2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
40 static int __make_request(struct request_queue *q, struct bio *bio);
43 * For the allocated request tables
45 static struct kmem_cache *request_cachep;
48 * For queue allocation
50 struct kmem_cache *blk_requestq_cachep;
53 * Controlling structure to kblockd
55 static struct workqueue_struct *kblockd_workqueue;
57 static void drive_stat_acct(struct request *rq, int new_io)
59 struct hd_struct *part;
60 int rw = rq_data_dir(rq);
63 if (!blk_do_io_stat(rq))
66 cpu = part_stat_lock();
67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
70 part_stat_inc(cpu, part, merges[rw]);
72 part_round_stats(cpu, part);
73 part_inc_in_flight(part, rw);
79 void blk_queue_congestion_threshold(struct request_queue *q)
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
86 q->nr_congestion_on = nr;
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
91 q->nr_congestion_off = nr;
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
98 * Locates the passed device's request queue and returns the address of its
101 * Will return NULL if the request queue cannot be located.
103 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
105 struct backing_dev_info *ret = NULL;
106 struct request_queue *q = bdev_get_queue(bdev);
109 ret = &q->backing_dev_info;
112 EXPORT_SYMBOL(blk_get_backing_dev_info);
114 void blk_rq_init(struct request_queue *q, struct request *rq)
116 memset(rq, 0, sizeof(*rq));
118 INIT_LIST_HEAD(&rq->queuelist);
119 INIT_LIST_HEAD(&rq->timeout_list);
122 rq->__sector = (sector_t) -1;
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
126 rq->cmd_len = BLK_MAX_CDB;
129 rq->start_time = jiffies;
130 set_start_time_ns(rq);
132 EXPORT_SYMBOL(blk_rq_init);
134 static void req_bio_endio(struct request *rq, struct bio *bio,
135 unsigned int nbytes, int error)
137 struct request_queue *q = rq->q;
139 if (&q->bar_rq != rq) {
141 clear_bit(BIO_UPTODATE, &bio->bi_flags);
142 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
145 if (unlikely(nbytes > bio->bi_size)) {
146 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
147 __func__, nbytes, bio->bi_size);
148 nbytes = bio->bi_size;
151 if (unlikely(rq->cmd_flags & REQ_QUIET))
152 set_bit(BIO_QUIET, &bio->bi_flags);
154 bio->bi_size -= nbytes;
155 bio->bi_sector += (nbytes >> 9);
157 if (bio_integrity(bio))
158 bio_integrity_advance(bio, nbytes);
160 if (bio->bi_size == 0)
161 bio_endio(bio, error);
165 * Okay, this is the barrier request in progress, just
168 if (error && !q->orderr)
173 void blk_dump_rq_flags(struct request *rq, char *msg)
177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
187 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
188 printk(KERN_INFO " cdb: ");
189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
190 printk("%02x ", rq->cmd[bit]);
194 EXPORT_SYMBOL(blk_dump_rq_flags);
197 * "plug" the device if there are no outstanding requests: this will
198 * force the transfer to start only after we have put all the requests
201 * This is called with interrupts off and no requests on the queue and
202 * with the queue lock held.
204 void blk_plug_device(struct request_queue *q)
206 WARN_ON(!irqs_disabled());
209 * don't plug a stopped queue, it must be paired with blk_start_queue()
210 * which will restart the queueing
212 if (blk_queue_stopped(q))
215 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
216 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
220 EXPORT_SYMBOL(blk_plug_device);
223 * blk_plug_device_unlocked - plug a device without queue lock held
224 * @q: The &struct request_queue to plug
227 * Like @blk_plug_device(), but grabs the queue lock and disables
230 void blk_plug_device_unlocked(struct request_queue *q)
234 spin_lock_irqsave(q->queue_lock, flags);
236 spin_unlock_irqrestore(q->queue_lock, flags);
238 EXPORT_SYMBOL(blk_plug_device_unlocked);
241 * remove the queue from the plugged list, if present. called with
242 * queue lock held and interrupts disabled.
244 int blk_remove_plug(struct request_queue *q)
246 WARN_ON(!irqs_disabled());
248 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
251 del_timer(&q->unplug_timer);
254 EXPORT_SYMBOL(blk_remove_plug);
257 * remove the plug and let it rip..
259 void __generic_unplug_device(struct request_queue *q)
261 if (unlikely(blk_queue_stopped(q)))
263 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
270 * generic_unplug_device - fire a request queue
271 * @q: The &struct request_queue in question
274 * Linux uses plugging to build bigger requests queues before letting
275 * the device have at them. If a queue is plugged, the I/O scheduler
276 * is still adding and merging requests on the queue. Once the queue
277 * gets unplugged, the request_fn defined for the queue is invoked and
280 void generic_unplug_device(struct request_queue *q)
282 if (blk_queue_plugged(q)) {
283 spin_lock_irq(q->queue_lock);
284 __generic_unplug_device(q);
285 spin_unlock_irq(q->queue_lock);
288 EXPORT_SYMBOL(generic_unplug_device);
290 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
293 struct request_queue *q = bdi->unplug_io_data;
298 void blk_unplug_work(struct work_struct *work)
300 struct request_queue *q =
301 container_of(work, struct request_queue, unplug_work);
303 trace_block_unplug_io(q);
307 void blk_unplug_timeout(unsigned long data)
309 struct request_queue *q = (struct request_queue *)data;
311 trace_block_unplug_timer(q);
312 kblockd_schedule_work(q, &q->unplug_work);
315 void blk_unplug(struct request_queue *q)
318 * devices don't necessarily have an ->unplug_fn defined
321 trace_block_unplug_io(q);
325 EXPORT_SYMBOL(blk_unplug);
328 * blk_start_queue - restart a previously stopped queue
329 * @q: The &struct request_queue in question
332 * blk_start_queue() will clear the stop flag on the queue, and call
333 * the request_fn for the queue if it was in a stopped state when
334 * entered. Also see blk_stop_queue(). Queue lock must be held.
336 void blk_start_queue(struct request_queue *q)
338 WARN_ON(!irqs_disabled());
340 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
343 EXPORT_SYMBOL(blk_start_queue);
346 * blk_stop_queue - stop a queue
347 * @q: The &struct request_queue in question
350 * The Linux block layer assumes that a block driver will consume all
351 * entries on the request queue when the request_fn strategy is called.
352 * Often this will not happen, because of hardware limitations (queue
353 * depth settings). If a device driver gets a 'queue full' response,
354 * or if it simply chooses not to queue more I/O at one point, it can
355 * call this function to prevent the request_fn from being called until
356 * the driver has signalled it's ready to go again. This happens by calling
357 * blk_start_queue() to restart queue operations. Queue lock must be held.
359 void blk_stop_queue(struct request_queue *q)
362 queue_flag_set(QUEUE_FLAG_STOPPED, q);
364 EXPORT_SYMBOL(blk_stop_queue);
367 * blk_sync_queue - cancel any pending callbacks on a queue
371 * The block layer may perform asynchronous callback activity
372 * on a queue, such as calling the unplug function after a timeout.
373 * A block device may call blk_sync_queue to ensure that any
374 * such activity is cancelled, thus allowing it to release resources
375 * that the callbacks might use. The caller must already have made sure
376 * that its ->make_request_fn will not re-add plugging prior to calling
380 void blk_sync_queue(struct request_queue *q)
382 del_timer_sync(&q->unplug_timer);
383 del_timer_sync(&q->timeout);
384 cancel_work_sync(&q->unplug_work);
386 EXPORT_SYMBOL(blk_sync_queue);
389 * __blk_run_queue - run a single device queue
390 * @q: The queue to run
393 * See @blk_run_queue. This variant must be called with the queue lock
394 * held and interrupts disabled.
397 void __blk_run_queue(struct request_queue *q)
401 if (unlikely(blk_queue_stopped(q)))
404 if (elv_queue_empty(q))
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
411 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
413 queue_flag_clear(QUEUE_FLAG_REENTER, q);
415 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
416 kblockd_schedule_work(q, &q->unplug_work);
419 EXPORT_SYMBOL(__blk_run_queue);
422 * blk_run_queue - run a single device queue
423 * @q: The queue to run
426 * Invoke request handling on this queue, if it has pending work to do.
427 * May be used to restart queueing when a request has completed.
429 void blk_run_queue(struct request_queue *q)
433 spin_lock_irqsave(q->queue_lock, flags);
435 spin_unlock_irqrestore(q->queue_lock, flags);
437 EXPORT_SYMBOL(blk_run_queue);
439 void blk_put_queue(struct request_queue *q)
441 kobject_put(&q->kobj);
444 void blk_cleanup_queue(struct request_queue *q)
447 * We know we have process context here, so we can be a little
448 * cautious and ensure that pending block actions on this device
449 * are done before moving on. Going into this function, we should
450 * not have processes doing IO to this device.
454 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
455 mutex_lock(&q->sysfs_lock);
456 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
457 mutex_unlock(&q->sysfs_lock);
460 elevator_exit(q->elevator);
464 EXPORT_SYMBOL(blk_cleanup_queue);
466 static int blk_init_free_list(struct request_queue *q)
468 struct request_list *rl = &q->rq;
470 if (unlikely(rl->rq_pool))
473 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
474 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
476 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
477 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
479 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
480 mempool_free_slab, request_cachep, q->node);
488 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
490 return blk_alloc_queue_node(gfp_mask, -1);
492 EXPORT_SYMBOL(blk_alloc_queue);
494 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
496 struct request_queue *q;
499 q = kmem_cache_alloc_node(blk_requestq_cachep,
500 gfp_mask | __GFP_ZERO, node_id);
504 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
505 q->backing_dev_info.unplug_io_data = q;
506 q->backing_dev_info.ra_pages =
507 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
508 q->backing_dev_info.state = 0;
509 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
510 q->backing_dev_info.name = "block";
512 err = bdi_init(&q->backing_dev_info);
514 kmem_cache_free(blk_requestq_cachep, q);
518 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
519 laptop_mode_timer_fn, (unsigned long) q);
520 init_timer(&q->unplug_timer);
521 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
522 INIT_LIST_HEAD(&q->timeout_list);
523 INIT_WORK(&q->unplug_work, blk_unplug_work);
525 kobject_init(&q->kobj, &blk_queue_ktype);
527 mutex_init(&q->sysfs_lock);
528 spin_lock_init(&q->__queue_lock);
532 EXPORT_SYMBOL(blk_alloc_queue_node);
535 * blk_init_queue - prepare a request queue for use with a block device
536 * @rfn: The function to be called to process requests that have been
537 * placed on the queue.
538 * @lock: Request queue spin lock
541 * If a block device wishes to use the standard request handling procedures,
542 * which sorts requests and coalesces adjacent requests, then it must
543 * call blk_init_queue(). The function @rfn will be called when there
544 * are requests on the queue that need to be processed. If the device
545 * supports plugging, then @rfn may not be called immediately when requests
546 * are available on the queue, but may be called at some time later instead.
547 * Plugged queues are generally unplugged when a buffer belonging to one
548 * of the requests on the queue is needed, or due to memory pressure.
550 * @rfn is not required, or even expected, to remove all requests off the
551 * queue, but only as many as it can handle at a time. If it does leave
552 * requests on the queue, it is responsible for arranging that the requests
553 * get dealt with eventually.
555 * The queue spin lock must be held while manipulating the requests on the
556 * request queue; this lock will be taken also from interrupt context, so irq
557 * disabling is needed for it.
559 * Function returns a pointer to the initialized request queue, or %NULL if
563 * blk_init_queue() must be paired with a blk_cleanup_queue() call
564 * when the block device is deactivated (such as at module unload).
567 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
569 return blk_init_queue_node(rfn, lock, -1);
571 EXPORT_SYMBOL(blk_init_queue);
573 struct request_queue *
574 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
576 struct request_queue *uninit_q, *q;
578 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
582 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
584 blk_cleanup_queue(uninit_q);
588 EXPORT_SYMBOL(blk_init_queue_node);
590 struct request_queue *
591 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
594 return blk_init_allocated_queue_node(q, rfn, lock, -1);
596 EXPORT_SYMBOL(blk_init_allocated_queue);
598 struct request_queue *
599 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
600 spinlock_t *lock, int node_id)
606 if (blk_init_free_list(q))
610 q->prep_rq_fn = NULL;
611 q->unprep_rq_fn = NULL;
612 q->unplug_fn = generic_unplug_device;
613 q->queue_flags = QUEUE_FLAG_DEFAULT;
614 q->queue_lock = lock;
617 * This also sets hw/phys segments, boundary and size
619 blk_queue_make_request(q, __make_request);
621 q->sg_reserved_size = INT_MAX;
626 if (!elevator_init(q, NULL)) {
627 blk_queue_congestion_threshold(q);
633 EXPORT_SYMBOL(blk_init_allocated_queue_node);
635 int blk_get_queue(struct request_queue *q)
637 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
638 kobject_get(&q->kobj);
645 static inline void blk_free_request(struct request_queue *q, struct request *rq)
647 if (rq->cmd_flags & REQ_ELVPRIV)
648 elv_put_request(q, rq);
649 mempool_free(rq, q->rq.rq_pool);
652 static struct request *
653 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
655 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
662 rq->cmd_flags = flags | REQ_ALLOCED;
665 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
666 mempool_free(rq, q->rq.rq_pool);
669 rq->cmd_flags |= REQ_ELVPRIV;
676 * ioc_batching returns true if the ioc is a valid batching request and
677 * should be given priority access to a request.
679 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
685 * Make sure the process is able to allocate at least 1 request
686 * even if the batch times out, otherwise we could theoretically
689 return ioc->nr_batch_requests == q->nr_batching ||
690 (ioc->nr_batch_requests > 0
691 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
695 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
696 * will cause the process to be a "batcher" on all queues in the system. This
697 * is the behaviour we want though - once it gets a wakeup it should be given
700 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
702 if (!ioc || ioc_batching(q, ioc))
705 ioc->nr_batch_requests = q->nr_batching;
706 ioc->last_waited = jiffies;
709 static void __freed_request(struct request_queue *q, int sync)
711 struct request_list *rl = &q->rq;
713 if (rl->count[sync] < queue_congestion_off_threshold(q))
714 blk_clear_queue_congested(q, sync);
716 if (rl->count[sync] + 1 <= q->nr_requests) {
717 if (waitqueue_active(&rl->wait[sync]))
718 wake_up(&rl->wait[sync]);
720 blk_clear_queue_full(q, sync);
725 * A request has just been released. Account for it, update the full and
726 * congestion status, wake up any waiters. Called under q->queue_lock.
728 static void freed_request(struct request_queue *q, int sync, int priv)
730 struct request_list *rl = &q->rq;
736 __freed_request(q, sync);
738 if (unlikely(rl->starved[sync ^ 1]))
739 __freed_request(q, sync ^ 1);
743 * Get a free request, queue_lock must be held.
744 * Returns NULL on failure, with queue_lock held.
745 * Returns !NULL on success, with queue_lock *not held*.
747 static struct request *get_request(struct request_queue *q, int rw_flags,
748 struct bio *bio, gfp_t gfp_mask)
750 struct request *rq = NULL;
751 struct request_list *rl = &q->rq;
752 struct io_context *ioc = NULL;
753 const bool is_sync = rw_is_sync(rw_flags) != 0;
756 may_queue = elv_may_queue(q, rw_flags);
757 if (may_queue == ELV_MQUEUE_NO)
760 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
761 if (rl->count[is_sync]+1 >= q->nr_requests) {
762 ioc = current_io_context(GFP_ATOMIC, q->node);
764 * The queue will fill after this allocation, so set
765 * it as full, and mark this process as "batching".
766 * This process will be allowed to complete a batch of
767 * requests, others will be blocked.
769 if (!blk_queue_full(q, is_sync)) {
770 ioc_set_batching(q, ioc);
771 blk_set_queue_full(q, is_sync);
773 if (may_queue != ELV_MQUEUE_MUST
774 && !ioc_batching(q, ioc)) {
776 * The queue is full and the allocating
777 * process is not a "batcher", and not
778 * exempted by the IO scheduler
784 blk_set_queue_congested(q, is_sync);
788 * Only allow batching queuers to allocate up to 50% over the defined
789 * limit of requests, otherwise we could have thousands of requests
790 * allocated with any setting of ->nr_requests
792 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
795 rl->count[is_sync]++;
796 rl->starved[is_sync] = 0;
798 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
802 if (blk_queue_io_stat(q))
803 rw_flags |= REQ_IO_STAT;
804 spin_unlock_irq(q->queue_lock);
806 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
809 * Allocation failed presumably due to memory. Undo anything
810 * we might have messed up.
812 * Allocating task should really be put onto the front of the
813 * wait queue, but this is pretty rare.
815 spin_lock_irq(q->queue_lock);
816 freed_request(q, is_sync, priv);
819 * in the very unlikely event that allocation failed and no
820 * requests for this direction was pending, mark us starved
821 * so that freeing of a request in the other direction will
822 * notice us. another possible fix would be to split the
823 * rq mempool into READ and WRITE
826 if (unlikely(rl->count[is_sync] == 0))
827 rl->starved[is_sync] = 1;
833 * ioc may be NULL here, and ioc_batching will be false. That's
834 * OK, if the queue is under the request limit then requests need
835 * not count toward the nr_batch_requests limit. There will always
836 * be some limit enforced by BLK_BATCH_TIME.
838 if (ioc_batching(q, ioc))
839 ioc->nr_batch_requests--;
841 trace_block_getrq(q, bio, rw_flags & 1);
847 * No available requests for this queue, unplug the device and wait for some
848 * requests to become available.
850 * Called with q->queue_lock held, and returns with it unlocked.
852 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
855 const bool is_sync = rw_is_sync(rw_flags) != 0;
858 rq = get_request(q, rw_flags, bio, GFP_NOIO);
861 struct io_context *ioc;
862 struct request_list *rl = &q->rq;
864 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
865 TASK_UNINTERRUPTIBLE);
867 trace_block_sleeprq(q, bio, rw_flags & 1);
869 __generic_unplug_device(q);
870 spin_unlock_irq(q->queue_lock);
874 * After sleeping, we become a "batching" process and
875 * will be able to allocate at least one request, and
876 * up to a big batch of them for a small period time.
877 * See ioc_batching, ioc_set_batching
879 ioc = current_io_context(GFP_NOIO, q->node);
880 ioc_set_batching(q, ioc);
882 spin_lock_irq(q->queue_lock);
883 finish_wait(&rl->wait[is_sync], &wait);
885 rq = get_request(q, rw_flags, bio, GFP_NOIO);
891 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
895 BUG_ON(rw != READ && rw != WRITE);
897 spin_lock_irq(q->queue_lock);
898 if (gfp_mask & __GFP_WAIT) {
899 rq = get_request_wait(q, rw, NULL);
901 rq = get_request(q, rw, NULL, gfp_mask);
903 spin_unlock_irq(q->queue_lock);
905 /* q->queue_lock is unlocked at this point */
909 EXPORT_SYMBOL(blk_get_request);
912 * blk_make_request - given a bio, allocate a corresponding struct request.
913 * @q: target request queue
914 * @bio: The bio describing the memory mappings that will be submitted for IO.
915 * It may be a chained-bio properly constructed by block/bio layer.
916 * @gfp_mask: gfp flags to be used for memory allocation
918 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
919 * type commands. Where the struct request needs to be farther initialized by
920 * the caller. It is passed a &struct bio, which describes the memory info of
923 * The caller of blk_make_request must make sure that bi_io_vec
924 * are set to describe the memory buffers. That bio_data_dir() will return
925 * the needed direction of the request. (And all bio's in the passed bio-chain
926 * are properly set accordingly)
928 * If called under none-sleepable conditions, mapped bio buffers must not
929 * need bouncing, by calling the appropriate masked or flagged allocator,
930 * suitable for the target device. Otherwise the call to blk_queue_bounce will
933 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
934 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
935 * anything but the first bio in the chain. Otherwise you risk waiting for IO
936 * completion of a bio that hasn't been submitted yet, thus resulting in a
937 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
938 * of bio_alloc(), as that avoids the mempool deadlock.
939 * If possible a big IO should be split into smaller parts when allocation
940 * fails. Partial allocation should not be an error, or you risk a live-lock.
942 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
945 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
948 return ERR_PTR(-ENOMEM);
951 struct bio *bounce_bio = bio;
954 blk_queue_bounce(q, &bounce_bio);
955 ret = blk_rq_append_bio(q, rq, bounce_bio);
964 EXPORT_SYMBOL(blk_make_request);
967 * blk_requeue_request - put a request back on queue
968 * @q: request queue where request should be inserted
969 * @rq: request to be inserted
972 * Drivers often keep queueing requests until the hardware cannot accept
973 * more, when that condition happens we need to put the request back
974 * on the queue. Must be called with queue lock held.
976 void blk_requeue_request(struct request_queue *q, struct request *rq)
978 blk_delete_timer(rq);
979 blk_clear_rq_complete(rq);
980 trace_block_rq_requeue(q, rq);
982 if (blk_rq_tagged(rq))
983 blk_queue_end_tag(q, rq);
985 BUG_ON(blk_queued_rq(rq));
987 elv_requeue_request(q, rq);
989 EXPORT_SYMBOL(blk_requeue_request);
992 * blk_insert_request - insert a special request into a request queue
993 * @q: request queue where request should be inserted
994 * @rq: request to be inserted
995 * @at_head: insert request at head or tail of queue
996 * @data: private data
999 * Many block devices need to execute commands asynchronously, so they don't
1000 * block the whole kernel from preemption during request execution. This is
1001 * accomplished normally by inserting aritficial requests tagged as
1002 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1003 * be scheduled for actual execution by the request queue.
1005 * We have the option of inserting the head or the tail of the queue.
1006 * Typically we use the tail for new ioctls and so forth. We use the head
1007 * of the queue for things like a QUEUE_FULL message from a device, or a
1008 * host that is unable to accept a particular command.
1010 void blk_insert_request(struct request_queue *q, struct request *rq,
1011 int at_head, void *data)
1013 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1014 unsigned long flags;
1017 * tell I/O scheduler that this isn't a regular read/write (ie it
1018 * must not attempt merges on this) and that it acts as a soft
1021 rq->cmd_type = REQ_TYPE_SPECIAL;
1025 spin_lock_irqsave(q->queue_lock, flags);
1028 * If command is tagged, release the tag
1030 if (blk_rq_tagged(rq))
1031 blk_queue_end_tag(q, rq);
1033 drive_stat_acct(rq, 1);
1034 __elv_add_request(q, rq, where, 0);
1036 spin_unlock_irqrestore(q->queue_lock, flags);
1038 EXPORT_SYMBOL(blk_insert_request);
1041 * add-request adds a request to the linked list.
1042 * queue lock is held and interrupts disabled, as we muck with the
1043 * request queue list.
1045 static inline void add_request(struct request_queue *q, struct request *req)
1047 drive_stat_acct(req, 1);
1050 * elevator indicated where it wants this request to be
1051 * inserted at elevator_merge time
1053 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1056 static void part_round_stats_single(int cpu, struct hd_struct *part,
1059 if (now == part->stamp)
1062 if (part_in_flight(part)) {
1063 __part_stat_add(cpu, part, time_in_queue,
1064 part_in_flight(part) * (now - part->stamp));
1065 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1071 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1072 * @cpu: cpu number for stats access
1073 * @part: target partition
1075 * The average IO queue length and utilisation statistics are maintained
1076 * by observing the current state of the queue length and the amount of
1077 * time it has been in this state for.
1079 * Normally, that accounting is done on IO completion, but that can result
1080 * in more than a second's worth of IO being accounted for within any one
1081 * second, leading to >100% utilisation. To deal with that, we call this
1082 * function to do a round-off before returning the results when reading
1083 * /proc/diskstats. This accounts immediately for all queue usage up to
1084 * the current jiffies and restarts the counters again.
1086 void part_round_stats(int cpu, struct hd_struct *part)
1088 unsigned long now = jiffies;
1091 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1092 part_round_stats_single(cpu, part, now);
1094 EXPORT_SYMBOL_GPL(part_round_stats);
1097 * queue lock must be held
1099 void __blk_put_request(struct request_queue *q, struct request *req)
1103 if (unlikely(--req->ref_count))
1106 elv_completed_request(q, req);
1108 /* this is a bio leak */
1109 WARN_ON(req->bio != NULL);
1112 * Request may not have originated from ll_rw_blk. if not,
1113 * it didn't come out of our reserved rq pools
1115 if (req->cmd_flags & REQ_ALLOCED) {
1116 int is_sync = rq_is_sync(req) != 0;
1117 int priv = req->cmd_flags & REQ_ELVPRIV;
1119 BUG_ON(!list_empty(&req->queuelist));
1120 BUG_ON(!hlist_unhashed(&req->hash));
1122 blk_free_request(q, req);
1123 freed_request(q, is_sync, priv);
1126 EXPORT_SYMBOL_GPL(__blk_put_request);
1128 void blk_put_request(struct request *req)
1130 unsigned long flags;
1131 struct request_queue *q = req->q;
1133 spin_lock_irqsave(q->queue_lock, flags);
1134 __blk_put_request(q, req);
1135 spin_unlock_irqrestore(q->queue_lock, flags);
1137 EXPORT_SYMBOL(blk_put_request);
1140 * blk_add_request_payload - add a payload to a request
1141 * @rq: request to update
1142 * @page: page backing the payload
1143 * @len: length of the payload.
1145 * This allows to later add a payload to an already submitted request by
1146 * a block driver. The driver needs to take care of freeing the payload
1149 * Note that this is a quite horrible hack and nothing but handling of
1150 * discard requests should ever use it.
1152 void blk_add_request_payload(struct request *rq, struct page *page,
1155 struct bio *bio = rq->bio;
1157 bio->bi_io_vec->bv_page = page;
1158 bio->bi_io_vec->bv_offset = 0;
1159 bio->bi_io_vec->bv_len = len;
1163 bio->bi_phys_segments = 1;
1165 rq->__data_len = rq->resid_len = len;
1166 rq->nr_phys_segments = 1;
1167 rq->buffer = bio_data(bio);
1169 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1171 void init_request_from_bio(struct request *req, struct bio *bio)
1173 req->cpu = bio->bi_comp_cpu;
1174 req->cmd_type = REQ_TYPE_FS;
1176 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1177 if (bio->bi_rw & REQ_RAHEAD)
1178 req->cmd_flags |= REQ_FAILFAST_MASK;
1181 req->__sector = bio->bi_sector;
1182 req->ioprio = bio_prio(bio);
1183 blk_rq_bio_prep(req->q, req, bio);
1187 * Only disabling plugging for non-rotational devices if it does tagging
1188 * as well, otherwise we do need the proper merging
1190 static inline bool queue_should_plug(struct request_queue *q)
1192 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1195 static int __make_request(struct request_queue *q, struct bio *bio)
1197 struct request *req;
1199 unsigned int bytes = bio->bi_size;
1200 const unsigned short prio = bio_prio(bio);
1201 const bool sync = (bio->bi_rw & REQ_SYNC);
1202 const bool unplug = (bio->bi_rw & REQ_UNPLUG);
1203 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1206 if ((bio->bi_rw & REQ_HARDBARRIER) &&
1207 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1208 bio_endio(bio, -EOPNOTSUPP);
1212 * low level driver can indicate that it wants pages above a
1213 * certain limit bounced to low memory (ie for highmem, or even
1214 * ISA dma in theory)
1216 blk_queue_bounce(q, &bio);
1218 spin_lock_irq(q->queue_lock);
1220 if (unlikely((bio->bi_rw & REQ_HARDBARRIER)) || elv_queue_empty(q))
1223 el_ret = elv_merge(q, &req, bio);
1225 case ELEVATOR_BACK_MERGE:
1226 BUG_ON(!rq_mergeable(req));
1228 if (!ll_back_merge_fn(q, req, bio))
1231 trace_block_bio_backmerge(q, bio);
1233 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1234 blk_rq_set_mixed_merge(req);
1236 req->biotail->bi_next = bio;
1238 req->__data_len += bytes;
1239 req->ioprio = ioprio_best(req->ioprio, prio);
1240 if (!blk_rq_cpu_valid(req))
1241 req->cpu = bio->bi_comp_cpu;
1242 drive_stat_acct(req, 0);
1243 elv_bio_merged(q, req, bio);
1244 if (!attempt_back_merge(q, req))
1245 elv_merged_request(q, req, el_ret);
1248 case ELEVATOR_FRONT_MERGE:
1249 BUG_ON(!rq_mergeable(req));
1251 if (!ll_front_merge_fn(q, req, bio))
1254 trace_block_bio_frontmerge(q, bio);
1256 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1257 blk_rq_set_mixed_merge(req);
1258 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1259 req->cmd_flags |= ff;
1262 bio->bi_next = req->bio;
1266 * may not be valid. if the low level driver said
1267 * it didn't need a bounce buffer then it better
1268 * not touch req->buffer either...
1270 req->buffer = bio_data(bio);
1271 req->__sector = bio->bi_sector;
1272 req->__data_len += bytes;
1273 req->ioprio = ioprio_best(req->ioprio, prio);
1274 if (!blk_rq_cpu_valid(req))
1275 req->cpu = bio->bi_comp_cpu;
1276 drive_stat_acct(req, 0);
1277 elv_bio_merged(q, req, bio);
1278 if (!attempt_front_merge(q, req))
1279 elv_merged_request(q, req, el_ret);
1282 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1289 * This sync check and mask will be re-done in init_request_from_bio(),
1290 * but we need to set it earlier to expose the sync flag to the
1291 * rq allocator and io schedulers.
1293 rw_flags = bio_data_dir(bio);
1295 rw_flags |= REQ_SYNC;
1298 * Grab a free request. This is might sleep but can not fail.
1299 * Returns with the queue unlocked.
1301 req = get_request_wait(q, rw_flags, bio);
1304 * After dropping the lock and possibly sleeping here, our request
1305 * may now be mergeable after it had proven unmergeable (above).
1306 * We don't worry about that case for efficiency. It won't happen
1307 * often, and the elevators are able to handle it.
1309 init_request_from_bio(req, bio);
1311 spin_lock_irq(q->queue_lock);
1312 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1313 bio_flagged(bio, BIO_CPU_AFFINE))
1314 req->cpu = blk_cpu_to_group(smp_processor_id());
1315 if (queue_should_plug(q) && elv_queue_empty(q))
1317 add_request(q, req);
1319 if (unplug || !queue_should_plug(q))
1320 __generic_unplug_device(q);
1321 spin_unlock_irq(q->queue_lock);
1326 * If bio->bi_dev is a partition, remap the location
1328 static inline void blk_partition_remap(struct bio *bio)
1330 struct block_device *bdev = bio->bi_bdev;
1332 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1333 struct hd_struct *p = bdev->bd_part;
1335 bio->bi_sector += p->start_sect;
1336 bio->bi_bdev = bdev->bd_contains;
1338 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1340 bio->bi_sector - p->start_sect);
1344 static void handle_bad_sector(struct bio *bio)
1346 char b[BDEVNAME_SIZE];
1348 printk(KERN_INFO "attempt to access beyond end of device\n");
1349 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1350 bdevname(bio->bi_bdev, b),
1352 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1353 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1355 set_bit(BIO_EOF, &bio->bi_flags);
1358 #ifdef CONFIG_FAIL_MAKE_REQUEST
1360 static DECLARE_FAULT_ATTR(fail_make_request);
1362 static int __init setup_fail_make_request(char *str)
1364 return setup_fault_attr(&fail_make_request, str);
1366 __setup("fail_make_request=", setup_fail_make_request);
1368 static int should_fail_request(struct bio *bio)
1370 struct hd_struct *part = bio->bi_bdev->bd_part;
1372 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1373 return should_fail(&fail_make_request, bio->bi_size);
1378 static int __init fail_make_request_debugfs(void)
1380 return init_fault_attr_dentries(&fail_make_request,
1381 "fail_make_request");
1384 late_initcall(fail_make_request_debugfs);
1386 #else /* CONFIG_FAIL_MAKE_REQUEST */
1388 static inline int should_fail_request(struct bio *bio)
1393 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1396 * Check whether this bio extends beyond the end of the device.
1398 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1405 /* Test device or partition size, when known. */
1406 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1408 sector_t sector = bio->bi_sector;
1410 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1412 * This may well happen - the kernel calls bread()
1413 * without checking the size of the device, e.g., when
1414 * mounting a device.
1416 handle_bad_sector(bio);
1425 * generic_make_request - hand a buffer to its device driver for I/O
1426 * @bio: The bio describing the location in memory and on the device.
1428 * generic_make_request() is used to make I/O requests of block
1429 * devices. It is passed a &struct bio, which describes the I/O that needs
1432 * generic_make_request() does not return any status. The
1433 * success/failure status of the request, along with notification of
1434 * completion, is delivered asynchronously through the bio->bi_end_io
1435 * function described (one day) else where.
1437 * The caller of generic_make_request must make sure that bi_io_vec
1438 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1439 * set to describe the device address, and the
1440 * bi_end_io and optionally bi_private are set to describe how
1441 * completion notification should be signaled.
1443 * generic_make_request and the drivers it calls may use bi_next if this
1444 * bio happens to be merged with someone else, and may change bi_dev and
1445 * bi_sector for remaps as it sees fit. So the values of these fields
1446 * should NOT be depended on after the call to generic_make_request.
1448 static inline void __generic_make_request(struct bio *bio)
1450 struct request_queue *q;
1451 sector_t old_sector;
1452 int ret, nr_sectors = bio_sectors(bio);
1458 if (bio_check_eod(bio, nr_sectors))
1462 * Resolve the mapping until finished. (drivers are
1463 * still free to implement/resolve their own stacking
1464 * by explicitly returning 0)
1466 * NOTE: we don't repeat the blk_size check for each new device.
1467 * Stacking drivers are expected to know what they are doing.
1472 char b[BDEVNAME_SIZE];
1474 q = bdev_get_queue(bio->bi_bdev);
1477 "generic_make_request: Trying to access "
1478 "nonexistent block-device %s (%Lu)\n",
1479 bdevname(bio->bi_bdev, b),
1480 (long long) bio->bi_sector);
1484 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1485 nr_sectors > queue_max_hw_sectors(q))) {
1486 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1487 bdevname(bio->bi_bdev, b),
1489 queue_max_hw_sectors(q));
1493 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1496 if (should_fail_request(bio))
1500 * If this device has partitions, remap block n
1501 * of partition p to block n+start(p) of the disk.
1503 blk_partition_remap(bio);
1505 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1508 if (old_sector != -1)
1509 trace_block_remap(q, bio, old_dev, old_sector);
1511 old_sector = bio->bi_sector;
1512 old_dev = bio->bi_bdev->bd_dev;
1514 if (bio_check_eod(bio, nr_sectors))
1517 if ((bio->bi_rw & REQ_DISCARD) &&
1518 (!blk_queue_discard(q) ||
1519 ((bio->bi_rw & REQ_SECURE) &&
1520 !blk_queue_secdiscard(q)))) {
1525 trace_block_bio_queue(q, bio);
1527 ret = q->make_request_fn(q, bio);
1533 bio_endio(bio, err);
1537 * We only want one ->make_request_fn to be active at a time,
1538 * else stack usage with stacked devices could be a problem.
1539 * So use current->bio_list to keep a list of requests
1540 * submited by a make_request_fn function.
1541 * current->bio_list is also used as a flag to say if
1542 * generic_make_request is currently active in this task or not.
1543 * If it is NULL, then no make_request is active. If it is non-NULL,
1544 * then a make_request is active, and new requests should be added
1547 void generic_make_request(struct bio *bio)
1549 struct bio_list bio_list_on_stack;
1551 if (current->bio_list) {
1552 /* make_request is active */
1553 bio_list_add(current->bio_list, bio);
1556 /* following loop may be a bit non-obvious, and so deserves some
1558 * Before entering the loop, bio->bi_next is NULL (as all callers
1559 * ensure that) so we have a list with a single bio.
1560 * We pretend that we have just taken it off a longer list, so
1561 * we assign bio_list to a pointer to the bio_list_on_stack,
1562 * thus initialising the bio_list of new bios to be
1563 * added. __generic_make_request may indeed add some more bios
1564 * through a recursive call to generic_make_request. If it
1565 * did, we find a non-NULL value in bio_list and re-enter the loop
1566 * from the top. In this case we really did just take the bio
1567 * of the top of the list (no pretending) and so remove it from
1568 * bio_list, and call into __generic_make_request again.
1570 * The loop was structured like this to make only one call to
1571 * __generic_make_request (which is important as it is large and
1572 * inlined) and to keep the structure simple.
1574 BUG_ON(bio->bi_next);
1575 bio_list_init(&bio_list_on_stack);
1576 current->bio_list = &bio_list_on_stack;
1578 __generic_make_request(bio);
1579 bio = bio_list_pop(current->bio_list);
1581 current->bio_list = NULL; /* deactivate */
1583 EXPORT_SYMBOL(generic_make_request);
1586 * submit_bio - submit a bio to the block device layer for I/O
1587 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1588 * @bio: The &struct bio which describes the I/O
1590 * submit_bio() is very similar in purpose to generic_make_request(), and
1591 * uses that function to do most of the work. Both are fairly rough
1592 * interfaces; @bio must be presetup and ready for I/O.
1595 void submit_bio(int rw, struct bio *bio)
1597 int count = bio_sectors(bio);
1602 * If it's a regular read/write or a barrier with data attached,
1603 * go through the normal accounting stuff before submission.
1605 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1607 count_vm_events(PGPGOUT, count);
1609 task_io_account_read(bio->bi_size);
1610 count_vm_events(PGPGIN, count);
1613 if (unlikely(block_dump)) {
1614 char b[BDEVNAME_SIZE];
1615 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1616 current->comm, task_pid_nr(current),
1617 (rw & WRITE) ? "WRITE" : "READ",
1618 (unsigned long long)bio->bi_sector,
1619 bdevname(bio->bi_bdev, b));
1623 generic_make_request(bio);
1625 EXPORT_SYMBOL(submit_bio);
1628 * blk_rq_check_limits - Helper function to check a request for the queue limit
1630 * @rq: the request being checked
1633 * @rq may have been made based on weaker limitations of upper-level queues
1634 * in request stacking drivers, and it may violate the limitation of @q.
1635 * Since the block layer and the underlying device driver trust @rq
1636 * after it is inserted to @q, it should be checked against @q before
1637 * the insertion using this generic function.
1639 * This function should also be useful for request stacking drivers
1640 * in some cases below, so export this fuction.
1641 * Request stacking drivers like request-based dm may change the queue
1642 * limits while requests are in the queue (e.g. dm's table swapping).
1643 * Such request stacking drivers should check those requests agaist
1644 * the new queue limits again when they dispatch those requests,
1645 * although such checkings are also done against the old queue limits
1646 * when submitting requests.
1648 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1650 if (rq->cmd_flags & REQ_DISCARD)
1653 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1654 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1655 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1660 * queue's settings related to segment counting like q->bounce_pfn
1661 * may differ from that of other stacking queues.
1662 * Recalculate it to check the request correctly on this queue's
1665 blk_recalc_rq_segments(rq);
1666 if (rq->nr_phys_segments > queue_max_segments(q)) {
1667 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1673 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1676 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1677 * @q: the queue to submit the request
1678 * @rq: the request being queued
1680 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1682 unsigned long flags;
1684 if (blk_rq_check_limits(q, rq))
1687 #ifdef CONFIG_FAIL_MAKE_REQUEST
1688 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1689 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1693 spin_lock_irqsave(q->queue_lock, flags);
1696 * Submitting request must be dequeued before calling this function
1697 * because it will be linked to another request_queue
1699 BUG_ON(blk_queued_rq(rq));
1701 drive_stat_acct(rq, 1);
1702 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1704 spin_unlock_irqrestore(q->queue_lock, flags);
1708 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1711 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1712 * @rq: request to examine
1715 * A request could be merge of IOs which require different failure
1716 * handling. This function determines the number of bytes which
1717 * can be failed from the beginning of the request without
1718 * crossing into area which need to be retried further.
1721 * The number of bytes to fail.
1724 * queue_lock must be held.
1726 unsigned int blk_rq_err_bytes(const struct request *rq)
1728 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1729 unsigned int bytes = 0;
1732 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1733 return blk_rq_bytes(rq);
1736 * Currently the only 'mixing' which can happen is between
1737 * different fastfail types. We can safely fail portions
1738 * which have all the failfast bits that the first one has -
1739 * the ones which are at least as eager to fail as the first
1742 for (bio = rq->bio; bio; bio = bio->bi_next) {
1743 if ((bio->bi_rw & ff) != ff)
1745 bytes += bio->bi_size;
1748 /* this could lead to infinite loop */
1749 BUG_ON(blk_rq_bytes(rq) && !bytes);
1752 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1754 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1756 if (blk_do_io_stat(req)) {
1757 const int rw = rq_data_dir(req);
1758 struct hd_struct *part;
1761 cpu = part_stat_lock();
1762 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1763 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1768 static void blk_account_io_done(struct request *req)
1771 * Account IO completion. bar_rq isn't accounted as a normal
1772 * IO on queueing nor completion. Accounting the containing
1773 * request is enough.
1775 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
1776 unsigned long duration = jiffies - req->start_time;
1777 const int rw = rq_data_dir(req);
1778 struct hd_struct *part;
1781 cpu = part_stat_lock();
1782 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1784 part_stat_inc(cpu, part, ios[rw]);
1785 part_stat_add(cpu, part, ticks[rw], duration);
1786 part_round_stats(cpu, part);
1787 part_dec_in_flight(part, rw);
1794 * blk_peek_request - peek at the top of a request queue
1795 * @q: request queue to peek at
1798 * Return the request at the top of @q. The returned request
1799 * should be started using blk_start_request() before LLD starts
1803 * Pointer to the request at the top of @q if available. Null
1807 * queue_lock must be held.
1809 struct request *blk_peek_request(struct request_queue *q)
1814 while ((rq = __elv_next_request(q)) != NULL) {
1815 if (!(rq->cmd_flags & REQ_STARTED)) {
1817 * This is the first time the device driver
1818 * sees this request (possibly after
1819 * requeueing). Notify IO scheduler.
1821 if (rq->cmd_flags & REQ_SORTED)
1822 elv_activate_rq(q, rq);
1825 * just mark as started even if we don't start
1826 * it, a request that has been delayed should
1827 * not be passed by new incoming requests
1829 rq->cmd_flags |= REQ_STARTED;
1830 trace_block_rq_issue(q, rq);
1833 if (!q->boundary_rq || q->boundary_rq == rq) {
1834 q->end_sector = rq_end_sector(rq);
1835 q->boundary_rq = NULL;
1838 if (rq->cmd_flags & REQ_DONTPREP)
1841 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1843 * make sure space for the drain appears we
1844 * know we can do this because max_hw_segments
1845 * has been adjusted to be one fewer than the
1848 rq->nr_phys_segments++;
1854 ret = q->prep_rq_fn(q, rq);
1855 if (ret == BLKPREP_OK) {
1857 } else if (ret == BLKPREP_DEFER) {
1859 * the request may have been (partially) prepped.
1860 * we need to keep this request in the front to
1861 * avoid resource deadlock. REQ_STARTED will
1862 * prevent other fs requests from passing this one.
1864 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1865 !(rq->cmd_flags & REQ_DONTPREP)) {
1867 * remove the space for the drain we added
1868 * so that we don't add it again
1870 --rq->nr_phys_segments;
1875 } else if (ret == BLKPREP_KILL) {
1876 rq->cmd_flags |= REQ_QUIET;
1878 * Mark this request as started so we don't trigger
1879 * any debug logic in the end I/O path.
1881 blk_start_request(rq);
1882 __blk_end_request_all(rq, -EIO);
1884 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1891 EXPORT_SYMBOL(blk_peek_request);
1893 void blk_dequeue_request(struct request *rq)
1895 struct request_queue *q = rq->q;
1897 BUG_ON(list_empty(&rq->queuelist));
1898 BUG_ON(ELV_ON_HASH(rq));
1900 list_del_init(&rq->queuelist);
1903 * the time frame between a request being removed from the lists
1904 * and to it is freed is accounted as io that is in progress at
1907 if (blk_account_rq(rq)) {
1908 q->in_flight[rq_is_sync(rq)]++;
1909 set_io_start_time_ns(rq);
1914 * blk_start_request - start request processing on the driver
1915 * @req: request to dequeue
1918 * Dequeue @req and start timeout timer on it. This hands off the
1919 * request to the driver.
1921 * Block internal functions which don't want to start timer should
1922 * call blk_dequeue_request().
1925 * queue_lock must be held.
1927 void blk_start_request(struct request *req)
1929 blk_dequeue_request(req);
1932 * We are now handing the request to the hardware, initialize
1933 * resid_len to full count and add the timeout handler.
1935 req->resid_len = blk_rq_bytes(req);
1936 if (unlikely(blk_bidi_rq(req)))
1937 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1941 EXPORT_SYMBOL(blk_start_request);
1944 * blk_fetch_request - fetch a request from a request queue
1945 * @q: request queue to fetch a request from
1948 * Return the request at the top of @q. The request is started on
1949 * return and LLD can start processing it immediately.
1952 * Pointer to the request at the top of @q if available. Null
1956 * queue_lock must be held.
1958 struct request *blk_fetch_request(struct request_queue *q)
1962 rq = blk_peek_request(q);
1964 blk_start_request(rq);
1967 EXPORT_SYMBOL(blk_fetch_request);
1970 * blk_update_request - Special helper function for request stacking drivers
1971 * @req: the request being processed
1972 * @error: %0 for success, < %0 for error
1973 * @nr_bytes: number of bytes to complete @req
1976 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1977 * the request structure even if @req doesn't have leftover.
1978 * If @req has leftover, sets it up for the next range of segments.
1980 * This special helper function is only for request stacking drivers
1981 * (e.g. request-based dm) so that they can handle partial completion.
1982 * Actual device drivers should use blk_end_request instead.
1984 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1985 * %false return from this function.
1988 * %false - this request doesn't have any more data
1989 * %true - this request has more data
1991 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1993 int total_bytes, bio_nbytes, next_idx = 0;
1999 trace_block_rq_complete(req->q, req);
2002 * For fs requests, rq is just carrier of independent bio's
2003 * and each partial completion should be handled separately.
2004 * Reset per-request error on each partial completion.
2006 * TODO: tj: This is too subtle. It would be better to let
2007 * low level drivers do what they see fit.
2009 if (req->cmd_type == REQ_TYPE_FS)
2012 if (error && req->cmd_type == REQ_TYPE_FS &&
2013 !(req->cmd_flags & REQ_QUIET)) {
2014 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
2015 req->rq_disk ? req->rq_disk->disk_name : "?",
2016 (unsigned long long)blk_rq_pos(req));
2019 blk_account_io_completion(req, nr_bytes);
2021 total_bytes = bio_nbytes = 0;
2022 while ((bio = req->bio) != NULL) {
2025 if (nr_bytes >= bio->bi_size) {
2026 req->bio = bio->bi_next;
2027 nbytes = bio->bi_size;
2028 req_bio_endio(req, bio, nbytes, error);
2032 int idx = bio->bi_idx + next_idx;
2034 if (unlikely(idx >= bio->bi_vcnt)) {
2035 blk_dump_rq_flags(req, "__end_that");
2036 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2037 __func__, idx, bio->bi_vcnt);
2041 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2042 BIO_BUG_ON(nbytes > bio->bi_size);
2045 * not a complete bvec done
2047 if (unlikely(nbytes > nr_bytes)) {
2048 bio_nbytes += nr_bytes;
2049 total_bytes += nr_bytes;
2054 * advance to the next vector
2057 bio_nbytes += nbytes;
2060 total_bytes += nbytes;
2066 * end more in this run, or just return 'not-done'
2068 if (unlikely(nr_bytes <= 0))
2078 * Reset counters so that the request stacking driver
2079 * can find how many bytes remain in the request
2082 req->__data_len = 0;
2087 * if the request wasn't completed, update state
2090 req_bio_endio(req, bio, bio_nbytes, error);
2091 bio->bi_idx += next_idx;
2092 bio_iovec(bio)->bv_offset += nr_bytes;
2093 bio_iovec(bio)->bv_len -= nr_bytes;
2096 req->__data_len -= total_bytes;
2097 req->buffer = bio_data(req->bio);
2099 /* update sector only for requests with clear definition of sector */
2100 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2101 req->__sector += total_bytes >> 9;
2103 /* mixed attributes always follow the first bio */
2104 if (req->cmd_flags & REQ_MIXED_MERGE) {
2105 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2106 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2110 * If total number of sectors is less than the first segment
2111 * size, something has gone terribly wrong.
2113 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2114 printk(KERN_ERR "blk: request botched\n");
2115 req->__data_len = blk_rq_cur_bytes(req);
2118 /* recalculate the number of segments */
2119 blk_recalc_rq_segments(req);
2123 EXPORT_SYMBOL_GPL(blk_update_request);
2125 static bool blk_update_bidi_request(struct request *rq, int error,
2126 unsigned int nr_bytes,
2127 unsigned int bidi_bytes)
2129 if (blk_update_request(rq, error, nr_bytes))
2132 /* Bidi request must be completed as a whole */
2133 if (unlikely(blk_bidi_rq(rq)) &&
2134 blk_update_request(rq->next_rq, error, bidi_bytes))
2137 if (blk_queue_add_random(rq->q))
2138 add_disk_randomness(rq->rq_disk);
2144 * blk_unprep_request - unprepare a request
2147 * This function makes a request ready for complete resubmission (or
2148 * completion). It happens only after all error handling is complete,
2149 * so represents the appropriate moment to deallocate any resources
2150 * that were allocated to the request in the prep_rq_fn. The queue
2151 * lock is held when calling this.
2153 void blk_unprep_request(struct request *req)
2155 struct request_queue *q = req->q;
2157 req->cmd_flags &= ~REQ_DONTPREP;
2158 if (q->unprep_rq_fn)
2159 q->unprep_rq_fn(q, req);
2161 EXPORT_SYMBOL_GPL(blk_unprep_request);
2164 * queue lock must be held
2166 static void blk_finish_request(struct request *req, int error)
2168 if (blk_rq_tagged(req))
2169 blk_queue_end_tag(req->q, req);
2171 BUG_ON(blk_queued_rq(req));
2173 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2174 laptop_io_completion(&req->q->backing_dev_info);
2176 blk_delete_timer(req);
2178 if (req->cmd_flags & REQ_DONTPREP)
2179 blk_unprep_request(req);
2182 blk_account_io_done(req);
2185 req->end_io(req, error);
2187 if (blk_bidi_rq(req))
2188 __blk_put_request(req->next_rq->q, req->next_rq);
2190 __blk_put_request(req->q, req);
2195 * blk_end_bidi_request - Complete a bidi request
2196 * @rq: the request to complete
2197 * @error: %0 for success, < %0 for error
2198 * @nr_bytes: number of bytes to complete @rq
2199 * @bidi_bytes: number of bytes to complete @rq->next_rq
2202 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2203 * Drivers that supports bidi can safely call this member for any
2204 * type of request, bidi or uni. In the later case @bidi_bytes is
2208 * %false - we are done with this request
2209 * %true - still buffers pending for this request
2211 static bool blk_end_bidi_request(struct request *rq, int error,
2212 unsigned int nr_bytes, unsigned int bidi_bytes)
2214 struct request_queue *q = rq->q;
2215 unsigned long flags;
2217 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2220 spin_lock_irqsave(q->queue_lock, flags);
2221 blk_finish_request(rq, error);
2222 spin_unlock_irqrestore(q->queue_lock, flags);
2228 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2229 * @rq: the request to complete
2230 * @error: %0 for success, < %0 for error
2231 * @nr_bytes: number of bytes to complete @rq
2232 * @bidi_bytes: number of bytes to complete @rq->next_rq
2235 * Identical to blk_end_bidi_request() except that queue lock is
2236 * assumed to be locked on entry and remains so on return.
2239 * %false - we are done with this request
2240 * %true - still buffers pending for this request
2242 static bool __blk_end_bidi_request(struct request *rq, int error,
2243 unsigned int nr_bytes, unsigned int bidi_bytes)
2245 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2248 blk_finish_request(rq, error);
2254 * blk_end_request - Helper function for drivers to complete the request.
2255 * @rq: the request being processed
2256 * @error: %0 for success, < %0 for error
2257 * @nr_bytes: number of bytes to complete
2260 * Ends I/O on a number of bytes attached to @rq.
2261 * If @rq has leftover, sets it up for the next range of segments.
2264 * %false - we are done with this request
2265 * %true - still buffers pending for this request
2267 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2269 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2271 EXPORT_SYMBOL(blk_end_request);
2274 * blk_end_request_all - Helper function for drives to finish the request.
2275 * @rq: the request to finish
2276 * @error: %0 for success, < %0 for error
2279 * Completely finish @rq.
2281 void blk_end_request_all(struct request *rq, int error)
2284 unsigned int bidi_bytes = 0;
2286 if (unlikely(blk_bidi_rq(rq)))
2287 bidi_bytes = blk_rq_bytes(rq->next_rq);
2289 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2292 EXPORT_SYMBOL(blk_end_request_all);
2295 * blk_end_request_cur - Helper function to finish the current request chunk.
2296 * @rq: the request to finish the current chunk for
2297 * @error: %0 for success, < %0 for error
2300 * Complete the current consecutively mapped chunk from @rq.
2303 * %false - we are done with this request
2304 * %true - still buffers pending for this request
2306 bool blk_end_request_cur(struct request *rq, int error)
2308 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2310 EXPORT_SYMBOL(blk_end_request_cur);
2313 * blk_end_request_err - Finish a request till the next failure boundary.
2314 * @rq: the request to finish till the next failure boundary for
2315 * @error: must be negative errno
2318 * Complete @rq till the next failure boundary.
2321 * %false - we are done with this request
2322 * %true - still buffers pending for this request
2324 bool blk_end_request_err(struct request *rq, int error)
2326 WARN_ON(error >= 0);
2327 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2329 EXPORT_SYMBOL_GPL(blk_end_request_err);
2332 * __blk_end_request - Helper function for drivers to complete the request.
2333 * @rq: the request being processed
2334 * @error: %0 for success, < %0 for error
2335 * @nr_bytes: number of bytes to complete
2338 * Must be called with queue lock held unlike blk_end_request().
2341 * %false - we are done with this request
2342 * %true - still buffers pending for this request
2344 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2346 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2348 EXPORT_SYMBOL(__blk_end_request);
2351 * __blk_end_request_all - Helper function for drives to finish the request.
2352 * @rq: the request to finish
2353 * @error: %0 for success, < %0 for error
2356 * Completely finish @rq. Must be called with queue lock held.
2358 void __blk_end_request_all(struct request *rq, int error)
2361 unsigned int bidi_bytes = 0;
2363 if (unlikely(blk_bidi_rq(rq)))
2364 bidi_bytes = blk_rq_bytes(rq->next_rq);
2366 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2369 EXPORT_SYMBOL(__blk_end_request_all);
2372 * __blk_end_request_cur - Helper function to finish the current request chunk.
2373 * @rq: the request to finish the current chunk for
2374 * @error: %0 for success, < %0 for error
2377 * Complete the current consecutively mapped chunk from @rq. Must
2378 * be called with queue lock held.
2381 * %false - we are done with this request
2382 * %true - still buffers pending for this request
2384 bool __blk_end_request_cur(struct request *rq, int error)
2386 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2388 EXPORT_SYMBOL(__blk_end_request_cur);
2391 * __blk_end_request_err - Finish a request till the next failure boundary.
2392 * @rq: the request to finish till the next failure boundary for
2393 * @error: must be negative errno
2396 * Complete @rq till the next failure boundary. Must be called
2397 * with queue lock held.
2400 * %false - we are done with this request
2401 * %true - still buffers pending for this request
2403 bool __blk_end_request_err(struct request *rq, int error)
2405 WARN_ON(error >= 0);
2406 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2408 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2410 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2413 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2414 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2416 if (bio_has_data(bio)) {
2417 rq->nr_phys_segments = bio_phys_segments(q, bio);
2418 rq->buffer = bio_data(bio);
2420 rq->__data_len = bio->bi_size;
2421 rq->bio = rq->biotail = bio;
2424 rq->rq_disk = bio->bi_bdev->bd_disk;
2427 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2429 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2430 * @rq: the request to be flushed
2433 * Flush all pages in @rq.
2435 void rq_flush_dcache_pages(struct request *rq)
2437 struct req_iterator iter;
2438 struct bio_vec *bvec;
2440 rq_for_each_segment(bvec, rq, iter)
2441 flush_dcache_page(bvec->bv_page);
2443 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2447 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2448 * @q : the queue of the device being checked
2451 * Check if underlying low-level drivers of a device are busy.
2452 * If the drivers want to export their busy state, they must set own
2453 * exporting function using blk_queue_lld_busy() first.
2455 * Basically, this function is used only by request stacking drivers
2456 * to stop dispatching requests to underlying devices when underlying
2457 * devices are busy. This behavior helps more I/O merging on the queue
2458 * of the request stacking driver and prevents I/O throughput regression
2459 * on burst I/O load.
2462 * 0 - Not busy (The request stacking driver should dispatch request)
2463 * 1 - Busy (The request stacking driver should stop dispatching request)
2465 int blk_lld_busy(struct request_queue *q)
2468 return q->lld_busy_fn(q);
2472 EXPORT_SYMBOL_GPL(blk_lld_busy);
2475 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2476 * @rq: the clone request to be cleaned up
2479 * Free all bios in @rq for a cloned request.
2481 void blk_rq_unprep_clone(struct request *rq)
2485 while ((bio = rq->bio) != NULL) {
2486 rq->bio = bio->bi_next;
2491 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2494 * Copy attributes of the original request to the clone request.
2495 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2497 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2499 dst->cpu = src->cpu;
2500 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2501 if (src->cmd_flags & REQ_DISCARD)
2502 dst->cmd_flags |= REQ_DISCARD;
2503 dst->cmd_type = src->cmd_type;
2504 dst->__sector = blk_rq_pos(src);
2505 dst->__data_len = blk_rq_bytes(src);
2506 dst->nr_phys_segments = src->nr_phys_segments;
2507 dst->ioprio = src->ioprio;
2508 dst->extra_len = src->extra_len;
2512 * blk_rq_prep_clone - Helper function to setup clone request
2513 * @rq: the request to be setup
2514 * @rq_src: original request to be cloned
2515 * @bs: bio_set that bios for clone are allocated from
2516 * @gfp_mask: memory allocation mask for bio
2517 * @bio_ctr: setup function to be called for each clone bio.
2518 * Returns %0 for success, non %0 for failure.
2519 * @data: private data to be passed to @bio_ctr
2522 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2523 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2524 * are not copied, and copying such parts is the caller's responsibility.
2525 * Also, pages which the original bios are pointing to are not copied
2526 * and the cloned bios just point same pages.
2527 * So cloned bios must be completed before original bios, which means
2528 * the caller must complete @rq before @rq_src.
2530 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2531 struct bio_set *bs, gfp_t gfp_mask,
2532 int (*bio_ctr)(struct bio *, struct bio *, void *),
2535 struct bio *bio, *bio_src;
2540 blk_rq_init(NULL, rq);
2542 __rq_for_each_bio(bio_src, rq_src) {
2543 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2547 __bio_clone(bio, bio_src);
2549 if (bio_integrity(bio_src) &&
2550 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2553 if (bio_ctr && bio_ctr(bio, bio_src, data))
2557 rq->biotail->bi_next = bio;
2560 rq->bio = rq->biotail = bio;
2563 __blk_rq_prep_clone(rq, rq_src);
2570 blk_rq_unprep_clone(rq);
2574 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2576 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2578 return queue_work(kblockd_workqueue, work);
2580 EXPORT_SYMBOL(kblockd_schedule_work);
2582 int __init blk_dev_init(void)
2584 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2585 sizeof(((struct request *)0)->cmd_flags));
2587 kblockd_workqueue = create_workqueue("kblockd");
2588 if (!kblockd_workqueue)
2589 panic("Failed to create kblockd\n");
2591 request_cachep = kmem_cache_create("blkdev_requests",
2592 sizeof(struct request), 0, SLAB_PANIC, NULL);
2594 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2595 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);