocg->cfg_weight)
3035                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3036         return 0;
3037 }
3038
3039
3040 static int ioc_weight_show(struct seq_file *sf, void *v)
3041 {
3042         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3043         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3044
3045         seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3046         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3047                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3048         return 0;
3049 }
3050
3051 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3052                                 size_t nbytes, loff_t off)
3053 {
3054         struct blkcg *blkcg = css_to_blkcg(of_css(of));
3055         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3056         struct blkg_conf_ctx ctx;
3057         struct ioc_now now;
3058         struct ioc_gq *iocg;
3059         u32 v;
3060         int ret;
3061
3062         if (!strchr(buf, ':')) {
3063                 struct blkcg_gq *blkg;
3064
3065                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3066                         return -EINVAL;
3067
3068                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3069                         return -EINVAL;
3070
3071                 spin_lock_irq(&blkcg->lock);
3072                 iocc->dfl_weight = v * WEIGHT_ONE;
3073                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3074                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
3075
3076                         if (iocg) {
3077                                 spin_lock(&iocg->ioc->lock);
3078                                 ioc_now(iocg->ioc, &now);
3079                                 weight_updated(iocg, &now);
3080                                 spin_unlock(&iocg->ioc->lock);
3081                         }
3082                 }
3083                 spin_unlock_irq(&blkcg->lock);
3084
3085                 return nbytes;
3086         }
3087
3088         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3089         if (ret)
3090                 return ret;
3091
3092         iocg = blkg_to_iocg(ctx.blkg);
3093
3094         if (!strncmp(ctx.body, "default", 7)) {
3095                 v = 0;
3096         } else {
3097                 if (!sscanf(ctx.body, "%u", &v))
3098                         goto einval;
3099                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3100                         goto einval;
3101         }
3102
3103         spin_lock(&iocg->ioc->lock);
3104         iocg->cfg_weight = v * WEIGHT_ONE;
3105         ioc_now(iocg->ioc, &now);
3106         weight_updated(iocg, &now);
3107         spin_unlock(&iocg->ioc->lock);
3108
3109         blkg_conf_finish(&ctx);
3110         return nbytes;
3111
3112 einval:
3113         blkg_conf_finish(&ctx);
3114         return -EINVAL;
3115 }
3116
3117 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3118                           int off)
3119 {
3120         const char *dname = blkg_dev_name(pd->blkg);
3121         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3122
3123         if (!dname)
3124                 return 0;
3125
3126         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3127                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3128                    ioc->params.qos[QOS_RPPM] / 10000,
3129                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
3130                    ioc->params.qos[QOS_RLAT],
3131                    ioc->params.qos[QOS_WPPM] / 10000,
3132                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
3133                    ioc->params.qos[QOS_WLAT],
3134                    ioc->params.qos[QOS_MIN] / 10000,
3135                    ioc->params.qos[QOS_MIN] % 10000 / 100,
3136                    ioc->params.qos[QOS_MAX] / 10000,
3137                    ioc->params.qos[QOS_MAX] % 10000 / 100);
3138         return 0;
3139 }
3140
3141 static int ioc_qos_show(struct seq_file *sf, void *v)
3142 {
3143         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3144
3145         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3146                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3147         return 0;
3148 }
3149
3150 static const match_table_t qos_ctrl_tokens = {
3151         { QOS_ENABLE,           "enable=%u"     },
3152         { QOS_CTRL,             "ctrl=%s"       },
3153         { NR_QOS_CTRL_PARAMS,   NULL            },
3154 };
3155
3156 static const match_table_t qos_tokens = {
3157         { QOS_RPPM,             "rpct=%s"       },
3158         { QOS_RLAT,             "rlat=%u"       },
3159         { QOS_WPPM,             "wpct=%s"       },
3160         { QOS_WLAT,             "wlat=%u"       },
3161         { QOS_MIN,              "min=%s"        },
3162         { QOS_MAX,              "max=%s"        },
3163         { NR_QOS_PARAMS,        NULL            },
3164 };
3165
3166 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3167                              size_t nbytes, loff_t off)
3168 {
3169         struct block_device *bdev;
3170         struct gendisk *disk;
3171         struct ioc *ioc;
3172         u32 qos[NR_QOS_PARAMS];
3173         bool enable, user;
3174         char *p;
3175         int ret;
3176
3177         bdev = blkcg_conf_open_bdev(&input);
3178         if (IS_ERR(bdev))
3179                 return PTR_ERR(bdev);
3180
3181         disk = bdev->bd_disk;
3182         ioc = q_to_ioc(disk->queue);
3183         if (!ioc) {
3184                 ret = blk_iocost_init(disk);
3185                 if (ret)
3186                         goto err;
3187                 ioc = q_to_ioc(disk->queue);
3188         }
3189
3190         spin_lock_irq(&ioc->lock);
3191         memcpy(qos, ioc->params.qos, sizeof(qos));
3192         enable = ioc->enabled;
3193         user = ioc->user_qos_params;
3194         spin_unlock_irq(&ioc->lock);
3195
3196         while ((p = strsep(&input, " \t\n"))) {
3197                 substring_t args[MAX_OPT_ARGS];
3198                 char buf[32];
3199                 int tok;
3200                 s64 v;
3201
3202                 if (!*p)
3203                         continue;
3204
3205                 switch (match_token(p, qos_ctrl_tokens, args)) {
3206                 case QOS_ENABLE:
3207                         match_u64(&args[0], &v);
3208                         enable = v;
3209                         continue;
3210                 case QOS_CTRL:
3211                         match_strlcpy(buf, &args[0], sizeof(buf));
3212                         if (!strcmp(buf, "auto"))
3213                                 user = false;
3214                         else if (!strcmp(buf, "user"))
3215                                 user = true;
3216                         else
3217                                 goto einval;
3218                         continue;
3219                 }
3220
3221                 tok = match_token(p, qos_tokens, args);
3222                 switch (tok) {
3223                 case QOS_RPPM:
3224                 case QOS_WPPM:
3225                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3226                             sizeof(buf))
3227                                 goto einval;
3228                         if (cgroup_parse_float(buf, 2, &v))
3229                                 goto einval;
3230                         if (v < 0 || v > 10000)
3231                                 goto einval;
3232                         qos[tok] = v * 100;
3233                         break;
3234                 case QOS_RLAT:
3235                 case QOS_WLAT:
3236                         if (match_u64(&args[0], &v))
3237                                 goto einval;
3238                         qos[tok] = v;
3239                         break;
3240                 case QOS_MIN:
3241                 case QOS_MAX:
3242                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3243                             sizeof(buf))
3244                                 goto einval;
3245                         if (cgroup_parse_float(buf, 2, &v))
3246                                 goto einval;
3247                         if (v < 0)
3248                                 goto einval;
3249                         qos[tok] = clamp_t(s64, v * 100,
3250                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
3251                         break;
3252                 default:
3253                         goto einval;
3254                 }
3255                 user = true;
3256         }
3257
3258         if (qos[QOS_MIN] > qos[QOS_MAX])
3259                 goto einval;
3260
3261         spin_lock_irq(&ioc->lock);
3262
3263         if (enable) {
3264                 blk_stat_enable_accounting(disk->queue);
3265                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3266                 ioc->enabled = true;
3267         } else {
3268                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3269                 ioc->enabled = false;
3270         }
3271
3272         if (user) {
3273                 memcpy(ioc->params.qos, qos, sizeof(qos));
3274                 ioc->user_qos_params = true;
3275         } else {
3276                 ioc->user_qos_params = false;
3277         }
3278
3279         ioc_refresh_params(ioc, true);
3280         spin_unlock_irq(&ioc->lock);
3281
3282         blkdev_put_no_open(bdev);
3283         return nbytes;
3284 einval:
3285         ret = -EINVAL;
3286 err:
3287         blkdev_put_no_open(bdev);
3288         return ret;
3289 }
3290
3291 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3292                                  struct blkg_policy_data *pd, int off)
3293 {
3294         const char *dname = blkg_dev_name(pd->blkg);
3295         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3296         u64 *u = ioc->params.i_lcoefs;
3297
3298         if (!dname)
3299                 return 0;
3300
3301         seq_printf(sf, "%s ctrl=%s model=linear "
3302                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
3303                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3304                    dname, ioc->user_cost_model ? "user" : "auto",
3305                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3306                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3307         return 0;
3308 }
3309
3310 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3311 {
3312         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3313
3314         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3315                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3316         return 0;
3317 }
3318
3319 static const match_table_t cost_ctrl_tokens = {
3320         { COST_CTRL,            "ctrl=%s"       },
3321         { COST_MODEL,           "model=%s"      },
3322         { NR_COST_CTRL_PARAMS,  NULL            },
3323 };
3324
3325 static const match_table_t i_lcoef_tokens = {
3326         { I_LCOEF_RBPS,         "rbps=%u"       },
3327         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
3328         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
3329         { I_LCOEF_WBPS,         "wbps=%u"       },
3330         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
3331         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
3332         { NR_I_LCOEFS,          NULL            },
3333 };
3334
3335 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3336                                     size_t nbytes, loff_t off)
3337 {
3338         struct block_device *bdev;
3339         struct ioc *ioc;
3340         u64 u[NR_I_LCOEFS];
3341         bool user;
3342         char *p;
3343         int ret;
3344
3345         bdev = blkcg_conf_open_bdev(&input);
3346         if (IS_ERR(bdev))
3347                 return PTR_ERR(bdev);
3348
3349         ioc = q_to_ioc(bdev_get_queue(bdev));
3350         if (!ioc) {
3351                 ret = blk_iocost_init(bdev->bd_disk);
3352                 if (ret)
3353                         goto err;
3354                 ioc = q_to_ioc(bdev_get_queue(bdev));
3355         }
3356
3357         spin_lock_irq(&ioc->lock);
3358         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3359         user = ioc->user_cost_model;
3360         spin_unlock_irq(&ioc->lock);
3361
3362         while ((p = strsep(&input, " \t\n"))) {
3363                 substring_t args[MAX_OPT_ARGS];
3364                 char buf[32];
3365                 int tok;
3366                 u64 v;
3367
3368                 if (!*p)
3369                         continue;
3370
3371                 switch (match_token(p, cost_ctrl_tokens, args)) {
3372                 case COST_CTRL:
3373                         match_strlcpy(buf, &args[0], sizeof(buf));
3374                         if (!strcmp(buf, "auto"))
3375                                 user = false;
3376                         else if (!strcmp(buf, "user"))
3377                                 user = true;
3378                         else
3379                                 goto einval;
3380                         continue;
3381                 case COST_MODEL:
3382                         match_strlcpy(buf, &args[0], sizeof(buf));
3383                         if (strcmp(buf, "linear"))
3384                                 goto einval;
3385                         continue;
3386                 }
3387
3388                 tok = match_token(p, i_lcoef_tokens, args);
3389                 if (tok == NR_I_LCOEFS)
3390                         goto einval;
3391                 if (match_u64(&args[0], &v))
3392                         goto einval;
3393                 u[tok] = v;
3394                 user = true;
3395         }
3396
3397         spin_lock_irq(&ioc->lock);
3398         if (user) {
3399                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3400                 ioc->user_cost_model = true;
3401         } else {
3402                 ioc->user_cost_model = false;
3403         }
3404         ioc_refresh_params(ioc, true);
3405         spin_unlock_irq(&ioc->lock);
3406
3407         blkdev_put_no_open(bdev);
3408         return nbytes;
3409
3410 einval:
3411         ret = -EINVAL;
3412 err:
3413         blkdev_put_no_open(bdev);
3414         return ret;
3415 }
3416
3417 static struct cftype ioc_files[] = {
3418         {
3419                 .name = "weight",
3420                 .flags = CFTYPE_NOT_ON_ROOT,
3421                 .seq_show = ioc_weight_show,
3422                 .write = ioc_weight_write,
3423         },
3424         {
3425                 .name = "cost.qos",
3426                 .flags = CFTYPE_ONLY_ON_ROOT,
3427                 .seq_show = ioc_qos_show,
3428                 .write = ioc_qos_write,
3429         },
3430         {
3431                 .name = "cost.model",
3432                 .flags = CFTYPE_ONLY_ON_ROOT,
3433                 .seq_show = ioc_cost_model_show,
3434                 .write = ioc_cost_model_write,
3435         },
3436         {}
3437 };
3438
3439 static struct blkcg_policy blkcg_policy_iocost = {
3440         .dfl_cftypes    = ioc_files,
3441         .cpd_alloc_fn   = ioc_cpd_alloc,
3442         .cpd_free_fn    = ioc_cpd_free,
3443         .pd_alloc_fn    = ioc_pd_alloc,
3444         .pd_init_fn     = ioc_pd_init,
3445         .pd_free_fn     = ioc_pd_free,
3446         .pd_stat_fn     = ioc_pd_stat,
3447 };
3448
3449 static int __init ioc_init(void)
3450 {
3451         return blkcg_policy_register(&blkcg_policy_iocost);
3452 }
3453
3454 static void __exit ioc_exit(void)
3455 {
3456         blkcg_policy_unregister(&blkcg_policy_iocost);
3457 }
3458
3459 module_init(ioc_init);
3460 module_exit(ioc_exit);