1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
6 #include <linux/swap.h>
8 #include <linux/blkdev.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
24 #include <trace/events/block.h>
26 #include "blk-rq-qos.h"
28 static struct biovec_slab {
31 struct kmem_cache *slab;
32 } bvec_slabs[] __read_mostly = {
33 { .nr_vecs = 16, .name = "biovec-16" },
34 { .nr_vecs = 64, .name = "biovec-64" },
35 { .nr_vecs = 128, .name = "biovec-128" },
36 { .nr_vecs = BIO_MAX_PAGES, .name = "biovec-max" },
39 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
42 /* smaller bios use inline vecs */
44 return &bvec_slabs[0];
46 return &bvec_slabs[1];
48 return &bvec_slabs[2];
49 case 129 ... BIO_MAX_PAGES:
50 return &bvec_slabs[3];
58 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
59 * IO code that does not need private memory pools.
61 struct bio_set fs_bio_set;
62 EXPORT_SYMBOL(fs_bio_set);
65 * Our slab pool management
68 struct kmem_cache *slab;
69 unsigned int slab_ref;
70 unsigned int slab_size;
73 static DEFINE_MUTEX(bio_slab_lock);
74 static DEFINE_XARRAY(bio_slabs);
76 static struct bio_slab *create_bio_slab(unsigned int size)
78 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
83 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
84 bslab->slab = kmem_cache_create(bslab->name, size,
85 ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
90 bslab->slab_size = size;
92 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
95 kmem_cache_destroy(bslab->slab);
102 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
104 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
107 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
109 unsigned int size = bs_bio_slab_size(bs);
110 struct bio_slab *bslab;
112 mutex_lock(&bio_slab_lock);
113 bslab = xa_load(&bio_slabs, size);
117 bslab = create_bio_slab(size);
118 mutex_unlock(&bio_slab_lock);
125 static void bio_put_slab(struct bio_set *bs)
127 struct bio_slab *bslab = NULL;
128 unsigned int slab_size = bs_bio_slab_size(bs);
130 mutex_lock(&bio_slab_lock);
132 bslab = xa_load(&bio_slabs, slab_size);
133 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
136 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
138 WARN_ON(!bslab->slab_ref);
140 if (--bslab->slab_ref)
143 xa_erase(&bio_slabs, slab_size);
145 kmem_cache_destroy(bslab->slab);
149 mutex_unlock(&bio_slab_lock);
152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
154 BIO_BUG_ON(nr_vecs > BIO_MAX_PAGES);
156 if (nr_vecs == BIO_MAX_PAGES)
157 mempool_free(bv, pool);
158 else if (nr_vecs > BIO_INLINE_VECS)
159 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
163 * Make the first allocation restricted and don't dump info on allocation
164 * failures, since we'll fall back to the mempool in case of failure.
166 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
168 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
169 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
172 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
175 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
177 if (WARN_ON_ONCE(!bvs))
181 * Upgrade the nr_vecs request to take full advantage of the allocation.
182 * We also rely on this in the bvec_free path.
184 *nr_vecs = bvs->nr_vecs;
187 * Try a slab allocation first for all smaller allocations. If that
188 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
189 * The mempool is sized to handle up to BIO_MAX_PAGES entries.
191 if (*nr_vecs < BIO_MAX_PAGES) {
194 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
195 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
197 *nr_vecs = BIO_MAX_PAGES;
200 return mempool_alloc(pool, gfp_mask);
203 void bio_uninit(struct bio *bio)
205 #ifdef CONFIG_BLK_CGROUP
207 blkg_put(bio->bi_blkg);
211 if (bio_integrity(bio))
212 bio_integrity_free(bio);
214 bio_crypt_free_ctx(bio);
216 EXPORT_SYMBOL(bio_uninit);
218 static void bio_free(struct bio *bio)
220 struct bio_set *bs = bio->bi_pool;
226 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
229 * If we have front padding, adjust the bio pointer before freeing
234 mempool_free(p, &bs->bio_pool);
236 /* Bio was allocated by bio_kmalloc() */
242 * Users of this function have their own bio allocation. Subsequently,
243 * they must remember to pair any call to bio_init() with bio_uninit()
244 * when IO has completed, or when the bio is released.
246 void bio_init(struct bio *bio, struct bio_vec *table,
247 unsigned short max_vecs)
249 memset(bio, 0, sizeof(*bio));
250 atomic_set(&bio->__bi_remaining, 1);
251 atomic_set(&bio->__bi_cnt, 1);
253 bio->bi_io_vec = table;
254 bio->bi_max_vecs = max_vecs;
256 EXPORT_SYMBOL(bio_init);
259 * bio_reset - reinitialize a bio
263 * After calling bio_reset(), @bio will be in the same state as a freshly
264 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
265 * preserved are the ones that are initialized by bio_alloc_bioset(). See
266 * comment in struct bio.
268 void bio_reset(struct bio *bio)
271 memset(bio, 0, BIO_RESET_BYTES);
272 atomic_set(&bio->__bi_remaining, 1);
274 EXPORT_SYMBOL(bio_reset);
276 static struct bio *__bio_chain_endio(struct bio *bio)
278 struct bio *parent = bio->bi_private;
280 if (!parent->bi_status)
281 parent->bi_status = bio->bi_status;
286 static void bio_chain_endio(struct bio *bio)
288 bio_endio(__bio_chain_endio(bio));
292 * bio_chain - chain bio completions
293 * @bio: the target bio
294 * @parent: the parent bio of @bio
296 * The caller won't have a bi_end_io called when @bio completes - instead,
297 * @parent's bi_end_io won't be called until both @parent and @bio have
298 * completed; the chained bio will also be freed when it completes.
300 * The caller must not set bi_private or bi_end_io in @bio.
302 void bio_chain(struct bio *bio, struct bio *parent)
304 BUG_ON(bio->bi_private || bio->bi_end_io);
306 bio->bi_private = parent;
307 bio->bi_end_io = bio_chain_endio;
308 bio_inc_remaining(parent);
310 EXPORT_SYMBOL(bio_chain);
312 static void bio_alloc_rescue(struct work_struct *work)
314 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
318 spin_lock(&bs->rescue_lock);
319 bio = bio_list_pop(&bs->rescue_list);
320 spin_unlock(&bs->rescue_lock);
325 submit_bio_noacct(bio);
329 static void punt_bios_to_rescuer(struct bio_set *bs)
331 struct bio_list punt, nopunt;
334 if (WARN_ON_ONCE(!bs->rescue_workqueue))
337 * In order to guarantee forward progress we must punt only bios that
338 * were allocated from this bio_set; otherwise, if there was a bio on
339 * there for a stacking driver higher up in the stack, processing it
340 * could require allocating bios from this bio_set, and doing that from
341 * our own rescuer would be bad.
343 * Since bio lists are singly linked, pop them all instead of trying to
344 * remove from the middle of the list:
347 bio_list_init(&punt);
348 bio_list_init(&nopunt);
350 while ((bio = bio_list_pop(¤t->bio_list[0])))
351 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
352 current->bio_list[0] = nopunt;
354 bio_list_init(&nopunt);
355 while ((bio = bio_list_pop(¤t->bio_list[1])))
356 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
357 current->bio_list[1] = nopunt;
359 spin_lock(&bs->rescue_lock);
360 bio_list_merge(&bs->rescue_list, &punt);
361 spin_unlock(&bs->rescue_lock);
363 queue_work(bs->rescue_workqueue, &bs->rescue_work);
367 * bio_alloc_bioset - allocate a bio for I/O
368 * @gfp_mask: the GFP_* mask given to the slab allocator
369 * @nr_iovecs: number of iovecs to pre-allocate
370 * @bs: the bio_set to allocate from.
372 * Allocate a bio from the mempools in @bs.
374 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
375 * allocate a bio. This is due to the mempool guarantees. To make this work,
376 * callers must never allocate more than 1 bio at a time from the general pool.
377 * Callers that need to allocate more than 1 bio must always submit the
378 * previously allocated bio for IO before attempting to allocate a new one.
379 * Failure to do so can cause deadlocks under memory pressure.
381 * Note that when running under submit_bio_noacct() (i.e. any block driver),
382 * bios are not submitted until after you return - see the code in
383 * submit_bio_noacct() that converts recursion into iteration, to prevent
386 * This would normally mean allocating multiple bios under submit_bio_noacct()
387 * would be susceptible to deadlocks, but we have
388 * deadlock avoidance code that resubmits any blocked bios from a rescuer
391 * However, we do not guarantee forward progress for allocations from other
392 * mempools. Doing multiple allocations from the same mempool under
393 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
394 * for per bio allocations.
396 * Returns: Pointer to new bio on success, NULL on failure.
398 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
401 gfp_t saved_gfp = gfp_mask;
405 /* should not use nobvec bioset for nr_iovecs > 0 */
406 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
410 * submit_bio_noacct() converts recursion to iteration; this means if
411 * we're running beneath it, any bios we allocate and submit will not be
412 * submitted (and thus freed) until after we return.
414 * This exposes us to a potential deadlock if we allocate multiple bios
415 * from the same bio_set() while running underneath submit_bio_noacct().
416 * If we were to allocate multiple bios (say a stacking block driver
417 * that was splitting bios), we would deadlock if we exhausted the
420 * We solve this, and guarantee forward progress, with a rescuer
421 * workqueue per bio_set. If we go to allocate and there are bios on
422 * current->bio_list, we first try the allocation without
423 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
424 * blocking to the rescuer workqueue before we retry with the original
427 if (current->bio_list &&
428 (!bio_list_empty(¤t->bio_list[0]) ||
429 !bio_list_empty(¤t->bio_list[1])) &&
430 bs->rescue_workqueue)
431 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
433 p = mempool_alloc(&bs->bio_pool, gfp_mask);
434 if (!p && gfp_mask != saved_gfp) {
435 punt_bios_to_rescuer(bs);
436 gfp_mask = saved_gfp;
437 p = mempool_alloc(&bs->bio_pool, gfp_mask);
442 bio = p + bs->front_pad;
443 if (nr_iovecs > BIO_INLINE_VECS) {
444 struct bio_vec *bvl = NULL;
446 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
447 if (!bvl && gfp_mask != saved_gfp) {
448 punt_bios_to_rescuer(bs);
449 gfp_mask = saved_gfp;
450 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
455 bio_init(bio, bvl, nr_iovecs);
456 } else if (nr_iovecs) {
457 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
459 bio_init(bio, NULL, 0);
466 mempool_free(p, &bs->bio_pool);
469 EXPORT_SYMBOL(bio_alloc_bioset);
472 * bio_kmalloc - kmalloc a bio for I/O
473 * @gfp_mask: the GFP_* mask given to the slab allocator
474 * @nr_iovecs: number of iovecs to pre-allocate
476 * Use kmalloc to allocate and initialize a bio.
478 * Returns: Pointer to new bio on success, NULL on failure.
480 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
484 if (nr_iovecs > UIO_MAXIOV)
487 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
490 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
494 EXPORT_SYMBOL(bio_kmalloc);
496 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
500 struct bvec_iter iter;
502 __bio_for_each_segment(bv, bio, iter, start) {
503 char *data = bvec_kmap_irq(&bv, &flags);
504 memset(data, 0, bv.bv_len);
505 flush_dcache_page(bv.bv_page);
506 bvec_kunmap_irq(data, &flags);
509 EXPORT_SYMBOL(zero_fill_bio_iter);
512 * bio_truncate - truncate the bio to small size of @new_size
513 * @bio: the bio to be truncated
514 * @new_size: new size for truncating the bio
517 * Truncate the bio to new size of @new_size. If bio_op(bio) is
518 * REQ_OP_READ, zero the truncated part. This function should only
519 * be used for handling corner cases, such as bio eod.
521 void bio_truncate(struct bio *bio, unsigned new_size)
524 struct bvec_iter iter;
525 unsigned int done = 0;
526 bool truncated = false;
528 if (new_size >= bio->bi_iter.bi_size)
531 if (bio_op(bio) != REQ_OP_READ)
534 bio_for_each_segment(bv, bio, iter) {
535 if (done + bv.bv_len > new_size) {
539 offset = new_size - done;
542 zero_user(bv.bv_page, offset, bv.bv_len - offset);
550 * Don't touch bvec table here and make it really immutable, since
551 * fs bio user has to retrieve all pages via bio_for_each_segment_all
552 * in its .end_bio() callback.
554 * It is enough to truncate bio by updating .bi_size since we can make
555 * correct bvec with the updated .bi_size for drivers.
557 bio->bi_iter.bi_size = new_size;
561 * guard_bio_eod - truncate a BIO to fit the block device
562 * @bio: bio to truncate
564 * This allows us to do IO even on the odd last sectors of a device, even if the
565 * block size is some multiple of the physical sector size.
567 * We'll just truncate the bio to the size of the device, and clear the end of
568 * the buffer head manually. Truly out-of-range accesses will turn into actual
569 * I/O errors, this only handles the "we need to be able to do I/O at the final
572 void guard_bio_eod(struct bio *bio)
574 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
580 * If the *whole* IO is past the end of the device,
581 * let it through, and the IO layer will turn it into
584 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
587 maxsector -= bio->bi_iter.bi_sector;
588 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
591 bio_truncate(bio, maxsector << 9);
595 * bio_put - release a reference to a bio
596 * @bio: bio to release reference to
599 * Put a reference to a &struct bio, either one you have gotten with
600 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
602 void bio_put(struct bio *bio)
604 if (!bio_flagged(bio, BIO_REFFED))
607 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
612 if (atomic_dec_and_test(&bio->__bi_cnt))
616 EXPORT_SYMBOL(bio_put);
619 * __bio_clone_fast - clone a bio that shares the original bio's biovec
620 * @bio: destination bio
621 * @bio_src: bio to clone
623 * Clone a &bio. Caller will own the returned bio, but not
624 * the actual data it points to. Reference count of returned
627 * Caller must ensure that @bio_src is not freed before @bio.
629 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
631 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
634 * most users will be overriding ->bi_bdev with a new target,
635 * so we don't set nor calculate new physical/hw segment counts here
637 bio->bi_bdev = bio_src->bi_bdev;
638 bio_set_flag(bio, BIO_CLONED);
639 if (bio_flagged(bio_src, BIO_THROTTLED))
640 bio_set_flag(bio, BIO_THROTTLED);
641 if (bio_flagged(bio_src, BIO_REMAPPED))
642 bio_set_flag(bio, BIO_REMAPPED);
643 bio->bi_opf = bio_src->bi_opf;
644 bio->bi_ioprio = bio_src->bi_ioprio;
645 bio->bi_write_hint = bio_src->bi_write_hint;
646 bio->bi_iter = bio_src->bi_iter;
647 bio->bi_io_vec = bio_src->bi_io_vec;
649 bio_clone_blkg_association(bio, bio_src);
650 blkcg_bio_issue_init(bio);
652 EXPORT_SYMBOL(__bio_clone_fast);
655 * bio_clone_fast - clone a bio that shares the original bio's biovec
657 * @gfp_mask: allocation priority
658 * @bs: bio_set to allocate from
660 * Like __bio_clone_fast, only also allocates the returned bio
662 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
666 b = bio_alloc_bioset(gfp_mask, 0, bs);
670 __bio_clone_fast(b, bio);
672 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
675 if (bio_integrity(bio) &&
676 bio_integrity_clone(b, bio, gfp_mask) < 0)
685 EXPORT_SYMBOL(bio_clone_fast);
687 const char *bio_devname(struct bio *bio, char *buf)
689 return bdevname(bio->bi_bdev, buf);
691 EXPORT_SYMBOL(bio_devname);
693 static inline bool page_is_mergeable(const struct bio_vec *bv,
694 struct page *page, unsigned int len, unsigned int off,
697 size_t bv_end = bv->bv_offset + bv->bv_len;
698 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
699 phys_addr_t page_addr = page_to_phys(page);
701 if (vec_end_addr + 1 != page_addr + off)
703 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
706 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
709 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
713 * Try to merge a page into a segment, while obeying the hardware segment
714 * size limit. This is not for normal read/write bios, but for passthrough
715 * or Zone Append operations that we can't split.
717 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
718 struct page *page, unsigned len,
719 unsigned offset, bool *same_page)
721 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
722 unsigned long mask = queue_segment_boundary(q);
723 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
724 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
726 if ((addr1 | mask) != (addr2 | mask))
728 if (bv->bv_len + len > queue_max_segment_size(q))
730 return __bio_try_merge_page(bio, page, len, offset, same_page);
734 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
735 * @q: the target queue
736 * @bio: destination bio
738 * @len: vec entry length
739 * @offset: vec entry offset
740 * @max_sectors: maximum number of sectors that can be added
741 * @same_page: return if the segment has been merged inside the same page
743 * Add a page to a bio while respecting the hardware max_sectors, max_segment
744 * and gap limitations.
746 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
747 struct page *page, unsigned int len, unsigned int offset,
748 unsigned int max_sectors, bool *same_page)
750 struct bio_vec *bvec;
752 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
755 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
758 if (bio->bi_vcnt > 0) {
759 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
763 * If the queue doesn't support SG gaps and adding this segment
764 * would create a gap, disallow it.
766 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
767 if (bvec_gap_to_prev(q, bvec, offset))
771 if (bio_full(bio, len))
774 if (bio->bi_vcnt >= queue_max_segments(q))
777 bvec = &bio->bi_io_vec[bio->bi_vcnt];
778 bvec->bv_page = page;
780 bvec->bv_offset = offset;
782 bio->bi_iter.bi_size += len;
787 * bio_add_pc_page - attempt to add page to passthrough bio
788 * @q: the target queue
789 * @bio: destination bio
791 * @len: vec entry length
792 * @offset: vec entry offset
794 * Attempt to add a page to the bio_vec maplist. This can fail for a
795 * number of reasons, such as the bio being full or target block device
796 * limitations. The target block device must allow bio's up to PAGE_SIZE,
797 * so it is always possible to add a single page to an empty bio.
799 * This should only be used by passthrough bios.
801 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
802 struct page *page, unsigned int len, unsigned int offset)
804 bool same_page = false;
805 return bio_add_hw_page(q, bio, page, len, offset,
806 queue_max_hw_sectors(q), &same_page);
808 EXPORT_SYMBOL(bio_add_pc_page);
811 * bio_add_zone_append_page - attempt to add page to zone-append bio
812 * @bio: destination bio
814 * @len: vec entry length
815 * @offset: vec entry offset
817 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
818 * for a zone-append request. This can fail for a number of reasons, such as the
819 * bio being full or the target block device is not a zoned block device or
820 * other limitations of the target block device. The target block device must
821 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
824 * Returns: number of bytes added to the bio, or 0 in case of a failure.
826 int bio_add_zone_append_page(struct bio *bio, struct page *page,
827 unsigned int len, unsigned int offset)
829 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
830 bool same_page = false;
832 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
835 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
838 return bio_add_hw_page(q, bio, page, len, offset,
839 queue_max_zone_append_sectors(q), &same_page);
841 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
844 * __bio_try_merge_page - try appending data to an existing bvec.
845 * @bio: destination bio
846 * @page: start page to add
847 * @len: length of the data to add
848 * @off: offset of the data relative to @page
849 * @same_page: return if the segment has been merged inside the same page
851 * Try to add the data at @page + @off to the last bvec of @bio. This is a
852 * useful optimisation for file systems with a block size smaller than the
855 * Warn if (@len, @off) crosses pages in case that @same_page is true.
857 * Return %true on success or %false on failure.
859 bool __bio_try_merge_page(struct bio *bio, struct page *page,
860 unsigned int len, unsigned int off, bool *same_page)
862 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
865 if (bio->bi_vcnt > 0) {
866 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
868 if (page_is_mergeable(bv, page, len, off, same_page)) {
869 if (bio->bi_iter.bi_size > UINT_MAX - len) {
874 bio->bi_iter.bi_size += len;
880 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
883 * __bio_add_page - add page(s) to a bio in a new segment
884 * @bio: destination bio
885 * @page: start page to add
886 * @len: length of the data to add, may cross pages
887 * @off: offset of the data relative to @page, may cross pages
889 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
890 * that @bio has space for another bvec.
892 void __bio_add_page(struct bio *bio, struct page *page,
893 unsigned int len, unsigned int off)
895 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
897 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
898 WARN_ON_ONCE(bio_full(bio, len));
904 bio->bi_iter.bi_size += len;
907 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
908 bio_set_flag(bio, BIO_WORKINGSET);
910 EXPORT_SYMBOL_GPL(__bio_add_page);
913 * bio_add_page - attempt to add page(s) to bio
914 * @bio: destination bio
915 * @page: start page to add
916 * @len: vec entry length, may cross pages
917 * @offset: vec entry offset relative to @page, may cross pages
919 * Attempt to add page(s) to the bio_vec maplist. This will only fail
920 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
922 int bio_add_page(struct bio *bio, struct page *page,
923 unsigned int len, unsigned int offset)
925 bool same_page = false;
927 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
928 if (bio_full(bio, len))
930 __bio_add_page(bio, page, len, offset);
934 EXPORT_SYMBOL(bio_add_page);
936 void bio_release_pages(struct bio *bio, bool mark_dirty)
938 struct bvec_iter_all iter_all;
939 struct bio_vec *bvec;
941 if (bio_flagged(bio, BIO_NO_PAGE_REF))
944 bio_for_each_segment_all(bvec, bio, iter_all) {
945 if (mark_dirty && !PageCompound(bvec->bv_page))
946 set_page_dirty_lock(bvec->bv_page);
947 put_page(bvec->bv_page);
950 EXPORT_SYMBOL_GPL(bio_release_pages);
952 static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
954 WARN_ON_ONCE(bio->bi_max_vecs);
956 bio->bi_vcnt = iter->nr_segs;
957 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
958 bio->bi_iter.bi_bvec_done = iter->iov_offset;
959 bio->bi_iter.bi_size = iter->count;
960 bio_set_flag(bio, BIO_NO_PAGE_REF);
961 bio_set_flag(bio, BIO_CLONED);
963 iov_iter_advance(iter, iter->count);
967 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
970 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
971 * @bio: bio to add pages to
972 * @iter: iov iterator describing the region to be mapped
974 * Pins pages from *iter and appends them to @bio's bvec array. The
975 * pages will have to be released using put_page() when done.
976 * For multi-segment *iter, this function only adds pages from the
977 * next non-empty segment of the iov iterator.
979 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
981 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
982 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
983 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
984 struct page **pages = (struct page **)bv;
985 bool same_page = false;
991 * Move page array up in the allocated memory for the bio vecs as far as
992 * possible so that we can start filling biovecs from the beginning
993 * without overwriting the temporary page array.
995 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
996 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
998 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
999 if (unlikely(size <= 0))
1000 return size ? size : -EFAULT;
1002 for (left = size, i = 0; left > 0; left -= len, i++) {
1003 struct page *page = pages[i];
1005 len = min_t(size_t, PAGE_SIZE - offset, left);
1007 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1011 if (WARN_ON_ONCE(bio_full(bio, len)))
1013 __bio_add_page(bio, page, len, offset);
1018 iov_iter_advance(iter, size);
1022 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1024 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1025 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1026 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1027 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1028 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1029 struct page **pages = (struct page **)bv;
1035 if (WARN_ON_ONCE(!max_append_sectors))
1039 * Move page array up in the allocated memory for the bio vecs as far as
1040 * possible so that we can start filling biovecs from the beginning
1041 * without overwriting the temporary page array.
1043 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1044 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1046 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1047 if (unlikely(size <= 0))
1048 return size ? size : -EFAULT;
1050 for (left = size, i = 0; left > 0; left -= len, i++) {
1051 struct page *page = pages[i];
1052 bool same_page = false;
1054 len = min_t(size_t, PAGE_SIZE - offset, left);
1055 if (bio_add_hw_page(q, bio, page, len, offset,
1056 max_append_sectors, &same_page) != len) {
1065 iov_iter_advance(iter, size - left);
1070 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1071 * @bio: bio to add pages to
1072 * @iter: iov iterator describing the region to be added
1074 * This takes either an iterator pointing to user memory, or one pointing to
1075 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1076 * map them into the kernel. On IO completion, the caller should put those
1077 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1078 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1079 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1080 * completed by a call to ->ki_complete() or returns with an error other than
1081 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1082 * on IO completion. If it isn't, then pages should be released.
1084 * The function tries, but does not guarantee, to pin as many pages as
1085 * fit into the bio, or are requested in @iter, whatever is smaller. If
1086 * MM encounters an error pinning the requested pages, it stops. Error
1087 * is returned only if 0 pages could be pinned.
1089 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1090 * responsible for setting BIO_WORKINGSET if necessary.
1092 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1096 if (iov_iter_is_bvec(iter)) {
1097 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1099 return bio_iov_bvec_set(bio, iter);
1103 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1104 ret = __bio_iov_append_get_pages(bio, iter);
1106 ret = __bio_iov_iter_get_pages(bio, iter);
1107 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1109 /* don't account direct I/O as memory stall */
1110 bio_clear_flag(bio, BIO_WORKINGSET);
1111 return bio->bi_vcnt ? 0 : ret;
1113 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1115 static void submit_bio_wait_endio(struct bio *bio)
1117 complete(bio->bi_private);
1121 * submit_bio_wait - submit a bio, and wait until it completes
1122 * @bio: The &struct bio which describes the I/O
1124 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1125 * bio_endio() on failure.
1127 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1128 * result in bio reference to be consumed. The caller must drop the reference
1131 int submit_bio_wait(struct bio *bio)
1133 DECLARE_COMPLETION_ONSTACK_MAP(done,
1134 bio->bi_bdev->bd_disk->lockdep_map);
1135 unsigned long hang_check;
1137 bio->bi_private = &done;
1138 bio->bi_end_io = submit_bio_wait_endio;
1139 bio->bi_opf |= REQ_SYNC;
1142 /* Prevent hang_check timer from firing at us during very long I/O */
1143 hang_check = sysctl_hung_task_timeout_secs;
1145 while (!wait_for_completion_io_timeout(&done,
1146 hang_check * (HZ/2)))
1149 wait_for_completion_io(&done);
1151 return blk_status_to_errno(bio->bi_status);
1153 EXPORT_SYMBOL(submit_bio_wait);
1156 * bio_advance - increment/complete a bio by some number of bytes
1157 * @bio: bio to advance
1158 * @bytes: number of bytes to complete
1160 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1161 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1162 * be updated on the last bvec as well.
1164 * @bio will then represent the remaining, uncompleted portion of the io.
1166 void bio_advance(struct bio *bio, unsigned bytes)
1168 if (bio_integrity(bio))
1169 bio_integrity_advance(bio, bytes);
1171 bio_crypt_advance(bio, bytes);
1172 bio_advance_iter(bio, &bio->bi_iter, bytes);
1174 EXPORT_SYMBOL(bio_advance);
1176 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1177 struct bio *src, struct bvec_iter *src_iter)
1179 struct bio_vec src_bv, dst_bv;
1180 void *src_p, *dst_p;
1183 while (src_iter->bi_size && dst_iter->bi_size) {
1184 src_bv = bio_iter_iovec(src, *src_iter);
1185 dst_bv = bio_iter_iovec(dst, *dst_iter);
1187 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1189 src_p = kmap_atomic(src_bv.bv_page);
1190 dst_p = kmap_atomic(dst_bv.bv_page);
1192 memcpy(dst_p + dst_bv.bv_offset,
1193 src_p + src_bv.bv_offset,
1196 kunmap_atomic(dst_p);
1197 kunmap_atomic(src_p);
1199 flush_dcache_page(dst_bv.bv_page);
1201 bio_advance_iter_single(src, src_iter, bytes);
1202 bio_advance_iter_single(dst, dst_iter, bytes);
1205 EXPORT_SYMBOL(bio_copy_data_iter);
1208 * bio_copy_data - copy contents of data buffers from one bio to another
1210 * @dst: destination bio
1212 * Stops when it reaches the end of either @src or @dst - that is, copies
1213 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1215 void bio_copy_data(struct bio *dst, struct bio *src)
1217 struct bvec_iter src_iter = src->bi_iter;
1218 struct bvec_iter dst_iter = dst->bi_iter;
1220 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1222 EXPORT_SYMBOL(bio_copy_data);
1225 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1227 * @src: source bio list
1228 * @dst: destination bio list
1230 * Stops when it reaches the end of either the @src list or @dst list - that is,
1231 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1234 void bio_list_copy_data(struct bio *dst, struct bio *src)
1236 struct bvec_iter src_iter = src->bi_iter;
1237 struct bvec_iter dst_iter = dst->bi_iter;
1240 if (!src_iter.bi_size) {
1245 src_iter = src->bi_iter;
1248 if (!dst_iter.bi_size) {
1253 dst_iter = dst->bi_iter;
1256 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1259 EXPORT_SYMBOL(bio_list_copy_data);
1261 void bio_free_pages(struct bio *bio)
1263 struct bio_vec *bvec;
1264 struct bvec_iter_all iter_all;
1266 bio_for_each_segment_all(bvec, bio, iter_all)
1267 __free_page(bvec->bv_page);
1269 EXPORT_SYMBOL(bio_free_pages);
1272 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1273 * for performing direct-IO in BIOs.
1275 * The problem is that we cannot run set_page_dirty() from interrupt context
1276 * because the required locks are not interrupt-safe. So what we can do is to
1277 * mark the pages dirty _before_ performing IO. And in interrupt context,
1278 * check that the pages are still dirty. If so, fine. If not, redirty them
1279 * in process context.
1281 * We special-case compound pages here: normally this means reads into hugetlb
1282 * pages. The logic in here doesn't really work right for compound pages
1283 * because the VM does not uniformly chase down the head page in all cases.
1284 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1285 * handle them at all. So we skip compound pages here at an early stage.
1287 * Note that this code is very hard to test under normal circumstances because
1288 * direct-io pins the pages with get_user_pages(). This makes
1289 * is_page_cache_freeable return false, and the VM will not clean the pages.
1290 * But other code (eg, flusher threads) could clean the pages if they are mapped
1293 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1294 * deferred bio dirtying paths.
1298 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1300 void bio_set_pages_dirty(struct bio *bio)
1302 struct bio_vec *bvec;
1303 struct bvec_iter_all iter_all;
1305 bio_for_each_segment_all(bvec, bio, iter_all) {
1306 if (!PageCompound(bvec->bv_page))
1307 set_page_dirty_lock(bvec->bv_page);
1312 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1313 * If they are, then fine. If, however, some pages are clean then they must
1314 * have been written out during the direct-IO read. So we take another ref on
1315 * the BIO and re-dirty the pages in process context.
1317 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1318 * here on. It will run one put_page() against each page and will run one
1319 * bio_put() against the BIO.
1322 static void bio_dirty_fn(struct work_struct *work);
1324 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1325 static DEFINE_SPINLOCK(bio_dirty_lock);
1326 static struct bio *bio_dirty_list;
1329 * This runs in process context
1331 static void bio_dirty_fn(struct work_struct *work)
1333 struct bio *bio, *next;
1335 spin_lock_irq(&bio_dirty_lock);
1336 next = bio_dirty_list;
1337 bio_dirty_list = NULL;
1338 spin_unlock_irq(&bio_dirty_lock);
1340 while ((bio = next) != NULL) {
1341 next = bio->bi_private;
1343 bio_release_pages(bio, true);
1348 void bio_check_pages_dirty(struct bio *bio)
1350 struct bio_vec *bvec;
1351 unsigned long flags;
1352 struct bvec_iter_all iter_all;
1354 bio_for_each_segment_all(bvec, bio, iter_all) {
1355 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1359 bio_release_pages(bio, false);
1363 spin_lock_irqsave(&bio_dirty_lock, flags);
1364 bio->bi_private = bio_dirty_list;
1365 bio_dirty_list = bio;
1366 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1367 schedule_work(&bio_dirty_work);
1370 static inline bool bio_remaining_done(struct bio *bio)
1373 * If we're not chaining, then ->__bi_remaining is always 1 and
1374 * we always end io on the first invocation.
1376 if (!bio_flagged(bio, BIO_CHAIN))
1379 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1381 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1382 bio_clear_flag(bio, BIO_CHAIN);
1390 * bio_endio - end I/O on a bio
1394 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1395 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1396 * bio unless they own it and thus know that it has an end_io function.
1398 * bio_endio() can be called several times on a bio that has been chained
1399 * using bio_chain(). The ->bi_end_io() function will only be called the
1400 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1401 * generated if BIO_TRACE_COMPLETION is set.
1403 void bio_endio(struct bio *bio)
1406 if (!bio_remaining_done(bio))
1408 if (!bio_integrity_endio(bio))
1412 rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
1415 * Need to have a real endio function for chained bios, otherwise
1416 * various corner cases will break (like stacking block devices that
1417 * save/restore bi_end_io) - however, we want to avoid unbounded
1418 * recursion and blowing the stack. Tail call optimization would
1419 * handle this, but compiling with frame pointers also disables
1420 * gcc's sibling call optimization.
1422 if (bio->bi_end_io == bio_chain_endio) {
1423 bio = __bio_chain_endio(bio);
1427 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1428 trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
1429 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1432 blk_throtl_bio_endio(bio);
1433 /* release cgroup info */
1436 bio->bi_end_io(bio);
1438 EXPORT_SYMBOL(bio_endio);
1441 * bio_split - split a bio
1442 * @bio: bio to split
1443 * @sectors: number of sectors to split from the front of @bio
1445 * @bs: bio set to allocate from
1447 * Allocates and returns a new bio which represents @sectors from the start of
1448 * @bio, and updates @bio to represent the remaining sectors.
1450 * Unless this is a discard request the newly allocated bio will point
1451 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1452 * neither @bio nor @bs are freed before the split bio.
1454 struct bio *bio_split(struct bio *bio, int sectors,
1455 gfp_t gfp, struct bio_set *bs)
1459 BUG_ON(sectors <= 0);
1460 BUG_ON(sectors >= bio_sectors(bio));
1462 /* Zone append commands cannot be split */
1463 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1466 split = bio_clone_fast(bio, gfp, bs);
1470 split->bi_iter.bi_size = sectors << 9;
1472 if (bio_integrity(split))
1473 bio_integrity_trim(split);
1475 bio_advance(bio, split->bi_iter.bi_size);
1477 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1478 bio_set_flag(split, BIO_TRACE_COMPLETION);
1482 EXPORT_SYMBOL(bio_split);
1485 * bio_trim - trim a bio
1487 * @offset: number of sectors to trim from the front of @bio
1488 * @size: size we want to trim @bio to, in sectors
1490 void bio_trim(struct bio *bio, int offset, int size)
1492 /* 'bio' is a cloned bio which we need to trim to match
1493 * the given offset and size.
1497 if (offset == 0 && size == bio->bi_iter.bi_size)
1500 bio_advance(bio, offset << 9);
1501 bio->bi_iter.bi_size = size;
1503 if (bio_integrity(bio))
1504 bio_integrity_trim(bio);
1507 EXPORT_SYMBOL_GPL(bio_trim);
1510 * create memory pools for biovec's in a bio_set.
1511 * use the global biovec slabs created for general use.
1513 int biovec_init_pool(mempool_t *pool, int pool_entries)
1515 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1517 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1521 * bioset_exit - exit a bioset initialized with bioset_init()
1523 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1526 void bioset_exit(struct bio_set *bs)
1528 if (bs->rescue_workqueue)
1529 destroy_workqueue(bs->rescue_workqueue);
1530 bs->rescue_workqueue = NULL;
1532 mempool_exit(&bs->bio_pool);
1533 mempool_exit(&bs->bvec_pool);
1535 bioset_integrity_free(bs);
1538 bs->bio_slab = NULL;
1540 EXPORT_SYMBOL(bioset_exit);
1543 * bioset_init - Initialize a bio_set
1544 * @bs: pool to initialize
1545 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1546 * @front_pad: Number of bytes to allocate in front of the returned bio
1547 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1548 * and %BIOSET_NEED_RESCUER
1551 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1552 * to ask for a number of bytes to be allocated in front of the bio.
1553 * Front pad allocation is useful for embedding the bio inside
1554 * another structure, to avoid allocating extra data to go with the bio.
1555 * Note that the bio must be embedded at the END of that structure always,
1556 * or things will break badly.
1557 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1558 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1559 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1560 * dispatch queued requests when the mempool runs out of space.
1563 int bioset_init(struct bio_set *bs,
1564 unsigned int pool_size,
1565 unsigned int front_pad,
1568 bs->front_pad = front_pad;
1569 if (flags & BIOSET_NEED_BVECS)
1570 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1574 spin_lock_init(&bs->rescue_lock);
1575 bio_list_init(&bs->rescue_list);
1576 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1578 bs->bio_slab = bio_find_or_create_slab(bs);
1582 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1585 if ((flags & BIOSET_NEED_BVECS) &&
1586 biovec_init_pool(&bs->bvec_pool, pool_size))
1589 if (!(flags & BIOSET_NEED_RESCUER))
1592 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1593 if (!bs->rescue_workqueue)
1601 EXPORT_SYMBOL(bioset_init);
1604 * Initialize and setup a new bio_set, based on the settings from
1607 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1612 if (src->bvec_pool.min_nr)
1613 flags |= BIOSET_NEED_BVECS;
1614 if (src->rescue_workqueue)
1615 flags |= BIOSET_NEED_RESCUER;
1617 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1619 EXPORT_SYMBOL(bioset_init_from_src);
1621 static int __init init_bio(void)
1625 bio_integrity_init();
1627 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1628 struct biovec_slab *bvs = bvec_slabs + i;
1630 bvs->slab = kmem_cache_create(bvs->name,
1631 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1632 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1635 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1636 panic("bio: can't allocate bios\n");
1638 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1639 panic("bio: can't create integrity pool\n");
1643 subsys_initcall(init_bio);