2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
43 #include "blk-mq-sched.h"
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
56 DEFINE_IDA(blk_queue_ida);
59 * For the allocated request tables
61 struct kmem_cache *request_cachep;
64 * For queue allocation
66 struct kmem_cache *blk_requestq_cachep;
69 * Controlling structure to kblockd
71 static struct workqueue_struct *kblockd_workqueue;
73 static void blk_clear_congested(struct request_list *rl, int sync)
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
87 static void blk_set_congested(struct request_list *rl, int sync)
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
98 void blk_queue_congestion_threshold(struct request_queue *q)
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
105 q->nr_congestion_on = nr;
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
110 q->nr_congestion_off = nr;
113 void blk_rq_init(struct request_queue *q, struct request *rq)
115 memset(rq, 0, sizeof(*rq));
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
130 EXPORT_SYMBOL(blk_rq_init);
132 static const struct {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
155 blk_status_t errno_to_blk_status(int errno)
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
164 return BLK_STS_IOERR;
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
168 int blk_status_to_errno(blk_status_t status)
170 int idx = (__force int)status;
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
174 return blk_errors[idx].errno;
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
178 static void print_req_error(struct request *req, blk_status_t status)
180 int idx = (__force int)status;
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
195 bio->bi_status = error;
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
200 bio_advance(bio, nbytes);
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
207 void blk_dump_rq_flags(struct request *rq, char *msg)
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
219 EXPORT_SYMBOL(blk_dump_rq_flags);
221 static void blk_delay_work(struct work_struct *work)
223 struct request_queue *q;
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
228 spin_unlock_irq(q->queue_lock);
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
250 EXPORT_SYMBOL(blk_delay_queue);
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
261 void blk_start_queue_async(struct request_queue *q)
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
269 EXPORT_SYMBOL(blk_start_queue_async);
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
280 void blk_start_queue(struct request_queue *q)
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
289 EXPORT_SYMBOL(blk_start_queue);
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
305 void blk_stop_queue(struct request_queue *q)
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
313 EXPORT_SYMBOL(blk_stop_queue);
316 * blk_sync_queue - cancel any pending callbacks on a queue
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
333 void blk_sync_queue(struct request_queue *q)
335 del_timer_sync(&q->timeout);
338 struct blk_mq_hw_ctx *hctx;
341 queue_for_each_hw_ctx(q, hctx, i)
342 cancel_delayed_work_sync(&hctx->run_work);
344 cancel_delayed_work_sync(&q->delay_work);
347 EXPORT_SYMBOL(blk_sync_queue);
350 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
351 * @q: The queue to run
354 * Invoke request handling on a queue if there are any pending requests.
355 * May be used to restart request handling after a request has completed.
356 * This variant runs the queue whether or not the queue has been
357 * stopped. Must be called with the queue lock held and interrupts
358 * disabled. See also @blk_run_queue.
360 inline void __blk_run_queue_uncond(struct request_queue *q)
362 lockdep_assert_held(q->queue_lock);
363 WARN_ON_ONCE(q->mq_ops);
365 if (unlikely(blk_queue_dead(q)))
369 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
370 * the queue lock internally. As a result multiple threads may be
371 * running such a request function concurrently. Keep track of the
372 * number of active request_fn invocations such that blk_drain_queue()
373 * can wait until all these request_fn calls have finished.
375 q->request_fn_active++;
377 q->request_fn_active--;
379 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
382 * __blk_run_queue - run a single device queue
383 * @q: The queue to run
386 * See @blk_run_queue.
388 void __blk_run_queue(struct request_queue *q)
390 lockdep_assert_held(q->queue_lock);
391 WARN_ON_ONCE(q->mq_ops);
393 if (unlikely(blk_queue_stopped(q)))
396 __blk_run_queue_uncond(q);
398 EXPORT_SYMBOL(__blk_run_queue);
401 * blk_run_queue_async - run a single device queue in workqueue context
402 * @q: The queue to run
405 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
409 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
410 * has canceled q->delay_work, callers must hold the queue lock to avoid
411 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
413 void blk_run_queue_async(struct request_queue *q)
415 lockdep_assert_held(q->queue_lock);
416 WARN_ON_ONCE(q->mq_ops);
418 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
419 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
421 EXPORT_SYMBOL(blk_run_queue_async);
424 * blk_run_queue - run a single device queue
425 * @q: The queue to run
428 * Invoke request handling on this queue, if it has pending work to do.
429 * May be used to restart queueing when a request has completed.
431 void blk_run_queue(struct request_queue *q)
435 WARN_ON_ONCE(q->mq_ops);
437 spin_lock_irqsave(q->queue_lock, flags);
439 spin_unlock_irqrestore(q->queue_lock, flags);
441 EXPORT_SYMBOL(blk_run_queue);
443 void blk_put_queue(struct request_queue *q)
445 kobject_put(&q->kobj);
447 EXPORT_SYMBOL(blk_put_queue);
450 * __blk_drain_queue - drain requests from request_queue
452 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
454 * Drain requests from @q. If @drain_all is set, all requests are drained.
455 * If not, only ELVPRIV requests are drained. The caller is responsible
456 * for ensuring that no new requests which need to be drained are queued.
458 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
459 __releases(q->queue_lock)
460 __acquires(q->queue_lock)
464 lockdep_assert_held(q->queue_lock);
465 WARN_ON_ONCE(q->mq_ops);
471 * The caller might be trying to drain @q before its
472 * elevator is initialized.
475 elv_drain_elevator(q);
477 blkcg_drain_queue(q);
480 * This function might be called on a queue which failed
481 * driver init after queue creation or is not yet fully
482 * active yet. Some drivers (e.g. fd and loop) get unhappy
483 * in such cases. Kick queue iff dispatch queue has
484 * something on it and @q has request_fn set.
486 if (!list_empty(&q->queue_head) && q->request_fn)
489 drain |= q->nr_rqs_elvpriv;
490 drain |= q->request_fn_active;
493 * Unfortunately, requests are queued at and tracked from
494 * multiple places and there's no single counter which can
495 * be drained. Check all the queues and counters.
498 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
499 drain |= !list_empty(&q->queue_head);
500 for (i = 0; i < 2; i++) {
501 drain |= q->nr_rqs[i];
502 drain |= q->in_flight[i];
504 drain |= !list_empty(&fq->flush_queue[i]);
511 spin_unlock_irq(q->queue_lock);
515 spin_lock_irq(q->queue_lock);
519 * With queue marked dead, any woken up waiter will fail the
520 * allocation path, so the wakeup chaining is lost and we're
521 * left with hung waiters. We need to wake up those waiters.
524 struct request_list *rl;
526 blk_queue_for_each_rl(rl, q)
527 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
528 wake_up_all(&rl->wait[i]);
533 * blk_queue_bypass_start - enter queue bypass mode
534 * @q: queue of interest
536 * In bypass mode, only the dispatch FIFO queue of @q is used. This
537 * function makes @q enter bypass mode and drains all requests which were
538 * throttled or issued before. On return, it's guaranteed that no request
539 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
540 * inside queue or RCU read lock.
542 void blk_queue_bypass_start(struct request_queue *q)
544 WARN_ON_ONCE(q->mq_ops);
546 spin_lock_irq(q->queue_lock);
548 queue_flag_set(QUEUE_FLAG_BYPASS, q);
549 spin_unlock_irq(q->queue_lock);
552 * Queues start drained. Skip actual draining till init is
553 * complete. This avoids lenghty delays during queue init which
554 * can happen many times during boot.
556 if (blk_queue_init_done(q)) {
557 spin_lock_irq(q->queue_lock);
558 __blk_drain_queue(q, false);
559 spin_unlock_irq(q->queue_lock);
561 /* ensure blk_queue_bypass() is %true inside RCU read lock */
565 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
568 * blk_queue_bypass_end - leave queue bypass mode
569 * @q: queue of interest
571 * Leave bypass mode and restore the normal queueing behavior.
573 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
574 * this function is called for both blk-sq and blk-mq queues.
576 void blk_queue_bypass_end(struct request_queue *q)
578 spin_lock_irq(q->queue_lock);
579 if (!--q->bypass_depth)
580 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
581 WARN_ON_ONCE(q->bypass_depth < 0);
582 spin_unlock_irq(q->queue_lock);
584 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
586 void blk_set_queue_dying(struct request_queue *q)
588 spin_lock_irq(q->queue_lock);
589 queue_flag_set(QUEUE_FLAG_DYING, q);
590 spin_unlock_irq(q->queue_lock);
593 * When queue DYING flag is set, we need to block new req
594 * entering queue, so we call blk_freeze_queue_start() to
595 * prevent I/O from crossing blk_queue_enter().
597 blk_freeze_queue_start(q);
600 blk_mq_wake_waiters(q);
602 struct request_list *rl;
604 spin_lock_irq(q->queue_lock);
605 blk_queue_for_each_rl(rl, q) {
607 wake_up(&rl->wait[BLK_RW_SYNC]);
608 wake_up(&rl->wait[BLK_RW_ASYNC]);
611 spin_unlock_irq(q->queue_lock);
614 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
617 * blk_cleanup_queue - shutdown a request queue
618 * @q: request queue to shutdown
620 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
621 * put it. All future requests will be failed immediately with -ENODEV.
623 void blk_cleanup_queue(struct request_queue *q)
625 spinlock_t *lock = q->queue_lock;
627 /* mark @q DYING, no new request or merges will be allowed afterwards */
628 mutex_lock(&q->sysfs_lock);
629 blk_set_queue_dying(q);
633 * A dying queue is permanently in bypass mode till released. Note
634 * that, unlike blk_queue_bypass_start(), we aren't performing
635 * synchronize_rcu() after entering bypass mode to avoid the delay
636 * as some drivers create and destroy a lot of queues while
637 * probing. This is still safe because blk_release_queue() will be
638 * called only after the queue refcnt drops to zero and nothing,
639 * RCU or not, would be traversing the queue by then.
642 queue_flag_set(QUEUE_FLAG_BYPASS, q);
644 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
645 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
646 queue_flag_set(QUEUE_FLAG_DYING, q);
647 spin_unlock_irq(lock);
648 mutex_unlock(&q->sysfs_lock);
651 * Drain all requests queued before DYING marking. Set DEAD flag to
652 * prevent that q->request_fn() gets invoked after draining finished.
657 __blk_drain_queue(q, true);
658 queue_flag_set(QUEUE_FLAG_DEAD, q);
659 spin_unlock_irq(lock);
661 /* for synchronous bio-based driver finish in-flight integrity i/o */
662 blk_flush_integrity();
664 /* @q won't process any more request, flush async actions */
665 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
669 blk_mq_free_queue(q);
670 percpu_ref_exit(&q->q_usage_counter);
673 if (q->queue_lock != &q->__queue_lock)
674 q->queue_lock = &q->__queue_lock;
675 spin_unlock_irq(lock);
677 /* @q is and will stay empty, shutdown and put */
680 EXPORT_SYMBOL(blk_cleanup_queue);
682 /* Allocate memory local to the request queue */
683 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
685 struct request_queue *q = data;
687 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
690 static void free_request_simple(void *element, void *data)
692 kmem_cache_free(request_cachep, element);
695 static void *alloc_request_size(gfp_t gfp_mask, void *data)
697 struct request_queue *q = data;
700 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
702 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
709 static void free_request_size(void *element, void *data)
711 struct request_queue *q = data;
714 q->exit_rq_fn(q, element);
718 int blk_init_rl(struct request_list *rl, struct request_queue *q,
721 if (unlikely(rl->rq_pool))
725 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
726 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
727 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
728 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
731 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
732 alloc_request_size, free_request_size,
733 q, gfp_mask, q->node);
735 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
736 alloc_request_simple, free_request_simple,
737 q, gfp_mask, q->node);
742 if (rl != &q->root_rl)
743 WARN_ON_ONCE(!blk_get_queue(q));
748 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
751 mempool_destroy(rl->rq_pool);
752 if (rl != &q->root_rl)
757 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
759 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
761 EXPORT_SYMBOL(blk_alloc_queue);
763 int blk_queue_enter(struct request_queue *q, bool nowait)
768 if (percpu_ref_tryget_live(&q->q_usage_counter))
775 * read pair of barrier in blk_freeze_queue_start(),
776 * we need to order reading __PERCPU_REF_DEAD flag of
777 * .q_usage_counter and reading .mq_freeze_depth or
778 * queue dying flag, otherwise the following wait may
779 * never return if the two reads are reordered.
783 ret = wait_event_interruptible(q->mq_freeze_wq,
784 !atomic_read(&q->mq_freeze_depth) ||
786 if (blk_queue_dying(q))
793 void blk_queue_exit(struct request_queue *q)
795 percpu_ref_put(&q->q_usage_counter);
798 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
800 struct request_queue *q =
801 container_of(ref, struct request_queue, q_usage_counter);
803 wake_up_all(&q->mq_freeze_wq);
806 static void blk_rq_timed_out_timer(unsigned long data)
808 struct request_queue *q = (struct request_queue *)data;
810 kblockd_schedule_work(&q->timeout_work);
813 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
815 struct request_queue *q;
817 q = kmem_cache_alloc_node(blk_requestq_cachep,
818 gfp_mask | __GFP_ZERO, node_id);
822 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
826 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
830 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
831 if (!q->backing_dev_info)
834 q->stats = blk_alloc_queue_stats();
838 q->backing_dev_info->ra_pages =
839 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
840 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
841 q->backing_dev_info->name = "block";
844 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
845 laptop_mode_timer_fn, (unsigned long) q);
846 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
847 INIT_LIST_HEAD(&q->queue_head);
848 INIT_LIST_HEAD(&q->timeout_list);
849 INIT_LIST_HEAD(&q->icq_list);
850 #ifdef CONFIG_BLK_CGROUP
851 INIT_LIST_HEAD(&q->blkg_list);
853 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
855 kobject_init(&q->kobj, &blk_queue_ktype);
857 mutex_init(&q->sysfs_lock);
858 spin_lock_init(&q->__queue_lock);
861 * By default initialize queue_lock to internal lock and driver can
862 * override it later if need be.
864 q->queue_lock = &q->__queue_lock;
867 * A queue starts its life with bypass turned on to avoid
868 * unnecessary bypass on/off overhead and nasty surprises during
869 * init. The initial bypass will be finished when the queue is
870 * registered by blk_register_queue().
873 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
875 init_waitqueue_head(&q->mq_freeze_wq);
878 * Init percpu_ref in atomic mode so that it's faster to shutdown.
879 * See blk_register_queue() for details.
881 if (percpu_ref_init(&q->q_usage_counter,
882 blk_queue_usage_counter_release,
883 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
886 if (blkcg_init_queue(q))
892 percpu_ref_exit(&q->q_usage_counter);
894 blk_free_queue_stats(q->stats);
896 bdi_put(q->backing_dev_info);
898 bioset_free(q->bio_split);
900 ida_simple_remove(&blk_queue_ida, q->id);
902 kmem_cache_free(blk_requestq_cachep, q);
905 EXPORT_SYMBOL(blk_alloc_queue_node);
908 * blk_init_queue - prepare a request queue for use with a block device
909 * @rfn: The function to be called to process requests that have been
910 * placed on the queue.
911 * @lock: Request queue spin lock
914 * If a block device wishes to use the standard request handling procedures,
915 * which sorts requests and coalesces adjacent requests, then it must
916 * call blk_init_queue(). The function @rfn will be called when there
917 * are requests on the queue that need to be processed. If the device
918 * supports plugging, then @rfn may not be called immediately when requests
919 * are available on the queue, but may be called at some time later instead.
920 * Plugged queues are generally unplugged when a buffer belonging to one
921 * of the requests on the queue is needed, or due to memory pressure.
923 * @rfn is not required, or even expected, to remove all requests off the
924 * queue, but only as many as it can handle at a time. If it does leave
925 * requests on the queue, it is responsible for arranging that the requests
926 * get dealt with eventually.
928 * The queue spin lock must be held while manipulating the requests on the
929 * request queue; this lock will be taken also from interrupt context, so irq
930 * disabling is needed for it.
932 * Function returns a pointer to the initialized request queue, or %NULL if
936 * blk_init_queue() must be paired with a blk_cleanup_queue() call
937 * when the block device is deactivated (such as at module unload).
940 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
942 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
944 EXPORT_SYMBOL(blk_init_queue);
946 struct request_queue *
947 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
949 struct request_queue *q;
951 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
957 q->queue_lock = lock;
958 if (blk_init_allocated_queue(q) < 0) {
959 blk_cleanup_queue(q);
965 EXPORT_SYMBOL(blk_init_queue_node);
967 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
970 int blk_init_allocated_queue(struct request_queue *q)
972 WARN_ON_ONCE(q->mq_ops);
974 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
978 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
979 goto out_free_flush_queue;
981 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
982 goto out_exit_flush_rq;
984 INIT_WORK(&q->timeout_work, blk_timeout_work);
985 q->queue_flags |= QUEUE_FLAG_DEFAULT;
988 * This also sets hw/phys segments, boundary and size
990 blk_queue_make_request(q, blk_queue_bio);
992 q->sg_reserved_size = INT_MAX;
994 /* Protect q->elevator from elevator_change */
995 mutex_lock(&q->sysfs_lock);
998 if (elevator_init(q, NULL)) {
999 mutex_unlock(&q->sysfs_lock);
1000 goto out_exit_flush_rq;
1003 mutex_unlock(&q->sysfs_lock);
1008 q->exit_rq_fn(q, q->fq->flush_rq);
1009 out_free_flush_queue:
1010 blk_free_flush_queue(q->fq);
1013 EXPORT_SYMBOL(blk_init_allocated_queue);
1015 bool blk_get_queue(struct request_queue *q)
1017 if (likely(!blk_queue_dying(q))) {
1024 EXPORT_SYMBOL(blk_get_queue);
1026 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1028 if (rq->rq_flags & RQF_ELVPRIV) {
1029 elv_put_request(rl->q, rq);
1031 put_io_context(rq->elv.icq->ioc);
1034 mempool_free(rq, rl->rq_pool);
1038 * ioc_batching returns true if the ioc is a valid batching request and
1039 * should be given priority access to a request.
1041 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1047 * Make sure the process is able to allocate at least 1 request
1048 * even if the batch times out, otherwise we could theoretically
1051 return ioc->nr_batch_requests == q->nr_batching ||
1052 (ioc->nr_batch_requests > 0
1053 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1057 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1058 * will cause the process to be a "batcher" on all queues in the system. This
1059 * is the behaviour we want though - once it gets a wakeup it should be given
1062 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1064 if (!ioc || ioc_batching(q, ioc))
1067 ioc->nr_batch_requests = q->nr_batching;
1068 ioc->last_waited = jiffies;
1071 static void __freed_request(struct request_list *rl, int sync)
1073 struct request_queue *q = rl->q;
1075 if (rl->count[sync] < queue_congestion_off_threshold(q))
1076 blk_clear_congested(rl, sync);
1078 if (rl->count[sync] + 1 <= q->nr_requests) {
1079 if (waitqueue_active(&rl->wait[sync]))
1080 wake_up(&rl->wait[sync]);
1082 blk_clear_rl_full(rl, sync);
1087 * A request has just been released. Account for it, update the full and
1088 * congestion status, wake up any waiters. Called under q->queue_lock.
1090 static void freed_request(struct request_list *rl, bool sync,
1091 req_flags_t rq_flags)
1093 struct request_queue *q = rl->q;
1097 if (rq_flags & RQF_ELVPRIV)
1098 q->nr_rqs_elvpriv--;
1100 __freed_request(rl, sync);
1102 if (unlikely(rl->starved[sync ^ 1]))
1103 __freed_request(rl, sync ^ 1);
1106 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1108 struct request_list *rl;
1109 int on_thresh, off_thresh;
1111 WARN_ON_ONCE(q->mq_ops);
1113 spin_lock_irq(q->queue_lock);
1114 q->nr_requests = nr;
1115 blk_queue_congestion_threshold(q);
1116 on_thresh = queue_congestion_on_threshold(q);
1117 off_thresh = queue_congestion_off_threshold(q);
1119 blk_queue_for_each_rl(rl, q) {
1120 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1121 blk_set_congested(rl, BLK_RW_SYNC);
1122 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1123 blk_clear_congested(rl, BLK_RW_SYNC);
1125 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1126 blk_set_congested(rl, BLK_RW_ASYNC);
1127 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1128 blk_clear_congested(rl, BLK_RW_ASYNC);
1130 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1131 blk_set_rl_full(rl, BLK_RW_SYNC);
1133 blk_clear_rl_full(rl, BLK_RW_SYNC);
1134 wake_up(&rl->wait[BLK_RW_SYNC]);
1137 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1138 blk_set_rl_full(rl, BLK_RW_ASYNC);
1140 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1141 wake_up(&rl->wait[BLK_RW_ASYNC]);
1145 spin_unlock_irq(q->queue_lock);
1150 * __get_request - get a free request
1151 * @rl: request list to allocate from
1152 * @op: operation and flags
1153 * @bio: bio to allocate request for (can be %NULL)
1154 * @gfp_mask: allocation mask
1156 * Get a free request from @q. This function may fail under memory
1157 * pressure or if @q is dead.
1159 * Must be called with @q->queue_lock held and,
1160 * Returns ERR_PTR on failure, with @q->queue_lock held.
1161 * Returns request pointer on success, with @q->queue_lock *not held*.
1163 static struct request *__get_request(struct request_list *rl, unsigned int op,
1164 struct bio *bio, gfp_t gfp_mask)
1166 struct request_queue *q = rl->q;
1168 struct elevator_type *et = q->elevator->type;
1169 struct io_context *ioc = rq_ioc(bio);
1170 struct io_cq *icq = NULL;
1171 const bool is_sync = op_is_sync(op);
1173 req_flags_t rq_flags = RQF_ALLOCED;
1175 lockdep_assert_held(q->queue_lock);
1177 if (unlikely(blk_queue_dying(q)))
1178 return ERR_PTR(-ENODEV);
1180 may_queue = elv_may_queue(q, op);
1181 if (may_queue == ELV_MQUEUE_NO)
1184 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1185 if (rl->count[is_sync]+1 >= q->nr_requests) {
1187 * The queue will fill after this allocation, so set
1188 * it as full, and mark this process as "batching".
1189 * This process will be allowed to complete a batch of
1190 * requests, others will be blocked.
1192 if (!blk_rl_full(rl, is_sync)) {
1193 ioc_set_batching(q, ioc);
1194 blk_set_rl_full(rl, is_sync);
1196 if (may_queue != ELV_MQUEUE_MUST
1197 && !ioc_batching(q, ioc)) {
1199 * The queue is full and the allocating
1200 * process is not a "batcher", and not
1201 * exempted by the IO scheduler
1203 return ERR_PTR(-ENOMEM);
1207 blk_set_congested(rl, is_sync);
1211 * Only allow batching queuers to allocate up to 50% over the defined
1212 * limit of requests, otherwise we could have thousands of requests
1213 * allocated with any setting of ->nr_requests
1215 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1216 return ERR_PTR(-ENOMEM);
1218 q->nr_rqs[is_sync]++;
1219 rl->count[is_sync]++;
1220 rl->starved[is_sync] = 0;
1223 * Decide whether the new request will be managed by elevator. If
1224 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1225 * prevent the current elevator from being destroyed until the new
1226 * request is freed. This guarantees icq's won't be destroyed and
1227 * makes creating new ones safe.
1229 * Flush requests do not use the elevator so skip initialization.
1230 * This allows a request to share the flush and elevator data.
1232 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1233 * it will be created after releasing queue_lock.
1235 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1236 rq_flags |= RQF_ELVPRIV;
1237 q->nr_rqs_elvpriv++;
1238 if (et->icq_cache && ioc)
1239 icq = ioc_lookup_icq(ioc, q);
1242 if (blk_queue_io_stat(q))
1243 rq_flags |= RQF_IO_STAT;
1244 spin_unlock_irq(q->queue_lock);
1246 /* allocate and init request */
1247 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1252 blk_rq_set_rl(rq, rl);
1254 rq->rq_flags = rq_flags;
1257 if (rq_flags & RQF_ELVPRIV) {
1258 if (unlikely(et->icq_cache && !icq)) {
1260 icq = ioc_create_icq(ioc, q, gfp_mask);
1266 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1269 /* @rq->elv.icq holds io_context until @rq is freed */
1271 get_io_context(icq->ioc);
1275 * ioc may be NULL here, and ioc_batching will be false. That's
1276 * OK, if the queue is under the request limit then requests need
1277 * not count toward the nr_batch_requests limit. There will always
1278 * be some limit enforced by BLK_BATCH_TIME.
1280 if (ioc_batching(q, ioc))
1281 ioc->nr_batch_requests--;
1283 trace_block_getrq(q, bio, op);
1288 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1289 * and may fail indefinitely under memory pressure and thus
1290 * shouldn't stall IO. Treat this request as !elvpriv. This will
1291 * disturb iosched and blkcg but weird is bettern than dead.
1293 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1294 __func__, dev_name(q->backing_dev_info->dev));
1296 rq->rq_flags &= ~RQF_ELVPRIV;
1299 spin_lock_irq(q->queue_lock);
1300 q->nr_rqs_elvpriv--;
1301 spin_unlock_irq(q->queue_lock);
1306 * Allocation failed presumably due to memory. Undo anything we
1307 * might have messed up.
1309 * Allocating task should really be put onto the front of the wait
1310 * queue, but this is pretty rare.
1312 spin_lock_irq(q->queue_lock);
1313 freed_request(rl, is_sync, rq_flags);
1316 * in the very unlikely event that allocation failed and no
1317 * requests for this direction was pending, mark us starved so that
1318 * freeing of a request in the other direction will notice
1319 * us. another possible fix would be to split the rq mempool into
1323 if (unlikely(rl->count[is_sync] == 0))
1324 rl->starved[is_sync] = 1;
1325 return ERR_PTR(-ENOMEM);
1329 * get_request - get a free request
1330 * @q: request_queue to allocate request from
1331 * @op: operation and flags
1332 * @bio: bio to allocate request for (can be %NULL)
1333 * @gfp_mask: allocation mask
1335 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1336 * this function keeps retrying under memory pressure and fails iff @q is dead.
1338 * Must be called with @q->queue_lock held and,
1339 * Returns ERR_PTR on failure, with @q->queue_lock held.
1340 * Returns request pointer on success, with @q->queue_lock *not held*.
1342 static struct request *get_request(struct request_queue *q, unsigned int op,
1343 struct bio *bio, gfp_t gfp_mask)
1345 const bool is_sync = op_is_sync(op);
1347 struct request_list *rl;
1350 lockdep_assert_held(q->queue_lock);
1351 WARN_ON_ONCE(q->mq_ops);
1353 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1355 rq = __get_request(rl, op, bio, gfp_mask);
1359 if (op & REQ_NOWAIT) {
1361 return ERR_PTR(-EAGAIN);
1364 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1369 /* wait on @rl and retry */
1370 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1371 TASK_UNINTERRUPTIBLE);
1373 trace_block_sleeprq(q, bio, op);
1375 spin_unlock_irq(q->queue_lock);
1379 * After sleeping, we become a "batching" process and will be able
1380 * to allocate at least one request, and up to a big batch of them
1381 * for a small period time. See ioc_batching, ioc_set_batching
1383 ioc_set_batching(q, current->io_context);
1385 spin_lock_irq(q->queue_lock);
1386 finish_wait(&rl->wait[is_sync], &wait);
1391 static struct request *blk_old_get_request(struct request_queue *q,
1392 unsigned int op, gfp_t gfp_mask)
1396 WARN_ON_ONCE(q->mq_ops);
1398 /* create ioc upfront */
1399 create_io_context(gfp_mask, q->node);
1401 spin_lock_irq(q->queue_lock);
1402 rq = get_request(q, op, NULL, gfp_mask);
1404 spin_unlock_irq(q->queue_lock);
1408 /* q->queue_lock is unlocked at this point */
1410 rq->__sector = (sector_t) -1;
1411 rq->bio = rq->biotail = NULL;
1415 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1418 struct request *req;
1421 req = blk_mq_alloc_request(q, op,
1422 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1423 0 : BLK_MQ_REQ_NOWAIT);
1424 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1425 q->mq_ops->initialize_rq_fn(req);
1427 req = blk_old_get_request(q, op, gfp_mask);
1428 if (!IS_ERR(req) && q->initialize_rq_fn)
1429 q->initialize_rq_fn(req);
1434 EXPORT_SYMBOL(blk_get_request);
1437 * blk_requeue_request - put a request back on queue
1438 * @q: request queue where request should be inserted
1439 * @rq: request to be inserted
1442 * Drivers often keep queueing requests until the hardware cannot accept
1443 * more, when that condition happens we need to put the request back
1444 * on the queue. Must be called with queue lock held.
1446 void blk_requeue_request(struct request_queue *q, struct request *rq)
1448 lockdep_assert_held(q->queue_lock);
1449 WARN_ON_ONCE(q->mq_ops);
1451 blk_delete_timer(rq);
1452 blk_clear_rq_complete(rq);
1453 trace_block_rq_requeue(q, rq);
1454 wbt_requeue(q->rq_wb, &rq->issue_stat);
1456 if (rq->rq_flags & RQF_QUEUED)
1457 blk_queue_end_tag(q, rq);
1459 BUG_ON(blk_queued_rq(rq));
1461 elv_requeue_request(q, rq);
1463 EXPORT_SYMBOL(blk_requeue_request);
1465 static void add_acct_request(struct request_queue *q, struct request *rq,
1468 blk_account_io_start(rq, true);
1469 __elv_add_request(q, rq, where);
1472 static void part_round_stats_single(int cpu, struct hd_struct *part,
1477 if (now == part->stamp)
1480 inflight = part_in_flight(part);
1482 __part_stat_add(cpu, part, time_in_queue,
1483 inflight * (now - part->stamp));
1484 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1490 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1491 * @cpu: cpu number for stats access
1492 * @part: target partition
1494 * The average IO queue length and utilisation statistics are maintained
1495 * by observing the current state of the queue length and the amount of
1496 * time it has been in this state for.
1498 * Normally, that accounting is done on IO completion, but that can result
1499 * in more than a second's worth of IO being accounted for within any one
1500 * second, leading to >100% utilisation. To deal with that, we call this
1501 * function to do a round-off before returning the results when reading
1502 * /proc/diskstats. This accounts immediately for all queue usage up to
1503 * the current jiffies and restarts the counters again.
1505 void part_round_stats(int cpu, struct hd_struct *part)
1507 unsigned long now = jiffies;
1510 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1511 part_round_stats_single(cpu, part, now);
1513 EXPORT_SYMBOL_GPL(part_round_stats);
1516 static void blk_pm_put_request(struct request *rq)
1518 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1519 pm_runtime_mark_last_busy(rq->q->dev);
1522 static inline void blk_pm_put_request(struct request *rq) {}
1525 void __blk_put_request(struct request_queue *q, struct request *req)
1527 req_flags_t rq_flags = req->rq_flags;
1533 blk_mq_free_request(req);
1537 lockdep_assert_held(q->queue_lock);
1539 blk_pm_put_request(req);
1541 elv_completed_request(q, req);
1543 /* this is a bio leak */
1544 WARN_ON(req->bio != NULL);
1546 wbt_done(q->rq_wb, &req->issue_stat);
1549 * Request may not have originated from ll_rw_blk. if not,
1550 * it didn't come out of our reserved rq pools
1552 if (rq_flags & RQF_ALLOCED) {
1553 struct request_list *rl = blk_rq_rl(req);
1554 bool sync = op_is_sync(req->cmd_flags);
1556 BUG_ON(!list_empty(&req->queuelist));
1557 BUG_ON(ELV_ON_HASH(req));
1559 blk_free_request(rl, req);
1560 freed_request(rl, sync, rq_flags);
1564 EXPORT_SYMBOL_GPL(__blk_put_request);
1566 void blk_put_request(struct request *req)
1568 struct request_queue *q = req->q;
1571 blk_mq_free_request(req);
1573 unsigned long flags;
1575 spin_lock_irqsave(q->queue_lock, flags);
1576 __blk_put_request(q, req);
1577 spin_unlock_irqrestore(q->queue_lock, flags);
1580 EXPORT_SYMBOL(blk_put_request);
1582 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1585 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1587 if (!ll_back_merge_fn(q, req, bio))
1590 trace_block_bio_backmerge(q, req, bio);
1592 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1593 blk_rq_set_mixed_merge(req);
1595 req->biotail->bi_next = bio;
1597 req->__data_len += bio->bi_iter.bi_size;
1598 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1600 blk_account_io_start(req, false);
1604 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1607 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1609 if (!ll_front_merge_fn(q, req, bio))
1612 trace_block_bio_frontmerge(q, req, bio);
1614 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1615 blk_rq_set_mixed_merge(req);
1617 bio->bi_next = req->bio;
1620 req->__sector = bio->bi_iter.bi_sector;
1621 req->__data_len += bio->bi_iter.bi_size;
1622 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1624 blk_account_io_start(req, false);
1628 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1631 unsigned short segments = blk_rq_nr_discard_segments(req);
1633 if (segments >= queue_max_discard_segments(q))
1635 if (blk_rq_sectors(req) + bio_sectors(bio) >
1636 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1639 req->biotail->bi_next = bio;
1641 req->__data_len += bio->bi_iter.bi_size;
1642 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1643 req->nr_phys_segments = segments + 1;
1645 blk_account_io_start(req, false);
1648 req_set_nomerge(q, req);
1653 * blk_attempt_plug_merge - try to merge with %current's plugged list
1654 * @q: request_queue new bio is being queued at
1655 * @bio: new bio being queued
1656 * @request_count: out parameter for number of traversed plugged requests
1657 * @same_queue_rq: pointer to &struct request that gets filled in when
1658 * another request associated with @q is found on the plug list
1659 * (optional, may be %NULL)
1661 * Determine whether @bio being queued on @q can be merged with a request
1662 * on %current's plugged list. Returns %true if merge was successful,
1665 * Plugging coalesces IOs from the same issuer for the same purpose without
1666 * going through @q->queue_lock. As such it's more of an issuing mechanism
1667 * than scheduling, and the request, while may have elvpriv data, is not
1668 * added on the elevator at this point. In addition, we don't have
1669 * reliable access to the elevator outside queue lock. Only check basic
1670 * merging parameters without querying the elevator.
1672 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1674 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1675 unsigned int *request_count,
1676 struct request **same_queue_rq)
1678 struct blk_plug *plug;
1680 struct list_head *plug_list;
1682 plug = current->plug;
1688 plug_list = &plug->mq_list;
1690 plug_list = &plug->list;
1692 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1693 bool merged = false;
1698 * Only blk-mq multiple hardware queues case checks the
1699 * rq in the same queue, there should be only one such
1703 *same_queue_rq = rq;
1706 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1709 switch (blk_try_merge(rq, bio)) {
1710 case ELEVATOR_BACK_MERGE:
1711 merged = bio_attempt_back_merge(q, rq, bio);
1713 case ELEVATOR_FRONT_MERGE:
1714 merged = bio_attempt_front_merge(q, rq, bio);
1716 case ELEVATOR_DISCARD_MERGE:
1717 merged = bio_attempt_discard_merge(q, rq, bio);
1730 unsigned int blk_plug_queued_count(struct request_queue *q)
1732 struct blk_plug *plug;
1734 struct list_head *plug_list;
1735 unsigned int ret = 0;
1737 plug = current->plug;
1742 plug_list = &plug->mq_list;
1744 plug_list = &plug->list;
1746 list_for_each_entry(rq, plug_list, queuelist) {
1754 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1756 struct io_context *ioc = rq_ioc(bio);
1758 if (bio->bi_opf & REQ_RAHEAD)
1759 req->cmd_flags |= REQ_FAILFAST_MASK;
1761 req->__sector = bio->bi_iter.bi_sector;
1762 if (ioprio_valid(bio_prio(bio)))
1763 req->ioprio = bio_prio(bio);
1765 req->ioprio = ioc->ioprio;
1767 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1768 req->write_hint = bio->bi_write_hint;
1769 blk_rq_bio_prep(req->q, req, bio);
1771 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1773 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1775 struct blk_plug *plug;
1776 int where = ELEVATOR_INSERT_SORT;
1777 struct request *req, *free;
1778 unsigned int request_count = 0;
1779 unsigned int wb_acct;
1782 * low level driver can indicate that it wants pages above a
1783 * certain limit bounced to low memory (ie for highmem, or even
1784 * ISA dma in theory)
1786 blk_queue_bounce(q, &bio);
1788 blk_queue_split(q, &bio);
1790 if (!bio_integrity_prep(bio))
1791 return BLK_QC_T_NONE;
1793 if (op_is_flush(bio->bi_opf)) {
1794 spin_lock_irq(q->queue_lock);
1795 where = ELEVATOR_INSERT_FLUSH;
1800 * Check if we can merge with the plugged list before grabbing
1803 if (!blk_queue_nomerges(q)) {
1804 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1805 return BLK_QC_T_NONE;
1807 request_count = blk_plug_queued_count(q);
1809 spin_lock_irq(q->queue_lock);
1811 switch (elv_merge(q, &req, bio)) {
1812 case ELEVATOR_BACK_MERGE:
1813 if (!bio_attempt_back_merge(q, req, bio))
1815 elv_bio_merged(q, req, bio);
1816 free = attempt_back_merge(q, req);
1818 __blk_put_request(q, free);
1820 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1822 case ELEVATOR_FRONT_MERGE:
1823 if (!bio_attempt_front_merge(q, req, bio))
1825 elv_bio_merged(q, req, bio);
1826 free = attempt_front_merge(q, req);
1828 __blk_put_request(q, free);
1830 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1837 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1840 * Grab a free request. This is might sleep but can not fail.
1841 * Returns with the queue unlocked.
1843 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1845 __wbt_done(q->rq_wb, wb_acct);
1846 if (PTR_ERR(req) == -ENOMEM)
1847 bio->bi_status = BLK_STS_RESOURCE;
1849 bio->bi_status = BLK_STS_IOERR;
1854 wbt_track(&req->issue_stat, wb_acct);
1857 * After dropping the lock and possibly sleeping here, our request
1858 * may now be mergeable after it had proven unmergeable (above).
1859 * We don't worry about that case for efficiency. It won't happen
1860 * often, and the elevators are able to handle it.
1862 blk_init_request_from_bio(req, bio);
1864 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1865 req->cpu = raw_smp_processor_id();
1867 plug = current->plug;
1870 * If this is the first request added after a plug, fire
1873 * @request_count may become stale because of schedule
1874 * out, so check plug list again.
1876 if (!request_count || list_empty(&plug->list))
1877 trace_block_plug(q);
1879 struct request *last = list_entry_rq(plug->list.prev);
1880 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1881 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1882 blk_flush_plug_list(plug, false);
1883 trace_block_plug(q);
1886 list_add_tail(&req->queuelist, &plug->list);
1887 blk_account_io_start(req, true);
1889 spin_lock_irq(q->queue_lock);
1890 add_acct_request(q, req, where);
1893 spin_unlock_irq(q->queue_lock);
1896 return BLK_QC_T_NONE;
1900 * If bio->bi_dev is a partition, remap the location
1902 static inline void blk_partition_remap(struct bio *bio)
1904 struct block_device *bdev = bio->bi_bdev;
1907 * Zone reset does not include bi_size so bio_sectors() is always 0.
1908 * Include a test for the reset op code and perform the remap if needed.
1910 if (bdev != bdev->bd_contains &&
1911 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1912 struct hd_struct *p = bdev->bd_part;
1914 bio->bi_iter.bi_sector += p->start_sect;
1915 bio->bi_bdev = bdev->bd_contains;
1917 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1919 bio->bi_iter.bi_sector - p->start_sect);
1923 static void handle_bad_sector(struct bio *bio)
1925 char b[BDEVNAME_SIZE];
1927 printk(KERN_INFO "attempt to access beyond end of device\n");
1928 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1929 bdevname(bio->bi_bdev, b),
1931 (unsigned long long)bio_end_sector(bio),
1932 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1935 #ifdef CONFIG_FAIL_MAKE_REQUEST
1937 static DECLARE_FAULT_ATTR(fail_make_request);
1939 static int __init setup_fail_make_request(char *str)
1941 return setup_fault_attr(&fail_make_request, str);
1943 __setup("fail_make_request=", setup_fail_make_request);
1945 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1947 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1950 static int __init fail_make_request_debugfs(void)
1952 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1953 NULL, &fail_make_request);
1955 return PTR_ERR_OR_ZERO(dir);
1958 late_initcall(fail_make_request_debugfs);
1960 #else /* CONFIG_FAIL_MAKE_REQUEST */
1962 static inline bool should_fail_request(struct hd_struct *part,
1968 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1971 * Check whether this bio extends beyond the end of the device.
1973 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1980 /* Test device or partition size, when known. */
1981 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1983 sector_t sector = bio->bi_iter.bi_sector;
1985 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1987 * This may well happen - the kernel calls bread()
1988 * without checking the size of the device, e.g., when
1989 * mounting a device.
1991 handle_bad_sector(bio);
1999 static noinline_for_stack bool
2000 generic_make_request_checks(struct bio *bio)
2002 struct request_queue *q;
2003 int nr_sectors = bio_sectors(bio);
2004 blk_status_t status = BLK_STS_IOERR;
2005 char b[BDEVNAME_SIZE];
2006 struct hd_struct *part;
2010 if (bio_check_eod(bio, nr_sectors))
2013 q = bdev_get_queue(bio->bi_bdev);
2016 "generic_make_request: Trying to access "
2017 "nonexistent block-device %s (%Lu)\n",
2018 bdevname(bio->bi_bdev, b),
2019 (long long) bio->bi_iter.bi_sector);
2024 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2025 * if queue is not a request based queue.
2028 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2031 part = bio->bi_bdev->bd_part;
2032 if (should_fail_request(part, bio->bi_iter.bi_size) ||
2033 should_fail_request(&part_to_disk(part)->part0,
2034 bio->bi_iter.bi_size))
2038 * If this device has partitions, remap block n
2039 * of partition p to block n+start(p) of the disk.
2041 blk_partition_remap(bio);
2043 if (bio_check_eod(bio, nr_sectors))
2047 * Filter flush bio's early so that make_request based
2048 * drivers without flush support don't have to worry
2051 if (op_is_flush(bio->bi_opf) &&
2052 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2053 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2055 status = BLK_STS_OK;
2060 switch (bio_op(bio)) {
2061 case REQ_OP_DISCARD:
2062 if (!blk_queue_discard(q))
2065 case REQ_OP_SECURE_ERASE:
2066 if (!blk_queue_secure_erase(q))
2069 case REQ_OP_WRITE_SAME:
2070 if (!bdev_write_same(bio->bi_bdev))
2073 case REQ_OP_ZONE_REPORT:
2074 case REQ_OP_ZONE_RESET:
2075 if (!bdev_is_zoned(bio->bi_bdev))
2078 case REQ_OP_WRITE_ZEROES:
2079 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
2087 * Various block parts want %current->io_context and lazy ioc
2088 * allocation ends up trading a lot of pain for a small amount of
2089 * memory. Just allocate it upfront. This may fail and block
2090 * layer knows how to live with it.
2092 create_io_context(GFP_ATOMIC, q->node);
2094 if (!blkcg_bio_issue_check(q, bio))
2097 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2098 trace_block_bio_queue(q, bio);
2099 /* Now that enqueuing has been traced, we need to trace
2100 * completion as well.
2102 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2107 status = BLK_STS_NOTSUPP;
2109 bio->bi_status = status;
2115 * generic_make_request - hand a buffer to its device driver for I/O
2116 * @bio: The bio describing the location in memory and on the device.
2118 * generic_make_request() is used to make I/O requests of block
2119 * devices. It is passed a &struct bio, which describes the I/O that needs
2122 * generic_make_request() does not return any status. The
2123 * success/failure status of the request, along with notification of
2124 * completion, is delivered asynchronously through the bio->bi_end_io
2125 * function described (one day) else where.
2127 * The caller of generic_make_request must make sure that bi_io_vec
2128 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2129 * set to describe the device address, and the
2130 * bi_end_io and optionally bi_private are set to describe how
2131 * completion notification should be signaled.
2133 * generic_make_request and the drivers it calls may use bi_next if this
2134 * bio happens to be merged with someone else, and may resubmit the bio to
2135 * a lower device by calling into generic_make_request recursively, which
2136 * means the bio should NOT be touched after the call to ->make_request_fn.
2138 blk_qc_t generic_make_request(struct bio *bio)
2141 * bio_list_on_stack[0] contains bios submitted by the current
2143 * bio_list_on_stack[1] contains bios that were submitted before
2144 * the current make_request_fn, but that haven't been processed
2147 struct bio_list bio_list_on_stack[2];
2148 blk_qc_t ret = BLK_QC_T_NONE;
2150 if (!generic_make_request_checks(bio))
2154 * We only want one ->make_request_fn to be active at a time, else
2155 * stack usage with stacked devices could be a problem. So use
2156 * current->bio_list to keep a list of requests submited by a
2157 * make_request_fn function. current->bio_list is also used as a
2158 * flag to say if generic_make_request is currently active in this
2159 * task or not. If it is NULL, then no make_request is active. If
2160 * it is non-NULL, then a make_request is active, and new requests
2161 * should be added at the tail
2163 if (current->bio_list) {
2164 bio_list_add(¤t->bio_list[0], bio);
2168 /* following loop may be a bit non-obvious, and so deserves some
2170 * Before entering the loop, bio->bi_next is NULL (as all callers
2171 * ensure that) so we have a list with a single bio.
2172 * We pretend that we have just taken it off a longer list, so
2173 * we assign bio_list to a pointer to the bio_list_on_stack,
2174 * thus initialising the bio_list of new bios to be
2175 * added. ->make_request() may indeed add some more bios
2176 * through a recursive call to generic_make_request. If it
2177 * did, we find a non-NULL value in bio_list and re-enter the loop
2178 * from the top. In this case we really did just take the bio
2179 * of the top of the list (no pretending) and so remove it from
2180 * bio_list, and call into ->make_request() again.
2182 BUG_ON(bio->bi_next);
2183 bio_list_init(&bio_list_on_stack[0]);
2184 current->bio_list = bio_list_on_stack;
2186 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2188 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
2189 struct bio_list lower, same;
2191 /* Create a fresh bio_list for all subordinate requests */
2192 bio_list_on_stack[1] = bio_list_on_stack[0];
2193 bio_list_init(&bio_list_on_stack[0]);
2194 ret = q->make_request_fn(q, bio);
2198 /* sort new bios into those for a lower level
2199 * and those for the same level
2201 bio_list_init(&lower);
2202 bio_list_init(&same);
2203 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2204 if (q == bdev_get_queue(bio->bi_bdev))
2205 bio_list_add(&same, bio);
2207 bio_list_add(&lower, bio);
2208 /* now assemble so we handle the lowest level first */
2209 bio_list_merge(&bio_list_on_stack[0], &lower);
2210 bio_list_merge(&bio_list_on_stack[0], &same);
2211 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2213 if (unlikely(!blk_queue_dying(q) &&
2214 (bio->bi_opf & REQ_NOWAIT)))
2215 bio_wouldblock_error(bio);
2219 bio = bio_list_pop(&bio_list_on_stack[0]);
2221 current->bio_list = NULL; /* deactivate */
2226 EXPORT_SYMBOL(generic_make_request);
2229 * submit_bio - submit a bio to the block device layer for I/O
2230 * @bio: The &struct bio which describes the I/O
2232 * submit_bio() is very similar in purpose to generic_make_request(), and
2233 * uses that function to do most of the work. Both are fairly rough
2234 * interfaces; @bio must be presetup and ready for I/O.
2237 blk_qc_t submit_bio(struct bio *bio)
2240 * If it's a regular read/write or a barrier with data attached,
2241 * go through the normal accounting stuff before submission.
2243 if (bio_has_data(bio)) {
2246 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2247 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2249 count = bio_sectors(bio);
2251 if (op_is_write(bio_op(bio))) {
2252 count_vm_events(PGPGOUT, count);
2254 task_io_account_read(bio->bi_iter.bi_size);
2255 count_vm_events(PGPGIN, count);
2258 if (unlikely(block_dump)) {
2259 char b[BDEVNAME_SIZE];
2260 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2261 current->comm, task_pid_nr(current),
2262 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2263 (unsigned long long)bio->bi_iter.bi_sector,
2264 bdevname(bio->bi_bdev, b),
2269 return generic_make_request(bio);
2271 EXPORT_SYMBOL(submit_bio);
2274 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2275 * for new the queue limits
2277 * @rq: the request being checked
2280 * @rq may have been made based on weaker limitations of upper-level queues
2281 * in request stacking drivers, and it may violate the limitation of @q.
2282 * Since the block layer and the underlying device driver trust @rq
2283 * after it is inserted to @q, it should be checked against @q before
2284 * the insertion using this generic function.
2286 * Request stacking drivers like request-based dm may change the queue
2287 * limits when retrying requests on other queues. Those requests need
2288 * to be checked against the new queue limits again during dispatch.
2290 static int blk_cloned_rq_check_limits(struct request_queue *q,
2293 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2294 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2299 * queue's settings related to segment counting like q->bounce_pfn
2300 * may differ from that of other stacking queues.
2301 * Recalculate it to check the request correctly on this queue's
2304 blk_recalc_rq_segments(rq);
2305 if (rq->nr_phys_segments > queue_max_segments(q)) {
2306 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2314 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2315 * @q: the queue to submit the request
2316 * @rq: the request being queued
2318 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2320 unsigned long flags;
2321 int where = ELEVATOR_INSERT_BACK;
2323 if (blk_cloned_rq_check_limits(q, rq))
2324 return BLK_STS_IOERR;
2327 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2328 return BLK_STS_IOERR;
2331 if (blk_queue_io_stat(q))
2332 blk_account_io_start(rq, true);
2333 blk_mq_sched_insert_request(rq, false, true, false, false);
2337 spin_lock_irqsave(q->queue_lock, flags);
2338 if (unlikely(blk_queue_dying(q))) {
2339 spin_unlock_irqrestore(q->queue_lock, flags);
2340 return BLK_STS_IOERR;
2344 * Submitting request must be dequeued before calling this function
2345 * because it will be linked to another request_queue
2347 BUG_ON(blk_queued_rq(rq));
2349 if (op_is_flush(rq->cmd_flags))
2350 where = ELEVATOR_INSERT_FLUSH;
2352 add_acct_request(q, rq, where);
2353 if (where == ELEVATOR_INSERT_FLUSH)
2355 spin_unlock_irqrestore(q->queue_lock, flags);
2359 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2362 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2363 * @rq: request to examine
2366 * A request could be merge of IOs which require different failure
2367 * handling. This function determines the number of bytes which
2368 * can be failed from the beginning of the request without
2369 * crossing into area which need to be retried further.
2372 * The number of bytes to fail.
2374 unsigned int blk_rq_err_bytes(const struct request *rq)
2376 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2377 unsigned int bytes = 0;
2380 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2381 return blk_rq_bytes(rq);
2384 * Currently the only 'mixing' which can happen is between
2385 * different fastfail types. We can safely fail portions
2386 * which have all the failfast bits that the first one has -
2387 * the ones which are at least as eager to fail as the first
2390 for (bio = rq->bio; bio; bio = bio->bi_next) {
2391 if ((bio->bi_opf & ff) != ff)
2393 bytes += bio->bi_iter.bi_size;
2396 /* this could lead to infinite loop */
2397 BUG_ON(blk_rq_bytes(rq) && !bytes);
2400 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2402 void blk_account_io_completion(struct request *req, unsigned int bytes)
2404 if (blk_do_io_stat(req)) {
2405 const int rw = rq_data_dir(req);
2406 struct hd_struct *part;
2409 cpu = part_stat_lock();
2411 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2416 void blk_account_io_done(struct request *req)
2419 * Account IO completion. flush_rq isn't accounted as a
2420 * normal IO on queueing nor completion. Accounting the
2421 * containing request is enough.
2423 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2424 unsigned long duration = jiffies - req->start_time;
2425 const int rw = rq_data_dir(req);
2426 struct hd_struct *part;
2429 cpu = part_stat_lock();
2432 part_stat_inc(cpu, part, ios[rw]);
2433 part_stat_add(cpu, part, ticks[rw], duration);
2434 part_round_stats(cpu, part);
2435 part_dec_in_flight(part, rw);
2437 hd_struct_put(part);
2444 * Don't process normal requests when queue is suspended
2445 * or in the process of suspending/resuming
2447 static struct request *blk_pm_peek_request(struct request_queue *q,
2450 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2451 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2457 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2464 void blk_account_io_start(struct request *rq, bool new_io)
2466 struct hd_struct *part;
2467 int rw = rq_data_dir(rq);
2470 if (!blk_do_io_stat(rq))
2473 cpu = part_stat_lock();
2477 part_stat_inc(cpu, part, merges[rw]);
2479 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2480 if (!hd_struct_try_get(part)) {
2482 * The partition is already being removed,
2483 * the request will be accounted on the disk only
2485 * We take a reference on disk->part0 although that
2486 * partition will never be deleted, so we can treat
2487 * it as any other partition.
2489 part = &rq->rq_disk->part0;
2490 hd_struct_get(part);
2492 part_round_stats(cpu, part);
2493 part_inc_in_flight(part, rw);
2501 * blk_peek_request - peek at the top of a request queue
2502 * @q: request queue to peek at
2505 * Return the request at the top of @q. The returned request
2506 * should be started using blk_start_request() before LLD starts
2510 * Pointer to the request at the top of @q if available. Null
2513 struct request *blk_peek_request(struct request_queue *q)
2518 lockdep_assert_held(q->queue_lock);
2519 WARN_ON_ONCE(q->mq_ops);
2521 while ((rq = __elv_next_request(q)) != NULL) {
2523 rq = blk_pm_peek_request(q, rq);
2527 if (!(rq->rq_flags & RQF_STARTED)) {
2529 * This is the first time the device driver
2530 * sees this request (possibly after
2531 * requeueing). Notify IO scheduler.
2533 if (rq->rq_flags & RQF_SORTED)
2534 elv_activate_rq(q, rq);
2537 * just mark as started even if we don't start
2538 * it, a request that has been delayed should
2539 * not be passed by new incoming requests
2541 rq->rq_flags |= RQF_STARTED;
2542 trace_block_rq_issue(q, rq);
2545 if (!q->boundary_rq || q->boundary_rq == rq) {
2546 q->end_sector = rq_end_sector(rq);
2547 q->boundary_rq = NULL;
2550 if (rq->rq_flags & RQF_DONTPREP)
2553 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2555 * make sure space for the drain appears we
2556 * know we can do this because max_hw_segments
2557 * has been adjusted to be one fewer than the
2560 rq->nr_phys_segments++;
2566 ret = q->prep_rq_fn(q, rq);
2567 if (ret == BLKPREP_OK) {
2569 } else if (ret == BLKPREP_DEFER) {
2571 * the request may have been (partially) prepped.
2572 * we need to keep this request in the front to
2573 * avoid resource deadlock. RQF_STARTED will
2574 * prevent other fs requests from passing this one.
2576 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2577 !(rq->rq_flags & RQF_DONTPREP)) {
2579 * remove the space for the drain we added
2580 * so that we don't add it again
2582 --rq->nr_phys_segments;
2587 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2588 rq->rq_flags |= RQF_QUIET;
2590 * Mark this request as started so we don't trigger
2591 * any debug logic in the end I/O path.
2593 blk_start_request(rq);
2594 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2595 BLK_STS_TARGET : BLK_STS_IOERR);
2597 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2604 EXPORT_SYMBOL(blk_peek_request);
2606 void blk_dequeue_request(struct request *rq)
2608 struct request_queue *q = rq->q;
2610 BUG_ON(list_empty(&rq->queuelist));
2611 BUG_ON(ELV_ON_HASH(rq));
2613 list_del_init(&rq->queuelist);
2616 * the time frame between a request being removed from the lists
2617 * and to it is freed is accounted as io that is in progress at
2620 if (blk_account_rq(rq)) {
2621 q->in_flight[rq_is_sync(rq)]++;
2622 set_io_start_time_ns(rq);
2627 * blk_start_request - start request processing on the driver
2628 * @req: request to dequeue
2631 * Dequeue @req and start timeout timer on it. This hands off the
2632 * request to the driver.
2634 * Block internal functions which don't want to start timer should
2635 * call blk_dequeue_request().
2637 void blk_start_request(struct request *req)
2639 lockdep_assert_held(req->q->queue_lock);
2640 WARN_ON_ONCE(req->q->mq_ops);
2642 blk_dequeue_request(req);
2644 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2645 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2646 req->rq_flags |= RQF_STATS;
2647 wbt_issue(req->q->rq_wb, &req->issue_stat);
2650 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2653 EXPORT_SYMBOL(blk_start_request);
2656 * blk_fetch_request - fetch a request from a request queue
2657 * @q: request queue to fetch a request from
2660 * Return the request at the top of @q. The request is started on
2661 * return and LLD can start processing it immediately.
2664 * Pointer to the request at the top of @q if available. Null
2667 struct request *blk_fetch_request(struct request_queue *q)
2671 lockdep_assert_held(q->queue_lock);
2672 WARN_ON_ONCE(q->mq_ops);
2674 rq = blk_peek_request(q);
2676 blk_start_request(rq);
2679 EXPORT_SYMBOL(blk_fetch_request);
2682 * blk_update_request - Special helper function for request stacking drivers
2683 * @req: the request being processed
2684 * @error: block status code
2685 * @nr_bytes: number of bytes to complete @req
2688 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2689 * the request structure even if @req doesn't have leftover.
2690 * If @req has leftover, sets it up for the next range of segments.
2692 * This special helper function is only for request stacking drivers
2693 * (e.g. request-based dm) so that they can handle partial completion.
2694 * Actual device drivers should use blk_end_request instead.
2696 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2697 * %false return from this function.
2700 * %false - this request doesn't have any more data
2701 * %true - this request has more data
2703 bool blk_update_request(struct request *req, blk_status_t error,
2704 unsigned int nr_bytes)
2708 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2713 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2714 !(req->rq_flags & RQF_QUIET)))
2715 print_req_error(req, error);
2717 blk_account_io_completion(req, nr_bytes);
2721 struct bio *bio = req->bio;
2722 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2724 if (bio_bytes == bio->bi_iter.bi_size)
2725 req->bio = bio->bi_next;
2727 /* Completion has already been traced */
2728 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2729 req_bio_endio(req, bio, bio_bytes, error);
2731 total_bytes += bio_bytes;
2732 nr_bytes -= bio_bytes;
2743 * Reset counters so that the request stacking driver
2744 * can find how many bytes remain in the request
2747 req->__data_len = 0;
2751 req->__data_len -= total_bytes;
2753 /* update sector only for requests with clear definition of sector */
2754 if (!blk_rq_is_passthrough(req))
2755 req->__sector += total_bytes >> 9;
2757 /* mixed attributes always follow the first bio */
2758 if (req->rq_flags & RQF_MIXED_MERGE) {
2759 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2760 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2763 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2765 * If total number of sectors is less than the first segment
2766 * size, something has gone terribly wrong.
2768 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2769 blk_dump_rq_flags(req, "request botched");
2770 req->__data_len = blk_rq_cur_bytes(req);
2773 /* recalculate the number of segments */
2774 blk_recalc_rq_segments(req);
2779 EXPORT_SYMBOL_GPL(blk_update_request);
2781 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2782 unsigned int nr_bytes,
2783 unsigned int bidi_bytes)
2785 if (blk_update_request(rq, error, nr_bytes))
2788 /* Bidi request must be completed as a whole */
2789 if (unlikely(blk_bidi_rq(rq)) &&
2790 blk_update_request(rq->next_rq, error, bidi_bytes))
2793 if (blk_queue_add_random(rq->q))
2794 add_disk_randomness(rq->rq_disk);
2800 * blk_unprep_request - unprepare a request
2803 * This function makes a request ready for complete resubmission (or
2804 * completion). It happens only after all error handling is complete,
2805 * so represents the appropriate moment to deallocate any resources
2806 * that were allocated to the request in the prep_rq_fn. The queue
2807 * lock is held when calling this.
2809 void blk_unprep_request(struct request *req)
2811 struct request_queue *q = req->q;
2813 req->rq_flags &= ~RQF_DONTPREP;
2814 if (q->unprep_rq_fn)
2815 q->unprep_rq_fn(q, req);
2817 EXPORT_SYMBOL_GPL(blk_unprep_request);
2819 void blk_finish_request(struct request *req, blk_status_t error)
2821 struct request_queue *q = req->q;
2823 lockdep_assert_held(req->q->queue_lock);
2824 WARN_ON_ONCE(q->mq_ops);
2826 if (req->rq_flags & RQF_STATS)
2829 if (req->rq_flags & RQF_QUEUED)
2830 blk_queue_end_tag(q, req);
2832 BUG_ON(blk_queued_rq(req));
2834 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2835 laptop_io_completion(req->q->backing_dev_info);
2837 blk_delete_timer(req);
2839 if (req->rq_flags & RQF_DONTPREP)
2840 blk_unprep_request(req);
2842 blk_account_io_done(req);
2845 wbt_done(req->q->rq_wb, &req->issue_stat);
2846 req->end_io(req, error);
2848 if (blk_bidi_rq(req))
2849 __blk_put_request(req->next_rq->q, req->next_rq);
2851 __blk_put_request(q, req);
2854 EXPORT_SYMBOL(blk_finish_request);
2857 * blk_end_bidi_request - Complete a bidi request
2858 * @rq: the request to complete
2859 * @error: block status code
2860 * @nr_bytes: number of bytes to complete @rq
2861 * @bidi_bytes: number of bytes to complete @rq->next_rq
2864 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2865 * Drivers that supports bidi can safely call this member for any
2866 * type of request, bidi or uni. In the later case @bidi_bytes is
2870 * %false - we are done with this request
2871 * %true - still buffers pending for this request
2873 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
2874 unsigned int nr_bytes, unsigned int bidi_bytes)
2876 struct request_queue *q = rq->q;
2877 unsigned long flags;
2879 WARN_ON_ONCE(q->mq_ops);
2881 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2884 spin_lock_irqsave(q->queue_lock, flags);
2885 blk_finish_request(rq, error);
2886 spin_unlock_irqrestore(q->queue_lock, flags);
2892 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2893 * @rq: the request to complete
2894 * @error: block status code
2895 * @nr_bytes: number of bytes to complete @rq
2896 * @bidi_bytes: number of bytes to complete @rq->next_rq
2899 * Identical to blk_end_bidi_request() except that queue lock is
2900 * assumed to be locked on entry and remains so on return.
2903 * %false - we are done with this request
2904 * %true - still buffers pending for this request
2906 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
2907 unsigned int nr_bytes, unsigned int bidi_bytes)
2909 lockdep_assert_held(rq->q->queue_lock);
2910 WARN_ON_ONCE(rq->q->mq_ops);
2912 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2915 blk_finish_request(rq, error);
2921 * blk_end_request - Helper function for drivers to complete the request.
2922 * @rq: the request being processed
2923 * @error: block status code
2924 * @nr_bytes: number of bytes to complete
2927 * Ends I/O on a number of bytes attached to @rq.
2928 * If @rq has leftover, sets it up for the next range of segments.
2931 * %false - we are done with this request
2932 * %true - still buffers pending for this request
2934 bool blk_end_request(struct request *rq, blk_status_t error,
2935 unsigned int nr_bytes)
2937 WARN_ON_ONCE(rq->q->mq_ops);
2938 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2940 EXPORT_SYMBOL(blk_end_request);
2943 * blk_end_request_all - Helper function for drives to finish the request.
2944 * @rq: the request to finish
2945 * @error: block status code
2948 * Completely finish @rq.
2950 void blk_end_request_all(struct request *rq, blk_status_t error)
2953 unsigned int bidi_bytes = 0;
2955 if (unlikely(blk_bidi_rq(rq)))
2956 bidi_bytes = blk_rq_bytes(rq->next_rq);
2958 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2961 EXPORT_SYMBOL(blk_end_request_all);
2964 * __blk_end_request - Helper function for drivers to complete the request.
2965 * @rq: the request being processed
2966 * @error: block status code
2967 * @nr_bytes: number of bytes to complete
2970 * Must be called with queue lock held unlike blk_end_request().
2973 * %false - we are done with this request
2974 * %true - still buffers pending for this request
2976 bool __blk_end_request(struct request *rq, blk_status_t error,
2977 unsigned int nr_bytes)
2979 lockdep_assert_held(rq->q->queue_lock);
2980 WARN_ON_ONCE(rq->q->mq_ops);
2982 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2984 EXPORT_SYMBOL(__blk_end_request);
2987 * __blk_end_request_all - Helper function for drives to finish the request.
2988 * @rq: the request to finish
2989 * @error: block status code
2992 * Completely finish @rq. Must be called with queue lock held.
2994 void __blk_end_request_all(struct request *rq, blk_status_t error)
2997 unsigned int bidi_bytes = 0;
2999 lockdep_assert_held(rq->q->queue_lock);
3000 WARN_ON_ONCE(rq->q->mq_ops);
3002 if (unlikely(blk_bidi_rq(rq)))
3003 bidi_bytes = blk_rq_bytes(rq->next_rq);
3005 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3008 EXPORT_SYMBOL(__blk_end_request_all);
3011 * __blk_end_request_cur - Helper function to finish the current request chunk.
3012 * @rq: the request to finish the current chunk for
3013 * @error: block status code
3016 * Complete the current consecutively mapped chunk from @rq. Must
3017 * be called with queue lock held.
3020 * %false - we are done with this request
3021 * %true - still buffers pending for this request
3023 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3025 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3027 EXPORT_SYMBOL(__blk_end_request_cur);
3029 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3032 if (bio_has_data(bio))
3033 rq->nr_phys_segments = bio_phys_segments(q, bio);
3035 rq->__data_len = bio->bi_iter.bi_size;
3036 rq->bio = rq->biotail = bio;
3039 rq->rq_disk = bio->bi_bdev->bd_disk;
3042 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3044 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3045 * @rq: the request to be flushed
3048 * Flush all pages in @rq.
3050 void rq_flush_dcache_pages(struct request *rq)
3052 struct req_iterator iter;
3053 struct bio_vec bvec;
3055 rq_for_each_segment(bvec, rq, iter)
3056 flush_dcache_page(bvec.bv_page);
3058 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3062 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3063 * @q : the queue of the device being checked
3066 * Check if underlying low-level drivers of a device are busy.
3067 * If the drivers want to export their busy state, they must set own
3068 * exporting function using blk_queue_lld_busy() first.
3070 * Basically, this function is used only by request stacking drivers
3071 * to stop dispatching requests to underlying devices when underlying
3072 * devices are busy. This behavior helps more I/O merging on the queue
3073 * of the request stacking driver and prevents I/O throughput regression
3074 * on burst I/O load.
3077 * 0 - Not busy (The request stacking driver should dispatch request)
3078 * 1 - Busy (The request stacking driver should stop dispatching request)
3080 int blk_lld_busy(struct request_queue *q)
3083 return q->lld_busy_fn(q);
3087 EXPORT_SYMBOL_GPL(blk_lld_busy);
3090 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3091 * @rq: the clone request to be cleaned up
3094 * Free all bios in @rq for a cloned request.
3096 void blk_rq_unprep_clone(struct request *rq)
3100 while ((bio = rq->bio) != NULL) {
3101 rq->bio = bio->bi_next;
3106 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3109 * Copy attributes of the original request to the clone request.
3110 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3112 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3114 dst->cpu = src->cpu;
3115 dst->__sector = blk_rq_pos(src);
3116 dst->__data_len = blk_rq_bytes(src);
3117 dst->nr_phys_segments = src->nr_phys_segments;
3118 dst->ioprio = src->ioprio;
3119 dst->extra_len = src->extra_len;
3123 * blk_rq_prep_clone - Helper function to setup clone request
3124 * @rq: the request to be setup
3125 * @rq_src: original request to be cloned
3126 * @bs: bio_set that bios for clone are allocated from
3127 * @gfp_mask: memory allocation mask for bio
3128 * @bio_ctr: setup function to be called for each clone bio.
3129 * Returns %0 for success, non %0 for failure.
3130 * @data: private data to be passed to @bio_ctr
3133 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3134 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3135 * are not copied, and copying such parts is the caller's responsibility.
3136 * Also, pages which the original bios are pointing to are not copied
3137 * and the cloned bios just point same pages.
3138 * So cloned bios must be completed before original bios, which means
3139 * the caller must complete @rq before @rq_src.
3141 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3142 struct bio_set *bs, gfp_t gfp_mask,
3143 int (*bio_ctr)(struct bio *, struct bio *, void *),
3146 struct bio *bio, *bio_src;
3151 __rq_for_each_bio(bio_src, rq_src) {
3152 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3156 if (bio_ctr && bio_ctr(bio, bio_src, data))
3160 rq->biotail->bi_next = bio;
3163 rq->bio = rq->biotail = bio;
3166 __blk_rq_prep_clone(rq, rq_src);
3173 blk_rq_unprep_clone(rq);
3177 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3179 int kblockd_schedule_work(struct work_struct *work)
3181 return queue_work(kblockd_workqueue, work);
3183 EXPORT_SYMBOL(kblockd_schedule_work);
3185 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3187 return queue_work_on(cpu, kblockd_workqueue, work);
3189 EXPORT_SYMBOL(kblockd_schedule_work_on);
3191 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3192 unsigned long delay)
3194 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3196 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3198 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3199 unsigned long delay)
3201 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3203 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3205 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3206 unsigned long delay)
3208 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3210 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3213 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3214 * @plug: The &struct blk_plug that needs to be initialized
3217 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3218 * pending I/O should the task end up blocking between blk_start_plug() and
3219 * blk_finish_plug(). This is important from a performance perspective, but
3220 * also ensures that we don't deadlock. For instance, if the task is blocking
3221 * for a memory allocation, memory reclaim could end up wanting to free a
3222 * page belonging to that request that is currently residing in our private
3223 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3224 * this kind of deadlock.
3226 void blk_start_plug(struct blk_plug *plug)
3228 struct task_struct *tsk = current;
3231 * If this is a nested plug, don't actually assign it.
3236 INIT_LIST_HEAD(&plug->list);
3237 INIT_LIST_HEAD(&plug->mq_list);
3238 INIT_LIST_HEAD(&plug->cb_list);
3240 * Store ordering should not be needed here, since a potential
3241 * preempt will imply a full memory barrier
3245 EXPORT_SYMBOL(blk_start_plug);
3247 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3249 struct request *rqa = container_of(a, struct request, queuelist);
3250 struct request *rqb = container_of(b, struct request, queuelist);
3252 return !(rqa->q < rqb->q ||
3253 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3257 * If 'from_schedule' is true, then postpone the dispatch of requests
3258 * until a safe kblockd context. We due this to avoid accidental big
3259 * additional stack usage in driver dispatch, in places where the originally
3260 * plugger did not intend it.
3262 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3264 __releases(q->queue_lock)
3266 lockdep_assert_held(q->queue_lock);
3268 trace_block_unplug(q, depth, !from_schedule);
3271 blk_run_queue_async(q);
3274 spin_unlock(q->queue_lock);
3277 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3279 LIST_HEAD(callbacks);
3281 while (!list_empty(&plug->cb_list)) {
3282 list_splice_init(&plug->cb_list, &callbacks);
3284 while (!list_empty(&callbacks)) {
3285 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3288 list_del(&cb->list);
3289 cb->callback(cb, from_schedule);
3294 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3297 struct blk_plug *plug = current->plug;
3298 struct blk_plug_cb *cb;
3303 list_for_each_entry(cb, &plug->cb_list, list)
3304 if (cb->callback == unplug && cb->data == data)
3307 /* Not currently on the callback list */
3308 BUG_ON(size < sizeof(*cb));
3309 cb = kzalloc(size, GFP_ATOMIC);
3312 cb->callback = unplug;
3313 list_add(&cb->list, &plug->cb_list);
3317 EXPORT_SYMBOL(blk_check_plugged);
3319 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3321 struct request_queue *q;
3322 unsigned long flags;
3327 flush_plug_callbacks(plug, from_schedule);
3329 if (!list_empty(&plug->mq_list))
3330 blk_mq_flush_plug_list(plug, from_schedule);
3332 if (list_empty(&plug->list))
3335 list_splice_init(&plug->list, &list);
3337 list_sort(NULL, &list, plug_rq_cmp);
3343 * Save and disable interrupts here, to avoid doing it for every
3344 * queue lock we have to take.
3346 local_irq_save(flags);
3347 while (!list_empty(&list)) {
3348 rq = list_entry_rq(list.next);
3349 list_del_init(&rq->queuelist);
3353 * This drops the queue lock
3356 queue_unplugged(q, depth, from_schedule);
3359 spin_lock(q->queue_lock);
3363 * Short-circuit if @q is dead
3365 if (unlikely(blk_queue_dying(q))) {
3366 __blk_end_request_all(rq, BLK_STS_IOERR);
3371 * rq is already accounted, so use raw insert
3373 if (op_is_flush(rq->cmd_flags))
3374 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3376 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3382 * This drops the queue lock
3385 queue_unplugged(q, depth, from_schedule);
3387 local_irq_restore(flags);
3390 void blk_finish_plug(struct blk_plug *plug)
3392 if (plug != current->plug)
3394 blk_flush_plug_list(plug, false);
3396 current->plug = NULL;
3398 EXPORT_SYMBOL(blk_finish_plug);
3402 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3403 * @q: the queue of the device
3404 * @dev: the device the queue belongs to
3407 * Initialize runtime-PM-related fields for @q and start auto suspend for
3408 * @dev. Drivers that want to take advantage of request-based runtime PM
3409 * should call this function after @dev has been initialized, and its
3410 * request queue @q has been allocated, and runtime PM for it can not happen
3411 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3412 * cases, driver should call this function before any I/O has taken place.
3414 * This function takes care of setting up using auto suspend for the device,
3415 * the autosuspend delay is set to -1 to make runtime suspend impossible
3416 * until an updated value is either set by user or by driver. Drivers do
3417 * not need to touch other autosuspend settings.
3419 * The block layer runtime PM is request based, so only works for drivers
3420 * that use request as their IO unit instead of those directly use bio's.
3422 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3425 q->rpm_status = RPM_ACTIVE;
3426 pm_runtime_set_autosuspend_delay(q->dev, -1);
3427 pm_runtime_use_autosuspend(q->dev);
3429 EXPORT_SYMBOL(blk_pm_runtime_init);
3432 * blk_pre_runtime_suspend - Pre runtime suspend check
3433 * @q: the queue of the device
3436 * This function will check if runtime suspend is allowed for the device
3437 * by examining if there are any requests pending in the queue. If there
3438 * are requests pending, the device can not be runtime suspended; otherwise,
3439 * the queue's status will be updated to SUSPENDING and the driver can
3440 * proceed to suspend the device.
3442 * For the not allowed case, we mark last busy for the device so that
3443 * runtime PM core will try to autosuspend it some time later.
3445 * This function should be called near the start of the device's
3446 * runtime_suspend callback.
3449 * 0 - OK to runtime suspend the device
3450 * -EBUSY - Device should not be runtime suspended
3452 int blk_pre_runtime_suspend(struct request_queue *q)
3459 spin_lock_irq(q->queue_lock);
3460 if (q->nr_pending) {
3462 pm_runtime_mark_last_busy(q->dev);
3464 q->rpm_status = RPM_SUSPENDING;
3466 spin_unlock_irq(q->queue_lock);
3469 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3472 * blk_post_runtime_suspend - Post runtime suspend processing
3473 * @q: the queue of the device
3474 * @err: return value of the device's runtime_suspend function
3477 * Update the queue's runtime status according to the return value of the
3478 * device's runtime suspend function and mark last busy for the device so
3479 * that PM core will try to auto suspend the device at a later time.
3481 * This function should be called near the end of the device's
3482 * runtime_suspend callback.
3484 void blk_post_runtime_suspend(struct request_queue *q, int err)
3489 spin_lock_irq(q->queue_lock);
3491 q->rpm_status = RPM_SUSPENDED;
3493 q->rpm_status = RPM_ACTIVE;
3494 pm_runtime_mark_last_busy(q->dev);
3496 spin_unlock_irq(q->queue_lock);
3498 EXPORT_SYMBOL(blk_post_runtime_suspend);
3501 * blk_pre_runtime_resume - Pre runtime resume processing
3502 * @q: the queue of the device
3505 * Update the queue's runtime status to RESUMING in preparation for the
3506 * runtime resume of the device.
3508 * This function should be called near the start of the device's
3509 * runtime_resume callback.
3511 void blk_pre_runtime_resume(struct request_queue *q)
3516 spin_lock_irq(q->queue_lock);
3517 q->rpm_status = RPM_RESUMING;
3518 spin_unlock_irq(q->queue_lock);
3520 EXPORT_SYMBOL(blk_pre_runtime_resume);
3523 * blk_post_runtime_resume - Post runtime resume processing
3524 * @q: the queue of the device
3525 * @err: return value of the device's runtime_resume function
3528 * Update the queue's runtime status according to the return value of the
3529 * device's runtime_resume function. If it is successfully resumed, process
3530 * the requests that are queued into the device's queue when it is resuming
3531 * and then mark last busy and initiate autosuspend for it.
3533 * This function should be called near the end of the device's
3534 * runtime_resume callback.
3536 void blk_post_runtime_resume(struct request_queue *q, int err)
3541 spin_lock_irq(q->queue_lock);
3543 q->rpm_status = RPM_ACTIVE;
3545 pm_runtime_mark_last_busy(q->dev);
3546 pm_request_autosuspend(q->dev);
3548 q->rpm_status = RPM_SUSPENDED;
3550 spin_unlock_irq(q->queue_lock);
3552 EXPORT_SYMBOL(blk_post_runtime_resume);
3555 * blk_set_runtime_active - Force runtime status of the queue to be active
3556 * @q: the queue of the device
3558 * If the device is left runtime suspended during system suspend the resume
3559 * hook typically resumes the device and corrects runtime status
3560 * accordingly. However, that does not affect the queue runtime PM status
3561 * which is still "suspended". This prevents processing requests from the
3564 * This function can be used in driver's resume hook to correct queue
3565 * runtime PM status and re-enable peeking requests from the queue. It
3566 * should be called before first request is added to the queue.
3568 void blk_set_runtime_active(struct request_queue *q)
3570 spin_lock_irq(q->queue_lock);
3571 q->rpm_status = RPM_ACTIVE;
3572 pm_runtime_mark_last_busy(q->dev);
3573 pm_request_autosuspend(q->dev);
3574 spin_unlock_irq(q->queue_lock);
3576 EXPORT_SYMBOL(blk_set_runtime_active);
3579 int __init blk_dev_init(void)
3581 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3582 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3583 FIELD_SIZEOF(struct request, cmd_flags));
3584 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3585 FIELD_SIZEOF(struct bio, bi_opf));
3587 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3588 kblockd_workqueue = alloc_workqueue("kblockd",
3589 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3590 if (!kblockd_workqueue)
3591 panic("Failed to create kblockd\n");
3593 request_cachep = kmem_cache_create("blkdev_requests",
3594 sizeof(struct request), 0, SLAB_PANIC, NULL);
3596 blk_requestq_cachep = kmem_cache_create("request_queue",
3597 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3599 #ifdef CONFIG_DEBUG_FS
3600 blk_debugfs_root = debugfs_create_dir("block", NULL);