2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/block.h>
38 #include "blk-cgroup.h"
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
44 DEFINE_IDA(blk_queue_ida);
47 * For the allocated request tables
49 static struct kmem_cache *request_cachep;
52 * For queue allocation
54 struct kmem_cache *blk_requestq_cachep;
57 * Controlling structure to kblockd
59 static struct workqueue_struct *kblockd_workqueue;
61 static void drive_stat_acct(struct request *rq, int new_io)
63 struct hd_struct *part;
64 int rw = rq_data_dir(rq);
67 if (!blk_do_io_stat(rq))
70 cpu = part_stat_lock();
74 part_stat_inc(cpu, part, merges[rw]);
76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
77 if (!hd_struct_try_get(part)) {
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
86 part = &rq->rq_disk->part0;
89 part_round_stats(cpu, part);
90 part_inc_in_flight(part, rw);
97 void blk_queue_congestion_threshold(struct request_queue *q)
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
104 q->nr_congestion_on = nr;
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 q->nr_congestion_off = nr;
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116 * Locates the passed device's request queue and returns the address of its
119 * Will return NULL if the request queue cannot be located.
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
123 struct backing_dev_info *ret = NULL;
124 struct request_queue *q = bdev_get_queue(bdev);
127 ret = &q->backing_dev_info;
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
132 void blk_rq_init(struct request_queue *q, struct request *rq)
134 memset(rq, 0, sizeof(*rq));
136 INIT_LIST_HEAD(&rq->queuelist);
137 INIT_LIST_HEAD(&rq->timeout_list);
140 rq->__sector = (sector_t) -1;
141 INIT_HLIST_NODE(&rq->hash);
142 RB_CLEAR_NODE(&rq->rb_node);
144 rq->cmd_len = BLK_MAX_CDB;
147 rq->start_time = jiffies;
148 set_start_time_ns(rq);
151 EXPORT_SYMBOL(blk_rq_init);
153 static void req_bio_endio(struct request *rq, struct bio *bio,
154 unsigned int nbytes, int error)
157 clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
161 if (unlikely(nbytes > bio->bi_size)) {
162 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 __func__, nbytes, bio->bi_size);
164 nbytes = bio->bi_size;
167 if (unlikely(rq->cmd_flags & REQ_QUIET))
168 set_bit(BIO_QUIET, &bio->bi_flags);
170 bio->bi_size -= nbytes;
171 bio->bi_sector += (nbytes >> 9);
173 if (bio_integrity(bio))
174 bio_integrity_advance(bio, nbytes);
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 bio_endio(bio, error);
181 void blk_dump_rq_flags(struct request *rq, char *msg)
185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq),
191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
196 printk(KERN_INFO " cdb: ");
197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
198 printk("%02x ", rq->cmd[bit]);
202 EXPORT_SYMBOL(blk_dump_rq_flags);
204 static void blk_delay_work(struct work_struct *work)
206 struct request_queue *q;
208 q = container_of(work, struct request_queue, delay_work.work);
209 spin_lock_irq(q->queue_lock);
211 spin_unlock_irq(q->queue_lock);
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time.
224 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
226 queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 msecs_to_jiffies(msecs));
229 EXPORT_SYMBOL(blk_delay_queue);
232 * blk_start_queue - restart a previously stopped queue
233 * @q: The &struct request_queue in question
236 * blk_start_queue() will clear the stop flag on the queue, and call
237 * the request_fn for the queue if it was in a stopped state when
238 * entered. Also see blk_stop_queue(). Queue lock must be held.
240 void blk_start_queue(struct request_queue *q)
242 WARN_ON(!irqs_disabled());
244 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
247 EXPORT_SYMBOL(blk_start_queue);
250 * blk_stop_queue - stop a queue
251 * @q: The &struct request_queue in question
254 * The Linux block layer assumes that a block driver will consume all
255 * entries on the request queue when the request_fn strategy is called.
256 * Often this will not happen, because of hardware limitations (queue
257 * depth settings). If a device driver gets a 'queue full' response,
258 * or if it simply chooses not to queue more I/O at one point, it can
259 * call this function to prevent the request_fn from being called until
260 * the driver has signalled it's ready to go again. This happens by calling
261 * blk_start_queue() to restart queue operations. Queue lock must be held.
263 void blk_stop_queue(struct request_queue *q)
265 cancel_delayed_work(&q->delay_work);
266 queue_flag_set(QUEUE_FLAG_STOPPED, q);
268 EXPORT_SYMBOL(blk_stop_queue);
271 * blk_sync_queue - cancel any pending callbacks on a queue
275 * The block layer may perform asynchronous callback activity
276 * on a queue, such as calling the unplug function after a timeout.
277 * A block device may call blk_sync_queue to ensure that any
278 * such activity is cancelled, thus allowing it to release resources
279 * that the callbacks might use. The caller must already have made sure
280 * that its ->make_request_fn will not re-add plugging prior to calling
283 * This function does not cancel any asynchronous activity arising
284 * out of elevator or throttling code. That would require elevaotor_exit()
285 * and blkcg_exit_queue() to be called with queue lock initialized.
288 void blk_sync_queue(struct request_queue *q)
290 del_timer_sync(&q->timeout);
291 cancel_delayed_work_sync(&q->delay_work);
293 EXPORT_SYMBOL(blk_sync_queue);
296 * __blk_run_queue - run a single device queue
297 * @q: The queue to run
300 * See @blk_run_queue. This variant must be called with the queue lock
301 * held and interrupts disabled.
303 void __blk_run_queue(struct request_queue *q)
305 if (unlikely(blk_queue_stopped(q)))
310 EXPORT_SYMBOL(__blk_run_queue);
313 * blk_run_queue_async - run a single device queue in workqueue context
314 * @q: The queue to run
317 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
320 void blk_run_queue_async(struct request_queue *q)
322 if (likely(!blk_queue_stopped(q)))
323 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
325 EXPORT_SYMBOL(blk_run_queue_async);
328 * blk_run_queue - run a single device queue
329 * @q: The queue to run
332 * Invoke request handling on this queue, if it has pending work to do.
333 * May be used to restart queueing when a request has completed.
335 void blk_run_queue(struct request_queue *q)
339 spin_lock_irqsave(q->queue_lock, flags);
341 spin_unlock_irqrestore(q->queue_lock, flags);
343 EXPORT_SYMBOL(blk_run_queue);
345 void blk_put_queue(struct request_queue *q)
347 kobject_put(&q->kobj);
349 EXPORT_SYMBOL(blk_put_queue);
352 * blk_drain_queue - drain requests from request_queue
354 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
356 * Drain requests from @q. If @drain_all is set, all requests are drained.
357 * If not, only ELVPRIV requests are drained. The caller is responsible
358 * for ensuring that no new requests which need to be drained are queued.
360 void blk_drain_queue(struct request_queue *q, bool drain_all)
367 spin_lock_irq(q->queue_lock);
370 * The caller might be trying to drain @q before its
371 * elevator is initialized.
374 elv_drain_elevator(q);
376 blkcg_drain_queue(q);
379 * This function might be called on a queue which failed
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
385 if (!list_empty(&q->queue_head) && q->request_fn)
388 drain |= q->nr_rqs_elvpriv;
391 * Unfortunately, requests are queued at and tracked from
392 * multiple places and there's no single counter which can
393 * be drained. Check all the queues and counters.
396 drain |= !list_empty(&q->queue_head);
397 for (i = 0; i < 2; i++) {
398 drain |= q->nr_rqs[i];
399 drain |= q->in_flight[i];
400 drain |= !list_empty(&q->flush_queue[i]);
404 spin_unlock_irq(q->queue_lock);
412 * With queue marked dead, any woken up waiter will fail the
413 * allocation path, so the wakeup chaining is lost and we're
414 * left with hung waiters. We need to wake up those waiters.
417 struct request_list *rl;
419 spin_lock_irq(q->queue_lock);
421 blk_queue_for_each_rl(rl, q)
422 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
423 wake_up_all(&rl->wait[i]);
425 spin_unlock_irq(q->queue_lock);
430 * blk_queue_bypass_start - enter queue bypass mode
431 * @q: queue of interest
433 * In bypass mode, only the dispatch FIFO queue of @q is used. This
434 * function makes @q enter bypass mode and drains all requests which were
435 * throttled or issued before. On return, it's guaranteed that no request
436 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
437 * inside queue or RCU read lock.
439 void blk_queue_bypass_start(struct request_queue *q)
443 spin_lock_irq(q->queue_lock);
444 drain = !q->bypass_depth++;
445 queue_flag_set(QUEUE_FLAG_BYPASS, q);
446 spin_unlock_irq(q->queue_lock);
449 blk_drain_queue(q, false);
450 /* ensure blk_queue_bypass() is %true inside RCU read lock */
454 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
457 * blk_queue_bypass_end - leave queue bypass mode
458 * @q: queue of interest
460 * Leave bypass mode and restore the normal queueing behavior.
462 void blk_queue_bypass_end(struct request_queue *q)
464 spin_lock_irq(q->queue_lock);
465 if (!--q->bypass_depth)
466 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
467 WARN_ON_ONCE(q->bypass_depth < 0);
468 spin_unlock_irq(q->queue_lock);
470 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
473 * blk_cleanup_queue - shutdown a request queue
474 * @q: request queue to shutdown
476 * Mark @q DEAD, drain all pending requests, destroy and put it. All
477 * future requests will be failed immediately with -ENODEV.
479 void blk_cleanup_queue(struct request_queue *q)
481 spinlock_t *lock = q->queue_lock;
483 /* mark @q DEAD, no new request or merges will be allowed afterwards */
484 mutex_lock(&q->sysfs_lock);
485 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
489 * Dead queue is permanently in bypass mode till released. Note
490 * that, unlike blk_queue_bypass_start(), we aren't performing
491 * synchronize_rcu() after entering bypass mode to avoid the delay
492 * as some drivers create and destroy a lot of queues while
493 * probing. This is still safe because blk_release_queue() will be
494 * called only after the queue refcnt drops to zero and nothing,
495 * RCU or not, would be traversing the queue by then.
498 queue_flag_set(QUEUE_FLAG_BYPASS, q);
500 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
501 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
502 queue_flag_set(QUEUE_FLAG_DEAD, q);
503 spin_unlock_irq(lock);
504 mutex_unlock(&q->sysfs_lock);
506 /* drain all requests queued before DEAD marking */
507 blk_drain_queue(q, true);
509 /* @q won't process any more request, flush async actions */
510 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
514 if (q->queue_lock != &q->__queue_lock)
515 q->queue_lock = &q->__queue_lock;
516 spin_unlock_irq(lock);
518 /* @q is and will stay empty, shutdown and put */
521 EXPORT_SYMBOL(blk_cleanup_queue);
523 int blk_init_rl(struct request_list *rl, struct request_queue *q,
526 if (unlikely(rl->rq_pool))
530 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
531 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
532 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
533 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
535 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
536 mempool_free_slab, request_cachep,
544 void blk_exit_rl(struct request_list *rl)
547 mempool_destroy(rl->rq_pool);
550 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
552 return blk_alloc_queue_node(gfp_mask, -1);
554 EXPORT_SYMBOL(blk_alloc_queue);
556 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
558 struct request_queue *q;
561 q = kmem_cache_alloc_node(blk_requestq_cachep,
562 gfp_mask | __GFP_ZERO, node_id);
566 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
570 q->backing_dev_info.ra_pages =
571 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
572 q->backing_dev_info.state = 0;
573 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
574 q->backing_dev_info.name = "block";
577 err = bdi_init(&q->backing_dev_info);
581 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
582 laptop_mode_timer_fn, (unsigned long) q);
583 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
584 INIT_LIST_HEAD(&q->queue_head);
585 INIT_LIST_HEAD(&q->timeout_list);
586 INIT_LIST_HEAD(&q->icq_list);
587 #ifdef CONFIG_BLK_CGROUP
588 INIT_LIST_HEAD(&q->blkg_list);
590 INIT_LIST_HEAD(&q->flush_queue[0]);
591 INIT_LIST_HEAD(&q->flush_queue[1]);
592 INIT_LIST_HEAD(&q->flush_data_in_flight);
593 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
595 kobject_init(&q->kobj, &blk_queue_ktype);
597 mutex_init(&q->sysfs_lock);
598 spin_lock_init(&q->__queue_lock);
601 * By default initialize queue_lock to internal lock and driver can
602 * override it later if need be.
604 q->queue_lock = &q->__queue_lock;
607 * A queue starts its life with bypass turned on to avoid
608 * unnecessary bypass on/off overhead and nasty surprises during
609 * init. The initial bypass will be finished when the queue is
610 * registered by blk_register_queue().
613 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
615 if (blkcg_init_queue(q))
621 ida_simple_remove(&blk_queue_ida, q->id);
623 kmem_cache_free(blk_requestq_cachep, q);
626 EXPORT_SYMBOL(blk_alloc_queue_node);
629 * blk_init_queue - prepare a request queue for use with a block device
630 * @rfn: The function to be called to process requests that have been
631 * placed on the queue.
632 * @lock: Request queue spin lock
635 * If a block device wishes to use the standard request handling procedures,
636 * which sorts requests and coalesces adjacent requests, then it must
637 * call blk_init_queue(). The function @rfn will be called when there
638 * are requests on the queue that need to be processed. If the device
639 * supports plugging, then @rfn may not be called immediately when requests
640 * are available on the queue, but may be called at some time later instead.
641 * Plugged queues are generally unplugged when a buffer belonging to one
642 * of the requests on the queue is needed, or due to memory pressure.
644 * @rfn is not required, or even expected, to remove all requests off the
645 * queue, but only as many as it can handle at a time. If it does leave
646 * requests on the queue, it is responsible for arranging that the requests
647 * get dealt with eventually.
649 * The queue spin lock must be held while manipulating the requests on the
650 * request queue; this lock will be taken also from interrupt context, so irq
651 * disabling is needed for it.
653 * Function returns a pointer to the initialized request queue, or %NULL if
657 * blk_init_queue() must be paired with a blk_cleanup_queue() call
658 * when the block device is deactivated (such as at module unload).
661 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
663 return blk_init_queue_node(rfn, lock, -1);
665 EXPORT_SYMBOL(blk_init_queue);
667 struct request_queue *
668 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
670 struct request_queue *uninit_q, *q;
672 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
676 q = blk_init_allocated_queue(uninit_q, rfn, lock);
678 blk_cleanup_queue(uninit_q);
682 EXPORT_SYMBOL(blk_init_queue_node);
684 struct request_queue *
685 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
691 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
695 q->prep_rq_fn = NULL;
696 q->unprep_rq_fn = NULL;
697 q->queue_flags |= QUEUE_FLAG_DEFAULT;
699 /* Override internal queue lock with supplied lock pointer */
701 q->queue_lock = lock;
704 * This also sets hw/phys segments, boundary and size
706 blk_queue_make_request(q, blk_queue_bio);
708 q->sg_reserved_size = INT_MAX;
711 if (elevator_init(q, NULL))
715 EXPORT_SYMBOL(blk_init_allocated_queue);
717 bool blk_get_queue(struct request_queue *q)
719 if (likely(!blk_queue_dead(q))) {
726 EXPORT_SYMBOL(blk_get_queue);
728 static inline void blk_free_request(struct request_list *rl, struct request *rq)
730 if (rq->cmd_flags & REQ_ELVPRIV) {
731 elv_put_request(rl->q, rq);
733 put_io_context(rq->elv.icq->ioc);
736 mempool_free(rq, rl->rq_pool);
740 * ioc_batching returns true if the ioc is a valid batching request and
741 * should be given priority access to a request.
743 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
749 * Make sure the process is able to allocate at least 1 request
750 * even if the batch times out, otherwise we could theoretically
753 return ioc->nr_batch_requests == q->nr_batching ||
754 (ioc->nr_batch_requests > 0
755 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
759 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
760 * will cause the process to be a "batcher" on all queues in the system. This
761 * is the behaviour we want though - once it gets a wakeup it should be given
764 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
766 if (!ioc || ioc_batching(q, ioc))
769 ioc->nr_batch_requests = q->nr_batching;
770 ioc->last_waited = jiffies;
773 static void __freed_request(struct request_list *rl, int sync)
775 struct request_queue *q = rl->q;
778 * bdi isn't aware of blkcg yet. As all async IOs end up root
779 * blkcg anyway, just use root blkcg state.
781 if (rl == &q->root_rl &&
782 rl->count[sync] < queue_congestion_off_threshold(q))
783 blk_clear_queue_congested(q, sync);
785 if (rl->count[sync] + 1 <= q->nr_requests) {
786 if (waitqueue_active(&rl->wait[sync]))
787 wake_up(&rl->wait[sync]);
789 blk_clear_rl_full(rl, sync);
794 * A request has just been released. Account for it, update the full and
795 * congestion status, wake up any waiters. Called under q->queue_lock.
797 static void freed_request(struct request_list *rl, unsigned int flags)
799 struct request_queue *q = rl->q;
800 int sync = rw_is_sync(flags);
804 if (flags & REQ_ELVPRIV)
807 __freed_request(rl, sync);
809 if (unlikely(rl->starved[sync ^ 1]))
810 __freed_request(rl, sync ^ 1);
814 * Determine if elevator data should be initialized when allocating the
815 * request associated with @bio.
817 static bool blk_rq_should_init_elevator(struct bio *bio)
823 * Flush requests do not use the elevator so skip initialization.
824 * This allows a request to share the flush and elevator data.
826 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
833 * rq_ioc - determine io_context for request allocation
834 * @bio: request being allocated is for this bio (can be %NULL)
836 * Determine io_context to use for request allocation for @bio. May return
837 * %NULL if %current->io_context doesn't exist.
839 static struct io_context *rq_ioc(struct bio *bio)
841 #ifdef CONFIG_BLK_CGROUP
842 if (bio && bio->bi_ioc)
845 return current->io_context;
849 * __get_request - get a free request
850 * @rl: request list to allocate from
851 * @rw_flags: RW and SYNC flags
852 * @bio: bio to allocate request for (can be %NULL)
853 * @gfp_mask: allocation mask
855 * Get a free request from @q. This function may fail under memory
856 * pressure or if @q is dead.
858 * Must be callled with @q->queue_lock held and,
859 * Returns %NULL on failure, with @q->queue_lock held.
860 * Returns !%NULL on success, with @q->queue_lock *not held*.
862 static struct request *__get_request(struct request_list *rl, int rw_flags,
863 struct bio *bio, gfp_t gfp_mask)
865 struct request_queue *q = rl->q;
867 struct elevator_type *et = q->elevator->type;
868 struct io_context *ioc = rq_ioc(bio);
869 struct io_cq *icq = NULL;
870 const bool is_sync = rw_is_sync(rw_flags) != 0;
873 if (unlikely(blk_queue_dead(q)))
876 may_queue = elv_may_queue(q, rw_flags);
877 if (may_queue == ELV_MQUEUE_NO)
880 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
881 if (rl->count[is_sync]+1 >= q->nr_requests) {
883 * The queue will fill after this allocation, so set
884 * it as full, and mark this process as "batching".
885 * This process will be allowed to complete a batch of
886 * requests, others will be blocked.
888 if (!blk_rl_full(rl, is_sync)) {
889 ioc_set_batching(q, ioc);
890 blk_set_rl_full(rl, is_sync);
892 if (may_queue != ELV_MQUEUE_MUST
893 && !ioc_batching(q, ioc)) {
895 * The queue is full and the allocating
896 * process is not a "batcher", and not
897 * exempted by the IO scheduler
904 * bdi isn't aware of blkcg yet. As all async IOs end up
905 * root blkcg anyway, just use root blkcg state.
907 if (rl == &q->root_rl)
908 blk_set_queue_congested(q, is_sync);
912 * Only allow batching queuers to allocate up to 50% over the defined
913 * limit of requests, otherwise we could have thousands of requests
914 * allocated with any setting of ->nr_requests
916 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
919 q->nr_rqs[is_sync]++;
920 rl->count[is_sync]++;
921 rl->starved[is_sync] = 0;
924 * Decide whether the new request will be managed by elevator. If
925 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
926 * prevent the current elevator from being destroyed until the new
927 * request is freed. This guarantees icq's won't be destroyed and
928 * makes creating new ones safe.
930 * Also, lookup icq while holding queue_lock. If it doesn't exist,
931 * it will be created after releasing queue_lock.
933 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
934 rw_flags |= REQ_ELVPRIV;
936 if (et->icq_cache && ioc)
937 icq = ioc_lookup_icq(ioc, q);
940 if (blk_queue_io_stat(q))
941 rw_flags |= REQ_IO_STAT;
942 spin_unlock_irq(q->queue_lock);
944 /* allocate and init request */
945 rq = mempool_alloc(rl->rq_pool, gfp_mask);
950 blk_rq_set_rl(rq, rl);
951 rq->cmd_flags = rw_flags | REQ_ALLOCED;
954 if (rw_flags & REQ_ELVPRIV) {
955 if (unlikely(et->icq_cache && !icq)) {
957 icq = ioc_create_icq(ioc, q, gfp_mask);
963 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
966 /* @rq->elv.icq holds io_context until @rq is freed */
968 get_io_context(icq->ioc);
972 * ioc may be NULL here, and ioc_batching will be false. That's
973 * OK, if the queue is under the request limit then requests need
974 * not count toward the nr_batch_requests limit. There will always
975 * be some limit enforced by BLK_BATCH_TIME.
977 if (ioc_batching(q, ioc))
978 ioc->nr_batch_requests--;
980 trace_block_getrq(q, bio, rw_flags & 1);
985 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
986 * and may fail indefinitely under memory pressure and thus
987 * shouldn't stall IO. Treat this request as !elvpriv. This will
988 * disturb iosched and blkcg but weird is bettern than dead.
990 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
991 dev_name(q->backing_dev_info.dev));
993 rq->cmd_flags &= ~REQ_ELVPRIV;
996 spin_lock_irq(q->queue_lock);
998 spin_unlock_irq(q->queue_lock);
1003 * Allocation failed presumably due to memory. Undo anything we
1004 * might have messed up.
1006 * Allocating task should really be put onto the front of the wait
1007 * queue, but this is pretty rare.
1009 spin_lock_irq(q->queue_lock);
1010 freed_request(rl, rw_flags);
1013 * in the very unlikely event that allocation failed and no
1014 * requests for this direction was pending, mark us starved so that
1015 * freeing of a request in the other direction will notice
1016 * us. another possible fix would be to split the rq mempool into
1020 if (unlikely(rl->count[is_sync] == 0))
1021 rl->starved[is_sync] = 1;
1026 * get_request - get a free request
1027 * @q: request_queue to allocate request from
1028 * @rw_flags: RW and SYNC flags
1029 * @bio: bio to allocate request for (can be %NULL)
1030 * @gfp_mask: allocation mask
1032 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1033 * function keeps retrying under memory pressure and fails iff @q is dead.
1035 * Must be callled with @q->queue_lock held and,
1036 * Returns %NULL on failure, with @q->queue_lock held.
1037 * Returns !%NULL on success, with @q->queue_lock *not held*.
1039 static struct request *get_request(struct request_queue *q, int rw_flags,
1040 struct bio *bio, gfp_t gfp_mask)
1042 const bool is_sync = rw_is_sync(rw_flags) != 0;
1044 struct request_list *rl;
1047 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1049 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1053 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dead(q))) {
1058 /* wait on @rl and retry */
1059 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1060 TASK_UNINTERRUPTIBLE);
1062 trace_block_sleeprq(q, bio, rw_flags & 1);
1064 spin_unlock_irq(q->queue_lock);
1068 * After sleeping, we become a "batching" process and will be able
1069 * to allocate at least one request, and up to a big batch of them
1070 * for a small period time. See ioc_batching, ioc_set_batching
1072 ioc_set_batching(q, current->io_context);
1074 spin_lock_irq(q->queue_lock);
1075 finish_wait(&rl->wait[is_sync], &wait);
1080 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1084 BUG_ON(rw != READ && rw != WRITE);
1086 /* create ioc upfront */
1087 create_io_context(gfp_mask, q->node);
1089 spin_lock_irq(q->queue_lock);
1090 rq = get_request(q, rw, NULL, gfp_mask);
1092 spin_unlock_irq(q->queue_lock);
1093 /* q->queue_lock is unlocked at this point */
1097 EXPORT_SYMBOL(blk_get_request);
1100 * blk_make_request - given a bio, allocate a corresponding struct request.
1101 * @q: target request queue
1102 * @bio: The bio describing the memory mappings that will be submitted for IO.
1103 * It may be a chained-bio properly constructed by block/bio layer.
1104 * @gfp_mask: gfp flags to be used for memory allocation
1106 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1107 * type commands. Where the struct request needs to be farther initialized by
1108 * the caller. It is passed a &struct bio, which describes the memory info of
1111 * The caller of blk_make_request must make sure that bi_io_vec
1112 * are set to describe the memory buffers. That bio_data_dir() will return
1113 * the needed direction of the request. (And all bio's in the passed bio-chain
1114 * are properly set accordingly)
1116 * If called under none-sleepable conditions, mapped bio buffers must not
1117 * need bouncing, by calling the appropriate masked or flagged allocator,
1118 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1121 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1122 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1123 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1124 * completion of a bio that hasn't been submitted yet, thus resulting in a
1125 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1126 * of bio_alloc(), as that avoids the mempool deadlock.
1127 * If possible a big IO should be split into smaller parts when allocation
1128 * fails. Partial allocation should not be an error, or you risk a live-lock.
1130 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1133 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1136 return ERR_PTR(-ENOMEM);
1139 struct bio *bounce_bio = bio;
1142 blk_queue_bounce(q, &bounce_bio);
1143 ret = blk_rq_append_bio(q, rq, bounce_bio);
1144 if (unlikely(ret)) {
1145 blk_put_request(rq);
1146 return ERR_PTR(ret);
1152 EXPORT_SYMBOL(blk_make_request);
1155 * blk_requeue_request - put a request back on queue
1156 * @q: request queue where request should be inserted
1157 * @rq: request to be inserted
1160 * Drivers often keep queueing requests until the hardware cannot accept
1161 * more, when that condition happens we need to put the request back
1162 * on the queue. Must be called with queue lock held.
1164 void blk_requeue_request(struct request_queue *q, struct request *rq)
1166 blk_delete_timer(rq);
1167 blk_clear_rq_complete(rq);
1168 trace_block_rq_requeue(q, rq);
1170 if (blk_rq_tagged(rq))
1171 blk_queue_end_tag(q, rq);
1173 BUG_ON(blk_queued_rq(rq));
1175 elv_requeue_request(q, rq);
1177 EXPORT_SYMBOL(blk_requeue_request);
1179 static void add_acct_request(struct request_queue *q, struct request *rq,
1182 drive_stat_acct(rq, 1);
1183 __elv_add_request(q, rq, where);
1186 static void part_round_stats_single(int cpu, struct hd_struct *part,
1189 if (now == part->stamp)
1192 if (part_in_flight(part)) {
1193 __part_stat_add(cpu, part, time_in_queue,
1194 part_in_flight(part) * (now - part->stamp));
1195 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1201 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1202 * @cpu: cpu number for stats access
1203 * @part: target partition
1205 * The average IO queue length and utilisation statistics are maintained
1206 * by observing the current state of the queue length and the amount of
1207 * time it has been in this state for.
1209 * Normally, that accounting is done on IO completion, but that can result
1210 * in more than a second's worth of IO being accounted for within any one
1211 * second, leading to >100% utilisation. To deal with that, we call this
1212 * function to do a round-off before returning the results when reading
1213 * /proc/diskstats. This accounts immediately for all queue usage up to
1214 * the current jiffies and restarts the counters again.
1216 void part_round_stats(int cpu, struct hd_struct *part)
1218 unsigned long now = jiffies;
1221 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1222 part_round_stats_single(cpu, part, now);
1224 EXPORT_SYMBOL_GPL(part_round_stats);
1227 * queue lock must be held
1229 void __blk_put_request(struct request_queue *q, struct request *req)
1233 if (unlikely(--req->ref_count))
1236 elv_completed_request(q, req);
1238 /* this is a bio leak */
1239 WARN_ON(req->bio != NULL);
1242 * Request may not have originated from ll_rw_blk. if not,
1243 * it didn't come out of our reserved rq pools
1245 if (req->cmd_flags & REQ_ALLOCED) {
1246 unsigned int flags = req->cmd_flags;
1247 struct request_list *rl = blk_rq_rl(req);
1249 BUG_ON(!list_empty(&req->queuelist));
1250 BUG_ON(!hlist_unhashed(&req->hash));
1252 blk_free_request(rl, req);
1253 freed_request(rl, flags);
1257 EXPORT_SYMBOL_GPL(__blk_put_request);
1259 void blk_put_request(struct request *req)
1261 unsigned long flags;
1262 struct request_queue *q = req->q;
1264 spin_lock_irqsave(q->queue_lock, flags);
1265 __blk_put_request(q, req);
1266 spin_unlock_irqrestore(q->queue_lock, flags);
1268 EXPORT_SYMBOL(blk_put_request);
1271 * blk_add_request_payload - add a payload to a request
1272 * @rq: request to update
1273 * @page: page backing the payload
1274 * @len: length of the payload.
1276 * This allows to later add a payload to an already submitted request by
1277 * a block driver. The driver needs to take care of freeing the payload
1280 * Note that this is a quite horrible hack and nothing but handling of
1281 * discard requests should ever use it.
1283 void blk_add_request_payload(struct request *rq, struct page *page,
1286 struct bio *bio = rq->bio;
1288 bio->bi_io_vec->bv_page = page;
1289 bio->bi_io_vec->bv_offset = 0;
1290 bio->bi_io_vec->bv_len = len;
1294 bio->bi_phys_segments = 1;
1296 rq->__data_len = rq->resid_len = len;
1297 rq->nr_phys_segments = 1;
1298 rq->buffer = bio_data(bio);
1300 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1302 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1305 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1307 if (!ll_back_merge_fn(q, req, bio))
1310 trace_block_bio_backmerge(q, bio);
1312 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1313 blk_rq_set_mixed_merge(req);
1315 req->biotail->bi_next = bio;
1317 req->__data_len += bio->bi_size;
1318 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1320 drive_stat_acct(req, 0);
1324 static bool bio_attempt_front_merge(struct request_queue *q,
1325 struct request *req, struct bio *bio)
1327 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1329 if (!ll_front_merge_fn(q, req, bio))
1332 trace_block_bio_frontmerge(q, bio);
1334 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1335 blk_rq_set_mixed_merge(req);
1337 bio->bi_next = req->bio;
1341 * may not be valid. if the low level driver said
1342 * it didn't need a bounce buffer then it better
1343 * not touch req->buffer either...
1345 req->buffer = bio_data(bio);
1346 req->__sector = bio->bi_sector;
1347 req->__data_len += bio->bi_size;
1348 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1350 drive_stat_acct(req, 0);
1355 * attempt_plug_merge - try to merge with %current's plugged list
1356 * @q: request_queue new bio is being queued at
1357 * @bio: new bio being queued
1358 * @request_count: out parameter for number of traversed plugged requests
1360 * Determine whether @bio being queued on @q can be merged with a request
1361 * on %current's plugged list. Returns %true if merge was successful,
1364 * Plugging coalesces IOs from the same issuer for the same purpose without
1365 * going through @q->queue_lock. As such it's more of an issuing mechanism
1366 * than scheduling, and the request, while may have elvpriv data, is not
1367 * added on the elevator at this point. In addition, we don't have
1368 * reliable access to the elevator outside queue lock. Only check basic
1369 * merging parameters without querying the elevator.
1371 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1372 unsigned int *request_count)
1374 struct blk_plug *plug;
1378 plug = current->plug;
1383 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1389 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1392 el_ret = blk_try_merge(rq, bio);
1393 if (el_ret == ELEVATOR_BACK_MERGE) {
1394 ret = bio_attempt_back_merge(q, rq, bio);
1397 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1398 ret = bio_attempt_front_merge(q, rq, bio);
1407 void init_request_from_bio(struct request *req, struct bio *bio)
1409 req->cmd_type = REQ_TYPE_FS;
1411 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1412 if (bio->bi_rw & REQ_RAHEAD)
1413 req->cmd_flags |= REQ_FAILFAST_MASK;
1416 req->__sector = bio->bi_sector;
1417 req->ioprio = bio_prio(bio);
1418 blk_rq_bio_prep(req->q, req, bio);
1421 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1423 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1424 struct blk_plug *plug;
1425 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1426 struct request *req;
1427 unsigned int request_count = 0;
1430 * low level driver can indicate that it wants pages above a
1431 * certain limit bounced to low memory (ie for highmem, or even
1432 * ISA dma in theory)
1434 blk_queue_bounce(q, &bio);
1436 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1437 spin_lock_irq(q->queue_lock);
1438 where = ELEVATOR_INSERT_FLUSH;
1443 * Check if we can merge with the plugged list before grabbing
1446 if (attempt_plug_merge(q, bio, &request_count))
1449 spin_lock_irq(q->queue_lock);
1451 el_ret = elv_merge(q, &req, bio);
1452 if (el_ret == ELEVATOR_BACK_MERGE) {
1453 if (bio_attempt_back_merge(q, req, bio)) {
1454 elv_bio_merged(q, req, bio);
1455 if (!attempt_back_merge(q, req))
1456 elv_merged_request(q, req, el_ret);
1459 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1460 if (bio_attempt_front_merge(q, req, bio)) {
1461 elv_bio_merged(q, req, bio);
1462 if (!attempt_front_merge(q, req))
1463 elv_merged_request(q, req, el_ret);
1470 * This sync check and mask will be re-done in init_request_from_bio(),
1471 * but we need to set it earlier to expose the sync flag to the
1472 * rq allocator and io schedulers.
1474 rw_flags = bio_data_dir(bio);
1476 rw_flags |= REQ_SYNC;
1479 * Grab a free request. This is might sleep but can not fail.
1480 * Returns with the queue unlocked.
1482 req = get_request(q, rw_flags, bio, GFP_NOIO);
1483 if (unlikely(!req)) {
1484 bio_endio(bio, -ENODEV); /* @q is dead */
1489 * After dropping the lock and possibly sleeping here, our request
1490 * may now be mergeable after it had proven unmergeable (above).
1491 * We don't worry about that case for efficiency. It won't happen
1492 * often, and the elevators are able to handle it.
1494 init_request_from_bio(req, bio);
1496 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1497 req->cpu = raw_smp_processor_id();
1499 plug = current->plug;
1502 * If this is the first request added after a plug, fire
1503 * of a plug trace. If others have been added before, check
1504 * if we have multiple devices in this plug. If so, make a
1505 * note to sort the list before dispatch.
1507 if (list_empty(&plug->list))
1508 trace_block_plug(q);
1510 if (!plug->should_sort) {
1511 struct request *__rq;
1513 __rq = list_entry_rq(plug->list.prev);
1515 plug->should_sort = 1;
1517 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1518 blk_flush_plug_list(plug, false);
1519 trace_block_plug(q);
1522 list_add_tail(&req->queuelist, &plug->list);
1523 drive_stat_acct(req, 1);
1525 spin_lock_irq(q->queue_lock);
1526 add_acct_request(q, req, where);
1529 spin_unlock_irq(q->queue_lock);
1532 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1535 * If bio->bi_dev is a partition, remap the location
1537 static inline void blk_partition_remap(struct bio *bio)
1539 struct block_device *bdev = bio->bi_bdev;
1541 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1542 struct hd_struct *p = bdev->bd_part;
1544 bio->bi_sector += p->start_sect;
1545 bio->bi_bdev = bdev->bd_contains;
1547 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1549 bio->bi_sector - p->start_sect);
1553 static void handle_bad_sector(struct bio *bio)
1555 char b[BDEVNAME_SIZE];
1557 printk(KERN_INFO "attempt to access beyond end of device\n");
1558 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1559 bdevname(bio->bi_bdev, b),
1561 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1562 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1564 set_bit(BIO_EOF, &bio->bi_flags);
1567 #ifdef CONFIG_FAIL_MAKE_REQUEST
1569 static DECLARE_FAULT_ATTR(fail_make_request);
1571 static int __init setup_fail_make_request(char *str)
1573 return setup_fault_attr(&fail_make_request, str);
1575 __setup("fail_make_request=", setup_fail_make_request);
1577 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1579 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1582 static int __init fail_make_request_debugfs(void)
1584 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1585 NULL, &fail_make_request);
1587 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1590 late_initcall(fail_make_request_debugfs);
1592 #else /* CONFIG_FAIL_MAKE_REQUEST */
1594 static inline bool should_fail_request(struct hd_struct *part,
1600 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1603 * Check whether this bio extends beyond the end of the device.
1605 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1612 /* Test device or partition size, when known. */
1613 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1615 sector_t sector = bio->bi_sector;
1617 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1619 * This may well happen - the kernel calls bread()
1620 * without checking the size of the device, e.g., when
1621 * mounting a device.
1623 handle_bad_sector(bio);
1631 static noinline_for_stack bool
1632 generic_make_request_checks(struct bio *bio)
1634 struct request_queue *q;
1635 int nr_sectors = bio_sectors(bio);
1637 char b[BDEVNAME_SIZE];
1638 struct hd_struct *part;
1642 if (bio_check_eod(bio, nr_sectors))
1645 q = bdev_get_queue(bio->bi_bdev);
1648 "generic_make_request: Trying to access "
1649 "nonexistent block-device %s (%Lu)\n",
1650 bdevname(bio->bi_bdev, b),
1651 (long long) bio->bi_sector);
1655 if (likely(bio_is_rw(bio) &&
1656 nr_sectors > queue_max_hw_sectors(q))) {
1657 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1658 bdevname(bio->bi_bdev, b),
1660 queue_max_hw_sectors(q));
1664 part = bio->bi_bdev->bd_part;
1665 if (should_fail_request(part, bio->bi_size) ||
1666 should_fail_request(&part_to_disk(part)->part0,
1671 * If this device has partitions, remap block n
1672 * of partition p to block n+start(p) of the disk.
1674 blk_partition_remap(bio);
1676 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1679 if (bio_check_eod(bio, nr_sectors))
1683 * Filter flush bio's early so that make_request based
1684 * drivers without flush support don't have to worry
1687 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1688 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1695 if ((bio->bi_rw & REQ_DISCARD) &&
1696 (!blk_queue_discard(q) ||
1697 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1702 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1708 * Various block parts want %current->io_context and lazy ioc
1709 * allocation ends up trading a lot of pain for a small amount of
1710 * memory. Just allocate it upfront. This may fail and block
1711 * layer knows how to live with it.
1713 create_io_context(GFP_ATOMIC, q->node);
1715 if (blk_throtl_bio(q, bio))
1716 return false; /* throttled, will be resubmitted later */
1718 trace_block_bio_queue(q, bio);
1722 bio_endio(bio, err);
1727 * generic_make_request - hand a buffer to its device driver for I/O
1728 * @bio: The bio describing the location in memory and on the device.
1730 * generic_make_request() is used to make I/O requests of block
1731 * devices. It is passed a &struct bio, which describes the I/O that needs
1734 * generic_make_request() does not return any status. The
1735 * success/failure status of the request, along with notification of
1736 * completion, is delivered asynchronously through the bio->bi_end_io
1737 * function described (one day) else where.
1739 * The caller of generic_make_request must make sure that bi_io_vec
1740 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1741 * set to describe the device address, and the
1742 * bi_end_io and optionally bi_private are set to describe how
1743 * completion notification should be signaled.
1745 * generic_make_request and the drivers it calls may use bi_next if this
1746 * bio happens to be merged with someone else, and may resubmit the bio to
1747 * a lower device by calling into generic_make_request recursively, which
1748 * means the bio should NOT be touched after the call to ->make_request_fn.
1750 void generic_make_request(struct bio *bio)
1752 struct bio_list bio_list_on_stack;
1754 if (!generic_make_request_checks(bio))
1758 * We only want one ->make_request_fn to be active at a time, else
1759 * stack usage with stacked devices could be a problem. So use
1760 * current->bio_list to keep a list of requests submited by a
1761 * make_request_fn function. current->bio_list is also used as a
1762 * flag to say if generic_make_request is currently active in this
1763 * task or not. If it is NULL, then no make_request is active. If
1764 * it is non-NULL, then a make_request is active, and new requests
1765 * should be added at the tail
1767 if (current->bio_list) {
1768 bio_list_add(current->bio_list, bio);
1772 /* following loop may be a bit non-obvious, and so deserves some
1774 * Before entering the loop, bio->bi_next is NULL (as all callers
1775 * ensure that) so we have a list with a single bio.
1776 * We pretend that we have just taken it off a longer list, so
1777 * we assign bio_list to a pointer to the bio_list_on_stack,
1778 * thus initialising the bio_list of new bios to be
1779 * added. ->make_request() may indeed add some more bios
1780 * through a recursive call to generic_make_request. If it
1781 * did, we find a non-NULL value in bio_list and re-enter the loop
1782 * from the top. In this case we really did just take the bio
1783 * of the top of the list (no pretending) and so remove it from
1784 * bio_list, and call into ->make_request() again.
1786 BUG_ON(bio->bi_next);
1787 bio_list_init(&bio_list_on_stack);
1788 current->bio_list = &bio_list_on_stack;
1790 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1792 q->make_request_fn(q, bio);
1794 bio = bio_list_pop(current->bio_list);
1796 current->bio_list = NULL; /* deactivate */
1798 EXPORT_SYMBOL(generic_make_request);
1801 * submit_bio - submit a bio to the block device layer for I/O
1802 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1803 * @bio: The &struct bio which describes the I/O
1805 * submit_bio() is very similar in purpose to generic_make_request(), and
1806 * uses that function to do most of the work. Both are fairly rough
1807 * interfaces; @bio must be presetup and ready for I/O.
1810 void submit_bio(int rw, struct bio *bio)
1815 * If it's a regular read/write or a barrier with data attached,
1816 * go through the normal accounting stuff before submission.
1818 if (bio_has_data(bio)) {
1821 if (unlikely(rw & REQ_WRITE_SAME))
1822 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1824 count = bio_sectors(bio);
1827 count_vm_events(PGPGOUT, count);
1829 task_io_account_read(bio->bi_size);
1830 count_vm_events(PGPGIN, count);
1833 if (unlikely(block_dump)) {
1834 char b[BDEVNAME_SIZE];
1835 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1836 current->comm, task_pid_nr(current),
1837 (rw & WRITE) ? "WRITE" : "READ",
1838 (unsigned long long)bio->bi_sector,
1839 bdevname(bio->bi_bdev, b),
1844 generic_make_request(bio);
1846 EXPORT_SYMBOL(submit_bio);
1849 * blk_rq_check_limits - Helper function to check a request for the queue limit
1851 * @rq: the request being checked
1854 * @rq may have been made based on weaker limitations of upper-level queues
1855 * in request stacking drivers, and it may violate the limitation of @q.
1856 * Since the block layer and the underlying device driver trust @rq
1857 * after it is inserted to @q, it should be checked against @q before
1858 * the insertion using this generic function.
1860 * This function should also be useful for request stacking drivers
1861 * in some cases below, so export this function.
1862 * Request stacking drivers like request-based dm may change the queue
1863 * limits while requests are in the queue (e.g. dm's table swapping).
1864 * Such request stacking drivers should check those requests agaist
1865 * the new queue limits again when they dispatch those requests,
1866 * although such checkings are also done against the old queue limits
1867 * when submitting requests.
1869 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1871 if (!rq_mergeable(rq))
1874 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1875 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1880 * queue's settings related to segment counting like q->bounce_pfn
1881 * may differ from that of other stacking queues.
1882 * Recalculate it to check the request correctly on this queue's
1885 blk_recalc_rq_segments(rq);
1886 if (rq->nr_phys_segments > queue_max_segments(q)) {
1887 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1893 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1896 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1897 * @q: the queue to submit the request
1898 * @rq: the request being queued
1900 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1902 unsigned long flags;
1903 int where = ELEVATOR_INSERT_BACK;
1905 if (blk_rq_check_limits(q, rq))
1909 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1912 spin_lock_irqsave(q->queue_lock, flags);
1913 if (unlikely(blk_queue_dead(q))) {
1914 spin_unlock_irqrestore(q->queue_lock, flags);
1919 * Submitting request must be dequeued before calling this function
1920 * because it will be linked to another request_queue
1922 BUG_ON(blk_queued_rq(rq));
1924 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1925 where = ELEVATOR_INSERT_FLUSH;
1927 add_acct_request(q, rq, where);
1928 if (where == ELEVATOR_INSERT_FLUSH)
1930 spin_unlock_irqrestore(q->queue_lock, flags);
1934 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1937 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1938 * @rq: request to examine
1941 * A request could be merge of IOs which require different failure
1942 * handling. This function determines the number of bytes which
1943 * can be failed from the beginning of the request without
1944 * crossing into area which need to be retried further.
1947 * The number of bytes to fail.
1950 * queue_lock must be held.
1952 unsigned int blk_rq_err_bytes(const struct request *rq)
1954 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1955 unsigned int bytes = 0;
1958 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1959 return blk_rq_bytes(rq);
1962 * Currently the only 'mixing' which can happen is between
1963 * different fastfail types. We can safely fail portions
1964 * which have all the failfast bits that the first one has -
1965 * the ones which are at least as eager to fail as the first
1968 for (bio = rq->bio; bio; bio = bio->bi_next) {
1969 if ((bio->bi_rw & ff) != ff)
1971 bytes += bio->bi_size;
1974 /* this could lead to infinite loop */
1975 BUG_ON(blk_rq_bytes(rq) && !bytes);
1978 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1980 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1982 if (blk_do_io_stat(req)) {
1983 const int rw = rq_data_dir(req);
1984 struct hd_struct *part;
1987 cpu = part_stat_lock();
1989 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1994 static void blk_account_io_done(struct request *req)
1997 * Account IO completion. flush_rq isn't accounted as a
1998 * normal IO on queueing nor completion. Accounting the
1999 * containing request is enough.
2001 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2002 unsigned long duration = jiffies - req->start_time;
2003 const int rw = rq_data_dir(req);
2004 struct hd_struct *part;
2007 cpu = part_stat_lock();
2010 part_stat_inc(cpu, part, ios[rw]);
2011 part_stat_add(cpu, part, ticks[rw], duration);
2012 part_round_stats(cpu, part);
2013 part_dec_in_flight(part, rw);
2015 hd_struct_put(part);
2021 * blk_peek_request - peek at the top of a request queue
2022 * @q: request queue to peek at
2025 * Return the request at the top of @q. The returned request
2026 * should be started using blk_start_request() before LLD starts
2030 * Pointer to the request at the top of @q if available. Null
2034 * queue_lock must be held.
2036 struct request *blk_peek_request(struct request_queue *q)
2041 while ((rq = __elv_next_request(q)) != NULL) {
2042 if (!(rq->cmd_flags & REQ_STARTED)) {
2044 * This is the first time the device driver
2045 * sees this request (possibly after
2046 * requeueing). Notify IO scheduler.
2048 if (rq->cmd_flags & REQ_SORTED)
2049 elv_activate_rq(q, rq);
2052 * just mark as started even if we don't start
2053 * it, a request that has been delayed should
2054 * not be passed by new incoming requests
2056 rq->cmd_flags |= REQ_STARTED;
2057 trace_block_rq_issue(q, rq);
2060 if (!q->boundary_rq || q->boundary_rq == rq) {
2061 q->end_sector = rq_end_sector(rq);
2062 q->boundary_rq = NULL;
2065 if (rq->cmd_flags & REQ_DONTPREP)
2068 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2070 * make sure space for the drain appears we
2071 * know we can do this because max_hw_segments
2072 * has been adjusted to be one fewer than the
2075 rq->nr_phys_segments++;
2081 ret = q->prep_rq_fn(q, rq);
2082 if (ret == BLKPREP_OK) {
2084 } else if (ret == BLKPREP_DEFER) {
2086 * the request may have been (partially) prepped.
2087 * we need to keep this request in the front to
2088 * avoid resource deadlock. REQ_STARTED will
2089 * prevent other fs requests from passing this one.
2091 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2092 !(rq->cmd_flags & REQ_DONTPREP)) {
2094 * remove the space for the drain we added
2095 * so that we don't add it again
2097 --rq->nr_phys_segments;
2102 } else if (ret == BLKPREP_KILL) {
2103 rq->cmd_flags |= REQ_QUIET;
2105 * Mark this request as started so we don't trigger
2106 * any debug logic in the end I/O path.
2108 blk_start_request(rq);
2109 __blk_end_request_all(rq, -EIO);
2111 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2118 EXPORT_SYMBOL(blk_peek_request);
2120 void blk_dequeue_request(struct request *rq)
2122 struct request_queue *q = rq->q;
2124 BUG_ON(list_empty(&rq->queuelist));
2125 BUG_ON(ELV_ON_HASH(rq));
2127 list_del_init(&rq->queuelist);
2130 * the time frame between a request being removed from the lists
2131 * and to it is freed is accounted as io that is in progress at
2134 if (blk_account_rq(rq)) {
2135 q->in_flight[rq_is_sync(rq)]++;
2136 set_io_start_time_ns(rq);
2141 * blk_start_request - start request processing on the driver
2142 * @req: request to dequeue
2145 * Dequeue @req and start timeout timer on it. This hands off the
2146 * request to the driver.
2148 * Block internal functions which don't want to start timer should
2149 * call blk_dequeue_request().
2152 * queue_lock must be held.
2154 void blk_start_request(struct request *req)
2156 blk_dequeue_request(req);
2159 * We are now handing the request to the hardware, initialize
2160 * resid_len to full count and add the timeout handler.
2162 req->resid_len = blk_rq_bytes(req);
2163 if (unlikely(blk_bidi_rq(req)))
2164 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2168 EXPORT_SYMBOL(blk_start_request);
2171 * blk_fetch_request - fetch a request from a request queue
2172 * @q: request queue to fetch a request from
2175 * Return the request at the top of @q. The request is started on
2176 * return and LLD can start processing it immediately.
2179 * Pointer to the request at the top of @q if available. Null
2183 * queue_lock must be held.
2185 struct request *blk_fetch_request(struct request_queue *q)
2189 rq = blk_peek_request(q);
2191 blk_start_request(rq);
2194 EXPORT_SYMBOL(blk_fetch_request);
2197 * blk_update_request - Special helper function for request stacking drivers
2198 * @req: the request being processed
2199 * @error: %0 for success, < %0 for error
2200 * @nr_bytes: number of bytes to complete @req
2203 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2204 * the request structure even if @req doesn't have leftover.
2205 * If @req has leftover, sets it up for the next range of segments.
2207 * This special helper function is only for request stacking drivers
2208 * (e.g. request-based dm) so that they can handle partial completion.
2209 * Actual device drivers should use blk_end_request instead.
2211 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2212 * %false return from this function.
2215 * %false - this request doesn't have any more data
2216 * %true - this request has more data
2218 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2220 int total_bytes, bio_nbytes, next_idx = 0;
2226 trace_block_rq_complete(req->q, req);
2229 * For fs requests, rq is just carrier of independent bio's
2230 * and each partial completion should be handled separately.
2231 * Reset per-request error on each partial completion.
2233 * TODO: tj: This is too subtle. It would be better to let
2234 * low level drivers do what they see fit.
2236 if (req->cmd_type == REQ_TYPE_FS)
2239 if (error && req->cmd_type == REQ_TYPE_FS &&
2240 !(req->cmd_flags & REQ_QUIET)) {
2245 error_type = "recoverable transport";
2248 error_type = "critical target";
2251 error_type = "critical nexus";
2258 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2259 error_type, req->rq_disk ?
2260 req->rq_disk->disk_name : "?",
2261 (unsigned long long)blk_rq_pos(req));
2265 blk_account_io_completion(req, nr_bytes);
2267 total_bytes = bio_nbytes = 0;
2268 while ((bio = req->bio) != NULL) {
2271 if (nr_bytes >= bio->bi_size) {
2272 req->bio = bio->bi_next;
2273 nbytes = bio->bi_size;
2274 req_bio_endio(req, bio, nbytes, error);
2278 int idx = bio->bi_idx + next_idx;
2280 if (unlikely(idx >= bio->bi_vcnt)) {
2281 blk_dump_rq_flags(req, "__end_that");
2282 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2283 __func__, idx, bio->bi_vcnt);
2287 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2288 BIO_BUG_ON(nbytes > bio->bi_size);
2291 * not a complete bvec done
2293 if (unlikely(nbytes > nr_bytes)) {
2294 bio_nbytes += nr_bytes;
2295 total_bytes += nr_bytes;
2300 * advance to the next vector
2303 bio_nbytes += nbytes;
2306 total_bytes += nbytes;
2312 * end more in this run, or just return 'not-done'
2314 if (unlikely(nr_bytes <= 0))
2324 * Reset counters so that the request stacking driver
2325 * can find how many bytes remain in the request
2328 req->__data_len = 0;
2333 * if the request wasn't completed, update state
2336 req_bio_endio(req, bio, bio_nbytes, error);
2337 bio->bi_idx += next_idx;
2338 bio_iovec(bio)->bv_offset += nr_bytes;
2339 bio_iovec(bio)->bv_len -= nr_bytes;
2342 req->__data_len -= total_bytes;
2343 req->buffer = bio_data(req->bio);
2345 /* update sector only for requests with clear definition of sector */
2346 if (req->cmd_type == REQ_TYPE_FS)
2347 req->__sector += total_bytes >> 9;
2349 /* mixed attributes always follow the first bio */
2350 if (req->cmd_flags & REQ_MIXED_MERGE) {
2351 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2352 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2356 * If total number of sectors is less than the first segment
2357 * size, something has gone terribly wrong.
2359 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2360 blk_dump_rq_flags(req, "request botched");
2361 req->__data_len = blk_rq_cur_bytes(req);
2364 /* recalculate the number of segments */
2365 blk_recalc_rq_segments(req);
2369 EXPORT_SYMBOL_GPL(blk_update_request);
2371 static bool blk_update_bidi_request(struct request *rq, int error,
2372 unsigned int nr_bytes,
2373 unsigned int bidi_bytes)
2375 if (blk_update_request(rq, error, nr_bytes))
2378 /* Bidi request must be completed as a whole */
2379 if (unlikely(blk_bidi_rq(rq)) &&
2380 blk_update_request(rq->next_rq, error, bidi_bytes))
2383 if (blk_queue_add_random(rq->q))
2384 add_disk_randomness(rq->rq_disk);
2390 * blk_unprep_request - unprepare a request
2393 * This function makes a request ready for complete resubmission (or
2394 * completion). It happens only after all error handling is complete,
2395 * so represents the appropriate moment to deallocate any resources
2396 * that were allocated to the request in the prep_rq_fn. The queue
2397 * lock is held when calling this.
2399 void blk_unprep_request(struct request *req)
2401 struct request_queue *q = req->q;
2403 req->cmd_flags &= ~REQ_DONTPREP;
2404 if (q->unprep_rq_fn)
2405 q->unprep_rq_fn(q, req);
2407 EXPORT_SYMBOL_GPL(blk_unprep_request);
2410 * queue lock must be held
2412 static void blk_finish_request(struct request *req, int error)
2414 if (blk_rq_tagged(req))
2415 blk_queue_end_tag(req->q, req);
2417 BUG_ON(blk_queued_rq(req));
2419 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2420 laptop_io_completion(&req->q->backing_dev_info);
2422 blk_delete_timer(req);
2424 if (req->cmd_flags & REQ_DONTPREP)
2425 blk_unprep_request(req);
2428 blk_account_io_done(req);
2431 req->end_io(req, error);
2433 if (blk_bidi_rq(req))
2434 __blk_put_request(req->next_rq->q, req->next_rq);
2436 __blk_put_request(req->q, req);
2441 * blk_end_bidi_request - Complete a bidi request
2442 * @rq: the request to complete
2443 * @error: %0 for success, < %0 for error
2444 * @nr_bytes: number of bytes to complete @rq
2445 * @bidi_bytes: number of bytes to complete @rq->next_rq
2448 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2449 * Drivers that supports bidi can safely call this member for any
2450 * type of request, bidi or uni. In the later case @bidi_bytes is
2454 * %false - we are done with this request
2455 * %true - still buffers pending for this request
2457 static bool blk_end_bidi_request(struct request *rq, int error,
2458 unsigned int nr_bytes, unsigned int bidi_bytes)
2460 struct request_queue *q = rq->q;
2461 unsigned long flags;
2463 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2466 spin_lock_irqsave(q->queue_lock, flags);
2467 blk_finish_request(rq, error);
2468 spin_unlock_irqrestore(q->queue_lock, flags);
2474 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2475 * @rq: the request to complete
2476 * @error: %0 for success, < %0 for error
2477 * @nr_bytes: number of bytes to complete @rq
2478 * @bidi_bytes: number of bytes to complete @rq->next_rq
2481 * Identical to blk_end_bidi_request() except that queue lock is
2482 * assumed to be locked on entry and remains so on return.
2485 * %false - we are done with this request
2486 * %true - still buffers pending for this request
2488 bool __blk_end_bidi_request(struct request *rq, int error,
2489 unsigned int nr_bytes, unsigned int bidi_bytes)
2491 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2494 blk_finish_request(rq, error);
2500 * blk_end_request - Helper function for drivers to complete the request.
2501 * @rq: the request being processed
2502 * @error: %0 for success, < %0 for error
2503 * @nr_bytes: number of bytes to complete
2506 * Ends I/O on a number of bytes attached to @rq.
2507 * If @rq has leftover, sets it up for the next range of segments.
2510 * %false - we are done with this request
2511 * %true - still buffers pending for this request
2513 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2515 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2517 EXPORT_SYMBOL(blk_end_request);
2520 * blk_end_request_all - Helper function for drives to finish the request.
2521 * @rq: the request to finish
2522 * @error: %0 for success, < %0 for error
2525 * Completely finish @rq.
2527 void blk_end_request_all(struct request *rq, int error)
2530 unsigned int bidi_bytes = 0;
2532 if (unlikely(blk_bidi_rq(rq)))
2533 bidi_bytes = blk_rq_bytes(rq->next_rq);
2535 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2538 EXPORT_SYMBOL(blk_end_request_all);
2541 * blk_end_request_cur - Helper function to finish the current request chunk.
2542 * @rq: the request to finish the current chunk for
2543 * @error: %0 for success, < %0 for error
2546 * Complete the current consecutively mapped chunk from @rq.
2549 * %false - we are done with this request
2550 * %true - still buffers pending for this request
2552 bool blk_end_request_cur(struct request *rq, int error)
2554 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2556 EXPORT_SYMBOL(blk_end_request_cur);
2559 * blk_end_request_err - Finish a request till the next failure boundary.
2560 * @rq: the request to finish till the next failure boundary for
2561 * @error: must be negative errno
2564 * Complete @rq till the next failure boundary.
2567 * %false - we are done with this request
2568 * %true - still buffers pending for this request
2570 bool blk_end_request_err(struct request *rq, int error)
2572 WARN_ON(error >= 0);
2573 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2575 EXPORT_SYMBOL_GPL(blk_end_request_err);
2578 * __blk_end_request - Helper function for drivers to complete the request.
2579 * @rq: the request being processed
2580 * @error: %0 for success, < %0 for error
2581 * @nr_bytes: number of bytes to complete
2584 * Must be called with queue lock held unlike blk_end_request().
2587 * %false - we are done with this request
2588 * %true - still buffers pending for this request
2590 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2592 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2594 EXPORT_SYMBOL(__blk_end_request);
2597 * __blk_end_request_all - Helper function for drives to finish the request.
2598 * @rq: the request to finish
2599 * @error: %0 for success, < %0 for error
2602 * Completely finish @rq. Must be called with queue lock held.
2604 void __blk_end_request_all(struct request *rq, int error)
2607 unsigned int bidi_bytes = 0;
2609 if (unlikely(blk_bidi_rq(rq)))
2610 bidi_bytes = blk_rq_bytes(rq->next_rq);
2612 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2615 EXPORT_SYMBOL(__blk_end_request_all);
2618 * __blk_end_request_cur - Helper function to finish the current request chunk.
2619 * @rq: the request to finish the current chunk for
2620 * @error: %0 for success, < %0 for error
2623 * Complete the current consecutively mapped chunk from @rq. Must
2624 * be called with queue lock held.
2627 * %false - we are done with this request
2628 * %true - still buffers pending for this request
2630 bool __blk_end_request_cur(struct request *rq, int error)
2632 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2634 EXPORT_SYMBOL(__blk_end_request_cur);
2637 * __blk_end_request_err - Finish a request till the next failure boundary.
2638 * @rq: the request to finish till the next failure boundary for
2639 * @error: must be negative errno
2642 * Complete @rq till the next failure boundary. Must be called
2643 * with queue lock held.
2646 * %false - we are done with this request
2647 * %true - still buffers pending for this request
2649 bool __blk_end_request_err(struct request *rq, int error)
2651 WARN_ON(error >= 0);
2652 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2654 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2656 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2659 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2660 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2662 if (bio_has_data(bio)) {
2663 rq->nr_phys_segments = bio_phys_segments(q, bio);
2664 rq->buffer = bio_data(bio);
2666 rq->__data_len = bio->bi_size;
2667 rq->bio = rq->biotail = bio;
2670 rq->rq_disk = bio->bi_bdev->bd_disk;
2673 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2675 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2676 * @rq: the request to be flushed
2679 * Flush all pages in @rq.
2681 void rq_flush_dcache_pages(struct request *rq)
2683 struct req_iterator iter;
2684 struct bio_vec *bvec;
2686 rq_for_each_segment(bvec, rq, iter)
2687 flush_dcache_page(bvec->bv_page);
2689 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2693 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2694 * @q : the queue of the device being checked
2697 * Check if underlying low-level drivers of a device are busy.
2698 * If the drivers want to export their busy state, they must set own
2699 * exporting function using blk_queue_lld_busy() first.
2701 * Basically, this function is used only by request stacking drivers
2702 * to stop dispatching requests to underlying devices when underlying
2703 * devices are busy. This behavior helps more I/O merging on the queue
2704 * of the request stacking driver and prevents I/O throughput regression
2705 * on burst I/O load.
2708 * 0 - Not busy (The request stacking driver should dispatch request)
2709 * 1 - Busy (The request stacking driver should stop dispatching request)
2711 int blk_lld_busy(struct request_queue *q)
2714 return q->lld_busy_fn(q);
2718 EXPORT_SYMBOL_GPL(blk_lld_busy);
2721 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2722 * @rq: the clone request to be cleaned up
2725 * Free all bios in @rq for a cloned request.
2727 void blk_rq_unprep_clone(struct request *rq)
2731 while ((bio = rq->bio) != NULL) {
2732 rq->bio = bio->bi_next;
2737 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2740 * Copy attributes of the original request to the clone request.
2741 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2743 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2745 dst->cpu = src->cpu;
2746 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2747 dst->cmd_type = src->cmd_type;
2748 dst->__sector = blk_rq_pos(src);
2749 dst->__data_len = blk_rq_bytes(src);
2750 dst->nr_phys_segments = src->nr_phys_segments;
2751 dst->ioprio = src->ioprio;
2752 dst->extra_len = src->extra_len;
2756 * blk_rq_prep_clone - Helper function to setup clone request
2757 * @rq: the request to be setup
2758 * @rq_src: original request to be cloned
2759 * @bs: bio_set that bios for clone are allocated from
2760 * @gfp_mask: memory allocation mask for bio
2761 * @bio_ctr: setup function to be called for each clone bio.
2762 * Returns %0 for success, non %0 for failure.
2763 * @data: private data to be passed to @bio_ctr
2766 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2767 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2768 * are not copied, and copying such parts is the caller's responsibility.
2769 * Also, pages which the original bios are pointing to are not copied
2770 * and the cloned bios just point same pages.
2771 * So cloned bios must be completed before original bios, which means
2772 * the caller must complete @rq before @rq_src.
2774 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2775 struct bio_set *bs, gfp_t gfp_mask,
2776 int (*bio_ctr)(struct bio *, struct bio *, void *),
2779 struct bio *bio, *bio_src;
2784 blk_rq_init(NULL, rq);
2786 __rq_for_each_bio(bio_src, rq_src) {
2787 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2791 if (bio_ctr && bio_ctr(bio, bio_src, data))
2795 rq->biotail->bi_next = bio;
2798 rq->bio = rq->biotail = bio;
2801 __blk_rq_prep_clone(rq, rq_src);
2808 blk_rq_unprep_clone(rq);
2812 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2814 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2816 return queue_work(kblockd_workqueue, work);
2818 EXPORT_SYMBOL(kblockd_schedule_work);
2820 int kblockd_schedule_delayed_work(struct request_queue *q,
2821 struct delayed_work *dwork, unsigned long delay)
2823 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2825 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2827 #define PLUG_MAGIC 0x91827364
2830 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2831 * @plug: The &struct blk_plug that needs to be initialized
2834 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2835 * pending I/O should the task end up blocking between blk_start_plug() and
2836 * blk_finish_plug(). This is important from a performance perspective, but
2837 * also ensures that we don't deadlock. For instance, if the task is blocking
2838 * for a memory allocation, memory reclaim could end up wanting to free a
2839 * page belonging to that request that is currently residing in our private
2840 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2841 * this kind of deadlock.
2843 void blk_start_plug(struct blk_plug *plug)
2845 struct task_struct *tsk = current;
2847 plug->magic = PLUG_MAGIC;
2848 INIT_LIST_HEAD(&plug->list);
2849 INIT_LIST_HEAD(&plug->cb_list);
2850 plug->should_sort = 0;
2853 * If this is a nested plug, don't actually assign it. It will be
2854 * flushed on its own.
2858 * Store ordering should not be needed here, since a potential
2859 * preempt will imply a full memory barrier
2864 EXPORT_SYMBOL(blk_start_plug);
2866 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2868 struct request *rqa = container_of(a, struct request, queuelist);
2869 struct request *rqb = container_of(b, struct request, queuelist);
2871 return !(rqa->q <= rqb->q);
2875 * If 'from_schedule' is true, then postpone the dispatch of requests
2876 * until a safe kblockd context. We due this to avoid accidental big
2877 * additional stack usage in driver dispatch, in places where the originally
2878 * plugger did not intend it.
2880 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2882 __releases(q->queue_lock)
2884 trace_block_unplug(q, depth, !from_schedule);
2887 * Don't mess with dead queue.
2889 if (unlikely(blk_queue_dead(q))) {
2890 spin_unlock(q->queue_lock);
2895 * If we are punting this to kblockd, then we can safely drop
2896 * the queue_lock before waking kblockd (which needs to take
2899 if (from_schedule) {
2900 spin_unlock(q->queue_lock);
2901 blk_run_queue_async(q);
2904 spin_unlock(q->queue_lock);
2909 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2911 LIST_HEAD(callbacks);
2913 while (!list_empty(&plug->cb_list)) {
2914 list_splice_init(&plug->cb_list, &callbacks);
2916 while (!list_empty(&callbacks)) {
2917 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2920 list_del(&cb->list);
2921 cb->callback(cb, from_schedule);
2926 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2929 struct blk_plug *plug = current->plug;
2930 struct blk_plug_cb *cb;
2935 list_for_each_entry(cb, &plug->cb_list, list)
2936 if (cb->callback == unplug && cb->data == data)
2939 /* Not currently on the callback list */
2940 BUG_ON(size < sizeof(*cb));
2941 cb = kzalloc(size, GFP_ATOMIC);
2944 cb->callback = unplug;
2945 list_add(&cb->list, &plug->cb_list);
2949 EXPORT_SYMBOL(blk_check_plugged);
2951 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2953 struct request_queue *q;
2954 unsigned long flags;
2959 BUG_ON(plug->magic != PLUG_MAGIC);
2961 flush_plug_callbacks(plug, from_schedule);
2962 if (list_empty(&plug->list))
2965 list_splice_init(&plug->list, &list);
2967 if (plug->should_sort) {
2968 list_sort(NULL, &list, plug_rq_cmp);
2969 plug->should_sort = 0;
2976 * Save and disable interrupts here, to avoid doing it for every
2977 * queue lock we have to take.
2979 local_irq_save(flags);
2980 while (!list_empty(&list)) {
2981 rq = list_entry_rq(list.next);
2982 list_del_init(&rq->queuelist);
2986 * This drops the queue lock
2989 queue_unplugged(q, depth, from_schedule);
2992 spin_lock(q->queue_lock);
2996 * Short-circuit if @q is dead
2998 if (unlikely(blk_queue_dead(q))) {
2999 __blk_end_request_all(rq, -ENODEV);
3004 * rq is already accounted, so use raw insert
3006 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3007 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3009 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3015 * This drops the queue lock
3018 queue_unplugged(q, depth, from_schedule);
3020 local_irq_restore(flags);
3023 void blk_finish_plug(struct blk_plug *plug)
3025 blk_flush_plug_list(plug, false);
3027 if (plug == current->plug)
3028 current->plug = NULL;
3030 EXPORT_SYMBOL(blk_finish_plug);
3032 int __init blk_dev_init(void)
3034 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3035 sizeof(((struct request *)0)->cmd_flags));
3037 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3038 kblockd_workqueue = alloc_workqueue("kblockd",
3039 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3040 if (!kblockd_workqueue)
3041 panic("Failed to create kblockd\n");
3043 request_cachep = kmem_cache_create("blkdev_requests",
3044 sizeof(struct request), 0, SLAB_PANIC, NULL);
3046 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3047 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);