1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/debugfs.h>
38 #include <linux/bpf.h>
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/block.h>
45 #include "blk-mq-sched.h"
47 #include "blk-rq-qos.h"
49 #ifdef CONFIG_DEBUG_FS
50 struct dentry *blk_debugfs_root;
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
59 DEFINE_IDA(blk_queue_ida);
62 * For queue allocation
64 struct kmem_cache *blk_requestq_cachep;
67 * Controlling structure to kblockd
69 static struct workqueue_struct *kblockd_workqueue;
72 * blk_queue_flag_set - atomically set a queue flag
73 * @flag: flag to be set
76 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
78 set_bit(flag, &q->queue_flags);
80 EXPORT_SYMBOL(blk_queue_flag_set);
83 * blk_queue_flag_clear - atomically clear a queue flag
84 * @flag: flag to be cleared
87 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
89 clear_bit(flag, &q->queue_flags);
91 EXPORT_SYMBOL(blk_queue_flag_clear);
94 * blk_queue_flag_test_and_set - atomically test and set a queue flag
95 * @flag: flag to be set
98 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
99 * the flag was already set.
101 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
103 return test_and_set_bit(flag, &q->queue_flags);
105 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
107 void blk_rq_init(struct request_queue *q, struct request *rq)
109 memset(rq, 0, sizeof(*rq));
111 INIT_LIST_HEAD(&rq->queuelist);
113 rq->__sector = (sector_t) -1;
114 INIT_HLIST_NODE(&rq->hash);
115 RB_CLEAR_NODE(&rq->rb_node);
117 rq->internal_tag = -1;
118 rq->start_time_ns = ktime_get_ns();
120 refcount_set(&rq->ref, 1);
122 EXPORT_SYMBOL(blk_rq_init);
124 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
125 static const char *const blk_op_name[] = {
129 REQ_OP_NAME(DISCARD),
130 REQ_OP_NAME(SECURE_ERASE),
131 REQ_OP_NAME(ZONE_RESET),
132 REQ_OP_NAME(WRITE_SAME),
133 REQ_OP_NAME(WRITE_ZEROES),
134 REQ_OP_NAME(SCSI_IN),
135 REQ_OP_NAME(SCSI_OUT),
137 REQ_OP_NAME(DRV_OUT),
142 * blk_op_str - Return string XXX in the REQ_OP_XXX.
145 * Description: Centralize block layer function to convert REQ_OP_XXX into
146 * string format. Useful in the debugging and tracing bio or request. For
147 * invalid REQ_OP_XXX it returns string "UNKNOWN".
149 inline const char *blk_op_str(unsigned int op)
151 const char *op_str = "UNKNOWN";
153 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
154 op_str = blk_op_name[op];
158 EXPORT_SYMBOL_GPL(blk_op_str);
160 static const struct {
164 [BLK_STS_OK] = { 0, "" },
165 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
166 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
167 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
168 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
169 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
170 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
171 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
172 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
173 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
174 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
175 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
177 /* device mapper special case, should not leak out: */
178 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
180 /* everything else not covered above: */
181 [BLK_STS_IOERR] = { -EIO, "I/O" },
184 blk_status_t errno_to_blk_status(int errno)
188 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
189 if (blk_errors[i].errno == errno)
190 return (__force blk_status_t)i;
193 return BLK_STS_IOERR;
195 EXPORT_SYMBOL_GPL(errno_to_blk_status);
197 int blk_status_to_errno(blk_status_t status)
199 int idx = (__force int)status;
201 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
203 return blk_errors[idx].errno;
205 EXPORT_SYMBOL_GPL(blk_status_to_errno);
207 static void print_req_error(struct request *req, blk_status_t status,
210 int idx = (__force int)status;
212 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
215 printk_ratelimited(KERN_ERR
216 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
217 "phys_seg %u prio class %u\n",
218 caller, blk_errors[idx].name,
219 req->rq_disk ? req->rq_disk->disk_name : "?",
220 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
221 req->cmd_flags & ~REQ_OP_MASK,
222 req->nr_phys_segments,
223 IOPRIO_PRIO_CLASS(req->ioprio));
226 static void req_bio_endio(struct request *rq, struct bio *bio,
227 unsigned int nbytes, blk_status_t error)
230 bio->bi_status = error;
232 if (unlikely(rq->rq_flags & RQF_QUIET))
233 bio_set_flag(bio, BIO_QUIET);
235 bio_advance(bio, nbytes);
237 /* don't actually finish bio if it's part of flush sequence */
238 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
242 void blk_dump_rq_flags(struct request *rq, char *msg)
244 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
245 rq->rq_disk ? rq->rq_disk->disk_name : "?",
246 (unsigned long long) rq->cmd_flags);
248 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
249 (unsigned long long)blk_rq_pos(rq),
250 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
251 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
252 rq->bio, rq->biotail, blk_rq_bytes(rq));
254 EXPORT_SYMBOL(blk_dump_rq_flags);
257 * blk_sync_queue - cancel any pending callbacks on a queue
261 * The block layer may perform asynchronous callback activity
262 * on a queue, such as calling the unplug function after a timeout.
263 * A block device may call blk_sync_queue to ensure that any
264 * such activity is cancelled, thus allowing it to release resources
265 * that the callbacks might use. The caller must already have made sure
266 * that its ->make_request_fn will not re-add plugging prior to calling
269 * This function does not cancel any asynchronous activity arising
270 * out of elevator or throttling code. That would require elevator_exit()
271 * and blkcg_exit_queue() to be called with queue lock initialized.
274 void blk_sync_queue(struct request_queue *q)
276 del_timer_sync(&q->timeout);
277 cancel_work_sync(&q->timeout_work);
279 EXPORT_SYMBOL(blk_sync_queue);
282 * blk_set_pm_only - increment pm_only counter
283 * @q: request queue pointer
285 void blk_set_pm_only(struct request_queue *q)
287 atomic_inc(&q->pm_only);
289 EXPORT_SYMBOL_GPL(blk_set_pm_only);
291 void blk_clear_pm_only(struct request_queue *q)
295 pm_only = atomic_dec_return(&q->pm_only);
296 WARN_ON_ONCE(pm_only < 0);
298 wake_up_all(&q->mq_freeze_wq);
300 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
302 void blk_put_queue(struct request_queue *q)
304 kobject_put(&q->kobj);
306 EXPORT_SYMBOL(blk_put_queue);
308 void blk_set_queue_dying(struct request_queue *q)
310 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
313 * When queue DYING flag is set, we need to block new req
314 * entering queue, so we call blk_freeze_queue_start() to
315 * prevent I/O from crossing blk_queue_enter().
317 blk_freeze_queue_start(q);
320 blk_mq_wake_waiters(q);
322 /* Make blk_queue_enter() reexamine the DYING flag. */
323 wake_up_all(&q->mq_freeze_wq);
325 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
328 * blk_cleanup_queue - shutdown a request queue
329 * @q: request queue to shutdown
331 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
332 * put it. All future requests will be failed immediately with -ENODEV.
334 void blk_cleanup_queue(struct request_queue *q)
336 /* mark @q DYING, no new request or merges will be allowed afterwards */
337 mutex_lock(&q->sysfs_lock);
338 blk_set_queue_dying(q);
340 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
341 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
342 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
343 mutex_unlock(&q->sysfs_lock);
346 * Drain all requests queued before DYING marking. Set DEAD flag to
347 * prevent that q->request_fn() gets invoked after draining finished.
353 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
355 /* for synchronous bio-based driver finish in-flight integrity i/o */
356 blk_flush_integrity();
358 /* @q won't process any more request, flush async actions */
359 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
363 blk_mq_exit_queue(q);
366 * In theory, request pool of sched_tags belongs to request queue.
367 * However, the current implementation requires tag_set for freeing
368 * requests, so free the pool now.
370 * Queue has become frozen, there can't be any in-queue requests, so
371 * it is safe to free requests now.
373 mutex_lock(&q->sysfs_lock);
375 blk_mq_sched_free_requests(q);
376 mutex_unlock(&q->sysfs_lock);
378 percpu_ref_exit(&q->q_usage_counter);
380 /* @q is and will stay empty, shutdown and put */
383 EXPORT_SYMBOL(blk_cleanup_queue);
385 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
387 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
389 EXPORT_SYMBOL(blk_alloc_queue);
392 * blk_queue_enter() - try to increase q->q_usage_counter
393 * @q: request queue pointer
394 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
396 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
398 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
401 bool success = false;
404 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
406 * The code that increments the pm_only counter is
407 * responsible for ensuring that that counter is
408 * globally visible before the queue is unfrozen.
410 if (pm || !blk_queue_pm_only(q)) {
413 percpu_ref_put(&q->q_usage_counter);
421 if (flags & BLK_MQ_REQ_NOWAIT)
425 * read pair of barrier in blk_freeze_queue_start(),
426 * we need to order reading __PERCPU_REF_DEAD flag of
427 * .q_usage_counter and reading .mq_freeze_depth or
428 * queue dying flag, otherwise the following wait may
429 * never return if the two reads are reordered.
433 wait_event(q->mq_freeze_wq,
434 (!q->mq_freeze_depth &&
435 (pm || (blk_pm_request_resume(q),
436 !blk_queue_pm_only(q)))) ||
438 if (blk_queue_dying(q))
443 void blk_queue_exit(struct request_queue *q)
445 percpu_ref_put(&q->q_usage_counter);
448 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
450 struct request_queue *q =
451 container_of(ref, struct request_queue, q_usage_counter);
453 wake_up_all(&q->mq_freeze_wq);
456 static void blk_rq_timed_out_timer(struct timer_list *t)
458 struct request_queue *q = from_timer(q, t, timeout);
460 kblockd_schedule_work(&q->timeout_work);
463 static void blk_timeout_work(struct work_struct *work)
468 * blk_alloc_queue_node - allocate a request queue
469 * @gfp_mask: memory allocation flags
470 * @node_id: NUMA node to allocate memory from
472 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
474 struct request_queue *q;
477 q = kmem_cache_alloc_node(blk_requestq_cachep,
478 gfp_mask | __GFP_ZERO, node_id);
482 INIT_LIST_HEAD(&q->queue_head);
483 q->last_merge = NULL;
485 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
489 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
493 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
494 if (!q->backing_dev_info)
497 q->stats = blk_alloc_queue_stats();
501 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
502 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
503 q->backing_dev_info->name = "block";
506 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
507 laptop_mode_timer_fn, 0);
508 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
509 INIT_WORK(&q->timeout_work, blk_timeout_work);
510 INIT_LIST_HEAD(&q->icq_list);
511 #ifdef CONFIG_BLK_CGROUP
512 INIT_LIST_HEAD(&q->blkg_list);
515 kobject_init(&q->kobj, &blk_queue_ktype);
517 #ifdef CONFIG_BLK_DEV_IO_TRACE
518 mutex_init(&q->blk_trace_mutex);
520 mutex_init(&q->sysfs_lock);
521 spin_lock_init(&q->queue_lock);
523 init_waitqueue_head(&q->mq_freeze_wq);
524 mutex_init(&q->mq_freeze_lock);
527 * Init percpu_ref in atomic mode so that it's faster to shutdown.
528 * See blk_register_queue() for details.
530 if (percpu_ref_init(&q->q_usage_counter,
531 blk_queue_usage_counter_release,
532 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
535 if (blkcg_init_queue(q))
541 percpu_ref_exit(&q->q_usage_counter);
543 blk_free_queue_stats(q->stats);
545 bdi_put(q->backing_dev_info);
547 bioset_exit(&q->bio_split);
549 ida_simple_remove(&blk_queue_ida, q->id);
551 kmem_cache_free(blk_requestq_cachep, q);
554 EXPORT_SYMBOL(blk_alloc_queue_node);
556 bool blk_get_queue(struct request_queue *q)
558 if (likely(!blk_queue_dying(q))) {
565 EXPORT_SYMBOL(blk_get_queue);
568 * blk_get_request - allocate a request
569 * @q: request queue to allocate a request for
570 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
571 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
573 struct request *blk_get_request(struct request_queue *q, unsigned int op,
574 blk_mq_req_flags_t flags)
578 WARN_ON_ONCE(op & REQ_NOWAIT);
579 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
581 req = blk_mq_alloc_request(q, op, flags);
582 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
583 q->mq_ops->initialize_rq_fn(req);
587 EXPORT_SYMBOL(blk_get_request);
589 void blk_put_request(struct request *req)
591 blk_mq_free_request(req);
593 EXPORT_SYMBOL(blk_put_request);
595 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
596 unsigned int nr_segs)
598 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
600 if (!ll_back_merge_fn(req, bio, nr_segs))
603 trace_block_bio_backmerge(req->q, req, bio);
605 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
606 blk_rq_set_mixed_merge(req);
608 req->biotail->bi_next = bio;
610 req->__data_len += bio->bi_iter.bi_size;
612 blk_account_io_start(req, false);
616 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
617 unsigned int nr_segs)
619 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
621 if (!ll_front_merge_fn(req, bio, nr_segs))
624 trace_block_bio_frontmerge(req->q, req, bio);
626 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
627 blk_rq_set_mixed_merge(req);
629 bio->bi_next = req->bio;
632 req->__sector = bio->bi_iter.bi_sector;
633 req->__data_len += bio->bi_iter.bi_size;
635 blk_account_io_start(req, false);
639 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
642 unsigned short segments = blk_rq_nr_discard_segments(req);
644 if (segments >= queue_max_discard_segments(q))
646 if (blk_rq_sectors(req) + bio_sectors(bio) >
647 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
650 req->biotail->bi_next = bio;
652 req->__data_len += bio->bi_iter.bi_size;
653 req->nr_phys_segments = segments + 1;
655 blk_account_io_start(req, false);
658 req_set_nomerge(q, req);
663 * blk_attempt_plug_merge - try to merge with %current's plugged list
664 * @q: request_queue new bio is being queued at
665 * @bio: new bio being queued
666 * @nr_segs: number of segments in @bio
667 * @same_queue_rq: pointer to &struct request that gets filled in when
668 * another request associated with @q is found on the plug list
669 * (optional, may be %NULL)
671 * Determine whether @bio being queued on @q can be merged with a request
672 * on %current's plugged list. Returns %true if merge was successful,
675 * Plugging coalesces IOs from the same issuer for the same purpose without
676 * going through @q->queue_lock. As such it's more of an issuing mechanism
677 * than scheduling, and the request, while may have elvpriv data, is not
678 * added on the elevator at this point. In addition, we don't have
679 * reliable access to the elevator outside queue lock. Only check basic
680 * merging parameters without querying the elevator.
682 * Caller must ensure !blk_queue_nomerges(q) beforehand.
684 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
685 unsigned int nr_segs, struct request **same_queue_rq)
687 struct blk_plug *plug;
689 struct list_head *plug_list;
691 plug = blk_mq_plug(q, bio);
695 plug_list = &plug->mq_list;
697 list_for_each_entry_reverse(rq, plug_list, queuelist) {
700 if (rq->q == q && same_queue_rq) {
702 * Only blk-mq multiple hardware queues case checks the
703 * rq in the same queue, there should be only one such
709 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
712 switch (blk_try_merge(rq, bio)) {
713 case ELEVATOR_BACK_MERGE:
714 merged = bio_attempt_back_merge(rq, bio, nr_segs);
716 case ELEVATOR_FRONT_MERGE:
717 merged = bio_attempt_front_merge(rq, bio, nr_segs);
719 case ELEVATOR_DISCARD_MERGE:
720 merged = bio_attempt_discard_merge(q, rq, bio);
733 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
735 char b[BDEVNAME_SIZE];
737 printk(KERN_INFO "attempt to access beyond end of device\n");
738 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
739 bio_devname(bio, b), bio->bi_opf,
740 (unsigned long long)bio_end_sector(bio),
741 (long long)maxsector);
744 #ifdef CONFIG_FAIL_MAKE_REQUEST
746 static DECLARE_FAULT_ATTR(fail_make_request);
748 static int __init setup_fail_make_request(char *str)
750 return setup_fault_attr(&fail_make_request, str);
752 __setup("fail_make_request=", setup_fail_make_request);
754 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
756 return part->make_it_fail && should_fail(&fail_make_request, bytes);
759 static int __init fail_make_request_debugfs(void)
761 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
762 NULL, &fail_make_request);
764 return PTR_ERR_OR_ZERO(dir);
767 late_initcall(fail_make_request_debugfs);
769 #else /* CONFIG_FAIL_MAKE_REQUEST */
771 static inline bool should_fail_request(struct hd_struct *part,
777 #endif /* CONFIG_FAIL_MAKE_REQUEST */
779 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
781 const int op = bio_op(bio);
783 if (part->policy && op_is_write(op)) {
784 char b[BDEVNAME_SIZE];
786 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
790 "generic_make_request: Trying to write "
791 "to read-only block-device %s (partno %d)\n",
792 bio_devname(bio, b), part->partno);
793 /* Older lvm-tools actually trigger this */
800 static noinline int should_fail_bio(struct bio *bio)
802 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
806 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
809 * Check whether this bio extends beyond the end of the device or partition.
810 * This may well happen - the kernel calls bread() without checking the size of
811 * the device, e.g., when mounting a file system.
813 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
815 unsigned int nr_sectors = bio_sectors(bio);
817 if (nr_sectors && maxsector &&
818 (nr_sectors > maxsector ||
819 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
820 handle_bad_sector(bio, maxsector);
827 * Remap block n of partition p to block n+start(p) of the disk.
829 static inline int blk_partition_remap(struct bio *bio)
835 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
838 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
840 if (unlikely(bio_check_ro(bio, p)))
844 * Zone reset does not include bi_size so bio_sectors() is always 0.
845 * Include a test for the reset op code and perform the remap if needed.
847 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
848 if (bio_check_eod(bio, part_nr_sects_read(p)))
850 bio->bi_iter.bi_sector += p->start_sect;
851 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
852 bio->bi_iter.bi_sector - p->start_sect);
861 static noinline_for_stack bool
862 generic_make_request_checks(struct bio *bio)
864 struct request_queue *q;
865 int nr_sectors = bio_sectors(bio);
866 blk_status_t status = BLK_STS_IOERR;
867 char b[BDEVNAME_SIZE];
871 q = bio->bi_disk->queue;
874 "generic_make_request: Trying to access "
875 "nonexistent block-device %s (%Lu)\n",
876 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
881 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
882 * if queue is not a request based queue.
884 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
887 if (should_fail_bio(bio))
890 if (bio->bi_partno) {
891 if (unlikely(blk_partition_remap(bio)))
894 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
896 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
901 * Filter flush bio's early so that make_request based
902 * drivers without flush support don't have to worry
905 if (op_is_flush(bio->bi_opf) &&
906 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
907 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
914 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
915 bio->bi_opf &= ~REQ_HIPRI;
917 switch (bio_op(bio)) {
919 if (!blk_queue_discard(q))
922 case REQ_OP_SECURE_ERASE:
923 if (!blk_queue_secure_erase(q))
926 case REQ_OP_WRITE_SAME:
927 if (!q->limits.max_write_same_sectors)
930 case REQ_OP_ZONE_RESET:
931 if (!blk_queue_is_zoned(q))
934 case REQ_OP_WRITE_ZEROES:
935 if (!q->limits.max_write_zeroes_sectors)
943 * Various block parts want %current->io_context and lazy ioc
944 * allocation ends up trading a lot of pain for a small amount of
945 * memory. Just allocate it upfront. This may fail and block
946 * layer knows how to live with it.
948 create_io_context(GFP_ATOMIC, q->node);
950 if (!blkcg_bio_issue_check(q, bio))
953 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
954 trace_block_bio_queue(q, bio);
955 /* Now that enqueuing has been traced, we need to trace
956 * completion as well.
958 bio_set_flag(bio, BIO_TRACE_COMPLETION);
963 status = BLK_STS_NOTSUPP;
965 bio->bi_status = status;
971 * generic_make_request - hand a buffer to its device driver for I/O
972 * @bio: The bio describing the location in memory and on the device.
974 * generic_make_request() is used to make I/O requests of block
975 * devices. It is passed a &struct bio, which describes the I/O that needs
978 * generic_make_request() does not return any status. The
979 * success/failure status of the request, along with notification of
980 * completion, is delivered asynchronously through the bio->bi_end_io
981 * function described (one day) else where.
983 * The caller of generic_make_request must make sure that bi_io_vec
984 * are set to describe the memory buffer, and that bi_dev and bi_sector are
985 * set to describe the device address, and the
986 * bi_end_io and optionally bi_private are set to describe how
987 * completion notification should be signaled.
989 * generic_make_request and the drivers it calls may use bi_next if this
990 * bio happens to be merged with someone else, and may resubmit the bio to
991 * a lower device by calling into generic_make_request recursively, which
992 * means the bio should NOT be touched after the call to ->make_request_fn.
994 blk_qc_t generic_make_request(struct bio *bio)
997 * bio_list_on_stack[0] contains bios submitted by the current
999 * bio_list_on_stack[1] contains bios that were submitted before
1000 * the current make_request_fn, but that haven't been processed
1003 struct bio_list bio_list_on_stack[2];
1004 blk_qc_t ret = BLK_QC_T_NONE;
1006 if (!generic_make_request_checks(bio))
1010 * We only want one ->make_request_fn to be active at a time, else
1011 * stack usage with stacked devices could be a problem. So use
1012 * current->bio_list to keep a list of requests submited by a
1013 * make_request_fn function. current->bio_list is also used as a
1014 * flag to say if generic_make_request is currently active in this
1015 * task or not. If it is NULL, then no make_request is active. If
1016 * it is non-NULL, then a make_request is active, and new requests
1017 * should be added at the tail
1019 if (current->bio_list) {
1020 bio_list_add(¤t->bio_list[0], bio);
1024 /* following loop may be a bit non-obvious, and so deserves some
1026 * Before entering the loop, bio->bi_next is NULL (as all callers
1027 * ensure that) so we have a list with a single bio.
1028 * We pretend that we have just taken it off a longer list, so
1029 * we assign bio_list to a pointer to the bio_list_on_stack,
1030 * thus initialising the bio_list of new bios to be
1031 * added. ->make_request() may indeed add some more bios
1032 * through a recursive call to generic_make_request. If it
1033 * did, we find a non-NULL value in bio_list and re-enter the loop
1034 * from the top. In this case we really did just take the bio
1035 * of the top of the list (no pretending) and so remove it from
1036 * bio_list, and call into ->make_request() again.
1038 BUG_ON(bio->bi_next);
1039 bio_list_init(&bio_list_on_stack[0]);
1040 current->bio_list = bio_list_on_stack;
1042 struct request_queue *q = bio->bi_disk->queue;
1043 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1044 BLK_MQ_REQ_NOWAIT : 0;
1046 if (likely(blk_queue_enter(q, flags) == 0)) {
1047 struct bio_list lower, same;
1049 /* Create a fresh bio_list for all subordinate requests */
1050 bio_list_on_stack[1] = bio_list_on_stack[0];
1051 bio_list_init(&bio_list_on_stack[0]);
1052 ret = q->make_request_fn(q, bio);
1056 /* sort new bios into those for a lower level
1057 * and those for the same level
1059 bio_list_init(&lower);
1060 bio_list_init(&same);
1061 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1062 if (q == bio->bi_disk->queue)
1063 bio_list_add(&same, bio);
1065 bio_list_add(&lower, bio);
1066 /* now assemble so we handle the lowest level first */
1067 bio_list_merge(&bio_list_on_stack[0], &lower);
1068 bio_list_merge(&bio_list_on_stack[0], &same);
1069 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1071 if (unlikely(!blk_queue_dying(q) &&
1072 (bio->bi_opf & REQ_NOWAIT)))
1073 bio_wouldblock_error(bio);
1077 bio = bio_list_pop(&bio_list_on_stack[0]);
1079 current->bio_list = NULL; /* deactivate */
1084 EXPORT_SYMBOL(generic_make_request);
1087 * direct_make_request - hand a buffer directly to its device driver for I/O
1088 * @bio: The bio describing the location in memory and on the device.
1090 * This function behaves like generic_make_request(), but does not protect
1091 * against recursion. Must only be used if the called driver is known
1092 * to not call generic_make_request (or direct_make_request) again from
1093 * its make_request function. (Calling direct_make_request again from
1094 * a workqueue is perfectly fine as that doesn't recurse).
1096 blk_qc_t direct_make_request(struct bio *bio)
1098 struct request_queue *q = bio->bi_disk->queue;
1099 bool nowait = bio->bi_opf & REQ_NOWAIT;
1102 if (!generic_make_request_checks(bio))
1103 return BLK_QC_T_NONE;
1105 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1106 if (nowait && !blk_queue_dying(q))
1107 bio->bi_status = BLK_STS_AGAIN;
1109 bio->bi_status = BLK_STS_IOERR;
1111 return BLK_QC_T_NONE;
1114 ret = q->make_request_fn(q, bio);
1118 EXPORT_SYMBOL_GPL(direct_make_request);
1121 * submit_bio - submit a bio to the block device layer for I/O
1122 * @bio: The &struct bio which describes the I/O
1124 * submit_bio() is very similar in purpose to generic_make_request(), and
1125 * uses that function to do most of the work. Both are fairly rough
1126 * interfaces; @bio must be presetup and ready for I/O.
1129 blk_qc_t submit_bio(struct bio *bio)
1131 if (blkcg_punt_bio_submit(bio))
1132 return BLK_QC_T_NONE;
1135 * If it's a regular read/write or a barrier with data attached,
1136 * go through the normal accounting stuff before submission.
1138 if (bio_has_data(bio)) {
1141 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1142 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1144 count = bio_sectors(bio);
1146 if (op_is_write(bio_op(bio))) {
1147 count_vm_events(PGPGOUT, count);
1149 task_io_account_read(bio->bi_iter.bi_size);
1150 count_vm_events(PGPGIN, count);
1153 if (unlikely(block_dump)) {
1154 char b[BDEVNAME_SIZE];
1155 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1156 current->comm, task_pid_nr(current),
1157 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1158 (unsigned long long)bio->bi_iter.bi_sector,
1159 bio_devname(bio, b), count);
1163 return generic_make_request(bio);
1165 EXPORT_SYMBOL(submit_bio);
1168 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1169 * for new the queue limits
1171 * @rq: the request being checked
1174 * @rq may have been made based on weaker limitations of upper-level queues
1175 * in request stacking drivers, and it may violate the limitation of @q.
1176 * Since the block layer and the underlying device driver trust @rq
1177 * after it is inserted to @q, it should be checked against @q before
1178 * the insertion using this generic function.
1180 * Request stacking drivers like request-based dm may change the queue
1181 * limits when retrying requests on other queues. Those requests need
1182 * to be checked against the new queue limits again during dispatch.
1184 static int blk_cloned_rq_check_limits(struct request_queue *q,
1187 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1188 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1189 __func__, blk_rq_sectors(rq),
1190 blk_queue_get_max_sectors(q, req_op(rq)));
1195 * queue's settings related to segment counting like q->bounce_pfn
1196 * may differ from that of other stacking queues.
1197 * Recalculate it to check the request correctly on this queue's
1200 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1201 if (rq->nr_phys_segments > queue_max_segments(q)) {
1202 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1203 __func__, rq->nr_phys_segments, queue_max_segments(q));
1211 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1212 * @q: the queue to submit the request
1213 * @rq: the request being queued
1215 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1217 if (blk_cloned_rq_check_limits(q, rq))
1218 return BLK_STS_IOERR;
1221 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1222 return BLK_STS_IOERR;
1224 if (blk_queue_io_stat(q))
1225 blk_account_io_start(rq, true);
1228 * Since we have a scheduler attached on the top device,
1229 * bypass a potential scheduler on the bottom device for
1232 return blk_mq_request_issue_directly(rq, true);
1234 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1237 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1238 * @rq: request to examine
1241 * A request could be merge of IOs which require different failure
1242 * handling. This function determines the number of bytes which
1243 * can be failed from the beginning of the request without
1244 * crossing into area which need to be retried further.
1247 * The number of bytes to fail.
1249 unsigned int blk_rq_err_bytes(const struct request *rq)
1251 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1252 unsigned int bytes = 0;
1255 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1256 return blk_rq_bytes(rq);
1259 * Currently the only 'mixing' which can happen is between
1260 * different fastfail types. We can safely fail portions
1261 * which have all the failfast bits that the first one has -
1262 * the ones which are at least as eager to fail as the first
1265 for (bio = rq->bio; bio; bio = bio->bi_next) {
1266 if ((bio->bi_opf & ff) != ff)
1268 bytes += bio->bi_iter.bi_size;
1271 /* this could lead to infinite loop */
1272 BUG_ON(blk_rq_bytes(rq) && !bytes);
1275 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1277 void blk_account_io_completion(struct request *req, unsigned int bytes)
1279 if (blk_do_io_stat(req)) {
1280 const int sgrp = op_stat_group(req_op(req));
1281 struct hd_struct *part;
1285 part_stat_add(part, sectors[sgrp], bytes >> 9);
1290 void blk_account_io_done(struct request *req, u64 now)
1293 * Account IO completion. flush_rq isn't accounted as a
1294 * normal IO on queueing nor completion. Accounting the
1295 * containing request is enough.
1297 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1298 const int sgrp = op_stat_group(req_op(req));
1299 struct hd_struct *part;
1304 update_io_ticks(part, jiffies);
1305 part_stat_inc(part, ios[sgrp]);
1306 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1307 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1308 part_dec_in_flight(req->q, part, rq_data_dir(req));
1310 hd_struct_put(part);
1315 void blk_account_io_start(struct request *rq, bool new_io)
1317 struct hd_struct *part;
1318 int rw = rq_data_dir(rq);
1320 if (!blk_do_io_stat(rq))
1327 part_stat_inc(part, merges[rw]);
1329 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1330 if (!hd_struct_try_get(part)) {
1332 * The partition is already being removed,
1333 * the request will be accounted on the disk only
1335 * We take a reference on disk->part0 although that
1336 * partition will never be deleted, so we can treat
1337 * it as any other partition.
1339 part = &rq->rq_disk->part0;
1340 hd_struct_get(part);
1342 part_inc_in_flight(rq->q, part, rw);
1346 update_io_ticks(part, jiffies);
1352 * Steal bios from a request and add them to a bio list.
1353 * The request must not have been partially completed before.
1355 void blk_steal_bios(struct bio_list *list, struct request *rq)
1359 list->tail->bi_next = rq->bio;
1361 list->head = rq->bio;
1362 list->tail = rq->biotail;
1370 EXPORT_SYMBOL_GPL(blk_steal_bios);
1373 * blk_update_request - Special helper function for request stacking drivers
1374 * @req: the request being processed
1375 * @error: block status code
1376 * @nr_bytes: number of bytes to complete @req
1379 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1380 * the request structure even if @req doesn't have leftover.
1381 * If @req has leftover, sets it up for the next range of segments.
1383 * This special helper function is only for request stacking drivers
1384 * (e.g. request-based dm) so that they can handle partial completion.
1385 * Actual device drivers should use blk_mq_end_request instead.
1387 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1388 * %false return from this function.
1391 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1392 * blk_rq_bytes() and in blk_update_request().
1395 * %false - this request doesn't have any more data
1396 * %true - this request has more data
1398 bool blk_update_request(struct request *req, blk_status_t error,
1399 unsigned int nr_bytes)
1403 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1408 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1409 !(req->rq_flags & RQF_QUIET)))
1410 print_req_error(req, error, __func__);
1412 blk_account_io_completion(req, nr_bytes);
1416 struct bio *bio = req->bio;
1417 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1419 if (bio_bytes == bio->bi_iter.bi_size)
1420 req->bio = bio->bi_next;
1422 /* Completion has already been traced */
1423 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1424 req_bio_endio(req, bio, bio_bytes, error);
1426 total_bytes += bio_bytes;
1427 nr_bytes -= bio_bytes;
1438 * Reset counters so that the request stacking driver
1439 * can find how many bytes remain in the request
1442 req->__data_len = 0;
1446 req->__data_len -= total_bytes;
1448 /* update sector only for requests with clear definition of sector */
1449 if (!blk_rq_is_passthrough(req))
1450 req->__sector += total_bytes >> 9;
1452 /* mixed attributes always follow the first bio */
1453 if (req->rq_flags & RQF_MIXED_MERGE) {
1454 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1455 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1458 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1460 * If total number of sectors is less than the first segment
1461 * size, something has gone terribly wrong.
1463 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1464 blk_dump_rq_flags(req, "request botched");
1465 req->__data_len = blk_rq_cur_bytes(req);
1468 /* recalculate the number of segments */
1469 req->nr_phys_segments = blk_recalc_rq_segments(req);
1474 EXPORT_SYMBOL_GPL(blk_update_request);
1476 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1478 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1479 * @rq: the request to be flushed
1482 * Flush all pages in @rq.
1484 void rq_flush_dcache_pages(struct request *rq)
1486 struct req_iterator iter;
1487 struct bio_vec bvec;
1489 rq_for_each_segment(bvec, rq, iter)
1490 flush_dcache_page(bvec.bv_page);
1492 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1496 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1497 * @q : the queue of the device being checked
1500 * Check if underlying low-level drivers of a device are busy.
1501 * If the drivers want to export their busy state, they must set own
1502 * exporting function using blk_queue_lld_busy() first.
1504 * Basically, this function is used only by request stacking drivers
1505 * to stop dispatching requests to underlying devices when underlying
1506 * devices are busy. This behavior helps more I/O merging on the queue
1507 * of the request stacking driver and prevents I/O throughput regression
1508 * on burst I/O load.
1511 * 0 - Not busy (The request stacking driver should dispatch request)
1512 * 1 - Busy (The request stacking driver should stop dispatching request)
1514 int blk_lld_busy(struct request_queue *q)
1516 if (queue_is_mq(q) && q->mq_ops->busy)
1517 return q->mq_ops->busy(q);
1521 EXPORT_SYMBOL_GPL(blk_lld_busy);
1524 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1525 * @rq: the clone request to be cleaned up
1528 * Free all bios in @rq for a cloned request.
1530 void blk_rq_unprep_clone(struct request *rq)
1534 while ((bio = rq->bio) != NULL) {
1535 rq->bio = bio->bi_next;
1540 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1543 * Copy attributes of the original request to the clone request.
1544 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1546 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1548 dst->__sector = blk_rq_pos(src);
1549 dst->__data_len = blk_rq_bytes(src);
1550 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1551 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1552 dst->special_vec = src->special_vec;
1554 dst->nr_phys_segments = src->nr_phys_segments;
1555 dst->ioprio = src->ioprio;
1556 dst->extra_len = src->extra_len;
1560 * blk_rq_prep_clone - Helper function to setup clone request
1561 * @rq: the request to be setup
1562 * @rq_src: original request to be cloned
1563 * @bs: bio_set that bios for clone are allocated from
1564 * @gfp_mask: memory allocation mask for bio
1565 * @bio_ctr: setup function to be called for each clone bio.
1566 * Returns %0 for success, non %0 for failure.
1567 * @data: private data to be passed to @bio_ctr
1570 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1571 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1572 * are not copied, and copying such parts is the caller's responsibility.
1573 * Also, pages which the original bios are pointing to are not copied
1574 * and the cloned bios just point same pages.
1575 * So cloned bios must be completed before original bios, which means
1576 * the caller must complete @rq before @rq_src.
1578 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1579 struct bio_set *bs, gfp_t gfp_mask,
1580 int (*bio_ctr)(struct bio *, struct bio *, void *),
1583 struct bio *bio, *bio_src;
1588 __rq_for_each_bio(bio_src, rq_src) {
1589 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1593 if (bio_ctr && bio_ctr(bio, bio_src, data))
1597 rq->biotail->bi_next = bio;
1600 rq->bio = rq->biotail = bio;
1603 __blk_rq_prep_clone(rq, rq_src);
1610 blk_rq_unprep_clone(rq);
1614 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1616 int kblockd_schedule_work(struct work_struct *work)
1618 return queue_work(kblockd_workqueue, work);
1620 EXPORT_SYMBOL(kblockd_schedule_work);
1622 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1624 return queue_work_on(cpu, kblockd_workqueue, work);
1626 EXPORT_SYMBOL(kblockd_schedule_work_on);
1628 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1629 unsigned long delay)
1631 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1633 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1636 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1637 * @plug: The &struct blk_plug that needs to be initialized
1640 * blk_start_plug() indicates to the block layer an intent by the caller
1641 * to submit multiple I/O requests in a batch. The block layer may use
1642 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1643 * is called. However, the block layer may choose to submit requests
1644 * before a call to blk_finish_plug() if the number of queued I/Os
1645 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1646 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1647 * the task schedules (see below).
1649 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1650 * pending I/O should the task end up blocking between blk_start_plug() and
1651 * blk_finish_plug(). This is important from a performance perspective, but
1652 * also ensures that we don't deadlock. For instance, if the task is blocking
1653 * for a memory allocation, memory reclaim could end up wanting to free a
1654 * page belonging to that request that is currently residing in our private
1655 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1656 * this kind of deadlock.
1658 void blk_start_plug(struct blk_plug *plug)
1660 struct task_struct *tsk = current;
1663 * If this is a nested plug, don't actually assign it.
1668 INIT_LIST_HEAD(&plug->mq_list);
1669 INIT_LIST_HEAD(&plug->cb_list);
1671 plug->multiple_queues = false;
1674 * Store ordering should not be needed here, since a potential
1675 * preempt will imply a full memory barrier
1679 EXPORT_SYMBOL(blk_start_plug);
1681 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1683 LIST_HEAD(callbacks);
1685 while (!list_empty(&plug->cb_list)) {
1686 list_splice_init(&plug->cb_list, &callbacks);
1688 while (!list_empty(&callbacks)) {
1689 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1692 list_del(&cb->list);
1693 cb->callback(cb, from_schedule);
1698 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1701 struct blk_plug *plug = current->plug;
1702 struct blk_plug_cb *cb;
1707 list_for_each_entry(cb, &plug->cb_list, list)
1708 if (cb->callback == unplug && cb->data == data)
1711 /* Not currently on the callback list */
1712 BUG_ON(size < sizeof(*cb));
1713 cb = kzalloc(size, GFP_ATOMIC);
1716 cb->callback = unplug;
1717 list_add(&cb->list, &plug->cb_list);
1721 EXPORT_SYMBOL(blk_check_plugged);
1723 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1725 flush_plug_callbacks(plug, from_schedule);
1727 if (!list_empty(&plug->mq_list))
1728 blk_mq_flush_plug_list(plug, from_schedule);
1732 * blk_finish_plug - mark the end of a batch of submitted I/O
1733 * @plug: The &struct blk_plug passed to blk_start_plug()
1736 * Indicate that a batch of I/O submissions is complete. This function
1737 * must be paired with an initial call to blk_start_plug(). The intent
1738 * is to allow the block layer to optimize I/O submission. See the
1739 * documentation for blk_start_plug() for more information.
1741 void blk_finish_plug(struct blk_plug *plug)
1743 if (plug != current->plug)
1745 blk_flush_plug_list(plug, false);
1747 current->plug = NULL;
1749 EXPORT_SYMBOL(blk_finish_plug);
1751 int __init blk_dev_init(void)
1753 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1754 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1755 FIELD_SIZEOF(struct request, cmd_flags));
1756 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1757 FIELD_SIZEOF(struct bio, bi_opf));
1759 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1760 kblockd_workqueue = alloc_workqueue("kblockd",
1761 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1762 if (!kblockd_workqueue)
1763 panic("Failed to create kblockd\n");
1765 blk_requestq_cachep = kmem_cache_create("request_queue",
1766 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1768 #ifdef CONFIG_DEBUG_FS
1769 blk_debugfs_root = debugfs_create_dir("block", NULL);