1 /* SPDX-License-Identifier: GPL-2.0
3 * IO cost model based controller.
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * parameters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
54 * 2-1. Vtime Distribution
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated. Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
64 * A0 (w:100) A1 (w:100)
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each. The distribution mechanism only cares about these flattened
70 * shares. They're called hweights (hierarchical weights) and always add
71 * upto 1 (WEIGHT_ONE).
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
78 * This constitutes the basis of IO capacity distribution. Each cgroup's
79 * vtime is running at a rate determined by its hweight. A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO if doing so
81 * wouldn't outrun the current device vtime. Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
84 * 2-2. Vrate Adjustment
86 * It's unrealistic to expect the cost model to be perfect. There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection. The controller needs to adapt dynamically.
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is. If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down. If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock. For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available. When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate. This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, solely depending on rq wait may not result in satisfactory
115 * control quality. For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service. There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage. Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
125 * 2-3. Work Conservation
127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own. Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity. The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition. This is too high a cost to pay
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it. In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically. However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
158 * https://github.com/osandov/drgn. The output looks like the following.
160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161 * active weight hweight% inflt% dbt delay usages%
162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
165 * - per : Timer period
166 * - cur_per : Internal wall and device vtime clock
167 * - vrate : Device virtual time rate against wall clock
168 * - weight : Surplus-adjusted and configured weights
169 * - hweight : Surplus-adjusted and configured hierarchical weights
170 * - inflt : The percentage of in-flight IO cost at the end of last period
171 * - del_ms : Deferred issuer delay induction level and duration
172 * - usages : Usage history
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
186 #include "blk-cgroup.h"
188 #ifdef CONFIG_TRACEPOINTS
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
195 #define TRACE_IOCG_PATH(type, iocg, ...) \
197 unsigned long flags; \
198 if (trace_iocost_##type##_enabled()) { \
199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
202 trace_iocost_##type(iocg, trace_iocg_path, \
204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
208 #else /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
210 #endif /* CONFIG_TRACE_POINTS */
215 /* timer period is calculated from latency requirements, bound it */
216 MIN_PERIOD = USEC_PER_MSEC,
217 MAX_PERIOD = USEC_PER_SEC,
220 * iocg->vtime is targeted at 50% behind the device vtime, which
221 * serves as its IO credit buffer. Surplus weight adjustment is
222 * immediately canceled if the vtime margin runs below 10%.
226 MARGIN_TARGET_PCT = 50,
228 INUSE_ADJ_STEP_PCT = 25,
230 /* Have some play in timer operations */
233 /* 1/64k is granular enough and can easily be handled w/ u32 */
234 WEIGHT_ONE = 1 << 16,
239 * As vtime is used to calculate the cost of each IO, it needs to
240 * be fairly high precision. For example, it should be able to
241 * represent the cost of a single page worth of discard with
242 * suffificient accuracy. At the same time, it should be able to
243 * represent reasonably long enough durations to be useful and
244 * convenient during operation.
246 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
247 * granularity and days of wrap-around time even at extreme vrates.
249 VTIME_PER_SEC_SHIFT = 37,
250 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT,
251 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC,
252 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC,
254 /* bound vrate adjustments within two orders of magnitude */
255 VRATE_MIN_PPM = 10000, /* 1% */
256 VRATE_MAX_PPM = 100000000, /* 10000% */
258 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259 VRATE_CLAMP_ADJ_PCT = 4,
261 /* switch iff the conditions are met for longer than this */
262 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC,
266 /* if IOs end up waiting for requests, issue less */
267 RQ_WAIT_BUSY_PCT = 5,
269 /* unbusy hysterisis */
273 * The effect of delay is indirect and non-linear and a huge amount of
274 * future debt can accumulate abruptly while unthrottled. Linearly scale
275 * up delay as debt is going up and then let it decay exponentially.
276 * This gives us quick ramp ups while delay is accumulating and long
277 * tails which can help reducing the frequency of debt explosions on
278 * unthrottle. The parameters are experimentally determined.
280 * The delay mechanism provides adequate protection and behavior in many
281 * cases. However, this is far from ideal and falls shorts on both
282 * fronts. The debtors are often throttled too harshly costing a
283 * significant level of fairness and possibly total work while the
284 * protection against their impacts on the system can be choppy and
287 * The shortcoming primarily stems from the fact that, unlike for page
288 * cache, the kernel doesn't have well-defined back-pressure propagation
289 * mechanism and policies for anonymous memory. Fully addressing this
290 * issue will likely require substantial improvements in the area.
292 MIN_DELAY_THR_PCT = 500,
293 MAX_DELAY_THR_PCT = 25000,
295 MAX_DELAY = 250 * USEC_PER_MSEC,
297 /* halve debts if avg usage over 100ms is under 50% */
299 DFGV_PERIOD = 100 * USEC_PER_MSEC,
301 /* don't let cmds which take a very long time pin lagging for too long */
302 MAX_LAGGING_PERIODS = 10,
305 * Count IO size in 4k pages. The 12bit shift helps keeping
306 * size-proportional components of cost calculation in closer
307 * numbers of digits to per-IO cost components.
310 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT,
311 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT,
313 /* if apart further than 16M, consider randio for linear model */
314 LCOEF_RANDIO_PAGES = 4096,
323 /* io.cost.qos controls including per-dev enable of the whole controller */
330 /* io.cost.qos params */
341 /* io.cost.model controls */
348 /* builtin linear cost model coefficients */
378 u32 qos[NR_QOS_PARAMS];
379 u64 i_lcoefs[NR_I_LCOEFS];
380 u64 lcoefs[NR_LCOEFS];
381 u32 too_fast_vrate_pct;
382 u32 too_slow_vrate_pct;
398 struct ioc_pcpu_stat {
399 struct ioc_missed missed[2];
401 local64_t rq_wait_ns;
411 struct ioc_params params;
412 struct ioc_margins margins;
419 struct timer_list timer;
420 struct list_head active_iocgs; /* active cgroups */
421 struct ioc_pcpu_stat __percpu *pcpu_stat;
423 enum ioc_running running;
424 atomic64_t vtime_rate;
428 seqcount_spinlock_t period_seqcount;
429 u64 period_at; /* wallclock starttime */
430 u64 period_at_vtime; /* vtime starttime */
432 atomic64_t cur_period; /* inc'd each period */
433 int busy_level; /* saturation history */
435 bool weights_updated;
436 atomic_t hweight_gen; /* for lazy hweights */
438 /* debt forgivness */
441 u64 dfgv_usage_us_sum;
443 u64 autop_too_fast_at;
444 u64 autop_too_slow_at;
446 bool user_qos_params:1;
447 bool user_cost_model:1;
450 struct iocg_pcpu_stat {
451 local64_t abs_vusage;
461 /* per device-cgroup pair */
463 struct blkg_policy_data pd;
467 * A iocg can get its weight from two sources - an explicit
468 * per-device-cgroup configuration or the default weight of the
469 * cgroup. `cfg_weight` is the explicit per-device-cgroup
470 * configuration. `weight` is the effective considering both
473 * When an idle cgroup becomes active its `active` goes from 0 to
474 * `weight`. `inuse` is the surplus adjusted active weight.
475 * `active` and `inuse` are used to calculate `hweight_active` and
478 * `last_inuse` remembers `inuse` while an iocg is idle to persist
479 * surplus adjustments.
481 * `inuse` may be adjusted dynamically during period. `saved_*` are used
482 * to determine and track adjustments.
492 sector_t cursor; /* to detect randio */
495 * `vtime` is this iocg's vtime cursor which progresses as IOs are
496 * issued. If lagging behind device vtime, the delta represents
497 * the currently available IO budget. If running ahead, the
500 * `vtime_done` is the same but progressed on completion rather
501 * than issue. The delta behind `vtime` represents the cost of
502 * currently in-flight IOs.
505 atomic64_t done_vtime;
508 /* current delay in effect and when it started */
513 * The period this iocg was last active in. Used for deactivation
514 * and invalidating `vtime`.
516 atomic64_t active_period;
517 struct list_head active_list;
519 /* see __propagate_weights() and current_hweight() for details */
520 u64 child_active_sum;
522 u64 child_adjusted_sum;
526 u32 hweight_donating;
527 u32 hweight_after_donation;
529 struct list_head walk_list;
530 struct list_head surplus_list;
532 struct wait_queue_head waitq;
533 struct hrtimer waitq_timer;
535 /* timestamp at the latest activation */
539 struct iocg_pcpu_stat __percpu *pcpu_stat;
540 struct iocg_stat stat;
541 struct iocg_stat last_stat;
542 u64 last_stat_abs_vusage;
548 /* this iocg's depth in the hierarchy and ancestors including self */
550 struct ioc_gq *ancestors[];
555 struct blkcg_policy_data cpd;
556 unsigned int dfl_weight;
566 struct wait_queue_entry wait;
572 struct iocg_wake_ctx {
578 static const struct ioc_params autop[] = {
581 [QOS_RLAT] = 250000, /* 250ms */
583 [QOS_MIN] = VRATE_MIN_PPM,
584 [QOS_MAX] = VRATE_MAX_PPM,
587 [I_LCOEF_RBPS] = 174019176,
588 [I_LCOEF_RSEQIOPS] = 41708,
589 [I_LCOEF_RRANDIOPS] = 370,
590 [I_LCOEF_WBPS] = 178075866,
591 [I_LCOEF_WSEQIOPS] = 42705,
592 [I_LCOEF_WRANDIOPS] = 378,
597 [QOS_RLAT] = 25000, /* 25ms */
599 [QOS_MIN] = VRATE_MIN_PPM,
600 [QOS_MAX] = VRATE_MAX_PPM,
603 [I_LCOEF_RBPS] = 245855193,
604 [I_LCOEF_RSEQIOPS] = 61575,
605 [I_LCOEF_RRANDIOPS] = 6946,
606 [I_LCOEF_WBPS] = 141365009,
607 [I_LCOEF_WSEQIOPS] = 33716,
608 [I_LCOEF_WRANDIOPS] = 26796,
613 [QOS_RLAT] = 25000, /* 25ms */
615 [QOS_MIN] = VRATE_MIN_PPM,
616 [QOS_MAX] = VRATE_MAX_PPM,
619 [I_LCOEF_RBPS] = 488636629,
620 [I_LCOEF_RSEQIOPS] = 8932,
621 [I_LCOEF_RRANDIOPS] = 8518,
622 [I_LCOEF_WBPS] = 427891549,
623 [I_LCOEF_WSEQIOPS] = 28755,
624 [I_LCOEF_WRANDIOPS] = 21940,
626 .too_fast_vrate_pct = 500,
630 [QOS_RLAT] = 5000, /* 5ms */
632 [QOS_MIN] = VRATE_MIN_PPM,
633 [QOS_MAX] = VRATE_MAX_PPM,
636 [I_LCOEF_RBPS] = 3102524156LLU,
637 [I_LCOEF_RSEQIOPS] = 724816,
638 [I_LCOEF_RRANDIOPS] = 778122,
639 [I_LCOEF_WBPS] = 1742780862LLU,
640 [I_LCOEF_WSEQIOPS] = 425702,
641 [I_LCOEF_WRANDIOPS] = 443193,
643 .too_slow_vrate_pct = 10,
648 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
649 * vtime credit shortage and down on device saturation.
651 static u32 vrate_adj_pct[] =
653 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
654 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
655 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
657 static struct blkcg_policy blkcg_policy_iocost;
659 /* accessors and helpers */
660 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
662 return container_of(rqos, struct ioc, rqos);
665 static struct ioc *q_to_ioc(struct request_queue *q)
667 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
670 static const char __maybe_unused *ioc_name(struct ioc *ioc)
672 struct gendisk *disk = ioc->rqos.disk;
676 return disk->disk_name;
679 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
681 return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
684 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
686 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
689 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
691 return pd_to_blkg(&iocg->pd);
694 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
696 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
697 struct ioc_cgrp, cpd);
701 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
702 * weight, the more expensive each IO. Must round up.
704 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
706 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
710 * The inverse of abs_cost_to_cost(). Must round up.
712 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
714 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
717 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
718 u64 abs_cost, u64 cost)
720 struct iocg_pcpu_stat *gcs;
722 bio->bi_iocost_cost = cost;
723 atomic64_add(cost, &iocg->vtime);
725 gcs = get_cpu_ptr(iocg->pcpu_stat);
726 local64_add(abs_cost, &gcs->abs_vusage);
730 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
733 spin_lock_irqsave(&iocg->ioc->lock, *flags);
734 spin_lock(&iocg->waitq.lock);
736 spin_lock_irqsave(&iocg->waitq.lock, *flags);
740 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
743 spin_unlock(&iocg->waitq.lock);
744 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
746 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
750 #define CREATE_TRACE_POINTS
751 #include <trace/events/iocost.h>
753 static void ioc_refresh_margins(struct ioc *ioc)
755 struct ioc_margins *margins = &ioc->margins;
756 u32 period_us = ioc->period_us;
757 u64 vrate = ioc->vtime_base_rate;
759 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
760 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
761 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
764 /* latency Qos params changed, update period_us and all the dependent params */
765 static void ioc_refresh_period_us(struct ioc *ioc)
767 u32 ppm, lat, multi, period_us;
769 lockdep_assert_held(&ioc->lock);
771 /* pick the higher latency target */
772 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
773 ppm = ioc->params.qos[QOS_RPPM];
774 lat = ioc->params.qos[QOS_RLAT];
776 ppm = ioc->params.qos[QOS_WPPM];
777 lat = ioc->params.qos[QOS_WLAT];
781 * We want the period to be long enough to contain a healthy number
782 * of IOs while short enough for granular control. Define it as a
783 * multiple of the latency target. Ideally, the multiplier should
784 * be scaled according to the percentile so that it would nominally
785 * contain a certain number of requests. Let's be simpler and
786 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
789 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
792 period_us = multi * lat;
793 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
795 /* calculate dependent params */
796 ioc->period_us = period_us;
797 ioc->timer_slack_ns = div64_u64(
798 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
800 ioc_refresh_margins(ioc);
804 * ioc->rqos.disk isn't initialized when this function is called from
807 static int ioc_autop_idx(struct ioc *ioc, struct gendisk *disk)
809 int idx = ioc->autop_idx;
810 const struct ioc_params *p = &autop[idx];
815 if (!blk_queue_nonrot(disk->queue))
818 /* handle SATA SSDs w/ broken NCQ */
819 if (blk_queue_depth(disk->queue) == 1)
820 return AUTOP_SSD_QD1;
822 /* use one of the normal ssd sets */
823 if (idx < AUTOP_SSD_DFL)
824 return AUTOP_SSD_DFL;
826 /* if user is overriding anything, maintain what was there */
827 if (ioc->user_qos_params || ioc->user_cost_model)
830 /* step up/down based on the vrate */
831 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
832 now_ns = ktime_get_ns();
834 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
835 if (!ioc->autop_too_fast_at)
836 ioc->autop_too_fast_at = now_ns;
837 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
840 ioc->autop_too_fast_at = 0;
843 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
844 if (!ioc->autop_too_slow_at)
845 ioc->autop_too_slow_at = now_ns;
846 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
849 ioc->autop_too_slow_at = 0;
856 * Take the followings as input
858 * @bps maximum sequential throughput
859 * @seqiops maximum sequential 4k iops
860 * @randiops maximum random 4k iops
862 * and calculate the linear model cost coefficients.
864 * *@page per-page cost 1s / (@bps / 4096)
865 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
866 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
868 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
869 u64 *page, u64 *seqio, u64 *randio)
873 *page = *seqio = *randio = 0;
876 u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE);
879 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages);
885 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
891 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
897 static void ioc_refresh_lcoefs(struct ioc *ioc)
899 u64 *u = ioc->params.i_lcoefs;
900 u64 *c = ioc->params.lcoefs;
902 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
903 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
904 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
905 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
909 * struct gendisk is required as an argument because ioc->rqos.disk
910 * is not properly initialized when called from the init path.
912 static bool ioc_refresh_params_disk(struct ioc *ioc, bool force,
913 struct gendisk *disk)
915 const struct ioc_params *p;
918 lockdep_assert_held(&ioc->lock);
920 idx = ioc_autop_idx(ioc, disk);
923 if (idx == ioc->autop_idx && !force)
926 if (idx != ioc->autop_idx) {
927 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
928 ioc->vtime_base_rate = VTIME_PER_USEC;
931 ioc->autop_idx = idx;
932 ioc->autop_too_fast_at = 0;
933 ioc->autop_too_slow_at = 0;
935 if (!ioc->user_qos_params)
936 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
937 if (!ioc->user_cost_model)
938 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
940 ioc_refresh_period_us(ioc);
941 ioc_refresh_lcoefs(ioc);
943 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
944 VTIME_PER_USEC, MILLION);
945 ioc->vrate_max = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MAX] *
946 VTIME_PER_USEC, MILLION);
951 static bool ioc_refresh_params(struct ioc *ioc, bool force)
953 return ioc_refresh_params_disk(ioc, force, ioc->rqos.disk);
957 * When an iocg accumulates too much vtime or gets deactivated, we throw away
958 * some vtime, which lowers the overall device utilization. As the exact amount
959 * which is being thrown away is known, we can compensate by accelerating the
960 * vrate accordingly so that the extra vtime generated in the current period
961 * matches what got lost.
963 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
965 s64 pleft = ioc->period_at + ioc->period_us - now->now;
966 s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
967 s64 vcomp, vcomp_min, vcomp_max;
969 lockdep_assert_held(&ioc->lock);
971 /* we need some time left in this period */
976 * Calculate how much vrate should be adjusted to offset the error.
977 * Limit the amount of adjustment and deduct the adjusted amount from
980 vcomp = -div64_s64(ioc->vtime_err, pleft);
981 vcomp_min = -(ioc->vtime_base_rate >> 1);
982 vcomp_max = ioc->vtime_base_rate;
983 vcomp = clamp(vcomp, vcomp_min, vcomp_max);
985 ioc->vtime_err += vcomp * pleft;
987 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
989 /* bound how much error can accumulate */
990 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
993 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
994 int nr_lagging, int nr_shortages,
995 int prev_busy_level, u32 *missed_ppm)
997 u64 vrate = ioc->vtime_base_rate;
998 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
1000 if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
1001 if (ioc->busy_level != prev_busy_level || nr_lagging)
1002 trace_iocost_ioc_vrate_adj(ioc, vrate,
1003 missed_ppm, rq_wait_pct,
1004 nr_lagging, nr_shortages);
1010 * If vrate is out of bounds, apply clamp gradually as the
1011 * bounds can change abruptly. Otherwise, apply busy_level
1014 if (vrate < vrate_min) {
1015 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
1016 vrate = min(vrate, vrate_min);
1017 } else if (vrate > vrate_max) {
1018 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
1019 vrate = max(vrate, vrate_max);
1021 int idx = min_t(int, abs(ioc->busy_level),
1022 ARRAY_SIZE(vrate_adj_pct) - 1);
1023 u32 adj_pct = vrate_adj_pct[idx];
1025 if (ioc->busy_level > 0)
1026 adj_pct = 100 - adj_pct;
1028 adj_pct = 100 + adj_pct;
1030 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1031 vrate_min, vrate_max);
1034 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1035 nr_lagging, nr_shortages);
1037 ioc->vtime_base_rate = vrate;
1038 ioc_refresh_margins(ioc);
1041 /* take a snapshot of the current [v]time and vrate */
1042 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1047 now->now_ns = ktime_get();
1048 now->now = ktime_to_us(now->now_ns);
1049 vrate = atomic64_read(&ioc->vtime_rate);
1052 * The current vtime is
1054 * vtime at period start + (wallclock time since the start) * vrate
1056 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1057 * needed, they're seqcount protected.
1060 seq = read_seqcount_begin(&ioc->period_seqcount);
1061 now->vnow = ioc->period_at_vtime +
1062 (now->now - ioc->period_at) * vrate;
1063 } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1066 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1068 WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1070 write_seqcount_begin(&ioc->period_seqcount);
1071 ioc->period_at = now->now;
1072 ioc->period_at_vtime = now->vnow;
1073 write_seqcount_end(&ioc->period_seqcount);
1075 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1076 add_timer(&ioc->timer);
1080 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1081 * weight sums and propagate upwards accordingly. If @save, the current margin
1082 * is saved to be used as reference for later inuse in-period adjustments.
1084 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1085 bool save, struct ioc_now *now)
1087 struct ioc *ioc = iocg->ioc;
1090 lockdep_assert_held(&ioc->lock);
1093 * For an active leaf node, its inuse shouldn't be zero or exceed
1094 * @active. An active internal node's inuse is solely determined by the
1095 * inuse to active ratio of its children regardless of @inuse.
1097 if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1098 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1099 iocg->child_active_sum);
1101 inuse = clamp_t(u32, inuse, 1, active);
1104 iocg->last_inuse = iocg->inuse;
1106 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1108 if (active == iocg->active && inuse == iocg->inuse)
1111 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1112 struct ioc_gq *parent = iocg->ancestors[lvl];
1113 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1114 u32 parent_active = 0, parent_inuse = 0;
1116 /* update the level sums */
1117 parent->child_active_sum += (s32)(active - child->active);
1118 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1119 /* apply the updates */
1120 child->active = active;
1121 child->inuse = inuse;
1124 * The delta between inuse and active sums indicates that
1125 * much of weight is being given away. Parent's inuse
1126 * and active should reflect the ratio.
1128 if (parent->child_active_sum) {
1129 parent_active = parent->weight;
1130 parent_inuse = DIV64_U64_ROUND_UP(
1131 parent_active * parent->child_inuse_sum,
1132 parent->child_active_sum);
1135 /* do we need to keep walking up? */
1136 if (parent_active == parent->active &&
1137 parent_inuse == parent->inuse)
1140 active = parent_active;
1141 inuse = parent_inuse;
1144 ioc->weights_updated = true;
1147 static void commit_weights(struct ioc *ioc)
1149 lockdep_assert_held(&ioc->lock);
1151 if (ioc->weights_updated) {
1152 /* paired with rmb in current_hweight(), see there */
1154 atomic_inc(&ioc->hweight_gen);
1155 ioc->weights_updated = false;
1159 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1160 bool save, struct ioc_now *now)
1162 __propagate_weights(iocg, active, inuse, save, now);
1163 commit_weights(iocg->ioc);
1166 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1168 struct ioc *ioc = iocg->ioc;
1173 /* hot path - if uptodate, use cached */
1174 ioc_gen = atomic_read(&ioc->hweight_gen);
1175 if (ioc_gen == iocg->hweight_gen)
1179 * Paired with wmb in commit_weights(). If we saw the updated
1180 * hweight_gen, all the weight updates from __propagate_weights() are
1183 * We can race with weight updates during calculation and get it
1184 * wrong. However, hweight_gen would have changed and a future
1185 * reader will recalculate and we're guaranteed to discard the
1186 * wrong result soon.
1190 hwa = hwi = WEIGHT_ONE;
1191 for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1192 struct ioc_gq *parent = iocg->ancestors[lvl];
1193 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1194 u64 active_sum = READ_ONCE(parent->child_active_sum);
1195 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1196 u32 active = READ_ONCE(child->active);
1197 u32 inuse = READ_ONCE(child->inuse);
1199 /* we can race with deactivations and either may read as zero */
1200 if (!active_sum || !inuse_sum)
1203 active_sum = max_t(u64, active, active_sum);
1204 hwa = div64_u64((u64)hwa * active, active_sum);
1206 inuse_sum = max_t(u64, inuse, inuse_sum);
1207 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1210 iocg->hweight_active = max_t(u32, hwa, 1);
1211 iocg->hweight_inuse = max_t(u32, hwi, 1);
1212 iocg->hweight_gen = ioc_gen;
1215 *hw_activep = iocg->hweight_active;
1217 *hw_inusep = iocg->hweight_inuse;
1221 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1222 * other weights stay unchanged.
1224 static u32 current_hweight_max(struct ioc_gq *iocg)
1226 u32 hwm = WEIGHT_ONE;
1227 u32 inuse = iocg->active;
1228 u64 child_inuse_sum;
1231 lockdep_assert_held(&iocg->ioc->lock);
1233 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1234 struct ioc_gq *parent = iocg->ancestors[lvl];
1235 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1237 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1238 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1239 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1240 parent->child_active_sum);
1243 return max_t(u32, hwm, 1);
1246 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1248 struct ioc *ioc = iocg->ioc;
1249 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1250 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1253 lockdep_assert_held(&ioc->lock);
1255 weight = iocg->cfg_weight ?: iocc->dfl_weight;
1256 if (weight != iocg->weight && iocg->active)
1257 propagate_weights(iocg, weight, iocg->inuse, true, now);
1258 iocg->weight = weight;
1261 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1263 struct ioc *ioc = iocg->ioc;
1264 u64 last_period, cur_period;
1269 * If seem to be already active, just update the stamp to tell the
1270 * timer that we're still active. We don't mind occassional races.
1272 if (!list_empty(&iocg->active_list)) {
1274 cur_period = atomic64_read(&ioc->cur_period);
1275 if (atomic64_read(&iocg->active_period) != cur_period)
1276 atomic64_set(&iocg->active_period, cur_period);
1280 /* racy check on internal node IOs, treat as root level IOs */
1281 if (iocg->child_active_sum)
1284 spin_lock_irq(&ioc->lock);
1289 cur_period = atomic64_read(&ioc->cur_period);
1290 last_period = atomic64_read(&iocg->active_period);
1291 atomic64_set(&iocg->active_period, cur_period);
1293 /* already activated or breaking leaf-only constraint? */
1294 if (!list_empty(&iocg->active_list))
1295 goto succeed_unlock;
1296 for (i = iocg->level - 1; i > 0; i--)
1297 if (!list_empty(&iocg->ancestors[i]->active_list))
1300 if (iocg->child_active_sum)
1304 * Always start with the target budget. On deactivation, we throw away
1305 * anything above it.
1307 vtarget = now->vnow - ioc->margins.target;
1308 vtime = atomic64_read(&iocg->vtime);
1310 atomic64_add(vtarget - vtime, &iocg->vtime);
1311 atomic64_add(vtarget - vtime, &iocg->done_vtime);
1315 * Activate, propagate weight and start period timer if not
1316 * running. Reset hweight_gen to avoid accidental match from
1319 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1320 list_add(&iocg->active_list, &ioc->active_iocgs);
1322 propagate_weights(iocg, iocg->weight,
1323 iocg->last_inuse ?: iocg->weight, true, now);
1325 TRACE_IOCG_PATH(iocg_activate, iocg, now,
1326 last_period, cur_period, vtime);
1328 iocg->activated_at = now->now;
1330 if (ioc->running == IOC_IDLE) {
1331 ioc->running = IOC_RUNNING;
1332 ioc->dfgv_period_at = now->now;
1333 ioc->dfgv_period_rem = 0;
1334 ioc_start_period(ioc, now);
1338 spin_unlock_irq(&ioc->lock);
1342 spin_unlock_irq(&ioc->lock);
1346 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1348 struct ioc *ioc = iocg->ioc;
1349 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1350 u64 tdelta, delay, new_delay;
1351 s64 vover, vover_pct;
1354 lockdep_assert_held(&iocg->waitq.lock);
1356 /* calculate the current delay in effect - 1/2 every second */
1357 tdelta = now->now - iocg->delay_at;
1359 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1363 /* calculate the new delay from the debt amount */
1364 current_hweight(iocg, &hwa, NULL);
1365 vover = atomic64_read(&iocg->vtime) +
1366 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1367 vover_pct = div64_s64(100 * vover,
1368 ioc->period_us * ioc->vtime_base_rate);
1370 if (vover_pct <= MIN_DELAY_THR_PCT)
1372 else if (vover_pct >= MAX_DELAY_THR_PCT)
1373 new_delay = MAX_DELAY;
1375 new_delay = MIN_DELAY +
1376 div_u64((MAX_DELAY - MIN_DELAY) *
1377 (vover_pct - MIN_DELAY_THR_PCT),
1378 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1380 /* pick the higher one and apply */
1381 if (new_delay > delay) {
1382 iocg->delay = new_delay;
1383 iocg->delay_at = now->now;
1387 if (delay >= MIN_DELAY) {
1388 if (!iocg->indelay_since)
1389 iocg->indelay_since = now->now;
1390 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1393 if (iocg->indelay_since) {
1394 iocg->stat.indelay_us += now->now - iocg->indelay_since;
1395 iocg->indelay_since = 0;
1398 blkcg_clear_delay(blkg);
1403 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1404 struct ioc_now *now)
1406 struct iocg_pcpu_stat *gcs;
1408 lockdep_assert_held(&iocg->ioc->lock);
1409 lockdep_assert_held(&iocg->waitq.lock);
1410 WARN_ON_ONCE(list_empty(&iocg->active_list));
1413 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1414 * inuse donating all of it share to others until its debt is paid off.
1416 if (!iocg->abs_vdebt && abs_cost) {
1417 iocg->indebt_since = now->now;
1418 propagate_weights(iocg, iocg->active, 0, false, now);
1421 iocg->abs_vdebt += abs_cost;
1423 gcs = get_cpu_ptr(iocg->pcpu_stat);
1424 local64_add(abs_cost, &gcs->abs_vusage);
1428 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1429 struct ioc_now *now)
1431 lockdep_assert_held(&iocg->ioc->lock);
1432 lockdep_assert_held(&iocg->waitq.lock);
1434 /* make sure that nobody messed with @iocg */
1435 WARN_ON_ONCE(list_empty(&iocg->active_list));
1436 WARN_ON_ONCE(iocg->inuse > 1);
1438 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1440 /* if debt is paid in full, restore inuse */
1441 if (!iocg->abs_vdebt) {
1442 iocg->stat.indebt_us += now->now - iocg->indebt_since;
1443 iocg->indebt_since = 0;
1445 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1450 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1451 int flags, void *key)
1453 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1454 struct iocg_wake_ctx *ctx = key;
1455 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1457 ctx->vbudget -= cost;
1459 if (ctx->vbudget < 0)
1462 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1463 wait->committed = true;
1466 * autoremove_wake_function() removes the wait entry only when it
1467 * actually changed the task state. We want the wait always removed.
1468 * Remove explicitly and use default_wake_function(). Note that the
1469 * order of operations is important as finish_wait() tests whether
1470 * @wq_entry is removed without grabbing the lock.
1472 default_wake_function(wq_entry, mode, flags, key);
1473 list_del_init_careful(&wq_entry->entry);
1478 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1479 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1480 * addition to iocg->waitq.lock.
1482 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1483 struct ioc_now *now)
1485 struct ioc *ioc = iocg->ioc;
1486 struct iocg_wake_ctx ctx = { .iocg = iocg };
1487 u64 vshortage, expires, oexpires;
1491 lockdep_assert_held(&iocg->waitq.lock);
1493 current_hweight(iocg, &hwa, NULL);
1494 vbudget = now->vnow - atomic64_read(&iocg->vtime);
1497 if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1498 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1499 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1500 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1502 lockdep_assert_held(&ioc->lock);
1504 atomic64_add(vpay, &iocg->vtime);
1505 atomic64_add(vpay, &iocg->done_vtime);
1506 iocg_pay_debt(iocg, abs_vpay, now);
1510 if (iocg->abs_vdebt || iocg->delay)
1511 iocg_kick_delay(iocg, now);
1514 * Debt can still be outstanding if we haven't paid all yet or the
1515 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1516 * under debt. Make sure @vbudget reflects the outstanding amount and is
1519 if (iocg->abs_vdebt) {
1520 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1521 vbudget = min_t(s64, 0, vbudget - vdebt);
1525 * Wake up the ones which are due and see how much vtime we'll need for
1526 * the next one. As paying off debt restores hw_inuse, it must be read
1527 * after the above debt payment.
1529 ctx.vbudget = vbudget;
1530 current_hweight(iocg, NULL, &ctx.hw_inuse);
1532 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1534 if (!waitqueue_active(&iocg->waitq)) {
1535 if (iocg->wait_since) {
1536 iocg->stat.wait_us += now->now - iocg->wait_since;
1537 iocg->wait_since = 0;
1542 if (!iocg->wait_since)
1543 iocg->wait_since = now->now;
1545 if (WARN_ON_ONCE(ctx.vbudget >= 0))
1548 /* determine next wakeup, add a timer margin to guarantee chunking */
1549 vshortage = -ctx.vbudget;
1550 expires = now->now_ns +
1551 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1553 expires += ioc->timer_slack_ns;
1555 /* if already active and close enough, don't bother */
1556 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1557 if (hrtimer_is_queued(&iocg->waitq_timer) &&
1558 abs(oexpires - expires) <= ioc->timer_slack_ns)
1561 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1562 ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1565 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1567 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1568 bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1570 unsigned long flags;
1572 ioc_now(iocg->ioc, &now);
1574 iocg_lock(iocg, pay_debt, &flags);
1575 iocg_kick_waitq(iocg, pay_debt, &now);
1576 iocg_unlock(iocg, pay_debt, &flags);
1578 return HRTIMER_NORESTART;
1581 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1583 u32 nr_met[2] = { };
1584 u32 nr_missed[2] = { };
1588 for_each_online_cpu(cpu) {
1589 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1590 u64 this_rq_wait_ns;
1592 for (rw = READ; rw <= WRITE; rw++) {
1593 u32 this_met = local_read(&stat->missed[rw].nr_met);
1594 u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1596 nr_met[rw] += this_met - stat->missed[rw].last_met;
1597 nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1598 stat->missed[rw].last_met = this_met;
1599 stat->missed[rw].last_missed = this_missed;
1602 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1603 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1604 stat->last_rq_wait_ns = this_rq_wait_ns;
1607 for (rw = READ; rw <= WRITE; rw++) {
1608 if (nr_met[rw] + nr_missed[rw])
1610 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1611 nr_met[rw] + nr_missed[rw]);
1613 missed_ppm_ar[rw] = 0;
1616 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1617 ioc->period_us * NSEC_PER_USEC);
1620 /* was iocg idle this period? */
1621 static bool iocg_is_idle(struct ioc_gq *iocg)
1623 struct ioc *ioc = iocg->ioc;
1625 /* did something get issued this period? */
1626 if (atomic64_read(&iocg->active_period) ==
1627 atomic64_read(&ioc->cur_period))
1630 /* is something in flight? */
1631 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1638 * Call this function on the target leaf @iocg's to build pre-order traversal
1639 * list of all the ancestors in @inner_walk. The inner nodes are linked through
1640 * ->walk_list and the caller is responsible for dissolving the list after use.
1642 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1643 struct list_head *inner_walk)
1647 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1649 /* find the first ancestor which hasn't been visited yet */
1650 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1651 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1655 /* walk down and visit the inner nodes to get pre-order traversal */
1656 while (++lvl <= iocg->level - 1) {
1657 struct ioc_gq *inner = iocg->ancestors[lvl];
1659 /* record traversal order */
1660 list_add_tail(&inner->walk_list, inner_walk);
1664 /* propagate the deltas to the parent */
1665 static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1667 if (iocg->level > 0) {
1668 struct iocg_stat *parent_stat =
1669 &iocg->ancestors[iocg->level - 1]->stat;
1671 parent_stat->usage_us +=
1672 iocg->stat.usage_us - iocg->last_stat.usage_us;
1673 parent_stat->wait_us +=
1674 iocg->stat.wait_us - iocg->last_stat.wait_us;
1675 parent_stat->indebt_us +=
1676 iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1677 parent_stat->indelay_us +=
1678 iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1681 iocg->last_stat = iocg->stat;
1684 /* collect per-cpu counters and propagate the deltas to the parent */
1685 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1687 struct ioc *ioc = iocg->ioc;
1692 lockdep_assert_held(&iocg->ioc->lock);
1694 /* collect per-cpu counters */
1695 for_each_possible_cpu(cpu) {
1696 abs_vusage += local64_read(
1697 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1699 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1700 iocg->last_stat_abs_vusage = abs_vusage;
1702 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1703 iocg->stat.usage_us += iocg->usage_delta_us;
1705 iocg_flush_stat_upward(iocg);
1708 /* get stat counters ready for reading on all active iocgs */
1709 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1711 LIST_HEAD(inner_walk);
1712 struct ioc_gq *iocg, *tiocg;
1714 /* flush leaves and build inner node walk list */
1715 list_for_each_entry(iocg, target_iocgs, active_list) {
1716 iocg_flush_stat_leaf(iocg, now);
1717 iocg_build_inner_walk(iocg, &inner_walk);
1720 /* keep flushing upwards by walking the inner list backwards */
1721 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1722 iocg_flush_stat_upward(iocg);
1723 list_del_init(&iocg->walk_list);
1728 * Determine what @iocg's hweight_inuse should be after donating unused
1729 * capacity. @hwm is the upper bound and used to signal no donation. This
1730 * function also throws away @iocg's excess budget.
1732 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1733 u32 usage, struct ioc_now *now)
1735 struct ioc *ioc = iocg->ioc;
1736 u64 vtime = atomic64_read(&iocg->vtime);
1737 s64 excess, delta, target, new_hwi;
1739 /* debt handling owns inuse for debtors */
1740 if (iocg->abs_vdebt)
1743 /* see whether minimum margin requirement is met */
1744 if (waitqueue_active(&iocg->waitq) ||
1745 time_after64(vtime, now->vnow - ioc->margins.min))
1748 /* throw away excess above target */
1749 excess = now->vnow - vtime - ioc->margins.target;
1751 atomic64_add(excess, &iocg->vtime);
1752 atomic64_add(excess, &iocg->done_vtime);
1754 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1758 * Let's say the distance between iocg's and device's vtimes as a
1759 * fraction of period duration is delta. Assuming that the iocg will
1760 * consume the usage determined above, we want to determine new_hwi so
1761 * that delta equals MARGIN_TARGET at the end of the next period.
1763 * We need to execute usage worth of IOs while spending the sum of the
1764 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1767 * usage = (1 - MARGIN_TARGET + delta) * new_hwi
1769 * Therefore, the new_hwi is:
1771 * new_hwi = usage / (1 - MARGIN_TARGET + delta)
1773 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1774 now->vnow - ioc->period_at_vtime);
1775 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1776 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1778 return clamp_t(s64, new_hwi, 1, hwm);
1782 * For work-conservation, an iocg which isn't using all of its share should
1783 * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1784 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1786 * #1 is mathematically simpler but has the drawback of requiring synchronous
1787 * global hweight_inuse updates when idle iocg's get activated or inuse weights
1788 * change due to donation snapbacks as it has the possibility of grossly
1789 * overshooting what's allowed by the model and vrate.
1791 * #2 is inherently safe with local operations. The donating iocg can easily
1792 * snap back to higher weights when needed without worrying about impacts on
1793 * other nodes as the impacts will be inherently correct. This also makes idle
1794 * iocg activations safe. The only effect activations have is decreasing
1795 * hweight_inuse of others, the right solution to which is for those iocgs to
1796 * snap back to higher weights.
1798 * So, we go with #2. The challenge is calculating how each donating iocg's
1799 * inuse should be adjusted to achieve the target donation amounts. This is done
1800 * using Andy's method described in the following pdf.
1802 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1804 * Given the weights and target after-donation hweight_inuse values, Andy's
1805 * method determines how the proportional distribution should look like at each
1806 * sibling level to maintain the relative relationship between all non-donating
1807 * pairs. To roughly summarize, it divides the tree into donating and
1808 * non-donating parts, calculates global donation rate which is used to
1809 * determine the target hweight_inuse for each node, and then derives per-level
1812 * The following pdf shows that global distribution calculated this way can be
1813 * achieved by scaling inuse weights of donating leaves and propagating the
1814 * adjustments upwards proportionally.
1816 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1818 * Combining the above two, we can determine how each leaf iocg's inuse should
1819 * be adjusted to achieve the target donation.
1821 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1823 * The inline comments use symbols from the last pdf.
1825 * b is the sum of the absolute budgets in the subtree. 1 for the root node.
1826 * f is the sum of the absolute budgets of non-donating nodes in the subtree.
1827 * t is the sum of the absolute budgets of donating nodes in the subtree.
1828 * w is the weight of the node. w = w_f + w_t
1829 * w_f is the non-donating portion of w. w_f = w * f / b
1830 * w_b is the donating portion of w. w_t = w * t / b
1831 * s is the sum of all sibling weights. s = Sum(w) for siblings
1832 * s_f and s_t are the non-donating and donating portions of s.
1834 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1835 * w_pt is the donating portion of the parent's weight and w'_pt the same value
1836 * after adjustments. Subscript r denotes the root node's values.
1838 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1840 LIST_HEAD(over_hwa);
1841 LIST_HEAD(inner_walk);
1842 struct ioc_gq *iocg, *tiocg, *root_iocg;
1843 u32 after_sum, over_sum, over_target, gamma;
1846 * It's pretty unlikely but possible for the total sum of
1847 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1848 * confuse the following calculations. If such condition is detected,
1849 * scale down everyone over its full share equally to keep the sum below
1854 list_for_each_entry(iocg, surpluses, surplus_list) {
1857 current_hweight(iocg, &hwa, NULL);
1858 after_sum += iocg->hweight_after_donation;
1860 if (iocg->hweight_after_donation > hwa) {
1861 over_sum += iocg->hweight_after_donation;
1862 list_add(&iocg->walk_list, &over_hwa);
1866 if (after_sum >= WEIGHT_ONE) {
1868 * The delta should be deducted from the over_sum, calculate
1869 * target over_sum value.
1871 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1872 WARN_ON_ONCE(over_sum <= over_delta);
1873 over_target = over_sum - over_delta;
1878 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1880 iocg->hweight_after_donation =
1881 div_u64((u64)iocg->hweight_after_donation *
1882 over_target, over_sum);
1883 list_del_init(&iocg->walk_list);
1887 * Build pre-order inner node walk list and prepare for donation
1888 * adjustment calculations.
1890 list_for_each_entry(iocg, surpluses, surplus_list) {
1891 iocg_build_inner_walk(iocg, &inner_walk);
1894 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1895 WARN_ON_ONCE(root_iocg->level > 0);
1897 list_for_each_entry(iocg, &inner_walk, walk_list) {
1898 iocg->child_adjusted_sum = 0;
1899 iocg->hweight_donating = 0;
1900 iocg->hweight_after_donation = 0;
1904 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1907 list_for_each_entry(iocg, surpluses, surplus_list) {
1908 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1910 parent->hweight_donating += iocg->hweight_donating;
1911 parent->hweight_after_donation += iocg->hweight_after_donation;
1914 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1915 if (iocg->level > 0) {
1916 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1918 parent->hweight_donating += iocg->hweight_donating;
1919 parent->hweight_after_donation += iocg->hweight_after_donation;
1924 * Calculate inner hwa's (b) and make sure the donation values are
1925 * within the accepted ranges as we're doing low res calculations with
1928 list_for_each_entry(iocg, &inner_walk, walk_list) {
1930 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1932 iocg->hweight_active = DIV64_U64_ROUND_UP(
1933 (u64)parent->hweight_active * iocg->active,
1934 parent->child_active_sum);
1938 iocg->hweight_donating = min(iocg->hweight_donating,
1939 iocg->hweight_active);
1940 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1941 iocg->hweight_donating - 1);
1942 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1943 iocg->hweight_donating <= 1 ||
1944 iocg->hweight_after_donation == 0)) {
1945 pr_warn("iocg: invalid donation weights in ");
1946 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1947 pr_cont(": active=%u donating=%u after=%u\n",
1948 iocg->hweight_active, iocg->hweight_donating,
1949 iocg->hweight_after_donation);
1954 * Calculate the global donation rate (gamma) - the rate to adjust
1955 * non-donating budgets by.
1957 * No need to use 64bit multiplication here as the first operand is
1958 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1960 * We know that there are beneficiary nodes and the sum of the donating
1961 * hweights can't be whole; however, due to the round-ups during hweight
1962 * calculations, root_iocg->hweight_donating might still end up equal to
1963 * or greater than whole. Limit the range when calculating the divider.
1965 * gamma = (1 - t_r') / (1 - t_r)
1967 gamma = DIV_ROUND_UP(
1968 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1969 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1972 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1975 list_for_each_entry(iocg, &inner_walk, walk_list) {
1976 struct ioc_gq *parent;
1977 u32 inuse, wpt, wptp;
1980 if (iocg->level == 0) {
1981 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1982 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1983 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1984 WEIGHT_ONE - iocg->hweight_after_donation);
1988 parent = iocg->ancestors[iocg->level - 1];
1990 /* b' = gamma * b_f + b_t' */
1991 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1992 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1993 WEIGHT_ONE) + iocg->hweight_after_donation;
1995 /* w' = s' * b' / b'_p */
1996 inuse = DIV64_U64_ROUND_UP(
1997 (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1998 parent->hweight_inuse);
2000 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
2001 st = DIV64_U64_ROUND_UP(
2002 iocg->child_active_sum * iocg->hweight_donating,
2003 iocg->hweight_active);
2004 sf = iocg->child_active_sum - st;
2005 wpt = DIV64_U64_ROUND_UP(
2006 (u64)iocg->active * iocg->hweight_donating,
2007 iocg->hweight_active);
2008 wptp = DIV64_U64_ROUND_UP(
2009 (u64)inuse * iocg->hweight_after_donation,
2010 iocg->hweight_inuse);
2012 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
2016 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
2017 * we can finally determine leaf adjustments.
2019 list_for_each_entry(iocg, surpluses, surplus_list) {
2020 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2024 * In-debt iocgs participated in the donation calculation with
2025 * the minimum target hweight_inuse. Configuring inuse
2026 * accordingly would work fine but debt handling expects
2027 * @iocg->inuse stay at the minimum and we don't wanna
2030 if (iocg->abs_vdebt) {
2031 WARN_ON_ONCE(iocg->inuse > 1);
2035 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2036 inuse = DIV64_U64_ROUND_UP(
2037 parent->child_adjusted_sum * iocg->hweight_after_donation,
2038 parent->hweight_inuse);
2040 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2042 iocg->hweight_inuse,
2043 iocg->hweight_after_donation);
2045 __propagate_weights(iocg, iocg->active, inuse, true, now);
2048 /* walk list should be dissolved after use */
2049 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2050 list_del_init(&iocg->walk_list);
2054 * A low weight iocg can amass a large amount of debt, for example, when
2055 * anonymous memory gets reclaimed aggressively. If the system has a lot of
2056 * memory paired with a slow IO device, the debt can span multiple seconds or
2057 * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2058 * up blocked paying its debt while the IO device is idle.
2060 * The following protects against such cases. If the device has been
2061 * sufficiently idle for a while, the debts are halved and delays are
2064 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2065 struct ioc_now *now)
2067 struct ioc_gq *iocg;
2068 u64 dur, usage_pct, nr_cycles;
2070 /* if no debtor, reset the cycle */
2072 ioc->dfgv_period_at = now->now;
2073 ioc->dfgv_period_rem = 0;
2074 ioc->dfgv_usage_us_sum = 0;
2079 * Debtors can pass through a lot of writes choking the device and we
2080 * don't want to be forgiving debts while the device is struggling from
2081 * write bursts. If we're missing latency targets, consider the device
2084 if (ioc->busy_level > 0)
2085 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2087 ioc->dfgv_usage_us_sum += usage_us_sum;
2088 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2092 * At least DFGV_PERIOD has passed since the last period. Calculate the
2093 * average usage and reset the period counters.
2095 dur = now->now - ioc->dfgv_period_at;
2096 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2098 ioc->dfgv_period_at = now->now;
2099 ioc->dfgv_usage_us_sum = 0;
2101 /* if was too busy, reset everything */
2102 if (usage_pct > DFGV_USAGE_PCT) {
2103 ioc->dfgv_period_rem = 0;
2108 * Usage is lower than threshold. Let's forgive some debts. Debt
2109 * forgiveness runs off of the usual ioc timer but its period usually
2110 * doesn't match ioc's. Compensate the difference by performing the
2111 * reduction as many times as would fit in the duration since the last
2112 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2113 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2114 * reductions is doubled.
2116 nr_cycles = dur + ioc->dfgv_period_rem;
2117 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2119 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2120 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2122 if (!iocg->abs_vdebt && !iocg->delay)
2125 spin_lock(&iocg->waitq.lock);
2127 old_debt = iocg->abs_vdebt;
2128 old_delay = iocg->delay;
2130 if (iocg->abs_vdebt)
2131 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2133 iocg->delay = iocg->delay >> nr_cycles ?: 1;
2135 iocg_kick_waitq(iocg, true, now);
2137 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2138 old_debt, iocg->abs_vdebt,
2139 old_delay, iocg->delay);
2141 spin_unlock(&iocg->waitq.lock);
2146 * Check the active iocgs' state to avoid oversleeping and deactive
2149 * Since waiters determine the sleep durations based on the vrate
2150 * they saw at the time of sleep, if vrate has increased, some
2151 * waiters could be sleeping for too long. Wake up tardy waiters
2152 * which should have woken up in the last period and expire idle
2155 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2158 struct ioc_gq *iocg, *tiocg;
2160 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2161 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2162 !iocg->delay && !iocg_is_idle(iocg))
2165 spin_lock(&iocg->waitq.lock);
2167 /* flush wait and indebt stat deltas */
2168 if (iocg->wait_since) {
2169 iocg->stat.wait_us += now->now - iocg->wait_since;
2170 iocg->wait_since = now->now;
2172 if (iocg->indebt_since) {
2173 iocg->stat.indebt_us +=
2174 now->now - iocg->indebt_since;
2175 iocg->indebt_since = now->now;
2177 if (iocg->indelay_since) {
2178 iocg->stat.indelay_us +=
2179 now->now - iocg->indelay_since;
2180 iocg->indelay_since = now->now;
2183 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2185 /* might be oversleeping vtime / hweight changes, kick */
2186 iocg_kick_waitq(iocg, true, now);
2187 if (iocg->abs_vdebt || iocg->delay)
2189 } else if (iocg_is_idle(iocg)) {
2190 /* no waiter and idle, deactivate */
2191 u64 vtime = atomic64_read(&iocg->vtime);
2195 * @iocg has been inactive for a full duration and will
2196 * have a high budget. Account anything above target as
2197 * error and throw away. On reactivation, it'll start
2198 * with the target budget.
2200 excess = now->vnow - vtime - ioc->margins.target;
2204 current_hweight(iocg, NULL, &old_hwi);
2205 ioc->vtime_err -= div64_u64(excess * old_hwi,
2209 TRACE_IOCG_PATH(iocg_idle, iocg, now,
2210 atomic64_read(&iocg->active_period),
2211 atomic64_read(&ioc->cur_period), vtime);
2212 __propagate_weights(iocg, 0, 0, false, now);
2213 list_del_init(&iocg->active_list);
2216 spin_unlock(&iocg->waitq.lock);
2219 commit_weights(ioc);
2223 static void ioc_timer_fn(struct timer_list *timer)
2225 struct ioc *ioc = container_of(timer, struct ioc, timer);
2226 struct ioc_gq *iocg, *tiocg;
2228 LIST_HEAD(surpluses);
2229 int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2230 u64 usage_us_sum = 0;
2233 u32 missed_ppm[2], rq_wait_pct;
2235 int prev_busy_level;
2237 /* how were the latencies during the period? */
2238 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2240 /* take care of active iocgs */
2241 spin_lock_irq(&ioc->lock);
2243 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2244 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2247 period_vtime = now.vnow - ioc->period_at_vtime;
2248 if (WARN_ON_ONCE(!period_vtime)) {
2249 spin_unlock_irq(&ioc->lock);
2253 nr_debtors = ioc_check_iocgs(ioc, &now);
2256 * Wait and indebt stat are flushed above and the donation calculation
2257 * below needs updated usage stat. Let's bring stat up-to-date.
2259 iocg_flush_stat(&ioc->active_iocgs, &now);
2261 /* calc usage and see whether some weights need to be moved around */
2262 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2263 u64 vdone, vtime, usage_us;
2264 u32 hw_active, hw_inuse;
2267 * Collect unused and wind vtime closer to vnow to prevent
2268 * iocgs from accumulating a large amount of budget.
2270 vdone = atomic64_read(&iocg->done_vtime);
2271 vtime = atomic64_read(&iocg->vtime);
2272 current_hweight(iocg, &hw_active, &hw_inuse);
2275 * Latency QoS detection doesn't account for IOs which are
2276 * in-flight for longer than a period. Detect them by
2277 * comparing vdone against period start. If lagging behind
2278 * IOs from past periods, don't increase vrate.
2280 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2281 !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2282 time_after64(vtime, vdone) &&
2283 time_after64(vtime, now.vnow -
2284 MAX_LAGGING_PERIODS * period_vtime) &&
2285 time_before64(vdone, now.vnow - period_vtime))
2289 * Determine absolute usage factoring in in-flight IOs to avoid
2290 * high-latency completions appearing as idle.
2292 usage_us = iocg->usage_delta_us;
2293 usage_us_sum += usage_us;
2295 /* see whether there's surplus vtime */
2296 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2297 if (hw_inuse < hw_active ||
2298 (!waitqueue_active(&iocg->waitq) &&
2299 time_before64(vtime, now.vnow - ioc->margins.low))) {
2300 u32 hwa, old_hwi, hwm, new_hwi, usage;
2303 if (vdone != vtime) {
2304 u64 inflight_us = DIV64_U64_ROUND_UP(
2305 cost_to_abs_cost(vtime - vdone, hw_inuse),
2306 ioc->vtime_base_rate);
2308 usage_us = max(usage_us, inflight_us);
2311 /* convert to hweight based usage ratio */
2312 if (time_after64(iocg->activated_at, ioc->period_at))
2313 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2315 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2317 usage = clamp_t(u32,
2318 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2323 * Already donating or accumulated enough to start.
2324 * Determine the donation amount.
2326 current_hweight(iocg, &hwa, &old_hwi);
2327 hwm = current_hweight_max(iocg);
2328 new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2331 * Donation calculation assumes hweight_after_donation
2332 * to be positive, a condition that a donor w/ hwa < 2
2333 * can't meet. Don't bother with donation if hwa is
2334 * below 2. It's not gonna make a meaningful difference
2337 if (new_hwi < hwm && hwa >= 2) {
2338 iocg->hweight_donating = hwa;
2339 iocg->hweight_after_donation = new_hwi;
2340 list_add(&iocg->surplus_list, &surpluses);
2341 } else if (!iocg->abs_vdebt) {
2343 * @iocg doesn't have enough to donate. Reset
2344 * its inuse to active.
2346 * Don't reset debtors as their inuse's are
2347 * owned by debt handling. This shouldn't affect
2348 * donation calculuation in any meaningful way
2349 * as @iocg doesn't have a meaningful amount of
2352 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2353 iocg->inuse, iocg->active,
2354 iocg->hweight_inuse, new_hwi);
2356 __propagate_weights(iocg, iocg->active,
2357 iocg->active, true, &now);
2361 /* genuinely short on vtime */
2366 if (!list_empty(&surpluses) && nr_shortages)
2367 transfer_surpluses(&surpluses, &now);
2369 commit_weights(ioc);
2371 /* surplus list should be dissolved after use */
2372 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2373 list_del_init(&iocg->surplus_list);
2376 * If q is getting clogged or we're missing too much, we're issuing
2377 * too much IO and should lower vtime rate. If we're not missing
2378 * and experiencing shortages but not surpluses, we're too stingy
2379 * and should increase vtime rate.
2381 prev_busy_level = ioc->busy_level;
2382 if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2383 missed_ppm[READ] > ppm_rthr ||
2384 missed_ppm[WRITE] > ppm_wthr) {
2385 /* clearly missing QoS targets, slow down vrate */
2386 ioc->busy_level = max(ioc->busy_level, 0);
2388 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2389 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2390 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2391 /* QoS targets are being met with >25% margin */
2394 * We're throttling while the device has spare
2395 * capacity. If vrate was being slowed down, stop.
2397 ioc->busy_level = min(ioc->busy_level, 0);
2400 * If there are IOs spanning multiple periods, wait
2401 * them out before pushing the device harder.
2407 * Nobody is being throttled and the users aren't
2408 * issuing enough IOs to saturate the device. We
2409 * simply don't know how close the device is to
2410 * saturation. Coast.
2412 ioc->busy_level = 0;
2415 /* inside the hysterisis margin, we're good */
2416 ioc->busy_level = 0;
2419 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2421 ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2422 prev_busy_level, missed_ppm);
2424 ioc_refresh_params(ioc, false);
2426 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2429 * This period is done. Move onto the next one. If nothing's
2430 * going on with the device, stop the timer.
2432 atomic64_inc(&ioc->cur_period);
2434 if (ioc->running != IOC_STOP) {
2435 if (!list_empty(&ioc->active_iocgs)) {
2436 ioc_start_period(ioc, &now);
2438 ioc->busy_level = 0;
2440 ioc->running = IOC_IDLE;
2443 ioc_refresh_vrate(ioc, &now);
2446 spin_unlock_irq(&ioc->lock);
2449 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2450 u64 abs_cost, struct ioc_now *now)
2452 struct ioc *ioc = iocg->ioc;
2453 struct ioc_margins *margins = &ioc->margins;
2454 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2457 u64 cost, new_inuse;
2458 unsigned long flags;
2460 current_hweight(iocg, NULL, &hwi);
2462 cost = abs_cost_to_cost(abs_cost, hwi);
2463 margin = now->vnow - vtime - cost;
2465 /* debt handling owns inuse for debtors */
2466 if (iocg->abs_vdebt)
2470 * We only increase inuse during period and do so if the margin has
2471 * deteriorated since the previous adjustment.
2473 if (margin >= iocg->saved_margin || margin >= margins->low ||
2474 iocg->inuse == iocg->active)
2477 spin_lock_irqsave(&ioc->lock, flags);
2479 /* we own inuse only when @iocg is in the normal active state */
2480 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2481 spin_unlock_irqrestore(&ioc->lock, flags);
2486 * Bump up inuse till @abs_cost fits in the existing budget.
2487 * adj_step must be determined after acquiring ioc->lock - we might
2488 * have raced and lost to another thread for activation and could
2489 * be reading 0 iocg->active before ioc->lock which will lead to
2492 new_inuse = iocg->inuse;
2493 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2495 new_inuse = new_inuse + adj_step;
2496 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2497 current_hweight(iocg, NULL, &hwi);
2498 cost = abs_cost_to_cost(abs_cost, hwi);
2499 } while (time_after64(vtime + cost, now->vnow) &&
2500 iocg->inuse != iocg->active);
2502 spin_unlock_irqrestore(&ioc->lock, flags);
2504 TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2505 old_inuse, iocg->inuse, old_hwi, hwi);
2510 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2511 bool is_merge, u64 *costp)
2513 struct ioc *ioc = iocg->ioc;
2514 u64 coef_seqio, coef_randio, coef_page;
2515 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2519 /* Can't calculate cost for empty bio */
2520 if (!bio->bi_iter.bi_size)
2523 switch (bio_op(bio)) {
2525 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO];
2526 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO];
2527 coef_page = ioc->params.lcoefs[LCOEF_RPAGE];
2530 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO];
2531 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO];
2532 coef_page = ioc->params.lcoefs[LCOEF_WPAGE];
2539 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2540 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2544 if (seek_pages > LCOEF_RANDIO_PAGES) {
2545 cost += coef_randio;
2550 cost += pages * coef_page;
2555 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2559 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2563 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2566 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2568 switch (req_op(rq)) {
2570 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2573 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2580 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2584 calc_size_vtime_cost_builtin(rq, ioc, &cost);
2588 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2590 struct blkcg_gq *blkg = bio->bi_blkg;
2591 struct ioc *ioc = rqos_to_ioc(rqos);
2592 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2594 struct iocg_wait wait;
2595 u64 abs_cost, cost, vtime;
2596 bool use_debt, ioc_locked;
2597 unsigned long flags;
2599 /* bypass IOs if disabled, still initializing, or for root cgroup */
2600 if (!ioc->enabled || !iocg || !iocg->level)
2603 /* calculate the absolute vtime cost */
2604 abs_cost = calc_vtime_cost(bio, iocg, false);
2608 if (!iocg_activate(iocg, &now))
2611 iocg->cursor = bio_end_sector(bio);
2612 vtime = atomic64_read(&iocg->vtime);
2613 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2616 * If no one's waiting and within budget, issue right away. The
2617 * tests are racy but the races aren't systemic - we only miss once
2618 * in a while which is fine.
2620 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2621 time_before_eq64(vtime + cost, now.vnow)) {
2622 iocg_commit_bio(iocg, bio, abs_cost, cost);
2627 * We're over budget. This can be handled in two ways. IOs which may
2628 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2629 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2630 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2631 * whether debt handling is needed and acquire locks accordingly.
2633 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2634 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2636 iocg_lock(iocg, ioc_locked, &flags);
2639 * @iocg must stay activated for debt and waitq handling. Deactivation
2640 * is synchronized against both ioc->lock and waitq.lock and we won't
2641 * get deactivated as long as we're waiting or has debt, so we're good
2642 * if we're activated here. In the unlikely cases that we aren't, just
2645 if (unlikely(list_empty(&iocg->active_list))) {
2646 iocg_unlock(iocg, ioc_locked, &flags);
2647 iocg_commit_bio(iocg, bio, abs_cost, cost);
2652 * We're over budget. If @bio has to be issued regardless, remember
2653 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2654 * off the debt before waking more IOs.
2656 * This way, the debt is continuously paid off each period with the
2657 * actual budget available to the cgroup. If we just wound vtime, we
2658 * would incorrectly use the current hw_inuse for the entire amount
2659 * which, for example, can lead to the cgroup staying blocked for a
2660 * long time even with substantially raised hw_inuse.
2662 * An iocg with vdebt should stay online so that the timer can keep
2663 * deducting its vdebt and [de]activate use_delay mechanism
2664 * accordingly. We don't want to race against the timer trying to
2665 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2666 * penalizing the cgroup and its descendants.
2669 iocg_incur_debt(iocg, abs_cost, &now);
2670 if (iocg_kick_delay(iocg, &now))
2671 blkcg_schedule_throttle(rqos->disk,
2672 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2673 iocg_unlock(iocg, ioc_locked, &flags);
2677 /* guarantee that iocgs w/ waiters have maximum inuse */
2678 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2680 iocg_unlock(iocg, false, &flags);
2684 propagate_weights(iocg, iocg->active, iocg->active, true,
2689 * Append self to the waitq and schedule the wakeup timer if we're
2690 * the first waiter. The timer duration is calculated based on the
2691 * current vrate. vtime and hweight changes can make it too short
2692 * or too long. Each wait entry records the absolute cost it's
2693 * waiting for to allow re-evaluation using a custom wait entry.
2695 * If too short, the timer simply reschedules itself. If too long,
2696 * the period timer will notice and trigger wakeups.
2698 * All waiters are on iocg->waitq and the wait states are
2699 * synchronized using waitq.lock.
2701 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2702 wait.wait.private = current;
2704 wait.abs_cost = abs_cost;
2705 wait.committed = false; /* will be set true by waker */
2707 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2708 iocg_kick_waitq(iocg, ioc_locked, &now);
2710 iocg_unlock(iocg, ioc_locked, &flags);
2713 set_current_state(TASK_UNINTERRUPTIBLE);
2719 /* waker already committed us, proceed */
2720 finish_wait(&iocg->waitq, &wait.wait);
2723 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2726 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2727 struct ioc *ioc = rqos_to_ioc(rqos);
2728 sector_t bio_end = bio_end_sector(bio);
2730 u64 vtime, abs_cost, cost;
2731 unsigned long flags;
2733 /* bypass if disabled, still initializing, or for root cgroup */
2734 if (!ioc->enabled || !iocg || !iocg->level)
2737 abs_cost = calc_vtime_cost(bio, iocg, true);
2743 vtime = atomic64_read(&iocg->vtime);
2744 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2746 /* update cursor if backmerging into the request at the cursor */
2747 if (blk_rq_pos(rq) < bio_end &&
2748 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2749 iocg->cursor = bio_end;
2752 * Charge if there's enough vtime budget and the existing request has
2755 if (rq->bio && rq->bio->bi_iocost_cost &&
2756 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2757 iocg_commit_bio(iocg, bio, abs_cost, cost);
2762 * Otherwise, account it as debt if @iocg is online, which it should
2763 * be for the vast majority of cases. See debt handling in
2764 * ioc_rqos_throttle() for details.
2766 spin_lock_irqsave(&ioc->lock, flags);
2767 spin_lock(&iocg->waitq.lock);
2769 if (likely(!list_empty(&iocg->active_list))) {
2770 iocg_incur_debt(iocg, abs_cost, &now);
2771 if (iocg_kick_delay(iocg, &now))
2772 blkcg_schedule_throttle(rqos->disk,
2773 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2775 iocg_commit_bio(iocg, bio, abs_cost, cost);
2778 spin_unlock(&iocg->waitq.lock);
2779 spin_unlock_irqrestore(&ioc->lock, flags);
2782 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2784 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2786 if (iocg && bio->bi_iocost_cost)
2787 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2790 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2792 struct ioc *ioc = rqos_to_ioc(rqos);
2793 struct ioc_pcpu_stat *ccs;
2794 u64 on_q_ns, rq_wait_ns, size_nsec;
2797 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2800 switch (req_op(rq)) {
2813 on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2814 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2815 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2817 ccs = get_cpu_ptr(ioc->pcpu_stat);
2819 if (on_q_ns <= size_nsec ||
2820 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2821 local_inc(&ccs->missed[rw].nr_met);
2823 local_inc(&ccs->missed[rw].nr_missed);
2825 local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2830 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2832 struct ioc *ioc = rqos_to_ioc(rqos);
2834 spin_lock_irq(&ioc->lock);
2835 ioc_refresh_params(ioc, false);
2836 spin_unlock_irq(&ioc->lock);
2839 static void ioc_rqos_exit(struct rq_qos *rqos)
2841 struct ioc *ioc = rqos_to_ioc(rqos);
2843 blkcg_deactivate_policy(rqos->disk, &blkcg_policy_iocost);
2845 spin_lock_irq(&ioc->lock);
2846 ioc->running = IOC_STOP;
2847 spin_unlock_irq(&ioc->lock);
2849 timer_shutdown_sync(&ioc->timer);
2850 free_percpu(ioc->pcpu_stat);
2854 static const struct rq_qos_ops ioc_rqos_ops = {
2855 .throttle = ioc_rqos_throttle,
2856 .merge = ioc_rqos_merge,
2857 .done_bio = ioc_rqos_done_bio,
2858 .done = ioc_rqos_done,
2859 .queue_depth_changed = ioc_rqos_queue_depth_changed,
2860 .exit = ioc_rqos_exit,
2863 static int blk_iocost_init(struct gendisk *disk)
2868 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2872 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2873 if (!ioc->pcpu_stat) {
2878 for_each_possible_cpu(cpu) {
2879 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2881 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2882 local_set(&ccs->missed[i].nr_met, 0);
2883 local_set(&ccs->missed[i].nr_missed, 0);
2885 local64_set(&ccs->rq_wait_ns, 0);
2888 spin_lock_init(&ioc->lock);
2889 timer_setup(&ioc->timer, ioc_timer_fn, 0);
2890 INIT_LIST_HEAD(&ioc->active_iocgs);
2892 ioc->running = IOC_IDLE;
2893 ioc->vtime_base_rate = VTIME_PER_USEC;
2894 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2895 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2896 ioc->period_at = ktime_to_us(ktime_get());
2897 atomic64_set(&ioc->cur_period, 0);
2898 atomic_set(&ioc->hweight_gen, 0);
2900 spin_lock_irq(&ioc->lock);
2901 ioc->autop_idx = AUTOP_INVALID;
2902 ioc_refresh_params_disk(ioc, true, disk);
2903 spin_unlock_irq(&ioc->lock);
2906 * rqos must be added before activation to allow ioc_pd_init() to
2907 * lookup the ioc from q. This means that the rqos methods may get
2908 * called before policy activation completion, can't assume that the
2909 * target bio has an iocg associated and need to test for NULL iocg.
2911 ret = rq_qos_add(&ioc->rqos, disk, RQ_QOS_COST, &ioc_rqos_ops);
2915 ret = blkcg_activate_policy(disk, &blkcg_policy_iocost);
2921 rq_qos_del(&ioc->rqos);
2923 free_percpu(ioc->pcpu_stat);
2928 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2930 struct ioc_cgrp *iocc;
2932 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2936 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2940 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2942 kfree(container_of(cpd, struct ioc_cgrp, cpd));
2945 static struct blkg_policy_data *ioc_pd_alloc(struct gendisk *disk,
2946 struct blkcg *blkcg, gfp_t gfp)
2948 int levels = blkcg->css.cgroup->level + 1;
2949 struct ioc_gq *iocg;
2951 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp,
2956 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2957 if (!iocg->pcpu_stat) {
2965 static void ioc_pd_init(struct blkg_policy_data *pd)
2967 struct ioc_gq *iocg = pd_to_iocg(pd);
2968 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2969 struct ioc *ioc = q_to_ioc(blkg->q);
2971 struct blkcg_gq *tblkg;
2972 unsigned long flags;
2977 atomic64_set(&iocg->vtime, now.vnow);
2978 atomic64_set(&iocg->done_vtime, now.vnow);
2979 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2980 INIT_LIST_HEAD(&iocg->active_list);
2981 INIT_LIST_HEAD(&iocg->walk_list);
2982 INIT_LIST_HEAD(&iocg->surplus_list);
2983 iocg->hweight_active = WEIGHT_ONE;
2984 iocg->hweight_inuse = WEIGHT_ONE;
2986 init_waitqueue_head(&iocg->waitq);
2987 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2988 iocg->waitq_timer.function = iocg_waitq_timer_fn;
2990 iocg->level = blkg->blkcg->css.cgroup->level;
2992 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2993 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2994 iocg->ancestors[tiocg->level] = tiocg;
2997 spin_lock_irqsave(&ioc->lock, flags);
2998 weight_updated(iocg, &now);
2999 spin_unlock_irqrestore(&ioc->lock, flags);
3002 static void ioc_pd_free(struct blkg_policy_data *pd)
3004 struct ioc_gq *iocg = pd_to_iocg(pd);
3005 struct ioc *ioc = iocg->ioc;
3006 unsigned long flags;
3009 spin_lock_irqsave(&ioc->lock, flags);
3011 if (!list_empty(&iocg->active_list)) {
3015 propagate_weights(iocg, 0, 0, false, &now);
3016 list_del_init(&iocg->active_list);
3019 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
3020 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
3022 spin_unlock_irqrestore(&ioc->lock, flags);
3024 hrtimer_cancel(&iocg->waitq_timer);
3026 free_percpu(iocg->pcpu_stat);
3030 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3032 struct ioc_gq *iocg = pd_to_iocg(pd);
3033 struct ioc *ioc = iocg->ioc;
3038 if (iocg->level == 0) {
3039 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3040 ioc->vtime_base_rate * 10000,
3042 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3045 seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3047 if (blkcg_debug_stats)
3048 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3049 iocg->last_stat.wait_us,
3050 iocg->last_stat.indebt_us,
3051 iocg->last_stat.indelay_us);
3054 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3057 const char *dname = blkg_dev_name(pd->blkg);
3058 struct ioc_gq *iocg = pd_to_iocg(pd);
3060 if (dname && iocg->cfg_weight)
3061 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3066 static int ioc_weight_show(struct seq_file *sf, void *v)
3068 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3069 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3071 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3072 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3073 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3077 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3078 size_t nbytes, loff_t off)
3080 struct blkcg *blkcg = css_to_blkcg(of_css(of));
3081 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3082 struct blkg_conf_ctx ctx;
3084 struct ioc_gq *iocg;
3088 if (!strchr(buf, ':')) {
3089 struct blkcg_gq *blkg;
3091 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3094 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3097 spin_lock_irq(&blkcg->lock);
3098 iocc->dfl_weight = v * WEIGHT_ONE;
3099 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3100 struct ioc_gq *iocg = blkg_to_iocg(blkg);
3103 spin_lock(&iocg->ioc->lock);
3104 ioc_now(iocg->ioc, &now);
3105 weight_updated(iocg, &now);
3106 spin_unlock(&iocg->ioc->lock);
3109 spin_unlock_irq(&blkcg->lock);
3114 blkg_conf_init(&ctx, buf);
3116 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, &ctx);
3120 iocg = blkg_to_iocg(ctx.blkg);
3122 if (!strncmp(ctx.body, "default", 7)) {
3125 if (!sscanf(ctx.body, "%u", &v))
3127 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3131 spin_lock(&iocg->ioc->lock);
3132 iocg->cfg_weight = v * WEIGHT_ONE;
3133 ioc_now(iocg->ioc, &now);
3134 weight_updated(iocg, &now);
3135 spin_unlock(&iocg->ioc->lock);
3137 blkg_conf_exit(&ctx);
3143 blkg_conf_exit(&ctx);
3147 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3150 const char *dname = blkg_dev_name(pd->blkg);
3151 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3156 spin_lock_irq(&ioc->lock);
3157 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3158 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3159 ioc->params.qos[QOS_RPPM] / 10000,
3160 ioc->params.qos[QOS_RPPM] % 10000 / 100,
3161 ioc->params.qos[QOS_RLAT],
3162 ioc->params.qos[QOS_WPPM] / 10000,
3163 ioc->params.qos[QOS_WPPM] % 10000 / 100,
3164 ioc->params.qos[QOS_WLAT],
3165 ioc->params.qos[QOS_MIN] / 10000,
3166 ioc->params.qos[QOS_MIN] % 10000 / 100,
3167 ioc->params.qos[QOS_MAX] / 10000,
3168 ioc->params.qos[QOS_MAX] % 10000 / 100);
3169 spin_unlock_irq(&ioc->lock);
3173 static int ioc_qos_show(struct seq_file *sf, void *v)
3175 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3177 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3178 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3182 static const match_table_t qos_ctrl_tokens = {
3183 { QOS_ENABLE, "enable=%u" },
3184 { QOS_CTRL, "ctrl=%s" },
3185 { NR_QOS_CTRL_PARAMS, NULL },
3188 static const match_table_t qos_tokens = {
3189 { QOS_RPPM, "rpct=%s" },
3190 { QOS_RLAT, "rlat=%u" },
3191 { QOS_WPPM, "wpct=%s" },
3192 { QOS_WLAT, "wlat=%u" },
3193 { QOS_MIN, "min=%s" },
3194 { QOS_MAX, "max=%s" },
3195 { NR_QOS_PARAMS, NULL },
3198 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3199 size_t nbytes, loff_t off)
3201 struct blkg_conf_ctx ctx;
3202 struct gendisk *disk;
3204 u32 qos[NR_QOS_PARAMS];
3209 blkg_conf_init(&ctx, input);
3211 ret = blkg_conf_open_bdev(&ctx);
3216 disk = ctx.bdev->bd_disk;
3217 if (!queue_is_mq(disk->queue)) {
3222 ioc = q_to_ioc(disk->queue);
3224 ret = blk_iocost_init(disk);
3227 ioc = q_to_ioc(disk->queue);
3230 blk_mq_freeze_queue(disk->queue);
3231 blk_mq_quiesce_queue(disk->queue);
3233 spin_lock_irq(&ioc->lock);
3234 memcpy(qos, ioc->params.qos, sizeof(qos));
3235 enable = ioc->enabled;
3236 user = ioc->user_qos_params;
3238 while ((p = strsep(&body, " \t\n"))) {
3239 substring_t args[MAX_OPT_ARGS];
3247 switch (match_token(p, qos_ctrl_tokens, args)) {
3249 if (match_u64(&args[0], &v))
3254 match_strlcpy(buf, &args[0], sizeof(buf));
3255 if (!strcmp(buf, "auto"))
3257 else if (!strcmp(buf, "user"))
3264 tok = match_token(p, qos_tokens, args);
3268 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3271 if (cgroup_parse_float(buf, 2, &v))
3273 if (v < 0 || v > 10000)
3279 if (match_u64(&args[0], &v))
3285 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3288 if (cgroup_parse_float(buf, 2, &v))
3292 qos[tok] = clamp_t(s64, v * 100,
3293 VRATE_MIN_PPM, VRATE_MAX_PPM);
3301 if (qos[QOS_MIN] > qos[QOS_MAX])
3304 if (enable && !ioc->enabled) {
3305 blk_stat_enable_accounting(disk->queue);
3306 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3307 ioc->enabled = true;
3308 } else if (!enable && ioc->enabled) {
3309 blk_stat_disable_accounting(disk->queue);
3310 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3311 ioc->enabled = false;
3315 memcpy(ioc->params.qos, qos, sizeof(qos));
3316 ioc->user_qos_params = true;
3318 ioc->user_qos_params = false;
3321 ioc_refresh_params(ioc, true);
3322 spin_unlock_irq(&ioc->lock);
3325 wbt_disable_default(disk);
3327 wbt_enable_default(disk);
3329 blk_mq_unquiesce_queue(disk->queue);
3330 blk_mq_unfreeze_queue(disk->queue);
3332 blkg_conf_exit(&ctx);
3335 spin_unlock_irq(&ioc->lock);
3337 blk_mq_unquiesce_queue(disk->queue);
3338 blk_mq_unfreeze_queue(disk->queue);
3342 blkg_conf_exit(&ctx);
3346 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3347 struct blkg_policy_data *pd, int off)
3349 const char *dname = blkg_dev_name(pd->blkg);
3350 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3351 u64 *u = ioc->params.i_lcoefs;
3356 spin_lock_irq(&ioc->lock);
3357 seq_printf(sf, "%s ctrl=%s model=linear "
3358 "rbps=%llu rseqiops=%llu rrandiops=%llu "
3359 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3360 dname, ioc->user_cost_model ? "user" : "auto",
3361 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3362 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3363 spin_unlock_irq(&ioc->lock);
3367 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3369 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3371 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3372 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3376 static const match_table_t cost_ctrl_tokens = {
3377 { COST_CTRL, "ctrl=%s" },
3378 { COST_MODEL, "model=%s" },
3379 { NR_COST_CTRL_PARAMS, NULL },
3382 static const match_table_t i_lcoef_tokens = {
3383 { I_LCOEF_RBPS, "rbps=%u" },
3384 { I_LCOEF_RSEQIOPS, "rseqiops=%u" },
3385 { I_LCOEF_RRANDIOPS, "rrandiops=%u" },
3386 { I_LCOEF_WBPS, "wbps=%u" },
3387 { I_LCOEF_WSEQIOPS, "wseqiops=%u" },
3388 { I_LCOEF_WRANDIOPS, "wrandiops=%u" },
3389 { NR_I_LCOEFS, NULL },
3392 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3393 size_t nbytes, loff_t off)
3395 struct blkg_conf_ctx ctx;
3396 struct request_queue *q;
3403 blkg_conf_init(&ctx, input);
3405 ret = blkg_conf_open_bdev(&ctx);
3410 q = bdev_get_queue(ctx.bdev);
3411 if (!queue_is_mq(q)) {
3418 ret = blk_iocost_init(ctx.bdev->bd_disk);
3424 blk_mq_freeze_queue(q);
3425 blk_mq_quiesce_queue(q);
3427 spin_lock_irq(&ioc->lock);
3428 memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3429 user = ioc->user_cost_model;
3431 while ((p = strsep(&body, " \t\n"))) {
3432 substring_t args[MAX_OPT_ARGS];
3440 switch (match_token(p, cost_ctrl_tokens, args)) {
3442 match_strlcpy(buf, &args[0], sizeof(buf));
3443 if (!strcmp(buf, "auto"))
3445 else if (!strcmp(buf, "user"))
3451 match_strlcpy(buf, &args[0], sizeof(buf));
3452 if (strcmp(buf, "linear"))
3457 tok = match_token(p, i_lcoef_tokens, args);
3458 if (tok == NR_I_LCOEFS)
3460 if (match_u64(&args[0], &v))
3467 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3468 ioc->user_cost_model = true;
3470 ioc->user_cost_model = false;
3472 ioc_refresh_params(ioc, true);
3473 spin_unlock_irq(&ioc->lock);
3475 blk_mq_unquiesce_queue(q);
3476 blk_mq_unfreeze_queue(q);
3478 blkg_conf_exit(&ctx);
3482 spin_unlock_irq(&ioc->lock);
3484 blk_mq_unquiesce_queue(q);
3485 blk_mq_unfreeze_queue(q);
3489 blkg_conf_exit(&ctx);
3493 static struct cftype ioc_files[] = {
3496 .flags = CFTYPE_NOT_ON_ROOT,
3497 .seq_show = ioc_weight_show,
3498 .write = ioc_weight_write,
3502 .flags = CFTYPE_ONLY_ON_ROOT,
3503 .seq_show = ioc_qos_show,
3504 .write = ioc_qos_write,
3507 .name = "cost.model",
3508 .flags = CFTYPE_ONLY_ON_ROOT,
3509 .seq_show = ioc_cost_model_show,
3510 .write = ioc_cost_model_write,
3515 static struct blkcg_policy blkcg_policy_iocost = {
3516 .dfl_cftypes = ioc_files,
3517 .cpd_alloc_fn = ioc_cpd_alloc,
3518 .cpd_free_fn = ioc_cpd_free,
3519 .pd_alloc_fn = ioc_pd_alloc,
3520 .pd_init_fn = ioc_pd_init,
3521 .pd_free_fn = ioc_pd_free,
3522 .pd_stat_fn = ioc_pd_stat,
3525 static int __init ioc_init(void)
3527 return blkcg_policy_register(&blkcg_policy_iocost);
3530 static void __exit ioc_exit(void)
3532 blkcg_policy_unregister(&blkcg_policy_iocost);
3535 module_init(ioc_init);
3536 module_exit(ioc_exit);