1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/blk-pm.h>
22 #include <linux/highmem.h>
24 #include <linux/pagemap.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/writeback.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/fault-inject.h>
34 #include <linux/list_sort.h>
35 #include <linux/delay.h>
36 #include <linux/ratelimit.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/blk-cgroup.h>
39 #include <linux/t10-pi.h>
40 #include <linux/debugfs.h>
41 #include <linux/bpf.h>
42 #include <linux/psi.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/blk-crypto.h>
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/block.h>
51 #include "blk-mq-sched.h"
53 #include "blk-rq-qos.h"
55 struct dentry *blk_debugfs_root;
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
64 DEFINE_IDA(blk_queue_ida);
67 * For queue allocation
69 struct kmem_cache *blk_requestq_cachep;
72 * Controlling structure to kblockd
74 static struct workqueue_struct *kblockd_workqueue;
77 * blk_queue_flag_set - atomically set a queue flag
78 * @flag: flag to be set
81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
83 set_bit(flag, &q->queue_flags);
85 EXPORT_SYMBOL(blk_queue_flag_set);
88 * blk_queue_flag_clear - atomically clear a queue flag
89 * @flag: flag to be cleared
92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
94 clear_bit(flag, &q->queue_flags);
96 EXPORT_SYMBOL(blk_queue_flag_clear);
99 * blk_queue_flag_test_and_set - atomically test and set a queue flag
100 * @flag: flag to be set
103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104 * the flag was already set.
106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
108 return test_and_set_bit(flag, &q->queue_flags);
110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
112 void blk_rq_init(struct request_queue *q, struct request *rq)
114 memset(rq, 0, sizeof(*rq));
116 INIT_LIST_HEAD(&rq->queuelist);
118 rq->__sector = (sector_t) -1;
119 INIT_HLIST_NODE(&rq->hash);
120 RB_CLEAR_NODE(&rq->rb_node);
121 rq->tag = BLK_MQ_NO_TAG;
122 rq->internal_tag = BLK_MQ_NO_TAG;
123 rq->start_time_ns = ktime_get_ns();
125 refcount_set(&rq->ref, 1);
126 blk_crypto_rq_set_defaults(rq);
128 EXPORT_SYMBOL(blk_rq_init);
130 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
131 static const char *const blk_op_name[] = {
135 REQ_OP_NAME(DISCARD),
136 REQ_OP_NAME(SECURE_ERASE),
137 REQ_OP_NAME(ZONE_RESET),
138 REQ_OP_NAME(ZONE_RESET_ALL),
139 REQ_OP_NAME(ZONE_OPEN),
140 REQ_OP_NAME(ZONE_CLOSE),
141 REQ_OP_NAME(ZONE_FINISH),
142 REQ_OP_NAME(ZONE_APPEND),
143 REQ_OP_NAME(WRITE_SAME),
144 REQ_OP_NAME(WRITE_ZEROES),
145 REQ_OP_NAME(SCSI_IN),
146 REQ_OP_NAME(SCSI_OUT),
148 REQ_OP_NAME(DRV_OUT),
153 * blk_op_str - Return string XXX in the REQ_OP_XXX.
156 * Description: Centralize block layer function to convert REQ_OP_XXX into
157 * string format. Useful in the debugging and tracing bio or request. For
158 * invalid REQ_OP_XXX it returns string "UNKNOWN".
160 inline const char *blk_op_str(unsigned int op)
162 const char *op_str = "UNKNOWN";
164 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
165 op_str = blk_op_name[op];
169 EXPORT_SYMBOL_GPL(blk_op_str);
171 static const struct {
175 [BLK_STS_OK] = { 0, "" },
176 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
177 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
178 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
179 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
180 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
181 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
182 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
183 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
184 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
185 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
186 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
188 /* device mapper special case, should not leak out: */
189 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
191 /* zone device specific errors */
192 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
193 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
195 /* everything else not covered above: */
196 [BLK_STS_IOERR] = { -EIO, "I/O" },
199 blk_status_t errno_to_blk_status(int errno)
203 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
204 if (blk_errors[i].errno == errno)
205 return (__force blk_status_t)i;
208 return BLK_STS_IOERR;
210 EXPORT_SYMBOL_GPL(errno_to_blk_status);
212 int blk_status_to_errno(blk_status_t status)
214 int idx = (__force int)status;
216 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
218 return blk_errors[idx].errno;
220 EXPORT_SYMBOL_GPL(blk_status_to_errno);
222 static void print_req_error(struct request *req, blk_status_t status,
225 int idx = (__force int)status;
227 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
230 printk_ratelimited(KERN_ERR
231 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
232 "phys_seg %u prio class %u\n",
233 caller, blk_errors[idx].name,
234 req->rq_disk ? req->rq_disk->disk_name : "?",
235 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
236 req->cmd_flags & ~REQ_OP_MASK,
237 req->nr_phys_segments,
238 IOPRIO_PRIO_CLASS(req->ioprio));
241 static void req_bio_endio(struct request *rq, struct bio *bio,
242 unsigned int nbytes, blk_status_t error)
245 bio->bi_status = error;
247 if (unlikely(rq->rq_flags & RQF_QUIET))
248 bio_set_flag(bio, BIO_QUIET);
250 bio_advance(bio, nbytes);
252 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
254 * Partial zone append completions cannot be supported as the
255 * BIO fragments may end up not being written sequentially.
257 if (bio->bi_iter.bi_size)
258 bio->bi_status = BLK_STS_IOERR;
260 bio->bi_iter.bi_sector = rq->__sector;
263 /* don't actually finish bio if it's part of flush sequence */
264 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
268 void blk_dump_rq_flags(struct request *rq, char *msg)
270 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
271 rq->rq_disk ? rq->rq_disk->disk_name : "?",
272 (unsigned long long) rq->cmd_flags);
274 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
275 (unsigned long long)blk_rq_pos(rq),
276 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
277 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
278 rq->bio, rq->biotail, blk_rq_bytes(rq));
280 EXPORT_SYMBOL(blk_dump_rq_flags);
283 * blk_sync_queue - cancel any pending callbacks on a queue
287 * The block layer may perform asynchronous callback activity
288 * on a queue, such as calling the unplug function after a timeout.
289 * A block device may call blk_sync_queue to ensure that any
290 * such activity is cancelled, thus allowing it to release resources
291 * that the callbacks might use. The caller must already have made sure
292 * that its ->submit_bio will not re-add plugging prior to calling
295 * This function does not cancel any asynchronous activity arising
296 * out of elevator or throttling code. That would require elevator_exit()
297 * and blkcg_exit_queue() to be called with queue lock initialized.
300 void blk_sync_queue(struct request_queue *q)
302 del_timer_sync(&q->timeout);
303 cancel_work_sync(&q->timeout_work);
305 EXPORT_SYMBOL(blk_sync_queue);
308 * blk_set_pm_only - increment pm_only counter
309 * @q: request queue pointer
311 void blk_set_pm_only(struct request_queue *q)
313 atomic_inc(&q->pm_only);
315 EXPORT_SYMBOL_GPL(blk_set_pm_only);
317 void blk_clear_pm_only(struct request_queue *q)
321 pm_only = atomic_dec_return(&q->pm_only);
322 WARN_ON_ONCE(pm_only < 0);
324 wake_up_all(&q->mq_freeze_wq);
326 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
329 * blk_put_queue - decrement the request_queue refcount
330 * @q: the request_queue structure to decrement the refcount for
332 * Decrements the refcount of the request_queue kobject. When this reaches 0
333 * we'll have blk_release_queue() called.
335 * Context: Any context, but the last reference must not be dropped from
338 void blk_put_queue(struct request_queue *q)
340 kobject_put(&q->kobj);
342 EXPORT_SYMBOL(blk_put_queue);
344 void blk_set_queue_dying(struct request_queue *q)
346 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
349 * When queue DYING flag is set, we need to block new req
350 * entering queue, so we call blk_freeze_queue_start() to
351 * prevent I/O from crossing blk_queue_enter().
353 blk_freeze_queue_start(q);
356 blk_mq_wake_waiters(q);
358 /* Make blk_queue_enter() reexamine the DYING flag. */
359 wake_up_all(&q->mq_freeze_wq);
361 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
364 * blk_cleanup_queue - shutdown a request queue
365 * @q: request queue to shutdown
367 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
368 * put it. All future requests will be failed immediately with -ENODEV.
372 void blk_cleanup_queue(struct request_queue *q)
374 /* cannot be called from atomic context */
377 WARN_ON_ONCE(blk_queue_registered(q));
379 /* mark @q DYING, no new request or merges will be allowed afterwards */
380 blk_set_queue_dying(q);
382 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
383 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
386 * Drain all requests queued before DYING marking. Set DEAD flag to
387 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
388 * after draining finished.
394 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
396 /* for synchronous bio-based driver finish in-flight integrity i/o */
397 blk_flush_integrity();
399 /* @q won't process any more request, flush async actions */
400 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
404 blk_mq_exit_queue(q);
407 * In theory, request pool of sched_tags belongs to request queue.
408 * However, the current implementation requires tag_set for freeing
409 * requests, so free the pool now.
411 * Queue has become frozen, there can't be any in-queue requests, so
412 * it is safe to free requests now.
414 mutex_lock(&q->sysfs_lock);
416 blk_mq_sched_free_requests(q);
417 mutex_unlock(&q->sysfs_lock);
419 percpu_ref_exit(&q->q_usage_counter);
421 /* @q is and will stay empty, shutdown and put */
424 EXPORT_SYMBOL(blk_cleanup_queue);
427 * blk_queue_enter() - try to increase q->q_usage_counter
428 * @q: request queue pointer
429 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
431 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
433 const bool pm = flags & BLK_MQ_REQ_PM;
436 bool success = false;
439 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
441 * The code that increments the pm_only counter is
442 * responsible for ensuring that that counter is
443 * globally visible before the queue is unfrozen.
445 if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
446 !blk_queue_pm_only(q)) {
449 percpu_ref_put(&q->q_usage_counter);
457 if (flags & BLK_MQ_REQ_NOWAIT)
461 * read pair of barrier in blk_freeze_queue_start(),
462 * we need to order reading __PERCPU_REF_DEAD flag of
463 * .q_usage_counter and reading .mq_freeze_depth or
464 * queue dying flag, otherwise the following wait may
465 * never return if the two reads are reordered.
469 wait_event(q->mq_freeze_wq,
470 (!q->mq_freeze_depth &&
471 blk_pm_resume_queue(pm, q)) ||
473 if (blk_queue_dying(q))
478 static inline int bio_queue_enter(struct bio *bio)
480 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
481 bool nowait = bio->bi_opf & REQ_NOWAIT;
484 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
486 if (nowait && !blk_queue_dying(q))
487 bio_wouldblock_error(bio);
495 void blk_queue_exit(struct request_queue *q)
497 percpu_ref_put(&q->q_usage_counter);
500 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
502 struct request_queue *q =
503 container_of(ref, struct request_queue, q_usage_counter);
505 wake_up_all(&q->mq_freeze_wq);
508 static void blk_rq_timed_out_timer(struct timer_list *t)
510 struct request_queue *q = from_timer(q, t, timeout);
512 kblockd_schedule_work(&q->timeout_work);
515 static void blk_timeout_work(struct work_struct *work)
519 struct request_queue *blk_alloc_queue(int node_id)
521 struct request_queue *q;
524 q = kmem_cache_alloc_node(blk_requestq_cachep,
525 GFP_KERNEL | __GFP_ZERO, node_id);
529 q->last_merge = NULL;
531 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
535 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
539 q->backing_dev_info = bdi_alloc(node_id);
540 if (!q->backing_dev_info)
543 q->stats = blk_alloc_queue_stats();
549 atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
551 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
552 laptop_mode_timer_fn, 0);
553 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
554 INIT_WORK(&q->timeout_work, blk_timeout_work);
555 INIT_LIST_HEAD(&q->icq_list);
556 #ifdef CONFIG_BLK_CGROUP
557 INIT_LIST_HEAD(&q->blkg_list);
560 kobject_init(&q->kobj, &blk_queue_ktype);
562 mutex_init(&q->debugfs_mutex);
563 mutex_init(&q->sysfs_lock);
564 mutex_init(&q->sysfs_dir_lock);
565 spin_lock_init(&q->queue_lock);
567 init_waitqueue_head(&q->mq_freeze_wq);
568 mutex_init(&q->mq_freeze_lock);
571 * Init percpu_ref in atomic mode so that it's faster to shutdown.
572 * See blk_register_queue() for details.
574 if (percpu_ref_init(&q->q_usage_counter,
575 blk_queue_usage_counter_release,
576 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
579 if (blkcg_init_queue(q))
582 blk_queue_dma_alignment(q, 511);
583 blk_set_default_limits(&q->limits);
584 q->nr_requests = BLKDEV_MAX_RQ;
589 percpu_ref_exit(&q->q_usage_counter);
591 blk_free_queue_stats(q->stats);
593 bdi_put(q->backing_dev_info);
595 bioset_exit(&q->bio_split);
597 ida_simple_remove(&blk_queue_ida, q->id);
599 kmem_cache_free(blk_requestq_cachep, q);
602 EXPORT_SYMBOL(blk_alloc_queue);
605 * blk_get_queue - increment the request_queue refcount
606 * @q: the request_queue structure to increment the refcount for
608 * Increment the refcount of the request_queue kobject.
610 * Context: Any context.
612 bool blk_get_queue(struct request_queue *q)
614 if (likely(!blk_queue_dying(q))) {
621 EXPORT_SYMBOL(blk_get_queue);
624 * blk_get_request - allocate a request
625 * @q: request queue to allocate a request for
626 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
627 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
629 struct request *blk_get_request(struct request_queue *q, unsigned int op,
630 blk_mq_req_flags_t flags)
634 WARN_ON_ONCE(op & REQ_NOWAIT);
635 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
637 req = blk_mq_alloc_request(q, op, flags);
638 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
639 q->mq_ops->initialize_rq_fn(req);
643 EXPORT_SYMBOL(blk_get_request);
645 void blk_put_request(struct request *req)
647 blk_mq_free_request(req);
649 EXPORT_SYMBOL(blk_put_request);
651 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
653 char b[BDEVNAME_SIZE];
655 pr_info_ratelimited("attempt to access beyond end of device\n"
656 "%s: rw=%d, want=%llu, limit=%llu\n",
657 bio_devname(bio, b), bio->bi_opf,
658 bio_end_sector(bio), maxsector);
661 #ifdef CONFIG_FAIL_MAKE_REQUEST
663 static DECLARE_FAULT_ATTR(fail_make_request);
665 static int __init setup_fail_make_request(char *str)
667 return setup_fault_attr(&fail_make_request, str);
669 __setup("fail_make_request=", setup_fail_make_request);
671 static bool should_fail_request(struct block_device *part, unsigned int bytes)
673 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
676 static int __init fail_make_request_debugfs(void)
678 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
679 NULL, &fail_make_request);
681 return PTR_ERR_OR_ZERO(dir);
684 late_initcall(fail_make_request_debugfs);
686 #else /* CONFIG_FAIL_MAKE_REQUEST */
688 static inline bool should_fail_request(struct block_device *part,
694 #endif /* CONFIG_FAIL_MAKE_REQUEST */
696 static inline bool bio_check_ro(struct bio *bio)
698 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
699 char b[BDEVNAME_SIZE];
701 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
705 "Trying to write to read-only block-device %s (partno %d)\n",
706 bio_devname(bio, b), bio->bi_bdev->bd_partno);
707 /* Older lvm-tools actually trigger this */
714 static noinline int should_fail_bio(struct bio *bio)
716 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
720 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
723 * Check whether this bio extends beyond the end of the device or partition.
724 * This may well happen - the kernel calls bread() without checking the size of
725 * the device, e.g., when mounting a file system.
727 static inline int bio_check_eod(struct bio *bio)
729 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
730 unsigned int nr_sectors = bio_sectors(bio);
732 if (nr_sectors && maxsector &&
733 (nr_sectors > maxsector ||
734 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
735 handle_bad_sector(bio, maxsector);
742 * Remap block n of partition p to block n+start(p) of the disk.
744 static int blk_partition_remap(struct bio *bio)
746 struct block_device *p = bio->bi_bdev;
748 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
750 if (bio_sectors(bio)) {
751 bio->bi_iter.bi_sector += p->bd_start_sect;
752 trace_block_bio_remap(bio, p->bd_dev,
753 bio->bi_iter.bi_sector -
756 bio_set_flag(bio, BIO_REMAPPED);
761 * Check write append to a zoned block device.
763 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
766 sector_t pos = bio->bi_iter.bi_sector;
767 int nr_sectors = bio_sectors(bio);
769 /* Only applicable to zoned block devices */
770 if (!blk_queue_is_zoned(q))
771 return BLK_STS_NOTSUPP;
773 /* The bio sector must point to the start of a sequential zone */
774 if (pos & (blk_queue_zone_sectors(q) - 1) ||
775 !blk_queue_zone_is_seq(q, pos))
776 return BLK_STS_IOERR;
779 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
780 * split and could result in non-contiguous sectors being written in
783 if (nr_sectors > q->limits.chunk_sectors)
784 return BLK_STS_IOERR;
786 /* Make sure the BIO is small enough and will not get split */
787 if (nr_sectors > q->limits.max_zone_append_sectors)
788 return BLK_STS_IOERR;
790 bio->bi_opf |= REQ_NOMERGE;
795 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
797 struct block_device *bdev = bio->bi_bdev;
798 struct request_queue *q = bdev->bd_disk->queue;
799 blk_status_t status = BLK_STS_IOERR;
800 struct blk_plug *plug;
804 plug = blk_mq_plug(q, bio);
805 if (plug && plug->nowait)
806 bio->bi_opf |= REQ_NOWAIT;
809 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
810 * if queue does not support NOWAIT.
812 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
815 if (should_fail_bio(bio))
817 if (unlikely(bio_check_ro(bio)))
819 if (!bio_flagged(bio, BIO_REMAPPED)) {
820 if (unlikely(bio_check_eod(bio)))
822 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
827 * Filter flush bio's early so that bio based drivers without flush
828 * support don't have to worry about them.
830 if (op_is_flush(bio->bi_opf) &&
831 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
832 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
833 if (!bio_sectors(bio)) {
839 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
840 bio->bi_opf &= ~REQ_HIPRI;
842 switch (bio_op(bio)) {
844 if (!blk_queue_discard(q))
847 case REQ_OP_SECURE_ERASE:
848 if (!blk_queue_secure_erase(q))
851 case REQ_OP_WRITE_SAME:
852 if (!q->limits.max_write_same_sectors)
855 case REQ_OP_ZONE_APPEND:
856 status = blk_check_zone_append(q, bio);
857 if (status != BLK_STS_OK)
860 case REQ_OP_ZONE_RESET:
861 case REQ_OP_ZONE_OPEN:
862 case REQ_OP_ZONE_CLOSE:
863 case REQ_OP_ZONE_FINISH:
864 if (!blk_queue_is_zoned(q))
867 case REQ_OP_ZONE_RESET_ALL:
868 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
871 case REQ_OP_WRITE_ZEROES:
872 if (!q->limits.max_write_zeroes_sectors)
880 * Various block parts want %current->io_context, so allocate it up
881 * front rather than dealing with lots of pain to allocate it only
882 * where needed. This may fail and the block layer knows how to live
885 if (unlikely(!current->io_context))
886 create_task_io_context(current, GFP_ATOMIC, q->node);
888 if (blk_throtl_bio(bio)) {
889 blkcg_bio_issue_init(bio);
893 blk_cgroup_bio_start(bio);
894 blkcg_bio_issue_init(bio);
896 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
897 trace_block_bio_queue(bio);
898 /* Now that enqueuing has been traced, we need to trace
899 * completion as well.
901 bio_set_flag(bio, BIO_TRACE_COMPLETION);
906 status = BLK_STS_NOTSUPP;
908 bio->bi_status = status;
913 static blk_qc_t __submit_bio(struct bio *bio)
915 struct gendisk *disk = bio->bi_bdev->bd_disk;
916 blk_qc_t ret = BLK_QC_T_NONE;
918 if (blk_crypto_bio_prep(&bio)) {
919 if (!disk->fops->submit_bio)
920 return blk_mq_submit_bio(bio);
921 ret = disk->fops->submit_bio(bio);
923 blk_queue_exit(disk->queue);
928 * The loop in this function may be a bit non-obvious, and so deserves some
931 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
932 * that), so we have a list with a single bio.
933 * - We pretend that we have just taken it off a longer list, so we assign
934 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
935 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
936 * bios through a recursive call to submit_bio_noacct. If it did, we find a
937 * non-NULL value in bio_list and re-enter the loop from the top.
938 * - In this case we really did just take the bio of the top of the list (no
939 * pretending) and so remove it from bio_list, and call into ->submit_bio()
942 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
943 * bio_list_on_stack[1] contains bios that were submitted before the current
944 * ->submit_bio_bio, but that haven't been processed yet.
946 static blk_qc_t __submit_bio_noacct(struct bio *bio)
948 struct bio_list bio_list_on_stack[2];
949 blk_qc_t ret = BLK_QC_T_NONE;
951 BUG_ON(bio->bi_next);
953 bio_list_init(&bio_list_on_stack[0]);
954 current->bio_list = bio_list_on_stack;
957 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
958 struct bio_list lower, same;
960 if (unlikely(bio_queue_enter(bio) != 0))
964 * Create a fresh bio_list for all subordinate requests.
966 bio_list_on_stack[1] = bio_list_on_stack[0];
967 bio_list_init(&bio_list_on_stack[0]);
969 ret = __submit_bio(bio);
972 * Sort new bios into those for a lower level and those for the
975 bio_list_init(&lower);
976 bio_list_init(&same);
977 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
978 if (q == bio->bi_bdev->bd_disk->queue)
979 bio_list_add(&same, bio);
981 bio_list_add(&lower, bio);
984 * Now assemble so we handle the lowest level first.
986 bio_list_merge(&bio_list_on_stack[0], &lower);
987 bio_list_merge(&bio_list_on_stack[0], &same);
988 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
989 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
991 current->bio_list = NULL;
995 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
997 struct bio_list bio_list[2] = { };
998 blk_qc_t ret = BLK_QC_T_NONE;
1000 current->bio_list = bio_list;
1003 struct gendisk *disk = bio->bi_bdev->bd_disk;
1005 if (unlikely(bio_queue_enter(bio) != 0))
1008 if (!blk_crypto_bio_prep(&bio)) {
1009 blk_queue_exit(disk->queue);
1010 ret = BLK_QC_T_NONE;
1014 ret = blk_mq_submit_bio(bio);
1015 } while ((bio = bio_list_pop(&bio_list[0])));
1017 current->bio_list = NULL;
1022 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1023 * @bio: The bio describing the location in memory and on the device.
1025 * This is a version of submit_bio() that shall only be used for I/O that is
1026 * resubmitted to lower level drivers by stacking block drivers. All file
1027 * systems and other upper level users of the block layer should use
1028 * submit_bio() instead.
1030 blk_qc_t submit_bio_noacct(struct bio *bio)
1032 if (!submit_bio_checks(bio))
1033 return BLK_QC_T_NONE;
1036 * We only want one ->submit_bio to be active at a time, else stack
1037 * usage with stacked devices could be a problem. Use current->bio_list
1038 * to collect a list of requests submited by a ->submit_bio method while
1039 * it is active, and then process them after it returned.
1041 if (current->bio_list) {
1042 bio_list_add(¤t->bio_list[0], bio);
1043 return BLK_QC_T_NONE;
1046 if (!bio->bi_bdev->bd_disk->fops->submit_bio)
1047 return __submit_bio_noacct_mq(bio);
1048 return __submit_bio_noacct(bio);
1050 EXPORT_SYMBOL(submit_bio_noacct);
1053 * submit_bio - submit a bio to the block device layer for I/O
1054 * @bio: The &struct bio which describes the I/O
1056 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1057 * fully set up &struct bio that describes the I/O that needs to be done. The
1058 * bio will be send to the device described by the bi_bdev field.
1060 * The success/failure status of the request, along with notification of
1061 * completion, is delivered asynchronously through the ->bi_end_io() callback
1062 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1065 blk_qc_t submit_bio(struct bio *bio)
1067 if (blkcg_punt_bio_submit(bio))
1068 return BLK_QC_T_NONE;
1071 * If it's a regular read/write or a barrier with data attached,
1072 * go through the normal accounting stuff before submission.
1074 if (bio_has_data(bio)) {
1077 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1078 count = queue_logical_block_size(
1079 bio->bi_bdev->bd_disk->queue) >> 9;
1081 count = bio_sectors(bio);
1083 if (op_is_write(bio_op(bio))) {
1084 count_vm_events(PGPGOUT, count);
1086 task_io_account_read(bio->bi_iter.bi_size);
1087 count_vm_events(PGPGIN, count);
1090 if (unlikely(block_dump)) {
1091 char b[BDEVNAME_SIZE];
1092 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1093 current->comm, task_pid_nr(current),
1094 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1095 (unsigned long long)bio->bi_iter.bi_sector,
1096 bio_devname(bio, b), count);
1101 * If we're reading data that is part of the userspace workingset, count
1102 * submission time as memory stall. When the device is congested, or
1103 * the submitting cgroup IO-throttled, submission can be a significant
1104 * part of overall IO time.
1106 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1107 bio_flagged(bio, BIO_WORKINGSET))) {
1108 unsigned long pflags;
1111 psi_memstall_enter(&pflags);
1112 ret = submit_bio_noacct(bio);
1113 psi_memstall_leave(&pflags);
1118 return submit_bio_noacct(bio);
1120 EXPORT_SYMBOL(submit_bio);
1123 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1124 * for the new queue limits
1126 * @rq: the request being checked
1129 * @rq may have been made based on weaker limitations of upper-level queues
1130 * in request stacking drivers, and it may violate the limitation of @q.
1131 * Since the block layer and the underlying device driver trust @rq
1132 * after it is inserted to @q, it should be checked against @q before
1133 * the insertion using this generic function.
1135 * Request stacking drivers like request-based dm may change the queue
1136 * limits when retrying requests on other queues. Those requests need
1137 * to be checked against the new queue limits again during dispatch.
1139 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1142 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1144 if (blk_rq_sectors(rq) > max_sectors) {
1146 * SCSI device does not have a good way to return if
1147 * Write Same/Zero is actually supported. If a device rejects
1148 * a non-read/write command (discard, write same,etc.) the
1149 * low-level device driver will set the relevant queue limit to
1150 * 0 to prevent blk-lib from issuing more of the offending
1151 * operations. Commands queued prior to the queue limit being
1152 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1153 * errors being propagated to upper layers.
1155 if (max_sectors == 0)
1156 return BLK_STS_NOTSUPP;
1158 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1159 __func__, blk_rq_sectors(rq), max_sectors);
1160 return BLK_STS_IOERR;
1164 * queue's settings related to segment counting like q->bounce_pfn
1165 * may differ from that of other stacking queues.
1166 * Recalculate it to check the request correctly on this queue's
1169 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1170 if (rq->nr_phys_segments > queue_max_segments(q)) {
1171 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1172 __func__, rq->nr_phys_segments, queue_max_segments(q));
1173 return BLK_STS_IOERR;
1180 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1181 * @q: the queue to submit the request
1182 * @rq: the request being queued
1184 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1188 ret = blk_cloned_rq_check_limits(q, rq);
1189 if (ret != BLK_STS_OK)
1193 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1194 return BLK_STS_IOERR;
1196 if (blk_crypto_insert_cloned_request(rq))
1197 return BLK_STS_IOERR;
1199 if (blk_queue_io_stat(q))
1200 blk_account_io_start(rq);
1203 * Since we have a scheduler attached on the top device,
1204 * bypass a potential scheduler on the bottom device for
1207 return blk_mq_request_issue_directly(rq, true);
1209 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1212 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1213 * @rq: request to examine
1216 * A request could be merge of IOs which require different failure
1217 * handling. This function determines the number of bytes which
1218 * can be failed from the beginning of the request without
1219 * crossing into area which need to be retried further.
1222 * The number of bytes to fail.
1224 unsigned int blk_rq_err_bytes(const struct request *rq)
1226 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1227 unsigned int bytes = 0;
1230 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1231 return blk_rq_bytes(rq);
1234 * Currently the only 'mixing' which can happen is between
1235 * different fastfail types. We can safely fail portions
1236 * which have all the failfast bits that the first one has -
1237 * the ones which are at least as eager to fail as the first
1240 for (bio = rq->bio; bio; bio = bio->bi_next) {
1241 if ((bio->bi_opf & ff) != ff)
1243 bytes += bio->bi_iter.bi_size;
1246 /* this could lead to infinite loop */
1247 BUG_ON(blk_rq_bytes(rq) && !bytes);
1250 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1252 static void update_io_ticks(struct block_device *part, unsigned long now,
1255 unsigned long stamp;
1257 stamp = READ_ONCE(part->bd_stamp);
1258 if (unlikely(stamp != now)) {
1259 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1260 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1262 if (part->bd_partno) {
1263 part = bdev_whole(part);
1268 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1270 if (req->part && blk_do_io_stat(req)) {
1271 const int sgrp = op_stat_group(req_op(req));
1274 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
1279 void blk_account_io_done(struct request *req, u64 now)
1282 * Account IO completion. flush_rq isn't accounted as a
1283 * normal IO on queueing nor completion. Accounting the
1284 * containing request is enough.
1286 if (req->part && blk_do_io_stat(req) &&
1287 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1288 const int sgrp = op_stat_group(req_op(req));
1291 update_io_ticks(req->part, jiffies, true);
1292 part_stat_inc(req->part, ios[sgrp]);
1293 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1298 void blk_account_io_start(struct request *rq)
1300 if (!blk_do_io_stat(rq))
1303 /* passthrough requests can hold bios that do not have ->bi_bdev set */
1304 if (rq->bio && rq->bio->bi_bdev)
1305 rq->part = rq->bio->bi_bdev;
1307 rq->part = rq->rq_disk->part0;
1310 update_io_ticks(rq->part, jiffies, false);
1314 static unsigned long __part_start_io_acct(struct block_device *part,
1315 unsigned int sectors, unsigned int op)
1317 const int sgrp = op_stat_group(op);
1318 unsigned long now = READ_ONCE(jiffies);
1321 update_io_ticks(part, now, false);
1322 part_stat_inc(part, ios[sgrp]);
1323 part_stat_add(part, sectors[sgrp], sectors);
1324 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1331 * bio_start_io_acct - start I/O accounting for bio based drivers
1332 * @bio: bio to start account for
1334 * Returns the start time that should be passed back to bio_end_io_acct().
1336 unsigned long bio_start_io_acct(struct bio *bio)
1338 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
1340 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1342 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1345 return __part_start_io_acct(disk->part0, sectors, op);
1347 EXPORT_SYMBOL(disk_start_io_acct);
1349 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1350 unsigned long start_time)
1352 const int sgrp = op_stat_group(op);
1353 unsigned long now = READ_ONCE(jiffies);
1354 unsigned long duration = now - start_time;
1357 update_io_ticks(part, now, true);
1358 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1359 part_stat_local_dec(part, in_flight[op_is_write(op)]);
1363 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1364 struct block_device *orig_bdev)
1366 __part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1368 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1370 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1371 unsigned long start_time)
1373 __part_end_io_acct(disk->part0, op, start_time);
1375 EXPORT_SYMBOL(disk_end_io_acct);
1378 * Steal bios from a request and add them to a bio list.
1379 * The request must not have been partially completed before.
1381 void blk_steal_bios(struct bio_list *list, struct request *rq)
1385 list->tail->bi_next = rq->bio;
1387 list->head = rq->bio;
1388 list->tail = rq->biotail;
1396 EXPORT_SYMBOL_GPL(blk_steal_bios);
1399 * blk_update_request - Special helper function for request stacking drivers
1400 * @req: the request being processed
1401 * @error: block status code
1402 * @nr_bytes: number of bytes to complete @req
1405 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1406 * the request structure even if @req doesn't have leftover.
1407 * If @req has leftover, sets it up for the next range of segments.
1409 * This special helper function is only for request stacking drivers
1410 * (e.g. request-based dm) so that they can handle partial completion.
1411 * Actual device drivers should use blk_mq_end_request instead.
1413 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1414 * %false return from this function.
1417 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1418 * blk_rq_bytes() and in blk_update_request().
1421 * %false - this request doesn't have any more data
1422 * %true - this request has more data
1424 bool blk_update_request(struct request *req, blk_status_t error,
1425 unsigned int nr_bytes)
1429 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1434 #ifdef CONFIG_BLK_DEV_INTEGRITY
1435 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1436 error == BLK_STS_OK)
1437 req->q->integrity.profile->complete_fn(req, nr_bytes);
1440 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1441 !(req->rq_flags & RQF_QUIET)))
1442 print_req_error(req, error, __func__);
1444 blk_account_io_completion(req, nr_bytes);
1448 struct bio *bio = req->bio;
1449 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1451 if (bio_bytes == bio->bi_iter.bi_size)
1452 req->bio = bio->bi_next;
1454 /* Completion has already been traced */
1455 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1456 req_bio_endio(req, bio, bio_bytes, error);
1458 total_bytes += bio_bytes;
1459 nr_bytes -= bio_bytes;
1470 * Reset counters so that the request stacking driver
1471 * can find how many bytes remain in the request
1474 req->__data_len = 0;
1478 req->__data_len -= total_bytes;
1480 /* update sector only for requests with clear definition of sector */
1481 if (!blk_rq_is_passthrough(req))
1482 req->__sector += total_bytes >> 9;
1484 /* mixed attributes always follow the first bio */
1485 if (req->rq_flags & RQF_MIXED_MERGE) {
1486 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1487 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1490 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1492 * If total number of sectors is less than the first segment
1493 * size, something has gone terribly wrong.
1495 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1496 blk_dump_rq_flags(req, "request botched");
1497 req->__data_len = blk_rq_cur_bytes(req);
1500 /* recalculate the number of segments */
1501 req->nr_phys_segments = blk_recalc_rq_segments(req);
1506 EXPORT_SYMBOL_GPL(blk_update_request);
1508 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1510 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1511 * @rq: the request to be flushed
1514 * Flush all pages in @rq.
1516 void rq_flush_dcache_pages(struct request *rq)
1518 struct req_iterator iter;
1519 struct bio_vec bvec;
1521 rq_for_each_segment(bvec, rq, iter)
1522 flush_dcache_page(bvec.bv_page);
1524 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1528 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1529 * @q : the queue of the device being checked
1532 * Check if underlying low-level drivers of a device are busy.
1533 * If the drivers want to export their busy state, they must set own
1534 * exporting function using blk_queue_lld_busy() first.
1536 * Basically, this function is used only by request stacking drivers
1537 * to stop dispatching requests to underlying devices when underlying
1538 * devices are busy. This behavior helps more I/O merging on the queue
1539 * of the request stacking driver and prevents I/O throughput regression
1540 * on burst I/O load.
1543 * 0 - Not busy (The request stacking driver should dispatch request)
1544 * 1 - Busy (The request stacking driver should stop dispatching request)
1546 int blk_lld_busy(struct request_queue *q)
1548 if (queue_is_mq(q) && q->mq_ops->busy)
1549 return q->mq_ops->busy(q);
1553 EXPORT_SYMBOL_GPL(blk_lld_busy);
1556 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1557 * @rq: the clone request to be cleaned up
1560 * Free all bios in @rq for a cloned request.
1562 void blk_rq_unprep_clone(struct request *rq)
1566 while ((bio = rq->bio) != NULL) {
1567 rq->bio = bio->bi_next;
1572 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1575 * blk_rq_prep_clone - Helper function to setup clone request
1576 * @rq: the request to be setup
1577 * @rq_src: original request to be cloned
1578 * @bs: bio_set that bios for clone are allocated from
1579 * @gfp_mask: memory allocation mask for bio
1580 * @bio_ctr: setup function to be called for each clone bio.
1581 * Returns %0 for success, non %0 for failure.
1582 * @data: private data to be passed to @bio_ctr
1585 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1586 * Also, pages which the original bios are pointing to are not copied
1587 * and the cloned bios just point same pages.
1588 * So cloned bios must be completed before original bios, which means
1589 * the caller must complete @rq before @rq_src.
1591 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1592 struct bio_set *bs, gfp_t gfp_mask,
1593 int (*bio_ctr)(struct bio *, struct bio *, void *),
1596 struct bio *bio, *bio_src;
1601 __rq_for_each_bio(bio_src, rq_src) {
1602 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1606 if (bio_ctr && bio_ctr(bio, bio_src, data))
1610 rq->biotail->bi_next = bio;
1613 rq->bio = rq->biotail = bio;
1618 /* Copy attributes of the original request to the clone request. */
1619 rq->__sector = blk_rq_pos(rq_src);
1620 rq->__data_len = blk_rq_bytes(rq_src);
1621 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1622 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1623 rq->special_vec = rq_src->special_vec;
1625 rq->nr_phys_segments = rq_src->nr_phys_segments;
1626 rq->ioprio = rq_src->ioprio;
1628 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1636 blk_rq_unprep_clone(rq);
1640 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1642 int kblockd_schedule_work(struct work_struct *work)
1644 return queue_work(kblockd_workqueue, work);
1646 EXPORT_SYMBOL(kblockd_schedule_work);
1648 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1649 unsigned long delay)
1651 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1653 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1656 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1657 * @plug: The &struct blk_plug that needs to be initialized
1660 * blk_start_plug() indicates to the block layer an intent by the caller
1661 * to submit multiple I/O requests in a batch. The block layer may use
1662 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1663 * is called. However, the block layer may choose to submit requests
1664 * before a call to blk_finish_plug() if the number of queued I/Os
1665 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1666 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1667 * the task schedules (see below).
1669 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1670 * pending I/O should the task end up blocking between blk_start_plug() and
1671 * blk_finish_plug(). This is important from a performance perspective, but
1672 * also ensures that we don't deadlock. For instance, if the task is blocking
1673 * for a memory allocation, memory reclaim could end up wanting to free a
1674 * page belonging to that request that is currently residing in our private
1675 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1676 * this kind of deadlock.
1678 void blk_start_plug(struct blk_plug *plug)
1680 struct task_struct *tsk = current;
1683 * If this is a nested plug, don't actually assign it.
1688 INIT_LIST_HEAD(&plug->mq_list);
1689 INIT_LIST_HEAD(&plug->cb_list);
1691 plug->multiple_queues = false;
1692 plug->nowait = false;
1695 * Store ordering should not be needed here, since a potential
1696 * preempt will imply a full memory barrier
1700 EXPORT_SYMBOL(blk_start_plug);
1702 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1704 LIST_HEAD(callbacks);
1706 while (!list_empty(&plug->cb_list)) {
1707 list_splice_init(&plug->cb_list, &callbacks);
1709 while (!list_empty(&callbacks)) {
1710 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1713 list_del(&cb->list);
1714 cb->callback(cb, from_schedule);
1719 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1722 struct blk_plug *plug = current->plug;
1723 struct blk_plug_cb *cb;
1728 list_for_each_entry(cb, &plug->cb_list, list)
1729 if (cb->callback == unplug && cb->data == data)
1732 /* Not currently on the callback list */
1733 BUG_ON(size < sizeof(*cb));
1734 cb = kzalloc(size, GFP_ATOMIC);
1737 cb->callback = unplug;
1738 list_add(&cb->list, &plug->cb_list);
1742 EXPORT_SYMBOL(blk_check_plugged);
1744 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1746 flush_plug_callbacks(plug, from_schedule);
1748 if (!list_empty(&plug->mq_list))
1749 blk_mq_flush_plug_list(plug, from_schedule);
1753 * blk_finish_plug - mark the end of a batch of submitted I/O
1754 * @plug: The &struct blk_plug passed to blk_start_plug()
1757 * Indicate that a batch of I/O submissions is complete. This function
1758 * must be paired with an initial call to blk_start_plug(). The intent
1759 * is to allow the block layer to optimize I/O submission. See the
1760 * documentation for blk_start_plug() for more information.
1762 void blk_finish_plug(struct blk_plug *plug)
1764 if (plug != current->plug)
1766 blk_flush_plug_list(plug, false);
1768 current->plug = NULL;
1770 EXPORT_SYMBOL(blk_finish_plug);
1772 void blk_io_schedule(void)
1774 /* Prevent hang_check timer from firing at us during very long I/O */
1775 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1778 io_schedule_timeout(timeout);
1782 EXPORT_SYMBOL_GPL(blk_io_schedule);
1784 int __init blk_dev_init(void)
1786 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1787 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1788 sizeof_field(struct request, cmd_flags));
1789 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1790 sizeof_field(struct bio, bi_opf));
1792 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1793 kblockd_workqueue = alloc_workqueue("kblockd",
1794 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1795 if (!kblockd_workqueue)
1796 panic("Failed to create kblockd\n");
1798 blk_requestq_cachep = kmem_cache_create("request_queue",
1799 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1801 blk_debugfs_root = debugfs_create_dir("block", NULL);