2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/block.h>
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
42 * For the allocated request tables
44 static struct kmem_cache *request_cachep;
47 * For queue allocation
49 struct kmem_cache *blk_requestq_cachep;
52 * Controlling structure to kblockd
54 static struct workqueue_struct *kblockd_workqueue;
56 static void drive_stat_acct(struct request *rq, int new_io)
58 struct hd_struct *part;
59 int rw = rq_data_dir(rq);
62 if (!blk_do_io_stat(rq))
65 cpu = part_stat_lock();
69 part_stat_inc(cpu, part, merges[rw]);
71 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
72 if (!hd_struct_try_get(part)) {
74 * The partition is already being removed,
75 * the request will be accounted on the disk only
77 * We take a reference on disk->part0 although that
78 * partition will never be deleted, so we can treat
79 * it as any other partition.
81 part = &rq->rq_disk->part0;
84 part_round_stats(cpu, part);
85 part_inc_in_flight(part, rw);
92 void blk_queue_congestion_threshold(struct request_queue *q)
96 nr = q->nr_requests - (q->nr_requests / 8) + 1;
97 if (nr > q->nr_requests)
99 q->nr_congestion_on = nr;
101 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104 q->nr_congestion_off = nr;
108 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
111 * Locates the passed device's request queue and returns the address of its
114 * Will return NULL if the request queue cannot be located.
116 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
118 struct backing_dev_info *ret = NULL;
119 struct request_queue *q = bdev_get_queue(bdev);
122 ret = &q->backing_dev_info;
125 EXPORT_SYMBOL(blk_get_backing_dev_info);
127 void blk_rq_init(struct request_queue *q, struct request *rq)
129 memset(rq, 0, sizeof(*rq));
131 INIT_LIST_HEAD(&rq->queuelist);
132 INIT_LIST_HEAD(&rq->timeout_list);
135 rq->__sector = (sector_t) -1;
136 INIT_HLIST_NODE(&rq->hash);
137 RB_CLEAR_NODE(&rq->rb_node);
139 rq->cmd_len = BLK_MAX_CDB;
142 rq->start_time = jiffies;
143 set_start_time_ns(rq);
146 EXPORT_SYMBOL(blk_rq_init);
148 static void req_bio_endio(struct request *rq, struct bio *bio,
149 unsigned int nbytes, int error)
152 clear_bit(BIO_UPTODATE, &bio->bi_flags);
153 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
156 if (unlikely(nbytes > bio->bi_size)) {
157 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
158 __func__, nbytes, bio->bi_size);
159 nbytes = bio->bi_size;
162 if (unlikely(rq->cmd_flags & REQ_QUIET))
163 set_bit(BIO_QUIET, &bio->bi_flags);
165 bio->bi_size -= nbytes;
166 bio->bi_sector += (nbytes >> 9);
168 if (bio_integrity(bio))
169 bio_integrity_advance(bio, nbytes);
171 /* don't actually finish bio if it's part of flush sequence */
172 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
173 bio_endio(bio, error);
176 void blk_dump_rq_flags(struct request *rq, char *msg)
180 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
181 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
185 (unsigned long long)blk_rq_pos(rq),
186 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
187 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
188 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
190 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
191 printk(KERN_INFO " cdb: ");
192 for (bit = 0; bit < BLK_MAX_CDB; bit++)
193 printk("%02x ", rq->cmd[bit]);
197 EXPORT_SYMBOL(blk_dump_rq_flags);
199 static void blk_delay_work(struct work_struct *work)
201 struct request_queue *q;
203 q = container_of(work, struct request_queue, delay_work.work);
204 spin_lock_irq(q->queue_lock);
206 spin_unlock_irq(q->queue_lock);
210 * blk_delay_queue - restart queueing after defined interval
211 * @q: The &struct request_queue in question
212 * @msecs: Delay in msecs
215 * Sometimes queueing needs to be postponed for a little while, to allow
216 * resources to come back. This function will make sure that queueing is
217 * restarted around the specified time.
219 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
221 queue_delayed_work(kblockd_workqueue, &q->delay_work,
222 msecs_to_jiffies(msecs));
224 EXPORT_SYMBOL(blk_delay_queue);
227 * blk_start_queue - restart a previously stopped queue
228 * @q: The &struct request_queue in question
231 * blk_start_queue() will clear the stop flag on the queue, and call
232 * the request_fn for the queue if it was in a stopped state when
233 * entered. Also see blk_stop_queue(). Queue lock must be held.
235 void blk_start_queue(struct request_queue *q)
237 WARN_ON(!irqs_disabled());
239 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
242 EXPORT_SYMBOL(blk_start_queue);
245 * blk_stop_queue - stop a queue
246 * @q: The &struct request_queue in question
249 * The Linux block layer assumes that a block driver will consume all
250 * entries on the request queue when the request_fn strategy is called.
251 * Often this will not happen, because of hardware limitations (queue
252 * depth settings). If a device driver gets a 'queue full' response,
253 * or if it simply chooses not to queue more I/O at one point, it can
254 * call this function to prevent the request_fn from being called until
255 * the driver has signalled it's ready to go again. This happens by calling
256 * blk_start_queue() to restart queue operations. Queue lock must be held.
258 void blk_stop_queue(struct request_queue *q)
260 __cancel_delayed_work(&q->delay_work);
261 queue_flag_set(QUEUE_FLAG_STOPPED, q);
263 EXPORT_SYMBOL(blk_stop_queue);
266 * blk_sync_queue - cancel any pending callbacks on a queue
270 * The block layer may perform asynchronous callback activity
271 * on a queue, such as calling the unplug function after a timeout.
272 * A block device may call blk_sync_queue to ensure that any
273 * such activity is cancelled, thus allowing it to release resources
274 * that the callbacks might use. The caller must already have made sure
275 * that its ->make_request_fn will not re-add plugging prior to calling
278 * This function does not cancel any asynchronous activity arising
279 * out of elevator or throttling code. That would require elevaotor_exit()
280 * and blk_throtl_exit() to be called with queue lock initialized.
283 void blk_sync_queue(struct request_queue *q)
285 del_timer_sync(&q->timeout);
286 cancel_delayed_work_sync(&q->delay_work);
288 EXPORT_SYMBOL(blk_sync_queue);
291 * __blk_run_queue - run a single device queue
292 * @q: The queue to run
295 * See @blk_run_queue. This variant must be called with the queue lock
296 * held and interrupts disabled.
298 void __blk_run_queue(struct request_queue *q)
300 if (unlikely(blk_queue_stopped(q)))
305 EXPORT_SYMBOL(__blk_run_queue);
308 * blk_run_queue_async - run a single device queue in workqueue context
309 * @q: The queue to run
312 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
315 void blk_run_queue_async(struct request_queue *q)
317 if (likely(!blk_queue_stopped(q))) {
318 __cancel_delayed_work(&q->delay_work);
319 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
322 EXPORT_SYMBOL(blk_run_queue_async);
325 * blk_run_queue - run a single device queue
326 * @q: The queue to run
329 * Invoke request handling on this queue, if it has pending work to do.
330 * May be used to restart queueing when a request has completed.
332 void blk_run_queue(struct request_queue *q)
336 spin_lock_irqsave(q->queue_lock, flags);
338 spin_unlock_irqrestore(q->queue_lock, flags);
340 EXPORT_SYMBOL(blk_run_queue);
342 void blk_put_queue(struct request_queue *q)
344 kobject_put(&q->kobj);
346 EXPORT_SYMBOL(blk_put_queue);
349 * Note: If a driver supplied the queue lock, it is disconnected
350 * by this function. The actual state of the lock doesn't matter
351 * here as the request_queue isn't accessible after this point
352 * (QUEUE_FLAG_DEAD is set) and no other requests will be queued.
354 void blk_cleanup_queue(struct request_queue *q)
357 * We know we have process context here, so we can be a little
358 * cautious and ensure that pending block actions on this device
359 * are done before moving on. Going into this function, we should
360 * not have processes doing IO to this device.
364 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
365 mutex_lock(&q->sysfs_lock);
366 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
367 mutex_unlock(&q->sysfs_lock);
369 if (q->queue_lock != &q->__queue_lock)
370 q->queue_lock = &q->__queue_lock;
374 EXPORT_SYMBOL(blk_cleanup_queue);
376 static int blk_init_free_list(struct request_queue *q)
378 struct request_list *rl = &q->rq;
380 if (unlikely(rl->rq_pool))
383 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
384 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
386 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
387 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
389 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
390 mempool_free_slab, request_cachep, q->node);
398 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
400 return blk_alloc_queue_node(gfp_mask, -1);
402 EXPORT_SYMBOL(blk_alloc_queue);
404 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
406 struct request_queue *q;
409 q = kmem_cache_alloc_node(blk_requestq_cachep,
410 gfp_mask | __GFP_ZERO, node_id);
414 q->backing_dev_info.ra_pages =
415 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
416 q->backing_dev_info.state = 0;
417 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
418 q->backing_dev_info.name = "block";
420 err = bdi_init(&q->backing_dev_info);
422 kmem_cache_free(blk_requestq_cachep, q);
426 if (blk_throtl_init(q)) {
427 kmem_cache_free(blk_requestq_cachep, q);
431 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
432 laptop_mode_timer_fn, (unsigned long) q);
433 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
434 INIT_LIST_HEAD(&q->timeout_list);
435 INIT_LIST_HEAD(&q->flush_queue[0]);
436 INIT_LIST_HEAD(&q->flush_queue[1]);
437 INIT_LIST_HEAD(&q->flush_data_in_flight);
438 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
440 kobject_init(&q->kobj, &blk_queue_ktype);
442 mutex_init(&q->sysfs_lock);
443 spin_lock_init(&q->__queue_lock);
446 * By default initialize queue_lock to internal lock and driver can
447 * override it later if need be.
449 q->queue_lock = &q->__queue_lock;
453 EXPORT_SYMBOL(blk_alloc_queue_node);
456 * blk_init_queue - prepare a request queue for use with a block device
457 * @rfn: The function to be called to process requests that have been
458 * placed on the queue.
459 * @lock: Request queue spin lock
462 * If a block device wishes to use the standard request handling procedures,
463 * which sorts requests and coalesces adjacent requests, then it must
464 * call blk_init_queue(). The function @rfn will be called when there
465 * are requests on the queue that need to be processed. If the device
466 * supports plugging, then @rfn may not be called immediately when requests
467 * are available on the queue, but may be called at some time later instead.
468 * Plugged queues are generally unplugged when a buffer belonging to one
469 * of the requests on the queue is needed, or due to memory pressure.
471 * @rfn is not required, or even expected, to remove all requests off the
472 * queue, but only as many as it can handle at a time. If it does leave
473 * requests on the queue, it is responsible for arranging that the requests
474 * get dealt with eventually.
476 * The queue spin lock must be held while manipulating the requests on the
477 * request queue; this lock will be taken also from interrupt context, so irq
478 * disabling is needed for it.
480 * Function returns a pointer to the initialized request queue, or %NULL if
484 * blk_init_queue() must be paired with a blk_cleanup_queue() call
485 * when the block device is deactivated (such as at module unload).
488 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
490 return blk_init_queue_node(rfn, lock, -1);
492 EXPORT_SYMBOL(blk_init_queue);
494 struct request_queue *
495 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
497 struct request_queue *uninit_q, *q;
499 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
503 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
505 blk_cleanup_queue(uninit_q);
509 EXPORT_SYMBOL(blk_init_queue_node);
511 struct request_queue *
512 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
515 return blk_init_allocated_queue_node(q, rfn, lock, -1);
517 EXPORT_SYMBOL(blk_init_allocated_queue);
519 struct request_queue *
520 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
521 spinlock_t *lock, int node_id)
527 if (blk_init_free_list(q))
531 q->prep_rq_fn = NULL;
532 q->unprep_rq_fn = NULL;
533 q->queue_flags = QUEUE_FLAG_DEFAULT;
535 /* Override internal queue lock with supplied lock pointer */
537 q->queue_lock = lock;
540 * This also sets hw/phys segments, boundary and size
542 blk_queue_make_request(q, blk_queue_bio);
544 q->sg_reserved_size = INT_MAX;
549 if (!elevator_init(q, NULL)) {
550 blk_queue_congestion_threshold(q);
556 EXPORT_SYMBOL(blk_init_allocated_queue_node);
558 int blk_get_queue(struct request_queue *q)
560 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
561 kobject_get(&q->kobj);
567 EXPORT_SYMBOL(blk_get_queue);
569 static inline void blk_free_request(struct request_queue *q, struct request *rq)
571 if (rq->cmd_flags & REQ_ELVPRIV)
572 elv_put_request(q, rq);
573 mempool_free(rq, q->rq.rq_pool);
576 static struct request *
577 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
579 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
586 rq->cmd_flags = flags | REQ_ALLOCED;
589 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
590 mempool_free(rq, q->rq.rq_pool);
593 rq->cmd_flags |= REQ_ELVPRIV;
600 * ioc_batching returns true if the ioc is a valid batching request and
601 * should be given priority access to a request.
603 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
609 * Make sure the process is able to allocate at least 1 request
610 * even if the batch times out, otherwise we could theoretically
613 return ioc->nr_batch_requests == q->nr_batching ||
614 (ioc->nr_batch_requests > 0
615 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
619 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
620 * will cause the process to be a "batcher" on all queues in the system. This
621 * is the behaviour we want though - once it gets a wakeup it should be given
624 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
626 if (!ioc || ioc_batching(q, ioc))
629 ioc->nr_batch_requests = q->nr_batching;
630 ioc->last_waited = jiffies;
633 static void __freed_request(struct request_queue *q, int sync)
635 struct request_list *rl = &q->rq;
637 if (rl->count[sync] < queue_congestion_off_threshold(q))
638 blk_clear_queue_congested(q, sync);
640 if (rl->count[sync] + 1 <= q->nr_requests) {
641 if (waitqueue_active(&rl->wait[sync]))
642 wake_up(&rl->wait[sync]);
644 blk_clear_queue_full(q, sync);
649 * A request has just been released. Account for it, update the full and
650 * congestion status, wake up any waiters. Called under q->queue_lock.
652 static void freed_request(struct request_queue *q, int sync, int priv)
654 struct request_list *rl = &q->rq;
660 __freed_request(q, sync);
662 if (unlikely(rl->starved[sync ^ 1]))
663 __freed_request(q, sync ^ 1);
667 * Determine if elevator data should be initialized when allocating the
668 * request associated with @bio.
670 static bool blk_rq_should_init_elevator(struct bio *bio)
676 * Flush requests do not use the elevator so skip initialization.
677 * This allows a request to share the flush and elevator data.
679 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
686 * Get a free request, queue_lock must be held.
687 * Returns NULL on failure, with queue_lock held.
688 * Returns !NULL on success, with queue_lock *not held*.
690 static struct request *get_request(struct request_queue *q, int rw_flags,
691 struct bio *bio, gfp_t gfp_mask)
693 struct request *rq = NULL;
694 struct request_list *rl = &q->rq;
695 struct io_context *ioc = NULL;
696 const bool is_sync = rw_is_sync(rw_flags) != 0;
697 int may_queue, priv = 0;
699 may_queue = elv_may_queue(q, rw_flags);
700 if (may_queue == ELV_MQUEUE_NO)
703 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
704 if (rl->count[is_sync]+1 >= q->nr_requests) {
705 ioc = current_io_context(GFP_ATOMIC, q->node);
707 * The queue will fill after this allocation, so set
708 * it as full, and mark this process as "batching".
709 * This process will be allowed to complete a batch of
710 * requests, others will be blocked.
712 if (!blk_queue_full(q, is_sync)) {
713 ioc_set_batching(q, ioc);
714 blk_set_queue_full(q, is_sync);
716 if (may_queue != ELV_MQUEUE_MUST
717 && !ioc_batching(q, ioc)) {
719 * The queue is full and the allocating
720 * process is not a "batcher", and not
721 * exempted by the IO scheduler
727 blk_set_queue_congested(q, is_sync);
731 * Only allow batching queuers to allocate up to 50% over the defined
732 * limit of requests, otherwise we could have thousands of requests
733 * allocated with any setting of ->nr_requests
735 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
738 rl->count[is_sync]++;
739 rl->starved[is_sync] = 0;
741 if (blk_rq_should_init_elevator(bio)) {
742 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
747 if (blk_queue_io_stat(q))
748 rw_flags |= REQ_IO_STAT;
749 spin_unlock_irq(q->queue_lock);
751 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
754 * Allocation failed presumably due to memory. Undo anything
755 * we might have messed up.
757 * Allocating task should really be put onto the front of the
758 * wait queue, but this is pretty rare.
760 spin_lock_irq(q->queue_lock);
761 freed_request(q, is_sync, priv);
764 * in the very unlikely event that allocation failed and no
765 * requests for this direction was pending, mark us starved
766 * so that freeing of a request in the other direction will
767 * notice us. another possible fix would be to split the
768 * rq mempool into READ and WRITE
771 if (unlikely(rl->count[is_sync] == 0))
772 rl->starved[is_sync] = 1;
778 * ioc may be NULL here, and ioc_batching will be false. That's
779 * OK, if the queue is under the request limit then requests need
780 * not count toward the nr_batch_requests limit. There will always
781 * be some limit enforced by BLK_BATCH_TIME.
783 if (ioc_batching(q, ioc))
784 ioc->nr_batch_requests--;
786 trace_block_getrq(q, bio, rw_flags & 1);
792 * No available requests for this queue, wait for some requests to become
795 * Called with q->queue_lock held, and returns with it unlocked.
797 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
800 const bool is_sync = rw_is_sync(rw_flags) != 0;
803 rq = get_request(q, rw_flags, bio, GFP_NOIO);
806 struct io_context *ioc;
807 struct request_list *rl = &q->rq;
809 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
810 TASK_UNINTERRUPTIBLE);
812 trace_block_sleeprq(q, bio, rw_flags & 1);
814 spin_unlock_irq(q->queue_lock);
818 * After sleeping, we become a "batching" process and
819 * will be able to allocate at least one request, and
820 * up to a big batch of them for a small period time.
821 * See ioc_batching, ioc_set_batching
823 ioc = current_io_context(GFP_NOIO, q->node);
824 ioc_set_batching(q, ioc);
826 spin_lock_irq(q->queue_lock);
827 finish_wait(&rl->wait[is_sync], &wait);
829 rq = get_request(q, rw_flags, bio, GFP_NOIO);
835 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
839 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
842 BUG_ON(rw != READ && rw != WRITE);
844 spin_lock_irq(q->queue_lock);
845 if (gfp_mask & __GFP_WAIT) {
846 rq = get_request_wait(q, rw, NULL);
848 rq = get_request(q, rw, NULL, gfp_mask);
850 spin_unlock_irq(q->queue_lock);
852 /* q->queue_lock is unlocked at this point */
856 EXPORT_SYMBOL(blk_get_request);
859 * blk_make_request - given a bio, allocate a corresponding struct request.
860 * @q: target request queue
861 * @bio: The bio describing the memory mappings that will be submitted for IO.
862 * It may be a chained-bio properly constructed by block/bio layer.
863 * @gfp_mask: gfp flags to be used for memory allocation
865 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
866 * type commands. Where the struct request needs to be farther initialized by
867 * the caller. It is passed a &struct bio, which describes the memory info of
870 * The caller of blk_make_request must make sure that bi_io_vec
871 * are set to describe the memory buffers. That bio_data_dir() will return
872 * the needed direction of the request. (And all bio's in the passed bio-chain
873 * are properly set accordingly)
875 * If called under none-sleepable conditions, mapped bio buffers must not
876 * need bouncing, by calling the appropriate masked or flagged allocator,
877 * suitable for the target device. Otherwise the call to blk_queue_bounce will
880 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
881 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
882 * anything but the first bio in the chain. Otherwise you risk waiting for IO
883 * completion of a bio that hasn't been submitted yet, thus resulting in a
884 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
885 * of bio_alloc(), as that avoids the mempool deadlock.
886 * If possible a big IO should be split into smaller parts when allocation
887 * fails. Partial allocation should not be an error, or you risk a live-lock.
889 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
892 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
895 return ERR_PTR(-ENOMEM);
898 struct bio *bounce_bio = bio;
901 blk_queue_bounce(q, &bounce_bio);
902 ret = blk_rq_append_bio(q, rq, bounce_bio);
911 EXPORT_SYMBOL(blk_make_request);
914 * blk_requeue_request - put a request back on queue
915 * @q: request queue where request should be inserted
916 * @rq: request to be inserted
919 * Drivers often keep queueing requests until the hardware cannot accept
920 * more, when that condition happens we need to put the request back
921 * on the queue. Must be called with queue lock held.
923 void blk_requeue_request(struct request_queue *q, struct request *rq)
925 blk_delete_timer(rq);
926 blk_clear_rq_complete(rq);
927 trace_block_rq_requeue(q, rq);
929 if (blk_rq_tagged(rq))
930 blk_queue_end_tag(q, rq);
932 BUG_ON(blk_queued_rq(rq));
934 elv_requeue_request(q, rq);
936 EXPORT_SYMBOL(blk_requeue_request);
938 static void add_acct_request(struct request_queue *q, struct request *rq,
941 drive_stat_acct(rq, 1);
942 __elv_add_request(q, rq, where);
946 * blk_insert_request - insert a special request into a request queue
947 * @q: request queue where request should be inserted
948 * @rq: request to be inserted
949 * @at_head: insert request at head or tail of queue
950 * @data: private data
953 * Many block devices need to execute commands asynchronously, so they don't
954 * block the whole kernel from preemption during request execution. This is
955 * accomplished normally by inserting aritficial requests tagged as
956 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
957 * be scheduled for actual execution by the request queue.
959 * We have the option of inserting the head or the tail of the queue.
960 * Typically we use the tail for new ioctls and so forth. We use the head
961 * of the queue for things like a QUEUE_FULL message from a device, or a
962 * host that is unable to accept a particular command.
964 void blk_insert_request(struct request_queue *q, struct request *rq,
965 int at_head, void *data)
967 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
971 * tell I/O scheduler that this isn't a regular read/write (ie it
972 * must not attempt merges on this) and that it acts as a soft
975 rq->cmd_type = REQ_TYPE_SPECIAL;
979 spin_lock_irqsave(q->queue_lock, flags);
982 * If command is tagged, release the tag
984 if (blk_rq_tagged(rq))
985 blk_queue_end_tag(q, rq);
987 add_acct_request(q, rq, where);
989 spin_unlock_irqrestore(q->queue_lock, flags);
991 EXPORT_SYMBOL(blk_insert_request);
993 static void part_round_stats_single(int cpu, struct hd_struct *part,
996 if (now == part->stamp)
999 if (part_in_flight(part)) {
1000 __part_stat_add(cpu, part, time_in_queue,
1001 part_in_flight(part) * (now - part->stamp));
1002 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1008 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1009 * @cpu: cpu number for stats access
1010 * @part: target partition
1012 * The average IO queue length and utilisation statistics are maintained
1013 * by observing the current state of the queue length and the amount of
1014 * time it has been in this state for.
1016 * Normally, that accounting is done on IO completion, but that can result
1017 * in more than a second's worth of IO being accounted for within any one
1018 * second, leading to >100% utilisation. To deal with that, we call this
1019 * function to do a round-off before returning the results when reading
1020 * /proc/diskstats. This accounts immediately for all queue usage up to
1021 * the current jiffies and restarts the counters again.
1023 void part_round_stats(int cpu, struct hd_struct *part)
1025 unsigned long now = jiffies;
1028 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1029 part_round_stats_single(cpu, part, now);
1031 EXPORT_SYMBOL_GPL(part_round_stats);
1034 * queue lock must be held
1036 void __blk_put_request(struct request_queue *q, struct request *req)
1040 if (unlikely(--req->ref_count))
1043 elv_completed_request(q, req);
1045 /* this is a bio leak */
1046 WARN_ON(req->bio != NULL);
1049 * Request may not have originated from ll_rw_blk. if not,
1050 * it didn't come out of our reserved rq pools
1052 if (req->cmd_flags & REQ_ALLOCED) {
1053 int is_sync = rq_is_sync(req) != 0;
1054 int priv = req->cmd_flags & REQ_ELVPRIV;
1056 BUG_ON(!list_empty(&req->queuelist));
1057 BUG_ON(!hlist_unhashed(&req->hash));
1059 blk_free_request(q, req);
1060 freed_request(q, is_sync, priv);
1063 EXPORT_SYMBOL_GPL(__blk_put_request);
1065 void blk_put_request(struct request *req)
1067 unsigned long flags;
1068 struct request_queue *q = req->q;
1070 spin_lock_irqsave(q->queue_lock, flags);
1071 __blk_put_request(q, req);
1072 spin_unlock_irqrestore(q->queue_lock, flags);
1074 EXPORT_SYMBOL(blk_put_request);
1077 * blk_add_request_payload - add a payload to a request
1078 * @rq: request to update
1079 * @page: page backing the payload
1080 * @len: length of the payload.
1082 * This allows to later add a payload to an already submitted request by
1083 * a block driver. The driver needs to take care of freeing the payload
1086 * Note that this is a quite horrible hack and nothing but handling of
1087 * discard requests should ever use it.
1089 void blk_add_request_payload(struct request *rq, struct page *page,
1092 struct bio *bio = rq->bio;
1094 bio->bi_io_vec->bv_page = page;
1095 bio->bi_io_vec->bv_offset = 0;
1096 bio->bi_io_vec->bv_len = len;
1100 bio->bi_phys_segments = 1;
1102 rq->__data_len = rq->resid_len = len;
1103 rq->nr_phys_segments = 1;
1104 rq->buffer = bio_data(bio);
1106 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1108 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1111 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1113 if (!ll_back_merge_fn(q, req, bio))
1116 trace_block_bio_backmerge(q, bio);
1118 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1119 blk_rq_set_mixed_merge(req);
1121 req->biotail->bi_next = bio;
1123 req->__data_len += bio->bi_size;
1124 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1126 drive_stat_acct(req, 0);
1127 elv_bio_merged(q, req, bio);
1131 static bool bio_attempt_front_merge(struct request_queue *q,
1132 struct request *req, struct bio *bio)
1134 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1136 if (!ll_front_merge_fn(q, req, bio))
1139 trace_block_bio_frontmerge(q, bio);
1141 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1142 blk_rq_set_mixed_merge(req);
1144 bio->bi_next = req->bio;
1148 * may not be valid. if the low level driver said
1149 * it didn't need a bounce buffer then it better
1150 * not touch req->buffer either...
1152 req->buffer = bio_data(bio);
1153 req->__sector = bio->bi_sector;
1154 req->__data_len += bio->bi_size;
1155 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1157 drive_stat_acct(req, 0);
1158 elv_bio_merged(q, req, bio);
1163 * Attempts to merge with the plugged list in the current process. Returns
1164 * true if merge was successful, otherwise false.
1166 static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1167 struct bio *bio, unsigned int *request_count)
1169 struct blk_plug *plug;
1178 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1186 el_ret = elv_try_merge(rq, bio);
1187 if (el_ret == ELEVATOR_BACK_MERGE) {
1188 ret = bio_attempt_back_merge(q, rq, bio);
1191 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1192 ret = bio_attempt_front_merge(q, rq, bio);
1201 void init_request_from_bio(struct request *req, struct bio *bio)
1203 req->cpu = bio->bi_comp_cpu;
1204 req->cmd_type = REQ_TYPE_FS;
1206 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1207 if (bio->bi_rw & REQ_RAHEAD)
1208 req->cmd_flags |= REQ_FAILFAST_MASK;
1211 req->__sector = bio->bi_sector;
1212 req->ioprio = bio_prio(bio);
1213 blk_rq_bio_prep(req->q, req, bio);
1216 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1218 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1219 struct blk_plug *plug;
1220 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1221 struct request *req;
1222 unsigned int request_count = 0;
1225 * low level driver can indicate that it wants pages above a
1226 * certain limit bounced to low memory (ie for highmem, or even
1227 * ISA dma in theory)
1229 blk_queue_bounce(q, &bio);
1231 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1232 spin_lock_irq(q->queue_lock);
1233 where = ELEVATOR_INSERT_FLUSH;
1238 * Check if we can merge with the plugged list before grabbing
1241 if (attempt_plug_merge(current, q, bio, &request_count))
1244 spin_lock_irq(q->queue_lock);
1246 el_ret = elv_merge(q, &req, bio);
1247 if (el_ret == ELEVATOR_BACK_MERGE) {
1248 if (bio_attempt_back_merge(q, req, bio)) {
1249 if (!attempt_back_merge(q, req))
1250 elv_merged_request(q, req, el_ret);
1253 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1254 if (bio_attempt_front_merge(q, req, bio)) {
1255 if (!attempt_front_merge(q, req))
1256 elv_merged_request(q, req, el_ret);
1263 * This sync check and mask will be re-done in init_request_from_bio(),
1264 * but we need to set it earlier to expose the sync flag to the
1265 * rq allocator and io schedulers.
1267 rw_flags = bio_data_dir(bio);
1269 rw_flags |= REQ_SYNC;
1272 * Grab a free request. This is might sleep but can not fail.
1273 * Returns with the queue unlocked.
1275 req = get_request_wait(q, rw_flags, bio);
1278 * After dropping the lock and possibly sleeping here, our request
1279 * may now be mergeable after it had proven unmergeable (above).
1280 * We don't worry about that case for efficiency. It won't happen
1281 * often, and the elevators are able to handle it.
1283 init_request_from_bio(req, bio);
1285 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1286 bio_flagged(bio, BIO_CPU_AFFINE))
1287 req->cpu = raw_smp_processor_id();
1289 plug = current->plug;
1292 * If this is the first request added after a plug, fire
1293 * of a plug trace. If others have been added before, check
1294 * if we have multiple devices in this plug. If so, make a
1295 * note to sort the list before dispatch.
1297 if (list_empty(&plug->list))
1298 trace_block_plug(q);
1299 else if (!plug->should_sort) {
1300 struct request *__rq;
1302 __rq = list_entry_rq(plug->list.prev);
1304 plug->should_sort = 1;
1306 if (request_count >= BLK_MAX_REQUEST_COUNT)
1307 blk_flush_plug_list(plug, false);
1308 list_add_tail(&req->queuelist, &plug->list);
1309 drive_stat_acct(req, 1);
1311 spin_lock_irq(q->queue_lock);
1312 add_acct_request(q, req, where);
1315 spin_unlock_irq(q->queue_lock);
1318 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1321 * If bio->bi_dev is a partition, remap the location
1323 static inline void blk_partition_remap(struct bio *bio)
1325 struct block_device *bdev = bio->bi_bdev;
1327 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1328 struct hd_struct *p = bdev->bd_part;
1330 bio->bi_sector += p->start_sect;
1331 bio->bi_bdev = bdev->bd_contains;
1333 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1335 bio->bi_sector - p->start_sect);
1339 static void handle_bad_sector(struct bio *bio)
1341 char b[BDEVNAME_SIZE];
1343 printk(KERN_INFO "attempt to access beyond end of device\n");
1344 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1345 bdevname(bio->bi_bdev, b),
1347 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1348 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1350 set_bit(BIO_EOF, &bio->bi_flags);
1353 #ifdef CONFIG_FAIL_MAKE_REQUEST
1355 static DECLARE_FAULT_ATTR(fail_make_request);
1357 static int __init setup_fail_make_request(char *str)
1359 return setup_fault_attr(&fail_make_request, str);
1361 __setup("fail_make_request=", setup_fail_make_request);
1363 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1365 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1368 static int __init fail_make_request_debugfs(void)
1370 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1371 NULL, &fail_make_request);
1373 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1376 late_initcall(fail_make_request_debugfs);
1378 #else /* CONFIG_FAIL_MAKE_REQUEST */
1380 static inline bool should_fail_request(struct hd_struct *part,
1386 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1389 * Check whether this bio extends beyond the end of the device.
1391 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1398 /* Test device or partition size, when known. */
1399 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1401 sector_t sector = bio->bi_sector;
1403 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1405 * This may well happen - the kernel calls bread()
1406 * without checking the size of the device, e.g., when
1407 * mounting a device.
1409 handle_bad_sector(bio);
1417 static noinline_for_stack bool
1418 generic_make_request_checks(struct bio *bio)
1420 struct request_queue *q;
1421 int nr_sectors = bio_sectors(bio);
1423 char b[BDEVNAME_SIZE];
1424 struct hd_struct *part;
1428 if (bio_check_eod(bio, nr_sectors))
1431 q = bdev_get_queue(bio->bi_bdev);
1434 "generic_make_request: Trying to access "
1435 "nonexistent block-device %s (%Lu)\n",
1436 bdevname(bio->bi_bdev, b),
1437 (long long) bio->bi_sector);
1441 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1442 nr_sectors > queue_max_hw_sectors(q))) {
1443 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1444 bdevname(bio->bi_bdev, b),
1446 queue_max_hw_sectors(q));
1450 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1453 part = bio->bi_bdev->bd_part;
1454 if (should_fail_request(part, bio->bi_size) ||
1455 should_fail_request(&part_to_disk(part)->part0,
1460 * If this device has partitions, remap block n
1461 * of partition p to block n+start(p) of the disk.
1463 blk_partition_remap(bio);
1465 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1468 if (bio_check_eod(bio, nr_sectors))
1472 * Filter flush bio's early so that make_request based
1473 * drivers without flush support don't have to worry
1476 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1477 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1484 if ((bio->bi_rw & REQ_DISCARD) &&
1485 (!blk_queue_discard(q) ||
1486 ((bio->bi_rw & REQ_SECURE) &&
1487 !blk_queue_secdiscard(q)))) {
1492 if (blk_throtl_bio(q, &bio))
1495 /* if bio = NULL, bio has been throttled and will be submitted later. */
1499 trace_block_bio_queue(q, bio);
1503 bio_endio(bio, err);
1508 * generic_make_request - hand a buffer to its device driver for I/O
1509 * @bio: The bio describing the location in memory and on the device.
1511 * generic_make_request() is used to make I/O requests of block
1512 * devices. It is passed a &struct bio, which describes the I/O that needs
1515 * generic_make_request() does not return any status. The
1516 * success/failure status of the request, along with notification of
1517 * completion, is delivered asynchronously through the bio->bi_end_io
1518 * function described (one day) else where.
1520 * The caller of generic_make_request must make sure that bi_io_vec
1521 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1522 * set to describe the device address, and the
1523 * bi_end_io and optionally bi_private are set to describe how
1524 * completion notification should be signaled.
1526 * generic_make_request and the drivers it calls may use bi_next if this
1527 * bio happens to be merged with someone else, and may resubmit the bio to
1528 * a lower device by calling into generic_make_request recursively, which
1529 * means the bio should NOT be touched after the call to ->make_request_fn.
1531 void generic_make_request(struct bio *bio)
1533 struct bio_list bio_list_on_stack;
1535 if (!generic_make_request_checks(bio))
1539 * We only want one ->make_request_fn to be active at a time, else
1540 * stack usage with stacked devices could be a problem. So use
1541 * current->bio_list to keep a list of requests submited by a
1542 * make_request_fn function. current->bio_list is also used as a
1543 * flag to say if generic_make_request is currently active in this
1544 * task or not. If it is NULL, then no make_request is active. If
1545 * it is non-NULL, then a make_request is active, and new requests
1546 * should be added at the tail
1548 if (current->bio_list) {
1549 bio_list_add(current->bio_list, bio);
1553 /* following loop may be a bit non-obvious, and so deserves some
1555 * Before entering the loop, bio->bi_next is NULL (as all callers
1556 * ensure that) so we have a list with a single bio.
1557 * We pretend that we have just taken it off a longer list, so
1558 * we assign bio_list to a pointer to the bio_list_on_stack,
1559 * thus initialising the bio_list of new bios to be
1560 * added. ->make_request() may indeed add some more bios
1561 * through a recursive call to generic_make_request. If it
1562 * did, we find a non-NULL value in bio_list and re-enter the loop
1563 * from the top. In this case we really did just take the bio
1564 * of the top of the list (no pretending) and so remove it from
1565 * bio_list, and call into ->make_request() again.
1567 BUG_ON(bio->bi_next);
1568 bio_list_init(&bio_list_on_stack);
1569 current->bio_list = &bio_list_on_stack;
1571 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1573 q->make_request_fn(q, bio);
1575 bio = bio_list_pop(current->bio_list);
1577 current->bio_list = NULL; /* deactivate */
1579 EXPORT_SYMBOL(generic_make_request);
1582 * submit_bio - submit a bio to the block device layer for I/O
1583 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1584 * @bio: The &struct bio which describes the I/O
1586 * submit_bio() is very similar in purpose to generic_make_request(), and
1587 * uses that function to do most of the work. Both are fairly rough
1588 * interfaces; @bio must be presetup and ready for I/O.
1591 void submit_bio(int rw, struct bio *bio)
1593 int count = bio_sectors(bio);
1598 * If it's a regular read/write or a barrier with data attached,
1599 * go through the normal accounting stuff before submission.
1601 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1603 count_vm_events(PGPGOUT, count);
1605 task_io_account_read(bio->bi_size);
1606 count_vm_events(PGPGIN, count);
1609 if (unlikely(block_dump)) {
1610 char b[BDEVNAME_SIZE];
1611 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1612 current->comm, task_pid_nr(current),
1613 (rw & WRITE) ? "WRITE" : "READ",
1614 (unsigned long long)bio->bi_sector,
1615 bdevname(bio->bi_bdev, b),
1620 generic_make_request(bio);
1622 EXPORT_SYMBOL(submit_bio);
1625 * blk_rq_check_limits - Helper function to check a request for the queue limit
1627 * @rq: the request being checked
1630 * @rq may have been made based on weaker limitations of upper-level queues
1631 * in request stacking drivers, and it may violate the limitation of @q.
1632 * Since the block layer and the underlying device driver trust @rq
1633 * after it is inserted to @q, it should be checked against @q before
1634 * the insertion using this generic function.
1636 * This function should also be useful for request stacking drivers
1637 * in some cases below, so export this function.
1638 * Request stacking drivers like request-based dm may change the queue
1639 * limits while requests are in the queue (e.g. dm's table swapping).
1640 * Such request stacking drivers should check those requests agaist
1641 * the new queue limits again when they dispatch those requests,
1642 * although such checkings are also done against the old queue limits
1643 * when submitting requests.
1645 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1647 if (rq->cmd_flags & REQ_DISCARD)
1650 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1651 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1652 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1657 * queue's settings related to segment counting like q->bounce_pfn
1658 * may differ from that of other stacking queues.
1659 * Recalculate it to check the request correctly on this queue's
1662 blk_recalc_rq_segments(rq);
1663 if (rq->nr_phys_segments > queue_max_segments(q)) {
1664 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1670 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1673 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1674 * @q: the queue to submit the request
1675 * @rq: the request being queued
1677 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1679 unsigned long flags;
1680 int where = ELEVATOR_INSERT_BACK;
1682 if (blk_rq_check_limits(q, rq))
1686 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1689 spin_lock_irqsave(q->queue_lock, flags);
1692 * Submitting request must be dequeued before calling this function
1693 * because it will be linked to another request_queue
1695 BUG_ON(blk_queued_rq(rq));
1697 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1698 where = ELEVATOR_INSERT_FLUSH;
1700 add_acct_request(q, rq, where);
1701 spin_unlock_irqrestore(q->queue_lock, flags);
1705 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1708 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1709 * @rq: request to examine
1712 * A request could be merge of IOs which require different failure
1713 * handling. This function determines the number of bytes which
1714 * can be failed from the beginning of the request without
1715 * crossing into area which need to be retried further.
1718 * The number of bytes to fail.
1721 * queue_lock must be held.
1723 unsigned int blk_rq_err_bytes(const struct request *rq)
1725 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1726 unsigned int bytes = 0;
1729 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1730 return blk_rq_bytes(rq);
1733 * Currently the only 'mixing' which can happen is between
1734 * different fastfail types. We can safely fail portions
1735 * which have all the failfast bits that the first one has -
1736 * the ones which are at least as eager to fail as the first
1739 for (bio = rq->bio; bio; bio = bio->bi_next) {
1740 if ((bio->bi_rw & ff) != ff)
1742 bytes += bio->bi_size;
1745 /* this could lead to infinite loop */
1746 BUG_ON(blk_rq_bytes(rq) && !bytes);
1749 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1751 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1753 if (blk_do_io_stat(req)) {
1754 const int rw = rq_data_dir(req);
1755 struct hd_struct *part;
1758 cpu = part_stat_lock();
1760 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1765 static void blk_account_io_done(struct request *req)
1768 * Account IO completion. flush_rq isn't accounted as a
1769 * normal IO on queueing nor completion. Accounting the
1770 * containing request is enough.
1772 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1773 unsigned long duration = jiffies - req->start_time;
1774 const int rw = rq_data_dir(req);
1775 struct hd_struct *part;
1778 cpu = part_stat_lock();
1781 part_stat_inc(cpu, part, ios[rw]);
1782 part_stat_add(cpu, part, ticks[rw], duration);
1783 part_round_stats(cpu, part);
1784 part_dec_in_flight(part, rw);
1786 hd_struct_put(part);
1792 * blk_peek_request - peek at the top of a request queue
1793 * @q: request queue to peek at
1796 * Return the request at the top of @q. The returned request
1797 * should be started using blk_start_request() before LLD starts
1801 * Pointer to the request at the top of @q if available. Null
1805 * queue_lock must be held.
1807 struct request *blk_peek_request(struct request_queue *q)
1812 while ((rq = __elv_next_request(q)) != NULL) {
1813 if (!(rq->cmd_flags & REQ_STARTED)) {
1815 * This is the first time the device driver
1816 * sees this request (possibly after
1817 * requeueing). Notify IO scheduler.
1819 if (rq->cmd_flags & REQ_SORTED)
1820 elv_activate_rq(q, rq);
1823 * just mark as started even if we don't start
1824 * it, a request that has been delayed should
1825 * not be passed by new incoming requests
1827 rq->cmd_flags |= REQ_STARTED;
1828 trace_block_rq_issue(q, rq);
1831 if (!q->boundary_rq || q->boundary_rq == rq) {
1832 q->end_sector = rq_end_sector(rq);
1833 q->boundary_rq = NULL;
1836 if (rq->cmd_flags & REQ_DONTPREP)
1839 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1841 * make sure space for the drain appears we
1842 * know we can do this because max_hw_segments
1843 * has been adjusted to be one fewer than the
1846 rq->nr_phys_segments++;
1852 ret = q->prep_rq_fn(q, rq);
1853 if (ret == BLKPREP_OK) {
1855 } else if (ret == BLKPREP_DEFER) {
1857 * the request may have been (partially) prepped.
1858 * we need to keep this request in the front to
1859 * avoid resource deadlock. REQ_STARTED will
1860 * prevent other fs requests from passing this one.
1862 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1863 !(rq->cmd_flags & REQ_DONTPREP)) {
1865 * remove the space for the drain we added
1866 * so that we don't add it again
1868 --rq->nr_phys_segments;
1873 } else if (ret == BLKPREP_KILL) {
1874 rq->cmd_flags |= REQ_QUIET;
1876 * Mark this request as started so we don't trigger
1877 * any debug logic in the end I/O path.
1879 blk_start_request(rq);
1880 __blk_end_request_all(rq, -EIO);
1882 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1889 EXPORT_SYMBOL(blk_peek_request);
1891 void blk_dequeue_request(struct request *rq)
1893 struct request_queue *q = rq->q;
1895 BUG_ON(list_empty(&rq->queuelist));
1896 BUG_ON(ELV_ON_HASH(rq));
1898 list_del_init(&rq->queuelist);
1901 * the time frame between a request being removed from the lists
1902 * and to it is freed is accounted as io that is in progress at
1905 if (blk_account_rq(rq)) {
1906 q->in_flight[rq_is_sync(rq)]++;
1907 set_io_start_time_ns(rq);
1912 * blk_start_request - start request processing on the driver
1913 * @req: request to dequeue
1916 * Dequeue @req and start timeout timer on it. This hands off the
1917 * request to the driver.
1919 * Block internal functions which don't want to start timer should
1920 * call blk_dequeue_request().
1923 * queue_lock must be held.
1925 void blk_start_request(struct request *req)
1927 blk_dequeue_request(req);
1930 * We are now handing the request to the hardware, initialize
1931 * resid_len to full count and add the timeout handler.
1933 req->resid_len = blk_rq_bytes(req);
1934 if (unlikely(blk_bidi_rq(req)))
1935 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1939 EXPORT_SYMBOL(blk_start_request);
1942 * blk_fetch_request - fetch a request from a request queue
1943 * @q: request queue to fetch a request from
1946 * Return the request at the top of @q. The request is started on
1947 * return and LLD can start processing it immediately.
1950 * Pointer to the request at the top of @q if available. Null
1954 * queue_lock must be held.
1956 struct request *blk_fetch_request(struct request_queue *q)
1960 rq = blk_peek_request(q);
1962 blk_start_request(rq);
1965 EXPORT_SYMBOL(blk_fetch_request);
1968 * blk_update_request - Special helper function for request stacking drivers
1969 * @req: the request being processed
1970 * @error: %0 for success, < %0 for error
1971 * @nr_bytes: number of bytes to complete @req
1974 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1975 * the request structure even if @req doesn't have leftover.
1976 * If @req has leftover, sets it up for the next range of segments.
1978 * This special helper function is only for request stacking drivers
1979 * (e.g. request-based dm) so that they can handle partial completion.
1980 * Actual device drivers should use blk_end_request instead.
1982 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1983 * %false return from this function.
1986 * %false - this request doesn't have any more data
1987 * %true - this request has more data
1989 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1991 int total_bytes, bio_nbytes, next_idx = 0;
1997 trace_block_rq_complete(req->q, req);
2000 * For fs requests, rq is just carrier of independent bio's
2001 * and each partial completion should be handled separately.
2002 * Reset per-request error on each partial completion.
2004 * TODO: tj: This is too subtle. It would be better to let
2005 * low level drivers do what they see fit.
2007 if (req->cmd_type == REQ_TYPE_FS)
2010 if (error && req->cmd_type == REQ_TYPE_FS &&
2011 !(req->cmd_flags & REQ_QUIET)) {
2016 error_type = "recoverable transport";
2019 error_type = "critical target";
2022 error_type = "critical nexus";
2029 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2030 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2031 (unsigned long long)blk_rq_pos(req));
2034 blk_account_io_completion(req, nr_bytes);
2036 total_bytes = bio_nbytes = 0;
2037 while ((bio = req->bio) != NULL) {
2040 if (nr_bytes >= bio->bi_size) {
2041 req->bio = bio->bi_next;
2042 nbytes = bio->bi_size;
2043 req_bio_endio(req, bio, nbytes, error);
2047 int idx = bio->bi_idx + next_idx;
2049 if (unlikely(idx >= bio->bi_vcnt)) {
2050 blk_dump_rq_flags(req, "__end_that");
2051 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2052 __func__, idx, bio->bi_vcnt);
2056 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2057 BIO_BUG_ON(nbytes > bio->bi_size);
2060 * not a complete bvec done
2062 if (unlikely(nbytes > nr_bytes)) {
2063 bio_nbytes += nr_bytes;
2064 total_bytes += nr_bytes;
2069 * advance to the next vector
2072 bio_nbytes += nbytes;
2075 total_bytes += nbytes;
2081 * end more in this run, or just return 'not-done'
2083 if (unlikely(nr_bytes <= 0))
2093 * Reset counters so that the request stacking driver
2094 * can find how many bytes remain in the request
2097 req->__data_len = 0;
2102 * if the request wasn't completed, update state
2105 req_bio_endio(req, bio, bio_nbytes, error);
2106 bio->bi_idx += next_idx;
2107 bio_iovec(bio)->bv_offset += nr_bytes;
2108 bio_iovec(bio)->bv_len -= nr_bytes;
2111 req->__data_len -= total_bytes;
2112 req->buffer = bio_data(req->bio);
2114 /* update sector only for requests with clear definition of sector */
2115 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2116 req->__sector += total_bytes >> 9;
2118 /* mixed attributes always follow the first bio */
2119 if (req->cmd_flags & REQ_MIXED_MERGE) {
2120 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2121 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2125 * If total number of sectors is less than the first segment
2126 * size, something has gone terribly wrong.
2128 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2129 blk_dump_rq_flags(req, "request botched");
2130 req->__data_len = blk_rq_cur_bytes(req);
2133 /* recalculate the number of segments */
2134 blk_recalc_rq_segments(req);
2138 EXPORT_SYMBOL_GPL(blk_update_request);
2140 static bool blk_update_bidi_request(struct request *rq, int error,
2141 unsigned int nr_bytes,
2142 unsigned int bidi_bytes)
2144 if (blk_update_request(rq, error, nr_bytes))
2147 /* Bidi request must be completed as a whole */
2148 if (unlikely(blk_bidi_rq(rq)) &&
2149 blk_update_request(rq->next_rq, error, bidi_bytes))
2152 if (blk_queue_add_random(rq->q))
2153 add_disk_randomness(rq->rq_disk);
2159 * blk_unprep_request - unprepare a request
2162 * This function makes a request ready for complete resubmission (or
2163 * completion). It happens only after all error handling is complete,
2164 * so represents the appropriate moment to deallocate any resources
2165 * that were allocated to the request in the prep_rq_fn. The queue
2166 * lock is held when calling this.
2168 void blk_unprep_request(struct request *req)
2170 struct request_queue *q = req->q;
2172 req->cmd_flags &= ~REQ_DONTPREP;
2173 if (q->unprep_rq_fn)
2174 q->unprep_rq_fn(q, req);
2176 EXPORT_SYMBOL_GPL(blk_unprep_request);
2179 * queue lock must be held
2181 static void blk_finish_request(struct request *req, int error)
2183 if (blk_rq_tagged(req))
2184 blk_queue_end_tag(req->q, req);
2186 BUG_ON(blk_queued_rq(req));
2188 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2189 laptop_io_completion(&req->q->backing_dev_info);
2191 blk_delete_timer(req);
2193 if (req->cmd_flags & REQ_DONTPREP)
2194 blk_unprep_request(req);
2197 blk_account_io_done(req);
2200 req->end_io(req, error);
2202 if (blk_bidi_rq(req))
2203 __blk_put_request(req->next_rq->q, req->next_rq);
2205 __blk_put_request(req->q, req);
2210 * blk_end_bidi_request - Complete a bidi request
2211 * @rq: the request to complete
2212 * @error: %0 for success, < %0 for error
2213 * @nr_bytes: number of bytes to complete @rq
2214 * @bidi_bytes: number of bytes to complete @rq->next_rq
2217 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2218 * Drivers that supports bidi can safely call this member for any
2219 * type of request, bidi or uni. In the later case @bidi_bytes is
2223 * %false - we are done with this request
2224 * %true - still buffers pending for this request
2226 static bool blk_end_bidi_request(struct request *rq, int error,
2227 unsigned int nr_bytes, unsigned int bidi_bytes)
2229 struct request_queue *q = rq->q;
2230 unsigned long flags;
2232 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2235 spin_lock_irqsave(q->queue_lock, flags);
2236 blk_finish_request(rq, error);
2237 spin_unlock_irqrestore(q->queue_lock, flags);
2243 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2244 * @rq: the request to complete
2245 * @error: %0 for success, < %0 for error
2246 * @nr_bytes: number of bytes to complete @rq
2247 * @bidi_bytes: number of bytes to complete @rq->next_rq
2250 * Identical to blk_end_bidi_request() except that queue lock is
2251 * assumed to be locked on entry and remains so on return.
2254 * %false - we are done with this request
2255 * %true - still buffers pending for this request
2257 bool __blk_end_bidi_request(struct request *rq, int error,
2258 unsigned int nr_bytes, unsigned int bidi_bytes)
2260 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2263 blk_finish_request(rq, error);
2269 * blk_end_request - Helper function for drivers to complete the request.
2270 * @rq: the request being processed
2271 * @error: %0 for success, < %0 for error
2272 * @nr_bytes: number of bytes to complete
2275 * Ends I/O on a number of bytes attached to @rq.
2276 * If @rq has leftover, sets it up for the next range of segments.
2279 * %false - we are done with this request
2280 * %true - still buffers pending for this request
2282 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2284 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2286 EXPORT_SYMBOL(blk_end_request);
2289 * blk_end_request_all - Helper function for drives to finish the request.
2290 * @rq: the request to finish
2291 * @error: %0 for success, < %0 for error
2294 * Completely finish @rq.
2296 void blk_end_request_all(struct request *rq, int error)
2299 unsigned int bidi_bytes = 0;
2301 if (unlikely(blk_bidi_rq(rq)))
2302 bidi_bytes = blk_rq_bytes(rq->next_rq);
2304 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2307 EXPORT_SYMBOL(blk_end_request_all);
2310 * blk_end_request_cur - Helper function to finish the current request chunk.
2311 * @rq: the request to finish the current chunk for
2312 * @error: %0 for success, < %0 for error
2315 * Complete the current consecutively mapped chunk from @rq.
2318 * %false - we are done with this request
2319 * %true - still buffers pending for this request
2321 bool blk_end_request_cur(struct request *rq, int error)
2323 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2325 EXPORT_SYMBOL(blk_end_request_cur);
2328 * blk_end_request_err - Finish a request till the next failure boundary.
2329 * @rq: the request to finish till the next failure boundary for
2330 * @error: must be negative errno
2333 * Complete @rq till the next failure boundary.
2336 * %false - we are done with this request
2337 * %true - still buffers pending for this request
2339 bool blk_end_request_err(struct request *rq, int error)
2341 WARN_ON(error >= 0);
2342 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2344 EXPORT_SYMBOL_GPL(blk_end_request_err);
2347 * __blk_end_request - Helper function for drivers to complete the request.
2348 * @rq: the request being processed
2349 * @error: %0 for success, < %0 for error
2350 * @nr_bytes: number of bytes to complete
2353 * Must be called with queue lock held unlike blk_end_request().
2356 * %false - we are done with this request
2357 * %true - still buffers pending for this request
2359 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2361 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2363 EXPORT_SYMBOL(__blk_end_request);
2366 * __blk_end_request_all - Helper function for drives to finish the request.
2367 * @rq: the request to finish
2368 * @error: %0 for success, < %0 for error
2371 * Completely finish @rq. Must be called with queue lock held.
2373 void __blk_end_request_all(struct request *rq, int error)
2376 unsigned int bidi_bytes = 0;
2378 if (unlikely(blk_bidi_rq(rq)))
2379 bidi_bytes = blk_rq_bytes(rq->next_rq);
2381 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2384 EXPORT_SYMBOL(__blk_end_request_all);
2387 * __blk_end_request_cur - Helper function to finish the current request chunk.
2388 * @rq: the request to finish the current chunk for
2389 * @error: %0 for success, < %0 for error
2392 * Complete the current consecutively mapped chunk from @rq. Must
2393 * be called with queue lock held.
2396 * %false - we are done with this request
2397 * %true - still buffers pending for this request
2399 bool __blk_end_request_cur(struct request *rq, int error)
2401 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2403 EXPORT_SYMBOL(__blk_end_request_cur);
2406 * __blk_end_request_err - Finish a request till the next failure boundary.
2407 * @rq: the request to finish till the next failure boundary for
2408 * @error: must be negative errno
2411 * Complete @rq till the next failure boundary. Must be called
2412 * with queue lock held.
2415 * %false - we are done with this request
2416 * %true - still buffers pending for this request
2418 bool __blk_end_request_err(struct request *rq, int error)
2420 WARN_ON(error >= 0);
2421 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2423 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2425 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2428 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2429 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2431 if (bio_has_data(bio)) {
2432 rq->nr_phys_segments = bio_phys_segments(q, bio);
2433 rq->buffer = bio_data(bio);
2435 rq->__data_len = bio->bi_size;
2436 rq->bio = rq->biotail = bio;
2439 rq->rq_disk = bio->bi_bdev->bd_disk;
2442 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2444 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2445 * @rq: the request to be flushed
2448 * Flush all pages in @rq.
2450 void rq_flush_dcache_pages(struct request *rq)
2452 struct req_iterator iter;
2453 struct bio_vec *bvec;
2455 rq_for_each_segment(bvec, rq, iter)
2456 flush_dcache_page(bvec->bv_page);
2458 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2462 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2463 * @q : the queue of the device being checked
2466 * Check if underlying low-level drivers of a device are busy.
2467 * If the drivers want to export their busy state, they must set own
2468 * exporting function using blk_queue_lld_busy() first.
2470 * Basically, this function is used only by request stacking drivers
2471 * to stop dispatching requests to underlying devices when underlying
2472 * devices are busy. This behavior helps more I/O merging on the queue
2473 * of the request stacking driver and prevents I/O throughput regression
2474 * on burst I/O load.
2477 * 0 - Not busy (The request stacking driver should dispatch request)
2478 * 1 - Busy (The request stacking driver should stop dispatching request)
2480 int blk_lld_busy(struct request_queue *q)
2483 return q->lld_busy_fn(q);
2487 EXPORT_SYMBOL_GPL(blk_lld_busy);
2490 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2491 * @rq: the clone request to be cleaned up
2494 * Free all bios in @rq for a cloned request.
2496 void blk_rq_unprep_clone(struct request *rq)
2500 while ((bio = rq->bio) != NULL) {
2501 rq->bio = bio->bi_next;
2506 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2509 * Copy attributes of the original request to the clone request.
2510 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2512 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2514 dst->cpu = src->cpu;
2515 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2516 dst->cmd_type = src->cmd_type;
2517 dst->__sector = blk_rq_pos(src);
2518 dst->__data_len = blk_rq_bytes(src);
2519 dst->nr_phys_segments = src->nr_phys_segments;
2520 dst->ioprio = src->ioprio;
2521 dst->extra_len = src->extra_len;
2525 * blk_rq_prep_clone - Helper function to setup clone request
2526 * @rq: the request to be setup
2527 * @rq_src: original request to be cloned
2528 * @bs: bio_set that bios for clone are allocated from
2529 * @gfp_mask: memory allocation mask for bio
2530 * @bio_ctr: setup function to be called for each clone bio.
2531 * Returns %0 for success, non %0 for failure.
2532 * @data: private data to be passed to @bio_ctr
2535 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2536 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2537 * are not copied, and copying such parts is the caller's responsibility.
2538 * Also, pages which the original bios are pointing to are not copied
2539 * and the cloned bios just point same pages.
2540 * So cloned bios must be completed before original bios, which means
2541 * the caller must complete @rq before @rq_src.
2543 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2544 struct bio_set *bs, gfp_t gfp_mask,
2545 int (*bio_ctr)(struct bio *, struct bio *, void *),
2548 struct bio *bio, *bio_src;
2553 blk_rq_init(NULL, rq);
2555 __rq_for_each_bio(bio_src, rq_src) {
2556 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2560 __bio_clone(bio, bio_src);
2562 if (bio_integrity(bio_src) &&
2563 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2566 if (bio_ctr && bio_ctr(bio, bio_src, data))
2570 rq->biotail->bi_next = bio;
2573 rq->bio = rq->biotail = bio;
2576 __blk_rq_prep_clone(rq, rq_src);
2583 blk_rq_unprep_clone(rq);
2587 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2589 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2591 return queue_work(kblockd_workqueue, work);
2593 EXPORT_SYMBOL(kblockd_schedule_work);
2595 int kblockd_schedule_delayed_work(struct request_queue *q,
2596 struct delayed_work *dwork, unsigned long delay)
2598 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2600 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2602 #define PLUG_MAGIC 0x91827364
2605 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2606 * @plug: The &struct blk_plug that needs to be initialized
2609 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2610 * pending I/O should the task end up blocking between blk_start_plug() and
2611 * blk_finish_plug(). This is important from a performance perspective, but
2612 * also ensures that we don't deadlock. For instance, if the task is blocking
2613 * for a memory allocation, memory reclaim could end up wanting to free a
2614 * page belonging to that request that is currently residing in our private
2615 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2616 * this kind of deadlock.
2618 void blk_start_plug(struct blk_plug *plug)
2620 struct task_struct *tsk = current;
2622 plug->magic = PLUG_MAGIC;
2623 INIT_LIST_HEAD(&plug->list);
2624 INIT_LIST_HEAD(&plug->cb_list);
2625 plug->should_sort = 0;
2628 * If this is a nested plug, don't actually assign it. It will be
2629 * flushed on its own.
2633 * Store ordering should not be needed here, since a potential
2634 * preempt will imply a full memory barrier
2639 EXPORT_SYMBOL(blk_start_plug);
2641 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2643 struct request *rqa = container_of(a, struct request, queuelist);
2644 struct request *rqb = container_of(b, struct request, queuelist);
2646 return !(rqa->q <= rqb->q);
2650 * If 'from_schedule' is true, then postpone the dispatch of requests
2651 * until a safe kblockd context. We due this to avoid accidental big
2652 * additional stack usage in driver dispatch, in places where the originally
2653 * plugger did not intend it.
2655 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2657 __releases(q->queue_lock)
2659 trace_block_unplug(q, depth, !from_schedule);
2662 * If we are punting this to kblockd, then we can safely drop
2663 * the queue_lock before waking kblockd (which needs to take
2666 if (from_schedule) {
2667 spin_unlock(q->queue_lock);
2668 blk_run_queue_async(q);
2671 spin_unlock(q->queue_lock);
2676 static void flush_plug_callbacks(struct blk_plug *plug)
2678 LIST_HEAD(callbacks);
2680 if (list_empty(&plug->cb_list))
2683 list_splice_init(&plug->cb_list, &callbacks);
2685 while (!list_empty(&callbacks)) {
2686 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2689 list_del(&cb->list);
2694 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2696 struct request_queue *q;
2697 unsigned long flags;
2702 BUG_ON(plug->magic != PLUG_MAGIC);
2704 flush_plug_callbacks(plug);
2705 if (list_empty(&plug->list))
2708 list_splice_init(&plug->list, &list);
2710 if (plug->should_sort) {
2711 list_sort(NULL, &list, plug_rq_cmp);
2712 plug->should_sort = 0;
2719 * Save and disable interrupts here, to avoid doing it for every
2720 * queue lock we have to take.
2722 local_irq_save(flags);
2723 while (!list_empty(&list)) {
2724 rq = list_entry_rq(list.next);
2725 list_del_init(&rq->queuelist);
2729 * This drops the queue lock
2732 queue_unplugged(q, depth, from_schedule);
2735 spin_lock(q->queue_lock);
2738 * rq is already accounted, so use raw insert
2740 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2741 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2743 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2749 * This drops the queue lock
2752 queue_unplugged(q, depth, from_schedule);
2754 local_irq_restore(flags);
2757 void blk_finish_plug(struct blk_plug *plug)
2759 blk_flush_plug_list(plug, false);
2761 if (plug == current->plug)
2762 current->plug = NULL;
2764 EXPORT_SYMBOL(blk_finish_plug);
2766 int __init blk_dev_init(void)
2768 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2769 sizeof(((struct request *)0)->cmd_flags));
2771 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2772 kblockd_workqueue = alloc_workqueue("kblockd",
2773 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2774 if (!kblockd_workqueue)
2775 panic("Failed to create kblockd\n");
2777 request_cachep = kmem_cache_create("blkdev_requests",
2778 sizeof(struct request), 0, SLAB_PANIC, NULL);
2780 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2781 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);