1 /* SPDX-License-Identifier: GPL-2.0
3 * IO cost model based controller.
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * parameters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
54 * 2-1. Vtime Distribution
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated. Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
64 * A0 (w:100) A1 (w:100)
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each. The distribution mechanism only cares about these flattened
70 * shares. They're called hweights (hierarchical weights) and always add
71 * upto 1 (WEIGHT_ONE).
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
78 * This constitutes the basis of IO capacity distribution. Each cgroup's
79 * vtime is running at a rate determined by its hweight. A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO if doing so
81 * wouldn't outrun the current device vtime. Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
84 * 2-2. Vrate Adjustment
86 * It's unrealistic to expect the cost model to be perfect. There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection. The controller needs to adapt dynamically.
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is. If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down. If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock. For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available. When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate. This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, soley depending on rq wait may not result in satisfactory
115 * control quality. For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service. There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage. Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
125 * 2-3. Work Conservation
127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own. Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity. The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition. This is too high a cost to pay
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it. In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically. However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
158 * https://github.com/osandov/drgn. The output looks like the following.
160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161 * active weight hweight% inflt% dbt delay usages%
162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
165 * - per : Timer period
166 * - cur_per : Internal wall and device vtime clock
167 * - vrate : Device virtual time rate against wall clock
168 * - weight : Surplus-adjusted and configured weights
169 * - hweight : Surplus-adjusted and configured hierarchical weights
170 * - inflt : The percentage of in-flight IO cost at the end of last period
171 * - del_ms : Deferred issuer delay induction level and duration
172 * - usages : Usage history
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
186 #include "blk-cgroup.h"
188 #ifdef CONFIG_TRACEPOINTS
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
195 #define TRACE_IOCG_PATH(type, iocg, ...) \
197 unsigned long flags; \
198 if (trace_iocost_##type##_enabled()) { \
199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
202 trace_iocost_##type(iocg, trace_iocg_path, \
204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
208 #else /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
210 #endif /* CONFIG_TRACE_POINTS */
215 /* timer period is calculated from latency requirements, bound it */
216 MIN_PERIOD = USEC_PER_MSEC,
217 MAX_PERIOD = USEC_PER_SEC,
220 * iocg->vtime is targeted at 50% behind the device vtime, which
221 * serves as its IO credit buffer. Surplus weight adjustment is
222 * immediately canceled if the vtime margin runs below 10%.
226 MARGIN_TARGET_PCT = 50,
228 INUSE_ADJ_STEP_PCT = 25,
230 /* Have some play in timer operations */
233 /* 1/64k is granular enough and can easily be handled w/ u32 */
234 WEIGHT_ONE = 1 << 16,
239 * As vtime is used to calculate the cost of each IO, it needs to
240 * be fairly high precision. For example, it should be able to
241 * represent the cost of a single page worth of discard with
242 * suffificient accuracy. At the same time, it should be able to
243 * represent reasonably long enough durations to be useful and
244 * convenient during operation.
246 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
247 * granularity and days of wrap-around time even at extreme vrates.
249 VTIME_PER_SEC_SHIFT = 37,
250 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT,
251 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC,
252 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC,
254 /* bound vrate adjustments within two orders of magnitude */
255 VRATE_MIN_PPM = 10000, /* 1% */
256 VRATE_MAX_PPM = 100000000, /* 10000% */
258 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259 VRATE_CLAMP_ADJ_PCT = 4,
261 /* switch iff the conditions are met for longer than this */
262 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC,
266 /* if IOs end up waiting for requests, issue less */
267 RQ_WAIT_BUSY_PCT = 5,
269 /* unbusy hysterisis */
273 * The effect of delay is indirect and non-linear and a huge amount of
274 * future debt can accumulate abruptly while unthrottled. Linearly scale
275 * up delay as debt is going up and then let it decay exponentially.
276 * This gives us quick ramp ups while delay is accumulating and long
277 * tails which can help reducing the frequency of debt explosions on
278 * unthrottle. The parameters are experimentally determined.
280 * The delay mechanism provides adequate protection and behavior in many
281 * cases. However, this is far from ideal and falls shorts on both
282 * fronts. The debtors are often throttled too harshly costing a
283 * significant level of fairness and possibly total work while the
284 * protection against their impacts on the system can be choppy and
287 * The shortcoming primarily stems from the fact that, unlike for page
288 * cache, the kernel doesn't have well-defined back-pressure propagation
289 * mechanism and policies for anonymous memory. Fully addressing this
290 * issue will likely require substantial improvements in the area.
292 MIN_DELAY_THR_PCT = 500,
293 MAX_DELAY_THR_PCT = 25000,
295 MAX_DELAY = 250 * USEC_PER_MSEC,
297 /* halve debts if avg usage over 100ms is under 50% */
299 DFGV_PERIOD = 100 * USEC_PER_MSEC,
301 /* don't let cmds which take a very long time pin lagging for too long */
302 MAX_LAGGING_PERIODS = 10,
305 * Count IO size in 4k pages. The 12bit shift helps keeping
306 * size-proportional components of cost calculation in closer
307 * numbers of digits to per-IO cost components.
310 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT,
311 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT,
313 /* if apart further than 16M, consider randio for linear model */
314 LCOEF_RANDIO_PAGES = 4096,
323 /* io.cost.qos controls including per-dev enable of the whole controller */
330 /* io.cost.qos params */
341 /* io.cost.model controls */
348 /* builtin linear cost model coefficients */
378 u32 qos[NR_QOS_PARAMS];
379 u64 i_lcoefs[NR_I_LCOEFS];
380 u64 lcoefs[NR_LCOEFS];
381 u32 too_fast_vrate_pct;
382 u32 too_slow_vrate_pct;
398 struct ioc_pcpu_stat {
399 struct ioc_missed missed[2];
401 local64_t rq_wait_ns;
411 struct ioc_params params;
412 struct ioc_margins margins;
419 struct timer_list timer;
420 struct list_head active_iocgs; /* active cgroups */
421 struct ioc_pcpu_stat __percpu *pcpu_stat;
423 enum ioc_running running;
424 atomic64_t vtime_rate;
428 seqcount_spinlock_t period_seqcount;
429 u64 period_at; /* wallclock starttime */
430 u64 period_at_vtime; /* vtime starttime */
432 atomic64_t cur_period; /* inc'd each period */
433 int busy_level; /* saturation history */
435 bool weights_updated;
436 atomic_t hweight_gen; /* for lazy hweights */
438 /* debt forgivness */
441 u64 dfgv_usage_us_sum;
443 u64 autop_too_fast_at;
444 u64 autop_too_slow_at;
446 bool user_qos_params:1;
447 bool user_cost_model:1;
450 struct iocg_pcpu_stat {
451 local64_t abs_vusage;
461 /* per device-cgroup pair */
463 struct blkg_policy_data pd;
467 * A iocg can get its weight from two sources - an explicit
468 * per-device-cgroup configuration or the default weight of the
469 * cgroup. `cfg_weight` is the explicit per-device-cgroup
470 * configuration. `weight` is the effective considering both
473 * When an idle cgroup becomes active its `active` goes from 0 to
474 * `weight`. `inuse` is the surplus adjusted active weight.
475 * `active` and `inuse` are used to calculate `hweight_active` and
478 * `last_inuse` remembers `inuse` while an iocg is idle to persist
479 * surplus adjustments.
481 * `inuse` may be adjusted dynamically during period. `saved_*` are used
482 * to determine and track adjustments.
492 sector_t cursor; /* to detect randio */
495 * `vtime` is this iocg's vtime cursor which progresses as IOs are
496 * issued. If lagging behind device vtime, the delta represents
497 * the currently available IO budget. If running ahead, the
500 * `vtime_done` is the same but progressed on completion rather
501 * than issue. The delta behind `vtime` represents the cost of
502 * currently in-flight IOs.
505 atomic64_t done_vtime;
508 /* current delay in effect and when it started */
513 * The period this iocg was last active in. Used for deactivation
514 * and invalidating `vtime`.
516 atomic64_t active_period;
517 struct list_head active_list;
519 /* see __propagate_weights() and current_hweight() for details */
520 u64 child_active_sum;
522 u64 child_adjusted_sum;
526 u32 hweight_donating;
527 u32 hweight_after_donation;
529 struct list_head walk_list;
530 struct list_head surplus_list;
532 struct wait_queue_head waitq;
533 struct hrtimer waitq_timer;
535 /* timestamp at the latest activation */
539 struct iocg_pcpu_stat __percpu *pcpu_stat;
540 struct iocg_stat stat;
541 struct iocg_stat last_stat;
542 u64 last_stat_abs_vusage;
548 /* this iocg's depth in the hierarchy and ancestors including self */
550 struct ioc_gq *ancestors[];
555 struct blkcg_policy_data cpd;
556 unsigned int dfl_weight;
567 struct wait_queue_entry wait;
573 struct iocg_wake_ctx {
579 static const struct ioc_params autop[] = {
582 [QOS_RLAT] = 250000, /* 250ms */
584 [QOS_MIN] = VRATE_MIN_PPM,
585 [QOS_MAX] = VRATE_MAX_PPM,
588 [I_LCOEF_RBPS] = 174019176,
589 [I_LCOEF_RSEQIOPS] = 41708,
590 [I_LCOEF_RRANDIOPS] = 370,
591 [I_LCOEF_WBPS] = 178075866,
592 [I_LCOEF_WSEQIOPS] = 42705,
593 [I_LCOEF_WRANDIOPS] = 378,
598 [QOS_RLAT] = 25000, /* 25ms */
600 [QOS_MIN] = VRATE_MIN_PPM,
601 [QOS_MAX] = VRATE_MAX_PPM,
604 [I_LCOEF_RBPS] = 245855193,
605 [I_LCOEF_RSEQIOPS] = 61575,
606 [I_LCOEF_RRANDIOPS] = 6946,
607 [I_LCOEF_WBPS] = 141365009,
608 [I_LCOEF_WSEQIOPS] = 33716,
609 [I_LCOEF_WRANDIOPS] = 26796,
614 [QOS_RLAT] = 25000, /* 25ms */
616 [QOS_MIN] = VRATE_MIN_PPM,
617 [QOS_MAX] = VRATE_MAX_PPM,
620 [I_LCOEF_RBPS] = 488636629,
621 [I_LCOEF_RSEQIOPS] = 8932,
622 [I_LCOEF_RRANDIOPS] = 8518,
623 [I_LCOEF_WBPS] = 427891549,
624 [I_LCOEF_WSEQIOPS] = 28755,
625 [I_LCOEF_WRANDIOPS] = 21940,
627 .too_fast_vrate_pct = 500,
631 [QOS_RLAT] = 5000, /* 5ms */
633 [QOS_MIN] = VRATE_MIN_PPM,
634 [QOS_MAX] = VRATE_MAX_PPM,
637 [I_LCOEF_RBPS] = 3102524156LLU,
638 [I_LCOEF_RSEQIOPS] = 724816,
639 [I_LCOEF_RRANDIOPS] = 778122,
640 [I_LCOEF_WBPS] = 1742780862LLU,
641 [I_LCOEF_WSEQIOPS] = 425702,
642 [I_LCOEF_WRANDIOPS] = 443193,
644 .too_slow_vrate_pct = 10,
649 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
650 * vtime credit shortage and down on device saturation.
652 static u32 vrate_adj_pct[] =
654 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
655 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
656 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
658 static struct blkcg_policy blkcg_policy_iocost;
660 /* accessors and helpers */
661 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
663 return container_of(rqos, struct ioc, rqos);
666 static struct ioc *q_to_ioc(struct request_queue *q)
668 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
671 static const char __maybe_unused *ioc_name(struct ioc *ioc)
673 struct gendisk *disk = ioc->rqos.q->disk;
677 return disk->disk_name;
680 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
682 return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
685 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
687 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
690 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
692 return pd_to_blkg(&iocg->pd);
695 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
697 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
698 struct ioc_cgrp, cpd);
702 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
703 * weight, the more expensive each IO. Must round up.
705 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
707 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
711 * The inverse of abs_cost_to_cost(). Must round up.
713 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
715 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
718 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
719 u64 abs_cost, u64 cost)
721 struct iocg_pcpu_stat *gcs;
723 bio->bi_iocost_cost = cost;
724 atomic64_add(cost, &iocg->vtime);
726 gcs = get_cpu_ptr(iocg->pcpu_stat);
727 local64_add(abs_cost, &gcs->abs_vusage);
731 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
734 spin_lock_irqsave(&iocg->ioc->lock, *flags);
735 spin_lock(&iocg->waitq.lock);
737 spin_lock_irqsave(&iocg->waitq.lock, *flags);
741 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
744 spin_unlock(&iocg->waitq.lock);
745 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
747 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
751 #define CREATE_TRACE_POINTS
752 #include <trace/events/iocost.h>
754 static void ioc_refresh_margins(struct ioc *ioc)
756 struct ioc_margins *margins = &ioc->margins;
757 u32 period_us = ioc->period_us;
758 u64 vrate = ioc->vtime_base_rate;
760 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
761 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
762 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
765 /* latency Qos params changed, update period_us and all the dependent params */
766 static void ioc_refresh_period_us(struct ioc *ioc)
768 u32 ppm, lat, multi, period_us;
770 lockdep_assert_held(&ioc->lock);
772 /* pick the higher latency target */
773 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
774 ppm = ioc->params.qos[QOS_RPPM];
775 lat = ioc->params.qos[QOS_RLAT];
777 ppm = ioc->params.qos[QOS_WPPM];
778 lat = ioc->params.qos[QOS_WLAT];
782 * We want the period to be long enough to contain a healthy number
783 * of IOs while short enough for granular control. Define it as a
784 * multiple of the latency target. Ideally, the multiplier should
785 * be scaled according to the percentile so that it would nominally
786 * contain a certain number of requests. Let's be simpler and
787 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
790 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
793 period_us = multi * lat;
794 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
796 /* calculate dependent params */
797 ioc->period_us = period_us;
798 ioc->timer_slack_ns = div64_u64(
799 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
801 ioc_refresh_margins(ioc);
804 static int ioc_autop_idx(struct ioc *ioc)
806 int idx = ioc->autop_idx;
807 const struct ioc_params *p = &autop[idx];
812 if (!blk_queue_nonrot(ioc->rqos.q))
815 /* handle SATA SSDs w/ broken NCQ */
816 if (blk_queue_depth(ioc->rqos.q) == 1)
817 return AUTOP_SSD_QD1;
819 /* use one of the normal ssd sets */
820 if (idx < AUTOP_SSD_DFL)
821 return AUTOP_SSD_DFL;
823 /* if user is overriding anything, maintain what was there */
824 if (ioc->user_qos_params || ioc->user_cost_model)
827 /* step up/down based on the vrate */
828 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
829 now_ns = ktime_get_ns();
831 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
832 if (!ioc->autop_too_fast_at)
833 ioc->autop_too_fast_at = now_ns;
834 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
837 ioc->autop_too_fast_at = 0;
840 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
841 if (!ioc->autop_too_slow_at)
842 ioc->autop_too_slow_at = now_ns;
843 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
846 ioc->autop_too_slow_at = 0;
853 * Take the followings as input
855 * @bps maximum sequential throughput
856 * @seqiops maximum sequential 4k iops
857 * @randiops maximum random 4k iops
859 * and calculate the linear model cost coefficients.
861 * *@page per-page cost 1s / (@bps / 4096)
862 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
863 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
865 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
866 u64 *page, u64 *seqio, u64 *randio)
870 *page = *seqio = *randio = 0;
873 u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE);
876 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages);
882 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
888 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
894 static void ioc_refresh_lcoefs(struct ioc *ioc)
896 u64 *u = ioc->params.i_lcoefs;
897 u64 *c = ioc->params.lcoefs;
899 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
900 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
901 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
902 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
905 static bool ioc_refresh_params(struct ioc *ioc, bool force)
907 const struct ioc_params *p;
910 lockdep_assert_held(&ioc->lock);
912 idx = ioc_autop_idx(ioc);
915 if (idx == ioc->autop_idx && !force)
918 if (idx != ioc->autop_idx)
919 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
921 ioc->autop_idx = idx;
922 ioc->autop_too_fast_at = 0;
923 ioc->autop_too_slow_at = 0;
925 if (!ioc->user_qos_params)
926 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
927 if (!ioc->user_cost_model)
928 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
930 ioc_refresh_period_us(ioc);
931 ioc_refresh_lcoefs(ioc);
933 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
934 VTIME_PER_USEC, MILLION);
935 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
936 VTIME_PER_USEC, MILLION);
942 * When an iocg accumulates too much vtime or gets deactivated, we throw away
943 * some vtime, which lowers the overall device utilization. As the exact amount
944 * which is being thrown away is known, we can compensate by accelerating the
945 * vrate accordingly so that the extra vtime generated in the current period
946 * matches what got lost.
948 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
950 s64 pleft = ioc->period_at + ioc->period_us - now->now;
951 s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
952 s64 vcomp, vcomp_min, vcomp_max;
954 lockdep_assert_held(&ioc->lock);
956 /* we need some time left in this period */
961 * Calculate how much vrate should be adjusted to offset the error.
962 * Limit the amount of adjustment and deduct the adjusted amount from
965 vcomp = -div64_s64(ioc->vtime_err, pleft);
966 vcomp_min = -(ioc->vtime_base_rate >> 1);
967 vcomp_max = ioc->vtime_base_rate;
968 vcomp = clamp(vcomp, vcomp_min, vcomp_max);
970 ioc->vtime_err += vcomp * pleft;
972 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
974 /* bound how much error can accumulate */
975 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
978 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
979 int nr_lagging, int nr_shortages,
980 int prev_busy_level, u32 *missed_ppm)
982 u64 vrate = ioc->vtime_base_rate;
983 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
985 if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
986 if (ioc->busy_level != prev_busy_level || nr_lagging)
987 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
988 missed_ppm, rq_wait_pct,
989 nr_lagging, nr_shortages);
995 * If vrate is out of bounds, apply clamp gradually as the
996 * bounds can change abruptly. Otherwise, apply busy_level
999 if (vrate < vrate_min) {
1000 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
1001 vrate = min(vrate, vrate_min);
1002 } else if (vrate > vrate_max) {
1003 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
1004 vrate = max(vrate, vrate_max);
1006 int idx = min_t(int, abs(ioc->busy_level),
1007 ARRAY_SIZE(vrate_adj_pct) - 1);
1008 u32 adj_pct = vrate_adj_pct[idx];
1010 if (ioc->busy_level > 0)
1011 adj_pct = 100 - adj_pct;
1013 adj_pct = 100 + adj_pct;
1015 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1016 vrate_min, vrate_max);
1019 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1020 nr_lagging, nr_shortages);
1022 ioc->vtime_base_rate = vrate;
1023 ioc_refresh_margins(ioc);
1026 /* take a snapshot of the current [v]time and vrate */
1027 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1031 now->now_ns = ktime_get();
1032 now->now = ktime_to_us(now->now_ns);
1033 now->vrate = atomic64_read(&ioc->vtime_rate);
1036 * The current vtime is
1038 * vtime at period start + (wallclock time since the start) * vrate
1040 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1041 * needed, they're seqcount protected.
1044 seq = read_seqcount_begin(&ioc->period_seqcount);
1045 now->vnow = ioc->period_at_vtime +
1046 (now->now - ioc->period_at) * now->vrate;
1047 } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1050 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1052 WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1054 write_seqcount_begin(&ioc->period_seqcount);
1055 ioc->period_at = now->now;
1056 ioc->period_at_vtime = now->vnow;
1057 write_seqcount_end(&ioc->period_seqcount);
1059 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1060 add_timer(&ioc->timer);
1064 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1065 * weight sums and propagate upwards accordingly. If @save, the current margin
1066 * is saved to be used as reference for later inuse in-period adjustments.
1068 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1069 bool save, struct ioc_now *now)
1071 struct ioc *ioc = iocg->ioc;
1074 lockdep_assert_held(&ioc->lock);
1077 * For an active leaf node, its inuse shouldn't be zero or exceed
1078 * @active. An active internal node's inuse is solely determined by the
1079 * inuse to active ratio of its children regardless of @inuse.
1081 if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1082 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1083 iocg->child_active_sum);
1085 inuse = clamp_t(u32, inuse, 1, active);
1088 iocg->last_inuse = iocg->inuse;
1090 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1092 if (active == iocg->active && inuse == iocg->inuse)
1095 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1096 struct ioc_gq *parent = iocg->ancestors[lvl];
1097 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1098 u32 parent_active = 0, parent_inuse = 0;
1100 /* update the level sums */
1101 parent->child_active_sum += (s32)(active - child->active);
1102 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1103 /* apply the updates */
1104 child->active = active;
1105 child->inuse = inuse;
1108 * The delta between inuse and active sums indicates that
1109 * much of weight is being given away. Parent's inuse
1110 * and active should reflect the ratio.
1112 if (parent->child_active_sum) {
1113 parent_active = parent->weight;
1114 parent_inuse = DIV64_U64_ROUND_UP(
1115 parent_active * parent->child_inuse_sum,
1116 parent->child_active_sum);
1119 /* do we need to keep walking up? */
1120 if (parent_active == parent->active &&
1121 parent_inuse == parent->inuse)
1124 active = parent_active;
1125 inuse = parent_inuse;
1128 ioc->weights_updated = true;
1131 static void commit_weights(struct ioc *ioc)
1133 lockdep_assert_held(&ioc->lock);
1135 if (ioc->weights_updated) {
1136 /* paired with rmb in current_hweight(), see there */
1138 atomic_inc(&ioc->hweight_gen);
1139 ioc->weights_updated = false;
1143 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1144 bool save, struct ioc_now *now)
1146 __propagate_weights(iocg, active, inuse, save, now);
1147 commit_weights(iocg->ioc);
1150 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1152 struct ioc *ioc = iocg->ioc;
1157 /* hot path - if uptodate, use cached */
1158 ioc_gen = atomic_read(&ioc->hweight_gen);
1159 if (ioc_gen == iocg->hweight_gen)
1163 * Paired with wmb in commit_weights(). If we saw the updated
1164 * hweight_gen, all the weight updates from __propagate_weights() are
1167 * We can race with weight updates during calculation and get it
1168 * wrong. However, hweight_gen would have changed and a future
1169 * reader will recalculate and we're guaranteed to discard the
1170 * wrong result soon.
1174 hwa = hwi = WEIGHT_ONE;
1175 for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1176 struct ioc_gq *parent = iocg->ancestors[lvl];
1177 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1178 u64 active_sum = READ_ONCE(parent->child_active_sum);
1179 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1180 u32 active = READ_ONCE(child->active);
1181 u32 inuse = READ_ONCE(child->inuse);
1183 /* we can race with deactivations and either may read as zero */
1184 if (!active_sum || !inuse_sum)
1187 active_sum = max_t(u64, active, active_sum);
1188 hwa = div64_u64((u64)hwa * active, active_sum);
1190 inuse_sum = max_t(u64, inuse, inuse_sum);
1191 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1194 iocg->hweight_active = max_t(u32, hwa, 1);
1195 iocg->hweight_inuse = max_t(u32, hwi, 1);
1196 iocg->hweight_gen = ioc_gen;
1199 *hw_activep = iocg->hweight_active;
1201 *hw_inusep = iocg->hweight_inuse;
1205 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1206 * other weights stay unchanged.
1208 static u32 current_hweight_max(struct ioc_gq *iocg)
1210 u32 hwm = WEIGHT_ONE;
1211 u32 inuse = iocg->active;
1212 u64 child_inuse_sum;
1215 lockdep_assert_held(&iocg->ioc->lock);
1217 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1218 struct ioc_gq *parent = iocg->ancestors[lvl];
1219 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1221 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1222 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1223 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1224 parent->child_active_sum);
1227 return max_t(u32, hwm, 1);
1230 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1232 struct ioc *ioc = iocg->ioc;
1233 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1234 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1237 lockdep_assert_held(&ioc->lock);
1239 weight = iocg->cfg_weight ?: iocc->dfl_weight;
1240 if (weight != iocg->weight && iocg->active)
1241 propagate_weights(iocg, weight, iocg->inuse, true, now);
1242 iocg->weight = weight;
1245 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1247 struct ioc *ioc = iocg->ioc;
1248 u64 last_period, cur_period;
1253 * If seem to be already active, just update the stamp to tell the
1254 * timer that we're still active. We don't mind occassional races.
1256 if (!list_empty(&iocg->active_list)) {
1258 cur_period = atomic64_read(&ioc->cur_period);
1259 if (atomic64_read(&iocg->active_period) != cur_period)
1260 atomic64_set(&iocg->active_period, cur_period);
1264 /* racy check on internal node IOs, treat as root level IOs */
1265 if (iocg->child_active_sum)
1268 spin_lock_irq(&ioc->lock);
1273 cur_period = atomic64_read(&ioc->cur_period);
1274 last_period = atomic64_read(&iocg->active_period);
1275 atomic64_set(&iocg->active_period, cur_period);
1277 /* already activated or breaking leaf-only constraint? */
1278 if (!list_empty(&iocg->active_list))
1279 goto succeed_unlock;
1280 for (i = iocg->level - 1; i > 0; i--)
1281 if (!list_empty(&iocg->ancestors[i]->active_list))
1284 if (iocg->child_active_sum)
1288 * Always start with the target budget. On deactivation, we throw away
1289 * anything above it.
1291 vtarget = now->vnow - ioc->margins.target;
1292 vtime = atomic64_read(&iocg->vtime);
1294 atomic64_add(vtarget - vtime, &iocg->vtime);
1295 atomic64_add(vtarget - vtime, &iocg->done_vtime);
1299 * Activate, propagate weight and start period timer if not
1300 * running. Reset hweight_gen to avoid accidental match from
1303 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1304 list_add(&iocg->active_list, &ioc->active_iocgs);
1306 propagate_weights(iocg, iocg->weight,
1307 iocg->last_inuse ?: iocg->weight, true, now);
1309 TRACE_IOCG_PATH(iocg_activate, iocg, now,
1310 last_period, cur_period, vtime);
1312 iocg->activated_at = now->now;
1314 if (ioc->running == IOC_IDLE) {
1315 ioc->running = IOC_RUNNING;
1316 ioc->dfgv_period_at = now->now;
1317 ioc->dfgv_period_rem = 0;
1318 ioc_start_period(ioc, now);
1322 spin_unlock_irq(&ioc->lock);
1326 spin_unlock_irq(&ioc->lock);
1330 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1332 struct ioc *ioc = iocg->ioc;
1333 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1334 u64 tdelta, delay, new_delay;
1335 s64 vover, vover_pct;
1338 lockdep_assert_held(&iocg->waitq.lock);
1340 /* calculate the current delay in effect - 1/2 every second */
1341 tdelta = now->now - iocg->delay_at;
1343 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1347 /* calculate the new delay from the debt amount */
1348 current_hweight(iocg, &hwa, NULL);
1349 vover = atomic64_read(&iocg->vtime) +
1350 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1351 vover_pct = div64_s64(100 * vover,
1352 ioc->period_us * ioc->vtime_base_rate);
1354 if (vover_pct <= MIN_DELAY_THR_PCT)
1356 else if (vover_pct >= MAX_DELAY_THR_PCT)
1357 new_delay = MAX_DELAY;
1359 new_delay = MIN_DELAY +
1360 div_u64((MAX_DELAY - MIN_DELAY) *
1361 (vover_pct - MIN_DELAY_THR_PCT),
1362 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1364 /* pick the higher one and apply */
1365 if (new_delay > delay) {
1366 iocg->delay = new_delay;
1367 iocg->delay_at = now->now;
1371 if (delay >= MIN_DELAY) {
1372 if (!iocg->indelay_since)
1373 iocg->indelay_since = now->now;
1374 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1377 if (iocg->indelay_since) {
1378 iocg->stat.indelay_us += now->now - iocg->indelay_since;
1379 iocg->indelay_since = 0;
1382 blkcg_clear_delay(blkg);
1387 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1388 struct ioc_now *now)
1390 struct iocg_pcpu_stat *gcs;
1392 lockdep_assert_held(&iocg->ioc->lock);
1393 lockdep_assert_held(&iocg->waitq.lock);
1394 WARN_ON_ONCE(list_empty(&iocg->active_list));
1397 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1398 * inuse donating all of it share to others until its debt is paid off.
1400 if (!iocg->abs_vdebt && abs_cost) {
1401 iocg->indebt_since = now->now;
1402 propagate_weights(iocg, iocg->active, 0, false, now);
1405 iocg->abs_vdebt += abs_cost;
1407 gcs = get_cpu_ptr(iocg->pcpu_stat);
1408 local64_add(abs_cost, &gcs->abs_vusage);
1412 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1413 struct ioc_now *now)
1415 lockdep_assert_held(&iocg->ioc->lock);
1416 lockdep_assert_held(&iocg->waitq.lock);
1418 /* make sure that nobody messed with @iocg */
1419 WARN_ON_ONCE(list_empty(&iocg->active_list));
1420 WARN_ON_ONCE(iocg->inuse > 1);
1422 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1424 /* if debt is paid in full, restore inuse */
1425 if (!iocg->abs_vdebt) {
1426 iocg->stat.indebt_us += now->now - iocg->indebt_since;
1427 iocg->indebt_since = 0;
1429 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1434 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1435 int flags, void *key)
1437 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1438 struct iocg_wake_ctx *ctx = key;
1439 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1441 ctx->vbudget -= cost;
1443 if (ctx->vbudget < 0)
1446 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1447 wait->committed = true;
1450 * autoremove_wake_function() removes the wait entry only when it
1451 * actually changed the task state. We want the wait always removed.
1452 * Remove explicitly and use default_wake_function(). Note that the
1453 * order of operations is important as finish_wait() tests whether
1454 * @wq_entry is removed without grabbing the lock.
1456 default_wake_function(wq_entry, mode, flags, key);
1457 list_del_init_careful(&wq_entry->entry);
1462 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1463 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1464 * addition to iocg->waitq.lock.
1466 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1467 struct ioc_now *now)
1469 struct ioc *ioc = iocg->ioc;
1470 struct iocg_wake_ctx ctx = { .iocg = iocg };
1471 u64 vshortage, expires, oexpires;
1475 lockdep_assert_held(&iocg->waitq.lock);
1477 current_hweight(iocg, &hwa, NULL);
1478 vbudget = now->vnow - atomic64_read(&iocg->vtime);
1481 if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1482 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1483 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1484 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1486 lockdep_assert_held(&ioc->lock);
1488 atomic64_add(vpay, &iocg->vtime);
1489 atomic64_add(vpay, &iocg->done_vtime);
1490 iocg_pay_debt(iocg, abs_vpay, now);
1494 if (iocg->abs_vdebt || iocg->delay)
1495 iocg_kick_delay(iocg, now);
1498 * Debt can still be outstanding if we haven't paid all yet or the
1499 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1500 * under debt. Make sure @vbudget reflects the outstanding amount and is
1503 if (iocg->abs_vdebt) {
1504 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1505 vbudget = min_t(s64, 0, vbudget - vdebt);
1509 * Wake up the ones which are due and see how much vtime we'll need for
1510 * the next one. As paying off debt restores hw_inuse, it must be read
1511 * after the above debt payment.
1513 ctx.vbudget = vbudget;
1514 current_hweight(iocg, NULL, &ctx.hw_inuse);
1516 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1518 if (!waitqueue_active(&iocg->waitq)) {
1519 if (iocg->wait_since) {
1520 iocg->stat.wait_us += now->now - iocg->wait_since;
1521 iocg->wait_since = 0;
1526 if (!iocg->wait_since)
1527 iocg->wait_since = now->now;
1529 if (WARN_ON_ONCE(ctx.vbudget >= 0))
1532 /* determine next wakeup, add a timer margin to guarantee chunking */
1533 vshortage = -ctx.vbudget;
1534 expires = now->now_ns +
1535 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1537 expires += ioc->timer_slack_ns;
1539 /* if already active and close enough, don't bother */
1540 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1541 if (hrtimer_is_queued(&iocg->waitq_timer) &&
1542 abs(oexpires - expires) <= ioc->timer_slack_ns)
1545 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1546 ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1549 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1551 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1552 bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1554 unsigned long flags;
1556 ioc_now(iocg->ioc, &now);
1558 iocg_lock(iocg, pay_debt, &flags);
1559 iocg_kick_waitq(iocg, pay_debt, &now);
1560 iocg_unlock(iocg, pay_debt, &flags);
1562 return HRTIMER_NORESTART;
1565 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1567 u32 nr_met[2] = { };
1568 u32 nr_missed[2] = { };
1572 for_each_online_cpu(cpu) {
1573 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1574 u64 this_rq_wait_ns;
1576 for (rw = READ; rw <= WRITE; rw++) {
1577 u32 this_met = local_read(&stat->missed[rw].nr_met);
1578 u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1580 nr_met[rw] += this_met - stat->missed[rw].last_met;
1581 nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1582 stat->missed[rw].last_met = this_met;
1583 stat->missed[rw].last_missed = this_missed;
1586 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1587 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1588 stat->last_rq_wait_ns = this_rq_wait_ns;
1591 for (rw = READ; rw <= WRITE; rw++) {
1592 if (nr_met[rw] + nr_missed[rw])
1594 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1595 nr_met[rw] + nr_missed[rw]);
1597 missed_ppm_ar[rw] = 0;
1600 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1601 ioc->period_us * NSEC_PER_USEC);
1604 /* was iocg idle this period? */
1605 static bool iocg_is_idle(struct ioc_gq *iocg)
1607 struct ioc *ioc = iocg->ioc;
1609 /* did something get issued this period? */
1610 if (atomic64_read(&iocg->active_period) ==
1611 atomic64_read(&ioc->cur_period))
1614 /* is something in flight? */
1615 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1622 * Call this function on the target leaf @iocg's to build pre-order traversal
1623 * list of all the ancestors in @inner_walk. The inner nodes are linked through
1624 * ->walk_list and the caller is responsible for dissolving the list after use.
1626 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1627 struct list_head *inner_walk)
1631 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1633 /* find the first ancestor which hasn't been visited yet */
1634 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1635 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1639 /* walk down and visit the inner nodes to get pre-order traversal */
1640 while (++lvl <= iocg->level - 1) {
1641 struct ioc_gq *inner = iocg->ancestors[lvl];
1643 /* record traversal order */
1644 list_add_tail(&inner->walk_list, inner_walk);
1648 /* propagate the deltas to the parent */
1649 static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1651 if (iocg->level > 0) {
1652 struct iocg_stat *parent_stat =
1653 &iocg->ancestors[iocg->level - 1]->stat;
1655 parent_stat->usage_us +=
1656 iocg->stat.usage_us - iocg->last_stat.usage_us;
1657 parent_stat->wait_us +=
1658 iocg->stat.wait_us - iocg->last_stat.wait_us;
1659 parent_stat->indebt_us +=
1660 iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1661 parent_stat->indelay_us +=
1662 iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1665 iocg->last_stat = iocg->stat;
1668 /* collect per-cpu counters and propagate the deltas to the parent */
1669 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1671 struct ioc *ioc = iocg->ioc;
1676 lockdep_assert_held(&iocg->ioc->lock);
1678 /* collect per-cpu counters */
1679 for_each_possible_cpu(cpu) {
1680 abs_vusage += local64_read(
1681 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1683 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1684 iocg->last_stat_abs_vusage = abs_vusage;
1686 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1687 iocg->stat.usage_us += iocg->usage_delta_us;
1689 iocg_flush_stat_upward(iocg);
1692 /* get stat counters ready for reading on all active iocgs */
1693 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1695 LIST_HEAD(inner_walk);
1696 struct ioc_gq *iocg, *tiocg;
1698 /* flush leaves and build inner node walk list */
1699 list_for_each_entry(iocg, target_iocgs, active_list) {
1700 iocg_flush_stat_leaf(iocg, now);
1701 iocg_build_inner_walk(iocg, &inner_walk);
1704 /* keep flushing upwards by walking the inner list backwards */
1705 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1706 iocg_flush_stat_upward(iocg);
1707 list_del_init(&iocg->walk_list);
1712 * Determine what @iocg's hweight_inuse should be after donating unused
1713 * capacity. @hwm is the upper bound and used to signal no donation. This
1714 * function also throws away @iocg's excess budget.
1716 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1717 u32 usage, struct ioc_now *now)
1719 struct ioc *ioc = iocg->ioc;
1720 u64 vtime = atomic64_read(&iocg->vtime);
1721 s64 excess, delta, target, new_hwi;
1723 /* debt handling owns inuse for debtors */
1724 if (iocg->abs_vdebt)
1727 /* see whether minimum margin requirement is met */
1728 if (waitqueue_active(&iocg->waitq) ||
1729 time_after64(vtime, now->vnow - ioc->margins.min))
1732 /* throw away excess above target */
1733 excess = now->vnow - vtime - ioc->margins.target;
1735 atomic64_add(excess, &iocg->vtime);
1736 atomic64_add(excess, &iocg->done_vtime);
1738 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1742 * Let's say the distance between iocg's and device's vtimes as a
1743 * fraction of period duration is delta. Assuming that the iocg will
1744 * consume the usage determined above, we want to determine new_hwi so
1745 * that delta equals MARGIN_TARGET at the end of the next period.
1747 * We need to execute usage worth of IOs while spending the sum of the
1748 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1751 * usage = (1 - MARGIN_TARGET + delta) * new_hwi
1753 * Therefore, the new_hwi is:
1755 * new_hwi = usage / (1 - MARGIN_TARGET + delta)
1757 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1758 now->vnow - ioc->period_at_vtime);
1759 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1760 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1762 return clamp_t(s64, new_hwi, 1, hwm);
1766 * For work-conservation, an iocg which isn't using all of its share should
1767 * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1768 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1770 * #1 is mathematically simpler but has the drawback of requiring synchronous
1771 * global hweight_inuse updates when idle iocg's get activated or inuse weights
1772 * change due to donation snapbacks as it has the possibility of grossly
1773 * overshooting what's allowed by the model and vrate.
1775 * #2 is inherently safe with local operations. The donating iocg can easily
1776 * snap back to higher weights when needed without worrying about impacts on
1777 * other nodes as the impacts will be inherently correct. This also makes idle
1778 * iocg activations safe. The only effect activations have is decreasing
1779 * hweight_inuse of others, the right solution to which is for those iocgs to
1780 * snap back to higher weights.
1782 * So, we go with #2. The challenge is calculating how each donating iocg's
1783 * inuse should be adjusted to achieve the target donation amounts. This is done
1784 * using Andy's method described in the following pdf.
1786 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1788 * Given the weights and target after-donation hweight_inuse values, Andy's
1789 * method determines how the proportional distribution should look like at each
1790 * sibling level to maintain the relative relationship between all non-donating
1791 * pairs. To roughly summarize, it divides the tree into donating and
1792 * non-donating parts, calculates global donation rate which is used to
1793 * determine the target hweight_inuse for each node, and then derives per-level
1796 * The following pdf shows that global distribution calculated this way can be
1797 * achieved by scaling inuse weights of donating leaves and propagating the
1798 * adjustments upwards proportionally.
1800 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1802 * Combining the above two, we can determine how each leaf iocg's inuse should
1803 * be adjusted to achieve the target donation.
1805 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1807 * The inline comments use symbols from the last pdf.
1809 * b is the sum of the absolute budgets in the subtree. 1 for the root node.
1810 * f is the sum of the absolute budgets of non-donating nodes in the subtree.
1811 * t is the sum of the absolute budgets of donating nodes in the subtree.
1812 * w is the weight of the node. w = w_f + w_t
1813 * w_f is the non-donating portion of w. w_f = w * f / b
1814 * w_b is the donating portion of w. w_t = w * t / b
1815 * s is the sum of all sibling weights. s = Sum(w) for siblings
1816 * s_f and s_t are the non-donating and donating portions of s.
1818 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1819 * w_pt is the donating portion of the parent's weight and w'_pt the same value
1820 * after adjustments. Subscript r denotes the root node's values.
1822 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1824 LIST_HEAD(over_hwa);
1825 LIST_HEAD(inner_walk);
1826 struct ioc_gq *iocg, *tiocg, *root_iocg;
1827 u32 after_sum, over_sum, over_target, gamma;
1830 * It's pretty unlikely but possible for the total sum of
1831 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1832 * confuse the following calculations. If such condition is detected,
1833 * scale down everyone over its full share equally to keep the sum below
1838 list_for_each_entry(iocg, surpluses, surplus_list) {
1841 current_hweight(iocg, &hwa, NULL);
1842 after_sum += iocg->hweight_after_donation;
1844 if (iocg->hweight_after_donation > hwa) {
1845 over_sum += iocg->hweight_after_donation;
1846 list_add(&iocg->walk_list, &over_hwa);
1850 if (after_sum >= WEIGHT_ONE) {
1852 * The delta should be deducted from the over_sum, calculate
1853 * target over_sum value.
1855 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1856 WARN_ON_ONCE(over_sum <= over_delta);
1857 over_target = over_sum - over_delta;
1862 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1864 iocg->hweight_after_donation =
1865 div_u64((u64)iocg->hweight_after_donation *
1866 over_target, over_sum);
1867 list_del_init(&iocg->walk_list);
1871 * Build pre-order inner node walk list and prepare for donation
1872 * adjustment calculations.
1874 list_for_each_entry(iocg, surpluses, surplus_list) {
1875 iocg_build_inner_walk(iocg, &inner_walk);
1878 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1879 WARN_ON_ONCE(root_iocg->level > 0);
1881 list_for_each_entry(iocg, &inner_walk, walk_list) {
1882 iocg->child_adjusted_sum = 0;
1883 iocg->hweight_donating = 0;
1884 iocg->hweight_after_donation = 0;
1888 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1891 list_for_each_entry(iocg, surpluses, surplus_list) {
1892 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1894 parent->hweight_donating += iocg->hweight_donating;
1895 parent->hweight_after_donation += iocg->hweight_after_donation;
1898 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1899 if (iocg->level > 0) {
1900 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1902 parent->hweight_donating += iocg->hweight_donating;
1903 parent->hweight_after_donation += iocg->hweight_after_donation;
1908 * Calculate inner hwa's (b) and make sure the donation values are
1909 * within the accepted ranges as we're doing low res calculations with
1912 list_for_each_entry(iocg, &inner_walk, walk_list) {
1914 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1916 iocg->hweight_active = DIV64_U64_ROUND_UP(
1917 (u64)parent->hweight_active * iocg->active,
1918 parent->child_active_sum);
1922 iocg->hweight_donating = min(iocg->hweight_donating,
1923 iocg->hweight_active);
1924 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1925 iocg->hweight_donating - 1);
1926 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1927 iocg->hweight_donating <= 1 ||
1928 iocg->hweight_after_donation == 0)) {
1929 pr_warn("iocg: invalid donation weights in ");
1930 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1931 pr_cont(": active=%u donating=%u after=%u\n",
1932 iocg->hweight_active, iocg->hweight_donating,
1933 iocg->hweight_after_donation);
1938 * Calculate the global donation rate (gamma) - the rate to adjust
1939 * non-donating budgets by.
1941 * No need to use 64bit multiplication here as the first operand is
1942 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1944 * We know that there are beneficiary nodes and the sum of the donating
1945 * hweights can't be whole; however, due to the round-ups during hweight
1946 * calculations, root_iocg->hweight_donating might still end up equal to
1947 * or greater than whole. Limit the range when calculating the divider.
1949 * gamma = (1 - t_r') / (1 - t_r)
1951 gamma = DIV_ROUND_UP(
1952 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1953 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1956 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1959 list_for_each_entry(iocg, &inner_walk, walk_list) {
1960 struct ioc_gq *parent;
1961 u32 inuse, wpt, wptp;
1964 if (iocg->level == 0) {
1965 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1966 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1967 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1968 WEIGHT_ONE - iocg->hweight_after_donation);
1972 parent = iocg->ancestors[iocg->level - 1];
1974 /* b' = gamma * b_f + b_t' */
1975 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1976 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1977 WEIGHT_ONE) + iocg->hweight_after_donation;
1979 /* w' = s' * b' / b'_p */
1980 inuse = DIV64_U64_ROUND_UP(
1981 (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1982 parent->hweight_inuse);
1984 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1985 st = DIV64_U64_ROUND_UP(
1986 iocg->child_active_sum * iocg->hweight_donating,
1987 iocg->hweight_active);
1988 sf = iocg->child_active_sum - st;
1989 wpt = DIV64_U64_ROUND_UP(
1990 (u64)iocg->active * iocg->hweight_donating,
1991 iocg->hweight_active);
1992 wptp = DIV64_U64_ROUND_UP(
1993 (u64)inuse * iocg->hweight_after_donation,
1994 iocg->hweight_inuse);
1996 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
2000 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
2001 * we can finally determine leaf adjustments.
2003 list_for_each_entry(iocg, surpluses, surplus_list) {
2004 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2008 * In-debt iocgs participated in the donation calculation with
2009 * the minimum target hweight_inuse. Configuring inuse
2010 * accordingly would work fine but debt handling expects
2011 * @iocg->inuse stay at the minimum and we don't wanna
2014 if (iocg->abs_vdebt) {
2015 WARN_ON_ONCE(iocg->inuse > 1);
2019 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2020 inuse = DIV64_U64_ROUND_UP(
2021 parent->child_adjusted_sum * iocg->hweight_after_donation,
2022 parent->hweight_inuse);
2024 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2026 iocg->hweight_inuse,
2027 iocg->hweight_after_donation);
2029 __propagate_weights(iocg, iocg->active, inuse, true, now);
2032 /* walk list should be dissolved after use */
2033 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2034 list_del_init(&iocg->walk_list);
2038 * A low weight iocg can amass a large amount of debt, for example, when
2039 * anonymous memory gets reclaimed aggressively. If the system has a lot of
2040 * memory paired with a slow IO device, the debt can span multiple seconds or
2041 * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2042 * up blocked paying its debt while the IO device is idle.
2044 * The following protects against such cases. If the device has been
2045 * sufficiently idle for a while, the debts are halved and delays are
2048 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2049 struct ioc_now *now)
2051 struct ioc_gq *iocg;
2052 u64 dur, usage_pct, nr_cycles;
2054 /* if no debtor, reset the cycle */
2056 ioc->dfgv_period_at = now->now;
2057 ioc->dfgv_period_rem = 0;
2058 ioc->dfgv_usage_us_sum = 0;
2063 * Debtors can pass through a lot of writes choking the device and we
2064 * don't want to be forgiving debts while the device is struggling from
2065 * write bursts. If we're missing latency targets, consider the device
2068 if (ioc->busy_level > 0)
2069 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2071 ioc->dfgv_usage_us_sum += usage_us_sum;
2072 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2076 * At least DFGV_PERIOD has passed since the last period. Calculate the
2077 * average usage and reset the period counters.
2079 dur = now->now - ioc->dfgv_period_at;
2080 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2082 ioc->dfgv_period_at = now->now;
2083 ioc->dfgv_usage_us_sum = 0;
2085 /* if was too busy, reset everything */
2086 if (usage_pct > DFGV_USAGE_PCT) {
2087 ioc->dfgv_period_rem = 0;
2092 * Usage is lower than threshold. Let's forgive some debts. Debt
2093 * forgiveness runs off of the usual ioc timer but its period usually
2094 * doesn't match ioc's. Compensate the difference by performing the
2095 * reduction as many times as would fit in the duration since the last
2096 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2097 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2098 * reductions is doubled.
2100 nr_cycles = dur + ioc->dfgv_period_rem;
2101 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2103 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2104 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2106 if (!iocg->abs_vdebt && !iocg->delay)
2109 spin_lock(&iocg->waitq.lock);
2111 old_debt = iocg->abs_vdebt;
2112 old_delay = iocg->delay;
2114 if (iocg->abs_vdebt)
2115 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2117 iocg->delay = iocg->delay >> nr_cycles ?: 1;
2119 iocg_kick_waitq(iocg, true, now);
2121 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2122 old_debt, iocg->abs_vdebt,
2123 old_delay, iocg->delay);
2125 spin_unlock(&iocg->waitq.lock);
2130 * Check the active iocgs' state to avoid oversleeping and deactive
2133 * Since waiters determine the sleep durations based on the vrate
2134 * they saw at the time of sleep, if vrate has increased, some
2135 * waiters could be sleeping for too long. Wake up tardy waiters
2136 * which should have woken up in the last period and expire idle
2139 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2142 struct ioc_gq *iocg, *tiocg;
2144 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2145 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2146 !iocg->delay && !iocg_is_idle(iocg))
2149 spin_lock(&iocg->waitq.lock);
2151 /* flush wait and indebt stat deltas */
2152 if (iocg->wait_since) {
2153 iocg->stat.wait_us += now->now - iocg->wait_since;
2154 iocg->wait_since = now->now;
2156 if (iocg->indebt_since) {
2157 iocg->stat.indebt_us +=
2158 now->now - iocg->indebt_since;
2159 iocg->indebt_since = now->now;
2161 if (iocg->indelay_since) {
2162 iocg->stat.indelay_us +=
2163 now->now - iocg->indelay_since;
2164 iocg->indelay_since = now->now;
2167 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2169 /* might be oversleeping vtime / hweight changes, kick */
2170 iocg_kick_waitq(iocg, true, now);
2171 if (iocg->abs_vdebt || iocg->delay)
2173 } else if (iocg_is_idle(iocg)) {
2174 /* no waiter and idle, deactivate */
2175 u64 vtime = atomic64_read(&iocg->vtime);
2179 * @iocg has been inactive for a full duration and will
2180 * have a high budget. Account anything above target as
2181 * error and throw away. On reactivation, it'll start
2182 * with the target budget.
2184 excess = now->vnow - vtime - ioc->margins.target;
2188 current_hweight(iocg, NULL, &old_hwi);
2189 ioc->vtime_err -= div64_u64(excess * old_hwi,
2193 TRACE_IOCG_PATH(iocg_idle, iocg, now,
2194 atomic64_read(&iocg->active_period),
2195 atomic64_read(&ioc->cur_period), vtime);
2196 __propagate_weights(iocg, 0, 0, false, now);
2197 list_del_init(&iocg->active_list);
2200 spin_unlock(&iocg->waitq.lock);
2203 commit_weights(ioc);
2207 static void ioc_timer_fn(struct timer_list *timer)
2209 struct ioc *ioc = container_of(timer, struct ioc, timer);
2210 struct ioc_gq *iocg, *tiocg;
2212 LIST_HEAD(surpluses);
2213 int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2214 u64 usage_us_sum = 0;
2215 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2216 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2217 u32 missed_ppm[2], rq_wait_pct;
2219 int prev_busy_level;
2221 /* how were the latencies during the period? */
2222 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2224 /* take care of active iocgs */
2225 spin_lock_irq(&ioc->lock);
2229 period_vtime = now.vnow - ioc->period_at_vtime;
2230 if (WARN_ON_ONCE(!period_vtime)) {
2231 spin_unlock_irq(&ioc->lock);
2235 nr_debtors = ioc_check_iocgs(ioc, &now);
2238 * Wait and indebt stat are flushed above and the donation calculation
2239 * below needs updated usage stat. Let's bring stat up-to-date.
2241 iocg_flush_stat(&ioc->active_iocgs, &now);
2243 /* calc usage and see whether some weights need to be moved around */
2244 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2245 u64 vdone, vtime, usage_us;
2246 u32 hw_active, hw_inuse;
2249 * Collect unused and wind vtime closer to vnow to prevent
2250 * iocgs from accumulating a large amount of budget.
2252 vdone = atomic64_read(&iocg->done_vtime);
2253 vtime = atomic64_read(&iocg->vtime);
2254 current_hweight(iocg, &hw_active, &hw_inuse);
2257 * Latency QoS detection doesn't account for IOs which are
2258 * in-flight for longer than a period. Detect them by
2259 * comparing vdone against period start. If lagging behind
2260 * IOs from past periods, don't increase vrate.
2262 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2263 !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2264 time_after64(vtime, vdone) &&
2265 time_after64(vtime, now.vnow -
2266 MAX_LAGGING_PERIODS * period_vtime) &&
2267 time_before64(vdone, now.vnow - period_vtime))
2271 * Determine absolute usage factoring in in-flight IOs to avoid
2272 * high-latency completions appearing as idle.
2274 usage_us = iocg->usage_delta_us;
2275 usage_us_sum += usage_us;
2277 /* see whether there's surplus vtime */
2278 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2279 if (hw_inuse < hw_active ||
2280 (!waitqueue_active(&iocg->waitq) &&
2281 time_before64(vtime, now.vnow - ioc->margins.low))) {
2282 u32 hwa, old_hwi, hwm, new_hwi, usage;
2285 if (vdone != vtime) {
2286 u64 inflight_us = DIV64_U64_ROUND_UP(
2287 cost_to_abs_cost(vtime - vdone, hw_inuse),
2288 ioc->vtime_base_rate);
2290 usage_us = max(usage_us, inflight_us);
2293 /* convert to hweight based usage ratio */
2294 if (time_after64(iocg->activated_at, ioc->period_at))
2295 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2297 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2299 usage = clamp_t(u32,
2300 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2305 * Already donating or accumulated enough to start.
2306 * Determine the donation amount.
2308 current_hweight(iocg, &hwa, &old_hwi);
2309 hwm = current_hweight_max(iocg);
2310 new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2313 * Donation calculation assumes hweight_after_donation
2314 * to be positive, a condition that a donor w/ hwa < 2
2315 * can't meet. Don't bother with donation if hwa is
2316 * below 2. It's not gonna make a meaningful difference
2319 if (new_hwi < hwm && hwa >= 2) {
2320 iocg->hweight_donating = hwa;
2321 iocg->hweight_after_donation = new_hwi;
2322 list_add(&iocg->surplus_list, &surpluses);
2323 } else if (!iocg->abs_vdebt) {
2325 * @iocg doesn't have enough to donate. Reset
2326 * its inuse to active.
2328 * Don't reset debtors as their inuse's are
2329 * owned by debt handling. This shouldn't affect
2330 * donation calculuation in any meaningful way
2331 * as @iocg doesn't have a meaningful amount of
2334 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2335 iocg->inuse, iocg->active,
2336 iocg->hweight_inuse, new_hwi);
2338 __propagate_weights(iocg, iocg->active,
2339 iocg->active, true, &now);
2343 /* genuinely short on vtime */
2348 if (!list_empty(&surpluses) && nr_shortages)
2349 transfer_surpluses(&surpluses, &now);
2351 commit_weights(ioc);
2353 /* surplus list should be dissolved after use */
2354 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2355 list_del_init(&iocg->surplus_list);
2358 * If q is getting clogged or we're missing too much, we're issuing
2359 * too much IO and should lower vtime rate. If we're not missing
2360 * and experiencing shortages but not surpluses, we're too stingy
2361 * and should increase vtime rate.
2363 prev_busy_level = ioc->busy_level;
2364 if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2365 missed_ppm[READ] > ppm_rthr ||
2366 missed_ppm[WRITE] > ppm_wthr) {
2367 /* clearly missing QoS targets, slow down vrate */
2368 ioc->busy_level = max(ioc->busy_level, 0);
2370 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2371 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2372 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2373 /* QoS targets are being met with >25% margin */
2376 * We're throttling while the device has spare
2377 * capacity. If vrate was being slowed down, stop.
2379 ioc->busy_level = min(ioc->busy_level, 0);
2382 * If there are IOs spanning multiple periods, wait
2383 * them out before pushing the device harder.
2389 * Nobody is being throttled and the users aren't
2390 * issuing enough IOs to saturate the device. We
2391 * simply don't know how close the device is to
2392 * saturation. Coast.
2394 ioc->busy_level = 0;
2397 /* inside the hysterisis margin, we're good */
2398 ioc->busy_level = 0;
2401 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2403 ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2404 prev_busy_level, missed_ppm);
2406 ioc_refresh_params(ioc, false);
2408 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2411 * This period is done. Move onto the next one. If nothing's
2412 * going on with the device, stop the timer.
2414 atomic64_inc(&ioc->cur_period);
2416 if (ioc->running != IOC_STOP) {
2417 if (!list_empty(&ioc->active_iocgs)) {
2418 ioc_start_period(ioc, &now);
2420 ioc->busy_level = 0;
2422 ioc->running = IOC_IDLE;
2425 ioc_refresh_vrate(ioc, &now);
2428 spin_unlock_irq(&ioc->lock);
2431 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2432 u64 abs_cost, struct ioc_now *now)
2434 struct ioc *ioc = iocg->ioc;
2435 struct ioc_margins *margins = &ioc->margins;
2436 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2439 u64 cost, new_inuse;
2441 current_hweight(iocg, NULL, &hwi);
2443 cost = abs_cost_to_cost(abs_cost, hwi);
2444 margin = now->vnow - vtime - cost;
2446 /* debt handling owns inuse for debtors */
2447 if (iocg->abs_vdebt)
2451 * We only increase inuse during period and do so if the margin has
2452 * deteriorated since the previous adjustment.
2454 if (margin >= iocg->saved_margin || margin >= margins->low ||
2455 iocg->inuse == iocg->active)
2458 spin_lock_irq(&ioc->lock);
2460 /* we own inuse only when @iocg is in the normal active state */
2461 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2462 spin_unlock_irq(&ioc->lock);
2467 * Bump up inuse till @abs_cost fits in the existing budget.
2468 * adj_step must be determined after acquiring ioc->lock - we might
2469 * have raced and lost to another thread for activation and could
2470 * be reading 0 iocg->active before ioc->lock which will lead to
2473 new_inuse = iocg->inuse;
2474 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2476 new_inuse = new_inuse + adj_step;
2477 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2478 current_hweight(iocg, NULL, &hwi);
2479 cost = abs_cost_to_cost(abs_cost, hwi);
2480 } while (time_after64(vtime + cost, now->vnow) &&
2481 iocg->inuse != iocg->active);
2483 spin_unlock_irq(&ioc->lock);
2485 TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2486 old_inuse, iocg->inuse, old_hwi, hwi);
2491 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2492 bool is_merge, u64 *costp)
2494 struct ioc *ioc = iocg->ioc;
2495 u64 coef_seqio, coef_randio, coef_page;
2496 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2500 switch (bio_op(bio)) {
2502 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO];
2503 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO];
2504 coef_page = ioc->params.lcoefs[LCOEF_RPAGE];
2507 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO];
2508 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO];
2509 coef_page = ioc->params.lcoefs[LCOEF_WPAGE];
2516 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2517 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2521 if (seek_pages > LCOEF_RANDIO_PAGES) {
2522 cost += coef_randio;
2527 cost += pages * coef_page;
2532 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2536 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2540 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2543 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2545 switch (req_op(rq)) {
2547 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2550 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2557 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2561 calc_size_vtime_cost_builtin(rq, ioc, &cost);
2565 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2567 struct blkcg_gq *blkg = bio->bi_blkg;
2568 struct ioc *ioc = rqos_to_ioc(rqos);
2569 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2571 struct iocg_wait wait;
2572 u64 abs_cost, cost, vtime;
2573 bool use_debt, ioc_locked;
2574 unsigned long flags;
2576 /* bypass IOs if disabled, still initializing, or for root cgroup */
2577 if (!ioc->enabled || !iocg || !iocg->level)
2580 /* calculate the absolute vtime cost */
2581 abs_cost = calc_vtime_cost(bio, iocg, false);
2585 if (!iocg_activate(iocg, &now))
2588 iocg->cursor = bio_end_sector(bio);
2589 vtime = atomic64_read(&iocg->vtime);
2590 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2593 * If no one's waiting and within budget, issue right away. The
2594 * tests are racy but the races aren't systemic - we only miss once
2595 * in a while which is fine.
2597 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2598 time_before_eq64(vtime + cost, now.vnow)) {
2599 iocg_commit_bio(iocg, bio, abs_cost, cost);
2604 * We're over budget. This can be handled in two ways. IOs which may
2605 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2606 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2607 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2608 * whether debt handling is needed and acquire locks accordingly.
2610 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2611 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2613 iocg_lock(iocg, ioc_locked, &flags);
2616 * @iocg must stay activated for debt and waitq handling. Deactivation
2617 * is synchronized against both ioc->lock and waitq.lock and we won't
2618 * get deactivated as long as we're waiting or has debt, so we're good
2619 * if we're activated here. In the unlikely cases that we aren't, just
2622 if (unlikely(list_empty(&iocg->active_list))) {
2623 iocg_unlock(iocg, ioc_locked, &flags);
2624 iocg_commit_bio(iocg, bio, abs_cost, cost);
2629 * We're over budget. If @bio has to be issued regardless, remember
2630 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2631 * off the debt before waking more IOs.
2633 * This way, the debt is continuously paid off each period with the
2634 * actual budget available to the cgroup. If we just wound vtime, we
2635 * would incorrectly use the current hw_inuse for the entire amount
2636 * which, for example, can lead to the cgroup staying blocked for a
2637 * long time even with substantially raised hw_inuse.
2639 * An iocg with vdebt should stay online so that the timer can keep
2640 * deducting its vdebt and [de]activate use_delay mechanism
2641 * accordingly. We don't want to race against the timer trying to
2642 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2643 * penalizing the cgroup and its descendants.
2646 iocg_incur_debt(iocg, abs_cost, &now);
2647 if (iocg_kick_delay(iocg, &now))
2648 blkcg_schedule_throttle(rqos->q->disk,
2649 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2650 iocg_unlock(iocg, ioc_locked, &flags);
2654 /* guarantee that iocgs w/ waiters have maximum inuse */
2655 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2657 iocg_unlock(iocg, false, &flags);
2661 propagate_weights(iocg, iocg->active, iocg->active, true,
2666 * Append self to the waitq and schedule the wakeup timer if we're
2667 * the first waiter. The timer duration is calculated based on the
2668 * current vrate. vtime and hweight changes can make it too short
2669 * or too long. Each wait entry records the absolute cost it's
2670 * waiting for to allow re-evaluation using a custom wait entry.
2672 * If too short, the timer simply reschedules itself. If too long,
2673 * the period timer will notice and trigger wakeups.
2675 * All waiters are on iocg->waitq and the wait states are
2676 * synchronized using waitq.lock.
2678 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2679 wait.wait.private = current;
2681 wait.abs_cost = abs_cost;
2682 wait.committed = false; /* will be set true by waker */
2684 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2685 iocg_kick_waitq(iocg, ioc_locked, &now);
2687 iocg_unlock(iocg, ioc_locked, &flags);
2690 set_current_state(TASK_UNINTERRUPTIBLE);
2696 /* waker already committed us, proceed */
2697 finish_wait(&iocg->waitq, &wait.wait);
2700 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2703 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2704 struct ioc *ioc = rqos_to_ioc(rqos);
2705 sector_t bio_end = bio_end_sector(bio);
2707 u64 vtime, abs_cost, cost;
2708 unsigned long flags;
2710 /* bypass if disabled, still initializing, or for root cgroup */
2711 if (!ioc->enabled || !iocg || !iocg->level)
2714 abs_cost = calc_vtime_cost(bio, iocg, true);
2720 vtime = atomic64_read(&iocg->vtime);
2721 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2723 /* update cursor if backmerging into the request at the cursor */
2724 if (blk_rq_pos(rq) < bio_end &&
2725 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2726 iocg->cursor = bio_end;
2729 * Charge if there's enough vtime budget and the existing request has
2732 if (rq->bio && rq->bio->bi_iocost_cost &&
2733 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2734 iocg_commit_bio(iocg, bio, abs_cost, cost);
2739 * Otherwise, account it as debt if @iocg is online, which it should
2740 * be for the vast majority of cases. See debt handling in
2741 * ioc_rqos_throttle() for details.
2743 spin_lock_irqsave(&ioc->lock, flags);
2744 spin_lock(&iocg->waitq.lock);
2746 if (likely(!list_empty(&iocg->active_list))) {
2747 iocg_incur_debt(iocg, abs_cost, &now);
2748 if (iocg_kick_delay(iocg, &now))
2749 blkcg_schedule_throttle(rqos->q->disk,
2750 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2752 iocg_commit_bio(iocg, bio, abs_cost, cost);
2755 spin_unlock(&iocg->waitq.lock);
2756 spin_unlock_irqrestore(&ioc->lock, flags);
2759 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2761 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2763 if (iocg && bio->bi_iocost_cost)
2764 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2767 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2769 struct ioc *ioc = rqos_to_ioc(rqos);
2770 struct ioc_pcpu_stat *ccs;
2771 u64 on_q_ns, rq_wait_ns, size_nsec;
2774 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2777 switch (req_op(rq)) {
2790 on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2791 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2792 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2794 ccs = get_cpu_ptr(ioc->pcpu_stat);
2796 if (on_q_ns <= size_nsec ||
2797 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2798 local_inc(&ccs->missed[rw].nr_met);
2800 local_inc(&ccs->missed[rw].nr_missed);
2802 local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2807 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2809 struct ioc *ioc = rqos_to_ioc(rqos);
2811 spin_lock_irq(&ioc->lock);
2812 ioc_refresh_params(ioc, false);
2813 spin_unlock_irq(&ioc->lock);
2816 static void ioc_rqos_exit(struct rq_qos *rqos)
2818 struct ioc *ioc = rqos_to_ioc(rqos);
2820 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2822 spin_lock_irq(&ioc->lock);
2823 ioc->running = IOC_STOP;
2824 spin_unlock_irq(&ioc->lock);
2826 del_timer_sync(&ioc->timer);
2827 free_percpu(ioc->pcpu_stat);
2831 static struct rq_qos_ops ioc_rqos_ops = {
2832 .throttle = ioc_rqos_throttle,
2833 .merge = ioc_rqos_merge,
2834 .done_bio = ioc_rqos_done_bio,
2835 .done = ioc_rqos_done,
2836 .queue_depth_changed = ioc_rqos_queue_depth_changed,
2837 .exit = ioc_rqos_exit,
2840 static int blk_iocost_init(struct gendisk *disk)
2842 struct request_queue *q = disk->queue;
2844 struct rq_qos *rqos;
2847 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2851 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2852 if (!ioc->pcpu_stat) {
2857 for_each_possible_cpu(cpu) {
2858 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2860 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2861 local_set(&ccs->missed[i].nr_met, 0);
2862 local_set(&ccs->missed[i].nr_missed, 0);
2864 local64_set(&ccs->rq_wait_ns, 0);
2868 rqos->id = RQ_QOS_COST;
2869 rqos->ops = &ioc_rqos_ops;
2872 spin_lock_init(&ioc->lock);
2873 timer_setup(&ioc->timer, ioc_timer_fn, 0);
2874 INIT_LIST_HEAD(&ioc->active_iocgs);
2876 ioc->running = IOC_IDLE;
2877 ioc->vtime_base_rate = VTIME_PER_USEC;
2878 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2879 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2880 ioc->period_at = ktime_to_us(ktime_get());
2881 atomic64_set(&ioc->cur_period, 0);
2882 atomic_set(&ioc->hweight_gen, 0);
2884 spin_lock_irq(&ioc->lock);
2885 ioc->autop_idx = AUTOP_INVALID;
2886 ioc_refresh_params(ioc, true);
2887 spin_unlock_irq(&ioc->lock);
2890 * rqos must be added before activation to allow iocg_pd_init() to
2891 * lookup the ioc from q. This means that the rqos methods may get
2892 * called before policy activation completion, can't assume that the
2893 * target bio has an iocg associated and need to test for NULL iocg.
2895 ret = rq_qos_add(q, rqos);
2899 ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2905 rq_qos_del(q, rqos);
2907 free_percpu(ioc->pcpu_stat);
2912 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2914 struct ioc_cgrp *iocc;
2916 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2920 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2924 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2926 kfree(container_of(cpd, struct ioc_cgrp, cpd));
2929 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2930 struct blkcg *blkcg)
2932 int levels = blkcg->css.cgroup->level + 1;
2933 struct ioc_gq *iocg;
2935 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2939 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2940 if (!iocg->pcpu_stat) {
2948 static void ioc_pd_init(struct blkg_policy_data *pd)
2950 struct ioc_gq *iocg = pd_to_iocg(pd);
2951 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2952 struct ioc *ioc = q_to_ioc(blkg->q);
2954 struct blkcg_gq *tblkg;
2955 unsigned long flags;
2960 atomic64_set(&iocg->vtime, now.vnow);
2961 atomic64_set(&iocg->done_vtime, now.vnow);
2962 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2963 INIT_LIST_HEAD(&iocg->active_list);
2964 INIT_LIST_HEAD(&iocg->walk_list);
2965 INIT_LIST_HEAD(&iocg->surplus_list);
2966 iocg->hweight_active = WEIGHT_ONE;
2967 iocg->hweight_inuse = WEIGHT_ONE;
2969 init_waitqueue_head(&iocg->waitq);
2970 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2971 iocg->waitq_timer.function = iocg_waitq_timer_fn;
2973 iocg->level = blkg->blkcg->css.cgroup->level;
2975 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2976 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2977 iocg->ancestors[tiocg->level] = tiocg;
2980 spin_lock_irqsave(&ioc->lock, flags);
2981 weight_updated(iocg, &now);
2982 spin_unlock_irqrestore(&ioc->lock, flags);
2985 static void ioc_pd_free(struct blkg_policy_data *pd)
2987 struct ioc_gq *iocg = pd_to_iocg(pd);
2988 struct ioc *ioc = iocg->ioc;
2989 unsigned long flags;
2992 spin_lock_irqsave(&ioc->lock, flags);
2994 if (!list_empty(&iocg->active_list)) {
2998 propagate_weights(iocg, 0, 0, false, &now);
2999 list_del_init(&iocg->active_list);
3002 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
3003 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
3005 spin_unlock_irqrestore(&ioc->lock, flags);
3007 hrtimer_cancel(&iocg->waitq_timer);
3009 free_percpu(iocg->pcpu_stat);
3013 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3015 struct ioc_gq *iocg = pd_to_iocg(pd);
3016 struct ioc *ioc = iocg->ioc;
3021 if (iocg->level == 0) {
3022 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3023 ioc->vtime_base_rate * 10000,
3025 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3028 seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3030 if (blkcg_debug_stats)
3031 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3032 iocg->last_stat.wait_us,
3033 iocg->last_stat.indebt_us,
3034 iocg->last_stat.indelay_us);
3037 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3040 const char *dname = blkg_dev_name(pd->blkg);
3041 struct ioc_gq *iocg = pd_to_iocg(pd);
3043 if (dname && iocg->cfg_weight)
3044 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3049 static int ioc_weight_show(struct seq_file *sf, void *v)
3051 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3052 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3054 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3055 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3056 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3060 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3061 size_t nbytes, loff_t off)
3063 struct blkcg *blkcg = css_to_blkcg(of_css(of));
3064 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3065 struct blkg_conf_ctx ctx;
3067 struct ioc_gq *iocg;
3071 if (!strchr(buf, ':')) {
3072 struct blkcg_gq *blkg;
3074 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3077 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3080 spin_lock_irq(&blkcg->lock);
3081 iocc->dfl_weight = v * WEIGHT_ONE;
3082 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3083 struct ioc_gq *iocg = blkg_to_iocg(blkg);
3086 spin_lock(&iocg->ioc->lock);
3087 ioc_now(iocg->ioc, &now);
3088 weight_updated(iocg, &now);
3089 spin_unlock(&iocg->ioc->lock);
3092 spin_unlock_irq(&blkcg->lock);
3097 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3101 iocg = blkg_to_iocg(ctx.blkg);
3103 if (!strncmp(ctx.body, "default", 7)) {
3106 if (!sscanf(ctx.body, "%u", &v))
3108 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3112 spin_lock(&iocg->ioc->lock);
3113 iocg->cfg_weight = v * WEIGHT_ONE;
3114 ioc_now(iocg->ioc, &now);
3115 weight_updated(iocg, &now);
3116 spin_unlock(&iocg->ioc->lock);
3118 blkg_conf_finish(&ctx);
3122 blkg_conf_finish(&ctx);
3126 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3129 const char *dname = blkg_dev_name(pd->blkg);
3130 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3135 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3136 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3137 ioc->params.qos[QOS_RPPM] / 10000,
3138 ioc->params.qos[QOS_RPPM] % 10000 / 100,
3139 ioc->params.qos[QOS_RLAT],
3140 ioc->params.qos[QOS_WPPM] / 10000,
3141 ioc->params.qos[QOS_WPPM] % 10000 / 100,
3142 ioc->params.qos[QOS_WLAT],
3143 ioc->params.qos[QOS_MIN] / 10000,
3144 ioc->params.qos[QOS_MIN] % 10000 / 100,
3145 ioc->params.qos[QOS_MAX] / 10000,
3146 ioc->params.qos[QOS_MAX] % 10000 / 100);
3150 static int ioc_qos_show(struct seq_file *sf, void *v)
3152 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3154 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3155 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3159 static const match_table_t qos_ctrl_tokens = {
3160 { QOS_ENABLE, "enable=%u" },
3161 { QOS_CTRL, "ctrl=%s" },
3162 { NR_QOS_CTRL_PARAMS, NULL },
3165 static const match_table_t qos_tokens = {
3166 { QOS_RPPM, "rpct=%s" },
3167 { QOS_RLAT, "rlat=%u" },
3168 { QOS_WPPM, "wpct=%s" },
3169 { QOS_WLAT, "wlat=%u" },
3170 { QOS_MIN, "min=%s" },
3171 { QOS_MAX, "max=%s" },
3172 { NR_QOS_PARAMS, NULL },
3175 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3176 size_t nbytes, loff_t off)
3178 struct block_device *bdev;
3179 struct gendisk *disk;
3181 u32 qos[NR_QOS_PARAMS];
3186 bdev = blkcg_conf_open_bdev(&input);
3188 return PTR_ERR(bdev);
3190 disk = bdev->bd_disk;
3191 ioc = q_to_ioc(disk->queue);
3193 ret = blk_iocost_init(disk);
3196 ioc = q_to_ioc(disk->queue);
3199 spin_lock_irq(&ioc->lock);
3200 memcpy(qos, ioc->params.qos, sizeof(qos));
3201 enable = ioc->enabled;
3202 user = ioc->user_qos_params;
3203 spin_unlock_irq(&ioc->lock);
3205 while ((p = strsep(&input, " \t\n"))) {
3206 substring_t args[MAX_OPT_ARGS];
3214 switch (match_token(p, qos_ctrl_tokens, args)) {
3216 match_u64(&args[0], &v);
3220 match_strlcpy(buf, &args[0], sizeof(buf));
3221 if (!strcmp(buf, "auto"))
3223 else if (!strcmp(buf, "user"))
3230 tok = match_token(p, qos_tokens, args);
3234 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3237 if (cgroup_parse_float(buf, 2, &v))
3239 if (v < 0 || v > 10000)
3245 if (match_u64(&args[0], &v))
3251 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3254 if (cgroup_parse_float(buf, 2, &v))
3258 qos[tok] = clamp_t(s64, v * 100,
3259 VRATE_MIN_PPM, VRATE_MAX_PPM);
3267 if (qos[QOS_MIN] > qos[QOS_MAX])
3270 spin_lock_irq(&ioc->lock);
3273 blk_stat_enable_accounting(disk->queue);
3274 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3275 ioc->enabled = true;
3277 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3278 ioc->enabled = false;
3282 memcpy(ioc->params.qos, qos, sizeof(qos));
3283 ioc->user_qos_params = true;
3285 ioc->user_qos_params = false;
3288 ioc_refresh_params(ioc, true);
3289 spin_unlock_irq(&ioc->lock);
3291 blkdev_put_no_open(bdev);
3296 blkdev_put_no_open(bdev);
3300 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3301 struct blkg_policy_data *pd, int off)
3303 const char *dname = blkg_dev_name(pd->blkg);
3304 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3305 u64 *u = ioc->params.i_lcoefs;
3310 seq_printf(sf, "%s ctrl=%s model=linear "
3311 "rbps=%llu rseqiops=%llu rrandiops=%llu "
3312 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3313 dname, ioc->user_cost_model ? "user" : "auto",
3314 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3315 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3319 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3321 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3323 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3324 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3328 static const match_table_t cost_ctrl_tokens = {
3329 { COST_CTRL, "ctrl=%s" },
3330 { COST_MODEL, "model=%s" },
3331 { NR_COST_CTRL_PARAMS, NULL },
3334 static const match_table_t i_lcoef_tokens = {
3335 { I_LCOEF_RBPS, "rbps=%u" },
3336 { I_LCOEF_RSEQIOPS, "rseqiops=%u" },
3337 { I_LCOEF_RRANDIOPS, "rrandiops=%u" },
3338 { I_LCOEF_WBPS, "wbps=%u" },
3339 { I_LCOEF_WSEQIOPS, "wseqiops=%u" },
3340 { I_LCOEF_WRANDIOPS, "wrandiops=%u" },
3341 { NR_I_LCOEFS, NULL },
3344 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3345 size_t nbytes, loff_t off)
3347 struct block_device *bdev;
3354 bdev = blkcg_conf_open_bdev(&input);
3356 return PTR_ERR(bdev);
3358 ioc = q_to_ioc(bdev_get_queue(bdev));
3360 ret = blk_iocost_init(bdev->bd_disk);
3363 ioc = q_to_ioc(bdev_get_queue(bdev));
3366 spin_lock_irq(&ioc->lock);
3367 memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3368 user = ioc->user_cost_model;
3369 spin_unlock_irq(&ioc->lock);
3371 while ((p = strsep(&input, " \t\n"))) {
3372 substring_t args[MAX_OPT_ARGS];
3380 switch (match_token(p, cost_ctrl_tokens, args)) {
3382 match_strlcpy(buf, &args[0], sizeof(buf));
3383 if (!strcmp(buf, "auto"))
3385 else if (!strcmp(buf, "user"))
3391 match_strlcpy(buf, &args[0], sizeof(buf));
3392 if (strcmp(buf, "linear"))
3397 tok = match_token(p, i_lcoef_tokens, args);
3398 if (tok == NR_I_LCOEFS)
3400 if (match_u64(&args[0], &v))
3406 spin_lock_irq(&ioc->lock);
3408 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3409 ioc->user_cost_model = true;
3411 ioc->user_cost_model = false;
3413 ioc_refresh_params(ioc, true);
3414 spin_unlock_irq(&ioc->lock);
3416 blkdev_put_no_open(bdev);
3422 blkdev_put_no_open(bdev);
3426 static struct cftype ioc_files[] = {
3429 .flags = CFTYPE_NOT_ON_ROOT,
3430 .seq_show = ioc_weight_show,
3431 .write = ioc_weight_write,
3435 .flags = CFTYPE_ONLY_ON_ROOT,
3436 .seq_show = ioc_qos_show,
3437 .write = ioc_qos_write,
3440 .name = "cost.model",
3441 .flags = CFTYPE_ONLY_ON_ROOT,
3442 .seq_show = ioc_cost_model_show,
3443 .write = ioc_cost_model_write,
3448 static struct blkcg_policy blkcg_policy_iocost = {
3449 .dfl_cftypes = ioc_files,
3450 .cpd_alloc_fn = ioc_cpd_alloc,
3451 .cpd_free_fn = ioc_cpd_free,
3452 .pd_alloc_fn = ioc_pd_alloc,
3453 .pd_init_fn = ioc_pd_init,
3454 .pd_free_fn = ioc_pd_free,
3455 .pd_stat_fn = ioc_pd_stat,
3458 static int __init ioc_init(void)
3460 return blkcg_policy_register(&blkcg_policy_iocost);
3463 static void __exit ioc_exit(void)
3465 blkcg_policy_unregister(&blkcg_policy_iocost);
3468 module_init(ioc_init);
3469 module_exit(ioc_exit);