Merge tag 'kvm-x86-generic-6.5' of https://github.com/kvm-x86/linux into HEAD
[platform/kernel/linux-starfive.git] / block / blk-crypto.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 Google LLC
4  */
5
6 /*
7  * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8  */
9
10 #define pr_fmt(fmt) "blk-crypto: " fmt
11
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/blk-crypto-profile.h>
15 #include <linux/module.h>
16 #include <linux/ratelimit.h>
17 #include <linux/slab.h>
18
19 #include "blk-crypto-internal.h"
20
21 const struct blk_crypto_mode blk_crypto_modes[] = {
22         [BLK_ENCRYPTION_MODE_AES_256_XTS] = {
23                 .name = "AES-256-XTS",
24                 .cipher_str = "xts(aes)",
25                 .keysize = 64,
26                 .ivsize = 16,
27         },
28         [BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = {
29                 .name = "AES-128-CBC-ESSIV",
30                 .cipher_str = "essiv(cbc(aes),sha256)",
31                 .keysize = 16,
32                 .ivsize = 16,
33         },
34         [BLK_ENCRYPTION_MODE_ADIANTUM] = {
35                 .name = "Adiantum",
36                 .cipher_str = "adiantum(xchacha12,aes)",
37                 .keysize = 32,
38                 .ivsize = 32,
39         },
40         [BLK_ENCRYPTION_MODE_SM4_XTS] = {
41                 .name = "SM4-XTS",
42                 .cipher_str = "xts(sm4)",
43                 .keysize = 32,
44                 .ivsize = 16,
45         },
46 };
47
48 /*
49  * This number needs to be at least (the number of threads doing IO
50  * concurrently) * (maximum recursive depth of a bio), so that we don't
51  * deadlock on crypt_ctx allocations. The default is chosen to be the same
52  * as the default number of post read contexts in both EXT4 and F2FS.
53  */
54 static int num_prealloc_crypt_ctxs = 128;
55
56 module_param(num_prealloc_crypt_ctxs, int, 0444);
57 MODULE_PARM_DESC(num_prealloc_crypt_ctxs,
58                 "Number of bio crypto contexts to preallocate");
59
60 static struct kmem_cache *bio_crypt_ctx_cache;
61 static mempool_t *bio_crypt_ctx_pool;
62
63 static int __init bio_crypt_ctx_init(void)
64 {
65         size_t i;
66
67         bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0);
68         if (!bio_crypt_ctx_cache)
69                 goto out_no_mem;
70
71         bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs,
72                                                       bio_crypt_ctx_cache);
73         if (!bio_crypt_ctx_pool)
74                 goto out_no_mem;
75
76         /* This is assumed in various places. */
77         BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0);
78
79         /* Sanity check that no algorithm exceeds the defined limits. */
80         for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) {
81                 BUG_ON(blk_crypto_modes[i].keysize > BLK_CRYPTO_MAX_KEY_SIZE);
82                 BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE);
83         }
84
85         return 0;
86 out_no_mem:
87         panic("Failed to allocate mem for bio crypt ctxs\n");
88 }
89 subsys_initcall(bio_crypt_ctx_init);
90
91 void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key,
92                        const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask)
93 {
94         struct bio_crypt_ctx *bc;
95
96         /*
97          * The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so
98          * that the mempool_alloc() can't fail.
99          */
100         WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM));
101
102         bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
103
104         bc->bc_key = key;
105         memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun));
106
107         bio->bi_crypt_context = bc;
108 }
109
110 void __bio_crypt_free_ctx(struct bio *bio)
111 {
112         mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool);
113         bio->bi_crypt_context = NULL;
114 }
115
116 int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask)
117 {
118         dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
119         if (!dst->bi_crypt_context)
120                 return -ENOMEM;
121         *dst->bi_crypt_context = *src->bi_crypt_context;
122         return 0;
123 }
124
125 /* Increments @dun by @inc, treating @dun as a multi-limb integer. */
126 void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
127                              unsigned int inc)
128 {
129         int i;
130
131         for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
132                 dun[i] += inc;
133                 /*
134                  * If the addition in this limb overflowed, then we need to
135                  * carry 1 into the next limb. Else the carry is 0.
136                  */
137                 if (dun[i] < inc)
138                         inc = 1;
139                 else
140                         inc = 0;
141         }
142 }
143
144 void __bio_crypt_advance(struct bio *bio, unsigned int bytes)
145 {
146         struct bio_crypt_ctx *bc = bio->bi_crypt_context;
147
148         bio_crypt_dun_increment(bc->bc_dun,
149                                 bytes >> bc->bc_key->data_unit_size_bits);
150 }
151
152 /*
153  * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to
154  * @next_dun, treating the DUNs as multi-limb integers.
155  */
156 bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc,
157                                  unsigned int bytes,
158                                  const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
159 {
160         int i;
161         unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits;
162
163         for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
164                 if (bc->bc_dun[i] + carry != next_dun[i])
165                         return false;
166                 /*
167                  * If the addition in this limb overflowed, then we need to
168                  * carry 1 into the next limb. Else the carry is 0.
169                  */
170                 if ((bc->bc_dun[i] + carry) < carry)
171                         carry = 1;
172                 else
173                         carry = 0;
174         }
175
176         /* If the DUN wrapped through 0, don't treat it as contiguous. */
177         return carry == 0;
178 }
179
180 /*
181  * Checks that two bio crypt contexts are compatible - i.e. that
182  * they are mergeable except for data_unit_num continuity.
183  */
184 static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1,
185                                      struct bio_crypt_ctx *bc2)
186 {
187         if (!bc1)
188                 return !bc2;
189
190         return bc2 && bc1->bc_key == bc2->bc_key;
191 }
192
193 bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio)
194 {
195         return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context);
196 }
197
198 /*
199  * Checks that two bio crypt contexts are compatible, and also
200  * that their data_unit_nums are continuous (and can hence be merged)
201  * in the order @bc1 followed by @bc2.
202  */
203 bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes,
204                              struct bio_crypt_ctx *bc2)
205 {
206         if (!bio_crypt_ctx_compatible(bc1, bc2))
207                 return false;
208
209         return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun);
210 }
211
212 /* Check that all I/O segments are data unit aligned. */
213 static bool bio_crypt_check_alignment(struct bio *bio)
214 {
215         const unsigned int data_unit_size =
216                 bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size;
217         struct bvec_iter iter;
218         struct bio_vec bv;
219
220         bio_for_each_segment(bv, bio, iter) {
221                 if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size))
222                         return false;
223         }
224
225         return true;
226 }
227
228 blk_status_t __blk_crypto_rq_get_keyslot(struct request *rq)
229 {
230         return blk_crypto_get_keyslot(rq->q->crypto_profile,
231                                       rq->crypt_ctx->bc_key,
232                                       &rq->crypt_keyslot);
233 }
234
235 void __blk_crypto_rq_put_keyslot(struct request *rq)
236 {
237         blk_crypto_put_keyslot(rq->crypt_keyslot);
238         rq->crypt_keyslot = NULL;
239 }
240
241 void __blk_crypto_free_request(struct request *rq)
242 {
243         /* The keyslot, if one was needed, should have been released earlier. */
244         if (WARN_ON_ONCE(rq->crypt_keyslot))
245                 __blk_crypto_rq_put_keyslot(rq);
246
247         mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool);
248         rq->crypt_ctx = NULL;
249 }
250
251 /**
252  * __blk_crypto_bio_prep - Prepare bio for inline encryption
253  *
254  * @bio_ptr: pointer to original bio pointer
255  *
256  * If the bio crypt context provided for the bio is supported by the underlying
257  * device's inline encryption hardware, do nothing.
258  *
259  * Otherwise, try to perform en/decryption for this bio by falling back to the
260  * kernel crypto API. When the crypto API fallback is used for encryption,
261  * blk-crypto may choose to split the bio into 2 - the first one that will
262  * continue to be processed and the second one that will be resubmitted via
263  * submit_bio_noacct. A bounce bio will be allocated to encrypt the contents
264  * of the aforementioned "first one", and *bio_ptr will be updated to this
265  * bounce bio.
266  *
267  * Caller must ensure bio has bio_crypt_ctx.
268  *
269  * Return: true on success; false on error (and bio->bi_status will be set
270  *         appropriately, and bio_endio() will have been called so bio
271  *         submission should abort).
272  */
273 bool __blk_crypto_bio_prep(struct bio **bio_ptr)
274 {
275         struct bio *bio = *bio_ptr;
276         const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key;
277
278         /* Error if bio has no data. */
279         if (WARN_ON_ONCE(!bio_has_data(bio))) {
280                 bio->bi_status = BLK_STS_IOERR;
281                 goto fail;
282         }
283
284         if (!bio_crypt_check_alignment(bio)) {
285                 bio->bi_status = BLK_STS_IOERR;
286                 goto fail;
287         }
288
289         /*
290          * Success if device supports the encryption context, or if we succeeded
291          * in falling back to the crypto API.
292          */
293         if (blk_crypto_config_supported_natively(bio->bi_bdev,
294                                                  &bc_key->crypto_cfg))
295                 return true;
296         if (blk_crypto_fallback_bio_prep(bio_ptr))
297                 return true;
298 fail:
299         bio_endio(*bio_ptr);
300         return false;
301 }
302
303 int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio,
304                              gfp_t gfp_mask)
305 {
306         if (!rq->crypt_ctx) {
307                 rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
308                 if (!rq->crypt_ctx)
309                         return -ENOMEM;
310         }
311         *rq->crypt_ctx = *bio->bi_crypt_context;
312         return 0;
313 }
314
315 /**
316  * blk_crypto_init_key() - Prepare a key for use with blk-crypto
317  * @blk_key: Pointer to the blk_crypto_key to initialize.
318  * @raw_key: Pointer to the raw key. Must be the correct length for the chosen
319  *           @crypto_mode; see blk_crypto_modes[].
320  * @crypto_mode: identifier for the encryption algorithm to use
321  * @dun_bytes: number of bytes that will be used to specify the DUN when this
322  *             key is used
323  * @data_unit_size: the data unit size to use for en/decryption
324  *
325  * Return: 0 on success, -errno on failure.  The caller is responsible for
326  *         zeroizing both blk_key and raw_key when done with them.
327  */
328 int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key,
329                         enum blk_crypto_mode_num crypto_mode,
330                         unsigned int dun_bytes,
331                         unsigned int data_unit_size)
332 {
333         const struct blk_crypto_mode *mode;
334
335         memset(blk_key, 0, sizeof(*blk_key));
336
337         if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes))
338                 return -EINVAL;
339
340         mode = &blk_crypto_modes[crypto_mode];
341         if (mode->keysize == 0)
342                 return -EINVAL;
343
344         if (dun_bytes == 0 || dun_bytes > mode->ivsize)
345                 return -EINVAL;
346
347         if (!is_power_of_2(data_unit_size))
348                 return -EINVAL;
349
350         blk_key->crypto_cfg.crypto_mode = crypto_mode;
351         blk_key->crypto_cfg.dun_bytes = dun_bytes;
352         blk_key->crypto_cfg.data_unit_size = data_unit_size;
353         blk_key->data_unit_size_bits = ilog2(data_unit_size);
354         blk_key->size = mode->keysize;
355         memcpy(blk_key->raw, raw_key, mode->keysize);
356
357         return 0;
358 }
359
360 bool blk_crypto_config_supported_natively(struct block_device *bdev,
361                                           const struct blk_crypto_config *cfg)
362 {
363         return __blk_crypto_cfg_supported(bdev_get_queue(bdev)->crypto_profile,
364                                           cfg);
365 }
366
367 /*
368  * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the
369  * block_device it's submitted to supports inline crypto, or the
370  * blk-crypto-fallback is enabled and supports the cfg).
371  */
372 bool blk_crypto_config_supported(struct block_device *bdev,
373                                  const struct blk_crypto_config *cfg)
374 {
375         return IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) ||
376                blk_crypto_config_supported_natively(bdev, cfg);
377 }
378
379 /**
380  * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device
381  * @bdev: block device to operate on
382  * @key: A key to use on the device
383  *
384  * Upper layers must call this function to ensure that either the hardware
385  * supports the key's crypto settings, or the crypto API fallback has transforms
386  * for the needed mode allocated and ready to go. This function may allocate
387  * an skcipher, and *should not* be called from the data path, since that might
388  * cause a deadlock
389  *
390  * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and
391  *         blk-crypto-fallback is either disabled or the needed algorithm
392  *         is disabled in the crypto API; or another -errno code.
393  */
394 int blk_crypto_start_using_key(struct block_device *bdev,
395                                const struct blk_crypto_key *key)
396 {
397         if (blk_crypto_config_supported_natively(bdev, &key->crypto_cfg))
398                 return 0;
399         return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode);
400 }
401
402 /**
403  * blk_crypto_evict_key() - Evict a blk_crypto_key from a block_device
404  * @bdev: a block_device on which I/O using the key may have been done
405  * @key: the key to evict
406  *
407  * For a given block_device, this function removes the given blk_crypto_key from
408  * the keyslot management structures and evicts it from any underlying hardware
409  * keyslot(s) or blk-crypto-fallback keyslot it may have been programmed into.
410  *
411  * Upper layers must call this before freeing the blk_crypto_key.  It must be
412  * called for every block_device the key may have been used on.  The key must no
413  * longer be in use by any I/O when this function is called.
414  *
415  * Context: May sleep.
416  */
417 void blk_crypto_evict_key(struct block_device *bdev,
418                           const struct blk_crypto_key *key)
419 {
420         struct request_queue *q = bdev_get_queue(bdev);
421         int err;
422
423         if (blk_crypto_config_supported_natively(bdev, &key->crypto_cfg))
424                 err = __blk_crypto_evict_key(q->crypto_profile, key);
425         else
426                 err = blk_crypto_fallback_evict_key(key);
427         /*
428          * An error can only occur here if the key failed to be evicted from a
429          * keyslot (due to a hardware or driver issue) or is allegedly still in
430          * use by I/O (due to a kernel bug).  Even in these cases, the key is
431          * still unlinked from the keyslot management structures, and the caller
432          * is allowed and expected to free it right away.  There's nothing
433          * callers can do to handle errors, so just log them and return void.
434          */
435         if (err)
436                 pr_warn_ratelimited("%pg: error %d evicting key\n", bdev, err);
437 }
438 EXPORT_SYMBOL_GPL(blk_crypto_evict_key);