1 // SPDX-License-Identifier: GPL-2.0
3 * Common Block IO controller cgroup interface
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36 #include "blk-rq-qos.h"
39 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
40 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
41 * policy [un]register operations including cgroup file additions /
42 * removals. Putting cgroup file registration outside blkcg_pol_mutex
43 * allows grabbing it from cgroup callbacks.
45 static DEFINE_MUTEX(blkcg_pol_register_mutex);
46 static DEFINE_MUTEX(blkcg_pol_mutex);
48 struct blkcg blkcg_root;
49 EXPORT_SYMBOL_GPL(blkcg_root);
51 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
52 EXPORT_SYMBOL_GPL(blkcg_root_css);
54 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
58 bool blkcg_debug_stats = false;
59 static struct workqueue_struct *blkcg_punt_bio_wq;
61 #define BLKG_DESTROY_BATCH_SIZE 64
64 * Lockless lists for tracking IO stats update
66 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
67 * There are multiple blkg's (one for each block device) attached to each
68 * blkcg. The rstat code keeps track of which cpu has IO stats updated,
69 * but it doesn't know which blkg has the updated stats. If there are many
70 * block devices in a system, the cost of iterating all the blkg's to flush
71 * out the IO stats can be high. To reduce such overhead, a set of percpu
72 * lockless lists (lhead) per blkcg are used to track the set of recently
73 * updated iostat_cpu's since the last flush. An iostat_cpu will be put
74 * onto the lockless list on the update side [blk_cgroup_bio_start()] if
75 * not there yet and then removed when being flushed [blkcg_rstat_flush()].
76 * References to blkg are gotten and then put back in the process to
77 * protect against blkg removal.
79 * Return: 0 if successful or -ENOMEM if allocation fails.
81 static int init_blkcg_llists(struct blkcg *blkcg)
85 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
89 for_each_possible_cpu(cpu)
90 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
95 * blkcg_css - find the current css
97 * Find the css associated with either the kthread or the current task.
98 * This may return a dying css, so it is up to the caller to use tryget logic
99 * to confirm it is alive and well.
101 static struct cgroup_subsys_state *blkcg_css(void)
103 struct cgroup_subsys_state *css;
105 css = kthread_blkcg();
108 return task_css(current, io_cgrp_id);
111 static bool blkcg_policy_enabled(struct request_queue *q,
112 const struct blkcg_policy *pol)
114 return pol && test_bit(pol->plid, q->blkcg_pols);
117 static void blkg_free_workfn(struct work_struct *work)
119 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
123 for (i = 0; i < BLKCG_MAX_POLS; i++)
125 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
128 blk_put_queue(blkg->q);
129 free_percpu(blkg->iostat_cpu);
130 percpu_ref_exit(&blkg->refcnt);
135 * blkg_free - free a blkg
136 * @blkg: blkg to free
138 * Free @blkg which may be partially allocated.
140 static void blkg_free(struct blkcg_gq *blkg)
146 * Both ->pd_free_fn() and request queue's release handler may
147 * sleep, so free us by scheduling one work func
149 INIT_WORK(&blkg->free_work, blkg_free_workfn);
150 schedule_work(&blkg->free_work);
153 static void __blkg_release(struct rcu_head *rcu)
155 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
157 WARN_ON(!bio_list_empty(&blkg->async_bios));
159 /* release the blkcg and parent blkg refs this blkg has been holding */
160 css_put(&blkg->blkcg->css);
162 blkg_put(blkg->parent);
167 * A group is RCU protected, but having an rcu lock does not mean that one
168 * can access all the fields of blkg and assume these are valid. For
169 * example, don't try to follow throtl_data and request queue links.
171 * Having a reference to blkg under an rcu allows accesses to only values
172 * local to groups like group stats and group rate limits.
174 static void blkg_release(struct percpu_ref *ref)
176 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
178 call_rcu(&blkg->rcu_head, __blkg_release);
181 static void blkg_async_bio_workfn(struct work_struct *work)
183 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
185 struct bio_list bios = BIO_EMPTY_LIST;
187 struct blk_plug plug;
188 bool need_plug = false;
190 /* as long as there are pending bios, @blkg can't go away */
191 spin_lock_bh(&blkg->async_bio_lock);
192 bio_list_merge(&bios, &blkg->async_bios);
193 bio_list_init(&blkg->async_bios);
194 spin_unlock_bh(&blkg->async_bio_lock);
196 /* start plug only when bio_list contains at least 2 bios */
197 if (bios.head && bios.head->bi_next) {
199 blk_start_plug(&plug);
201 while ((bio = bio_list_pop(&bios)))
204 blk_finish_plug(&plug);
208 * bio_blkcg_css - return the blkcg CSS associated with a bio
211 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
212 * associated. Callers are expected to either handle %NULL or know association
213 * has been done prior to calling this.
215 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
217 if (!bio || !bio->bi_blkg)
219 return &bio->bi_blkg->blkcg->css;
221 EXPORT_SYMBOL_GPL(bio_blkcg_css);
224 * blkcg_parent - get the parent of a blkcg
225 * @blkcg: blkcg of interest
227 * Return the parent blkcg of @blkcg. Can be called anytime.
229 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
231 return css_to_blkcg(blkcg->css.parent);
235 * blkg_alloc - allocate a blkg
236 * @blkcg: block cgroup the new blkg is associated with
237 * @disk: gendisk the new blkg is associated with
238 * @gfp_mask: allocation mask to use
240 * Allocate a new blkg assocating @blkcg and @q.
242 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
245 struct blkcg_gq *blkg;
248 /* alloc and init base part */
249 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
253 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
256 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
257 if (!blkg->iostat_cpu)
260 if (!blk_get_queue(disk->queue))
263 blkg->q = disk->queue;
264 INIT_LIST_HEAD(&blkg->q_node);
265 spin_lock_init(&blkg->async_bio_lock);
266 bio_list_init(&blkg->async_bios);
267 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
270 u64_stats_init(&blkg->iostat.sync);
271 for_each_possible_cpu(cpu) {
272 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
273 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
276 for (i = 0; i < BLKCG_MAX_POLS; i++) {
277 struct blkcg_policy *pol = blkcg_policy[i];
278 struct blkg_policy_data *pd;
280 if (!blkcg_policy_enabled(disk->queue, pol))
283 /* alloc per-policy data and attach it to blkg */
284 pd = pol->pd_alloc_fn(gfp_mask, disk->queue, blkcg);
301 * If @new_blkg is %NULL, this function tries to allocate a new one as
302 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
304 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
305 struct blkcg_gq *new_blkg)
307 struct blkcg_gq *blkg;
310 lockdep_assert_held(&disk->queue->queue_lock);
312 /* request_queue is dying, do not create/recreate a blkg */
313 if (blk_queue_dying(disk->queue)) {
318 /* blkg holds a reference to blkcg */
319 if (!css_tryget_online(&blkcg->css)) {
326 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
327 if (unlikely(!new_blkg)) {
335 if (blkcg_parent(blkcg)) {
336 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
337 if (WARN_ON_ONCE(!blkg->parent)) {
341 blkg_get(blkg->parent);
344 /* invoke per-policy init */
345 for (i = 0; i < BLKCG_MAX_POLS; i++) {
346 struct blkcg_policy *pol = blkcg_policy[i];
348 if (blkg->pd[i] && pol->pd_init_fn)
349 pol->pd_init_fn(blkg->pd[i]);
353 spin_lock(&blkcg->lock);
354 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
356 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
357 list_add(&blkg->q_node, &disk->queue->blkg_list);
359 for (i = 0; i < BLKCG_MAX_POLS; i++) {
360 struct blkcg_policy *pol = blkcg_policy[i];
362 if (blkg->pd[i] && pol->pd_online_fn)
363 pol->pd_online_fn(blkg->pd[i]);
367 spin_unlock(&blkcg->lock);
372 /* @blkg failed fully initialized, use the usual release path */
377 css_put(&blkcg->css);
384 * blkg_lookup_create - lookup blkg, try to create one if not there
385 * @blkcg: blkcg of interest
386 * @disk: gendisk of interest
388 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
389 * create one. blkg creation is performed recursively from blkcg_root such
390 * that all non-root blkg's have access to the parent blkg. This function
391 * should be called under RCU read lock and takes @disk->queue->queue_lock.
393 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
396 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
397 struct gendisk *disk)
399 struct request_queue *q = disk->queue;
400 struct blkcg_gq *blkg;
403 WARN_ON_ONCE(!rcu_read_lock_held());
405 blkg = blkg_lookup(blkcg, q);
409 spin_lock_irqsave(&q->queue_lock, flags);
410 blkg = blkg_lookup(blkcg, q);
412 if (blkcg != &blkcg_root &&
413 blkg != rcu_dereference(blkcg->blkg_hint))
414 rcu_assign_pointer(blkcg->blkg_hint, blkg);
419 * Create blkgs walking down from blkcg_root to @blkcg, so that all
420 * non-root blkgs have access to their parents. Returns the closest
421 * blkg to the intended blkg should blkg_create() fail.
424 struct blkcg *pos = blkcg;
425 struct blkcg *parent = blkcg_parent(blkcg);
426 struct blkcg_gq *ret_blkg = q->root_blkg;
429 blkg = blkg_lookup(parent, q);
431 /* remember closest blkg */
436 parent = blkcg_parent(parent);
439 blkg = blkg_create(pos, disk, NULL);
449 spin_unlock_irqrestore(&q->queue_lock, flags);
453 static void blkg_destroy(struct blkcg_gq *blkg)
455 struct blkcg *blkcg = blkg->blkcg;
458 lockdep_assert_held(&blkg->q->queue_lock);
459 lockdep_assert_held(&blkcg->lock);
461 /* Something wrong if we are trying to remove same group twice */
462 WARN_ON_ONCE(list_empty(&blkg->q_node));
463 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
465 for (i = 0; i < BLKCG_MAX_POLS; i++) {
466 struct blkcg_policy *pol = blkcg_policy[i];
468 if (blkg->pd[i] && pol->pd_offline_fn)
469 pol->pd_offline_fn(blkg->pd[i]);
472 blkg->online = false;
474 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
475 list_del_init(&blkg->q_node);
476 hlist_del_init_rcu(&blkg->blkcg_node);
479 * Both setting lookup hint to and clearing it from @blkg are done
480 * under queue_lock. If it's not pointing to @blkg now, it never
481 * will. Hint assignment itself can race safely.
483 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
484 rcu_assign_pointer(blkcg->blkg_hint, NULL);
487 * Put the reference taken at the time of creation so that when all
488 * queues are gone, group can be destroyed.
490 percpu_ref_kill(&blkg->refcnt);
493 static void blkg_destroy_all(struct gendisk *disk)
495 struct request_queue *q = disk->queue;
496 struct blkcg_gq *blkg, *n;
497 int count = BLKG_DESTROY_BATCH_SIZE;
500 spin_lock_irq(&q->queue_lock);
501 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
502 struct blkcg *blkcg = blkg->blkcg;
504 spin_lock(&blkcg->lock);
506 spin_unlock(&blkcg->lock);
509 * in order to avoid holding the spin lock for too long, release
510 * it when a batch of blkgs are destroyed.
513 count = BLKG_DESTROY_BATCH_SIZE;
514 spin_unlock_irq(&q->queue_lock);
521 spin_unlock_irq(&q->queue_lock);
524 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
525 struct cftype *cftype, u64 val)
527 struct blkcg *blkcg = css_to_blkcg(css);
528 struct blkcg_gq *blkg;
531 mutex_lock(&blkcg_pol_mutex);
532 spin_lock_irq(&blkcg->lock);
535 * Note that stat reset is racy - it doesn't synchronize against
536 * stat updates. This is a debug feature which shouldn't exist
537 * anyway. If you get hit by a race, retry.
539 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
540 for_each_possible_cpu(cpu) {
541 struct blkg_iostat_set *bis =
542 per_cpu_ptr(blkg->iostat_cpu, cpu);
543 memset(bis, 0, sizeof(*bis));
545 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
547 for (i = 0; i < BLKCG_MAX_POLS; i++) {
548 struct blkcg_policy *pol = blkcg_policy[i];
550 if (blkg->pd[i] && pol->pd_reset_stats_fn)
551 pol->pd_reset_stats_fn(blkg->pd[i]);
555 spin_unlock_irq(&blkcg->lock);
556 mutex_unlock(&blkcg_pol_mutex);
560 const char *blkg_dev_name(struct blkcg_gq *blkg)
562 if (!blkg->q->disk || !blkg->q->disk->bdi->dev)
564 return bdi_dev_name(blkg->q->disk->bdi);
568 * blkcg_print_blkgs - helper for printing per-blkg data
569 * @sf: seq_file to print to
570 * @blkcg: blkcg of interest
571 * @prfill: fill function to print out a blkg
572 * @pol: policy in question
573 * @data: data to be passed to @prfill
574 * @show_total: to print out sum of prfill return values or not
576 * This function invokes @prfill on each blkg of @blkcg if pd for the
577 * policy specified by @pol exists. @prfill is invoked with @sf, the
578 * policy data and @data and the matching queue lock held. If @show_total
579 * is %true, the sum of the return values from @prfill is printed with
580 * "Total" label at the end.
582 * This is to be used to construct print functions for
583 * cftype->read_seq_string method.
585 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
586 u64 (*prfill)(struct seq_file *,
587 struct blkg_policy_data *, int),
588 const struct blkcg_policy *pol, int data,
591 struct blkcg_gq *blkg;
595 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
596 spin_lock_irq(&blkg->q->queue_lock);
597 if (blkcg_policy_enabled(blkg->q, pol))
598 total += prfill(sf, blkg->pd[pol->plid], data);
599 spin_unlock_irq(&blkg->q->queue_lock);
604 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
606 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
609 * __blkg_prfill_u64 - prfill helper for a single u64 value
610 * @sf: seq_file to print to
611 * @pd: policy private data of interest
614 * Print @v to @sf for the device associated with @pd.
616 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
618 const char *dname = blkg_dev_name(pd->blkg);
623 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
626 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
629 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
630 * @inputp: input string pointer
632 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
633 * from @input and get and return the matching bdev. *@inputp is
634 * updated to point past the device node prefix. Returns an ERR_PTR()
637 * Use this function iff blkg_conf_prep() can't be used for some reason.
639 struct block_device *blkcg_conf_open_bdev(char **inputp)
641 char *input = *inputp;
642 unsigned int major, minor;
643 struct block_device *bdev;
646 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
647 return ERR_PTR(-EINVAL);
650 if (!isspace(*input))
651 return ERR_PTR(-EINVAL);
652 input = skip_spaces(input);
654 bdev = blkdev_get_no_open(MKDEV(major, minor));
656 return ERR_PTR(-ENODEV);
657 if (bdev_is_partition(bdev)) {
658 blkdev_put_no_open(bdev);
659 return ERR_PTR(-ENODEV);
667 * blkg_conf_prep - parse and prepare for per-blkg config update
668 * @blkcg: target block cgroup
669 * @pol: target policy
670 * @input: input string
671 * @ctx: blkg_conf_ctx to be filled
673 * Parse per-blkg config update from @input and initialize @ctx with the
674 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the
675 * part of @input following MAJ:MIN. This function returns with RCU read
676 * lock and queue lock held and must be paired with blkg_conf_finish().
678 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
679 char *input, struct blkg_conf_ctx *ctx)
680 __acquires(rcu) __acquires(&bdev->bd_queue->queue_lock)
682 struct block_device *bdev;
683 struct gendisk *disk;
684 struct request_queue *q;
685 struct blkcg_gq *blkg;
688 bdev = blkcg_conf_open_bdev(&input);
690 return PTR_ERR(bdev);
691 disk = bdev->bd_disk;
695 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
696 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
698 ret = blk_queue_enter(q, 0);
703 spin_lock_irq(&q->queue_lock);
705 if (!blkcg_policy_enabled(q, pol)) {
710 blkg = blkg_lookup(blkcg, q);
715 * Create blkgs walking down from blkcg_root to @blkcg, so that all
716 * non-root blkgs have access to their parents.
719 struct blkcg *pos = blkcg;
720 struct blkcg *parent;
721 struct blkcg_gq *new_blkg;
723 parent = blkcg_parent(blkcg);
724 while (parent && !blkg_lookup(parent, q)) {
726 parent = blkcg_parent(parent);
729 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
730 spin_unlock_irq(&q->queue_lock);
733 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
734 if (unlikely(!new_blkg)) {
736 goto fail_exit_queue;
739 if (radix_tree_preload(GFP_KERNEL)) {
742 goto fail_exit_queue;
746 spin_lock_irq(&q->queue_lock);
748 if (!blkcg_policy_enabled(q, pol)) {
754 blkg = blkg_lookup(pos, q);
758 blkg = blkg_create(pos, disk, new_blkg);
765 radix_tree_preload_end();
778 radix_tree_preload_end();
780 spin_unlock_irq(&q->queue_lock);
785 blkdev_put_no_open(bdev);
787 * If queue was bypassing, we should retry. Do so after a
788 * short msleep(). It isn't strictly necessary but queue
789 * can be bypassing for some time and it's always nice to
790 * avoid busy looping.
794 ret = restart_syscall();
798 EXPORT_SYMBOL_GPL(blkg_conf_prep);
801 * blkg_conf_finish - finish up per-blkg config update
802 * @ctx: blkg_conf_ctx initialized by blkg_conf_prep()
804 * Finish up after per-blkg config update. This function must be paired
805 * with blkg_conf_prep().
807 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
808 __releases(&ctx->bdev->bd_queue->queue_lock) __releases(rcu)
810 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
812 blkdev_put_no_open(ctx->bdev);
814 EXPORT_SYMBOL_GPL(blkg_conf_finish);
816 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
820 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
821 dst->bytes[i] = src->bytes[i];
822 dst->ios[i] = src->ios[i];
826 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
830 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
831 dst->bytes[i] += src->bytes[i];
832 dst->ios[i] += src->ios[i];
836 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
840 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
841 dst->bytes[i] -= src->bytes[i];
842 dst->ios[i] -= src->ios[i];
846 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
847 struct blkg_iostat *last)
849 struct blkg_iostat delta;
852 /* propagate percpu delta to global */
853 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
854 blkg_iostat_set(&delta, cur);
855 blkg_iostat_sub(&delta, last);
856 blkg_iostat_add(&blkg->iostat.cur, &delta);
857 blkg_iostat_add(last, &delta);
858 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
861 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
863 struct blkcg *blkcg = css_to_blkcg(css);
864 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
865 struct llist_node *lnode;
866 struct blkg_iostat_set *bisc, *next_bisc;
868 /* Root-level stats are sourced from system-wide IO stats */
869 if (!cgroup_parent(css->cgroup))
874 lnode = llist_del_all(lhead);
879 * Iterate only the iostat_cpu's queued in the lockless list.
881 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
882 struct blkcg_gq *blkg = bisc->blkg;
883 struct blkcg_gq *parent = blkg->parent;
884 struct blkg_iostat cur;
887 WRITE_ONCE(bisc->lqueued, false);
889 /* fetch the current per-cpu values */
891 seq = u64_stats_fetch_begin(&bisc->sync);
892 blkg_iostat_set(&cur, &bisc->cur);
893 } while (u64_stats_fetch_retry(&bisc->sync, seq));
895 blkcg_iostat_update(blkg, &cur, &bisc->last);
897 /* propagate global delta to parent (unless that's root) */
898 if (parent && parent->parent)
899 blkcg_iostat_update(parent, &blkg->iostat.cur,
901 percpu_ref_put(&blkg->refcnt);
909 * We source root cgroup stats from the system-wide stats to avoid
910 * tracking the same information twice and incurring overhead when no
911 * cgroups are defined. For that reason, cgroup_rstat_flush in
912 * blkcg_print_stat does not actually fill out the iostat in the root
915 * However, we would like to re-use the printing code between the root and
916 * non-root cgroups to the extent possible. For that reason, we simulate
917 * flushing the root cgroup's stats by explicitly filling in the iostat
918 * with disk level statistics.
920 static void blkcg_fill_root_iostats(void)
922 struct class_dev_iter iter;
925 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
926 while ((dev = class_dev_iter_next(&iter))) {
927 struct block_device *bdev = dev_to_bdev(dev);
928 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
929 struct blkg_iostat tmp;
933 memset(&tmp, 0, sizeof(tmp));
934 for_each_possible_cpu(cpu) {
935 struct disk_stats *cpu_dkstats;
937 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
938 tmp.ios[BLKG_IOSTAT_READ] +=
939 cpu_dkstats->ios[STAT_READ];
940 tmp.ios[BLKG_IOSTAT_WRITE] +=
941 cpu_dkstats->ios[STAT_WRITE];
942 tmp.ios[BLKG_IOSTAT_DISCARD] +=
943 cpu_dkstats->ios[STAT_DISCARD];
944 // convert sectors to bytes
945 tmp.bytes[BLKG_IOSTAT_READ] +=
946 cpu_dkstats->sectors[STAT_READ] << 9;
947 tmp.bytes[BLKG_IOSTAT_WRITE] +=
948 cpu_dkstats->sectors[STAT_WRITE] << 9;
949 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
950 cpu_dkstats->sectors[STAT_DISCARD] << 9;
953 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
954 blkg_iostat_set(&blkg->iostat.cur, &tmp);
955 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
959 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
961 struct blkg_iostat_set *bis = &blkg->iostat;
962 u64 rbytes, wbytes, rios, wios, dbytes, dios;
970 dname = blkg_dev_name(blkg);
974 seq_printf(s, "%s ", dname);
977 seq = u64_stats_fetch_begin(&bis->sync);
979 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
980 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
981 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
982 rios = bis->cur.ios[BLKG_IOSTAT_READ];
983 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
984 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
985 } while (u64_stats_fetch_retry(&bis->sync, seq));
987 if (rbytes || wbytes || rios || wios) {
988 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
989 rbytes, wbytes, rios, wios,
993 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
994 seq_printf(s, " use_delay=%d delay_nsec=%llu",
995 atomic_read(&blkg->use_delay),
996 atomic64_read(&blkg->delay_nsec));
999 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1000 struct blkcg_policy *pol = blkcg_policy[i];
1002 if (!blkg->pd[i] || !pol->pd_stat_fn)
1005 pol->pd_stat_fn(blkg->pd[i], s);
1011 static int blkcg_print_stat(struct seq_file *sf, void *v)
1013 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1014 struct blkcg_gq *blkg;
1016 if (!seq_css(sf)->parent)
1017 blkcg_fill_root_iostats();
1019 cgroup_rstat_flush(blkcg->css.cgroup);
1022 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1023 spin_lock_irq(&blkg->q->queue_lock);
1024 blkcg_print_one_stat(blkg, sf);
1025 spin_unlock_irq(&blkg->q->queue_lock);
1031 static struct cftype blkcg_files[] = {
1034 .seq_show = blkcg_print_stat,
1039 static struct cftype blkcg_legacy_files[] = {
1041 .name = "reset_stats",
1042 .write_u64 = blkcg_reset_stats,
1047 #ifdef CONFIG_CGROUP_WRITEBACK
1048 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1050 return &css_to_blkcg(css)->cgwb_list;
1055 * blkcg destruction is a three-stage process.
1057 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1058 * which offlines writeback. Here we tie the next stage of blkg destruction
1059 * to the completion of writeback associated with the blkcg. This lets us
1060 * avoid punting potentially large amounts of outstanding writeback to root
1061 * while maintaining any ongoing policies. The next stage is triggered when
1062 * the nr_cgwbs count goes to zero.
1064 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1065 * and handles the destruction of blkgs. Here the css reference held by
1066 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1067 * This work may occur in cgwb_release_workfn() on the cgwb_release
1068 * workqueue. Any submitted ios that fail to get the blkg ref will be
1069 * punted to the root_blkg.
1071 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1072 * This finally frees the blkcg.
1076 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1077 * @blkcg: blkcg of interest
1079 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1080 * is nested inside q lock, this function performs reverse double lock dancing.
1081 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1082 * blkcg_css_free to eventually be called.
1084 * This is the blkcg counterpart of ioc_release_fn().
1086 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1090 spin_lock_irq(&blkcg->lock);
1092 while (!hlist_empty(&blkcg->blkg_list)) {
1093 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1094 struct blkcg_gq, blkcg_node);
1095 struct request_queue *q = blkg->q;
1097 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1099 * Given that the system can accumulate a huge number
1100 * of blkgs in pathological cases, check to see if we
1101 * need to rescheduling to avoid softlockup.
1103 spin_unlock_irq(&blkcg->lock);
1105 spin_lock_irq(&blkcg->lock);
1110 spin_unlock(&q->queue_lock);
1113 spin_unlock_irq(&blkcg->lock);
1117 * blkcg_pin_online - pin online state
1118 * @blkcg_css: blkcg of interest
1120 * While pinned, a blkcg is kept online. This is primarily used to
1121 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1122 * while an associated cgwb is still active.
1124 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1126 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1130 * blkcg_unpin_online - unpin online state
1131 * @blkcg_css: blkcg of interest
1133 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1134 * that blkg doesn't go offline while an associated cgwb is still active.
1135 * When this count goes to zero, all active cgwbs have finished so the
1136 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1138 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1140 struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1143 if (!refcount_dec_and_test(&blkcg->online_pin))
1145 blkcg_destroy_blkgs(blkcg);
1146 blkcg = blkcg_parent(blkcg);
1151 * blkcg_css_offline - cgroup css_offline callback
1152 * @css: css of interest
1154 * This function is called when @css is about to go away. Here the cgwbs are
1155 * offlined first and only once writeback associated with the blkcg has
1156 * finished do we start step 2 (see above).
1158 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1160 /* this prevents anyone from attaching or migrating to this blkcg */
1161 wb_blkcg_offline(css);
1163 /* put the base online pin allowing step 2 to be triggered */
1164 blkcg_unpin_online(css);
1167 static void blkcg_css_free(struct cgroup_subsys_state *css)
1169 struct blkcg *blkcg = css_to_blkcg(css);
1172 mutex_lock(&blkcg_pol_mutex);
1174 list_del(&blkcg->all_blkcgs_node);
1176 for (i = 0; i < BLKCG_MAX_POLS; i++)
1178 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1180 mutex_unlock(&blkcg_pol_mutex);
1182 free_percpu(blkcg->lhead);
1186 static struct cgroup_subsys_state *
1187 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1189 struct blkcg *blkcg;
1192 mutex_lock(&blkcg_pol_mutex);
1195 blkcg = &blkcg_root;
1197 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1202 if (init_blkcg_llists(blkcg))
1205 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1206 struct blkcg_policy *pol = blkcg_policy[i];
1207 struct blkcg_policy_data *cpd;
1210 * If the policy hasn't been attached yet, wait for it
1211 * to be attached before doing anything else. Otherwise,
1212 * check if the policy requires any specific per-cgroup
1213 * data: if it does, allocate and initialize it.
1215 if (!pol || !pol->cpd_alloc_fn)
1218 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1222 blkcg->cpd[i] = cpd;
1225 if (pol->cpd_init_fn)
1226 pol->cpd_init_fn(cpd);
1229 spin_lock_init(&blkcg->lock);
1230 refcount_set(&blkcg->online_pin, 1);
1231 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1232 INIT_HLIST_HEAD(&blkcg->blkg_list);
1233 #ifdef CONFIG_CGROUP_WRITEBACK
1234 INIT_LIST_HEAD(&blkcg->cgwb_list);
1236 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1238 mutex_unlock(&blkcg_pol_mutex);
1242 for (i--; i >= 0; i--)
1244 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1245 free_percpu(blkcg->lhead);
1247 if (blkcg != &blkcg_root)
1250 mutex_unlock(&blkcg_pol_mutex);
1251 return ERR_PTR(-ENOMEM);
1254 static int blkcg_css_online(struct cgroup_subsys_state *css)
1256 struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1259 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1260 * don't go offline while cgwbs are still active on them. Pin the
1261 * parent so that offline always happens towards the root.
1264 blkcg_pin_online(&parent->css);
1268 int blkcg_init_disk(struct gendisk *disk)
1270 struct request_queue *q = disk->queue;
1271 struct blkcg_gq *new_blkg, *blkg;
1275 INIT_LIST_HEAD(&q->blkg_list);
1277 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1281 preloaded = !radix_tree_preload(GFP_KERNEL);
1283 /* Make sure the root blkg exists. */
1284 /* spin_lock_irq can serve as RCU read-side critical section. */
1285 spin_lock_irq(&q->queue_lock);
1286 blkg = blkg_create(&blkcg_root, disk, new_blkg);
1289 q->root_blkg = blkg;
1290 spin_unlock_irq(&q->queue_lock);
1293 radix_tree_preload_end();
1295 ret = blk_ioprio_init(disk);
1297 goto err_destroy_all;
1299 ret = blk_throtl_init(disk);
1301 goto err_ioprio_exit;
1303 ret = blk_iolatency_init(disk);
1305 goto err_throtl_exit;
1310 blk_throtl_exit(disk);
1312 blk_ioprio_exit(disk);
1314 blkg_destroy_all(disk);
1317 spin_unlock_irq(&q->queue_lock);
1319 radix_tree_preload_end();
1320 return PTR_ERR(blkg);
1323 void blkcg_exit_disk(struct gendisk *disk)
1325 blkg_destroy_all(disk);
1326 rq_qos_exit(disk->queue);
1327 blk_throtl_exit(disk);
1330 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1334 mutex_lock(&blkcg_pol_mutex);
1336 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1337 struct blkcg_policy *pol = blkcg_policy[i];
1338 struct blkcg *blkcg;
1340 if (!pol || !pol->cpd_bind_fn)
1343 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1344 if (blkcg->cpd[pol->plid])
1345 pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1347 mutex_unlock(&blkcg_pol_mutex);
1350 static void blkcg_exit(struct task_struct *tsk)
1352 if (tsk->throttle_queue)
1353 blk_put_queue(tsk->throttle_queue);
1354 tsk->throttle_queue = NULL;
1357 struct cgroup_subsys io_cgrp_subsys = {
1358 .css_alloc = blkcg_css_alloc,
1359 .css_online = blkcg_css_online,
1360 .css_offline = blkcg_css_offline,
1361 .css_free = blkcg_css_free,
1362 .css_rstat_flush = blkcg_rstat_flush,
1364 .dfl_cftypes = blkcg_files,
1365 .legacy_cftypes = blkcg_legacy_files,
1366 .legacy_name = "blkio",
1370 * This ensures that, if available, memcg is automatically enabled
1371 * together on the default hierarchy so that the owner cgroup can
1372 * be retrieved from writeback pages.
1374 .depends_on = 1 << memory_cgrp_id,
1377 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1380 * blkcg_activate_policy - activate a blkcg policy on a request_queue
1381 * @q: request_queue of interest
1382 * @pol: blkcg policy to activate
1384 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through
1385 * bypass mode to populate its blkgs with policy_data for @pol.
1387 * Activation happens with @q bypassed, so nobody would be accessing blkgs
1388 * from IO path. Update of each blkg is protected by both queue and blkcg
1389 * locks so that holding either lock and testing blkcg_policy_enabled() is
1390 * always enough for dereferencing policy data.
1392 * The caller is responsible for synchronizing [de]activations and policy
1393 * [un]registerations. Returns 0 on success, -errno on failure.
1395 int blkcg_activate_policy(struct request_queue *q,
1396 const struct blkcg_policy *pol)
1398 struct blkg_policy_data *pd_prealloc = NULL;
1399 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1402 if (blkcg_policy_enabled(q, pol))
1406 blk_mq_freeze_queue(q);
1408 spin_lock_irq(&q->queue_lock);
1410 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1411 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1412 struct blkg_policy_data *pd;
1414 if (blkg->pd[pol->plid])
1417 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1418 if (blkg == pinned_blkg) {
1422 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1428 * GFP_NOWAIT failed. Free the existing one and
1429 * prealloc for @blkg w/ GFP_KERNEL.
1432 blkg_put(pinned_blkg);
1436 spin_unlock_irq(&q->queue_lock);
1439 pol->pd_free_fn(pd_prealloc);
1440 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1448 blkg->pd[pol->plid] = pd;
1450 pd->plid = pol->plid;
1453 /* all allocated, init in the same order */
1454 if (pol->pd_init_fn)
1455 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1456 pol->pd_init_fn(blkg->pd[pol->plid]);
1458 __set_bit(pol->plid, q->blkcg_pols);
1461 spin_unlock_irq(&q->queue_lock);
1464 blk_mq_unfreeze_queue(q);
1466 blkg_put(pinned_blkg);
1468 pol->pd_free_fn(pd_prealloc);
1472 /* alloc failed, nothing's initialized yet, free everything */
1473 spin_lock_irq(&q->queue_lock);
1474 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1475 struct blkcg *blkcg = blkg->blkcg;
1477 spin_lock(&blkcg->lock);
1478 if (blkg->pd[pol->plid]) {
1479 pol->pd_free_fn(blkg->pd[pol->plid]);
1480 blkg->pd[pol->plid] = NULL;
1482 spin_unlock(&blkcg->lock);
1484 spin_unlock_irq(&q->queue_lock);
1488 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1491 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1492 * @q: request_queue of interest
1493 * @pol: blkcg policy to deactivate
1495 * Deactivate @pol on @q. Follows the same synchronization rules as
1496 * blkcg_activate_policy().
1498 void blkcg_deactivate_policy(struct request_queue *q,
1499 const struct blkcg_policy *pol)
1501 struct blkcg_gq *blkg;
1503 if (!blkcg_policy_enabled(q, pol))
1507 blk_mq_freeze_queue(q);
1509 spin_lock_irq(&q->queue_lock);
1511 __clear_bit(pol->plid, q->blkcg_pols);
1513 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1514 struct blkcg *blkcg = blkg->blkcg;
1516 spin_lock(&blkcg->lock);
1517 if (blkg->pd[pol->plid]) {
1518 if (pol->pd_offline_fn)
1519 pol->pd_offline_fn(blkg->pd[pol->plid]);
1520 pol->pd_free_fn(blkg->pd[pol->plid]);
1521 blkg->pd[pol->plid] = NULL;
1523 spin_unlock(&blkcg->lock);
1526 spin_unlock_irq(&q->queue_lock);
1529 blk_mq_unfreeze_queue(q);
1531 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1533 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1535 struct blkcg *blkcg;
1537 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1538 if (blkcg->cpd[pol->plid]) {
1539 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1540 blkcg->cpd[pol->plid] = NULL;
1546 * blkcg_policy_register - register a blkcg policy
1547 * @pol: blkcg policy to register
1549 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1550 * successful registration. Returns 0 on success and -errno on failure.
1552 int blkcg_policy_register(struct blkcg_policy *pol)
1554 struct blkcg *blkcg;
1557 mutex_lock(&blkcg_pol_register_mutex);
1558 mutex_lock(&blkcg_pol_mutex);
1560 /* find an empty slot */
1562 for (i = 0; i < BLKCG_MAX_POLS; i++)
1563 if (!blkcg_policy[i])
1565 if (i >= BLKCG_MAX_POLS) {
1566 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1570 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1571 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1572 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1577 blkcg_policy[pol->plid] = pol;
1579 /* allocate and install cpd's */
1580 if (pol->cpd_alloc_fn) {
1581 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1582 struct blkcg_policy_data *cpd;
1584 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1588 blkcg->cpd[pol->plid] = cpd;
1590 cpd->plid = pol->plid;
1591 if (pol->cpd_init_fn)
1592 pol->cpd_init_fn(cpd);
1596 mutex_unlock(&blkcg_pol_mutex);
1598 /* everything is in place, add intf files for the new policy */
1599 if (pol->dfl_cftypes)
1600 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1602 if (pol->legacy_cftypes)
1603 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1604 pol->legacy_cftypes));
1605 mutex_unlock(&blkcg_pol_register_mutex);
1609 if (pol->cpd_free_fn)
1610 blkcg_free_all_cpd(pol);
1612 blkcg_policy[pol->plid] = NULL;
1614 mutex_unlock(&blkcg_pol_mutex);
1615 mutex_unlock(&blkcg_pol_register_mutex);
1618 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1621 * blkcg_policy_unregister - unregister a blkcg policy
1622 * @pol: blkcg policy to unregister
1624 * Undo blkcg_policy_register(@pol). Might sleep.
1626 void blkcg_policy_unregister(struct blkcg_policy *pol)
1628 mutex_lock(&blkcg_pol_register_mutex);
1630 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1633 /* kill the intf files first */
1634 if (pol->dfl_cftypes)
1635 cgroup_rm_cftypes(pol->dfl_cftypes);
1636 if (pol->legacy_cftypes)
1637 cgroup_rm_cftypes(pol->legacy_cftypes);
1639 /* remove cpds and unregister */
1640 mutex_lock(&blkcg_pol_mutex);
1642 if (pol->cpd_free_fn)
1643 blkcg_free_all_cpd(pol);
1645 blkcg_policy[pol->plid] = NULL;
1647 mutex_unlock(&blkcg_pol_mutex);
1649 mutex_unlock(&blkcg_pol_register_mutex);
1651 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1653 bool __blkcg_punt_bio_submit(struct bio *bio)
1655 struct blkcg_gq *blkg = bio->bi_blkg;
1657 /* consume the flag first */
1658 bio->bi_opf &= ~REQ_CGROUP_PUNT;
1660 /* never bounce for the root cgroup */
1664 spin_lock_bh(&blkg->async_bio_lock);
1665 bio_list_add(&blkg->async_bios, bio);
1666 spin_unlock_bh(&blkg->async_bio_lock);
1668 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1673 * Scale the accumulated delay based on how long it has been since we updated
1674 * the delay. We only call this when we are adding delay, in case it's been a
1675 * while since we added delay, and when we are checking to see if we need to
1676 * delay a task, to account for any delays that may have occurred.
1678 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1680 u64 old = atomic64_read(&blkg->delay_start);
1682 /* negative use_delay means no scaling, see blkcg_set_delay() */
1683 if (atomic_read(&blkg->use_delay) < 0)
1687 * We only want to scale down every second. The idea here is that we
1688 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1689 * time window. We only want to throttle tasks for recent delay that
1690 * has occurred, in 1 second time windows since that's the maximum
1691 * things can be throttled. We save the current delay window in
1692 * blkg->last_delay so we know what amount is still left to be charged
1693 * to the blkg from this point onward. blkg->last_use keeps track of
1694 * the use_delay counter. The idea is if we're unthrottling the blkg we
1695 * are ok with whatever is happening now, and we can take away more of
1696 * the accumulated delay as we've already throttled enough that
1697 * everybody is happy with their IO latencies.
1699 if (time_before64(old + NSEC_PER_SEC, now) &&
1700 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1701 u64 cur = atomic64_read(&blkg->delay_nsec);
1702 u64 sub = min_t(u64, blkg->last_delay, now - old);
1703 int cur_use = atomic_read(&blkg->use_delay);
1706 * We've been unthrottled, subtract a larger chunk of our
1707 * accumulated delay.
1709 if (cur_use < blkg->last_use)
1710 sub = max_t(u64, sub, blkg->last_delay >> 1);
1713 * This shouldn't happen, but handle it anyway. Our delay_nsec
1714 * should only ever be growing except here where we subtract out
1715 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1716 * rather not end up with negative numbers.
1718 if (unlikely(cur < sub)) {
1719 atomic64_set(&blkg->delay_nsec, 0);
1720 blkg->last_delay = 0;
1722 atomic64_sub(sub, &blkg->delay_nsec);
1723 blkg->last_delay = cur - sub;
1725 blkg->last_use = cur_use;
1730 * This is called when we want to actually walk up the hierarchy and check to
1731 * see if we need to throttle, and then actually throttle if there is some
1732 * accumulated delay. This should only be called upon return to user space so
1733 * we're not holding some lock that would induce a priority inversion.
1735 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1737 unsigned long pflags;
1739 u64 now = ktime_to_ns(ktime_get());
1744 while (blkg->parent) {
1745 int use_delay = atomic_read(&blkg->use_delay);
1750 blkcg_scale_delay(blkg, now);
1751 this_delay = atomic64_read(&blkg->delay_nsec);
1752 if (this_delay > delay_nsec) {
1753 delay_nsec = this_delay;
1754 clamp = use_delay > 0;
1757 blkg = blkg->parent;
1764 * Let's not sleep for all eternity if we've amassed a huge delay.
1765 * Swapping or metadata IO can accumulate 10's of seconds worth of
1766 * delay, and we want userspace to be able to do _something_ so cap the
1767 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1768 * tasks will be delayed for 0.25 second for every syscall. If
1769 * blkcg_set_delay() was used as indicated by negative use_delay, the
1770 * caller is responsible for regulating the range.
1773 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1776 psi_memstall_enter(&pflags);
1778 exp = ktime_add_ns(now, delay_nsec);
1779 tok = io_schedule_prepare();
1781 __set_current_state(TASK_KILLABLE);
1782 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1784 } while (!fatal_signal_pending(current));
1785 io_schedule_finish(tok);
1788 psi_memstall_leave(&pflags);
1792 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1794 * This is only called if we've been marked with set_notify_resume(). Obviously
1795 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1796 * check to see if current->throttle_queue is set and if not this doesn't do
1797 * anything. This should only ever be called by the resume code, it's not meant
1798 * to be called by people willy-nilly as it will actually do the work to
1799 * throttle the task if it is setup for throttling.
1801 void blkcg_maybe_throttle_current(void)
1803 struct request_queue *q = current->throttle_queue;
1804 struct blkcg *blkcg;
1805 struct blkcg_gq *blkg;
1806 bool use_memdelay = current->use_memdelay;
1811 current->throttle_queue = NULL;
1812 current->use_memdelay = false;
1815 blkcg = css_to_blkcg(blkcg_css());
1818 blkg = blkg_lookup(blkcg, q);
1821 if (!blkg_tryget(blkg))
1825 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1835 * blkcg_schedule_throttle - this task needs to check for throttling
1836 * @disk: disk to throttle
1837 * @use_memdelay: do we charge this to memory delay for PSI
1839 * This is called by the IO controller when we know there's delay accumulated
1840 * for the blkg for this task. We do not pass the blkg because there are places
1841 * we call this that may not have that information, the swapping code for
1842 * instance will only have a block_device at that point. This set's the
1843 * notify_resume for the task to check and see if it requires throttling before
1844 * returning to user space.
1846 * We will only schedule once per syscall. You can call this over and over
1847 * again and it will only do the check once upon return to user space, and only
1848 * throttle once. If the task needs to be throttled again it'll need to be
1849 * re-set at the next time we see the task.
1851 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1853 struct request_queue *q = disk->queue;
1855 if (unlikely(current->flags & PF_KTHREAD))
1858 if (current->throttle_queue != q) {
1859 if (!blk_get_queue(q))
1862 if (current->throttle_queue)
1863 blk_put_queue(current->throttle_queue);
1864 current->throttle_queue = q;
1868 current->use_memdelay = use_memdelay;
1869 set_notify_resume(current);
1873 * blkcg_add_delay - add delay to this blkg
1874 * @blkg: blkg of interest
1875 * @now: the current time in nanoseconds
1876 * @delta: how many nanoseconds of delay to add
1878 * Charge @delta to the blkg's current delay accumulation. This is used to
1879 * throttle tasks if an IO controller thinks we need more throttling.
1881 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1883 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1885 blkcg_scale_delay(blkg, now);
1886 atomic64_add(delta, &blkg->delay_nsec);
1890 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1894 * As the failure mode here is to walk up the blkg tree, this ensure that the
1895 * blkg->parent pointers are always valid. This returns the blkg that it ended
1896 * up taking a reference on or %NULL if no reference was taken.
1898 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1899 struct cgroup_subsys_state *css)
1901 struct blkcg_gq *blkg, *ret_blkg = NULL;
1904 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
1906 if (blkg_tryget(blkg)) {
1910 blkg = blkg->parent;
1918 * bio_associate_blkg_from_css - associate a bio with a specified css
1922 * Associate @bio with the blkg found by combining the css's blkg and the
1923 * request_queue of the @bio. An association failure is handled by walking up
1924 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
1925 * and q->root_blkg. This situation only happens when a cgroup is dying and
1926 * then the remaining bios will spill to the closest alive blkg.
1928 * A reference will be taken on the blkg and will be released when @bio is
1931 void bio_associate_blkg_from_css(struct bio *bio,
1932 struct cgroup_subsys_state *css)
1935 blkg_put(bio->bi_blkg);
1937 if (css && css->parent) {
1938 bio->bi_blkg = blkg_tryget_closest(bio, css);
1940 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
1941 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
1944 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1947 * bio_associate_blkg - associate a bio with a blkg
1950 * Associate @bio with the blkg found from the bio's css and request_queue.
1951 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
1952 * already associated, the css is reused and association redone as the
1953 * request_queue may have changed.
1955 void bio_associate_blkg(struct bio *bio)
1957 struct cgroup_subsys_state *css;
1962 css = bio_blkcg_css(bio);
1966 bio_associate_blkg_from_css(bio, css);
1970 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1973 * bio_clone_blkg_association - clone blkg association from src to dst bio
1974 * @dst: destination bio
1977 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1980 bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
1982 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1984 static int blk_cgroup_io_type(struct bio *bio)
1986 if (op_is_discard(bio->bi_opf))
1987 return BLKG_IOSTAT_DISCARD;
1988 if (op_is_write(bio->bi_opf))
1989 return BLKG_IOSTAT_WRITE;
1990 return BLKG_IOSTAT_READ;
1993 void blk_cgroup_bio_start(struct bio *bio)
1995 struct blkcg *blkcg = bio->bi_blkg->blkcg;
1996 int rwd = blk_cgroup_io_type(bio), cpu;
1997 struct blkg_iostat_set *bis;
1998 unsigned long flags;
2001 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2002 flags = u64_stats_update_begin_irqsave(&bis->sync);
2005 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2006 * bio and we would have already accounted for the size of the bio.
2008 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2009 bio_set_flag(bio, BIO_CGROUP_ACCT);
2010 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2012 bis->cur.ios[rwd]++;
2015 * If the iostat_cpu isn't in a lockless list, put it into the
2016 * list to indicate that a stat update is pending.
2018 if (!READ_ONCE(bis->lqueued)) {
2019 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2021 llist_add(&bis->lnode, lhead);
2022 WRITE_ONCE(bis->lqueued, true);
2023 percpu_ref_get(&bis->blkg->refcnt);
2026 u64_stats_update_end_irqrestore(&bis->sync, flags);
2027 if (cgroup_subsys_on_dfl(io_cgrp_subsys))
2028 cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2032 bool blk_cgroup_congested(void)
2034 struct cgroup_subsys_state *css;
2038 for (css = blkcg_css(); css; css = css->parent) {
2039 if (atomic_read(&css->cgroup->congestion_count)) {
2048 static int __init blkcg_init(void)
2050 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
2051 WQ_MEM_RECLAIM | WQ_FREEZABLE |
2052 WQ_UNBOUND | WQ_SYSFS, 0);
2053 if (!blkcg_punt_bio_wq)
2057 subsys_initcall(blkcg_init);
2059 module_param(blkcg_debug_stats, bool, 0644);
2060 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");