1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/debugfs.h>
38 #include <linux/bpf.h>
39 #include <linux/psi.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/block.h>
46 #include "blk-mq-sched.h"
48 #include "blk-rq-qos.h"
50 #ifdef CONFIG_DEBUG_FS
51 struct dentry *blk_debugfs_root;
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
60 DEFINE_IDA(blk_queue_ida);
63 * For queue allocation
65 struct kmem_cache *blk_requestq_cachep;
68 * Controlling structure to kblockd
70 static struct workqueue_struct *kblockd_workqueue;
73 * blk_queue_flag_set - atomically set a queue flag
74 * @flag: flag to be set
77 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
79 set_bit(flag, &q->queue_flags);
81 EXPORT_SYMBOL(blk_queue_flag_set);
84 * blk_queue_flag_clear - atomically clear a queue flag
85 * @flag: flag to be cleared
88 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
90 clear_bit(flag, &q->queue_flags);
92 EXPORT_SYMBOL(blk_queue_flag_clear);
95 * blk_queue_flag_test_and_set - atomically test and set a queue flag
96 * @flag: flag to be set
99 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
100 * the flag was already set.
102 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
104 return test_and_set_bit(flag, &q->queue_flags);
106 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
108 void blk_rq_init(struct request_queue *q, struct request *rq)
110 memset(rq, 0, sizeof(*rq));
112 INIT_LIST_HEAD(&rq->queuelist);
114 rq->__sector = (sector_t) -1;
115 INIT_HLIST_NODE(&rq->hash);
116 RB_CLEAR_NODE(&rq->rb_node);
118 rq->internal_tag = -1;
119 rq->start_time_ns = ktime_get_ns();
121 refcount_set(&rq->ref, 1);
123 EXPORT_SYMBOL(blk_rq_init);
125 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
126 static const char *const blk_op_name[] = {
130 REQ_OP_NAME(DISCARD),
131 REQ_OP_NAME(SECURE_ERASE),
132 REQ_OP_NAME(ZONE_RESET),
133 REQ_OP_NAME(ZONE_RESET_ALL),
134 REQ_OP_NAME(WRITE_SAME),
135 REQ_OP_NAME(WRITE_ZEROES),
136 REQ_OP_NAME(SCSI_IN),
137 REQ_OP_NAME(SCSI_OUT),
139 REQ_OP_NAME(DRV_OUT),
144 * blk_op_str - Return string XXX in the REQ_OP_XXX.
147 * Description: Centralize block layer function to convert REQ_OP_XXX into
148 * string format. Useful in the debugging and tracing bio or request. For
149 * invalid REQ_OP_XXX it returns string "UNKNOWN".
151 inline const char *blk_op_str(unsigned int op)
153 const char *op_str = "UNKNOWN";
155 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
156 op_str = blk_op_name[op];
160 EXPORT_SYMBOL_GPL(blk_op_str);
162 static const struct {
166 [BLK_STS_OK] = { 0, "" },
167 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
168 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
169 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
170 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
171 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
172 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
173 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
174 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
175 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
176 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
177 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
179 /* device mapper special case, should not leak out: */
180 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
182 /* everything else not covered above: */
183 [BLK_STS_IOERR] = { -EIO, "I/O" },
186 blk_status_t errno_to_blk_status(int errno)
190 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
191 if (blk_errors[i].errno == errno)
192 return (__force blk_status_t)i;
195 return BLK_STS_IOERR;
197 EXPORT_SYMBOL_GPL(errno_to_blk_status);
199 int blk_status_to_errno(blk_status_t status)
201 int idx = (__force int)status;
203 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
205 return blk_errors[idx].errno;
207 EXPORT_SYMBOL_GPL(blk_status_to_errno);
209 static void print_req_error(struct request *req, blk_status_t status,
212 int idx = (__force int)status;
214 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
217 printk_ratelimited(KERN_ERR
218 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
219 "phys_seg %u prio class %u\n",
220 caller, blk_errors[idx].name,
221 req->rq_disk ? req->rq_disk->disk_name : "?",
222 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
223 req->cmd_flags & ~REQ_OP_MASK,
224 req->nr_phys_segments,
225 IOPRIO_PRIO_CLASS(req->ioprio));
228 static void req_bio_endio(struct request *rq, struct bio *bio,
229 unsigned int nbytes, blk_status_t error)
232 bio->bi_status = error;
234 if (unlikely(rq->rq_flags & RQF_QUIET))
235 bio_set_flag(bio, BIO_QUIET);
237 bio_advance(bio, nbytes);
239 /* don't actually finish bio if it's part of flush sequence */
240 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
244 void blk_dump_rq_flags(struct request *rq, char *msg)
246 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
247 rq->rq_disk ? rq->rq_disk->disk_name : "?",
248 (unsigned long long) rq->cmd_flags);
250 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
251 (unsigned long long)blk_rq_pos(rq),
252 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
253 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
254 rq->bio, rq->biotail, blk_rq_bytes(rq));
256 EXPORT_SYMBOL(blk_dump_rq_flags);
259 * blk_sync_queue - cancel any pending callbacks on a queue
263 * The block layer may perform asynchronous callback activity
264 * on a queue, such as calling the unplug function after a timeout.
265 * A block device may call blk_sync_queue to ensure that any
266 * such activity is cancelled, thus allowing it to release resources
267 * that the callbacks might use. The caller must already have made sure
268 * that its ->make_request_fn will not re-add plugging prior to calling
271 * This function does not cancel any asynchronous activity arising
272 * out of elevator or throttling code. That would require elevator_exit()
273 * and blkcg_exit_queue() to be called with queue lock initialized.
276 void blk_sync_queue(struct request_queue *q)
278 del_timer_sync(&q->timeout);
279 cancel_work_sync(&q->timeout_work);
281 EXPORT_SYMBOL(blk_sync_queue);
284 * blk_set_pm_only - increment pm_only counter
285 * @q: request queue pointer
287 void blk_set_pm_only(struct request_queue *q)
289 atomic_inc(&q->pm_only);
291 EXPORT_SYMBOL_GPL(blk_set_pm_only);
293 void blk_clear_pm_only(struct request_queue *q)
297 pm_only = atomic_dec_return(&q->pm_only);
298 WARN_ON_ONCE(pm_only < 0);
300 wake_up_all(&q->mq_freeze_wq);
302 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
304 void blk_put_queue(struct request_queue *q)
306 kobject_put(&q->kobj);
308 EXPORT_SYMBOL(blk_put_queue);
310 void blk_set_queue_dying(struct request_queue *q)
312 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
315 * When queue DYING flag is set, we need to block new req
316 * entering queue, so we call blk_freeze_queue_start() to
317 * prevent I/O from crossing blk_queue_enter().
319 blk_freeze_queue_start(q);
322 blk_mq_wake_waiters(q);
324 /* Make blk_queue_enter() reexamine the DYING flag. */
325 wake_up_all(&q->mq_freeze_wq);
327 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
330 * blk_cleanup_queue - shutdown a request queue
331 * @q: request queue to shutdown
333 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
334 * put it. All future requests will be failed immediately with -ENODEV.
336 void blk_cleanup_queue(struct request_queue *q)
338 /* mark @q DYING, no new request or merges will be allowed afterwards */
339 mutex_lock(&q->sysfs_lock);
340 blk_set_queue_dying(q);
342 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
343 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
344 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
345 mutex_unlock(&q->sysfs_lock);
348 * Drain all requests queued before DYING marking. Set DEAD flag to
349 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
350 * after draining finished.
356 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
358 /* for synchronous bio-based driver finish in-flight integrity i/o */
359 blk_flush_integrity();
361 /* @q won't process any more request, flush async actions */
362 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
366 blk_mq_exit_queue(q);
369 * In theory, request pool of sched_tags belongs to request queue.
370 * However, the current implementation requires tag_set for freeing
371 * requests, so free the pool now.
373 * Queue has become frozen, there can't be any in-queue requests, so
374 * it is safe to free requests now.
376 mutex_lock(&q->sysfs_lock);
378 blk_mq_sched_free_requests(q);
379 mutex_unlock(&q->sysfs_lock);
381 percpu_ref_exit(&q->q_usage_counter);
383 /* @q is and will stay empty, shutdown and put */
386 EXPORT_SYMBOL(blk_cleanup_queue);
388 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
390 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
392 EXPORT_SYMBOL(blk_alloc_queue);
395 * blk_queue_enter() - try to increase q->q_usage_counter
396 * @q: request queue pointer
397 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
399 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
401 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
404 bool success = false;
407 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
409 * The code that increments the pm_only counter is
410 * responsible for ensuring that that counter is
411 * globally visible before the queue is unfrozen.
413 if (pm || !blk_queue_pm_only(q)) {
416 percpu_ref_put(&q->q_usage_counter);
424 if (flags & BLK_MQ_REQ_NOWAIT)
428 * read pair of barrier in blk_freeze_queue_start(),
429 * we need to order reading __PERCPU_REF_DEAD flag of
430 * .q_usage_counter and reading .mq_freeze_depth or
431 * queue dying flag, otherwise the following wait may
432 * never return if the two reads are reordered.
436 wait_event(q->mq_freeze_wq,
437 (!q->mq_freeze_depth &&
438 (pm || (blk_pm_request_resume(q),
439 !blk_queue_pm_only(q)))) ||
441 if (blk_queue_dying(q))
446 void blk_queue_exit(struct request_queue *q)
448 percpu_ref_put(&q->q_usage_counter);
451 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
453 struct request_queue *q =
454 container_of(ref, struct request_queue, q_usage_counter);
456 wake_up_all(&q->mq_freeze_wq);
459 static void blk_rq_timed_out_timer(struct timer_list *t)
461 struct request_queue *q = from_timer(q, t, timeout);
463 kblockd_schedule_work(&q->timeout_work);
466 static void blk_timeout_work(struct work_struct *work)
471 * blk_alloc_queue_node - allocate a request queue
472 * @gfp_mask: memory allocation flags
473 * @node_id: NUMA node to allocate memory from
475 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
477 struct request_queue *q;
480 q = kmem_cache_alloc_node(blk_requestq_cachep,
481 gfp_mask | __GFP_ZERO, node_id);
485 q->last_merge = NULL;
487 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
491 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
495 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
496 if (!q->backing_dev_info)
499 q->stats = blk_alloc_queue_stats();
503 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
504 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
505 q->backing_dev_info->name = "block";
508 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
509 laptop_mode_timer_fn, 0);
510 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
511 INIT_WORK(&q->timeout_work, blk_timeout_work);
512 INIT_LIST_HEAD(&q->icq_list);
513 #ifdef CONFIG_BLK_CGROUP
514 INIT_LIST_HEAD(&q->blkg_list);
517 kobject_init(&q->kobj, &blk_queue_ktype);
519 #ifdef CONFIG_BLK_DEV_IO_TRACE
520 mutex_init(&q->blk_trace_mutex);
522 mutex_init(&q->sysfs_lock);
523 mutex_init(&q->sysfs_dir_lock);
524 spin_lock_init(&q->queue_lock);
526 init_waitqueue_head(&q->mq_freeze_wq);
527 mutex_init(&q->mq_freeze_lock);
530 * Init percpu_ref in atomic mode so that it's faster to shutdown.
531 * See blk_register_queue() for details.
533 if (percpu_ref_init(&q->q_usage_counter,
534 blk_queue_usage_counter_release,
535 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
538 if (blkcg_init_queue(q))
544 percpu_ref_exit(&q->q_usage_counter);
546 blk_free_queue_stats(q->stats);
548 bdi_put(q->backing_dev_info);
550 bioset_exit(&q->bio_split);
552 ida_simple_remove(&blk_queue_ida, q->id);
554 kmem_cache_free(blk_requestq_cachep, q);
557 EXPORT_SYMBOL(blk_alloc_queue_node);
559 bool blk_get_queue(struct request_queue *q)
561 if (likely(!blk_queue_dying(q))) {
568 EXPORT_SYMBOL(blk_get_queue);
571 * blk_get_request - allocate a request
572 * @q: request queue to allocate a request for
573 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
574 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
576 struct request *blk_get_request(struct request_queue *q, unsigned int op,
577 blk_mq_req_flags_t flags)
581 WARN_ON_ONCE(op & REQ_NOWAIT);
582 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
584 req = blk_mq_alloc_request(q, op, flags);
585 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
586 q->mq_ops->initialize_rq_fn(req);
590 EXPORT_SYMBOL(blk_get_request);
592 void blk_put_request(struct request *req)
594 blk_mq_free_request(req);
596 EXPORT_SYMBOL(blk_put_request);
598 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
599 unsigned int nr_segs)
601 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
603 if (!ll_back_merge_fn(req, bio, nr_segs))
606 trace_block_bio_backmerge(req->q, req, bio);
607 rq_qos_merge(req->q, req, bio);
609 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
610 blk_rq_set_mixed_merge(req);
612 req->biotail->bi_next = bio;
614 req->__data_len += bio->bi_iter.bi_size;
616 blk_account_io_start(req, false);
620 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
621 unsigned int nr_segs)
623 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
625 if (!ll_front_merge_fn(req, bio, nr_segs))
628 trace_block_bio_frontmerge(req->q, req, bio);
629 rq_qos_merge(req->q, req, bio);
631 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
632 blk_rq_set_mixed_merge(req);
634 bio->bi_next = req->bio;
637 req->__sector = bio->bi_iter.bi_sector;
638 req->__data_len += bio->bi_iter.bi_size;
640 blk_account_io_start(req, false);
644 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
647 unsigned short segments = blk_rq_nr_discard_segments(req);
649 if (segments >= queue_max_discard_segments(q))
651 if (blk_rq_sectors(req) + bio_sectors(bio) >
652 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
655 rq_qos_merge(q, req, bio);
657 req->biotail->bi_next = bio;
659 req->__data_len += bio->bi_iter.bi_size;
660 req->nr_phys_segments = segments + 1;
662 blk_account_io_start(req, false);
665 req_set_nomerge(q, req);
670 * blk_attempt_plug_merge - try to merge with %current's plugged list
671 * @q: request_queue new bio is being queued at
672 * @bio: new bio being queued
673 * @nr_segs: number of segments in @bio
674 * @same_queue_rq: pointer to &struct request that gets filled in when
675 * another request associated with @q is found on the plug list
676 * (optional, may be %NULL)
678 * Determine whether @bio being queued on @q can be merged with a request
679 * on %current's plugged list. Returns %true if merge was successful,
682 * Plugging coalesces IOs from the same issuer for the same purpose without
683 * going through @q->queue_lock. As such it's more of an issuing mechanism
684 * than scheduling, and the request, while may have elvpriv data, is not
685 * added on the elevator at this point. In addition, we don't have
686 * reliable access to the elevator outside queue lock. Only check basic
687 * merging parameters without querying the elevator.
689 * Caller must ensure !blk_queue_nomerges(q) beforehand.
691 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
692 unsigned int nr_segs, struct request **same_queue_rq)
694 struct blk_plug *plug;
696 struct list_head *plug_list;
698 plug = blk_mq_plug(q, bio);
702 plug_list = &plug->mq_list;
704 list_for_each_entry_reverse(rq, plug_list, queuelist) {
707 if (rq->q == q && same_queue_rq) {
709 * Only blk-mq multiple hardware queues case checks the
710 * rq in the same queue, there should be only one such
716 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
719 switch (blk_try_merge(rq, bio)) {
720 case ELEVATOR_BACK_MERGE:
721 merged = bio_attempt_back_merge(rq, bio, nr_segs);
723 case ELEVATOR_FRONT_MERGE:
724 merged = bio_attempt_front_merge(rq, bio, nr_segs);
726 case ELEVATOR_DISCARD_MERGE:
727 merged = bio_attempt_discard_merge(q, rq, bio);
740 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
742 char b[BDEVNAME_SIZE];
744 printk(KERN_INFO "attempt to access beyond end of device\n");
745 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
746 bio_devname(bio, b), bio->bi_opf,
747 (unsigned long long)bio_end_sector(bio),
748 (long long)maxsector);
751 #ifdef CONFIG_FAIL_MAKE_REQUEST
753 static DECLARE_FAULT_ATTR(fail_make_request);
755 static int __init setup_fail_make_request(char *str)
757 return setup_fault_attr(&fail_make_request, str);
759 __setup("fail_make_request=", setup_fail_make_request);
761 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
763 return part->make_it_fail && should_fail(&fail_make_request, bytes);
766 static int __init fail_make_request_debugfs(void)
768 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
769 NULL, &fail_make_request);
771 return PTR_ERR_OR_ZERO(dir);
774 late_initcall(fail_make_request_debugfs);
776 #else /* CONFIG_FAIL_MAKE_REQUEST */
778 static inline bool should_fail_request(struct hd_struct *part,
784 #endif /* CONFIG_FAIL_MAKE_REQUEST */
786 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
788 const int op = bio_op(bio);
790 if (part->policy && op_is_write(op)) {
791 char b[BDEVNAME_SIZE];
793 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
797 "generic_make_request: Trying to write "
798 "to read-only block-device %s (partno %d)\n",
799 bio_devname(bio, b), part->partno);
800 /* Older lvm-tools actually trigger this */
807 static noinline int should_fail_bio(struct bio *bio)
809 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
813 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
816 * Check whether this bio extends beyond the end of the device or partition.
817 * This may well happen - the kernel calls bread() without checking the size of
818 * the device, e.g., when mounting a file system.
820 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
822 unsigned int nr_sectors = bio_sectors(bio);
824 if (nr_sectors && maxsector &&
825 (nr_sectors > maxsector ||
826 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
827 handle_bad_sector(bio, maxsector);
834 * Remap block n of partition p to block n+start(p) of the disk.
836 static inline int blk_partition_remap(struct bio *bio)
842 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
845 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
847 if (unlikely(bio_check_ro(bio, p)))
851 * Zone reset does not include bi_size so bio_sectors() is always 0.
852 * Include a test for the reset op code and perform the remap if needed.
854 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
855 if (bio_check_eod(bio, part_nr_sects_read(p)))
857 bio->bi_iter.bi_sector += p->start_sect;
858 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
859 bio->bi_iter.bi_sector - p->start_sect);
868 static noinline_for_stack bool
869 generic_make_request_checks(struct bio *bio)
871 struct request_queue *q;
872 int nr_sectors = bio_sectors(bio);
873 blk_status_t status = BLK_STS_IOERR;
874 char b[BDEVNAME_SIZE];
878 q = bio->bi_disk->queue;
881 "generic_make_request: Trying to access "
882 "nonexistent block-device %s (%Lu)\n",
883 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
888 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
889 * if queue is not a request based queue.
891 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
894 if (should_fail_bio(bio))
897 if (bio->bi_partno) {
898 if (unlikely(blk_partition_remap(bio)))
901 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
903 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
908 * Filter flush bio's early so that make_request based
909 * drivers without flush support don't have to worry
912 if (op_is_flush(bio->bi_opf) &&
913 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
914 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
921 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
922 bio->bi_opf &= ~REQ_HIPRI;
924 switch (bio_op(bio)) {
926 if (!blk_queue_discard(q))
929 case REQ_OP_SECURE_ERASE:
930 if (!blk_queue_secure_erase(q))
933 case REQ_OP_WRITE_SAME:
934 if (!q->limits.max_write_same_sectors)
937 case REQ_OP_ZONE_RESET:
938 if (!blk_queue_is_zoned(q))
941 case REQ_OP_ZONE_RESET_ALL:
942 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
945 case REQ_OP_WRITE_ZEROES:
946 if (!q->limits.max_write_zeroes_sectors)
954 * Various block parts want %current->io_context and lazy ioc
955 * allocation ends up trading a lot of pain for a small amount of
956 * memory. Just allocate it upfront. This may fail and block
957 * layer knows how to live with it.
959 create_io_context(GFP_ATOMIC, q->node);
961 if (!blkcg_bio_issue_check(q, bio))
964 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
965 trace_block_bio_queue(q, bio);
966 /* Now that enqueuing has been traced, we need to trace
967 * completion as well.
969 bio_set_flag(bio, BIO_TRACE_COMPLETION);
974 status = BLK_STS_NOTSUPP;
976 bio->bi_status = status;
982 * generic_make_request - hand a buffer to its device driver for I/O
983 * @bio: The bio describing the location in memory and on the device.
985 * generic_make_request() is used to make I/O requests of block
986 * devices. It is passed a &struct bio, which describes the I/O that needs
989 * generic_make_request() does not return any status. The
990 * success/failure status of the request, along with notification of
991 * completion, is delivered asynchronously through the bio->bi_end_io
992 * function described (one day) else where.
994 * The caller of generic_make_request must make sure that bi_io_vec
995 * are set to describe the memory buffer, and that bi_dev and bi_sector are
996 * set to describe the device address, and the
997 * bi_end_io and optionally bi_private are set to describe how
998 * completion notification should be signaled.
1000 * generic_make_request and the drivers it calls may use bi_next if this
1001 * bio happens to be merged with someone else, and may resubmit the bio to
1002 * a lower device by calling into generic_make_request recursively, which
1003 * means the bio should NOT be touched after the call to ->make_request_fn.
1005 blk_qc_t generic_make_request(struct bio *bio)
1008 * bio_list_on_stack[0] contains bios submitted by the current
1010 * bio_list_on_stack[1] contains bios that were submitted before
1011 * the current make_request_fn, but that haven't been processed
1014 struct bio_list bio_list_on_stack[2];
1015 blk_qc_t ret = BLK_QC_T_NONE;
1017 if (!generic_make_request_checks(bio))
1021 * We only want one ->make_request_fn to be active at a time, else
1022 * stack usage with stacked devices could be a problem. So use
1023 * current->bio_list to keep a list of requests submited by a
1024 * make_request_fn function. current->bio_list is also used as a
1025 * flag to say if generic_make_request is currently active in this
1026 * task or not. If it is NULL, then no make_request is active. If
1027 * it is non-NULL, then a make_request is active, and new requests
1028 * should be added at the tail
1030 if (current->bio_list) {
1031 bio_list_add(¤t->bio_list[0], bio);
1035 /* following loop may be a bit non-obvious, and so deserves some
1037 * Before entering the loop, bio->bi_next is NULL (as all callers
1038 * ensure that) so we have a list with a single bio.
1039 * We pretend that we have just taken it off a longer list, so
1040 * we assign bio_list to a pointer to the bio_list_on_stack,
1041 * thus initialising the bio_list of new bios to be
1042 * added. ->make_request() may indeed add some more bios
1043 * through a recursive call to generic_make_request. If it
1044 * did, we find a non-NULL value in bio_list and re-enter the loop
1045 * from the top. In this case we really did just take the bio
1046 * of the top of the list (no pretending) and so remove it from
1047 * bio_list, and call into ->make_request() again.
1049 BUG_ON(bio->bi_next);
1050 bio_list_init(&bio_list_on_stack[0]);
1051 current->bio_list = bio_list_on_stack;
1053 struct request_queue *q = bio->bi_disk->queue;
1054 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1055 BLK_MQ_REQ_NOWAIT : 0;
1057 if (likely(blk_queue_enter(q, flags) == 0)) {
1058 struct bio_list lower, same;
1060 /* Create a fresh bio_list for all subordinate requests */
1061 bio_list_on_stack[1] = bio_list_on_stack[0];
1062 bio_list_init(&bio_list_on_stack[0]);
1063 ret = q->make_request_fn(q, bio);
1067 /* sort new bios into those for a lower level
1068 * and those for the same level
1070 bio_list_init(&lower);
1071 bio_list_init(&same);
1072 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1073 if (q == bio->bi_disk->queue)
1074 bio_list_add(&same, bio);
1076 bio_list_add(&lower, bio);
1077 /* now assemble so we handle the lowest level first */
1078 bio_list_merge(&bio_list_on_stack[0], &lower);
1079 bio_list_merge(&bio_list_on_stack[0], &same);
1080 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1082 if (unlikely(!blk_queue_dying(q) &&
1083 (bio->bi_opf & REQ_NOWAIT)))
1084 bio_wouldblock_error(bio);
1088 bio = bio_list_pop(&bio_list_on_stack[0]);
1090 current->bio_list = NULL; /* deactivate */
1095 EXPORT_SYMBOL(generic_make_request);
1098 * direct_make_request - hand a buffer directly to its device driver for I/O
1099 * @bio: The bio describing the location in memory and on the device.
1101 * This function behaves like generic_make_request(), but does not protect
1102 * against recursion. Must only be used if the called driver is known
1103 * to not call generic_make_request (or direct_make_request) again from
1104 * its make_request function. (Calling direct_make_request again from
1105 * a workqueue is perfectly fine as that doesn't recurse).
1107 blk_qc_t direct_make_request(struct bio *bio)
1109 struct request_queue *q = bio->bi_disk->queue;
1110 bool nowait = bio->bi_opf & REQ_NOWAIT;
1113 if (!generic_make_request_checks(bio))
1114 return BLK_QC_T_NONE;
1116 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1117 if (nowait && !blk_queue_dying(q))
1118 bio->bi_status = BLK_STS_AGAIN;
1120 bio->bi_status = BLK_STS_IOERR;
1122 return BLK_QC_T_NONE;
1125 ret = q->make_request_fn(q, bio);
1129 EXPORT_SYMBOL_GPL(direct_make_request);
1132 * submit_bio - submit a bio to the block device layer for I/O
1133 * @bio: The &struct bio which describes the I/O
1135 * submit_bio() is very similar in purpose to generic_make_request(), and
1136 * uses that function to do most of the work. Both are fairly rough
1137 * interfaces; @bio must be presetup and ready for I/O.
1140 blk_qc_t submit_bio(struct bio *bio)
1142 bool workingset_read = false;
1143 unsigned long pflags;
1146 if (blkcg_punt_bio_submit(bio))
1147 return BLK_QC_T_NONE;
1150 * If it's a regular read/write or a barrier with data attached,
1151 * go through the normal accounting stuff before submission.
1153 if (bio_has_data(bio)) {
1156 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1157 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1159 count = bio_sectors(bio);
1161 if (op_is_write(bio_op(bio))) {
1162 count_vm_events(PGPGOUT, count);
1164 if (bio_flagged(bio, BIO_WORKINGSET))
1165 workingset_read = true;
1166 task_io_account_read(bio->bi_iter.bi_size);
1167 count_vm_events(PGPGIN, count);
1170 if (unlikely(block_dump)) {
1171 char b[BDEVNAME_SIZE];
1172 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1173 current->comm, task_pid_nr(current),
1174 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1175 (unsigned long long)bio->bi_iter.bi_sector,
1176 bio_devname(bio, b), count);
1181 * If we're reading data that is part of the userspace
1182 * workingset, count submission time as memory stall. When the
1183 * device is congested, or the submitting cgroup IO-throttled,
1184 * submission can be a significant part of overall IO time.
1186 if (workingset_read)
1187 psi_memstall_enter(&pflags);
1189 ret = generic_make_request(bio);
1191 if (workingset_read)
1192 psi_memstall_leave(&pflags);
1196 EXPORT_SYMBOL(submit_bio);
1199 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1200 * for new the queue limits
1202 * @rq: the request being checked
1205 * @rq may have been made based on weaker limitations of upper-level queues
1206 * in request stacking drivers, and it may violate the limitation of @q.
1207 * Since the block layer and the underlying device driver trust @rq
1208 * after it is inserted to @q, it should be checked against @q before
1209 * the insertion using this generic function.
1211 * Request stacking drivers like request-based dm may change the queue
1212 * limits when retrying requests on other queues. Those requests need
1213 * to be checked against the new queue limits again during dispatch.
1215 static int blk_cloned_rq_check_limits(struct request_queue *q,
1218 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1219 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1220 __func__, blk_rq_sectors(rq),
1221 blk_queue_get_max_sectors(q, req_op(rq)));
1226 * queue's settings related to segment counting like q->bounce_pfn
1227 * may differ from that of other stacking queues.
1228 * Recalculate it to check the request correctly on this queue's
1231 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1232 if (rq->nr_phys_segments > queue_max_segments(q)) {
1233 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1234 __func__, rq->nr_phys_segments, queue_max_segments(q));
1242 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1243 * @q: the queue to submit the request
1244 * @rq: the request being queued
1246 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1248 if (blk_cloned_rq_check_limits(q, rq))
1249 return BLK_STS_IOERR;
1252 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1253 return BLK_STS_IOERR;
1255 if (blk_queue_io_stat(q))
1256 blk_account_io_start(rq, true);
1259 * Since we have a scheduler attached on the top device,
1260 * bypass a potential scheduler on the bottom device for
1263 return blk_mq_request_issue_directly(rq, true);
1265 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1268 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1269 * @rq: request to examine
1272 * A request could be merge of IOs which require different failure
1273 * handling. This function determines the number of bytes which
1274 * can be failed from the beginning of the request without
1275 * crossing into area which need to be retried further.
1278 * The number of bytes to fail.
1280 unsigned int blk_rq_err_bytes(const struct request *rq)
1282 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1283 unsigned int bytes = 0;
1286 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1287 return blk_rq_bytes(rq);
1290 * Currently the only 'mixing' which can happen is between
1291 * different fastfail types. We can safely fail portions
1292 * which have all the failfast bits that the first one has -
1293 * the ones which are at least as eager to fail as the first
1296 for (bio = rq->bio; bio; bio = bio->bi_next) {
1297 if ((bio->bi_opf & ff) != ff)
1299 bytes += bio->bi_iter.bi_size;
1302 /* this could lead to infinite loop */
1303 BUG_ON(blk_rq_bytes(rq) && !bytes);
1306 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1308 void blk_account_io_completion(struct request *req, unsigned int bytes)
1310 if (blk_do_io_stat(req)) {
1311 const int sgrp = op_stat_group(req_op(req));
1312 struct hd_struct *part;
1316 part_stat_add(part, sectors[sgrp], bytes >> 9);
1321 void blk_account_io_done(struct request *req, u64 now)
1324 * Account IO completion. flush_rq isn't accounted as a
1325 * normal IO on queueing nor completion. Accounting the
1326 * containing request is enough.
1328 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1329 const int sgrp = op_stat_group(req_op(req));
1330 struct hd_struct *part;
1335 update_io_ticks(part, jiffies);
1336 part_stat_inc(part, ios[sgrp]);
1337 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1338 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1339 part_dec_in_flight(req->q, part, rq_data_dir(req));
1341 hd_struct_put(part);
1346 void blk_account_io_start(struct request *rq, bool new_io)
1348 struct hd_struct *part;
1349 int rw = rq_data_dir(rq);
1351 if (!blk_do_io_stat(rq))
1358 part_stat_inc(part, merges[rw]);
1360 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1361 if (!hd_struct_try_get(part)) {
1363 * The partition is already being removed,
1364 * the request will be accounted on the disk only
1366 * We take a reference on disk->part0 although that
1367 * partition will never be deleted, so we can treat
1368 * it as any other partition.
1370 part = &rq->rq_disk->part0;
1371 hd_struct_get(part);
1373 part_inc_in_flight(rq->q, part, rw);
1377 update_io_ticks(part, jiffies);
1383 * Steal bios from a request and add them to a bio list.
1384 * The request must not have been partially completed before.
1386 void blk_steal_bios(struct bio_list *list, struct request *rq)
1390 list->tail->bi_next = rq->bio;
1392 list->head = rq->bio;
1393 list->tail = rq->biotail;
1401 EXPORT_SYMBOL_GPL(blk_steal_bios);
1404 * blk_update_request - Special helper function for request stacking drivers
1405 * @req: the request being processed
1406 * @error: block status code
1407 * @nr_bytes: number of bytes to complete @req
1410 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1411 * the request structure even if @req doesn't have leftover.
1412 * If @req has leftover, sets it up for the next range of segments.
1414 * This special helper function is only for request stacking drivers
1415 * (e.g. request-based dm) so that they can handle partial completion.
1416 * Actual device drivers should use blk_mq_end_request instead.
1418 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1419 * %false return from this function.
1422 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1423 * blk_rq_bytes() and in blk_update_request().
1426 * %false - this request doesn't have any more data
1427 * %true - this request has more data
1429 bool blk_update_request(struct request *req, blk_status_t error,
1430 unsigned int nr_bytes)
1434 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1439 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1440 !(req->rq_flags & RQF_QUIET)))
1441 print_req_error(req, error, __func__);
1443 blk_account_io_completion(req, nr_bytes);
1447 struct bio *bio = req->bio;
1448 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1450 if (bio_bytes == bio->bi_iter.bi_size)
1451 req->bio = bio->bi_next;
1453 /* Completion has already been traced */
1454 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1455 req_bio_endio(req, bio, bio_bytes, error);
1457 total_bytes += bio_bytes;
1458 nr_bytes -= bio_bytes;
1469 * Reset counters so that the request stacking driver
1470 * can find how many bytes remain in the request
1473 req->__data_len = 0;
1477 req->__data_len -= total_bytes;
1479 /* update sector only for requests with clear definition of sector */
1480 if (!blk_rq_is_passthrough(req))
1481 req->__sector += total_bytes >> 9;
1483 /* mixed attributes always follow the first bio */
1484 if (req->rq_flags & RQF_MIXED_MERGE) {
1485 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1486 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1489 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1491 * If total number of sectors is less than the first segment
1492 * size, something has gone terribly wrong.
1494 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1495 blk_dump_rq_flags(req, "request botched");
1496 req->__data_len = blk_rq_cur_bytes(req);
1499 /* recalculate the number of segments */
1500 req->nr_phys_segments = blk_recalc_rq_segments(req);
1505 EXPORT_SYMBOL_GPL(blk_update_request);
1507 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1509 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1510 * @rq: the request to be flushed
1513 * Flush all pages in @rq.
1515 void rq_flush_dcache_pages(struct request *rq)
1517 struct req_iterator iter;
1518 struct bio_vec bvec;
1520 rq_for_each_segment(bvec, rq, iter)
1521 flush_dcache_page(bvec.bv_page);
1523 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1527 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1528 * @q : the queue of the device being checked
1531 * Check if underlying low-level drivers of a device are busy.
1532 * If the drivers want to export their busy state, they must set own
1533 * exporting function using blk_queue_lld_busy() first.
1535 * Basically, this function is used only by request stacking drivers
1536 * to stop dispatching requests to underlying devices when underlying
1537 * devices are busy. This behavior helps more I/O merging on the queue
1538 * of the request stacking driver and prevents I/O throughput regression
1539 * on burst I/O load.
1542 * 0 - Not busy (The request stacking driver should dispatch request)
1543 * 1 - Busy (The request stacking driver should stop dispatching request)
1545 int blk_lld_busy(struct request_queue *q)
1547 if (queue_is_mq(q) && q->mq_ops->busy)
1548 return q->mq_ops->busy(q);
1552 EXPORT_SYMBOL_GPL(blk_lld_busy);
1555 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1556 * @rq: the clone request to be cleaned up
1559 * Free all bios in @rq for a cloned request.
1561 void blk_rq_unprep_clone(struct request *rq)
1565 while ((bio = rq->bio) != NULL) {
1566 rq->bio = bio->bi_next;
1571 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1574 * Copy attributes of the original request to the clone request.
1575 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1577 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1579 dst->__sector = blk_rq_pos(src);
1580 dst->__data_len = blk_rq_bytes(src);
1581 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1582 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1583 dst->special_vec = src->special_vec;
1585 dst->nr_phys_segments = src->nr_phys_segments;
1586 dst->ioprio = src->ioprio;
1587 dst->extra_len = src->extra_len;
1591 * blk_rq_prep_clone - Helper function to setup clone request
1592 * @rq: the request to be setup
1593 * @rq_src: original request to be cloned
1594 * @bs: bio_set that bios for clone are allocated from
1595 * @gfp_mask: memory allocation mask for bio
1596 * @bio_ctr: setup function to be called for each clone bio.
1597 * Returns %0 for success, non %0 for failure.
1598 * @data: private data to be passed to @bio_ctr
1601 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1602 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1603 * are not copied, and copying such parts is the caller's responsibility.
1604 * Also, pages which the original bios are pointing to are not copied
1605 * and the cloned bios just point same pages.
1606 * So cloned bios must be completed before original bios, which means
1607 * the caller must complete @rq before @rq_src.
1609 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1610 struct bio_set *bs, gfp_t gfp_mask,
1611 int (*bio_ctr)(struct bio *, struct bio *, void *),
1614 struct bio *bio, *bio_src;
1619 __rq_for_each_bio(bio_src, rq_src) {
1620 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1624 if (bio_ctr && bio_ctr(bio, bio_src, data))
1628 rq->biotail->bi_next = bio;
1631 rq->bio = rq->biotail = bio;
1634 __blk_rq_prep_clone(rq, rq_src);
1641 blk_rq_unprep_clone(rq);
1645 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1647 int kblockd_schedule_work(struct work_struct *work)
1649 return queue_work(kblockd_workqueue, work);
1651 EXPORT_SYMBOL(kblockd_schedule_work);
1653 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1655 return queue_work_on(cpu, kblockd_workqueue, work);
1657 EXPORT_SYMBOL(kblockd_schedule_work_on);
1659 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1660 unsigned long delay)
1662 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1664 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1667 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1668 * @plug: The &struct blk_plug that needs to be initialized
1671 * blk_start_plug() indicates to the block layer an intent by the caller
1672 * to submit multiple I/O requests in a batch. The block layer may use
1673 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1674 * is called. However, the block layer may choose to submit requests
1675 * before a call to blk_finish_plug() if the number of queued I/Os
1676 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1677 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1678 * the task schedules (see below).
1680 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1681 * pending I/O should the task end up blocking between blk_start_plug() and
1682 * blk_finish_plug(). This is important from a performance perspective, but
1683 * also ensures that we don't deadlock. For instance, if the task is blocking
1684 * for a memory allocation, memory reclaim could end up wanting to free a
1685 * page belonging to that request that is currently residing in our private
1686 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1687 * this kind of deadlock.
1689 void blk_start_plug(struct blk_plug *plug)
1691 struct task_struct *tsk = current;
1694 * If this is a nested plug, don't actually assign it.
1699 INIT_LIST_HEAD(&plug->mq_list);
1700 INIT_LIST_HEAD(&plug->cb_list);
1702 plug->multiple_queues = false;
1705 * Store ordering should not be needed here, since a potential
1706 * preempt will imply a full memory barrier
1710 EXPORT_SYMBOL(blk_start_plug);
1712 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1714 LIST_HEAD(callbacks);
1716 while (!list_empty(&plug->cb_list)) {
1717 list_splice_init(&plug->cb_list, &callbacks);
1719 while (!list_empty(&callbacks)) {
1720 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1723 list_del(&cb->list);
1724 cb->callback(cb, from_schedule);
1729 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1732 struct blk_plug *plug = current->plug;
1733 struct blk_plug_cb *cb;
1738 list_for_each_entry(cb, &plug->cb_list, list)
1739 if (cb->callback == unplug && cb->data == data)
1742 /* Not currently on the callback list */
1743 BUG_ON(size < sizeof(*cb));
1744 cb = kzalloc(size, GFP_ATOMIC);
1747 cb->callback = unplug;
1748 list_add(&cb->list, &plug->cb_list);
1752 EXPORT_SYMBOL(blk_check_plugged);
1754 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1756 flush_plug_callbacks(plug, from_schedule);
1758 if (!list_empty(&plug->mq_list))
1759 blk_mq_flush_plug_list(plug, from_schedule);
1763 * blk_finish_plug - mark the end of a batch of submitted I/O
1764 * @plug: The &struct blk_plug passed to blk_start_plug()
1767 * Indicate that a batch of I/O submissions is complete. This function
1768 * must be paired with an initial call to blk_start_plug(). The intent
1769 * is to allow the block layer to optimize I/O submission. See the
1770 * documentation for blk_start_plug() for more information.
1772 void blk_finish_plug(struct blk_plug *plug)
1774 if (plug != current->plug)
1776 blk_flush_plug_list(plug, false);
1778 current->plug = NULL;
1780 EXPORT_SYMBOL(blk_finish_plug);
1782 int __init blk_dev_init(void)
1784 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1785 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1786 FIELD_SIZEOF(struct request, cmd_flags));
1787 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1788 FIELD_SIZEOF(struct bio, bi_opf));
1790 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1791 kblockd_workqueue = alloc_workqueue("kblockd",
1792 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1793 if (!kblockd_workqueue)
1794 panic("Failed to create kblockd\n");
1796 blk_requestq_cachep = kmem_cache_create("request_queue",
1797 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1799 #ifdef CONFIG_DEBUG_FS
1800 blk_debugfs_root = debugfs_create_dir("block", NULL);