2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
32 #include <trace/events/block.h>
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
39 #define BIO_INLINE_VECS 4
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
60 * Our slab pool management
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
76 struct bio_slab *bslab, *new_bio_slabs;
77 unsigned int new_bio_slab_max;
78 unsigned int i, entry = -1;
80 mutex_lock(&bio_slab_lock);
83 while (i < bio_slab_nr) {
84 bslab = &bio_slabs[i];
86 if (!bslab->slab && entry == -1)
88 else if (bslab->slab_size == sz) {
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
100 new_bio_slab_max = bio_slab_max << 1;
101 new_bio_slabs = krealloc(bio_slabs,
102 new_bio_slab_max * sizeof(struct bio_slab),
106 bio_slab_max = new_bio_slab_max;
107 bio_slabs = new_bio_slabs;
110 entry = bio_slab_nr++;
112 bslab = &bio_slabs[entry];
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
122 bslab->slab_size = sz;
124 mutex_unlock(&bio_slab_lock);
128 static void bio_put_slab(struct bio_set *bs)
130 struct bio_slab *bslab = NULL;
133 mutex_lock(&bio_slab_lock);
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 WARN_ON(!bslab->slab_ref);
147 if (--bslab->slab_ref)
150 kmem_cache_destroy(bslab->slab);
154 mutex_unlock(&bio_slab_lock);
157 unsigned int bvec_nr_vecs(unsigned short idx)
159 return bvec_slabs[idx].nr_vecs;
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
170 if (idx == BVEC_POOL_MAX) {
171 mempool_free(bv, pool);
173 struct biovec_slab *bvs = bvec_slabs + idx;
175 kmem_cache_free(bvs->slab, bv);
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
185 * see comment near bvec_array define!
203 case 129 ... BIO_MAX_PAGES:
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
214 if (*idx == BVEC_POOL_MAX) {
216 bvl = mempool_alloc(pool, gfp_mask);
218 struct biovec_slab *bvs = bvec_slabs + *idx;
219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 * is set, retry with the 1-entry mempool
232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 *idx = BVEC_POOL_MAX;
243 void bio_uninit(struct bio *bio)
245 bio_disassociate_task(bio);
247 EXPORT_SYMBOL(bio_uninit);
249 static void bio_free(struct bio *bio)
251 struct bio_set *bs = bio->bi_pool;
257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
260 * If we have front padding, adjust the bio pointer before freeing
265 mempool_free(p, bs->bio_pool);
267 /* Bio was allocated by bio_kmalloc() */
273 * Users of this function have their own bio allocation. Subsequently,
274 * they must remember to pair any call to bio_init() with bio_uninit()
275 * when IO has completed, or when the bio is released.
277 void bio_init(struct bio *bio, struct bio_vec *table,
278 unsigned short max_vecs)
280 memset(bio, 0, sizeof(*bio));
281 atomic_set(&bio->__bi_remaining, 1);
282 atomic_set(&bio->__bi_cnt, 1);
284 bio->bi_io_vec = table;
285 bio->bi_max_vecs = max_vecs;
287 EXPORT_SYMBOL(bio_init);
290 * bio_reset - reinitialize a bio
294 * After calling bio_reset(), @bio will be in the same state as a freshly
295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
296 * preserved are the ones that are initialized by bio_alloc_bioset(). See
297 * comment in struct bio.
299 void bio_reset(struct bio *bio)
301 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
305 memset(bio, 0, BIO_RESET_BYTES);
306 bio->bi_flags = flags;
307 atomic_set(&bio->__bi_remaining, 1);
309 EXPORT_SYMBOL(bio_reset);
311 static struct bio *__bio_chain_endio(struct bio *bio)
313 struct bio *parent = bio->bi_private;
315 if (!parent->bi_status)
316 parent->bi_status = bio->bi_status;
321 static void bio_chain_endio(struct bio *bio)
323 bio_endio(__bio_chain_endio(bio));
327 * bio_chain - chain bio completions
328 * @bio: the target bio
329 * @parent: the @bio's parent bio
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
335 * The caller must not set bi_private or bi_end_io in @bio.
337 void bio_chain(struct bio *bio, struct bio *parent)
339 BUG_ON(bio->bi_private || bio->bi_end_io);
341 bio->bi_private = parent;
342 bio->bi_end_io = bio_chain_endio;
343 bio_inc_remaining(parent);
345 EXPORT_SYMBOL(bio_chain);
347 static void bio_alloc_rescue(struct work_struct *work)
349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
353 spin_lock(&bs->rescue_lock);
354 bio = bio_list_pop(&bs->rescue_list);
355 spin_unlock(&bs->rescue_lock);
360 generic_make_request(bio);
364 static void punt_bios_to_rescuer(struct bio_set *bs)
366 struct bio_list punt, nopunt;
369 if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 * In order to guarantee forward progress we must punt only bios that
373 * were allocated from this bio_set; otherwise, if there was a bio on
374 * there for a stacking driver higher up in the stack, processing it
375 * could require allocating bios from this bio_set, and doing that from
376 * our own rescuer would be bad.
378 * Since bio lists are singly linked, pop them all instead of trying to
379 * remove from the middle of the list:
382 bio_list_init(&punt);
383 bio_list_init(&nopunt);
385 while ((bio = bio_list_pop(¤t->bio_list[0])))
386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 current->bio_list[0] = nopunt;
389 bio_list_init(&nopunt);
390 while ((bio = bio_list_pop(¤t->bio_list[1])))
391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 current->bio_list[1] = nopunt;
394 spin_lock(&bs->rescue_lock);
395 bio_list_merge(&bs->rescue_list, &punt);
396 spin_unlock(&bs->rescue_lock);
398 queue_work(bs->rescue_workqueue, &bs->rescue_work);
402 * bio_alloc_bioset - allocate a bio for I/O
403 * @gfp_mask: the GFP_ mask given to the slab allocator
404 * @nr_iovecs: number of iovecs to pre-allocate
405 * @bs: the bio_set to allocate from.
408 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409 * backed by the @bs's mempool.
411 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412 * always be able to allocate a bio. This is due to the mempool guarantees.
413 * To make this work, callers must never allocate more than 1 bio at a time
414 * from this pool. Callers that need to allocate more than 1 bio must always
415 * submit the previously allocated bio for IO before attempting to allocate
416 * a new one. Failure to do so can cause deadlocks under memory pressure.
418 * Note that when running under generic_make_request() (i.e. any block
419 * driver), bios are not submitted until after you return - see the code in
420 * generic_make_request() that converts recursion into iteration, to prevent
423 * This would normally mean allocating multiple bios under
424 * generic_make_request() would be susceptible to deadlocks, but we have
425 * deadlock avoidance code that resubmits any blocked bios from a rescuer
428 * However, we do not guarantee forward progress for allocations from other
429 * mempools. Doing multiple allocations from the same mempool under
430 * generic_make_request() should be avoided - instead, use bio_set's front_pad
431 * for per bio allocations.
434 * Pointer to new bio on success, NULL on failure.
436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 gfp_t saved_gfp = gfp_mask;
441 unsigned inline_vecs;
442 struct bio_vec *bvl = NULL;
447 if (nr_iovecs > UIO_MAXIOV)
450 p = kmalloc(sizeof(struct bio) +
451 nr_iovecs * sizeof(struct bio_vec),
454 inline_vecs = nr_iovecs;
456 /* should not use nobvec bioset for nr_iovecs > 0 */
457 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
460 * generic_make_request() converts recursion to iteration; this
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
467 * underneath generic_make_request(). If we were to allocate
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
480 if (current->bio_list &&
481 (!bio_list_empty(¤t->bio_list[0]) ||
482 !bio_list_empty(¤t->bio_list[1])) &&
483 bs->rescue_workqueue)
484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
486 p = mempool_alloc(bs->bio_pool, gfp_mask);
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
490 p = mempool_alloc(bs->bio_pool, gfp_mask);
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
501 bio_init(bio, NULL, 0);
503 if (nr_iovecs > inline_vecs) {
504 unsigned long idx = 0;
506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
522 bio->bi_max_vecs = nr_iovecs;
523 bio->bi_io_vec = bvl;
527 mempool_free(p, bs->bio_pool);
530 EXPORT_SYMBOL(bio_alloc_bioset);
532 void zero_fill_bio(struct bio *bio)
536 struct bvec_iter iter;
538 bio_for_each_segment(bv, bio, iter) {
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
542 bvec_kunmap_irq(data, &flags);
545 EXPORT_SYMBOL(zero_fill_bio);
548 * bio_put - release a reference to a bio
549 * @bio: bio to release reference to
552 * Put a reference to a &struct bio, either one you have gotten with
553 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
555 void bio_put(struct bio *bio)
557 if (!bio_flagged(bio, BIO_REFFED))
560 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
565 if (atomic_dec_and_test(&bio->__bi_cnt))
569 EXPORT_SYMBOL(bio_put);
571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
573 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 blk_recount_segments(q, bio);
576 return bio->bi_phys_segments;
578 EXPORT_SYMBOL(bio_phys_segments);
581 * __bio_clone_fast - clone a bio that shares the original bio's biovec
582 * @bio: destination bio
583 * @bio_src: bio to clone
585 * Clone a &bio. Caller will own the returned bio, but not
586 * the actual data it points to. Reference count of returned
589 * Caller must ensure that @bio_src is not freed before @bio.
591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
593 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
596 * most users will be overriding ->bi_disk with a new target,
597 * so we don't set nor calculate new physical/hw segment counts here
599 bio->bi_disk = bio_src->bi_disk;
600 bio_set_flag(bio, BIO_CLONED);
601 bio->bi_opf = bio_src->bi_opf;
602 bio->bi_write_hint = bio_src->bi_write_hint;
603 bio->bi_iter = bio_src->bi_iter;
604 bio->bi_io_vec = bio_src->bi_io_vec;
606 bio_clone_blkcg_association(bio, bio_src);
608 EXPORT_SYMBOL(__bio_clone_fast);
611 * bio_clone_fast - clone a bio that shares the original bio's biovec
613 * @gfp_mask: allocation priority
614 * @bs: bio_set to allocate from
616 * Like __bio_clone_fast, only also allocates the returned bio
618 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
622 b = bio_alloc_bioset(gfp_mask, 0, bs);
626 __bio_clone_fast(b, bio);
628 if (bio_integrity(bio)) {
631 ret = bio_integrity_clone(b, bio, gfp_mask);
641 EXPORT_SYMBOL(bio_clone_fast);
644 * bio_clone_bioset - clone a bio
645 * @bio_src: bio to clone
646 * @gfp_mask: allocation priority
647 * @bs: bio_set to allocate from
649 * Clone bio. Caller will own the returned bio, but not the actual data it
650 * points to. Reference count of returned bio will be one.
652 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
655 struct bvec_iter iter;
660 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
661 * bio_src->bi_io_vec to bio->bi_io_vec.
663 * We can't do that anymore, because:
665 * - The point of cloning the biovec is to produce a bio with a biovec
666 * the caller can modify: bi_idx and bi_bvec_done should be 0.
668 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
669 * we tried to clone the whole thing bio_alloc_bioset() would fail.
670 * But the clone should succeed as long as the number of biovecs we
671 * actually need to allocate is fewer than BIO_MAX_PAGES.
673 * - Lastly, bi_vcnt should not be looked at or relied upon by code
674 * that does not own the bio - reason being drivers don't use it for
675 * iterating over the biovec anymore, so expecting it to be kept up
676 * to date (i.e. for clones that share the parent biovec) is just
677 * asking for trouble and would force extra work on
678 * __bio_clone_fast() anyways.
681 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
684 bio->bi_disk = bio_src->bi_disk;
685 bio->bi_opf = bio_src->bi_opf;
686 bio->bi_write_hint = bio_src->bi_write_hint;
687 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
688 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
690 switch (bio_op(bio)) {
692 case REQ_OP_SECURE_ERASE:
693 case REQ_OP_WRITE_ZEROES:
695 case REQ_OP_WRITE_SAME:
696 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
699 bio_for_each_segment(bv, bio_src, iter)
700 bio->bi_io_vec[bio->bi_vcnt++] = bv;
704 if (bio_integrity(bio_src)) {
707 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
714 bio_clone_blkcg_association(bio, bio_src);
718 EXPORT_SYMBOL(bio_clone_bioset);
721 * bio_add_pc_page - attempt to add page to bio
722 * @q: the target queue
723 * @bio: destination bio
725 * @len: vec entry length
726 * @offset: vec entry offset
728 * Attempt to add a page to the bio_vec maplist. This can fail for a
729 * number of reasons, such as the bio being full or target block device
730 * limitations. The target block device must allow bio's up to PAGE_SIZE,
731 * so it is always possible to add a single page to an empty bio.
733 * This should only be used by REQ_PC bios.
735 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
736 *page, unsigned int len, unsigned int offset)
738 int retried_segments = 0;
739 struct bio_vec *bvec;
742 * cloned bio must not modify vec list
744 if (unlikely(bio_flagged(bio, BIO_CLONED)))
747 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
751 * For filesystems with a blocksize smaller than the pagesize
752 * we will often be called with the same page as last time and
753 * a consecutive offset. Optimize this special case.
755 if (bio->bi_vcnt > 0) {
756 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
758 if (page == prev->bv_page &&
759 offset == prev->bv_offset + prev->bv_len) {
761 bio->bi_iter.bi_size += len;
766 * If the queue doesn't support SG gaps and adding this
767 * offset would create a gap, disallow it.
769 if (bvec_gap_to_prev(q, prev, offset))
773 if (bio->bi_vcnt >= bio->bi_max_vecs)
777 * setup the new entry, we might clear it again later if we
778 * cannot add the page
780 bvec = &bio->bi_io_vec[bio->bi_vcnt];
781 bvec->bv_page = page;
783 bvec->bv_offset = offset;
785 bio->bi_phys_segments++;
786 bio->bi_iter.bi_size += len;
789 * Perform a recount if the number of segments is greater
790 * than queue_max_segments(q).
793 while (bio->bi_phys_segments > queue_max_segments(q)) {
795 if (retried_segments)
798 retried_segments = 1;
799 blk_recount_segments(q, bio);
802 /* If we may be able to merge these biovecs, force a recount */
803 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
804 bio_clear_flag(bio, BIO_SEG_VALID);
810 bvec->bv_page = NULL;
814 bio->bi_iter.bi_size -= len;
815 blk_recount_segments(q, bio);
818 EXPORT_SYMBOL(bio_add_pc_page);
821 * bio_add_page - attempt to add page to bio
822 * @bio: destination bio
824 * @len: vec entry length
825 * @offset: vec entry offset
827 * Attempt to add a page to the bio_vec maplist. This will only fail
828 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
830 int bio_add_page(struct bio *bio, struct page *page,
831 unsigned int len, unsigned int offset)
836 * cloned bio must not modify vec list
838 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
842 * For filesystems with a blocksize smaller than the pagesize
843 * we will often be called with the same page as last time and
844 * a consecutive offset. Optimize this special case.
846 if (bio->bi_vcnt > 0) {
847 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
849 if (page == bv->bv_page &&
850 offset == bv->bv_offset + bv->bv_len) {
856 if (bio->bi_vcnt >= bio->bi_max_vecs)
859 bv = &bio->bi_io_vec[bio->bi_vcnt];
862 bv->bv_offset = offset;
866 bio->bi_iter.bi_size += len;
869 EXPORT_SYMBOL(bio_add_page);
872 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
873 * @bio: bio to add pages to
874 * @iter: iov iterator describing the region to be mapped
876 * Pins as many pages from *iter and appends them to @bio's bvec array. The
877 * pages will have to be released using put_page() when done.
879 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
881 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
882 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
883 struct page **pages = (struct page **)bv;
887 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
888 if (unlikely(size <= 0))
889 return size ? size : -EFAULT;
890 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
893 * Deep magic below: We need to walk the pinned pages backwards
894 * because we are abusing the space allocated for the bio_vecs
895 * for the page array. Because the bio_vecs are larger than the
896 * page pointers by definition this will always work. But it also
897 * means we can't use bio_add_page, so any changes to it's semantics
898 * need to be reflected here as well.
900 bio->bi_iter.bi_size += size;
901 bio->bi_vcnt += nr_pages;
903 diff = (nr_pages * PAGE_SIZE - offset) - size;
905 bv[nr_pages].bv_page = pages[nr_pages];
906 bv[nr_pages].bv_len = PAGE_SIZE;
907 bv[nr_pages].bv_offset = 0;
910 bv[0].bv_offset += offset;
911 bv[0].bv_len -= offset;
913 bv[bio->bi_vcnt - 1].bv_len -= diff;
915 iov_iter_advance(iter, size);
918 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
920 struct submit_bio_ret {
921 struct completion event;
925 static void submit_bio_wait_endio(struct bio *bio)
927 struct submit_bio_ret *ret = bio->bi_private;
929 ret->error = blk_status_to_errno(bio->bi_status);
930 complete(&ret->event);
934 * submit_bio_wait - submit a bio, and wait until it completes
935 * @bio: The &struct bio which describes the I/O
937 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
938 * bio_endio() on failure.
940 * WARNING: Unlike to how submit_bio() is usually used, this function does not
941 * result in bio reference to be consumed. The caller must drop the reference
944 int submit_bio_wait(struct bio *bio)
946 struct submit_bio_ret ret;
948 init_completion(&ret.event);
949 bio->bi_private = &ret;
950 bio->bi_end_io = submit_bio_wait_endio;
951 bio->bi_opf |= REQ_SYNC;
953 wait_for_completion_io(&ret.event);
957 EXPORT_SYMBOL(submit_bio_wait);
960 * bio_advance - increment/complete a bio by some number of bytes
961 * @bio: bio to advance
962 * @bytes: number of bytes to complete
964 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
965 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
966 * be updated on the last bvec as well.
968 * @bio will then represent the remaining, uncompleted portion of the io.
970 void bio_advance(struct bio *bio, unsigned bytes)
972 if (bio_integrity(bio))
973 bio_integrity_advance(bio, bytes);
975 bio_advance_iter(bio, &bio->bi_iter, bytes);
977 EXPORT_SYMBOL(bio_advance);
980 * bio_alloc_pages - allocates a single page for each bvec in a bio
981 * @bio: bio to allocate pages for
982 * @gfp_mask: flags for allocation
984 * Allocates pages up to @bio->bi_vcnt.
986 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
989 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
994 bio_for_each_segment_all(bv, bio, i) {
995 bv->bv_page = alloc_page(gfp_mask);
997 while (--bv >= bio->bi_io_vec)
998 __free_page(bv->bv_page);
1005 EXPORT_SYMBOL(bio_alloc_pages);
1008 * bio_copy_data - copy contents of data buffers from one chain of bios to
1010 * @src: source bio list
1011 * @dst: destination bio list
1013 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1014 * @src and @dst as linked lists of bios.
1016 * Stops when it reaches the end of either @src or @dst - that is, copies
1017 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1019 void bio_copy_data(struct bio *dst, struct bio *src)
1021 struct bvec_iter src_iter, dst_iter;
1022 struct bio_vec src_bv, dst_bv;
1023 void *src_p, *dst_p;
1026 src_iter = src->bi_iter;
1027 dst_iter = dst->bi_iter;
1030 if (!src_iter.bi_size) {
1035 src_iter = src->bi_iter;
1038 if (!dst_iter.bi_size) {
1043 dst_iter = dst->bi_iter;
1046 src_bv = bio_iter_iovec(src, src_iter);
1047 dst_bv = bio_iter_iovec(dst, dst_iter);
1049 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1051 src_p = kmap_atomic(src_bv.bv_page);
1052 dst_p = kmap_atomic(dst_bv.bv_page);
1054 memcpy(dst_p + dst_bv.bv_offset,
1055 src_p + src_bv.bv_offset,
1058 kunmap_atomic(dst_p);
1059 kunmap_atomic(src_p);
1061 bio_advance_iter(src, &src_iter, bytes);
1062 bio_advance_iter(dst, &dst_iter, bytes);
1065 EXPORT_SYMBOL(bio_copy_data);
1067 struct bio_map_data {
1069 struct iov_iter iter;
1073 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1076 if (iov_count > UIO_MAXIOV)
1079 return kmalloc(sizeof(struct bio_map_data) +
1080 sizeof(struct iovec) * iov_count, gfp_mask);
1084 * bio_copy_from_iter - copy all pages from iov_iter to bio
1085 * @bio: The &struct bio which describes the I/O as destination
1086 * @iter: iov_iter as source
1088 * Copy all pages from iov_iter to bio.
1089 * Returns 0 on success, or error on failure.
1091 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1094 struct bio_vec *bvec;
1096 bio_for_each_segment_all(bvec, bio, i) {
1099 ret = copy_page_from_iter(bvec->bv_page,
1104 if (!iov_iter_count(&iter))
1107 if (ret < bvec->bv_len)
1115 * bio_copy_to_iter - copy all pages from bio to iov_iter
1116 * @bio: The &struct bio which describes the I/O as source
1117 * @iter: iov_iter as destination
1119 * Copy all pages from bio to iov_iter.
1120 * Returns 0 on success, or error on failure.
1122 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1125 struct bio_vec *bvec;
1127 bio_for_each_segment_all(bvec, bio, i) {
1130 ret = copy_page_to_iter(bvec->bv_page,
1135 if (!iov_iter_count(&iter))
1138 if (ret < bvec->bv_len)
1145 void bio_free_pages(struct bio *bio)
1147 struct bio_vec *bvec;
1150 bio_for_each_segment_all(bvec, bio, i)
1151 __free_page(bvec->bv_page);
1153 EXPORT_SYMBOL(bio_free_pages);
1156 * bio_uncopy_user - finish previously mapped bio
1157 * @bio: bio being terminated
1159 * Free pages allocated from bio_copy_user_iov() and write back data
1160 * to user space in case of a read.
1162 int bio_uncopy_user(struct bio *bio)
1164 struct bio_map_data *bmd = bio->bi_private;
1167 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1169 * if we're in a workqueue, the request is orphaned, so
1170 * don't copy into a random user address space, just free
1171 * and return -EINTR so user space doesn't expect any data.
1175 else if (bio_data_dir(bio) == READ)
1176 ret = bio_copy_to_iter(bio, bmd->iter);
1177 if (bmd->is_our_pages)
1178 bio_free_pages(bio);
1186 * bio_copy_user_iov - copy user data to bio
1187 * @q: destination block queue
1188 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1189 * @iter: iovec iterator
1190 * @gfp_mask: memory allocation flags
1192 * Prepares and returns a bio for indirect user io, bouncing data
1193 * to/from kernel pages as necessary. Must be paired with
1194 * call bio_uncopy_user() on io completion.
1196 struct bio *bio_copy_user_iov(struct request_queue *q,
1197 struct rq_map_data *map_data,
1198 const struct iov_iter *iter,
1201 struct bio_map_data *bmd;
1206 unsigned int len = iter->count;
1207 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1209 for (i = 0; i < iter->nr_segs; i++) {
1210 unsigned long uaddr;
1212 unsigned long start;
1214 uaddr = (unsigned long) iter->iov[i].iov_base;
1215 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1217 start = uaddr >> PAGE_SHIFT;
1223 return ERR_PTR(-EINVAL);
1225 nr_pages += end - start;
1231 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1233 return ERR_PTR(-ENOMEM);
1236 * We need to do a deep copy of the iov_iter including the iovecs.
1237 * The caller provided iov might point to an on-stack or otherwise
1240 bmd->is_our_pages = map_data ? 0 : 1;
1241 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1242 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1243 iter->nr_segs, iter->count);
1246 bio = bio_kmalloc(gfp_mask, nr_pages);
1253 nr_pages = 1 << map_data->page_order;
1254 i = map_data->offset / PAGE_SIZE;
1257 unsigned int bytes = PAGE_SIZE;
1265 if (i == map_data->nr_entries * nr_pages) {
1270 page = map_data->pages[i / nr_pages];
1271 page += (i % nr_pages);
1275 page = alloc_page(q->bounce_gfp | gfp_mask);
1282 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1295 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1296 (map_data && map_data->from_user)) {
1297 ret = bio_copy_from_iter(bio, *iter);
1302 bio->bi_private = bmd;
1306 bio_free_pages(bio);
1310 return ERR_PTR(ret);
1314 * bio_map_user_iov - map user iovec into bio
1315 * @q: the struct request_queue for the bio
1316 * @iter: iovec iterator
1317 * @gfp_mask: memory allocation flags
1319 * Map the user space address into a bio suitable for io to a block
1320 * device. Returns an error pointer in case of error.
1322 struct bio *bio_map_user_iov(struct request_queue *q,
1323 const struct iov_iter *iter,
1328 struct page **pages;
1335 iov_for_each(iov, i, *iter) {
1336 unsigned long uaddr = (unsigned long) iov.iov_base;
1337 unsigned long len = iov.iov_len;
1338 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1339 unsigned long start = uaddr >> PAGE_SHIFT;
1345 return ERR_PTR(-EINVAL);
1347 nr_pages += end - start;
1349 * buffer must be aligned to at least logical block size for now
1351 if (uaddr & queue_dma_alignment(q))
1352 return ERR_PTR(-EINVAL);
1356 return ERR_PTR(-EINVAL);
1358 bio = bio_kmalloc(gfp_mask, nr_pages);
1360 return ERR_PTR(-ENOMEM);
1363 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1367 iov_for_each(iov, i, *iter) {
1368 unsigned long uaddr = (unsigned long) iov.iov_base;
1369 unsigned long len = iov.iov_len;
1370 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1371 unsigned long start = uaddr >> PAGE_SHIFT;
1372 const int local_nr_pages = end - start;
1373 const int page_limit = cur_page + local_nr_pages;
1375 ret = get_user_pages_fast(uaddr, local_nr_pages,
1376 (iter->type & WRITE) != WRITE,
1378 if (ret < local_nr_pages) {
1383 offset = offset_in_page(uaddr);
1384 for (j = cur_page; j < page_limit; j++) {
1385 unsigned int bytes = PAGE_SIZE - offset;
1396 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1406 * release the pages we didn't map into the bio, if any
1408 while (j < page_limit)
1409 put_page(pages[j++]);
1414 bio_set_flag(bio, BIO_USER_MAPPED);
1417 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1418 * it would normally disappear when its bi_end_io is run.
1419 * however, we need it for the unmap, so grab an extra
1426 for (j = 0; j < nr_pages; j++) {
1434 return ERR_PTR(ret);
1437 static void __bio_unmap_user(struct bio *bio)
1439 struct bio_vec *bvec;
1443 * make sure we dirty pages we wrote to
1445 bio_for_each_segment_all(bvec, bio, i) {
1446 if (bio_data_dir(bio) == READ)
1447 set_page_dirty_lock(bvec->bv_page);
1449 put_page(bvec->bv_page);
1456 * bio_unmap_user - unmap a bio
1457 * @bio: the bio being unmapped
1459 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1462 * bio_unmap_user() may sleep.
1464 void bio_unmap_user(struct bio *bio)
1466 __bio_unmap_user(bio);
1470 static void bio_map_kern_endio(struct bio *bio)
1476 * bio_map_kern - map kernel address into bio
1477 * @q: the struct request_queue for the bio
1478 * @data: pointer to buffer to map
1479 * @len: length in bytes
1480 * @gfp_mask: allocation flags for bio allocation
1482 * Map the kernel address into a bio suitable for io to a block
1483 * device. Returns an error pointer in case of error.
1485 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1488 unsigned long kaddr = (unsigned long)data;
1489 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1490 unsigned long start = kaddr >> PAGE_SHIFT;
1491 const int nr_pages = end - start;
1495 bio = bio_kmalloc(gfp_mask, nr_pages);
1497 return ERR_PTR(-ENOMEM);
1499 offset = offset_in_page(kaddr);
1500 for (i = 0; i < nr_pages; i++) {
1501 unsigned int bytes = PAGE_SIZE - offset;
1509 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1511 /* we don't support partial mappings */
1513 return ERR_PTR(-EINVAL);
1521 bio->bi_end_io = bio_map_kern_endio;
1524 EXPORT_SYMBOL(bio_map_kern);
1526 static void bio_copy_kern_endio(struct bio *bio)
1528 bio_free_pages(bio);
1532 static void bio_copy_kern_endio_read(struct bio *bio)
1534 char *p = bio->bi_private;
1535 struct bio_vec *bvec;
1538 bio_for_each_segment_all(bvec, bio, i) {
1539 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1543 bio_copy_kern_endio(bio);
1547 * bio_copy_kern - copy kernel address into bio
1548 * @q: the struct request_queue for the bio
1549 * @data: pointer to buffer to copy
1550 * @len: length in bytes
1551 * @gfp_mask: allocation flags for bio and page allocation
1552 * @reading: data direction is READ
1554 * copy the kernel address into a bio suitable for io to a block
1555 * device. Returns an error pointer in case of error.
1557 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1558 gfp_t gfp_mask, int reading)
1560 unsigned long kaddr = (unsigned long)data;
1561 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1562 unsigned long start = kaddr >> PAGE_SHIFT;
1571 return ERR_PTR(-EINVAL);
1573 nr_pages = end - start;
1574 bio = bio_kmalloc(gfp_mask, nr_pages);
1576 return ERR_PTR(-ENOMEM);
1580 unsigned int bytes = PAGE_SIZE;
1585 page = alloc_page(q->bounce_gfp | gfp_mask);
1590 memcpy(page_address(page), p, bytes);
1592 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1600 bio->bi_end_io = bio_copy_kern_endio_read;
1601 bio->bi_private = data;
1603 bio->bi_end_io = bio_copy_kern_endio;
1609 bio_free_pages(bio);
1611 return ERR_PTR(-ENOMEM);
1615 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1616 * for performing direct-IO in BIOs.
1618 * The problem is that we cannot run set_page_dirty() from interrupt context
1619 * because the required locks are not interrupt-safe. So what we can do is to
1620 * mark the pages dirty _before_ performing IO. And in interrupt context,
1621 * check that the pages are still dirty. If so, fine. If not, redirty them
1622 * in process context.
1624 * We special-case compound pages here: normally this means reads into hugetlb
1625 * pages. The logic in here doesn't really work right for compound pages
1626 * because the VM does not uniformly chase down the head page in all cases.
1627 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1628 * handle them at all. So we skip compound pages here at an early stage.
1630 * Note that this code is very hard to test under normal circumstances because
1631 * direct-io pins the pages with get_user_pages(). This makes
1632 * is_page_cache_freeable return false, and the VM will not clean the pages.
1633 * But other code (eg, flusher threads) could clean the pages if they are mapped
1636 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1637 * deferred bio dirtying paths.
1641 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1643 void bio_set_pages_dirty(struct bio *bio)
1645 struct bio_vec *bvec;
1648 bio_for_each_segment_all(bvec, bio, i) {
1649 struct page *page = bvec->bv_page;
1651 if (page && !PageCompound(page))
1652 set_page_dirty_lock(page);
1656 static void bio_release_pages(struct bio *bio)
1658 struct bio_vec *bvec;
1661 bio_for_each_segment_all(bvec, bio, i) {
1662 struct page *page = bvec->bv_page;
1670 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1671 * If they are, then fine. If, however, some pages are clean then they must
1672 * have been written out during the direct-IO read. So we take another ref on
1673 * the BIO and the offending pages and re-dirty the pages in process context.
1675 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1676 * here on. It will run one put_page() against each page and will run one
1677 * bio_put() against the BIO.
1680 static void bio_dirty_fn(struct work_struct *work);
1682 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1683 static DEFINE_SPINLOCK(bio_dirty_lock);
1684 static struct bio *bio_dirty_list;
1687 * This runs in process context
1689 static void bio_dirty_fn(struct work_struct *work)
1691 unsigned long flags;
1694 spin_lock_irqsave(&bio_dirty_lock, flags);
1695 bio = bio_dirty_list;
1696 bio_dirty_list = NULL;
1697 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1700 struct bio *next = bio->bi_private;
1702 bio_set_pages_dirty(bio);
1703 bio_release_pages(bio);
1709 void bio_check_pages_dirty(struct bio *bio)
1711 struct bio_vec *bvec;
1712 int nr_clean_pages = 0;
1715 bio_for_each_segment_all(bvec, bio, i) {
1716 struct page *page = bvec->bv_page;
1718 if (PageDirty(page) || PageCompound(page)) {
1720 bvec->bv_page = NULL;
1726 if (nr_clean_pages) {
1727 unsigned long flags;
1729 spin_lock_irqsave(&bio_dirty_lock, flags);
1730 bio->bi_private = bio_dirty_list;
1731 bio_dirty_list = bio;
1732 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1733 schedule_work(&bio_dirty_work);
1739 void generic_start_io_acct(struct request_queue *q, int rw,
1740 unsigned long sectors, struct hd_struct *part)
1742 int cpu = part_stat_lock();
1744 part_round_stats(q, cpu, part);
1745 part_stat_inc(cpu, part, ios[rw]);
1746 part_stat_add(cpu, part, sectors[rw], sectors);
1747 part_inc_in_flight(q, part, rw);
1751 EXPORT_SYMBOL(generic_start_io_acct);
1753 void generic_end_io_acct(struct request_queue *q, int rw,
1754 struct hd_struct *part, unsigned long start_time)
1756 unsigned long duration = jiffies - start_time;
1757 int cpu = part_stat_lock();
1759 part_stat_add(cpu, part, ticks[rw], duration);
1760 part_round_stats(q, cpu, part);
1761 part_dec_in_flight(q, part, rw);
1765 EXPORT_SYMBOL(generic_end_io_acct);
1767 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1768 void bio_flush_dcache_pages(struct bio *bi)
1770 struct bio_vec bvec;
1771 struct bvec_iter iter;
1773 bio_for_each_segment(bvec, bi, iter)
1774 flush_dcache_page(bvec.bv_page);
1776 EXPORT_SYMBOL(bio_flush_dcache_pages);
1779 static inline bool bio_remaining_done(struct bio *bio)
1782 * If we're not chaining, then ->__bi_remaining is always 1 and
1783 * we always end io on the first invocation.
1785 if (!bio_flagged(bio, BIO_CHAIN))
1788 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1790 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1791 bio_clear_flag(bio, BIO_CHAIN);
1799 * bio_endio - end I/O on a bio
1803 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1804 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1805 * bio unless they own it and thus know that it has an end_io function.
1807 * bio_endio() can be called several times on a bio that has been chained
1808 * using bio_chain(). The ->bi_end_io() function will only be called the
1809 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1810 * generated if BIO_TRACE_COMPLETION is set.
1812 void bio_endio(struct bio *bio)
1815 if (!bio_remaining_done(bio))
1817 if (!bio_integrity_endio(bio))
1821 * Need to have a real endio function for chained bios, otherwise
1822 * various corner cases will break (like stacking block devices that
1823 * save/restore bi_end_io) - however, we want to avoid unbounded
1824 * recursion and blowing the stack. Tail call optimization would
1825 * handle this, but compiling with frame pointers also disables
1826 * gcc's sibling call optimization.
1828 if (bio->bi_end_io == bio_chain_endio) {
1829 bio = __bio_chain_endio(bio);
1833 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1834 trace_block_bio_complete(bio->bi_disk->queue, bio,
1835 blk_status_to_errno(bio->bi_status));
1836 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1839 blk_throtl_bio_endio(bio);
1840 /* release cgroup info */
1843 bio->bi_end_io(bio);
1845 EXPORT_SYMBOL(bio_endio);
1848 * bio_split - split a bio
1849 * @bio: bio to split
1850 * @sectors: number of sectors to split from the front of @bio
1852 * @bs: bio set to allocate from
1854 * Allocates and returns a new bio which represents @sectors from the start of
1855 * @bio, and updates @bio to represent the remaining sectors.
1857 * Unless this is a discard request the newly allocated bio will point
1858 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1859 * @bio is not freed before the split.
1861 struct bio *bio_split(struct bio *bio, int sectors,
1862 gfp_t gfp, struct bio_set *bs)
1864 struct bio *split = NULL;
1866 BUG_ON(sectors <= 0);
1867 BUG_ON(sectors >= bio_sectors(bio));
1869 split = bio_clone_fast(bio, gfp, bs);
1873 split->bi_iter.bi_size = sectors << 9;
1875 if (bio_integrity(split))
1876 bio_integrity_trim(split);
1878 bio_advance(bio, split->bi_iter.bi_size);
1880 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1881 bio_set_flag(bio, BIO_TRACE_COMPLETION);
1885 EXPORT_SYMBOL(bio_split);
1888 * bio_trim - trim a bio
1890 * @offset: number of sectors to trim from the front of @bio
1891 * @size: size we want to trim @bio to, in sectors
1893 void bio_trim(struct bio *bio, int offset, int size)
1895 /* 'bio' is a cloned bio which we need to trim to match
1896 * the given offset and size.
1900 if (offset == 0 && size == bio->bi_iter.bi_size)
1903 bio_clear_flag(bio, BIO_SEG_VALID);
1905 bio_advance(bio, offset << 9);
1907 bio->bi_iter.bi_size = size;
1909 if (bio_integrity(bio))
1910 bio_integrity_trim(bio);
1913 EXPORT_SYMBOL_GPL(bio_trim);
1916 * create memory pools for biovec's in a bio_set.
1917 * use the global biovec slabs created for general use.
1919 mempool_t *biovec_create_pool(int pool_entries)
1921 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1923 return mempool_create_slab_pool(pool_entries, bp->slab);
1926 void bioset_free(struct bio_set *bs)
1928 if (bs->rescue_workqueue)
1929 destroy_workqueue(bs->rescue_workqueue);
1932 mempool_destroy(bs->bio_pool);
1935 mempool_destroy(bs->bvec_pool);
1937 bioset_integrity_free(bs);
1942 EXPORT_SYMBOL(bioset_free);
1945 * bioset_create - Create a bio_set
1946 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1947 * @front_pad: Number of bytes to allocate in front of the returned bio
1948 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1949 * and %BIOSET_NEED_RESCUER
1952 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1953 * to ask for a number of bytes to be allocated in front of the bio.
1954 * Front pad allocation is useful for embedding the bio inside
1955 * another structure, to avoid allocating extra data to go with the bio.
1956 * Note that the bio must be embedded at the END of that structure always,
1957 * or things will break badly.
1958 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1959 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1960 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1961 * dispatch queued requests when the mempool runs out of space.
1964 struct bio_set *bioset_create(unsigned int pool_size,
1965 unsigned int front_pad,
1968 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1971 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1975 bs->front_pad = front_pad;
1977 spin_lock_init(&bs->rescue_lock);
1978 bio_list_init(&bs->rescue_list);
1979 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1981 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1982 if (!bs->bio_slab) {
1987 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1991 if (flags & BIOSET_NEED_BVECS) {
1992 bs->bvec_pool = biovec_create_pool(pool_size);
1997 if (!(flags & BIOSET_NEED_RESCUER))
2000 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2001 if (!bs->rescue_workqueue)
2009 EXPORT_SYMBOL(bioset_create);
2011 #ifdef CONFIG_BLK_CGROUP
2014 * bio_associate_blkcg - associate a bio with the specified blkcg
2016 * @blkcg_css: css of the blkcg to associate
2018 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2019 * treat @bio as if it were issued by a task which belongs to the blkcg.
2021 * This function takes an extra reference of @blkcg_css which will be put
2022 * when @bio is released. The caller must own @bio and is responsible for
2023 * synchronizing calls to this function.
2025 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2027 if (unlikely(bio->bi_css))
2030 bio->bi_css = blkcg_css;
2033 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2036 * bio_associate_current - associate a bio with %current
2039 * Associate @bio with %current if it hasn't been associated yet. Block
2040 * layer will treat @bio as if it were issued by %current no matter which
2041 * task actually issues it.
2043 * This function takes an extra reference of @task's io_context and blkcg
2044 * which will be put when @bio is released. The caller must own @bio,
2045 * ensure %current->io_context exists, and is responsible for synchronizing
2046 * calls to this function.
2048 int bio_associate_current(struct bio *bio)
2050 struct io_context *ioc;
2055 ioc = current->io_context;
2059 get_io_context_active(ioc);
2061 bio->bi_css = task_get_css(current, io_cgrp_id);
2064 EXPORT_SYMBOL_GPL(bio_associate_current);
2067 * bio_disassociate_task - undo bio_associate_current()
2070 void bio_disassociate_task(struct bio *bio)
2073 put_io_context(bio->bi_ioc);
2077 css_put(bio->bi_css);
2083 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2084 * @dst: destination bio
2087 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2090 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2092 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2093 #endif /* CONFIG_BLK_CGROUP */
2095 static void __init biovec_init_slabs(void)
2099 for (i = 0; i < BVEC_POOL_NR; i++) {
2101 struct biovec_slab *bvs = bvec_slabs + i;
2103 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2108 size = bvs->nr_vecs * sizeof(struct bio_vec);
2109 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2110 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2114 static int __init init_bio(void)
2118 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2120 panic("bio: can't allocate bios\n");
2122 bio_integrity_init();
2123 biovec_init_slabs();
2125 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
2127 panic("bio: can't allocate bios\n");
2129 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2130 panic("bio: can't create integrity pool\n");
2134 subsys_initcall(init_bio);